US20230037294A1 - Nanoparticle immunoconjugates - Google Patents
Nanoparticle immunoconjugates Download PDFInfo
- Publication number
- US20230037294A1 US20230037294A1 US17/961,761 US202217961761A US2023037294A1 US 20230037294 A1 US20230037294 A1 US 20230037294A1 US 202217961761 A US202217961761 A US 202217961761A US 2023037294 A1 US2023037294 A1 US 2023037294A1
- Authority
- US
- United States
- Prior art keywords
- nanoparticle
- immunoconjugate
- certain embodiments
- linker
- peg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 168
- 229940127121 immunoconjugate Drugs 0.000 title claims abstract description 99
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims abstract description 63
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims abstract description 61
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000003814 drug Substances 0.000 claims abstract description 27
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 21
- 239000012634 fragment Substances 0.000 claims description 32
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 28
- 239000012216 imaging agent Substances 0.000 claims description 19
- -1 166Ho Chemical compound 0.000 claims description 14
- 229920000620 organic polymer Polymers 0.000 claims description 12
- 229940124597 therapeutic agent Drugs 0.000 claims description 12
- OHSVLFRHMCKCQY-NJFSPNSNSA-N lutetium-177 Chemical compound [177Lu] OHSVLFRHMCKCQY-NJFSPNSNSA-N 0.000 claims description 9
- 239000007850 fluorescent dye Substances 0.000 claims description 6
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 4
- 108091005804 Peptidases Proteins 0.000 claims description 4
- 239000004365 Protease Substances 0.000 claims description 4
- 229940044683 chemotherapy drug Drugs 0.000 claims description 4
- 108010016626 Dipeptides Proteins 0.000 claims description 3
- 230000002132 lysosomal effect Effects 0.000 claims description 3
- 102000004225 Cathepsin B Human genes 0.000 claims description 2
- 108090000712 Cathepsin B Proteins 0.000 claims description 2
- 102000035195 Peptidases Human genes 0.000 claims description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims description 2
- 229960002173 citrulline Drugs 0.000 claims description 2
- 239000000700 radioactive tracer Substances 0.000 claims description 2
- 238000002296 dynamic light scattering Methods 0.000 abstract description 26
- 239000007864 aqueous solution Substances 0.000 abstract description 15
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 abstract description 14
- 229920001223 polyethylene glycol Polymers 0.000 description 42
- 238000000034 method Methods 0.000 description 39
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 36
- 230000001225 therapeutic effect Effects 0.000 description 34
- 239000002202 Polyethylene glycol Substances 0.000 description 31
- 239000002738 chelating agent Substances 0.000 description 29
- 201000010099 disease Diseases 0.000 description 26
- 238000002600 positron emission tomography Methods 0.000 description 21
- 108090000623 proteins and genes Proteins 0.000 description 20
- 239000000203 mixture Substances 0.000 description 19
- 125000005647 linker group Chemical group 0.000 description 18
- 102000004196 processed proteins & peptides Human genes 0.000 description 18
- 235000018102 proteins Nutrition 0.000 description 18
- 102000004169 proteins and genes Human genes 0.000 description 18
- 229920001184 polypeptide Polymers 0.000 description 17
- 206010028980 Neoplasm Diseases 0.000 description 16
- 238000011282 treatment Methods 0.000 description 16
- 239000002245 particle Substances 0.000 description 15
- 239000000427 antigen Substances 0.000 description 14
- 102000036639 antigens Human genes 0.000 description 14
- 108091007433 antigens Proteins 0.000 description 14
- 238000001727 in vivo Methods 0.000 description 14
- 230000008685 targeting Effects 0.000 description 14
- 230000027455 binding Effects 0.000 description 13
- 229940079593 drug Drugs 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 201000011510 cancer Diseases 0.000 description 12
- 230000003993 interaction Effects 0.000 description 12
- 238000001959 radiotherapy Methods 0.000 description 12
- 239000008194 pharmaceutical composition Substances 0.000 description 11
- 238000005411 Van der Waals force Methods 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- 208000035475 disorder Diseases 0.000 description 10
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 10
- 238000009169 immunotherapy Methods 0.000 description 10
- 238000011580 nude mouse model Methods 0.000 description 10
- 229910000077 silane Inorganic materials 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 238000000163 radioactive labelling Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 235000001014 amino acid Nutrition 0.000 description 8
- 150000001413 amino acids Chemical class 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 7
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 7
- 150000001412 amines Chemical group 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 150000001540 azides Chemical class 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 239000000975 dye Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229960003180 glutathione Drugs 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 238000002372 labelling Methods 0.000 description 6
- 239000003446 ligand Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229940051022 radioimmunoconjugate Drugs 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 150000003573 thiols Chemical group 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910001868 water Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- ZUHQCDZJPTXVCU-UHFFFAOYSA-N C1#CCCC2=CC=CC=C2C2=CC=CC=C21 Chemical compound C1#CCCC2=CC=CC=C2C2=CC=CC=C21 ZUHQCDZJPTXVCU-UHFFFAOYSA-N 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 241000699660 Mus musculus Species 0.000 description 4
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 210000000988 bone and bone Anatomy 0.000 description 4
- 210000004899 c-terminal region Anatomy 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 239000000562 conjugate Substances 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 4
- OGMADIBCHLQMIP-UHFFFAOYSA-N 2-aminoethanethiol;hydron;chloride Chemical compound Cl.NCCS OGMADIBCHLQMIP-UHFFFAOYSA-N 0.000 description 3
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 3
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 3
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 3
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 102000011721 Matrix Metalloproteinase 12 Human genes 0.000 description 3
- 108010076501 Matrix Metalloproteinase 12 Proteins 0.000 description 3
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 3
- 229930012538 Paclitaxel Natural products 0.000 description 3
- 241000288906 Primates Species 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 230000007717 exclusion Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 230000002519 immonomodulatory effect Effects 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 229960001913 mecysteine Drugs 0.000 description 3
- MCYHPZGUONZRGO-VKHMYHEASA-N methyl L-cysteinate Chemical compound COC(=O)[C@@H](N)CS MCYHPZGUONZRGO-VKHMYHEASA-N 0.000 description 3
- 229960001592 paclitaxel Drugs 0.000 description 3
- 229960003330 pentetic acid Drugs 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- WHNFPRLDDSXQCL-UAZQEYIDSA-N α-msh Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(N)=O)NC(=O)[C@H](CO)NC(C)=O)C1=CC=C(O)C=C1 WHNFPRLDDSXQCL-UAZQEYIDSA-N 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- ZKPMRASGLDBKPF-UPHRSURJSA-N (2,5-dioxopyrrolidin-1-yl) 3-[2-[2-[2-[2-[[(4Z)-cyclooct-4-en-1-yl]oxycarbonylamino]ethoxy]ethoxy]ethoxy]ethoxy]propanoate Chemical compound O=C(CCOCCOCCOCCOCCNC(=O)OC1CCC\C=C/CC1)ON1C(=O)CCC1=O ZKPMRASGLDBKPF-UPHRSURJSA-N 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 2
- JHALWMSZGCVVEM-UHFFFAOYSA-N 2-[4,7-bis(carboxymethyl)-1,4,7-triazonan-1-yl]acetic acid Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CC1 JHALWMSZGCVVEM-UHFFFAOYSA-N 0.000 description 2
- ZCXUVYAZINUVJD-AHXZWLDOSA-N 2-deoxy-2-((18)F)fluoro-alpha-D-glucose Chemical compound OC[C@H]1O[C@H](O)[C@H]([18F])[C@@H](O)[C@@H]1O ZCXUVYAZINUVJD-AHXZWLDOSA-N 0.000 description 2
- AUDYZXNUHIIGRB-UHFFFAOYSA-N 3-thiophen-2-ylpyrrole-2,5-dione Chemical compound O=C1NC(=O)C(C=2SC=CC=2)=C1 AUDYZXNUHIIGRB-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 241000272517 Anseriformes Species 0.000 description 2
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- VWUXBMIQPBEWFH-WCCTWKNTSA-N Fulvestrant Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3[C@H](CCCCCCCCCS(=O)CCCC(F)(F)C(F)(F)F)CC2=C1 VWUXBMIQPBEWFH-WCCTWKNTSA-N 0.000 description 2
- 108010024636 Glutathione Proteins 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 2
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 2
- 108091008036 Immune checkpoint proteins Proteins 0.000 description 2
- 102000037982 Immune checkpoint proteins Human genes 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 2
- 239000002136 L01XE07 - Lapatinib Substances 0.000 description 2
- 239000005536 L01XE08 - Nilotinib Substances 0.000 description 2
- 239000002146 L01XE16 - Crizotinib Substances 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 241000282898 Sus scrofa Species 0.000 description 2
- PZBFGYYEXUXCOF-UHFFFAOYSA-N TCEP Chemical compound OC(=O)CCP(CCC(O)=O)CCC(O)=O PZBFGYYEXUXCOF-UHFFFAOYSA-N 0.000 description 2
- JVHROZDXPAUZFK-UHFFFAOYSA-N TETA Chemical compound OC(=O)CN1CCCN(CC(O)=O)CCN(CC(O)=O)CCCN(CC(O)=O)CC1 JVHROZDXPAUZFK-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000004705 aldimines Chemical class 0.000 description 2
- 150000001345 alkine derivatives Chemical class 0.000 description 2
- 230000002494 anti-cea effect Effects 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 239000000611 antibody drug conjugate Substances 0.000 description 2
- 229940049595 antibody-drug conjugate Drugs 0.000 description 2
- 230000005975 antitumor immune response Effects 0.000 description 2
- 238000010461 azide-alkyne cycloaddition reaction Methods 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- ACWZRVQXLIRSDF-UHFFFAOYSA-N binimetinib Chemical compound OCCONC(=O)C=1C=C2N(C)C=NC2=C(F)C=1NC1=CC=C(Br)C=C1F ACWZRVQXLIRSDF-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- KTEIFNKAUNYNJU-GFCCVEGCSA-N crizotinib Chemical compound O([C@H](C)C=1C(=C(F)C=CC=1Cl)Cl)C(C(=NC=1)N)=CC=1C(=C1)C=NN1C1CCNCC1 KTEIFNKAUNYNJU-GFCCVEGCSA-N 0.000 description 2
- 229960005061 crizotinib Drugs 0.000 description 2
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 2
- RRCXYKNJTKJNTD-UHFFFAOYSA-N dbco-peg4-nhs ester Chemical compound C1C2=CC=CC=C2C#CC2=CC=CC=C2N1C(=O)CCC(=O)NCCOCCOCCOCCOCCC(=O)ON1C(=O)CCC1=O RRCXYKNJTKJNTD-UHFFFAOYSA-N 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 229960003668 docetaxel Drugs 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 230000009881 electrostatic interaction Effects 0.000 description 2
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 2
- 229960005420 etoposide Drugs 0.000 description 2
- 229960002258 fulvestrant Drugs 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- BCFGMOOMADDAQU-UHFFFAOYSA-N lapatinib Chemical compound O1C(CNCCS(=O)(=O)C)=CC=C1C1=CC=C(N=CN=C2NC=3C=C(Cl)C(OCC=4C=C(F)C=CC=4)=CC=3)C2=C1 BCFGMOOMADDAQU-UHFFFAOYSA-N 0.000 description 2
- 229960004891 lapatinib Drugs 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- HHZIURLSWUIHRB-UHFFFAOYSA-N nilotinib Chemical compound C1=NC(C)=CN1C1=CC(NC(=O)C=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)=CC(C(F)(F)F)=C1 HHZIURLSWUIHRB-UHFFFAOYSA-N 0.000 description 2
- 229960001346 nilotinib Drugs 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- WHMDPDGBKYUEMW-UHFFFAOYSA-N pyridine-2-thiol Chemical compound SC1=CC=CC=N1 WHMDPDGBKYUEMW-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 229960003787 sorafenib Drugs 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- GPXBXXGIAQBQNI-UHFFFAOYSA-N vemurafenib Chemical compound CCCS(=O)(=O)NC1=CC=C(F)C(C(=O)C=2C3=CC(=CN=C3NC=2)C=2C=CC(Cl)=CC=2)=C1F GPXBXXGIAQBQNI-UHFFFAOYSA-N 0.000 description 2
- 229960003862 vemurafenib Drugs 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- JWDFQMWEFLOOED-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(pyridin-2-yldisulfanyl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSC1=CC=CC=N1 JWDFQMWEFLOOED-UHFFFAOYSA-N 0.000 description 1
- QXGYXAOYQWRQRZ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-[2-[3-(2,5-dioxopyrrol-1-yl)propanoylamino]ethoxy]propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCOCCNC(=O)CCN1C(=O)C=CC1=O QXGYXAOYQWRQRZ-UHFFFAOYSA-N 0.000 description 1
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- LDGWQMRUWMSZIU-LQDDAWAPSA-M 2,3-bis[(z)-octadec-9-enoxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)C)OCCCCCCCC\C=C/CCCCCCCC LDGWQMRUWMSZIU-LQDDAWAPSA-M 0.000 description 1
- VYMHBQQZUYHXSS-UHFFFAOYSA-N 2-(3h-dithiol-3-yl)pyridine Chemical compound C1=CSSC1C1=CC=CC=N1 VYMHBQQZUYHXSS-UHFFFAOYSA-N 0.000 description 1
- MBQYGQMGPFNSAP-UHFFFAOYSA-N 2-[2-[2-(2-azidoethoxy)ethoxy]ethoxy]ethanol Chemical compound OCCOCCOCCOCCN=[N+]=[N-] MBQYGQMGPFNSAP-UHFFFAOYSA-N 0.000 description 1
- ZDTGIHMXOYIRJY-UHFFFAOYSA-N 2-[2-[[carboxy-(4-hydroxyphenyl)methyl]amino]ethylamino]-2-(4-hydroxyphenyl)acetic acid Chemical compound C=1C=C(O)C=CC=1C(C(=O)O)NCCNC(C(O)=O)C1=CC=C(O)C=C1 ZDTGIHMXOYIRJY-UHFFFAOYSA-N 0.000 description 1
- XNCSCQSQSGDGES-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]propyl-(carboxymethyl)amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)C(C)CN(CC(O)=O)CC(O)=O XNCSCQSQSGDGES-UHFFFAOYSA-N 0.000 description 1
- GRUVVLWKPGIYEG-UHFFFAOYSA-N 2-[2-[carboxymethyl-[(2-hydroxyphenyl)methyl]amino]ethyl-[(2-hydroxyphenyl)methyl]amino]acetic acid Chemical compound C=1C=CC=C(O)C=1CN(CC(=O)O)CCN(CC(O)=O)CC1=CC=CC=C1O GRUVVLWKPGIYEG-UHFFFAOYSA-N 0.000 description 1
- DMQQXDPCRUGSQB-UHFFFAOYSA-N 2-[3-[bis(carboxymethyl)amino]propyl-(carboxymethyl)amino]acetic acid Chemical class OC(=O)CN(CC(O)=O)CCCN(CC(O)=O)CC(O)=O DMQQXDPCRUGSQB-UHFFFAOYSA-N 0.000 description 1
- SKSJWFNPRUOUQU-UHFFFAOYSA-N 2-[4,7,10-tris(carboxymethyl)-1,4,7,10-tetrazacyclotetradec-1-yl]acetic acid Chemical compound OC(=O)CN1CCCCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC1 SKSJWFNPRUOUQU-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 108010012934 Albumin-Bound Paclitaxel Proteins 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 239000012118 Alexa Fluor 750 Substances 0.000 description 1
- 239000012119 Alexa Fluor 790 Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- BVTJGGGYKAMDBN-UHFFFAOYSA-N Dioxetane Chemical class C1COO1 BVTJGGGYKAMDBN-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 1
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical group C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 102400000740 Melanocyte-stimulating hormone alpha Human genes 0.000 description 1
- 101710200814 Melanotropin alpha Proteins 0.000 description 1
- SOWBFZRMHSNYGE-UHFFFAOYSA-N Monoamide-Oxalic acid Natural products NC(=O)C(O)=O SOWBFZRMHSNYGE-UHFFFAOYSA-N 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 101710160107 Outer membrane protein A Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 101000677856 Stenotrophomonas maltophilia (strain K279a) Actin-binding protein Smlt3054 Proteins 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000012505 Superdex™ Substances 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- DPOPAJRDYZGTIR-UHFFFAOYSA-N Tetrazine Chemical compound C1=CN=NN=N1 DPOPAJRDYZGTIR-UHFFFAOYSA-N 0.000 description 1
- 241001061127 Thione Species 0.000 description 1
- 201000000170 Thyroid lymphoma Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 206010070863 Toxicity to various agents Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000000208 Wet Macular Degeneration Diseases 0.000 description 1
- 229960000446 abciximab Drugs 0.000 description 1
- 229940028652 abraxane Drugs 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- WDJHALXBUFZDSR-UHFFFAOYSA-N acetoacetic acid Chemical compound CC(=O)CC(O)=O WDJHALXBUFZDSR-UHFFFAOYSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 210000005006 adaptive immune system Anatomy 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 230000009833 antibody interaction Effects 0.000 description 1
- 230000009831 antigen interaction Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- DVRAIMULGDWKOC-UHFFFAOYSA-N azanylidyne(sulfinooxysulfonylsulfanyl)methane Chemical compound S(=O)(O)OS(=O)(=O)SC#N DVRAIMULGDWKOC-UHFFFAOYSA-N 0.000 description 1
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000005082 bioluminescent agent Substances 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000000298 carbocyanine Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 229960003115 certolizumab pegol Drugs 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000005081 chemiluminescent agent Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229940090100 cimzia Drugs 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000004154 complement system Effects 0.000 description 1
- 238000003271 compound fluorescence assay Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000315 cryotherapy Methods 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 description 1
- 229910000071 diazene Inorganic materials 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000000375 direct analysis in real time Methods 0.000 description 1
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 1
- 229940115080 doxil Drugs 0.000 description 1
- 238000012063 dual-affinity re-targeting Methods 0.000 description 1
- 108010011867 ecallantide Proteins 0.000 description 1
- 238000007337 electrophilic addition reaction Methods 0.000 description 1
- 238000001827 electrotherapy Methods 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 150000002373 hemiacetals Chemical class 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000006289 hydroxybenzyl group Chemical group 0.000 description 1
- SKOWZLGOFVSKLB-UHFFFAOYSA-N hypodiboric acid Chemical compound OB(O)B(O)O SKOWZLGOFVSKLB-UHFFFAOYSA-N 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 230000005965 immune activity Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 238000011503 in vivo imaging Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 210000005007 innate immune system Anatomy 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 229960005386 ipilimumab Drugs 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002527 isonitriles Chemical class 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- VBGWSQKGUZHFPS-VGMMZINCSA-N kalbitor Chemical compound C([C@H]1C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]2C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=3C=CC=CC=3)C(=O)N[C@H](C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)NCC(=O)NCC(=O)N[C@H]3CSSC[C@H](NC(=O)[C@@H]4CCCN4C(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CO)NC(=O)[C@H](CC=4NC=NC=4)NC(=O)[C@H](CCSC)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCC(O)=O)CSSC[C@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC3=O)CSSC2)C(=O)N[C@@H]([C@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=2NC=NC=2)C(=O)N2CCC[C@H]2C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N1)[C@@H](C)CC)[C@H](C)O)=O)[C@@H](C)CC)C1=CC=CC=C1 VBGWSQKGUZHFPS-VGMMZINCSA-N 0.000 description 1
- 229940018902 kalbitor Drugs 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 150000004658 ketimines Chemical class 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 229940076783 lucentis Drugs 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- JWYBRFGPCUDAOB-UHFFFAOYSA-N methoxyperoxyperoxyperoxyperoxyperoxymethane Chemical compound COOOOOOOOOOOC JWYBRFGPCUDAOB-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- GCTFIRZGPIUOAK-UHFFFAOYSA-N n-[[3,5-bis[[(2,3-dihydroxybenzoyl)amino]methyl]phenyl]methyl]-2,3-dihydroxybenzamide Chemical compound OC1=CC=CC(C(=O)NCC=2C=C(CNC(=O)C=3C(=C(O)C=CC=3)O)C=C(CNC(=O)C=3C(=C(O)C=CC=3)O)C=2)=C1O GCTFIRZGPIUOAK-UHFFFAOYSA-N 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000002418 nitrosooxy group Chemical group [O-][N+](=O)O* 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 150000002905 orthoesters Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 125000001476 phosphono group Chemical group [H]OP(*)(=O)O[H] 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000001126 phototherapy Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- QWYZFXLSWMXLDM-UHFFFAOYSA-M pinacyanol iodide Chemical compound [I-].C1=CC2=CC=CC=C2N(CC)C1=CC=CC1=CC=C(C=CC=C2)C2=[N+]1CC QWYZFXLSWMXLDM-UHFFFAOYSA-M 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 235000013594 poultry meat Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000003439 radiotherapeutic effect Effects 0.000 description 1
- 229960003876 ranibizumab Drugs 0.000 description 1
- 229940107685 reopro Drugs 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002603 single-photon emission computed tomography Methods 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 229940126586 small molecule drug Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000011272 standard treatment Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000008718 systemic inflammatory response Effects 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- 238000000015 thermotherapy Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/52—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/65—Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6923—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0013—Luminescence
- A61K49/0017—Fluorescence in vivo
- A61K49/005—Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
- A61K49/0058—Antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
- A61K49/1821—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
- A61K49/1824—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/0474—Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
- A61K51/0478—Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group complexes from non-cyclic ligands, e.g. EDTA, MAG3
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/08—Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
- A61K51/10—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/08—Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
- A61K51/10—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
- A61K51/1093—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody conjugates with carriers being antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/12—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
- A61K51/1241—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins
- A61K51/1244—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins microparticles or nanoparticles, e.g. polymeric nanoparticles
- A61K51/1251—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins microparticles or nanoparticles, e.g. polymeric nanoparticles micro- or nanospheres, micro- or nanobeads, micro- or nanocapsules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/40—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/55—Fab or Fab'
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/569—Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
Definitions
- This invention relates generally to nanoparticle immunoconjugates (e.g., under 20 nanometers in diameter), useful, for example, for the detection, prevention, and/or treatment of cancer and other diseases.
- Nano-therapeutic and/or -diagnostic delivery vehicles are typically macro- or supra-molecular multicomponent systems, ranging in size from 1-1,000 nm, that are either inherently therapeutic (e.g., no active pharmaceutical ingredient) or function as therapeutic or diagnostic delivery systems.
- liposomal nanoparticles and biologics comprise a large proportion of the number of FDA-approved products or products in clinical trials used to treat and/or detect a variety of cancer types, while a number of polymer-based particle formulations are currently in early phase trials.
- Desirable candidates for nanotherapeutic delivery systems share a common feature of incorporating and releasing a drug compound in a controlled manner, which can favorably alter drug bioavailability and pharmacokinetics, while minimizing off-target toxicities.
- an imaging label is incorporated therein to assess their precise localization and retention at disease sites.
- ADCs antibody drug conjugates
- liposomes and polymer-based drug delivery systems which are typically much larger assembled complexes ( ⁇ 20-150 nm diameters) passively loaded with a greater payload ( ⁇ 10,000 drug molecules for Doxil) or imaging agents, have generally lacked targeting capabilities (BIND-014 is an exception). Therefore, these complexes rely primarily on the well-known enhanced permeability and retention (EPR) effect for the successful delivery of nano-formulated drugs.
- EPR enhanced permeability and retention
- Metastatic disease may effectively be treated with immunotherapies; however, a significant subpopulation will not respond due to lack of antigenic mutations or the immune-evasive properties of cancer.
- radiation therapy RT
- RT radiation therapy
- Preclinical data indicate that RT can potentiate the systemic efficacy of immunotherapy, while activation of the innate and adaptive immune system can enhance the local efficacy of RT.
- the nanoparticle immunoconjugates are less than 20 nm (e.g., 6 to 10 nm) in diameter. This small size is found to offer advantages in therapeutic and/or imaging applications.
- the disclosed immunoconjugates may offer improved targeting of diseased tissue and reduced non-specific uptake by organs (e.g., by the liver).
- the smaller immunoconjugates may also demonstrate reduced immune reactivity, thereby further improving efficacy.
- a multi-therapeutic platform that comprises an immunoconjugate and therapeutic radioisotopes.
- immunoconjugates and therapeutic radioisotopes are delivered in concert for synergistic effects of combined radiation therapy and immunotherapy.
- an antibody fragment and a therapeutic radioisotope are attached to nanoparticles, thereby creating a target-specific nanoparticle immunoconjugate.
- a given nanoparticle can have both radionuclides (radioisotopes) and antibodies (and/or antibody fragments) attached thereto (in which case, the immunoconjugate is a radioimmunoconjugate).
- a portion of the administered nanoparticles have radionuclides attached (covalently or non-covalently bonded, or otherwise associated with the nanoparticle) while other administered nanoparticles have antibody fragments attached.
- combination therapies in which either exiting (e.g., traditional) radiotherapy is combined with administration of nanoparticle immunoconjugates described herein, or existing (e.g., traditional) immunotherapy is combined with administration of nanoparticle radioconjugates (nanoparticles with bound radioisotopes),
- the target-specific nanoparticle immunoconjugates comprise a targeting peptide.
- the therapeutic radioisotope is delivered separately from the target-specific nanoparticle immunoconjugate (e.g., via radiation therapy or via attached to a separate target-specific nanoparticle).
- immunotherapy is delivered separately from the target-specific immunoconjugate.
- an antibody fragment is attached to one polyethylene glycol (PEG) moiety (via a particular chelator) and a radioisotope is attached to another PEG moiety (via another chelator). The PEG moieties are then attached to nanoparticles.
- PEG polyethylene glycol
- the invention is directed to An immunoconjugate comprising: a nanoparticle; and an antibody fragment conjugated to the nanoparticle, wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g., from 4 to 8 nm) (e.g., wherein the immunoconjugate has an average diameter no greater than 50 nm, e.g., no greater than 40 nm, e.g., no greater than 30 nm, e.g., no greater than 20 n
- the antibody fragment is covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces.
- the nanoparticle is coated with an organic polymer (e.g., polyethylene glycol (PEG)) (e.g., wherein immunoconjugate comprises a chelator).
- organic polymer e.g., polyethylene glycol (PEG)
- immunoconjugate comprises a chelator
- a targeting peptide e.g., alphaMSH, any peptide known to be immunomodulatory and anti-inflammatory in nature.
- the antibody fragment is in a range from about 5 kDa to about 25 kDa (e.g., from about 10 kDa to about 20 kDa, e.g., about 15 kDa) (e.g., wherein the antibody fragment comprises a functional single domain antibody fragment).
- the antibody fragment is from about 20 kDa to about 45 kDa (e.g., from about 25 kDa to about 30 kDa) (e.g., wherein the antibody fragment comprises a functional single chain antibody fragment).
- the antibody fragment is from about 40 kDa to about 80 kDa (e.g., from about 50 kDa to about 70 kDa, e.g., about 60 kDa) (e.g., wherein the antibody fragment comprises a functional fab fragment).
- the nanoparticle comprises silica.
- the nanoparticle comprises a silica-based core and a silica shell surrounding at least a portion of the core.
- the nanoparticle comprises a fluorescent compound within the core.
- the antibody fragment is a member selected from the set consisting of a recombinant antibody fragment (fAbs), a single chain variable fragment (scFv), and a single domain antibody (sdAb) fragment.
- fAbs recombinant antibody fragment
- scFv single chain variable fragment
- sdAb single domain antibody
- the antibody fragment is a single chain variable fragment (scFv).
- the antibody fragment is a single domain (sdAb) fragment.
- the nanoparticle (a single nanoparticle) has from one to ten antibody fragments (e.g., from 1 to 7, e.g., from 1 to 5, e.g., from 2 to 7, e.g., from 2 to 5, e.g., from 1 to 4, e.g., from 2 to 4) attached thereto.
- antibody fragments e.g., from 1 to 7, e.g., from 1 to 5, e.g., from 2 to 7, e.g., from 2 to 5, e.g., from 1 to 4, e.g., from 2 to 4 attached thereto.
- the antibody fragment is conjugated to the nanoparticle via a PEG moiety and a chelator.
- the nanoparticle has a diameter (e.g., average diameter) no greater than 15 nanometers (e.g., no greater than 13 nanometers, e.g., no greater than 10 nanometers).
- the nanoparticle has a diameter (e.g., average diameter) in a range from 1 nm to 20 nm (e.g., from 2 nm to 15 nm, e.g., from 5 nm to 15 nm, e.g., from 1 nm to 10 nm, e.g., from 2 nm to 10 nm, e.g., from 5 nm to 10 nm).
- a diameter e.g., average diameter in a range from 1 nm to 20 nm (e.g., from 2 nm to 15 nm, e.g., from 5 nm to 15 nm, e.g., from 1 nm to 10 nm, e.g., from 2 nm to 10 nm, e.g., from 5 nm to 10 nm).
- the antibody fragment comprises a member selected from the set consisting of anti-CEA scFv, anti-GPIIb/IIIa, anti-VEGF-A, and anti-TNF- ⁇ (e.g., PEGylated).
- the immunoconjugate comprises one or more imaging agents (e.g., within the nanoparticle, attached to the nanoparticle, and/or attached to the antibody fragment).
- the one or more imaging agents comprise a PET tracer (e.g., 89 Zr, 64 Cu, and/or [ 18 F] fluorodeoxyglucose).
- a PET tracer e.g., 89 Zr, 64 Cu, and/or [ 18 F] fluorodeoxyglucose
- the one or more imaging agents comprise a fluorophore (e.g., a cyanine).
- a fluorophore e.g., a cyanine
- the immunoconjugate further comprises a therapeutic agent (e.g., wherein the therapeutic agent is attached to the nanoparticle, or to the antibody fragment, or to both the nanoparticle and the antibody fragment, e.g., wherein the attachment is covalent or non-covalent).
- a therapeutic agent e.g., wherein the therapeutic agent is attached to the nanoparticle, or to the antibody fragment, or to both the nanoparticle and the antibody fragment, e.g., wherein the attachment is covalent or non-covalent).
- the therapeutic agent comprises a chemotherapy drug (e.g., sorafenib, paclitaxel, docetaxel, MEK162, etoposide, lapatinib, nilotinib, crizotinib, fulvestrant, vemurafenib, bexorotene, and/or camptotecin).
- a chemotherapy drug e.g., sorafenib, paclitaxel, docetaxel, MEK162, etoposide, lapatinib, nilotinib, crizotinib, fulvestrant, vemurafenib, bexorotene, and/or camptotecin.
- the therapeutic agent comprises a radioisotope (e.g., wherein the radioisotope is attached to the nanoparticle via a second chelator) (e.g., wherein the radioisotope is a therapeutic radioisotope).
- a radioisotope e.g., wherein the radioisotope is attached to the nanoparticle via a second chelator
- the radioisotope is a therapeutic radioisotope
- the radioisotope is a member selected from the group consisting of 99m Tc, 111 In, 64 Cu, 67 Ga, 186 Re, 188 Re, 153 Sm, 177 Lu, 67 Cu, 123 I, 124 I, 125 I, 11 C, 1 3N, 15 O, 18 F, 186 Re, 188 Re, 153 Sm, 166 Ho, 177 Lu, 149 Pm, 90 Y, 213 Bi, 103 Pd, 109 Pd, 159 Gd, 140 La, 198 Au, 199 Au, 169 Yb, 175 Yb, 165 Dy, 166 Dy, 67 Cu, 105 Rh, 111 Ag, 89 Zr, 225 Ac, and 192 Ir.
- the invention is directed to a method of treating a disease or condition, the method comprising administering to a subject a pharmaceutical composition comprising the immunoconjugate (e.g., to target a particular type of tissue, e.g., cancer).
- a pharmaceutical composition comprising the immunoconjugate (e.g., to target a particular type of tissue, e.g., cancer).
- the method comprises administering a therapeutic radioisotope (e.g., wherein the therapeutic radioisotope is attached to a second nanoparticle having a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the radioisotope is attached to the second nanoparticle via a second chelator)) (e.g., wherein the second nanoparticle has a diameter from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g., from 4 to 8 nm).
- a therapeutic radioisotope e.g., wherein the therapeutic radioisotope is attached to a second nanoparticle having
- the invention is directed to a method of treating a disease or condition, the method comprising administering to a subject a pharmaceutical composition comprising the immunoconjugate (e.g., to target a particular type of tissue, e.g., cancer) (e.g., for combined radiation therapy and immunotherapy).
- a pharmaceutical composition comprising the immunoconjugate (e.g., to target a particular type of tissue, e.g., cancer) (e.g., for combined radiation therapy and immunotherapy).
- the pharmaceutical composition further comprises a carrier.
- the invention is directed to a method of in vivo imaging (e.g., intraoperative imaging), the method comprising: administering to a subject a composition comprising the immunoconjugate (e.g., such that the immunoconjugate preferentially collects in a particular region, e.g., near or within a particular tissue type, e.g., cancer), wherein the immunoconjugate comprises an imaging agent; and detecting (e.g., via PET, X-ray, MRI, CT, etc.) the imaging agent.
- a composition comprising the immunoconjugate (e.g., such that the immunoconjugate preferentially collects in a particular region, e.g., near or within a particular tissue type, e.g., cancer), wherein the immunoconjugate comprises an imaging agent; and detecting (e.g., via PET, X-ray, MRI, CT, etc.) the imaging agent.
- the imaging agent e.g., via PET, X-ray, MRI
- the invention is directed to a method of making the immunoconjugate, the method comprising: contacting a nanoparticle-PEG-thiol with a protein-maleimide, thereby producing the immunoconjugate.
- the method further comprises reacting the nanoparticle with one or more compounds, the one or more compounds comprising a thiol moiety and an amine moiety (e.g., cysteine methyl ester or cysteamine-HCl), thereby producing a nanoparticle-PEG-amine; reacting the nanoparticle-PEG-amine with SPDP, then removing a pyridine 2-thione from the product (e.g., using TCEP), thereby producing the nanoparticle-PEG-thiol.
- a thiol moiety e.g., cysteine methyl ester or cysteamine-HCl
- the invention is directed to a method of making the immunoconjugate, the method comprising: modifying the antibody fragment (protein) with a first click reactive group (e.g., methyltetrazine-PEG4-NHS ester; modifying a nanoparticle-PEG-amine with a click partner of the first click reactive group (e.g., TCO-PEG4-NHS ester); and reacting the modified antibody fragment with the modified nanoparticle-PEG, thereby producing the immunoconjugate.
- a first click reactive group e.g., methyltetrazine-PEG4-NHS ester
- modifying a nanoparticle-PEG-amine with a click partner of the first click reactive group e.g., TCO-PEG4-NHS ester
- the method further comprises reacting the nanoparticle with one or more compounds, the one or more compounds comprising a thiol moiety and an amine moiety (e.g., cysteine methyl ester or cysteamine-HCl), thereby producing the nanoparticle-PEG-amine.
- a thiol moiety e.g., cysteine methyl ester or cysteamine-HCl
- the invention is directed to a method of treating a disease or condition, the method comprising administering to a subject a composition (e.g., a pharmaceutical composition) comprising: a nanoparticle; and a therapeutic radioisotope conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10
- the method comprises administering immunotherapy (e.g., wherein the immunotherapy comprises administering to a subject a pharmaceutical composition comprising the immunoconjugate).
- the invention is directed to an immunoconjugate comprising: a nanoparticle; and an antibody fragment conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g
- the invention is directed to an immunoconjugate comprising: a nanoparticle; a therapeutic radioisotope (e.g., wherein the radioisotope is attached to the nanoparticle via a second chelator) (e.g., wherein the radioisotope is a therapeutic radioisotope); and an antibody fragment conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm
- the invention is directed to an immunoconjugate comprising a nanoparticle; and an antibody fragment conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g.
- the invention is directed to an immunoconjugate comprising: a nanoparticle; and an antibody fragment conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g
- the invention is directed to an immunoconjugate comprising a nanoparticle; and an antibody fragment conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g.
- the invention is directed to an immunoconjugate comprising: a nanoparticle; a therapeutic radioisotope (e.g., wherein the radioisotope is attached to the nanoparticle via a second chelator) (e.g., wherein the radioisotope is a therapeutic radioisotope); and an antibody fragment conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm
- the invention is directed to an immunoconjugate comprising: a nanoparticle; and an antibody fragment conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g
- the invention is directed to a composition (e.g., pharmaceutical composition) comprising: a nanoparticle; and a therapeutic radioisotope conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g.,
- the term “approximately” or “about” refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).
- administering refers to introducing a substance into a subject.
- any route of administration may be utilized including, for example, parenteral (e.g., intravenous), oral, topical, subcutaneous, peritoneal, intraarterial, inhalation, vaginal, rectal, nasal, introduction into the cerebrospinal fluid, or instillation into body compartments.
- administration is oral. Additionally or alternatively, in certain embodiments, administration is parenteral. In certain embodiments, administration is intravenous.
- antibody refers to a polypeptide that includes canonical immunoglobulin sequence elements sufficient to confer specific binding to a particular target antigen. Intact antibodies as produced in nature are approximately 150 kD tetrameric agents comprised of two identical heavy chain polypeptides (about 50 kD each) and two identical light chain polypeptides (about 25 kD each) that associate with each other into what is commonly referred to as a “Y-shaped” structure.
- Each heavy chain is comprised of at least four domains (each about 110 amino acids long)—an amino-terminal variable (VH) domain (located at the tips of the Y structure), followed by three constant domains: CH 1 , CH 2 , and the carboxy-terminal CH 3 (located at the base of the Y's stem).
- VH amino-terminal variable
- CH 1 , CH 2 , and CH 3 constant domains
- CH 3 located at the base of the Y's stem
- a short region known as the “switch” connects the heavy chain variable and constant regions.
- the “hinge” connects CH 2 and CH 3 domains to the rest of the antibody. Two disulfide bonds in this hinge region connect the two heavy chain polypeptides to one another in an intact antibody.
- Each light chain is comprised of two domains—an amino-terminal variable (VL) domain, followed by a carboxy-terminal constant (CL) domain, separated from one another by another “switch”.
- Intact antibody tetramers are comprised of two heavy chain-light chain dimers in which the heavy and light chains are linked to one another by a single disulfide bond; two other disulfide bonds connect the heavy chain hinge regions to one another, so that the dimers are connected to one another and the tetramer is formed.
- Naturally-produced antibodies are also glycosylated, typically on the CH 2 domain.
- Each domain in a natural antibody has a structure characterized by an “immunoglobulin fold” formed from two beta sheets (e.g., 3-, 4-, or 5-stranded sheets) packed against each other in a compressed antiparallel beta barrel.
- Each variable domain contains three hypervariable loops known as “complement determining regions” (CDR1, CDR2, and CDR3) and four somewhat invariant “framework” regions (FR1, FR2, FR3, and FR4).
- CDR1, CDR2, and CDR3 three hypervariable loops known as “complement determining regions” (CDR1, CDR2, and CDR3) and four somewhat invariant “framework” regions (FR1, FR2, FR3, and FR4).
- the Fc region of naturally-occurring antibodies binds to elements of the complement system, and also to receptors on effector cells, including for example effector cells that mediate cytotoxicity. Affinity and/or other binding attributes of Fc regions for Fc receptors can be modulated through glycosylation or other modification.
- antibodies produced and/or utilized in accordance with the present invention include glycosylated Fc domains, including Fc domains with modified or engineered such glycosylation.
- any polypeptide or complex of polypeptides that includes sufficient immunoglobulin domain sequences as found in natural antibodies can be referred to and/or used as an “antibody”, whether such polypeptide is naturally produced (e.g., generated by an organism reacting to an antigen), or produced by recombinant engineering, chemical synthesis, or other artificial system or methodology.
- an antibody is polyclonal; in certain embodiments, an antibody is monoclonal.
- an antibody has constant region sequences that are characteristic of mouse, rabbit, primate, or human antibodies.
- antibody sequence elements are humanized, primatized, chimeric, etc, as is known in the art.
- an antibody utilized in accordance with the present invention is in a format selected from, but not limited to, intact IgG, IgE and IgM, bi- or multi-specific antibodies (e.g., Zybodies®, etc), single chain Fvs, polypeptide-Fc fusions, Fabs, cameloid antibodies, masked antibodies (e.g., Probodies®), Small Modular ImmunoPharmaceuticals (“SMIPsTM”), single chain or Tandem diabodies (TandAb®), VHHs, Anticalins®, Nanobodies®, minibodies, BiTE®s, ankyrin repeat proteins or DARPINs®, Avimers®, a DART, a TCR-like antibody, Adnectins®, Affilins®,
- an antibody may lack a covalent modification (e.g., attachment of a glycan) that it would have if produced naturally.
- an antibody may contain a covalent modification (e.g., attachment of a glycan, a payload [e.g., a detectable moiety, a therapeutic moiety, a catalytic moiety, etc], or other pendant group [e.g., poly-ethylene glycol, etc.]).
- antibody fragment includes a portion of an intact antibody, such as, for example, the antigen-binding or variable region of an antibody.
- antibody fragments include Fab, Fab′, F(ab′)2, and Fv fragments; triabodies; tetrabodies; linear antibodies; single-chain antibody molecules; and multi specific antibodies formed from antibody fragments.
- antibody fragments include isolated fragments, “Fv” fragments, consisting of the variable regions of the heavy and light chains, recombinant single chain polypeptide molecules in which light and heavy chain variable regions are connected by a peptide linker (“ScFv proteins”), and minimal recognition units consisting of the amino acid residues that mimic the hypervariable region.
- an antibody fragment contains sufficient sequence of the parent antibody of which it is a fragment that it binds to the same antigen as does the parent antibody; in certain embodiments, a fragment binds to the antigen with a comparable affinity to that of the parent antibody and/or competes with the parent antibody for binding to the antigen.
- antigen binding fragments of an antibody include, but are not limited to, Fab fragment, Fab′ fragment, F(ab′)2 fragment, scFv fragment, Fv fragment, dsFv diabody, dAb fragment, Fd′ fragment, Fd fragment, and an isolated complementarity determining region (CDR) region.
- An antigen binding fragment of an antibody may be produced by any means.
- an antigen binding fragment of an antibody may be enzymatically or chemically produced by fragmentation of an intact antibody and/or it may be recombinantly produced from a gene encoding the partial antibody sequence.
- antigen binding fragment of an antibody may be wholly or partially synthetically produced.
- An antigen binding fragment of an antibody may optionally comprise a single chain antibody fragment.
- an antigen binding fragment of an antibody may comprise multiple chains which are linked together, for example, by disulfide linkages.
- An antigen binding fragment of an antibody may optionally comprise a multimolecular complex.
- a functional single domain antibody fragment is in a range from about 5 kDa to about 25 kDa, e.g., from about 10 kDa to about 20 kDa, e.g., about 15 kDa; a functional single-chain fragment is from about 10 kDa to about 50 kDa, e.g., from about 20 kDa to about 45 kDa, e.g., from about 25 kDa to about 30 kDa; and a functional fab fragment is from about 40 kDa to about 80 kDa, e.g., from about 50 kDa to about 70 kDa, e.g., about 60 kDa.
- associated typically refers to two or more entities in physical proximity with one another, either directly or indirectly (e.g., via one or more additional entities that serve as a linking agent), to form a structure that is sufficiently stable so that the entities remain in physical proximity under relevant conditions, e.g., physiological conditions.
- associated moieties are covalently linked to one another.
- associated entities are non-covalently linked.
- associated entities are linked to one another by specific non-covalent interactions (e.g., by interactions between interacting ligands that discriminate between their interaction partner and other entities present in the context of use, such as, for example streptavidin/avidin interactions, antibody/antigen interactions, etc.).
- a sufficient number of weaker non-covalent interactions can provide sufficient stability for moieties to remain associated.
- exemplary non-covalent interactions include, but are not limited to, electrostatic interactions, hydrogen bonding, affinity, metal coordination, physical adsorption, host-guest interactions, hydrophobic interactions, pi stacking interactions, van der Waals interactions, magnetic interactions, electrostatic interactions, dipole-dipole interactions, etc.
- Biocompatible The term “biocompatible”, as used herein is intended to describe materials that do not elicit a substantial detrimental response in vivo. In certain embodiments, the materials are “biocompatible” if they are not toxic to cells. In certain embodiments, materials are “biocompatible” if their addition to cells in vitro results in less than or equal to 20% cell death, and/or their administration in vivo does not induce inflammation or other such adverse effects. In certain embodiments, materials are biodegradable.
- Biodegradable As used herein, “biodegradable” materials are those that, when introduced into cells, are broken down by cellular machinery (e.g., enzymatic degradation) or by hydrolysis into components that cells can either reuse or dispose of without significant toxic effects on the cells. In certain embodiments, components generated by breakdown of a biodegradable material do not induce inflammation and/or other adverse effects in vivo. In certain embodiments, biodegradable materials are enzymatically broken down. Alternatively or additionally, in certain embodiments, biodegradable materials are broken down by hydrolysis. In certain embodiments, biodegradable polymeric materials break down into their component polymers.
- breakdown of biodegradable materials includes hydrolysis of ester bonds. In certain embodiments, breakdown of materials (including, for example, biodegradable polymeric materials) includes cleavage of urethane linkages.
- Carrier refers to a diluent, adjuvant, excipient, or vehicle with which the compound is administered.
- Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water or aqueous solution saline solutions and aqueous dextrose and glycerol solutions are preferably employed as carriers, particularly for injectable solutions. Suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin.
- Imaging agent refers to any element, molecule, functional group, compound, fragments thereof or moiety that facilitates detection of an agent (e.g., a polysaccharide nanoparticle) to which it is joined.
- imaging agents include, but are not limited to: various ligands, radionuclides (e.g., 3 H, 14 C, 18 F, 19 F, 32 P, 35 S, 135 I, 125 I, 123 I, 131 I, 64 Cu, 68 Ga, 187 Re, 111 In, 90 Y, 99m Tc, 177 Lu, 89 Zr etc.), fluorescent dyes (for specific exemplary fluorescent dyes, see below), chemiluminescent agents (such as, for example, acridinum esters, stabilized dioxetanes, and the like), bioluminescent agents, spectrally resolvable inorganic fluorescent semiconductors nanocrystals (i.e., quantum dots), metal nanoparticles (e.g., gold, silver, copper, platinum, etc.) nanoclusters, paramagnetic metal ions, enzymes (for specific examples of enzymes, see below), colorimetric labels (such as, for example, dyes, colloidal gold, and the like), biot
- Protein refers to a polypeptide (i.e., a string of at least 3-5 amino acids linked to one another by peptide bonds). Proteins may include moieties other than amino acids (e.g., may be glycoproteins, proteoglycans, etc.) and/or may be otherwise processed or modified. In certain embodiments “protein” can be a complete polypeptide as produced by and/or active in a cell (with or without a signal sequence); in certain embodiments, a “protein” is or comprises a characteristic portion such as a polypeptide as produced by and/or active in a cell. In certain embodiments, a protein includes more than one polypeptide chain.
- proteins or polypeptide chains may be linked by one or more disulfide bonds or associated by other means.
- proteins or polypeptides as described herein may contain L-amino acids, D-amino acids, or both, and/or may contain any of a variety of amino acid modifications or analogs known in the art. Useful modifications include, e.g., terminal acetylation, amidation, methylation, etc.
- proteins or polypeptides may comprise natural amino acids, non-natural amino acids, synthetic amino acids, and/or combinations thereof.
- proteins are or comprise antibodies, antibody polypeptides, antibody fragments, biologically active portions thereof, and/or characteristic portions thereof.
- “Pharmaceutical composition” refers to an active agent, formulated together with one or more pharmaceutically acceptable carriers.
- active agent is present in unit dose amount appropriate for administration in a therapeutic regimen that shows a statistically significant probability of achieving a predetermined therapeutic effect when administered to a relevant population.
- compositions may be specially formulated for administration in solid or liquid form, including those adapted for the following: oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, e.g., those targeted for buccal, sublingual, and systemic absorption, boluses, powders, granules, pastes for application to the tongue; parenteral administration, for example, by subcutaneous, intramuscular, intravenous or epidural injection as, for example, a sterile solution or suspension, or sustained-release formulation; topical application, for example, as a cream, ointment, or a controlled-release patch or spray applied to the skin, lungs, or oral cavity; intravaginally or intrarectally, for example, as a pessary, cream, or foam; sublingually; ocularly; transdermally; or nasally, pulmonary, and to other mucosal surfaces.
- oral administration for example, drenches (aqueous or non-aqueous solutions or suspension
- substantially refers to the qualitative condition of exhibiting total or near-total extent or degree of a characteristic or property of interest.
- biological and chemical phenomena rarely, if ever, go to completion and/or proceed to completeness or achieve or avoid an absolute result.
- Subject includes humans and mammals (e.g., mice, rats, pigs, cats, dogs, and horses). In many embodiments, subjects are be mammals, particularly primates, especially humans. In certain embodiments, subjects are livestock such as cattle, sheep, goats, cows, swine, and the like; poultry such as chickens, ducks, geese, turkeys, and the like; and domesticated animals particularly pets such as dogs and cats. In certain embodiments (e.g., particularly in research contexts) subject mammals will be, for example, rodents (e.g., mice, rats, hamsters), rabbits, primates, or swine such as inbred pigs and the like.
- rodents e.g., mice, rats, hamsters
- rabbits, primates, or swine such as inbred pigs and the like.
- Therapeutic agent refers to any agent that has a therapeutic effect and/or elicits a desired biological and/or pharmacological effect, when administered to a subject.
- “Therapeutically effective amount” is meant an amount that produces the desired effect for which it is administered. In certain embodiments, the term refers to an amount that is sufficient, when administered to a population suffering from or susceptible to a disease, disorder, and/or condition in accordance with a therapeutic dosing regimen, to treat the disease, disorder, and/or condition. In certain embodiments, a therapeutically effective amount is one that reduces the incidence and/or severity of, and/or delays onset of, one or more symptoms of the disease, disorder, and/or condition. Those of ordinary skill in the art will appreciate that the term “therapeutically effective amount” does not in fact require successful treatment be achieved in a particular individual.
- a therapeutically effective amount may be that amount that provides a particular desired pharmacological response in a significant number of subjects when administered to patients in need of such treatment.
- reference to a therapeutically effective amount may be a reference to an amount as measured in one or more specific tissues (e.g., a tissue affected by the disease, disorder or condition) or fluids (e.g., blood, saliva, serum, sweat, tears, urine, etc.).
- tissue e.g., a tissue affected by the disease, disorder or condition
- fluids e.g., blood, saliva, serum, sweat, tears, urine, etc.
- a therapeutically effective amount of a particular agent or therapy may be formulated and/or administered in a single dose.
- a therapeutically effective agent may be formulated and/or administered in a plurality of doses, for example, as part of a dosing regimen.
- Treatment refers to any administration of a substance that partially or completely alleviates, ameliorates, relives, inhibits, delays onset of, reduces severity of, and/or reduces incidence of one or more symptoms, features, and/or causes of a particular disease, disorder, and/or condition.
- Such treatment may be of a subject who does not exhibit signs of the relevant disease, disorder and/or condition and/or of a subject who exhibits only early signs of the disease, disorder, and/or condition.
- such treatment may be of a subject who exhibits one or more established signs of the relevant disease, disorder and/or condition.
- treatment may be of a subject who has been diagnosed as suffering from the relevant disease, disorder, and/or condition. In certain embodiments, treatment may be of a subject known to have one or more susceptibility factors that are statistically correlated with increased risk of development of the relevant disease, disorder, and/or condition.
- FIG. 1 shows a schematic illustration showing the synthesis of 89 Zr-labeled C′dot radioimmunoconjugate using a chelator-based radiolabeling technique.
- PEGylated and maleimide-functionalized C′ dot (C′ dot-PEG-Mal, 1) was first reacted with reduced glutathione (GSH) to introduce the —NH 2 groups for the following-up bioconjugates, forming C′ dot-PEG-GSH (2).
- the nanoparticle was conjugated with DBCO-PEG4-NHS ester and DFO-NCS, forming C′ dot-PEG-DBCO (3) and DFO-C′ dot-PEG-DBCO (4), respectively.
- Azide-functionalized small targeting ligands such as single-chain variable fragment (scFv-azide) (or single-domain antibody, sdAb-azide), was conjugated to the nanoparticle based on strain-promoted azide-alkyne cycloaddition, forming DFO-C′ dot-PEG-scFv (5).
- the final C′dot radioimmunoconjugate ( 89 Zr-DFO-C′ dot-PEG-scFv, 6) was by labeling it with 89 Zr-oxalate.
- the embodiments illustrated in FIG. 1 are not limited to scFv and can include various types of antibody fragments, e.g., sdAbs.
- FIGS. 2 A and 2 B show in vivo ( FIG. 2 A ) coronal and ( FIG. 2 B ) sagittal PET images of 89 Zr-DFO-C′ dot-PEG at different post-injection time points (10 min, 1 h, Day 1, Day 3 and Day 6) in a healthy nude mouse.
- the reaction ratio between C′ dot-PEG-Mal and GSH was kept at 1:20.
- the PET images were acquired by using a Focus 120 MicroPET scanner.
- FIG. 3 shows biodistribution data of 89 Zr-DFO-C′ dot-PEG in a healthy nude mouse on Day 6. Less than 2% ID/g of bone (and joint) uptake was observed.
- FIGS. 4 A and 4 B show a chelator-free 89 Zr radiolabeling experimental example.
- FIG. 4 A shows 89 Zr labeling yields of C′ dot-PEG-Mal under varied pH conditions at 75° C.
- FIG. 4 B shows 89 Zr labeling yields of C′ dot-PEG-Mal using varied combinations of C′ dot to 89 Zr-oxalate ratio.
- FIGS. 5 A and 5 B show in vivo coronal PET images of [89Zr]C′ dot-PEG at different post-injection time points (10 min, Day 1, Day 3 and Day 6) in a healthy nude mouse.
- [ 89 Zr]C′ dot-PEG was synthesized by using a chelator-free radiolabeling technique.
- the PET images were acquired by using a Focus 120 MicroPET scanner.
- FIG. 5 A shows PET images acquired without EDTA (ethylenediaminetetraacetic acid).
- FIG. 5 B shows PET images acquired with EDTA
- FIG. 7 shows biodistribution data of 89 Zr-DFO-C′ dot, 89 Zr-DFO-C′ dot-DBCO and 89 Zr-DFO-C′ dot-PEG-sdAb in healthy nude mice at 48 h post-injection.
- An improved pharmacokinetic profile (with prolonged blood circulation half-life and lower liver uptake) can be achieved by optimizing the number of DFO, DBCO and sdAb from each C′ dot.
- FIG. 8 shows an exemplary schematic of thiol-maleimide chemistry.
- FIG. 9 shows an exemplary schematic of alkene-tetrazine chemistry.
- compositions are described as having, including, or comprising specific components, or where methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are compositions of the present invention that consist essentially of, or consist of, the recited components, and that there are methods according to the present invention that consist essentially of, or consist of, the recited processing steps.
- Molecular therapeutics can modulate the immune system toward antitumor activity by manipulating immune checkpoints (e.g., the monoclonal antibody ipilimumab inhibits CTLA4, a negative regulatory molecule that inhibits function of the immune system).
- immune checkpoints e.g., the monoclonal antibody ipilimumab inhibits CTLA4, a negative regulatory molecule that inhibits function of the immune system.
- the rationale is to trigger preexisting, but dormant, antitumor immune responses. Other molecules and pathways have acted as immune switches.
- PD-1 another negative regulatory receptor expressed on T cells, has also been targeted. Switching a single immune checkpoint may not be sufficient to induce an antitumor response, explaining some of the failures of targeting single immune regulatory checkpoints like PD-1 or CTLA4.
- RT remission of a systemic inflammatory or immune response provoked by RT
- Augmenting immune activity may also potentiate the local effects of RT.
- the concentration alone of these immunoconjugates can be treated.
- a therapeutic radiolabel can also be added to further treat disease.
- the immunoconjugate act as a therapeutic at high concentrations, and without a therapeutic radiolabel.
- the radiolabel is attached to the same nanoparticle in an all-in-one multi-therapeutic platform.
- therapeutic radioisotopes can be administered independently.
- the nanoparticle immunoconjugates are less than 20 nm (e.g., 6 to 10 nm) in diameter. This small size is found to offer advantages in therapeutic and/or imaging applications.
- the disclosed immunoconjugates may offer improved targeting of diseased tissue and reduced non-specific uptake by organs (e.g., by the liver).
- the smaller immunoconjugates may also demonstrate reduced immune reactivity, thereby further improving efficacy.
- the nanoparticle comprises silica, polymer (e.g., poly(lactic-co-glycolic acid) (PLGA)), and/or metal (e.g., gold, iron).
- polymer e.g., poly(lactic-co-glycolic acid) (PLGA)
- metal e.g., gold, iron
- the silica-based nanoparticle platform comprises ultrasmall nanoparticles or “C dots,” which are fluorescent, organo-silica core shell particles that have diameters controllable down to the sub-10 nm range with a range of modular functionalities.
- C dots are described by U.S. Pat. No. 8,298,677 B2 “Fluorescent silica-based nanoparticles”, U.S. Publication No. 2013/0039848 A1 “Fluorescent silica-based nanoparticles”, and U.S. Publication No. US 2014/0248210 A1 “Multimodal silica-based nanoparticles”, the contents of which are incorporated herein by reference in their entireties.
- Incorporated into the silica matrix of the core are near-infrared dye molecules, such as Cy5.5, which provides its distinct optical properties.
- Surrounding the core is a layer or shell of silica.
- the silica surface is covalently modified with silyl-polyethylene glycol (PEG) groups to enhance stability in aqueous and biologically relevant conditions.
- PEG silyl-polyethylene glycol
- These particles have been evaluated in vivo and exhibit excellent clearance properties owing largely to their size and inert surface.
- additional functionalities incorporated into C dots are chemical sensing, non-optical (PET) image contrast and in vitro/in vivo targeting capabilities, which enable their use in visualizing lymph nodes for surgical applications, and melanoma detection in cancer.
- C dots are synthesized via an alcohol-based modified Stöber process.
- C′dots are synthesized in water.
- C dots or C′dots provide a unique platform for drug delivery due to their physical properties as well as demonstrated human in vivo characteristics. These particles are ultrasmall and benefit from EPR effects in tumor microenvironments, while retaining desired clearance and pharmacokinetic properties.
- described herein is a nanoparticle drug delivery system in which, in certain embodiments, drug constructs are covalently attached to C dots or C′dots (or other nanoparticles).
- C dots or C′dots can serve as highly specific and potent multi-therapeutic targeted particle probes to combine antibody fragments with therapeutic radiolabels (e.g., 177 Lu, 225 Ac, 90 Y, 89 Zr) on a single platform.
- therapeutic radiolabels e.g., 177 Lu, 225 Ac, 90 Y, 89 Zr
- C dot or C′dot coupling of targeting peptides such as alphaMSH, known to be immunomodulatory and anti-inflammatory in nature, can also be combined with C dot or C′dot radiotherapeutic (and/or other particle-based) platforms to achieve enhanced efficacy.
- the concentration of the radioisotope and/or antibody fragment is higher in therapeutic applications compared to diagnostic applications.
- immunoconjugates can comprise different moieties that are attached to the nanoparticle itself.
- a radioisotope is attached to the nanoparticle and an antibody fragment is attached to the nanoparticle—that is, in these embodiments, the radiolabel is not attached to the antibody fragment itself.
- immunoconjugates can comprise a targeting ligand attached to the nanoparticle, a radioisotope attached to the nanoparticle, and an antibody fragment attached to the nanoparticle. The stoichiometric ratios of different moieties attached to the C dot will affect the biodistribution of the nanoparticle immunoconjugate.
- the immunoconjugates e.g., C dot-antibody (mAb) and -antibody-fragment (vFab) conjugates, can be prepared using either of two approaches.
- Scheme 1 comprises thiol-maleimide chemistry, as shown in FIG. 8 .
- Scheme 1 is designed around proteins modified to contain maleimide groups.
- Scheme 2 comprises alkene-tetrazine chemistry as shown in FIG. 9 .
- C dots containing Cy5 dye, surface functionalized with PEG and maleimide groups were prepared as previously described in Bradbury et al., 2014.
- Silanes modified with the Cy5 fluorophore were prepared and titrated with tetramethylorthosilane (TMOS) into a dilute solution of NH 4 OH (molar ratio TMOS:Cy5:NH3:H20 is 1:0.001:0.44:1215) and allowed to mix for 24 hours (Urata C, Aoyama Y, Tonegawa A, Yamauchi Y, Kuroda K.
- maleimide-PEG-silane (molar ratio PEG-silane:TMOS:mal-PEG-silane of 1:2.3:0.006).
- the maleimide groups can then be effectively transformed into amine groups by reacting the particles with compounds that contain a thiol and amine (e.g., cysteine methyl ester or cysteamine-HCl).
- the resulting C dot-(Cy5)-PEG-amine can then be subsequently modified with a succinimidyl 3-(2-pyridyldithio)propionate (SPDP).
- SPDP succinimidyl 3-(2-pyridyldithio)propionate
- the pyridyldithiol serves at least two purposes: one, it can be used to quantitate conjugation efficiencies; two, it may serves as a ‘protecting group’ to minimize oxidation of thiol groups; etc.
- TCEP can then be used to remove the group releasing a pyridine 2-thione, which can be measured by HPLC or UV-absorption for quantitation.
- the resulting C dot-(Cy5)-PEG-thiol can then be reacted with protein-maleimide leading to the desired C dot-(Cy5)-PEG-mAb or C dot-(Cy5)-PEG-vFab.
- alkene-tetrazine chemistry is utilized for protein attachment.
- the mAb or vFab is modified with a click reactive groups, such as methyltetrazine-PEG 4 -NHS ester.
- the C dot-(Cy5)-PEG-amine, as described in FIG. 8 (Scheme 1), is then modified with the appropriate click partner, (e.g., TCO-PEG4-NHS ester).
- the methyltetrazine-mAb or -vFab can then be reacted with the C dot-(Cy5)-PEG-TCO leading to the C dot-(Cy5)-PEG-mAb or C dot-(Cy5)-PEG-vFab product.
- Antibody fragments provide advantages (e.g., size, no Fc region for reduced immunogenicity, scalability, and adaptability) compared to standard monoclonal antibodies (mAbs).
- fAbs are the stripped-down binding region of an antibody which is usually expressed as a single continuous sequence in an expression host (e.g., E. Coli ).
- a fAb or mAb can be as small as 15 kDa (+/ ⁇ 5 kDa) (e.g., about 3 nm).
- a fAb or mAb can be up to 150 kDa (e.g., up to 20 nm).
- a fAb is approximately 60 kDa (e.g., +/ ⁇ 15 kDa).
- a fAb comprises an immunoglobin heavy-chain variable and constant domain linked to the corresponding domains of an immunoglobin light chain.
- the antibody format can be a single chain variable fragment (scFv) fragment that is approximately 30 kDa (e.g., +/ ⁇ 10 kDa).
- a scFv fragment comprises a heavy-chain variable domain linked to a light-chain variable domain.
- the antibody format can be a single domain antibody (sdAb) fragment that is approximately 15 kDa (e.g., +/ ⁇ 5 kDa).
- a sdAb fragment comprises a single heavy-chain variable domain.
- the antibody fragment is an anti-CEA scFv for targeting different tumors.
- various linkers are used.
- a cleavable linker e.g., peptide, hydrazine, or disulfide
- a noncleavable linker e.g., thioether
- a peptide linker is selectively cleaved by lysosomal proteases (e.g., cathepsin-B).
- a valine-citrulline dipeptide linker is used.
- the mAbs and/or fAbs are U.S. approved for certain uses.
- Non-limiting examples of mAbs and fAbs include anti-GPIIb/IIIa, anti-VEGF-A, and anti-TNF- ⁇ .
- ReoPro (abciximab) is an anti-GPIIb/IIIa, chimeric fAb, IgG1- ⁇ developed by Centocor/Eli Lilly as described by Nelson and Reichert, “Development trends for therapeutic antibody fragments,” Nature Biotechnology, 27(4), 2009.
- Lucentis is an anti-VEGF-A, humanized Fab IgG1- ⁇ developed by Genentech (Nelson and Reichert, 2009) that is used to prevent wet age-related macular degeneration.
- Cimzia (certolizumab pegol), is an Anti-TNF- ⁇ , PEGylated humanized fAb developed by UCB (Nelson and Reichert, 2009) that is used to prevent moderate to severe Crohn's disease.
- PET (Positron Emission Tomography) tracers are used as imaging agents.
- PET tracers comprise 89 Zr, 64 Cu, [ 18 F] fluorodeoxyglucose.
- fluorophores comprise fluorochromes, fluorochrome quencher molecules, any organic or inorganic dyes, metal chelates, or any fluorescent enzyme substrates, including protease activatable enzyme substrates.
- fluorophores comprise long chain carbophilic cyanines.
- fluorophores comprise DiI, DiR, DiD, and the like.
- Fluorochromes comprise far red, and near infrared fluorochromes (NIRF). Fluorochromes include but are not limited to a carbocyanine and indocyanine fluorochromes.
- imaging agents comprise commercially available fluorochromes including, but not limited to Cy5.5, Cy5 and Cy7 (GE Healthcare); AlexaFlour660, AlexaFlour680, AlexaFluor750, and AlexaFluor790 (Invitrogen); VivoTag680, VivoTag-S680, and VivoTag-5750 (VisEn Medical); Dy677, Dy682, Dy752 and Dy780 (Dyomics); DyLight547, DyLight647 (Pierce); HiLyte Fluor 647, HiLyte Fluor 680, and HiLyte Fluor 750 (AnaSpec); IRDye 800CW, IRDye 800RS, and IRDye 700DX (Li-Cor); and ADS780WS, ADS830WS, and ADS832WS (American Dye Source) and Kodak X-SIGHT 650, Kodak X-SIGHT 691, Kodak X-SIGHT 751 (Car
- click reactive groups are used (for ‘click chemistry’).
- click reactive groups include the following: alkyne, azide, thiol (sulfydryl), alkene, acrylate, oxime, maliemide, NHS (N-hydroxysuccinimide), amine (primary amine, secondary amine, tertiary amine, and/or quarternary ammonium), phenyl, benzyl, hydroxyl, carbonyl, aldehyde, carbonate, carboxylate, carboxyl, ester, methoxy, hydroperoxy, peroxy, ether, hemiacetal, hemiketal, acetal, ketal, orthoester, orthocarbonate ester, amide, carboxyamide, imine (primary ketimine, secondary ketamine, primary aldimine, secondary aldimine), imide, azo (diimide), cyanate (cyanate or isocyanate), nitrate, nitrile, ison
- Cancers that may be treated include, for example, prostate cancer, breast cancer, testicular cancer, cervical cancer, lung cancer, colon cancer, bone cancer, glioma, glioblastoma, multiple myeloma, sarcoma, small cell carcinoma, melanoma, renal cancer, liver cancer, head and neck cancer, esophageal cancer, thyroid cancer, lymphoma, and/or leukemia.
- targeting peptide ligands such as alpha-MSH, attached to C dots, can serve as immunomodulators alongside other therapies to enhance treatment response.
- a method of treatment may include administration of antibodies, small molecule drugs, radiation, pharmacotherapy, chemotherapy, cryotherapy, thermotherapy, electrotherapy, phototherapy, ultrasonic therapy and/or surgery.
- the immunoconjugate comprises a therapeutic agent, e.g., a drug (e.g., a chemotherapy drug) and/or a therapeutic radioisotope.
- a therapeutic agent refers to any agent that has a therapeutic effect and/or elicits a desired biological and/or pharmacological effect, when administered to a subject.
- the radioisotope is a radiolabel that can be monitored/imaged (e.g., via PET or single-photon emission computed tomography (SPECT)).
- SPECT single-photon emission computed tomography
- Example radioisotopes that can be used include beta emitters (e,g. 177 Lutetium) and alpha emitters (e.g., 225 Ac).
- one or more of the following radioisotopes are used: 99m Tc, 111 In, 64 Cu, 67 Ga, 186 Re, 188 Re, 153 Sm, 177 Lu, 67 Cu, 123 I, 124 I, 125 I, 11 C, 1 3N, 15 O, 18 F, 186 Re, 188 Re, 153 Sm, 166 Ho, 177 Lu, 149 Pm, 90 Y, 213 Bi, 103 Pd, 109 Pd, 159 Gd, 140 La, 198 Au, 199 Au, 169 Yb, 175 Yb, 165 Dy, 166 Dy, 67 Cu, 105 Rh, 111 Ag, 89 Zr, 225 Ac, and 192 Ir.
- the immunoconjugate comprises one or more drugs, e.g., one or more chemotherapy drugs, such as sorafenib, paclitaxel, docetaxel, MEK162, etoposide, lapatinib, nilotinib, crizotinib, fulvestrant, vemurafenib, bexorotene, and/or camptotecin.
- chemotherapy drugs such as sorafenib, paclitaxel, docetaxel, MEK162, etoposide, lapatinib, nilotinib, crizotinib, fulvestrant, vemurafenib, bexorotene, and/or camptotecin.
- the immunoconjugate comprises a chelator, for example, 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-4,11-diyl)diacetic acid (CB-TE2A); desferoxamine (DFO); diethylenetriaminepentaacetic acid (DTPA); 1,4,7,10-tetraazacyclotetradecane-1,4,7,10-tetraacetic acid (DOTA); thylenediaminetetraacetic acid (EDTA); ethylene glycolbis(2-aminoethyl)-N,N,N′,N′-tetraacetic acid (EGTA); 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA); ethylenebis-(2-4 hydroxy-phenylglycine) (EHPG); 5-Cl-EHPG; 5Br-EHPG; 5-Me-EHPG; 5t-
- the immunoconjugate comprises more than one chelator.
- the radioisotope-chelator pair is 89 Zr-DFO. In certain embodiments the radioisotope-chelator pair 177 Lu-DOTA. In certain embodiments, the is radioisotope-chelator pair is 225 Ac-DOTA.
- the therapeutic agent e.g., drug and/or radioisotope
- the therapeutic agent is attached to the nanoparticle or the antibody fragment (protein), or both, using a bioorthogonal conjugation approach (e.g., amine/NHS-ester, thiol/maleimide, azide/alkyne click, or tetrazine/TCO click).
- a bioorthogonal conjugation approach e.g., amine/NHS-ester, thiol/maleimide, azide/alkyne click, or tetrazine/TCO click.
- the radiometal chelator can be first attached to either particle or protein or both, followed by the radiometal.
- the radiometal/chelator complex can be performed, followed by attachment onto the particle or protein or both. Radioiodination can also be achieved using standard approaches where a tyrosine or phenolic group on the particle or protein or both is modified by electrophilic addition chemistry.
- the immunoconjugate is administered to a subject suffering from a particular disease or condition (e.g., cancer) for treatment of the disease or condition.
- a particular disease or condition e.g., cancer
- a maleimide and NHS ester functionalized polyethylene glycol (mal-dPEG 12 -NHS) was conjugated with aminosilane (APTES) in DMSO (molar ratio mal-PEG-NHS:APTES:DMSO 1:0.9:60). The reaction mixture was left under nitrogen at room temperature for 48 hours to generate silane functionalized mal-dPEG (mal-dPEG-APTES).
- a maleimide functionalized Cy5 (mal-Cy5) was reacted with a thiol-silane (MPTMS) in DMSO (molar ratio Cy5:MPTMS:DMOS 1:25:1150). The reaction was left under nitrogen at room temperature for 24 hours to generate a silane functionalized Cy5 (Cy5-MPTMS).
- TMOS and Cy5-MPTMS were then titrated into an ammonia hydroxide solution ( ⁇ pH 8) (molar ratio TMOS:Cy5:NH3:H2O 1:0.001:0.44:1215).
- the solution was stirred at 600 rpm at room temperature for 24 hours to form homogeneous Cy5 encapsulated silica nanoparticles.
- the mal-dPEG-APTES and silane functionalized polyethylene glycol (PEG-silane, MW around 500, Gelest) were then added into the synthesis solution to PEGylate and surface-functionalize the particles (PEG-silane:TMOS:mal-PEG-APTES 1:2.3:0.006).
- the solution was stirred at 600 rpm at room temperature for 24 hours followed by incubation at 80° C. for another 24 hours without stirring.
- the solution was dialyzed in 2000 mL with deionized water for two days (10 k MWCO), filtered with 200 nm syringe filters, and finally chromatographically purified (Superdex 200) resulting in the desired mal-C dots.
- scFv single chain antibody fragments
- MMP-12 matrix metalloproteinase 12
- Cys cysteine
- the scFv were clones modified with azide containing bifunctional linkers.
- the wild type scFv was modified with N-hydroxy-succinimide (NHS) ester-polyethylene glycol (PEG) 4 -azide.
- NHS N-hydroxy-succinimide
- PEG polyethylene glycol
- modification of wild type scFv with NHS ester-PEG 4 -azide results in the random incorporation of PEG 4 -azide on to free amines on surface lysine residues.
- the C-terminal scFv Cys construct was conjugated with maleimide-PEG 3 -azide for site specific PEG 3 -azide introduction on to the Cys sulfhydryl.
- the scFv constructs were analyzed for azide incorporation by reaction with a Dibenzocyclooctyne (DBCO)-PEG-Cy5 fluorescent probe. Azides react with DBCOs via a metal free click chemistry reaction to form a covalent linkage. Unreacted DBCO-Cy5 dye was removed from the reaction mixtures by 40 kDa cutoff size exclusion spin columns. The successful introduction of an azide group on the surface of the scFvs was confirmed by visualizing the wild type and C-terminal Cys scFv-PEG-Cy5 fluorescent dye constructs using a BioRad Versa-Doc imager.
- DBCO Dibenzocyclooctyne
- the purified scFv C-dot conjugates were analyzed by dot blot scFv immune-detection/particle fluorescence assays, gel electrophoresis and fluorescent ELISAs with immobilized MMP-12.
- FIG. 1 shows a schematic illustration showing the synthesis of 89 Zr-labeled C′dot radioimmunoconjugate using a chelator-based radiolabeling technique.
- PEGylated and maleimide-functionalized C′ dot (C′ dot-PEG-Mal, 1) was first reacted with reduced glutathione (GSH) to introduce the —NH 2 groups for the following-up bioconjugates, forming C′ dot-PEG-GSH (2).
- the nanoparticle was conjugated with DBCO-PEG4-NHS ester and DFO-NCS, forming C′ dot-PEG-DBCO (3) and DFO-C′ dot-PEG-DBCO (4), respectively.
- Azide-functionalized small targeting ligands such as single-chain variable fragment (scFv-azide) (or single-domain antibody, sdAb-azide), was conjugated to the nanoparticle based on strain-promoted azide-alkyne cycloaddition, forming DFO-C′ dot-PEG-scFv (5).
- the final C′dot radioimmunoconjugate ( 89 Zr-DFO-C′ dot-PEG-scFv, 6) was by labeling it with 89 Zr-oxalate.
- the schematic illustrated in FIG. 1 is not limited to scFv and can include various types of antibody fragments, e.g., sdAbs.
- FIGS. 2 A and 2 B show in vivo ( FIG. 2 A ) coronal and ( FIG. 2 B ) sagittal PET images of 89 Zr-DFO-C′ dot-PEG at different post-injection time points (10 min, 1 h, Day 1, Day 3 and Day 6) in a healthy nude mouse.
- the reaction ratio between C′ dot-PEG-Mal and GSH was kept at 1:20.
- the PET images were acquired by using a Focus 120 MicroPET scanner.
- FIG. 3 shows biodistribution data of 89 Zr-DFO-C′ dot-PEG in a healthy nude mouse on Day 6. Less than 2% ID/g of bone (and joint) uptake was observed.
- FIGS. 4 A and 4 B show a chelator-free 89 Zr radiolabeling experimental example.
- FIG. 4 A shows 89 Zr labeling yields of C′ dot-PEG-Mal under varied pH conditions at 75° C.
- FIG. 4 B shows 89 Zr labeling yields of C′ dot-PEG-Mal using varied combinations of C′ dot to 89 Zr-oxalate ratio.
- FIGS. 5 A and 5 B show in vivo coronal PET images of [89Zr]C′ dot-PEG at different post-injection time points (10 min, Day 1, Day 3 and Day 6) in a healthy nude mouse.
- [ 89 Zr]C′ dot-PEG was synthesized by using a chelator-free radiolabeling technique.
- the PET images were acquired by using a Focus 120 MicroPET scanner.
- FIG. 5 A shows PET images acquired without EDTA (ethylenediaminetetraacetic acid).
- FIG. 5 B shows PET images acquired with EDTA
- FIG. 7 shows biodistribution data of 89 Zr-DFO-C′ dot, 89 Zr-DFO-C′ dot-DBCO and 89 Zr-DFO-C′ dot-PEG-sdAb in healthy nude mice at 48 h post-injection.
- An improved pharmacokinetic profile (with prolonged blood circulation half-life and lower liver uptake) can be achieved by optimizing the number of DFO, DBCO and sdAb from each C′ dot.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Nanotechnology (AREA)
- Immunology (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Molecular Biology (AREA)
- Radiology & Medical Imaging (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Peptides Or Proteins (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Silicon Compounds (AREA)
Abstract
Description
- This application claims the benefit of U.S. Application Ser. No. 62/144,278 filed on Apr. 7, 2015 and U.S. Application Ser. No. 62/151,943 filed on Apr. 23, 2015, the disclosures of which are hereby incorporated by reference in their entireties.
- This invention was made with government support under Grant No. U54 CA199081-01 awarded by NIH. The government has certain rights in this invention.
- This invention relates generally to nanoparticle immunoconjugates (e.g., under 20 nanometers in diameter), useful, for example, for the detection, prevention, and/or treatment of cancer and other diseases.
- Nano-therapeutic and/or -diagnostic delivery vehicles are typically macro- or supra-molecular multicomponent systems, ranging in size from 1-1,000 nm, that are either inherently therapeutic (e.g., no active pharmaceutical ingredient) or function as therapeutic or diagnostic delivery systems. To date, liposomal nanoparticles and biologics comprise a large proportion of the number of FDA-approved products or products in clinical trials used to treat and/or detect a variety of cancer types, while a number of polymer-based particle formulations are currently in early phase trials.
- Desirable candidates for nanotherapeutic delivery systems share a common feature of incorporating and releasing a drug compound in a controlled manner, which can favorably alter drug bioavailability and pharmacokinetics, while minimizing off-target toxicities. Ideally, an imaging label is incorporated therein to assess their precise localization and retention at disease sites.
- However, these systems function using different mechanisms. For example, antibody drug conjugates (ADCs) achieve lower drug toxicity primarily through active targeting of tumor cells and conditional release of drug molecules. Upon binding a cell surface antigen, active drug release occurs after cellular internalization and endosomal uptake. On the other hand, liposomes and polymer-based drug delivery systems, which are typically much larger assembled complexes (˜20-150 nm diameters) passively loaded with a greater payload (˜10,000 drug molecules for Doxil) or imaging agents, have generally lacked targeting capabilities (BIND-014 is an exception). Therefore, these complexes rely primarily on the well-known enhanced permeability and retention (EPR) effect for the successful delivery of nano-formulated drugs. While interstitial permeation of liposomes may be poor due to their size, the free drug is released through various mechanisms that are not entirely understood. For example, Abraxane (˜140 nm) relies on a different approach to enhance the bioavailability of a hydrophobic compound. In this case, a specific formulation of albumin and drug (paclitaxel) forms the initial complex, which is in turn estimated to disperse into smaller protein-drug aggregates upon injection.
- Metastatic disease may effectively be treated with immunotherapies; however, a significant subpopulation will not respond due to lack of antigenic mutations or the immune-evasive properties of cancer. In addition, although radiation therapy (RT) is a standard treatment for cancer, local failures occur. Preclinical data indicate that RT can potentiate the systemic efficacy of immunotherapy, while activation of the innate and adaptive immune system can enhance the local efficacy of RT.
- There remains a need for a platform that can be used for the detection, prevention, and/or treatment of cancer and other diseases.
- Described herein are target-specific nanoparticle immunoconjugates (e.g., single chain antibody fragments bound to the particle surface) for targeted diagnostic and/or therapeutic platforms. In certain embodiments, the nanoparticle immunoconjugates are less than 20 nm (e.g., 6 to 10 nm) in diameter. This small size is found to offer advantages in therapeutic and/or imaging applications. For example, the disclosed immunoconjugates may offer improved targeting of diseased tissue and reduced non-specific uptake by organs (e.g., by the liver). The smaller immunoconjugates may also demonstrate reduced immune reactivity, thereby further improving efficacy.
- Also described herein is a multi-therapeutic platform that comprises an immunoconjugate and therapeutic radioisotopes. In certain embodiments, immunoconjugates and therapeutic radioisotopes are delivered in concert for synergistic effects of combined radiation therapy and immunotherapy. In certain embodiments, an antibody fragment and a therapeutic radioisotope are attached to nanoparticles, thereby creating a target-specific nanoparticle immunoconjugate. A given nanoparticle can have both radionuclides (radioisotopes) and antibodies (and/or antibody fragments) attached thereto (in which case, the immunoconjugate is a radioimmunoconjugate). Also, in some embodiments, a portion of the administered nanoparticles have radionuclides attached (covalently or non-covalently bonded, or otherwise associated with the nanoparticle) while other administered nanoparticles have antibody fragments attached. Also included in various embodiments are combination therapies in which either exiting (e.g., traditional) radiotherapy is combined with administration of nanoparticle immunoconjugates described herein, or existing (e.g., traditional) immunotherapy is combined with administration of nanoparticle radioconjugates (nanoparticles with bound radioisotopes),
- The certain embodiments, the target-specific nanoparticle immunoconjugates comprise a targeting peptide. In certain embodiments, the therapeutic radioisotope is delivered separately from the target-specific nanoparticle immunoconjugate (e.g., via radiation therapy or via attached to a separate target-specific nanoparticle). In certain embodiments, immunotherapy is delivered separately from the target-specific immunoconjugate. In certain embodiments, an antibody fragment is attached to one polyethylene glycol (PEG) moiety (via a particular chelator) and a radioisotope is attached to another PEG moiety (via another chelator). The PEG moieties are then attached to nanoparticles.
- In one aspect, the invention is directed to An immunoconjugate comprising: a nanoparticle; and an antibody fragment conjugated to the nanoparticle, wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g., from 4 to 8 nm) (e.g., wherein the immunoconjugate has an average diameter no greater than 50 nm, e.g., no greater than 40 nm, e.g., no greater than 30 nm, e.g., no greater than 20 nm, e.g., no greater than 15 nm, e.g., no greater than 10 nm).
- In certain embodiments, the antibody fragment is covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces.
- In certain embodiments, the nanoparticle is coated with an organic polymer (e.g., polyethylene glycol (PEG)) (e.g., wherein immunoconjugate comprises a chelator).
- In certain embodiments, a targeting peptide (e.g., alphaMSH, any peptide known to be immunomodulatory and anti-inflammatory in nature).
- In certain embodiments, the antibody fragment is in a range from about 5 kDa to about 25 kDa (e.g., from about 10 kDa to about 20 kDa, e.g., about 15 kDa) (e.g., wherein the antibody fragment comprises a functional single domain antibody fragment).
- In certain embodiments, the antibody fragment is from about 20 kDa to about 45 kDa (e.g., from about 25 kDa to about 30 kDa) (e.g., wherein the antibody fragment comprises a functional single chain antibody fragment).
- In certain embodiments, the antibody fragment is from about 40 kDa to about 80 kDa (e.g., from about 50 kDa to about 70 kDa, e.g., about 60 kDa) (e.g., wherein the antibody fragment comprises a functional fab fragment).
- In certain embodiments, the nanoparticle comprises silica.
- In certain embodiments, the nanoparticle comprises a silica-based core and a silica shell surrounding at least a portion of the core.
- In certain embodiments, the nanoparticle comprises a fluorescent compound within the core.
- In certain embodiments, the antibody fragment is a member selected from the set consisting of a recombinant antibody fragment (fAbs), a single chain variable fragment (scFv), and a single domain antibody (sdAb) fragment.
- In certain embodiments, the antibody fragment is a single chain variable fragment (scFv).
- In certain embodiments, the antibody fragment is a single domain (sdAb) fragment.
- In certain embodiments, the nanoparticle (a single nanoparticle) has from one to ten antibody fragments (e.g., from 1 to 7, e.g., from 1 to 5, e.g., from 2 to 7, e.g., from 2 to 5, e.g., from 1 to 4, e.g., from 2 to 4) attached thereto.
- In certain embodiments, the antibody fragment is conjugated to the nanoparticle via a PEG moiety and a chelator.
- In certain embodiments, the nanoparticle has a diameter (e.g., average diameter) no greater than 15 nanometers (e.g., no greater than 13 nanometers, e.g., no greater than 10 nanometers).
- In certain embodiments, the nanoparticle has a diameter (e.g., average diameter) in a range from 1 nm to 20 nm (e.g., from 2 nm to 15 nm, e.g., from 5 nm to 15 nm, e.g., from 1 nm to 10 nm, e.g., from 2 nm to 10 nm, e.g., from 5 nm to 10 nm).
- In certain embodiments, the antibody fragment comprises a member selected from the set consisting of anti-CEA scFv, anti-GPIIb/IIIa, anti-VEGF-A, and anti-TNF-α (e.g., PEGylated).
- In certain embodiments, the immunoconjugate comprises one or more imaging agents (e.g., within the nanoparticle, attached to the nanoparticle, and/or attached to the antibody fragment).
- In certain embodiments, the one or more imaging agents comprise a PET tracer (e.g., 89Zr, 64Cu, and/or [18F] fluorodeoxyglucose).
- In certain embodiments, the one or more imaging agents comprise a fluorophore (e.g., a cyanine).
- In certain embodiments, the immunoconjugate further comprises a therapeutic agent (e.g., wherein the therapeutic agent is attached to the nanoparticle, or to the antibody fragment, or to both the nanoparticle and the antibody fragment, e.g., wherein the attachment is covalent or non-covalent).
- In certain embodiments, the therapeutic agent comprises a chemotherapy drug (e.g., sorafenib, paclitaxel, docetaxel, MEK162, etoposide, lapatinib, nilotinib, crizotinib, fulvestrant, vemurafenib, bexorotene, and/or camptotecin).
- In certain embodiments, the therapeutic agent comprises a radioisotope (e.g., wherein the radioisotope is attached to the nanoparticle via a second chelator) (e.g., wherein the radioisotope is a therapeutic radioisotope).
- In certain embodiments, the radioisotope is a member selected from the group consisting of 99mTc, 111In, 64Cu, 67Ga, 186Re, 188Re, 153Sm, 177Lu, 67Cu, 123I, 124I, 125I, 11C, 13N, 15O, 18F, 186Re, 188Re, 153Sm, 166Ho, 177Lu, 149Pm, 90Y, 213Bi, 103Pd, 109Pd, 159Gd, 140La, 198Au, 199Au, 169Yb, 175Yb, 165Dy, 166Dy, 67Cu, 105Rh, 111Ag, 89Zr, 225Ac, and 192Ir.
- In another aspect, the invention is directed to a method of treating a disease or condition, the method comprising administering to a subject a pharmaceutical composition comprising the immunoconjugate (e.g., to target a particular type of tissue, e.g., cancer).
- In certain embodiments, the method comprises administering a therapeutic radioisotope (e.g., wherein the therapeutic radioisotope is attached to a second nanoparticle having a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the radioisotope is attached to the second nanoparticle via a second chelator)) (e.g., wherein the second nanoparticle has a diameter from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g., from 4 to 8 nm).
- In another aspect, the invention is directed to a method of treating a disease or condition, the method comprising administering to a subject a pharmaceutical composition comprising the immunoconjugate (e.g., to target a particular type of tissue, e.g., cancer) (e.g., for combined radiation therapy and immunotherapy).
- In certain embodiments, the pharmaceutical composition further comprises a carrier.
- In another aspect, the invention is directed to a method of in vivo imaging (e.g., intraoperative imaging), the method comprising: administering to a subject a composition comprising the immunoconjugate (e.g., such that the immunoconjugate preferentially collects in a particular region, e.g., near or within a particular tissue type, e.g., cancer), wherein the immunoconjugate comprises an imaging agent; and detecting (e.g., via PET, X-ray, MRI, CT, etc.) the imaging agent.
- In another aspect, the invention is directed to a method of making the immunoconjugate, the method comprising: contacting a nanoparticle-PEG-thiol with a protein-maleimide, thereby producing the immunoconjugate.
- In certain embodiments, the method further comprises reacting the nanoparticle with one or more compounds, the one or more compounds comprising a thiol moiety and an amine moiety (e.g., cysteine methyl ester or cysteamine-HCl), thereby producing a nanoparticle-PEG-amine; reacting the nanoparticle-PEG-amine with SPDP, then removing a pyridine 2-thione from the product (e.g., using TCEP), thereby producing the nanoparticle-PEG-thiol.
- In another aspect, the invention is directed to a method of making the immunoconjugate, the method comprising: modifying the antibody fragment (protein) with a first click reactive group (e.g., methyltetrazine-PEG4-NHS ester; modifying a nanoparticle-PEG-amine with a click partner of the first click reactive group (e.g., TCO-PEG4-NHS ester); and reacting the modified antibody fragment with the modified nanoparticle-PEG, thereby producing the immunoconjugate.
- In certain embodiments, the method further comprises reacting the nanoparticle with one or more compounds, the one or more compounds comprising a thiol moiety and an amine moiety (e.g., cysteine methyl ester or cysteamine-HCl), thereby producing the nanoparticle-PEG-amine.
- In another aspect, the invention is directed to a method of treating a disease or condition, the method comprising administering to a subject a composition (e.g., a pharmaceutical composition) comprising: a nanoparticle; and a therapeutic radioisotope conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g., from 4 to 8 nm) (e.g., to target a particular type of tissue, e.g., cancer).
- In certain embodiments, the method comprises administering immunotherapy (e.g., wherein the immunotherapy comprises administering to a subject a pharmaceutical composition comprising the immunoconjugate).
- In another aspect, the invention is directed to an immunoconjugate comprising: a nanoparticle; and an antibody fragment conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g., from 4 to 8 nm) (e.g., wherein the immunoconjugate has an average diameter no greater than 50 nm, e.g., no greater than 40 nm, e.g., no greater than 30 nm, e.g., no greater than 20 nm, e.g., no greater than 15 nm, e.g., no greater than 10 nm) (e.g., wherein the nanoparticle is coated with an organic polymer (e.g., polyethylene glycol (PEG)) (e.g., wherein immunoconjugate comprises a chelator), for use in a method of treating a disease or condition in a subject, wherein the treating comprises: delivering the immunoconjugate to the subject; and delivering a therapeutic radioisotope (e.g., wherein the therapeutic radioisotope is attached to a second nanoparticle having a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the radioisotope is attached to the second nanoparticle via a second chelator)).
- In another aspect, the invention is directed to an immunoconjugate comprising: a nanoparticle; a therapeutic radioisotope (e.g., wherein the radioisotope is attached to the nanoparticle via a second chelator) (e.g., wherein the radioisotope is a therapeutic radioisotope); and an antibody fragment conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g., from 4 to 8 nm) (e.g., wherein the immunoconjugate has an average diameter no greater than 50 nm, e.g., no greater than 40 nm, e.g., no greater than 30 nm, e.g., no greater than 20 nm, e.g., no greater than 15 nm, e.g., no greater than 10 nm) (e.g., wherein the nanoparticle is coated with an organic polymer (e.g., polyethylene glycol (PEG)) (e.g., wherein immunoconjugate comprises a chelator) for use in a method of treating a disease or condition in a subject, wherein the treating comprises: delivering the immunoconjugate to the subject.
- In another aspect, the invention is directed to an immunoconjugate comprising a nanoparticle; and an antibody fragment conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g., from 4 to 8 nm) (e.g., wherein the immunoconjugate has an average diameter no greater than 50 nm, e.g., no greater than 40 nm, e.g., no greater than 30 nm, e.g., no greater than 20 nm, e.g., no greater than 15 nm, e.g., no greater than 10 nm) (e.g., wherein the nanoparticle is coated with an organic polymer (e.g., polyethylene glycol (PEG)) (e.g., wherein immunoconjugate comprises a chelator), and wherein the immunoconjugate comprises an imaging agent, for use in a method of in vivo diagnosis of a disease or condition in a subject, wherein the in vivo diagnosis comprises: delivering the immunoconjugate to the subject; and detecting (e.g., via PET, X-ray, MRI, CT, etc.) the imaging agent.
- In another aspect, the invention is directed to an immunoconjugate comprising: a nanoparticle; and an antibody fragment conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g., from 4 to 8 nm) (e.g., wherein the immunoconjugate has an average diameter no greater than 50 nm, e.g., no greater than 40 nm, e.g., no greater than 30 nm, e.g., no greater than 20 nm, e.g., no greater than 15 nm, e.g., no greater than 10 nm) (e.g., wherein the nanoparticle is coated with an organic polymer (e.g., polyethylene glycol (PEG)) (e.g., wherein immunoconjugate comprises a chelator), and wherein the immunoconjugate comprises an imaging agent, for use in (a) a method of treating a disease or condition in a subject or (b) a method of in vivo diagnosis of a disease or condition in a subject, wherein the method comprises: administering to a subject a pharmaceutical composition comprising the immunoconjugate (e.g., to target a particular type of tissue, e.g., cancer); and optionally, detecting (e.g., via PET, X-ray, MRI, CT, etc.) the imaging agent.
- In another aspect, the invention is directed to an immunoconjugate comprising a nanoparticle; and an antibody fragment conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g., from 4 to 8 nm) (e.g., wherein the immunoconjugate has an average diameter no greater than 50 nm, e.g., no greater than 40 nm, e.g., no greater than 30 nm, e.g., no greater than 20 nm, e.g., no greater than 15 nm, e.g., no greater than 10 nm) (e.g., wherein the nanoparticle is coated with an organic polymer (e.g., polyethylene glycol (PEG)) (e.g., wherein immunoconjugate comprises a chelator) for use in therapy.
- In another aspect, the invention is directed to an immunoconjugate comprising: a nanoparticle; a therapeutic radioisotope (e.g., wherein the radioisotope is attached to the nanoparticle via a second chelator) (e.g., wherein the radioisotope is a therapeutic radioisotope); and an antibody fragment conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g., from 4 to 8 nm) (e.g., wherein the immunoconjugate has an average diameter no greater than 50 nm, e.g., no greater than 40 nm, e.g., no greater than 30 nm, e.g., no greater than 20 nm, e.g., no greater than 15 nm, e.g., no greater than 10 nm) (e.g., wherein the nanoparticle is coated with an organic polymer (e.g., polyethylene glycol (PEG)) (e.g., wherein immunoconjugate comprises a chelator) for use in therapy.
- In another aspect, the invention is directed to an immunoconjugate comprising: a nanoparticle; and an antibody fragment conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g., from 4 to 8 nm) (e.g., wherein the immunoconjugate has an average diameter no greater than 50 nm, e.g., no greater than 40 nm, e.g., no greater than 30 nm, e.g., no greater than 20 nm, e.g., no greater than 15 nm, e.g., no greater than 10 nm) (e.g., wherein the nanoparticle is coated with an organic polymer (e.g., polyethylene glycol (PEG)) (e.g., wherein immunoconjugate comprises a chelator), and wherein the immunoconjugate comprises an imaging agent, for use in in vivo diagnosis.
- In another aspect, the invention is directed to a composition (e.g., pharmaceutical composition) comprising: a nanoparticle; and a therapeutic radioisotope conjugated to the nanoparticle (e.g., covalently or non-covalently bonded to the nanoparticle via a linker or covalently or non-covalently bonded directly to the nanoparticle, or associated with the nanoparticle or a composition surrounding the nanoparticle, e.g., via van der Waals forces), wherein the nanoparticle has a diameter (e.g., average diameter) no greater than 20 nanometers (e.g., as measured by dynamic light scattering (DLS) in aqueous solution, e.g., saline solution) (e.g., wherein the average nanoparticle diameter is from 1 to 20 nm, e.g., from 1 to 15 nm, e.g., from 1 to 10 nm, e.g., from 1 to 8 nm, e.g., from 4 to 10 nm, e.g., from 4 to 8 nm) (e.g., wherein the nanoparticle is coated with an organic polymer (e.g., polyethylene glycol (PEG)) (e.g., wherein immunoconjugate comprises a chelator)) for use in a method of treating a disease or condition in a subject, wherein the treating comprises: delivering the composition to the subject; and delivering immunotherapy (e.g., wherein the immunotherapy comprises administering to a subject a pharmaceutical composition comprising the immunoconjugate).
- Elements of embodiments involving one aspect of the invention (e.g., methods) can be applied in embodiments involving other aspects of the invention (e.g., systems), and vice versa.
- In order for the present disclosure to be more readily understood, certain terms are first defined below. Additional definitions for the following terms and other terms are set forth throughout the specification.
- In this application, the use of “or” means “and/or” unless stated otherwise. As used in this application, the term “comprise” and variations of the term, such as “comprising” and “comprises,” are not intended to exclude other additives, components, integers or steps. As used in this application, the terms “about” and “approximately” are used as equivalents. Any numerals used in this application with or without about/approximately are meant to cover any normal fluctuations appreciated by one of ordinary skill in the relevant art. In certain embodiments, the term “approximately” or “about” refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).
- “Administration”: The term “administration” refers to introducing a substance into a subject. In general, any route of administration may be utilized including, for example, parenteral (e.g., intravenous), oral, topical, subcutaneous, peritoneal, intraarterial, inhalation, vaginal, rectal, nasal, introduction into the cerebrospinal fluid, or instillation into body compartments. In certain embodiments, administration is oral. Additionally or alternatively, in certain embodiments, administration is parenteral. In certain embodiments, administration is intravenous.
- “Antibody”: As used herein, the term “antibody” refers to a polypeptide that includes canonical immunoglobulin sequence elements sufficient to confer specific binding to a particular target antigen. Intact antibodies as produced in nature are approximately 150 kD tetrameric agents comprised of two identical heavy chain polypeptides (about 50 kD each) and two identical light chain polypeptides (about 25 kD each) that associate with each other into what is commonly referred to as a “Y-shaped” structure. Each heavy chain is comprised of at least four domains (each about 110 amino acids long)—an amino-terminal variable (VH) domain (located at the tips of the Y structure), followed by three constant domains: CH1, CH2, and the carboxy-terminal CH3 (located at the base of the Y's stem). A short region, known as the “switch”, connects the heavy chain variable and constant regions. The “hinge” connects CH2 and CH3 domains to the rest of the antibody. Two disulfide bonds in this hinge region connect the two heavy chain polypeptides to one another in an intact antibody. Each light chain is comprised of two domains—an amino-terminal variable (VL) domain, followed by a carboxy-terminal constant (CL) domain, separated from one another by another “switch”. Intact antibody tetramers are comprised of two heavy chain-light chain dimers in which the heavy and light chains are linked to one another by a single disulfide bond; two other disulfide bonds connect the heavy chain hinge regions to one another, so that the dimers are connected to one another and the tetramer is formed. Naturally-produced antibodies are also glycosylated, typically on the CH2 domain. Each domain in a natural antibody has a structure characterized by an “immunoglobulin fold” formed from two beta sheets (e.g., 3-, 4-, or 5-stranded sheets) packed against each other in a compressed antiparallel beta barrel. Each variable domain contains three hypervariable loops known as “complement determining regions” (CDR1, CDR2, and CDR3) and four somewhat invariant “framework” regions (FR1, FR2, FR3, and FR4). When natural antibodies fold, the FR regions form the beta sheets that provide the structural framework for the domains, and the CDR loop regions from both the heavy and light chains are brought together in three-dimensional space so that they create a single hypervariable antigen binding site located at the tip of the Y structure. The Fc region of naturally-occurring antibodies binds to elements of the complement system, and also to receptors on effector cells, including for example effector cells that mediate cytotoxicity. Affinity and/or other binding attributes of Fc regions for Fc receptors can be modulated through glycosylation or other modification. In certain embodiments, antibodies produced and/or utilized in accordance with the present invention include glycosylated Fc domains, including Fc domains with modified or engineered such glycosylation. For purposes of the present invention, in certain embodiments, any polypeptide or complex of polypeptides that includes sufficient immunoglobulin domain sequences as found in natural antibodies can be referred to and/or used as an “antibody”, whether such polypeptide is naturally produced (e.g., generated by an organism reacting to an antigen), or produced by recombinant engineering, chemical synthesis, or other artificial system or methodology. In certain embodiments, an antibody is polyclonal; in certain embodiments, an antibody is monoclonal. In certain embodiments, an antibody has constant region sequences that are characteristic of mouse, rabbit, primate, or human antibodies. In certain embodiments, antibody sequence elements are humanized, primatized, chimeric, etc, as is known in the art. Moreover, the term “antibody” as used herein, can refer in appropriate embodiments (unless otherwise stated or clear from context) to any of the art-known or developed constructs or formats for utilizing antibody structural and functional features in alternative presentation. For example, embodiments, an antibody utilized in accordance with the present invention is in a format selected from, but not limited to, intact IgG, IgE and IgM, bi- or multi-specific antibodies (e.g., Zybodies®, etc), single chain Fvs, polypeptide-Fc fusions, Fabs, cameloid antibodies, masked antibodies (e.g., Probodies®), Small Modular ImmunoPharmaceuticals (“SMIPs™”), single chain or Tandem diabodies (TandAb®), VHHs, Anticalins®, Nanobodies®, minibodies, BiTE®s, ankyrin repeat proteins or DARPINs®, Avimers®, a DART, a TCR-like antibody, Adnectins®, Affilins®, Trans-bodies®, Affibodies®, a TrimerX®, MicroProteins, Fynomers®, Centyrins®, and a KALBITOR®. In certain embodiments, an antibody may lack a covalent modification (e.g., attachment of a glycan) that it would have if produced naturally. In certain embodiments, an antibody may contain a covalent modification (e.g., attachment of a glycan, a payload [e.g., a detectable moiety, a therapeutic moiety, a catalytic moiety, etc], or other pendant group [e.g., poly-ethylene glycol, etc.]).
- “Antibody fragment”: As used herein, an “antibody fragment” includes a portion of an intact antibody, such as, for example, the antigen-binding or variable region of an antibody. Examples of antibody fragments include Fab, Fab′, F(ab′)2, and Fv fragments; triabodies; tetrabodies; linear antibodies; single-chain antibody molecules; and multi specific antibodies formed from antibody fragments. For example, antibody fragments include isolated fragments, “Fv” fragments, consisting of the variable regions of the heavy and light chains, recombinant single chain polypeptide molecules in which light and heavy chain variable regions are connected by a peptide linker (“ScFv proteins”), and minimal recognition units consisting of the amino acid residues that mimic the hypervariable region. In many embodiments, an antibody fragment contains sufficient sequence of the parent antibody of which it is a fragment that it binds to the same antigen as does the parent antibody; in certain embodiments, a fragment binds to the antigen with a comparable affinity to that of the parent antibody and/or competes with the parent antibody for binding to the antigen. Examples of antigen binding fragments of an antibody include, but are not limited to, Fab fragment, Fab′ fragment, F(ab′)2 fragment, scFv fragment, Fv fragment, dsFv diabody, dAb fragment, Fd′ fragment, Fd fragment, and an isolated complementarity determining region (CDR) region. An antigen binding fragment of an antibody may be produced by any means. For example, an antigen binding fragment of an antibody may be enzymatically or chemically produced by fragmentation of an intact antibody and/or it may be recombinantly produced from a gene encoding the partial antibody sequence. Alternatively or additionally, antigen binding fragment of an antibody may be wholly or partially synthetically produced. An antigen binding fragment of an antibody may optionally comprise a single chain antibody fragment. Alternatively or additionally, an antigen binding fragment of an antibody may comprise multiple chains which are linked together, for example, by disulfide linkages. An antigen binding fragment of an antibody may optionally comprise a multimolecular complex. A functional single domain antibody fragment is in a range from about 5 kDa to about 25 kDa, e.g., from about 10 kDa to about 20 kDa, e.g., about 15 kDa; a functional single-chain fragment is from about 10 kDa to about 50 kDa, e.g., from about 20 kDa to about 45 kDa, e.g., from about 25 kDa to about 30 kDa; and a functional fab fragment is from about 40 kDa to about 80 kDa, e.g., from about 50 kDa to about 70 kDa, e.g., about 60 kDa.
- “Associated”: As used herein, the term “associated” typically refers to two or more entities in physical proximity with one another, either directly or indirectly (e.g., via one or more additional entities that serve as a linking agent), to form a structure that is sufficiently stable so that the entities remain in physical proximity under relevant conditions, e.g., physiological conditions. In certain embodiments, associated moieties are covalently linked to one another. In certain embodiments, associated entities are non-covalently linked. In certain embodiments, associated entities are linked to one another by specific non-covalent interactions (e.g., by interactions between interacting ligands that discriminate between their interaction partner and other entities present in the context of use, such as, for example streptavidin/avidin interactions, antibody/antigen interactions, etc.). Alternatively or additionally, a sufficient number of weaker non-covalent interactions can provide sufficient stability for moieties to remain associated. Exemplary non-covalent interactions include, but are not limited to, electrostatic interactions, hydrogen bonding, affinity, metal coordination, physical adsorption, host-guest interactions, hydrophobic interactions, pi stacking interactions, van der Waals interactions, magnetic interactions, electrostatic interactions, dipole-dipole interactions, etc.
- “Biocompatible”: The term “biocompatible”, as used herein is intended to describe materials that do not elicit a substantial detrimental response in vivo. In certain embodiments, the materials are “biocompatible” if they are not toxic to cells. In certain embodiments, materials are “biocompatible” if their addition to cells in vitro results in less than or equal to 20% cell death, and/or their administration in vivo does not induce inflammation or other such adverse effects. In certain embodiments, materials are biodegradable.
- “Biodegradable”: As used herein, “biodegradable” materials are those that, when introduced into cells, are broken down by cellular machinery (e.g., enzymatic degradation) or by hydrolysis into components that cells can either reuse or dispose of without significant toxic effects on the cells. In certain embodiments, components generated by breakdown of a biodegradable material do not induce inflammation and/or other adverse effects in vivo. In certain embodiments, biodegradable materials are enzymatically broken down. Alternatively or additionally, in certain embodiments, biodegradable materials are broken down by hydrolysis. In certain embodiments, biodegradable polymeric materials break down into their component polymers. In certain embodiments, breakdown of biodegradable materials (including, for example, biodegradable polymeric materials) includes hydrolysis of ester bonds. In certain embodiments, breakdown of materials (including, for example, biodegradable polymeric materials) includes cleavage of urethane linkages.
- “Carrier”: As used herein, “carrier” refers to a diluent, adjuvant, excipient, or vehicle with which the compound is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water or aqueous solution saline solutions and aqueous dextrose and glycerol solutions are preferably employed as carriers, particularly for injectable solutions. Suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin.
- “Imaging agent”: As used herein, “imaging agent” refers to any element, molecule, functional group, compound, fragments thereof or moiety that facilitates detection of an agent (e.g., a polysaccharide nanoparticle) to which it is joined. Examples of imaging agents include, but are not limited to: various ligands, radionuclides (e.g., 3H, 14C, 18F, 19F, 32P, 35S, 135I, 125I, 123I, 131I, 64Cu, 68Ga, 187Re, 111In, 90Y, 99mTc, 177Lu, 89Zr etc.), fluorescent dyes (for specific exemplary fluorescent dyes, see below), chemiluminescent agents (such as, for example, acridinum esters, stabilized dioxetanes, and the like), bioluminescent agents, spectrally resolvable inorganic fluorescent semiconductors nanocrystals (i.e., quantum dots), metal nanoparticles (e.g., gold, silver, copper, platinum, etc.) nanoclusters, paramagnetic metal ions, enzymes (for specific examples of enzymes, see below), colorimetric labels (such as, for example, dyes, colloidal gold, and the like), biotin, dioxigenin, haptens, and proteins for which antisera or monoclonal antibodies are available. The radionuclides may be attached via click chemistry, for example.
- “Protein”: As used herein, the term “protein” refers to a polypeptide (i.e., a string of at least 3-5 amino acids linked to one another by peptide bonds). Proteins may include moieties other than amino acids (e.g., may be glycoproteins, proteoglycans, etc.) and/or may be otherwise processed or modified. In certain embodiments “protein” can be a complete polypeptide as produced by and/or active in a cell (with or without a signal sequence); in certain embodiments, a “protein” is or comprises a characteristic portion such as a polypeptide as produced by and/or active in a cell. In certain embodiments, a protein includes more than one polypeptide chain. For example, polypeptide chains may be linked by one or more disulfide bonds or associated by other means. In certain embodiments, proteins or polypeptides as described herein may contain L-amino acids, D-amino acids, or both, and/or may contain any of a variety of amino acid modifications or analogs known in the art. Useful modifications include, e.g., terminal acetylation, amidation, methylation, etc. In certain embodiments, proteins or polypeptides may comprise natural amino acids, non-natural amino acids, synthetic amino acids, and/or combinations thereof. In certain embodiments, proteins are or comprise antibodies, antibody polypeptides, antibody fragments, biologically active portions thereof, and/or characteristic portions thereof.
- “Pharmaceutical composition”: As used herein, the term “pharmaceutical composition” refers to an active agent, formulated together with one or more pharmaceutically acceptable carriers. In certain embodiments, active agent is present in unit dose amount appropriate for administration in a therapeutic regimen that shows a statistically significant probability of achieving a predetermined therapeutic effect when administered to a relevant population. In certain embodiments, pharmaceutical compositions may be specially formulated for administration in solid or liquid form, including those adapted for the following: oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, e.g., those targeted for buccal, sublingual, and systemic absorption, boluses, powders, granules, pastes for application to the tongue; parenteral administration, for example, by subcutaneous, intramuscular, intravenous or epidural injection as, for example, a sterile solution or suspension, or sustained-release formulation; topical application, for example, as a cream, ointment, or a controlled-release patch or spray applied to the skin, lungs, or oral cavity; intravaginally or intrarectally, for example, as a pessary, cream, or foam; sublingually; ocularly; transdermally; or nasally, pulmonary, and to other mucosal surfaces.
- “Substantially”: As used herein, the term “substantially”, and grammatic equivalents, refer to the qualitative condition of exhibiting total or near-total extent or degree of a characteristic or property of interest. One of ordinary skill in the art will understand that biological and chemical phenomena rarely, if ever, go to completion and/or proceed to completeness or achieve or avoid an absolute result.
- “Subject”: As used herein, the term “subject” includes humans and mammals (e.g., mice, rats, pigs, cats, dogs, and horses). In many embodiments, subjects are be mammals, particularly primates, especially humans. In certain embodiments, subjects are livestock such as cattle, sheep, goats, cows, swine, and the like; poultry such as chickens, ducks, geese, turkeys, and the like; and domesticated animals particularly pets such as dogs and cats. In certain embodiments (e.g., particularly in research contexts) subject mammals will be, for example, rodents (e.g., mice, rats, hamsters), rabbits, primates, or swine such as inbred pigs and the like.
- “Therapeutic agent”: As used herein, the phrase “therapeutic agent” refers to any agent that has a therapeutic effect and/or elicits a desired biological and/or pharmacological effect, when administered to a subject.
- “Therapeutically effective amount”: as used herein, is meant an amount that produces the desired effect for which it is administered. In certain embodiments, the term refers to an amount that is sufficient, when administered to a population suffering from or susceptible to a disease, disorder, and/or condition in accordance with a therapeutic dosing regimen, to treat the disease, disorder, and/or condition. In certain embodiments, a therapeutically effective amount is one that reduces the incidence and/or severity of, and/or delays onset of, one or more symptoms of the disease, disorder, and/or condition. Those of ordinary skill in the art will appreciate that the term “therapeutically effective amount” does not in fact require successful treatment be achieved in a particular individual. Rather, a therapeutically effective amount may be that amount that provides a particular desired pharmacological response in a significant number of subjects when administered to patients in need of such treatment. In certain embodiments, reference to a therapeutically effective amount may be a reference to an amount as measured in one or more specific tissues (e.g., a tissue affected by the disease, disorder or condition) or fluids (e.g., blood, saliva, serum, sweat, tears, urine, etc.). Those of ordinary skill in the art will appreciate that, in certain embodiments, a therapeutically effective amount of a particular agent or therapy may be formulated and/or administered in a single dose. In certain embodiments, a therapeutically effective agent may be formulated and/or administered in a plurality of doses, for example, as part of a dosing regimen.
- “Treatment”: As used herein, the term “treatment” (also “treat” or “treating”) refers to any administration of a substance that partially or completely alleviates, ameliorates, relives, inhibits, delays onset of, reduces severity of, and/or reduces incidence of one or more symptoms, features, and/or causes of a particular disease, disorder, and/or condition. Such treatment may be of a subject who does not exhibit signs of the relevant disease, disorder and/or condition and/or of a subject who exhibits only early signs of the disease, disorder, and/or condition. Alternatively or additionally, such treatment may be of a subject who exhibits one or more established signs of the relevant disease, disorder and/or condition. In certain embodiments, treatment may be of a subject who has been diagnosed as suffering from the relevant disease, disorder, and/or condition. In certain embodiments, treatment may be of a subject known to have one or more susceptibility factors that are statistically correlated with increased risk of development of the relevant disease, disorder, and/or condition.
- Drawings are presented herein for illustration purposes, not for limitation.
- The foregoing and other objects, aspects, features, and advantages of the present disclosure will become more apparent and better understood by referring to the following description taken in conduction with the accompanying drawings, in which:
-
FIG. 1 shows a schematic illustration showing the synthesis of 89Zr-labeled C′dot radioimmunoconjugate using a chelator-based radiolabeling technique. PEGylated and maleimide-functionalized C′ dot (C′ dot-PEG-Mal, 1) was first reacted with reduced glutathione (GSH) to introduce the —NH2 groups for the following-up bioconjugates, forming C′ dot-PEG-GSH (2). Then the nanoparticle was conjugated with DBCO-PEG4-NHS ester and DFO-NCS, forming C′ dot-PEG-DBCO (3) and DFO-C′ dot-PEG-DBCO (4), respectively. Azide-functionalized small targeting ligands, such as single-chain variable fragment (scFv-azide) (or single-domain antibody, sdAb-azide), was conjugated to the nanoparticle based on strain-promoted azide-alkyne cycloaddition, forming DFO-C′ dot-PEG-scFv (5). The final C′dot radioimmunoconjugate (89Zr-DFO-C′ dot-PEG-scFv, 6) was by labeling it with 89Zr-oxalate. The embodiments illustrated inFIG. 1 are not limited to scFv and can include various types of antibody fragments, e.g., sdAbs. -
FIGS. 2A and 2B show in vivo (FIG. 2A ) coronal and (FIG. 2B ) sagittal PET images of 89Zr-DFO-C′ dot-PEG at different post-injection time points (10 min, 1 h,Day 1,Day 3 and Day 6) in a healthy nude mouse. The reaction ratio between C′ dot-PEG-Mal and GSH was kept at 1:20. The PET images were acquired by using a Focus 120 MicroPET scanner. -
FIG. 3 shows biodistribution data of 89Zr-DFO-C′ dot-PEG in a healthy nude mouse onDay 6. Less than 2% ID/g of bone (and joint) uptake was observed. -
FIGS. 4A and 4B show a chelator-free 89Zr radiolabeling experimental example. -
FIG. 4A shows 89Zr labeling yields of C′ dot-PEG-Mal under varied pH conditions at 75° C. -
FIG. 4B shows 89Zr labeling yields of C′ dot-PEG-Mal using varied combinations of C′ dot to 89Zr-oxalate ratio. -
FIGS. 5A and 5B show in vivo coronal PET images of [89Zr]C′ dot-PEG at different post-injection time points (10 min,Day 1,Day 3 and Day 6) in a healthy nude mouse. [89Zr]C′ dot-PEG was synthesized by using a chelator-free radiolabeling technique. The PET images were acquired by using a Focus 120 MicroPET scanner. -
FIG. 5A shows PET images acquired without EDTA (ethylenediaminetetraacetic acid). -
FIG. 5B shows PET images acquired with EDTA -
FIG. 6 shows biodistribution data of [89Zr]C′ dot-PEG in healthy nude mice (n=3) onDay 7. Over 10% ID/g of bone (and joint) uptake was observed in this case, indicating a less stable radiolabeling using a chelator-free method (when compared with that of chelator-based method). -
FIG. 7 shows biodistribution data of 89Zr-DFO-C′ dot, 89Zr-DFO-C′ dot-DBCO and 89Zr-DFO-C′ dot-PEG-sdAb in healthy nude mice at 48 h post-injection. An improved pharmacokinetic profile (with prolonged blood circulation half-life and lower liver uptake) can be achieved by optimizing the number of DFO, DBCO and sdAb from each C′ dot. -
FIG. 8 shows an exemplary schematic of thiol-maleimide chemistry. -
FIG. 9 shows an exemplary schematic of alkene-tetrazine chemistry. - Throughout the description, where compositions are described as having, including, or comprising specific components, or where methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are compositions of the present invention that consist essentially of, or consist of, the recited components, and that there are methods according to the present invention that consist essentially of, or consist of, the recited processing steps.
- It should be understood that the order of steps or order for performing certain action is immaterial so long as the invention remains operable. Moreover, two or more steps or actions may be conducted simultaneously.
- The mention herein of any publication, for example, in the Background section, is not an admission that the publication serves as prior art with respect to any of the claims presented herein. The Background section is presented for purposes of clarity and is not meant as a description of prior art with respect to any claim.
- Molecular therapeutics (e.g., antibodies) can modulate the immune system toward antitumor activity by manipulating immune checkpoints (e.g., the monoclonal antibody ipilimumab inhibits CTLA4, a negative regulatory molecule that inhibits function of the immune system). The rationale is to trigger preexisting, but dormant, antitumor immune responses. Other molecules and pathways have acted as immune switches. PD-1, another negative regulatory receptor expressed on T cells, has also been targeted. Switching a single immune checkpoint may not be sufficient to induce an antitumor response, explaining some of the failures of targeting single immune regulatory checkpoints like PD-1 or CTLA4. However, without wishing to be bound to any theory, treatment can be bolstered by the addition of RT, which is thought, in some cases, to have immunomodulatory properties. In these cases, tumors outside of RT treatment fields have been found to shrink as a result of a putative systemic inflammatory or immune response provoked by RT, highlighting the potential for radiation to spark a systemic antitumor immune response. Augmenting immune activity may also potentiate the local effects of RT.
- By raising the concentration alone of these immunoconjugates, disease can be treated. A therapeutic radiolabel can also be added to further treat disease. In certain embodiments, the immunoconjugate act as a therapeutic at high concentrations, and without a therapeutic radiolabel. In certain embodiments, the radiolabel is attached to the same nanoparticle in an all-in-one multi-therapeutic platform. Alternatively, therapeutic radioisotopes can be administered independently.
- Described herein are target-specific nanoparticle immunoconjugates (e.g., single chain antibody fragments bound to the particle surface) for targeted diagnostic and/or therapeutic platforms. In certain embodiments, the nanoparticle immunoconjugates are less than 20 nm (e.g., 6 to 10 nm) in diameter. This small size is found to offer advantages in therapeutic and/or imaging applications. For example, the disclosed immunoconjugates may offer improved targeting of diseased tissue and reduced non-specific uptake by organs (e.g., by the liver). The smaller immunoconjugates may also demonstrate reduced immune reactivity, thereby further improving efficacy.
- In certain embodiments, the nanoparticle comprises silica, polymer (e.g., poly(lactic-co-glycolic acid) (PLGA)), and/or metal (e.g., gold, iron).
- In certain embodiments, the silica-based nanoparticle platform comprises ultrasmall nanoparticles or “C dots,” which are fluorescent, organo-silica core shell particles that have diameters controllable down to the sub-10 nm range with a range of modular functionalities. C dots are described by U.S. Pat. No. 8,298,677 B2 “Fluorescent silica-based nanoparticles”, U.S. Publication No. 2013/0039848 A1 “Fluorescent silica-based nanoparticles”, and U.S. Publication No. US 2014/0248210 A1 “Multimodal silica-based nanoparticles”, the contents of which are incorporated herein by reference in their entireties. Incorporated into the silica matrix of the core are near-infrared dye molecules, such as Cy5.5, which provides its distinct optical properties. Surrounding the core is a layer or shell of silica. The silica surface is covalently modified with silyl-polyethylene glycol (PEG) groups to enhance stability in aqueous and biologically relevant conditions. These particles have been evaluated in vivo and exhibit excellent clearance properties owing largely to their size and inert surface. Among the additional functionalities incorporated into C dots are chemical sensing, non-optical (PET) image contrast and in vitro/in vivo targeting capabilities, which enable their use in visualizing lymph nodes for surgical applications, and melanoma detection in cancer.
- C dots are synthesized via an alcohol-based modified Stöber process. C′dots are synthesized in water.
- C dots or C′dots provide a unique platform for drug delivery due to their physical properties as well as demonstrated human in vivo characteristics. These particles are ultrasmall and benefit from EPR effects in tumor microenvironments, while retaining desired clearance and pharmacokinetic properties. To this end, described herein is a nanoparticle drug delivery system in which, in certain embodiments, drug constructs are covalently attached to C dots or C′dots (or other nanoparticles).
- C dots or C′dots can serve as highly specific and potent multi-therapeutic targeted particle probes to combine antibody fragments with therapeutic radiolabels (e.g., 177Lu, 225Ac, 90Y, 89Zr) on a single platform. Alternatively, C dot or C′dot coupling of targeting peptides, such as alphaMSH, known to be immunomodulatory and anti-inflammatory in nature, can also be combined with C dot or C′dot radiotherapeutic (and/or other particle-based) platforms to achieve enhanced efficacy. In certain embodiments, the concentration of the radioisotope and/or antibody fragment is higher in therapeutic applications compared to diagnostic applications.
- In contrast to other multimodal platforms, immunoconjugates can comprise different moieties that are attached to the nanoparticle itself. For example, in certain embodiments, a radioisotope is attached to the nanoparticle and an antibody fragment is attached to the nanoparticle—that is, in these embodiments, the radiolabel is not attached to the antibody fragment itself. As another example, immunoconjugates can comprise a targeting ligand attached to the nanoparticle, a radioisotope attached to the nanoparticle, and an antibody fragment attached to the nanoparticle. The stoichiometric ratios of different moieties attached to the C dot will affect the biodistribution of the nanoparticle immunoconjugate.
- The immunoconjugates, e.g., C dot-antibody (mAb) and -antibody-fragment (vFab) conjugates, can be prepared using either of two approaches.
Scheme 1 comprises thiol-maleimide chemistry, as shown inFIG. 8 .Scheme 1 is designed around proteins modified to contain maleimide groups.Scheme 2 comprises alkene-tetrazine chemistry as shown inFIG. 9 . - In
Scheme 1 as shown inFIG. 8 , C dots containing Cy5 dye, surface functionalized with PEG and maleimide groups (C dots-(Cy5)-PEG-mal) were prepared as previously described in Bradbury et al., 2014. Silanes modified with the Cy5 fluorophore were prepared and titrated with tetramethylorthosilane (TMOS) into a dilute solution of NH4OH (molar ratio TMOS:Cy5:NH3:H20 is 1:0.001:0.44:1215) and allowed to mix for 24 hours (Urata C, Aoyama Y, Tonegawa A, Yamauchi Y, Kuroda K. Dialysis process for the removal of surfactants to form colloidal mesoporous silica nanoparticles. Chem Commun (Camb). 2009; (34):5094-6) (Yamada H, Urata C, Aoyama Y, Osada S, Yamauchi Y, Kuroda K. Preparation of Colloidal Mesoporous Silica Nanoparticles with Different Diameters and Their Unique Degradation Behavior in Static Aqueous Systems, Chem. Mater. 2012; 24(8):1462-71.) (Wang J, Sugawara-Narutaki A, Fukao M, Yokoi T, Shimojima A, Okubo T. Two-phase synthesis of monodisperse silica nanospheres with amines or ammonia catalyst and their controlled self-assembly. ACS Appl Mater Interfaces. 2011; 3(5):1538-44.) This resulted in a Cy5 encapsulated silica particle, the surface of which was further PEGylated and functionalized with maleimide groups by treatment with PEG-silane (500 g/mole) (Suzuki K, Ikari K, Imai H. Synthesis of silica nanoparticles having a well-ordered mesostructured using a double surfactant system. J Am Chem Soc. 2004; 126(2):462-3) and maleimide-PEG-silane (molar ratio PEG-silane:TMOS:mal-PEG-silane of 1:2.3:0.006). The maleimide groups can then be effectively transformed into amine groups by reacting the particles with compounds that contain a thiol and amine (e.g., cysteine methyl ester or cysteamine-HCl). The resulting C dot-(Cy5)-PEG-amine can then be subsequently modified with a succinimidyl 3-(2-pyridyldithio)propionate (SPDP). The pyridyldithiol serves at least two purposes: one, it can be used to quantitate conjugation efficiencies; two, it may serves as a ‘protecting group’ to minimize oxidation of thiol groups; etc. TCEP can then be used to remove the group releasing a pyridine 2-thione, which can be measured by HPLC or UV-absorption for quantitation. The resulting C dot-(Cy5)-PEG-thiol can then be reacted with protein-maleimide leading to the desired C dot-(Cy5)-PEG-mAb or C dot-(Cy5)-PEG-vFab. - In
Scheme 2 as shown inFIG. 9 , alkene-tetrazine chemistry is utilized for protein attachment. Here, the mAb or vFab is modified with a click reactive groups, such as methyltetrazine-PEG4-NHS ester. The C dot-(Cy5)-PEG-amine, as described inFIG. 8 (Scheme 1), is then modified with the appropriate click partner, (e.g., TCO-PEG4-NHS ester). In the final step, the methyltetrazine-mAb or -vFab can then be reacted with the C dot-(Cy5)-PEG-TCO leading to the C dot-(Cy5)-PEG-mAb or C dot-(Cy5)-PEG-vFab product. - Antibody fragments (fAbs) provide advantages (e.g., size, no Fc region for reduced immunogenicity, scalability, and adaptability) compared to standard monoclonal antibodies (mAbs). fAbs are the stripped-down binding region of an antibody which is usually expressed as a single continuous sequence in an expression host (e.g., E. Coli). In certain embodiments, a fAb or mAb can be as small as 15 kDa (+/−5 kDa) (e.g., about 3 nm). In other embodiments, a fAb or mAb can be up to 150 kDa (e.g., up to 20 nm). In one embodiment, a fAb is approximately 60 kDa (e.g., +/−15 kDa). A fAb comprises an immunoglobin heavy-chain variable and constant domain linked to the corresponding domains of an immunoglobin light chain. In another embodiment, the antibody format can be a single chain variable fragment (scFv) fragment that is approximately 30 kDa (e.g., +/−10 kDa). A scFv fragment comprises a heavy-chain variable domain linked to a light-chain variable domain. In other embodiments, the antibody format can be a single domain antibody (sdAb) fragment that is approximately 15 kDa (e.g., +/−5 kDa). A sdAb fragment comprises a single heavy-chain variable domain. In certain embodiments, the antibody fragment is an anti-CEA scFv for targeting different tumors.
- In certain embodiments, various linkers are used. In certain embodiments, a cleavable linker (e.g., peptide, hydrazine, or disulfide) is used. In certain embodiments, a noncleavable linker (e.g., thioether) is used. In certain embodiments, a peptide linker is selectively cleaved by lysosomal proteases (e.g., cathepsin-B). In certain embodiments, a valine-citrulline dipeptide linker is used.
- In certain embodiments, different linkers as described in U.S. Pat. Nos. 4,680,338, 5,122,368, 5,141,648, 5,208,020, 5,416,064, 5,475,092, 5,543,390, 5,563,250 5,585,499, 5,880,270, 6,214,345, 6,436,931, 6,372,738, 6,340,701, 6,989,452, 7,129,261, 7,375,078, 7,498,302, 7,507,420, 7,691,962, 7,910,594, 7,968,586, 7,989,434, 7,994,135, 7,999,083, 8,153,768, 8,236,319, Zhao, R.; et al, (2011) J. Med. Chem. 36, 5404; Doronina, S.; et al, (2006) Bioconjug Chem, 17, 114; Hamann, P.; et al. (2005) Bioconjug Chem. 16, 346, the contents of which are hereby incorporated by reference herein, are used.
- In certain embodiments, the mAbs and/or fAbs are U.S. approved for certain uses. Non-limiting examples of mAbs and fAbs include anti-GPIIb/IIIa, anti-VEGF-A, and anti-TNF-α. ReoPro (abciximab) is an anti-GPIIb/IIIa, chimeric fAb, IgG1-κ developed by Centocor/Eli Lilly as described by Nelson and Reichert, “Development trends for therapeutic antibody fragments,” Nature Biotechnology, 27(4), 2009. Lucentis (ranibizumab) is an anti-VEGF-A, humanized Fab IgG1-κ developed by Genentech (Nelson and Reichert, 2009) that is used to prevent wet age-related macular degeneration. Cimzia (certolizumab pegol), is an Anti-TNF-α, PEGylated humanized fAb developed by UCB (Nelson and Reichert, 2009) that is used to prevent moderate to severe Crohn's disease.
- In certain embodiments, PET (Positron Emission Tomography) tracers are used as imaging agents. In certain embodiments, PET tracers comprise 89Zr, 64Cu, [18F] fluorodeoxyglucose.
- In certain embodiments, fluorophores comprise fluorochromes, fluorochrome quencher molecules, any organic or inorganic dyes, metal chelates, or any fluorescent enzyme substrates, including protease activatable enzyme substrates. In certain embodiments, fluorophores comprise long chain carbophilic cyanines. In other embodiments, fluorophores comprise DiI, DiR, DiD, and the like. Fluorochromes comprise far red, and near infrared fluorochromes (NIRF). Fluorochromes include but are not limited to a carbocyanine and indocyanine fluorochromes. In certain embodiments, imaging agents comprise commercially available fluorochromes including, but not limited to Cy5.5, Cy5 and Cy7 (GE Healthcare); AlexaFlour660, AlexaFlour680, AlexaFluor750, and AlexaFluor790 (Invitrogen); VivoTag680, VivoTag-S680, and VivoTag-5750 (VisEn Medical); Dy677, Dy682, Dy752 and Dy780 (Dyomics); DyLight547, DyLight647 (Pierce); HiLyte Fluor 647, HiLyte Fluor 680, and HiLyte Fluor 750 (AnaSpec); IRDye 800CW, IRDye 800RS, and IRDye 700DX (Li-Cor); and ADS780WS, ADS830WS, and ADS832WS (American Dye Source) and Kodak X-SIGHT 650, Kodak X-SIGHT 691, Kodak X-SIGHT 751 (Carestream Health).
- In certain embodiments, click reactive groups are used (for ‘click chemistry’). Examples of click reactive groups include the following: alkyne, azide, thiol (sulfydryl), alkene, acrylate, oxime, maliemide, NHS (N-hydroxysuccinimide), amine (primary amine, secondary amine, tertiary amine, and/or quarternary ammonium), phenyl, benzyl, hydroxyl, carbonyl, aldehyde, carbonate, carboxylate, carboxyl, ester, methoxy, hydroperoxy, peroxy, ether, hemiacetal, hemiketal, acetal, ketal, orthoester, orthocarbonate ester, amide, carboxyamide, imine (primary ketimine, secondary ketamine, primary aldimine, secondary aldimine), imide, azo (diimide), cyanate (cyanate or isocyanate), nitrate, nitrile, isonitrile, nitrite (nitrosooxy group), nitro, nitroso, pyridyl, sulfide, disulfide, sulfinyl, sulfonyl, sulfino, sulfo, thiocyanate, isothiocyanate, caronothioyl, thione, thial, phosphine, phosphono, phosphate, phosphodiester, borono, boronate, bomino, borinate, halo, fluoro, chloro, bromo, and/or iodo moieties.
- Cancers that may be treated include, for example, prostate cancer, breast cancer, testicular cancer, cervical cancer, lung cancer, colon cancer, bone cancer, glioma, glioblastoma, multiple myeloma, sarcoma, small cell carcinoma, melanoma, renal cancer, liver cancer, head and neck cancer, esophageal cancer, thyroid cancer, lymphoma, and/or leukemia.
- In certain embodiments, targeting peptide ligands, such as alpha-MSH, attached to C dots, can serve as immunomodulators alongside other therapies to enhance treatment response.
- In certain embodiments, in addition to administration of an immunoconjugate described herein, a method of treatment may include administration of antibodies, small molecule drugs, radiation, pharmacotherapy, chemotherapy, cryotherapy, thermotherapy, electrotherapy, phototherapy, ultrasonic therapy and/or surgery.
- In certain embodiments, the immunoconjugate comprises a therapeutic agent, e.g., a drug (e.g., a chemotherapy drug) and/or a therapeutic radioisotope. As used herein, “therapeutic agent” refers to any agent that has a therapeutic effect and/or elicits a desired biological and/or pharmacological effect, when administered to a subject.
- In certain embodiments, the radioisotope is a radiolabel that can be monitored/imaged (e.g., via PET or single-photon emission computed tomography (SPECT)). Example radioisotopes that can be used include beta emitters (e,g. 177Lutetium) and alpha emitters (e.g., 225Ac). In certain embodiments, one or more of the following radioisotopes are used: 99mTc, 111In, 64Cu, 67Ga, 186Re, 188Re, 153Sm, 177Lu, 67Cu, 123I, 124I, 125I, 11C, 13N, 15O, 18F, 186Re, 188Re, 153Sm, 166Ho, 177Lu, 149Pm, 90Y, 213Bi, 103Pd, 109Pd, 159Gd, 140La, 198Au, 199Au, 169Yb, 175Yb, 165Dy, 166Dy, 67Cu, 105Rh, 111Ag, 89Zr, 225Ac, and 192Ir.
- In certain embodiments, the immunoconjugate comprises one or more drugs, e.g., one or more chemotherapy drugs, such as sorafenib, paclitaxel, docetaxel, MEK162, etoposide, lapatinib, nilotinib, crizotinib, fulvestrant, vemurafenib, bexorotene, and/or camptotecin.
- In certain embodiments, the immunoconjugate comprises a chelator, for example, 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-4,11-diyl)diacetic acid (CB-TE2A); desferoxamine (DFO); diethylenetriaminepentaacetic acid (DTPA); 1,4,7,10-tetraazacyclotetradecane-1,4,7,10-tetraacetic acid (DOTA); thylenediaminetetraacetic acid (EDTA); ethylene glycolbis(2-aminoethyl)-N,N,N′,N′-tetraacetic acid (EGTA); 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA); ethylenebis-(2-4 hydroxy-phenylglycine) (EHPG); 5-Cl-EHPG; 5Br-EHPG; 5-Me-EHPG; 5t-Bu-EHPG; 5-sec-Bu-EHPG; benzodiethylenetriamine pentaacetic acid (benzo-DTPA); dibenzo-DTPA; phenyl-DTPA, diphenyl-DTPA; benzyl-DTPA; dibenzyl DTPA; bis-2 (hydroxybenzyl)-ethylene-diaminediacetic acid (HBED) and derivatives thereof; Ac-DOTA; benzo-DOTA; dibenzo-DOTA; 1,4,7-triazacyclononane N,N′,N″-triacetic acid (NOTA); benzo-NOTA; benzo-TETA, benzo-DOTMA, where DOTMA is 1,4,7,10-tetraazacyclotetradecane-1,4,7,10-tetra(methyl tetraacetic acid), benzo-TETMA, where TETMA is 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-(methyl tetraacetic acid); derivatives of 1,3-propylenediaminetetraacetic acid (PDTA); triethylenetetraaminehexaacetic acid (TTHA); derivatives of 1,5,10-N,N′,N″-tris(2,3-dihydroxybenzoyl)-tricatecholate (LICAM); and 1,3,5-N,N′,N″-tris(2,3- dihydroxybenzoyl)aminomethylbenzene (MECAM), or other metal chelators.
- In certain embodiments, the immunoconjugate comprises more than one chelator.
- In certain embodiments the radioisotope-chelator pair is 89Zr-DFO. In certain embodiments the radioisotope-chelator pair 177Lu-DOTA. In certain embodiments, the is radioisotope-chelator pair is 225Ac-DOTA.
- In certain embodiments, the therapeutic agent (e.g., drug and/or radioisotope) is attached to the nanoparticle or the antibody fragment (protein), or both, using a bioorthogonal conjugation approach (e.g., amine/NHS-ester, thiol/maleimide, azide/alkyne click, or tetrazine/TCO click). For radiolabeling using radiometals, the radiometal chelator can be first attached to either particle or protein or both, followed by the radiometal. Alternatively, the radiometal/chelator complex can be performed, followed by attachment onto the particle or protein or both. Radioiodination can also be achieved using standard approaches where a tyrosine or phenolic group on the particle or protein or both is modified by electrophilic addition chemistry.
- In certain embodiments, the immunoconjugate is administered to a subject suffering from a particular disease or condition (e.g., cancer) for treatment of the disease or condition.
- A maleimide and NHS ester functionalized polyethylene glycol (mal-dPEG12-NHS) was conjugated with aminosilane (APTES) in DMSO (molar ratio mal-PEG-NHS:APTES:DMSO 1:0.9:60). The reaction mixture was left under nitrogen at room temperature for 48 hours to generate silane functionalized mal-dPEG (mal-dPEG-APTES). A maleimide functionalized Cy5 (mal-Cy5) was reacted with a thiol-silane (MPTMS) in DMSO (molar ratio Cy5:MPTMS:DMOS 1:25:1150). The reaction was left under nitrogen at room temperature for 24 hours to generate a silane functionalized Cy5 (Cy5-MPTMS). TMOS and Cy5-MPTMS were then titrated into an ammonia hydroxide solution (˜pH 8) (molar ratio TMOS:Cy5:NH3:H2O 1:0.001:0.44:1215). The solution was stirred at 600 rpm at room temperature for 24 hours to form homogeneous Cy5 encapsulated silica nanoparticles. The mal-dPEG-APTES and silane functionalized polyethylene glycol (PEG-silane, MW around 500, Gelest) were then added into the synthesis solution to PEGylate and surface-functionalize the particles (PEG-silane:TMOS:mal-PEG-APTES 1:2.3:0.006). The solution was stirred at 600 rpm at room temperature for 24 hours followed by incubation at 80° C. for another 24 hours without stirring. The solution was dialyzed in 2000 mL with deionized water for two days (10 k MWCO), filtered with 200 nm syringe filters, and finally chromatographically purified (Superdex 200) resulting in the desired mal-C dots.
- Studies were performed to conjugate single chain antibody fragments (scFv)s to the C dot core silica nanoparticles. An scFv that bound matrix metalloproteinase 12 (MMP-12) was expressed in E. coli. The construct contained C-terminal His and FLAG tags for nickel affinity chromatography and immune-detection. A mutant scFv was constructed in which the last amino acid of the polypeptide chain was converted to a cysteine (Cys). The change was confirmed by sequencing the mutant gene. Expression and nickel affinity purification of the wild type scFv and the C-terminal Cys containing mutant was confirmed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE), visualized with Coomassie blue stain at a molecular weight consistent with the scFv. Western blot analysis of the scFv SDS PAGE gel was performed with an anti-FLAG tag HRP conjugate. The Western blot analysis confirmed that the identity of the gel band was the scFv.
- The scFv were clones modified with azide containing bifunctional linkers. The wild type scFv was modified with N-hydroxy-succinimide (NHS) ester-polyethylene glycol (PEG)4-azide. Without wishing to be bound to any theory, modification of wild type scFv with NHS ester-PEG4-azide results in the random incorporation of PEG4-azide on to free amines on surface lysine residues. The C-terminal scFv Cys construct was conjugated with maleimide-PEG3-azide for site specific PEG3-azide introduction on to the Cys sulfhydryl. The scFv constructs were analyzed for azide incorporation by reaction with a Dibenzocyclooctyne (DBCO)-PEG-Cy5 fluorescent probe. Azides react with DBCOs via a metal free click chemistry reaction to form a covalent linkage. Unreacted DBCO-Cy5 dye was removed from the reaction mixtures by 40 kDa cutoff size exclusion spin columns. The successful introduction of an azide group on the surface of the scFvs was confirmed by visualizing the wild type and C-terminal Cys scFv-PEG-Cy5 fluorescent dye constructs using a BioRad Versa-Doc imager.
- The azide conjugated scFv were then reacted with C dots containing 1-3 DBCOs on their surfaces. The reaction was allowed to continue for 12 h at room temperature. Unconjugated scFv was purified from conjugated scFv-C dots using multiple techniques including phosphate buffered saline washes in 50,000 molecular weight cut off spin columns, G-200 size exclusion column chromatography or size exclusion spin columns and velocity sedimentation thought a sucrose cushion. Velocity sedimentation and size exclusion chromatography appear to be the most scalable methods of purification. The purified scFv C-dot conjugates were analyzed by dot blot scFv immune-detection/particle fluorescence assays, gel electrophoresis and fluorescent ELISAs with immobilized MMP-12.
- These methods can be applied to other types of antibody fragments, e.g., sdAbs.
-
FIG. 1 shows a schematic illustration showing the synthesis of 89Zr-labeled C′dot radioimmunoconjugate using a chelator-based radiolabeling technique. PEGylated and maleimide-functionalized C′ dot (C′ dot-PEG-Mal, 1) was first reacted with reduced glutathione (GSH) to introduce the —NH2 groups for the following-up bioconjugates, forming C′ dot-PEG-GSH (2). Then the nanoparticle was conjugated with DBCO-PEG4-NHS ester and DFO-NCS, forming C′ dot-PEG-DBCO (3) and DFO-C′ dot-PEG-DBCO (4), respectively. Azide-functionalized small targeting ligands, such as single-chain variable fragment (scFv-azide) (or single-domain antibody, sdAb-azide), was conjugated to the nanoparticle based on strain-promoted azide-alkyne cycloaddition, forming DFO-C′ dot-PEG-scFv (5). The final C′dot radioimmunoconjugate (89Zr-DFO-C′ dot-PEG-scFv, 6) was by labeling it with 89Zr-oxalate. The schematic illustrated inFIG. 1 is not limited to scFv and can include various types of antibody fragments, e.g., sdAbs. -
FIGS. 2A and 2B show in vivo (FIG. 2A ) coronal and (FIG. 2B ) sagittal PET images of 89Zr-DFO-C′ dot-PEG at different post-injection time points (10 min, 1 h,Day 1,Day 3 and Day 6) in a healthy nude mouse. The reaction ratio between C′ dot-PEG-Mal and GSH was kept at 1:20. The PET images were acquired by using a Focus 120 MicroPET scanner. -
FIG. 3 shows biodistribution data of 89Zr-DFO-C′ dot-PEG in a healthy nude mouse onDay 6. Less than 2% ID/g of bone (and joint) uptake was observed. -
FIGS. 4A and 4B show a chelator-free 89Zr radiolabeling experimental example. -
FIG. 4A shows 89Zr labeling yields of C′ dot-PEG-Mal under varied pH conditions at 75° C. -
FIG. 4B shows 89Zr labeling yields of C′ dot-PEG-Mal using varied combinations of C′ dot to 89Zr-oxalate ratio. -
FIGS. 5A and 5B show in vivo coronal PET images of [89Zr]C′ dot-PEG at different post-injection time points (10 min,Day 1,Day 3 and Day 6) in a healthy nude mouse. [89Zr]C′ dot-PEG was synthesized by using a chelator-free radiolabeling technique. - The PET images were acquired by using a Focus 120 MicroPET scanner.
-
FIG. 5A shows PET images acquired without EDTA (ethylenediaminetetraacetic acid). -
FIG. 5B shows PET images acquired with EDTA -
FIG. 6 shows biodistribution data of [89Zr]C′ dot-PEG in healthy nude mice (n=3) onDay 7. Over 10% ID/g of bone (and joint) uptake (highlighted with a red box) was observed in this case, indicating a less stable radiolabeling using a chelator-free method (when compared with that of chelator-based method). -
FIG. 7 shows biodistribution data of 89Zr-DFO-C′ dot, 89Zr-DFO-C′ dot-DBCO and 89Zr-DFO-C′ dot-PEG-sdAb in healthy nude mice at 48 h post-injection. An improved pharmacokinetic profile (with prolonged blood circulation half-life and lower liver uptake) can be achieved by optimizing the number of DFO, DBCO and sdAb from each C′ dot.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/961,761 US20230037294A1 (en) | 2015-04-07 | 2022-10-07 | Nanoparticle immunoconjugates |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562144278P | 2015-04-07 | 2015-04-07 | |
US201562151943P | 2015-04-23 | 2015-04-23 | |
PCT/US2016/026434 WO2016164578A1 (en) | 2015-04-07 | 2016-04-07 | Nanoparticle immunoconjugates |
US201715564315A | 2017-10-04 | 2017-10-04 | |
US16/720,176 US20200353096A1 (en) | 2015-04-07 | 2019-12-19 | Nanoparticle immunoconjugates |
US17/961,761 US20230037294A1 (en) | 2015-04-07 | 2022-10-07 | Nanoparticle immunoconjugates |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/720,176 Continuation US20200353096A1 (en) | 2015-04-07 | 2019-12-19 | Nanoparticle immunoconjugates |
Publications (1)
Publication Number | Publication Date |
---|---|
US20230037294A1 true US20230037294A1 (en) | 2023-02-09 |
Family
ID=55806803
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/564,315 Active US10548989B2 (en) | 2015-04-07 | 2016-04-07 | Nanoparticle immunoconjugates |
US16/720,176 Abandoned US20200353096A1 (en) | 2015-04-07 | 2019-12-19 | Nanoparticle immunoconjugates |
US17/961,761 Pending US20230037294A1 (en) | 2015-04-07 | 2022-10-07 | Nanoparticle immunoconjugates |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/564,315 Active US10548989B2 (en) | 2015-04-07 | 2016-04-07 | Nanoparticle immunoconjugates |
US16/720,176 Abandoned US20200353096A1 (en) | 2015-04-07 | 2019-12-19 | Nanoparticle immunoconjugates |
Country Status (10)
Country | Link |
---|---|
US (3) | US10548989B2 (en) |
EP (1) | EP3280454A1 (en) |
JP (2) | JP6869187B2 (en) |
KR (1) | KR102701678B1 (en) |
CN (2) | CN107735110B (en) |
AU (2) | AU2016246737B2 (en) |
BR (1) | BR112017020689A2 (en) |
CA (1) | CA2980462C (en) |
HK (1) | HK1250646A1 (en) |
WO (1) | WO2016164578A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2968621B1 (en) | 2013-03-15 | 2022-08-10 | Memorial Sloan-Kettering Cancer Center | Multimodal silica-based nanoparticles |
CN107735110B (en) * | 2015-04-07 | 2021-11-26 | 纪念斯隆-凯特琳癌症中心 | Nanoparticle immunoconjugates |
US10736972B2 (en) | 2015-05-29 | 2020-08-11 | Memorial Sloan Kettering Cancer Center | Methods of treatment using ultrasmall nanoparticles to induce cell death of nutrient-deprived cancer cells via ferroptosis |
AU2017258415B2 (en) | 2016-04-29 | 2023-03-30 | Cornell University | Compositions and methods for targeted particle penetration, distribution, and response in malignant brain tumors |
AU2017368005A1 (en) * | 2016-11-30 | 2019-06-20 | Cornell University | Inhibitor-functionalized ultrasmall nanoparticles and methods thereof |
JP7300394B2 (en) | 2017-01-17 | 2023-06-29 | ヘパリジェニックス ゲーエムベーハー | Protein kinase inhibition to promote liver regeneration or reduce or prevent hepatocyte death |
KR102228571B1 (en) | 2017-02-09 | 2021-03-16 | 주식회사 메디폴리머 | Drug delivery system for treatment of psychosis or central nervous system diseases |
CA3064253A1 (en) | 2017-05-25 | 2018-11-29 | Memorial Sloan Kettering Cancer Center | Ultrasmall nanoparticles labeled with zirconium-89 and methods thereof |
JP2021510701A (en) | 2018-01-12 | 2021-04-30 | プロリンクス エルエルシー | Protocol and validation imaging agents to minimize the toxicity of concomitant doses |
EP3773742A4 (en) * | 2018-04-06 | 2022-03-16 | North Carolina State University | Cell assembly-mediated delivery of checkpoint inhibitors for cancer immunotherapy |
WO2019246591A1 (en) * | 2018-06-21 | 2019-12-26 | Codiak Biosciences, Inc. | Methods of measuring extracellular vesicles and nanoparticles in complex matrices by light scattering |
CN109490523A (en) * | 2018-10-22 | 2019-03-19 | 北京纳晶生物科技有限公司 | Method for the nano material of label, nucleic acid probe and nucleic acid and nano material coupling |
KR102336120B1 (en) * | 2019-06-05 | 2021-12-08 | 주식회사 엔이에스바이오테크놀러지 | Gold nanoparticle-aptamer conjugates-based antibody delivery system and preparation method thereof |
CN114667162A (en) | 2019-09-16 | 2022-06-24 | Abk生物医学公司 | Composition of radioactive and non-radioactive particles |
WO2021054490A1 (en) * | 2019-09-18 | 2021-03-25 | 연세대학교 산학협력단 | Amphiphilic polymer, water-dispersible metal nanoparticles comprising same, and manufacturing method therefor |
CN114929281A (en) * | 2019-11-04 | 2022-08-19 | 康奈尔大学 | Ultra-small nanoparticles and methods of making, using and analyzing the same |
CN111906328B (en) * | 2020-08-11 | 2022-10-25 | 苏州大学 | A kind of 177 Lu-labeled gold nanocluster and preparation method and application thereof |
CA3195153A1 (en) | 2020-10-27 | 2022-05-05 | Elucida Oncology, Inc. | Folate receptor targeted nanoparticle drug conjugates and uses thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090220502A1 (en) * | 2007-10-04 | 2009-09-03 | Brandt Cameron S | B7 FAMILY MEMBER zB7H6 AND RELATED COMPOSITIONS AND METHODS |
US10548989B2 (en) * | 2015-04-07 | 2020-02-04 | Memorial Sloan Kettering Cancer Center | Nanoparticle immunoconjugates |
US11559591B2 (en) * | 2017-05-25 | 2023-01-24 | Memorial Sloan Kettering Cancer Center | Ultrasmall nanoparticles labeled with Zirconium-89 and methods thereof |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4680338A (en) | 1985-10-17 | 1987-07-14 | Immunomedics, Inc. | Bifunctional linker |
US5563250A (en) | 1987-12-02 | 1996-10-08 | Neorx Corporation | Cleavable conjugates for the delivery and release of agents in native form |
US5141648A (en) | 1987-12-02 | 1992-08-25 | Neorx Corporation | Methods for isolating compounds using cleavable linker bound matrices |
FI102355B1 (en) | 1988-02-11 | 1998-11-30 | Bristol Myers Squibb Co | A method for preparing anthracycline immunoconjugates having a linking spacer |
US5208020A (en) | 1989-10-25 | 1993-05-04 | Immunogen Inc. | Cytotoxic agents comprising maytansinoids and their therapeutic use |
US5543390A (en) | 1990-11-01 | 1996-08-06 | State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University | Covalent microparticle-drug conjugates for biological targeting |
EP0563475B1 (en) | 1992-03-25 | 2000-05-31 | Immunogen Inc | Cell binding agent conjugates of derivatives of CC-1065 |
US6214345B1 (en) | 1993-05-14 | 2001-04-10 | Bristol-Myers Squibb Co. | Lysosomal enzyme-cleavable antitumor drug conjugates |
WO1996040662A2 (en) | 1995-06-07 | 1996-12-19 | Cellpro, Incorporated | Aminooxy-containing linker compounds and their application in conjugates |
ATE349438T1 (en) | 1999-11-24 | 2007-01-15 | Immunogen Inc | CYTOTOXIC ACTIVE INGREDIENTS CONTAINING TAXANES AND THEIR THERAPEUTIC USE |
AU2002303929B9 (en) | 2001-05-31 | 2007-01-25 | E. R. Squibb & Sons, L.L.C. | Cytotoxins, prodrugs, linkers and stabilizers useful therefor |
EP2371392B1 (en) | 2002-05-02 | 2015-07-08 | Wyeth Holdings LLC | Calicheamicin derivative-carrier conjugates |
KR20040106547A (en) | 2002-05-15 | 2004-12-17 | 엔도사이트, 인코포레이티드 | Vitamin-mitomycin conjugates |
US20040101822A1 (en) | 2002-11-26 | 2004-05-27 | Ulrich Wiesner | Fluorescent silica-based nanoparticles |
BR122018071808B8 (en) | 2003-11-06 | 2020-06-30 | Seattle Genetics Inc | conjugate |
JP5064037B2 (en) | 2004-02-23 | 2012-10-31 | ジェネンテック, インコーポレイテッド | Heterocyclic self-destructive linkers and conjugates |
US7691962B2 (en) | 2004-05-19 | 2010-04-06 | Medarex, Inc. | Chemical linkers and conjugates thereof |
US20060222595A1 (en) * | 2005-03-31 | 2006-10-05 | Priyabrata Mukherjee | Nanoparticles for therapeutic and diagnostic applications |
CA2627190A1 (en) | 2005-11-10 | 2007-05-24 | Medarex, Inc. | Duocarmycin derivatives as novel cytotoxic compounds and conjugates |
US20100183504A1 (en) * | 2007-06-14 | 2010-07-22 | Fanqing Frank Chen | Multimodal imaging probes for in vivo targeted and non-targeted imaging and therapeutics |
US20080317768A1 (en) * | 2007-06-21 | 2008-12-25 | Boeing Company | Bioconjugated nanoparticles |
US8236319B2 (en) | 2008-04-30 | 2012-08-07 | Immunogen, Inc. | Cross-linkers and their uses |
WO2010060217A1 (en) * | 2008-11-26 | 2010-06-03 | National Research Council Of Canada | Antibody-targeted carrier for contrast agents |
PL3903829T3 (en) | 2009-02-13 | 2023-08-14 | Immunomedics, Inc. | Immunoconjugates with an intracellularly-cleavable linkage |
PL3223013T3 (en) * | 2009-07-02 | 2019-07-31 | Sloan-Kettering Institute For Cancer Research | Fluorescent silica-based nanoparticles |
NO331080B1 (en) * | 2010-01-29 | 2011-09-26 | Nordic Nanovector As | Radioimmune conjugates, pharmaceutical compositions and kits comprising the same and their use |
ES2905690T3 (en) * | 2010-04-15 | 2022-04-11 | Kodiak Sciences Inc | Polymers containing high molecular weight zwitterions |
EP2968621B1 (en) | 2013-03-15 | 2022-08-10 | Memorial Sloan-Kettering Cancer Center | Multimodal silica-based nanoparticles |
-
2016
- 2016-04-07 CN CN201680024624.4A patent/CN107735110B/en active Active
- 2016-04-07 US US15/564,315 patent/US10548989B2/en active Active
- 2016-04-07 BR BR112017020689A patent/BR112017020689A2/en active Search and Examination
- 2016-04-07 JP JP2017552058A patent/JP6869187B2/en active Active
- 2016-04-07 CN CN202111317319.3A patent/CN113876962A/en active Pending
- 2016-04-07 EP EP16718099.1A patent/EP3280454A1/en active Pending
- 2016-04-07 CA CA2980462A patent/CA2980462C/en active Active
- 2016-04-07 WO PCT/US2016/026434 patent/WO2016164578A1/en active Application Filing
- 2016-04-07 AU AU2016246737A patent/AU2016246737B2/en active Active
- 2016-04-07 KR KR1020177031663A patent/KR102701678B1/en active IP Right Grant
-
2018
- 2018-08-07 HK HK18110131.9A patent/HK1250646A1/en unknown
-
2019
- 2019-11-26 AU AU2019271919A patent/AU2019271919B2/en active Active
- 2019-12-19 US US16/720,176 patent/US20200353096A1/en not_active Abandoned
-
2021
- 2021-02-01 JP JP2021014331A patent/JP7016975B2/en active Active
-
2022
- 2022-10-07 US US17/961,761 patent/US20230037294A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090220502A1 (en) * | 2007-10-04 | 2009-09-03 | Brandt Cameron S | B7 FAMILY MEMBER zB7H6 AND RELATED COMPOSITIONS AND METHODS |
US10548989B2 (en) * | 2015-04-07 | 2020-02-04 | Memorial Sloan Kettering Cancer Center | Nanoparticle immunoconjugates |
US11559591B2 (en) * | 2017-05-25 | 2023-01-24 | Memorial Sloan Kettering Cancer Center | Ultrasmall nanoparticles labeled with Zirconium-89 and methods thereof |
Also Published As
Publication number | Publication date |
---|---|
AU2019271919A1 (en) | 2019-12-19 |
US20200353096A1 (en) | 2020-11-12 |
KR20180002645A (en) | 2018-01-08 |
KR102701678B1 (en) | 2024-08-30 |
EP3280454A1 (en) | 2018-02-14 |
WO2016164578A1 (en) | 2016-10-13 |
CA2980462C (en) | 2023-08-01 |
CN107735110A (en) | 2018-02-23 |
BR112017020689A2 (en) | 2018-06-26 |
HK1250646A1 (en) | 2019-01-11 |
US20180133342A1 (en) | 2018-05-17 |
JP2021073271A (en) | 2021-05-13 |
AU2016246737A1 (en) | 2017-10-12 |
AU2019271919B2 (en) | 2021-10-28 |
JP2018516854A (en) | 2018-06-28 |
CN113876962A (en) | 2022-01-04 |
CA2980462A1 (en) | 2016-10-13 |
CN107735110B (en) | 2021-11-26 |
US10548989B2 (en) | 2020-02-04 |
AU2016246737B2 (en) | 2019-11-21 |
JP6869187B2 (en) | 2021-05-12 |
JP7016975B2 (en) | 2022-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230037294A1 (en) | Nanoparticle immunoconjugates | |
US11559591B2 (en) | Ultrasmall nanoparticles labeled with Zirconium-89 and methods thereof | |
JP7455510B2 (en) | Compositions and methods for targeted particle penetration, distribution and response in malignant brain tumors | |
Boswell et al. | Effects of charge on antibody tissue distribution and pharmacokinetics | |
Chen et al. | In vivo tumor vasculature targeted PET/NIRF imaging with TRC105 (Fab)-conjugated, dual-labeled mesoporous silica nanoparticles | |
US10919979B2 (en) | Methods and compositions related to single chain antibody fragments that bind to tumor-associated glycoprotein 72 (TAG-72) | |
US20230125881A1 (en) | Novel polypeptides and uses thereof | |
US20210121569A1 (en) | Nanotherapeutic systems and methods using particle-driven photodynamic therapy (pdt) | |
Abdolvahab et al. | Targeted drug delivery using nanobodies to deliver effective molecules to breast cancer cells: the most attractive application of nanobodies | |
BR122024008143A2 (en) | USE OF NANOPARTICLE CONJUGATES FOR BRAIN TUMOR TREATMENT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE CURATORS OF THE UNIVERSITY OF MISSOURI, MISSOURI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUINN, THOMAS P.;REEL/FRAME:061376/0168 Effective date: 20170828 Owner name: CORNELL UNIVERSITY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEISNER, ULRICH;MA, KAI;SIGNING DATES FROM 20160505 TO 20160527;REEL/FRAME:061376/0152 Owner name: MEMORIAL SLOAN KETTERING CANCER CENTER, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRADBURY, MICHELLE S.;CHEN, FENG;YOO, BARNEY;AND OTHERS;SIGNING DATES FROM 20171205 TO 20180107;REEL/FRAME:061376/0141 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |