US20230037116A1 - Barrier layer on a piezoelectric-device pad - Google Patents

Barrier layer on a piezoelectric-device pad Download PDF

Info

Publication number
US20230037116A1
US20230037116A1 US17/577,715 US202217577715A US2023037116A1 US 20230037116 A1 US20230037116 A1 US 20230037116A1 US 202217577715 A US202217577715 A US 202217577715A US 2023037116 A1 US2023037116 A1 US 2023037116A1
Authority
US
United States
Prior art keywords
barrier layer
layer
pad
piezoelectric
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/577,715
Inventor
Chih-Ming Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority to US17/577,715 priority Critical patent/US20230037116A1/en
Priority to DE102022101983.7A priority patent/DE102022101983A1/en
Assigned to TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD. reassignment TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, CHIH-MING
Priority to KR1020220031586A priority patent/KR20230019765A/en
Priority to TW111109792A priority patent/TWI801168B/en
Priority to CN202210430608.2A priority patent/CN115701768A/en
Publication of US20230037116A1 publication Critical patent/US20230037116A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • B81B7/0025Protection against chemical alteration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/26Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device including materials for absorbing or reacting with moisture or other undesired substances, e.g. getters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3192Multilayer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • H01L41/0475
    • H01L41/0533
    • H01L41/29
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/02Forming enclosures or casings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/03Assembling devices that include piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/875Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Further insulation means against electrical, physical or chemical damage, e.g. protective coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0257Microphones or microspeakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/032Bimorph and unimorph actuators, e.g. piezo and thermo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/06Arranging circuit leads; Relieving strain on circuit leads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers

Definitions

  • Piezoelectric actuators and other suitable piezoelectric devices may create physical movement in response to an electrical signal.
  • the physical movement may be used to control various kinds of mechanical and optical systems.
  • the physical movement may be used to control movement of a moveable membrane to create a speaker.
  • FIG. 1 illustrates a cross-sectional view of some embodiments of an integrated circuit (IC) chip in which a barrier layer caps a pad of a piezoelectric device.
  • IC integrated circuit
  • FIG. 2 illustrates an expanded cross-sectional view of some embodiments of the IC chip of FIG. 1 in which the piezoelectric device surrounds a membrane.
  • FIG. 3 illustrates a top layout view of some embodiments of the IC chip of FIG. 2 .
  • FIGS. 4 A and 4 B illustrate top layout views of some alternative embodiments of the IC chip of FIG. 3 .
  • FIGS. 5 A- 5 G illustrate cross-sectional views of some alternative embodiments of the IC chip of FIG. 2 .
  • FIGS. 6 , 7 A, 7 B, 8 , 9 A, 9 B, 10 , 11 , 12 A, 12 B, 13 , 14 A, 14 B, 15 A, 15 B, 16 , 17 A, 17 B, 18 , 19 , 20 A , and 20 B illustrate a series of views of some embodiments of a method for forming an IC chip in which a barrier layer caps a pad of a piezoelectric device.
  • FIG. 21 illustrates a block diagram of some embodiments of the method of FIGS. 6 , 7 A, 7 B, 8 , 9 A, 9 B, 10 , 11 , 12 A, 12 B, 13 , 14 A, 14 B, 15 A, 15 B, 16 , 17 A, 17 B, 18 , 19 , 20 A , and 20 B.
  • FIG. 22 illustrates a cross-sectional view of some first alternative embodiments of the method of FIGS. 6 , 7 A, 7 B, 8 , 9 A, 9 B, 10 , 11 , 12 A, 12 B, 13 , 14 A, 14 B, 15 A, 15 B, 16 , 17 A, 17 B, 18 , 19 , 20 A , and 20 B.
  • FIGS. 23 - 25 illustrate a series of cross-sectional views of some second alternative embodiments of the method of FIGS. 6 , 7 A, 7 B, 8 , 9 A, 9 B, 10 , 11 , 12 A, 12 B, 13 , 14 A, 14 B, 15 A, 15 B, 16 , 17 A, 17 B, 18 , 19 , 20 A , and 20 B.
  • FIGS. 26 and 27 illustrate a series of cross-sectional views of some third alternative embodiments of the method of FIGS. 6 , 7 A, 7 B, 8 , 9 A, 9 B, 10 , 11 , 12 A, 12 B, 13 , 14 A, 14 B, 15 A, 15 B, 16 , 17 A, 17 B, 18 , 19 , 20 A , and 20 B.
  • first and second features are formed in direct contact
  • additional features may be formed between the first and second features, such that the first and second features may not be in direct contact
  • present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
  • spatially relative terms such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures.
  • the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
  • the apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
  • a piezoelectric actuator or some other suitable piezoelectric device may comprise a bottom electrode, a piezoelectric layer overlying the bottom electrode, and a top electrode overlying the piezoelectric layer.
  • a top-electrode pad overlies and is electrically coupled to the top electrode by a top-electrode via extending from the top-electrode pad to the top electrode.
  • a bottom-electrode pad overlies and is electrically coupled to the bottom electrode by a bottom-electrode via extending from the bottom-electrode pad to the bottom electrode.
  • a challenge with the piezoelectric device is that hydrogen-ion containing processes may be employed after forming the piezoelectric layer. Further, the top-electrode and bottom-electrode vias may provide diffusion paths for hydrogen ions from the hydrogen-ion containing processes to diffuse to the piezoelectric layer. Hydrogen ions that diffuse to the piezoelectric layer may accumulate in the piezoelectric layer and induce delamination and breakdown of the piezoelectric layer, whereby the piezoelectric device may fail.
  • a pad barrier layer caps a pad of a piezoelectric device.
  • the pad barrier layer is configured to block hydrogen ions and/or other errant materials from diffusing to the piezoelectric layer. Absent the pad barrier layer, hydrogen ions from hydrogen-ion containing processes performed after forming the pad may diffuse to the piezoelectric layer along a via extending from the pad to the piezoelectric device. By blocking diffusion of hydrogen ions and/or other errant materials to the piezoelectric device, the pad barrier layer may prevent delamination and breakdown of the piezoelectric layer. Hence, the pad barrier layer may prevent failure of the piezoelectric device.
  • a cross-sectional view 100 of some embodiments of an IC chip is provided in which a pad barrier layer 102 caps a pad 104 of a piezoelectric device 106 .
  • the piezoelectric device 106 overlies a substrate 108 and is separated from the substrate 108 by a substrate dielectric layer 110 . Further, the piezoelectric device 106 comprises a bottom electrode 112 , a piezoelectric layer 114 overlying the bottom electrode 112 , and a top electrode 116 overlying the piezoelectric layer 114 .
  • the piezoelectric device 106 is an actuator, but other suitable types of piezoelectric device are amenable.
  • the piezoelectric device 106 may also be referred to as a metal-piezoelectric-metal (MPM) structure and/or, a piezoelectric structure.
  • MPM metal-piezoelectric-metal
  • a device barrier layer 118 and a device dielectric layer 120 overlie the piezoelectric device 106 and are stacked between the piezoelectric device 106 and the pad 104 .
  • the device barrier layer 118 separates the device dielectric layer 120 from the piezoelectric device 106 and is configured to block hydrogen ions and/or other suitable errant materials from diffusing to the piezoelectric layer 114 from over the device barrier layer 118 .
  • the device barrier layer 118 may be regarded as a hydrogen-barrier layer.
  • the pad 104 overlies the device barrier layer 118 and comprises a first end 104 fe and a second end 104 se .
  • the first end 104 fe overlies the top electrode 116
  • a via 122 extends from the first end 104 fe , through the device barrier layer 118 and the device dielectric layer 120 , to the top electrode 116 .
  • the via 122 extends to the bottom electrode 112 instead of the top electrode 116 .
  • the second end 104 se is distal from the first end 104 fe and is laterally offset from the piezoelectric device 106 .
  • the pad barrier layer 102 caps the pad 104
  • a passivation layer 124 caps the pad barrier layer 102 and the device dielectric layer 120 .
  • a pad opening 126 extends through the pad barrier layer 102 and the passivation layer 124 to expose the second end 104 se of the pad 104 .
  • the pad barrier layer 102 is configured to block hydrogen ions and/or other suitable errant materials from diffusing to the piezoelectric device 106 from over the pad 104 .
  • the pad barrier layer 102 may be regarded as a hydrogen-barrier layer. Absent the pad barrier layer 102 , hydrogen ions from hydrogen-containing semiconductor manufacturing processes performed after forming the pad 104 may diffuse to the piezoelectric layer 114 along the via 122 .
  • Hydrogen ions that diffuse to the piezoelectric layer 114 may accumulate in the piezoelectric layer 114 and induce delamination and breakdown of the piezoelectric layer 114 , whereby the piezoelectric device 106 may fail. Therefore, by blocking diffusion of hydrogen ions to the piezoelectric layer 114 , the pad barrier layer 102 and the device barrier layer 118 may prevent delamination and breakdown of the piezoelectric layer 114 . Hence, the pad barrier layer 102 and the device barrier layer 118 may prevent failure of the piezoelectric device 106 .
  • the pad opening 126 extends through the pad barrier layer 102 , hydrogen ions and/or other errant materials may extend through the pad barrier layer 102 .
  • the pad opening 126 is at the second end 104 se of the pad 104 , laterally offset from the piezoelectric device 106 , the diffusion path from the pad opening 126 to the piezoelectric layer 114 may be long. Hence, the likelihood of hydrogen ions and/or other errant materials diffusing to the piezoelectric layer 114 from the pad opening 126 may be low.
  • a thickness T pb of the pad barrier layer 102 is about 200-600 angstroms, about 200-400 angstroms, about 400-600 angstroms, or some other suitable value. If the thickness T pb is too small (e.g., less than about 200 angstroms), the pad barrier layer 102 may be unable to block diffusion of hydrogen ions and/or other errant materials through the pad barrier layer 102 . If the thickness T pb is too large (e.g., more than about 600 angstroms), material may be wasted and high topographical variation at the pad barrier layer 102 may present processing challenges that reduce manufacturing yields.
  • the pad barrier layer 102 is crystalline and/or has a density greater than about 2 grams per cubic centimeter (g/cm 3 ), 2.6 g/cm 3 , 5 g/cm 3 , or some other suitable value. It has been appreciated that such a density may block diffusion of hydrogen ions and/or other errant materials through the pad barrier layer 102 .
  • the pad barrier layer 102 is a metal oxide or some other suitable material.
  • the metal oxide may, for example, be or comprise aluminum oxide (e.g., Al 2 O 3 ), titanium oxide (e.g., TiO 2 ), iron oxide (e.g., Fe 2 O 3 ), zirconium oxide (e.g., ZrO 2 ), zinc oxide (e.g., ZnO), copper oxide (e.g., CuO), tantalum oxide (e.g., Ta 2 O 5 ), some other suitable type of metal oxide, or any combination of the foregoing.
  • the pad barrier layer 102 is dielectric.
  • the pad barrier layer 102 is deposited by a process that does not depend on hydrogen ions and/or other errant materials.
  • the pad barrier layer 102 may be deposited by physical vapor deposition (PVD) or some other suitable type of deposition.
  • the device barrier layer 118 is a same material as the pad barrier layer 102 . In other embodiments, the device barrier layer 118 is a different material than the pad barrier layer 102 . In some embodiments, the device barrier layer 118 is crystalline and/or has a density greater than about 2 g/cm 3 , 2.6 g/cm 3 , 5 g/cm 3 , or some other suitable value. In some embodiments, the density is the same as that of the pad barrier layer 102 . In some embodiments, the device barrier layer 118 is dielectric.
  • the substrate 108 is a bulk substrate of silicon or some other suitable type of semiconductor material. In other embodiments, the substrate 108 is a semiconductor-on-insulator (SOI) substrate or some other suitable type of semiconductor substrate. To the extent that the substrate 108 is an SOI substrate, the semiconductor material of the SOI substrate may be silicon or some other suitable type of semiconductor material.
  • SOI semiconductor-on-insulator
  • the substrate dielectric layer 110 is or comprises silicon oxide and/or some other suitable dielectric(s).
  • the device dielectric layer 120 is or comprises silicon oxide and/or some other suitable dielectric(s).
  • the substrate dielectric layer 110 and the device dielectric layer 120 are or comprise a same material. In other embodiments, the substrate dielectric layer 110 and the device dielectric layer are or comprise different materials.
  • the passivation layer 124 is or comprise silicon nitride and/or some other suitable dielectric(s).
  • a rate of diffusion of hydrogen ions through and/or in the pad barrier layer 102 is less than: 1) a rate of diffusion of hydrogen ions through and/or in the substrate dielectric layer 110 ; 2) a rate of diffusion of hydrogen ions through and/or in the device dielectric layer 120 ; 3) a rate of diffusion of hydrogen ions through and/or in the pad 104 ; 4) a rate of diffusion of hydrogen ions through and/or in the passivation layer 124 ; or 5) any combination of the foregoing.
  • a rate of diffusion of hydrogen ions through and/or in the device barrier layer 118 is less than: 1) a rate of diffusion of hydrogen ions through and/or in the substrate dielectric layer 110 ; 2) a rate of diffusion of hydrogen ions through and/or in the device dielectric layer 120 ; 3) a rate of diffusion of hydrogen ions through and/or in the pad 104 ; 4) a rate of diffusion of hydrogen ions through and/or in the passivation layer 124 ; or 5) any combination of the foregoing.
  • the rates of the pad barrier layer 102 and/or the device barrier layer 118 may, for example, be zero or close to zero.
  • the piezoelectric layer 114 is or comprises lead zirconate titanate (e.g., PZT) and/or some other suitable piezoelectric material(s).
  • the bottom electrode 112 is or comprises titanium oxide, platinum, some other suitable metal(s) or conductive material(s), or any combination of the foregoing.
  • the top electrode 116 is or comprises titanium oxide, platinum, some other suitable metal(s) or conductive material(s), or any combination of the foregoing.
  • the bottom and top electrodes 112 , 116 are or comprise a same material. In other embodiments, the bottom and top electrodes 112 , 116 are or comprise different materials.
  • the pad 104 is or comprises copper, aluminum copper, aluminum, some other suitable metal(s) or conductive material(s), or any combination of the foregoing.
  • the device barrier layer 118 is configured to block material of the pad 104 from diffusing from the pad 104 to the piezoelectric device 106 . Such material may, for example, be or comprise copper and/or some other suitable material.
  • a bump structure, a wire bond structure, or some other suitable type of conductive structure is formed in the pad opening 126 to electrically couple the pad 104 and hence the piezoelectric device 106 to another IC chip, a printed circuit board (PCB), an interposer structure, or some other suitable structure.
  • PCB printed circuit board
  • an expanded cross-sectional view 200 of some embodiments of the IC chip of FIG. 1 is provided in which the piezoelectric device 106 surrounds a membrane 202 .
  • the piezoelectric device 106 Upon application of a voltage from the top electrode 116 to the bottom electrode 112 , the piezoelectric device 106 vibrates, thereby causing the membrane 202 to move within a sound opening 204 .
  • the membrane 202 and the piezoelectric device 106 collectively form a piezoelectric speaker or some other suitable structure.
  • a pair of pads 104 and a pair of vias 122 electrically couple to the piezoelectric device 106 .
  • the pair of pads 104 comprises a top-electrode pad 104 t and a bottom-electrode pad 104 b
  • the pair of vias 122 comprises a top-electrode via 122 t and a bottom-electrode via 122 b
  • the top-electrode pad 104 t and the top-electrode via 122 t correspond to the pad 104 and the via 122 illustrated and described with regard to FIG. 1 .
  • the bottom-electrode pad 104 b and the bottom-electrode via 122 b are on an opposite side of the sound opening 204 as the top-electrode pad 104 t and the top-electrode via 122 t . Further, the bottom-electrode via 122 b extends from the bottom-electrode pad 104 b to the bottom electrode 112 .
  • the pad barrier layer 102 caps both of the pads 104 and comprises a top-electrode barrier segment 102 t and a bottom-electrode barrier segment 102 b .
  • the top-electrode barrier segment 102 t caps the top-electrode pad 104 t
  • the bottom-electrode barrier segment 102 b caps the bottom-electrode pad 104 b.
  • the pad barrier layer 102 prevents hydrogen ions and/or other errant particles from diffusing to the piezoelectric device 106 from over the top-electrode pad 104 t and the bottom-electrode pad 104 b . Absent the pad barrier layer 102 , hydrogen ions from hydrogen-containing semiconductor manufacturing processes performed after forming the top-electrode pad 104 t and the bottom-electrode pad 104 b may diffuse to the piezoelectric layer 114 along the top-electrode via 122 t and/or along the bottom-electrode via 122 b . This may induce delamination and breakdown of the piezoelectric layer 114 , whereby the piezoelectric device 106 may fail. Therefore, by blocking diffusion of hydrogen ions to the piezoelectric layer 114 , the pad barrier layer 102 may prevent failure of the piezoelectric device 106 .
  • a pair of pad openings 126 respectively expose the pads 104 respectively at locations laterally offset from the piezoelectric device 106 , whereby diffusion paths from the pad openings 126 to the piezoelectric layer 114 may be long. Because the diffusion paths may be long, the likelihood of hydrogen ions and/or other errant materials diffusing to the piezoelectric layer 114 from the pad openings 126 may be low.
  • the substrate 108 is an SOI substrate and comprises a lower semiconductor layer 108 l , an insulator layer 108 i overlying the lower semiconductor layer 108 l , and an upper semiconductor layer 108 u overlying the insulator layer 108 i .
  • the insulator layer 108 i is or comprises silicon oxide and/or some other suitable dielectric(s).
  • the lower semiconductor layer 108 l and the upper semiconductor layers 108 u are or comprise silicon and/or some other suitable semiconductor(s).
  • the membrane 202 corresponds to a portion of the upper semiconductor layer 108 u and is connected to a remainder of the upper semiconductor layer 108 u outside the cross-sectional view 200 of FIG. 2 . Further, as described above, the membrane 202 moves in the sound opening 204 in response to vibrations from the piezoelectric device 106 .
  • the piezoelectric device 106 may also be regarded as a piezoelectric actuator or some other suitable type of piezoelectric device, and the piezoelectric device 106 and the membrane 202 may collectively form a piezoelectric speaker.
  • the sound opening 204 extends through the substrate 108 , the substrate dielectric layer 110 , the device dielectric layer 120 , and the passivation layer 124 . Further, the substrate 108 , the substrate dielectric layer 110 , the device dielectric layer 120 , and passivation layer 124 form a common sidewall in the sound opening 204 . In alternative embodiments, the device dielectric layer 120 and/or the passivation layer 124 do not form the common sidewall, and/or the device barrier layer 118 further forms the common sidewall.
  • a top layout view 300 of some embodiments of the IC chip of FIG. 2 is provided.
  • the cross-sectional view 200 of FIG. 2 may, for example, be taken along line A, and the portions of the IC chip illustrated in the cross-sectional view 200 of FIG. 2 may, for example, correspond to solid portions of line A.
  • the membrane 202 has a circular top geometry, and the sound opening 204 has six slit-shaped segments.
  • the slit-shaped segments extend through the membrane 202 (see the cross-sectional view 200 of FIG. 2 ) and are evenly spaced circumferentially around the membrane 202 respectively at 0 degrees, 60 degrees, 120 degrees, 180 degrees, 240 degrees, and 300 degrees.
  • the slit-shaped segments may be unevenly spaced circumferentially around the membrane 202 .
  • the sound opening 204 has more or less slit-shaped segments.
  • the sound opening 204 may have 8, 12, or some other suitable number of slit-shaped segments.
  • the piezoelectric device 106 (constituents of which are shown in phantom) has a ring-shaped top geometry that extends in a closed path around the membrane 202 . In alternative embodiments, the piezoelectric device 106 has some other suitable top geometry. Further, the top-electrode pad 104 t and the bottom-electrode pad 104 b (both shown in phantom) extend respectively from the top-electrode via 122 t and the bottom-electrode via 122 b respectively to locations laterally offset from the piezoelectric device 106 .
  • top-electrode and bottom-electrode barrier segments 102 t , 102 b (collectively the barrier segments 102 t , 102 b ) of the pad barrier layer 102 are individual to and respectively overlap with the top-electrode pad 104 t and the bottom-electrode pad 104 b . Further, the barrier segments 102 t , 102 b have top geometrical shapes that respectively match top geometrical shapes of the top-electrode pad 104 t and the bottom-electrode pad 104 b .
  • the barrier segments 102 t , 102 b may have L-shaped top geometrical shapes or other suitable top geometrical shapes.
  • the barrier segments 102 t , 102 b have top geometrical shapes different than those of the top-electrode pad 104 t and the bottom-electrode pad 104 b.
  • the sound opening 204 is illustrated with six slit-shaped segments circumferentially spaced around the membrane 202 , more or less slit-shaped segments are amenable.
  • top layout views 400 A, 400 B of some alternative embodiments of the IC chip of FIG. 3 are provided in which the number of slit-shaped segments is varied.
  • the sound opening 204 has eight slit-shaped segments.
  • the sound opening 204 has twelve slit-shaped segments.
  • cross-sectional views 500 A- 500 G of some alternative embodiments of the IC chip of FIG. 2 are provided.
  • the passivation layer 124 is on sidewalls of the membrane 202 and a top surface of the membrane 202 . Further, the passivation layer 124 lines a common sidewall formed by the upper semiconductor layer 108 u , the substrate dielectric layer 110 , and the device dielectric layer 120 . This may change the rigidity of the membrane 202 , whereby the membrane 202 may vibrate differently during use of the piezoelectric speaker collectively formed by the membrane 202 and the piezoelectric device 106 .
  • the passivation layer 124 and the pad barrier layer 102 are both on sidewalls of the membrane 202 and a top surface of the membrane 202 . Further, the passivation layer 124 and the pad barrier layer 102 both line a common sidewall formed by the upper semiconductor layer 108 u , the substrate dielectric layer 110 , and the device dielectric layer 120 . This may change the rigidity of the membrane 202 , whereby the membrane 202 may vibrate differently during use of the piezoelectric speaker collectively formed by the membrane 202 and the piezoelectric device 106 .
  • the top-electrode and bottom-electrode barrier segments 102 t , 102 b of the pad barrier layer 102 are connected outside the cross-sectional view 500 B of FIG. 5 B .
  • the top electrode 116 and the piezoelectric layer 114 form common sidewalls and share a common width less than that of the bottom electrode 112 .
  • the bottom and top electrodes 112 , 116 and the piezoelectric layer 114 form common sidewalls and share a common width.
  • a getter layer 502 separates the piezoelectric device 106 from the substrate dielectric layer 110 and has a greater width than the common width.
  • the getter layer 502 is configured to absorb hydrogen ions and/or other errant materials, whereby the getter layer 502 may prevent hydrogen ions and/or other errant materials from diffusing to and accumulating in the piezoelectric layer 114 .
  • hydrogen ions that accumulate in the piezoelectric layer 114 may induce delamination and breakdown of the piezoelectric layer 114 , whereby the piezoelectric device 106 may fail. Accordingly, by absorbing hydrogen ions, the getter layer 502 may prevent device failure.
  • the substrate dielectric layer 110 comprises hydrogen ions, which are absorbed by the getter layer 502 to prevent the hydrogen ions from diffusing to the piezoelectric layer 114 .
  • the substrate dielectric layer 110 may comprise hydrogen ions in embodiments in which the substrate dielectric layer 110 is tetraethyl orthosilicate (TEOS) silicon oxide (e.g., TEOS-SiO 2 ), silane silicon oxide (e.g., SiH 4 —SiO 2 ), some other suitable oxide or dielectric, or any combination of the foregoing.
  • the getter layer 502 is or comprises titanium, barium, cerium, lanthanum, aluminum, magnesium, thorium, or some other suitable conductive getter material for hydrogen ions and/or other errant materials.
  • the bottom electrode 112 and the getter layer 502 share a first common width and form first common sidewalls. Further, the piezoelectric layer 114 and the top electrode 116 share a second common width less than the first common width and form second common sidewalls laterally offset from the first common sidewalls.
  • the getter layer 502 described with regard to FIG. 5 D separates the top electrode 116 from the device barrier layer 118 instead of separating the bottom electrode 112 from the substrate dielectric layer 110 . Further, the getter layer 502 forms common sidewalls with the top electrode 116 and the piezoelectric layer 114 and shares a common width with the top electrode 116 and the piezoelectric layer 114 .
  • a top-electrode getter layer 502 t is atop the top electrode 116
  • a bottom-electrode getter layer 502 b is on an underside of the bottom electrode 112 .
  • the bottom-electrode getter layer 502 b and the bottom-electrode getter layer 502 b are respectively as their counterparts are described with regard to FIGS. 5 E and 5 F .
  • FIGS. 6 , 7 A, 7 B, 8 , 9 A, 9 B, 10 , 11 , 12 A, 12 B, 13 , 14 A, 14 B, 15 A, 15 B, 16 , 17 A, 17 B, 18 , 19 , 20 A , and 20 B a series of views of some embodiments of a method for forming an IC chip in which a barrier layer caps a pad of a piezoelectric device is provided.
  • Figures labeled with a suffix of “A” or with no suffix correspond to cross-sectional views
  • figures labeled with a suffix of “B” correspond to top layout views for like numbered figured with a suffix of “A”.
  • FIGS. 2 and 3 The cross-sectional views of figures labeled with a suffix “A” may, for example, be taken along line A or B (whichever is present) in the top layout views of corresponding figures labeled with a suffix of “B”.
  • the method is illustrated forming an IC chip according to the embodiments of FIGS. 2 and 3 . However, the method may alternatively be employed to form an IC chip according to other suitable embodiments.
  • a substrate dielectric layer 110 is deposited over a substrate 108 .
  • the substrate 108 is an SOI substrate and comprises a lower semiconductor layer 108 l , an insulator layer 108 i overlying the lower semiconductor layer 108 l , and an upper semiconductor layer 108 u overlying the insulator layer 108 i .
  • the substrate 108 is a bulk semiconductor substrate or some other suitable type of semiconductor substrate.
  • the substrate dielectric layer 110 and the insulator layer 108 i are a same material. In other embodiments, the substrate dielectric layer 110 and the insulator layer 108 i are different materials.
  • a device film 602 is deposited over the substrate dielectric layer 110 and comprises a bottom-electrode layer 1121 , a piezoelectric layer 114 overlying the bottom-electrode layer 1121 , and a top-electrode layer 1161 overlying the piezoelectric layer 114 .
  • the bottom-electrode layer 1121 and the top-electrode layer 1161 are a same material. In other embodiments, the bottom-electrode layer 1121 and the top-electrode layer 1161 are different materials.
  • the device film 602 (see, e.g., FIG. 6 ) is patterned to form a piezoelectric device 106 having a ring-shaped top geometry (see, e.g., FIG. 7 B ) and extending in a closed path around a central area 702 .
  • the piezoelectric device 106 may have some other suitable top geometry extending in a closed path around the central area 702 .
  • the piezoelectric device 106 comprises a bottom electrode 112 , a patterned portion of the piezoelectric layer 114 (hereafter referred to more simply as the piezoelectric layer 114 ) overlying the bottom electrode 112 , and a top electrode 116 overlying the piezoelectric layer 114 .
  • the bottom electrode 112 corresponds to a patterned portion of the bottom-electrode layer 1121 (see, e.g., FIG. 6 ), whereas the top electrode 116 corresponds to a patterned portion of the top-electrode layer 1161 .
  • the piezoelectric layer 114 has a lesser width than the bottom electrode 112 , and further has sidewalls laterally offset from sidewalls of the bottom electrode 112 .
  • the top electrode 116 has a lesser width than the piezoelectric layer 114 , and further has sidewalls laterally offset from sidewalls of the piezoelectric layer 114 .
  • a process for performing the patterning does not employ hydrogen ions and/or other errant materials that may diffuse to and induce failure of the piezoelectric layer 114 .
  • Hydrogen ions that diffuse to the piezoelectric layer 114 may accumulate in the piezoelectric layer 114 and induce delamination and breakdown of the piezoelectric layer 114 , whereby the piezoelectric device 106 may fail.
  • a process for performing the patterning comprises: 1) performing a first photolithography/etching process into the top-electrode layer 1161 using a first mask to form the top electrode 116 ; 2) performing a second photolithography/etching process into the piezoelectric layer 114 using a second mask; and 3) performing a third photolithography/etching process into the bottom-electrode layer 1121 using a third mask to form the bottom electrode 112 .
  • some other suitable process is performed for the patterning.
  • the top-electrode layer 1161 and the piezoelectric layer 114 may be patterned together using a common photolithography/etching process and a common mask, whereas the bottom-electrode layer 1121 may be patterned using a different photolithography/etching process and a different mask.
  • the top-electrode layer 1161 , the piezoelectric layer 114 , and the bottom-electrode layer 1121 may be patterned together using a common photolithography/etching process and a common mask.
  • the two alternative examples use fewer masks and hence reduce manufacturing costs.
  • a device barrier layer 118 is deposited covering the piezoelectric device 106 and the substrate dielectric layer 110 .
  • the device barrier layer 118 is configured to block hydrogen and/or other suitable errant materials from diffusing to the piezoelectric layer 114 from over the device barrier layer 118 .
  • the pad barrier layer 102 may prevent failure of the piezoelectric device 106 .
  • the device barrier layer 118 is a metal oxide or some other suitable material.
  • the metal oxide may, for example, be or comprise aluminum oxide (e.g., Al 2 O 3 ), titanium oxide (e.g., TiO 2 ), iron oxide (e.g., Fe 2 O 3 ), zirconium oxide (e.g., ZrO 2 ), zinc oxide (e.g., ZnO), copper oxide (e.g., CuO), tantalum oxide (e.g., Ta 2 O 5 ), some other suitable type of metal oxide, or any combination of the foregoing.
  • aluminum oxide e.g., Al 2 O 3
  • titanium oxide e.g., TiO 2
  • iron oxide e.g., Fe 2 O 3
  • zirconium oxide e.g., ZrO 2
  • zinc oxide e.g., ZnO
  • copper oxide e.g., CuO
  • tantalum oxide e.g., Ta 2 O 5
  • some other suitable type of metal oxide or any
  • the device barrier layer 118 is deposited by a process that does not expose the piezoelectric layer 114 to hydrogen ions and/or other suitable errant materials.
  • the device barrier layer 118 may be deposited by physical vapor deposition (PVD), atomic layer deposition (ALD), or some other suitable deposition process(es).
  • the device barrier layer 118 is patterned to remove a central portion of the device barrier layer 118 surrounded by the piezoelectric device 106 . Further, the patterning removes a peripheral portion of the device barrier layer 118 surrounding the piezoelectric device 106 . At completion of the patterning, the piezoelectric device 106 remains covered (e.g., completely covered) by the device barrier layer 118 .
  • the patterning may, for example, be performed by a photolithography/etching process or by some other suitable process.
  • a device dielectric layer 120 is deposited covering the device barrier layer 118 .
  • the device dielectric layer 120 may, for example, be or comprise TEOS oxide and/or some other suitable dielectric(s).
  • the device dielectric layer 120 is deposited by a deposition process that exposes the device barrier layer 118 to hydrogen ions and/or other errant materials.
  • the device barrier layer 118 blocks the errant material (e.g., the hydrogen ions) from accumulating in the piezoelectric layer 114 . As described above, this may, for example, prevent failure of the piezoelectric device 106 .
  • the device dielectric layer 120 and the device barrier layer 118 are patterned to form a pair of via openings 1102 .
  • the via openings 1102 are individual to and respectively expose the top electrode 116 and the bottom electrode 112 .
  • the patterning is performed by a process that does employ hydrogen ions and/or other errant materials that may diffuse to and induce failure of the piezoelectric layer 114 .
  • the patterning is performed by a photolithography/etching process or by some other suitable patterning process.
  • a pair of pads 104 and a pair of vias 122 are formed.
  • the pads 104 have first ends individual to and respectively overlying the via openings 1102 (see, e.g., FIG. 11 ). Further, the pads 104 have second ends distal from the first ends and laterally offset from the first ends.
  • the vias 122 are individual to and respectively fill the via openings 1102 . Further, the vias 122 extend respectively from the pads 104 respectively to the top electrode 116 and the bottom electrode 112 .
  • the pads 104 and the vias 122 are part of a common layer. In other embodiments, the pads 104 are part of a first layer, whereas the vias 122 are part of a second layer that is different than the first layer.
  • the pads 104 and the vias 122 are formed by a process that does not employ hydrogen ions and/or other errant materials that may diffuse to and induce failure of the piezoelectric layer 114 .
  • a process for forming the pads 104 and the vias 122 comprises: 1) depositing a conductive layer covering the device dielectric layer 120 and filling the via openings 1102 ; and 2) performing a photolithography/etching process to pattern the conductive layer into the pads 104 .
  • some other suitable process is performed for forming the pads 104 and the vias 122 .
  • a pad barrier layer 102 is deposited covering the pads 104 and the device dielectric layer 120 .
  • the pad barrier layer 102 is configured to block hydrogen ions and/or other suitable errant materials from diffusing to the piezoelectric device 106 from over the pad 104 .
  • hydrogen ions from hydrogen-containing semiconductor manufacturing processes performed after forming the pad 104 may diffuse to the piezoelectric layer 114 along the vias 122 .
  • hydrogen ions that diffuse to the piezoelectric layer 114 may accumulate in the piezoelectric layer 114 and induce delamination and breakdown of the piezoelectric layer 114 , whereby the piezoelectric device 106 may fail. Therefore, by blocking diffusion of hydrogen ions to the piezoelectric layer 114 , the device barrier layer 118 may prevent delamination and breakdown of the piezoelectric layer 114 . This, in turn, may prevent failure of the piezoelectric device 106 .
  • the pad barrier layer 102 is deposited by a process that does not expose the pads 104 to hydrogen ions and/or other suitable errant materials.
  • the pad barrier layer 102 may be deposited by PVD, ALD, or some other suitable deposition process(es).
  • a thickness T pb of the pad barrier layer 102 is about 200-600 angstroms, about 200-400 angstroms, about 400-600 angstroms, or some other suitable value. If the thickness T pb is too small (e.g., less than about 200 angstroms), the pad barrier layer 102 may be unable to block diffusion of hydrogen ions and/or other errant materials through the pad barrier layer 102 . If the thickness T pb is too large (e.g., more than about 600 angstroms), material may be wasted and high topographical variation at the pad barrier layer 102 may present processing challenges that reduce manufacturing yields.
  • the pad barrier layer 102 is crystalline and/or has a density greater than about 2 g/cm 3 , 2.6 g/cm 3 , 5 g/cm 3 , or some other suitable value. It has been appreciated that such a density may block diffusion of hydrogen ions and/or other errant materials through the pad barrier layer 102 .
  • the pad barrier layer 102 is a metal oxide or some other suitable material.
  • the metal oxide may, for example, be or comprise aluminum oxide (e.g., Al 2 O 3 ), titanium oxide (e.g., TiO 2 ), iron oxide (e.g., Fe 2 O 3 ), zirconium oxide (e.g., ZrO 2 ), zinc oxide (e.g., ZnO), copper oxide (e.g., CuO), tantalum oxide (e.g., Ta 2 O 5 ), some other suitable type of metal oxide, or any combination of the foregoing.
  • aluminum oxide e.g., Al 2 O 3
  • titanium oxide e.g., TiO 2
  • iron oxide e.g., Fe 2 O 3
  • zirconium oxide e.g., ZrO 2
  • zinc oxide e.g., ZnO
  • copper oxide e.g., CuO
  • tantalum oxide e.g., Ta 2 O 5
  • some other suitable type of metal oxide or any combination of the foregoing.
  • the pad barrier layer 102 is a same material as the device barrier layer 118 . In other embodiments, the pad barrier layer 102 is a different material than the device barrier layer 118 . In some embodiments, the device barrier layer 118 is crystalline and/or has a density greater than about 2 g/cm 3 , 2.6 g/cm 3 , 5 g/cm 3 , or some other suitable value. In some embodiments, the density is the same as that of the pad barrier layer 102 .
  • the pad barrier layer 102 is patterned to segment the pad barrier layer 102 .
  • a bottom-electrode barrier segment 102 b overlies and is localized to the pad 104 at the bottom electrode 112
  • a top-electrode barrier segment 102 t overlies and is localized to the pad 104 at the top electrode 116 .
  • the pads 104 remain covered (e.g., completely covered) by the pad barrier layer 102 .
  • the patterning may, for example, be performed by a photolithography/etching process or by some other suitable process.
  • the device and substrate dielectric layers 120 , 110 and the upper semiconductor layer 108 u are patterned to form a plurality of slits 1502 at the central area 702 surrounded by the piezoelectric device 106 .
  • the slits 1502 overlie the insulator layer 108 i , and extend through the device and substrate dielectric layers 120 , 110 and the upper semiconductor layer 108 u to the insulator layer 108 i .
  • the slits 1502 are circumferentially spaced around, and extend laterally into, a circular region of the upper semiconductor layer 108 u .
  • the circular region is surrounded by the piezoelectric device (e.g., when viewed top down) and is hereafter referred to as a membrane 202 .
  • a process for forming the slits 1502 comprises: 1) forming a photoresist mask over the pad barrier layer 102 and the device dielectric layer 120 ; 2) performing a dry etch into the device and substrate dielectric layers 120 , 110 and the upper semiconductor layer 108 u with the mask in place; and 3) performing plasma ashing to remove the photoresist mask.
  • some other suitable process is performed to form the slits 1502 .
  • the dry etching and/or the plasma ashing expose the expose the IC chip being formed to hydrogen ions and/or other errant materials.
  • the pad barrier layer 102 and the device barrier layer 118 block the errant material (e.g., the hydrogen ions) from diffusing to and accumulating in the piezoelectric layer 114 . As described above, this may, for example, prevent failure of the piezoelectric device 106 .
  • the errant material e.g., the hydrogen ions
  • a passivation layer 124 is deposited covering the pad barrier layer 102 , the device dielectric layer 120 , and the membrane 202 , and further lining the slits 1502 .
  • the depositing exposes the IC chip being formed to hydrogen ions and/or other errant materials.
  • the pad barrier layer 102 and the device barrier layer 118 block the errant material (e.g., the hydrogen ions) from diffusing to and accumulating in the piezoelectric layer 114 .
  • the passivation layer 124 and the pad barrier layer 102 are patterned to form pad openings 126 at ends of the pads 104 distal from the vias 122 . Further, the patterning clears the passivation layer 124 from the membrane 202 and the slits 1502 . In alternative embodiments, the passivation layer 124 persists at the membrane 202 and the slits 1502 (e.g., to form the IC chip according to the embodiments of FIG. 5 A ).
  • a process for performing the patterning comprises: 1) forming a photoresist mask over the passivation layer 124 ; 2) performing a dry etch into the passivation layer 124 and the pad barrier layer 102 with the mask in place; and 3) performing plasma ashing to remove the photoresist mask.
  • some other suitable process is performed to form the pad openings 126 .
  • the dry etching and/or the plasma ashing expose the IC chip being formed to hydrogen ions and/or other errant materials. Because the pad openings 126 extend through the pad barrier layer 102 , hydrogen ions and/or other errant materials may extend through the pad barrier layer 102 . However, because the pad openings 126 are at ends of the pads 104 distal from the vias 122 , the diffusion path from the pad openings 126 to the piezoelectric layer 114 may be long. Hence, the likelihood of hydrogen ions and/or other errant materials diffusing to the piezoelectric layer 114 is low.
  • a sacrificial layer 1802 is deposited covering the IC chip being formed and filling the pad openings 126 (see, e.g., FIGS. 17 A and 17 B ) and the slits 1502 (see, e.g., FIGS. 17 A and 17 B ).
  • the sacrificial layer 1802 is silicon oxide and/or some other suitable dielectric(s).
  • the IC chip of FIG. 18 is flipped vertically and the substrate 108 is patterned to form a sound opening 204 overlying and exposing the membrane 202 .
  • the patterning may, for example, be performed by a photolithography/etching process or by some other suitable process.
  • the IC chip is flipped vertically. Further, the sacrificial layer 1802 is removed. The removal may, for example, be performed by an etch using an etchant having a high selectivity for the sacrificial layer 1802 relative to underlying structure (e.g., the passivation layer 124 and the membrane 202 ).
  • the sound opening 204 incorporates the slits 1502 (see, e.g., FIGS. 17 A and 17 B ) and hence extends through the membrane 202 . Further, the membrane 202 is released and may move in the sound opening 204 . In response to application of a voltage across the piezoelectric layer 114 , from the top electrode 116 to the bottom electrode 112 , the piezoelectric device 106 may vibrate. The vibrations may move to the membrane 202 and cause the membrane 202 to vibrate, which generates sound waves in the sound opening 204 . Accordingly, the piezoelectric device 106 and the membrane 202 coordinate to form a piezoelectric speaker.
  • FIGS. 6 , 7 A, 7 B, 8 , 9 A, 9 B, 10 , 11 , 12 A, 12 B, 13 , 14 A, 14 B, 15 A, 15 B, 16 , 17 A, 17 B, 18 , 19 , 20 A , and 20 B are described with reference to a method, it will be appreciated that the structures shown in these figures are not limited to the method but rather may stand alone separate of the method. While FIGS. 6 , 7 A, 7 B, 8 , 9 A, 9 B, 10 , 11 , 12 A, 12 B, 13 , 14 A, 14 B, 15 A, 15 B, 16 , 17 A, 17 B, 18 , 19 , 20 A , and 20 B are described with reference to a method, it will be appreciated that the structures shown in these figures are not limited to the method but rather may stand alone separate of the method. While FIGS.
  • FIG. 21 a block diagram 2100 of some embodiments of the method of FIGS. 6 , 7 A, 7 B, 8 , 9 A, 9 B, 10 , 11 , 12 A, 12 B, 13 , 14 A, 14 B, 15 A, 15 B, 16 , 17 A, 17 B, 18 , 19 , 20 A , and 20 B is provided.
  • a device film is formed overlying a substrate, wherein the device film comprises a bottom-electrode layer, a piezoelectric layer over the bottom-electrode layer, and a top-electrode layer over the piezoelectric layer. See, for example, FIG. 6 .
  • the device film is patterned to form a piezoelectric device extending in a closed path around a central area. See, for example, FIGS. 7 A and 7 B .
  • a device barrier layer is formed covering the piezoelectric device, wherein the device barrier layer is configured to block diffusion of hydrogen ions and/or other errant materials. See, for example, FIGS. 8 , 9 A, and 9 B .
  • a device dielectric layer is deposited covering the device barrier layer and the piezoelectric device, wherein the device dielectric layer blocks hydrogen ions and/or other errant materials from diffusing to the piezoelectric layer while depositing the device dielectric layer. See, for example, FIG. 10 .
  • a pair of pads is formed, wherein the pads have first ends respectively overlying and connected to a top electrode of the piezoelectric device and a bottom electrode of the piezoelectric device respectively by vias, and wherein the pads have second ends distal from the first ends and laterally offset from the piezoelectric device. See, for example, FIGS. 11 , 12 A , and 12 B.
  • a pad barrier layer is formed covering the pads, wherein the pad barrier layer is configured to block diffusion of hydrogen ions and/or other errant materials. See, for example, FIGS. 13 , 14 A, and 14 B .
  • the substrate is patterned to form a plurality of slits at the central area, wherein the slits are circumferentially spaced around a membrane of the substrate at the central area, and wherein the pad barrier layer blocks hydrogen ions and/or other errant materials from diffusing to the piezoelectric layer while forming the slits. See, for example, FIGS. 15 A and 15 B .
  • a passivation layer is deposited covering the pad barrier layer, wherein the pad barrier layer blocks hydrogen ions and/or other errant materials from diffusing to the piezoelectric layer while depositing the passivation layer. See, for example, FIG. 16 .
  • the pad barrier layer and the passivation layer are patterned to form pad openings respectively exposing the second ends of the pads, wherein hydrogen ions and/or other errant materials used while forming the pad openings are unlikely to diffuse to the piezoelectric layer through the pad openings because the second ends are distal from the vias. See, for example, FIGS. 17 A and 17 B .
  • a sound opening is formed extending through the substrate to the membrane on an opposite side of the substrate as the piezoelectric device, wherein the forming of the sound opening releases the membrane to allow the membrane to move. See, for example, FIGS. 18 , 19 , 20 A, and 20 B .
  • FIG. 21 While the block diagram 2100 of FIG. 21 is illustrated and described herein as a series of acts or events, it will be appreciated that the illustrated ordering of such acts or events is not to be interpreted in a limiting sense. For example, some acts may occur in different orders and/or concurrently with other acts or events apart from those illustrated and/or described herein. Further, not all illustrated acts may be required to implement one or more aspects or embodiments of the description herein, and one or more of the acts depicted herein may be carried out in one or more separate acts and/or phases.
  • a cross-sectional view 2200 of some first alternative embodiments of the method of FIGS. 6 , 7 A, 7 B, 8 , 9 A, 9 B, 10 , 11 , 12 A, 12 B, 13 , 14 A, 14 B, 15 A, 15 B, 16 , 17 A, 17 B, 18 , 19 , 20 A , and 20 B is provided in which the passivation layer 124 persists on the membrane 202 at completion of the method.
  • the acts described with regard to FIGS. 6 , 7 A, 7 B, 8 , 9 A, 9 B, 10 , 11 , 12 A, 12 B, 13 , 14 A, 14 B, 15 A, 15 B, and 16 are performed.
  • the patterning described with regard to FIGS. 17 A and 17 B is performed, except that the patterning does not clear the passivation layer 124 from the membrane 202 and the slits 1502 . Rather, the patterning forms openings 2202 extending through the passivation layer 124 respectively at the slits 1502 to expose the insulator layer 108 i .
  • the acts described with regard to FIGS. 18 , 19 , 20 A, and 20 B are performed.
  • the resulting IC chip may, for example, be as illustrated at FIG. 5 A .
  • FIGS. 23 - 25 a series of cross-sectional views 2300 - 2500 of some second alternative embodiments of the method of FIGS. 6 , 7 A, 7 B, 8 , 9 A, 9 B, 10 , 11 , 12 A, 12 B, 13 , 14 A, 14 B, 15 A, 15 B, 16 , 17 A, 17 B, 18 , 19 , 20 A , and 20 B is provided in which the pad barrier layer 102 and the passivation layer 124 are on the membrane 202 at completion of the method.
  • the acts described with regard to FIGS. 6 , 7 A, 7 B, 8 , 9 A, 9 B, 10 , 11 , 12 A, and 12 B are performed. Further, the acts described with regard to FIGS. 15 A and 15 B are thereafter performed. Notably, the acts described with regard to FIGS. 13 , 14 A, and 14 B are not performed. Hence, the pad barrier layer 102 is not formed before the patterning to form the slits 1502 .
  • the acts described with regard to FIGS. 13 and 16 are sequentially formed to respectively deposit the pad barrier layer 102 and the passivation layer 124 .
  • the pad barrier layer 102 and the passivation layer 124 are deposited after the patterning to form the slits 1502 .
  • the patterning described with regard to FIGS. 17 A and 17 B is performed, except that the patterning does not clear the pad barrier layer 102 and the passivation layer 124 from the membrane 202 and the slits 1502 . Rather, the patterning forms openings 2502 extending through the passivation layer 124 and the pad barrier layer 102 respectively at the slits 1502 to expose the insulator layer 108 i . Thereafter, the acts described with regard to FIGS. 18 , 19 , 20 A, and 20 B are performed. The resulting IC chip may, for example, be as illustrated at FIG. 5 B .
  • a series of cross-sectional views 2600 and 2700 of some third alternative embodiments of the method of FIGS. 6 , 7 A, 7 B, 8 , 9 A, 9 B, 10 , 11 , 12 A, 12 B, 13 , 14 A, 14 B, 15 A, 15 B, 16 , 17 A, 17 B, 18 , 19 , 20 A , and 20 B is provided in which a getter layer 502 is on a bottom of the bottom electrode 112 .
  • a getter layer 502 is deposited between the depositing of the substrate dielectric layer 110 and the depositing of the device film 602 .
  • the getter layer 502 is configured to absorb hydrogen ions and/or other errant materials, whereby the getter layer 502 may prevent hydrogen ions and/or other errant materials from accumulating in the piezoelectric layer 114 .
  • the getter layer 502 is conductive and may, for example, be or comprise titanium, barium, cerium, lanthanum, aluminum, magnesium, thorium, or some other suitable conductive getter material for hydrogen ions and/or other errant materials.
  • the acts described with regard to FIGS. 7 A and 7 B are performed, with a few exceptions.
  • the bottom-electrode layer 1121 (see, e.g., FIG. 26 ), the piezoelectric layer 114 , and the top-electrode layer 1161 (see, e.g., FIG. 26 ) are patterned with a common pattern.
  • the getter layer 502 is patterned with a pattern different than the common pattern.
  • the common pattern is the same as that illustrated for the piezoelectric layer 114 in FIGS. 7 A and 7 B and/or the different pattern is the same as that illustrated for the bottom-electrode layer 1121 in FIGS.
  • the resulting IC chip may, for example, be as illustrated at FIG. 5 D .
  • the present disclosure provides an IC chip including: a substrate; a piezoelectric device overlying the substrate; a pad overlying the piezoelectric device; a via extending from the pad to the piezoelectric device; and a barrier layer overlying the pad; wherein the barrier layer is configured to block hydrogen ions from diffusing through the barrier layer, from over the barrier layer to the piezoelectric device.
  • the barrier layer includes aluminum oxide, titanium oxide, iron oxide, zirconium oxide, zinc oxide, copper oxide, or tantalum oxide.
  • the barrier layer has a density in excess of about 2 grams per cubic centimeter.
  • the IC chip further includes a dielectric layer between the pad and the piezoelectric device, wherein the via extends through the dielectric layer, and wherein a rate of diffusion of hydrogen ions through the dielectric layer is more than a rate of diffusion of hydrogen ions through the barrier layer.
  • the IC chip further includes a second barrier layer between the pad and the piezoelectric device, wherein the via extends through the second barrier layer, and wherein the second barrier layer is configured to block hydrogen ions from diffusing through the second barrier layer, from over the second barrier layer to the piezoelectric device.
  • the IC chip further includes: a second pad including a first end overlying the piezoelectric device; and a second via extending from the second pad to the piezoelectric device, wherein the barrier layer overlies and is level with the second pad.
  • the IC chip further includes a getter layer on an underside of the piezoelectric device and configured to getter hydrogen ions.
  • the present disclosure provides another IC chip including: a substrate; a piezoelectric structure over the substrate, wherein the piezoelectric structure includes a bottom electrode, a piezoelectric layer overlying the bottom electrode, and a top electrode overlying the piezoelectric layer; a first hydrogen-barrier layer overlying the piezoelectric structure; a pad having a first end and a second end, wherein the first end overlies the first hydrogen-barrier layer and the piezoelectric structure and is electrically coupled to the top or bottom electrode, and wherein the second end is level with the piezoelectric structure; and a second hydrogen-barrier layer overlying the pad and the piezoelectric structure.
  • the second hydrogen-barrier layer is a metal oxide.
  • the first hydrogen-barrier layer extends along individual sidewalls respectively of the bottom electrode, the top electrode, and the piezoelectric layer.
  • the first and second hydrogen-barrier layers share a common density.
  • the substrate includes a moveable membrane at an opening extending through the substrate, wherein the piezoelectric structure extends in a closed path around the moveable membrane.
  • the second hydrogen-barrier layer is on a sidewall of the moveable membrane.
  • the IC chip further includes a passivation layer overlying the second hydrogen-barrier layer, wherein the passivation layer is on a sidewall of the moveable membrane, and wherein the second hydrogen-barrier layer is spaced from the moveable membrane.
  • the pad is elongated continuously from the first end of the pad to the second end of the pad, wherein the second end is distal from the first end and is laterally offset from the piezoelectric structure.
  • the IC chip further includes a passivation layer overlying the second hydrogen-barrier layer, wherein the passivation layer and the second hydrogen-barrier layer form a common sidewall at the second end of the pad, and wherein the second end is distal from and laterally offset from the first end and the piezoelectric structure.
  • the present disclosure provides a method including: forming a piezoelectric structure over a substrate and including a first electrode, a piezoelectric layer overlying the first electrode, and a second electrode overlying the piezoelectric layer; depositing a dielectric layer covering the piezoelectric structure; forming a pad and a via, wherein the pad overlies the dielectric layer, and wherein the via extends through the dielectric layer, from the pad to the to the piezoelectric structure; depositing a barrier layer covering the pad and the piezoelectric structure; and performing a semiconductor manufacturing process after the depositing of the barrier layer, wherein the semiconductor manufacturing process exposes the barrier layer to ions, and wherein the barrier layer blocks the ions from passing through the barrier layer.
  • the depositing of the barrier layer is performed without a source of hydrogen, and wherein the ions are hydrogen ions.
  • the piezoelectric structure extends laterally in a closed path around a central area, wherein the semiconductor manufacturing process includes patterning the substrate to form a plurality of slits at the central area.
  • the semiconductor manufacturing process includes: depositing a passivation layer covering the barrier layer; and patterning the passivation layer and the barrier layer to form a pad opening exposing an end of the pad laterally offset from the piezoelectric structure.

Abstract

Various embodiments of the present disclosure are directed towards an integrated circuit (IC) chip in which a pad barrier layer caps a pad of a piezoelectric device. The pad barrier layer is configured to block hydrogen ions and/or other errant materials from diffusing to the piezoelectric layer. Absent the pad barrier layer, hydrogen ions from hydrogen-ion containing processes performed after forming the pad may diffuse to the piezoelectric layer along a via extending from the pad to the piezoelectric device. By blocking diffusion of hydrogen ions and/or other errant materials to the piezoelectric device, the pad barrier layer may prevent delamination and breakdown of the piezoelectric layer. Hence, the pad barrier layer may prevent failure of the piezoelectric device.

Description

    REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Application No. 63/228,275, filed on Aug. 2, 2021, the contents of which are incorporated by reference in their entirety.
  • BACKGROUND
  • Piezoelectric actuators and other suitable piezoelectric devices may create physical movement in response to an electrical signal. The physical movement may be used to control various kinds of mechanical and optical systems. For example, the physical movement may be used to control movement of a moveable membrane to create a speaker.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
  • FIG. 1 illustrates a cross-sectional view of some embodiments of an integrated circuit (IC) chip in which a barrier layer caps a pad of a piezoelectric device.
  • FIG. 2 illustrates an expanded cross-sectional view of some embodiments of the IC chip of FIG. 1 in which the piezoelectric device surrounds a membrane.
  • FIG. 3 illustrates a top layout view of some embodiments of the IC chip of FIG. 2 .
  • FIGS. 4A and 4B illustrate top layout views of some alternative embodiments of the IC chip of FIG. 3 .
  • FIGS. 5A-5G illustrate cross-sectional views of some alternative embodiments of the IC chip of FIG. 2 .
  • FIGS. 6, 7A, 7B, 8, 9A, 9B, 10, 11, 12A, 12B, 13, 14A, 14B, 15A, 15B, 16, 17A, 17B, 18, 19, 20A, and 20B illustrate a series of views of some embodiments of a method for forming an IC chip in which a barrier layer caps a pad of a piezoelectric device.
  • FIG. 21 illustrates a block diagram of some embodiments of the method of FIGS. 6, 7A, 7B, 8, 9A, 9B, 10, 11, 12A, 12B, 13, 14A, 14B, 15A, 15B, 16, 17A, 17B, 18, 19, 20A, and 20B.
  • FIG. 22 illustrates a cross-sectional view of some first alternative embodiments of the method of FIGS. 6, 7A, 7B, 8, 9A, 9B, 10, 11, 12A, 12B, 13, 14A, 14B, 15A, 15B, 16, 17A, 17B, 18, 19, 20A, and 20B.
  • FIGS. 23-25 illustrate a series of cross-sectional views of some second alternative embodiments of the method of FIGS. 6, 7A, 7B, 8, 9A, 9B, 10, 11, 12A, 12B, 13, 14A, 14B, 15A, 15B, 16, 17A, 17B, 18, 19, 20A, and 20B.
  • FIGS. 26 and 27 illustrate a series of cross-sectional views of some third alternative embodiments of the method of FIGS. 6, 7A, 7B, 8, 9A, 9B, 10, 11, 12A, 12B, 13, 14A, 14B, 15A, 15B, 16, 17A, 17B, 18, 19, 20A, and 20B.
  • DETAILED DESCRIPTION
  • The present disclosure provides many different embodiments, or examples, for implementing different features of this disclosure. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
  • Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
  • A piezoelectric actuator or some other suitable piezoelectric device may comprise a bottom electrode, a piezoelectric layer overlying the bottom electrode, and a top electrode overlying the piezoelectric layer. A top-electrode pad overlies and is electrically coupled to the top electrode by a top-electrode via extending from the top-electrode pad to the top electrode. A bottom-electrode pad overlies and is electrically coupled to the bottom electrode by a bottom-electrode via extending from the bottom-electrode pad to the bottom electrode.
  • A challenge with the piezoelectric device is that hydrogen-ion containing processes may be employed after forming the piezoelectric layer. Further, the top-electrode and bottom-electrode vias may provide diffusion paths for hydrogen ions from the hydrogen-ion containing processes to diffuse to the piezoelectric layer. Hydrogen ions that diffuse to the piezoelectric layer may accumulate in the piezoelectric layer and induce delamination and breakdown of the piezoelectric layer, whereby the piezoelectric device may fail.
  • Various embodiments of the present disclosure are directed towards an integrated circuit (IC) chip in which a pad barrier layer caps a pad of a piezoelectric device. The pad barrier layer is configured to block hydrogen ions and/or other errant materials from diffusing to the piezoelectric layer. Absent the pad barrier layer, hydrogen ions from hydrogen-ion containing processes performed after forming the pad may diffuse to the piezoelectric layer along a via extending from the pad to the piezoelectric device. By blocking diffusion of hydrogen ions and/or other errant materials to the piezoelectric device, the pad barrier layer may prevent delamination and breakdown of the piezoelectric layer. Hence, the pad barrier layer may prevent failure of the piezoelectric device.
  • With reference to FIG. 1 , a cross-sectional view 100 of some embodiments of an IC chip is provided in which a pad barrier layer 102 caps a pad 104 of a piezoelectric device 106. The piezoelectric device 106 overlies a substrate 108 and is separated from the substrate 108 by a substrate dielectric layer 110. Further, the piezoelectric device 106 comprises a bottom electrode 112, a piezoelectric layer 114 overlying the bottom electrode 112, and a top electrode 116 overlying the piezoelectric layer 114. In some embodiments, the piezoelectric device 106 is an actuator, but other suitable types of piezoelectric device are amenable. In some embodiments, the piezoelectric device 106 may also be referred to as a metal-piezoelectric-metal (MPM) structure and/or, a piezoelectric structure.
  • A device barrier layer 118 and a device dielectric layer 120 overlie the piezoelectric device 106 and are stacked between the piezoelectric device 106 and the pad 104. The device barrier layer 118 separates the device dielectric layer 120 from the piezoelectric device 106 and is configured to block hydrogen ions and/or other suitable errant materials from diffusing to the piezoelectric layer 114 from over the device barrier layer 118. In some embodiments, the device barrier layer 118 may be regarded as a hydrogen-barrier layer.
  • The pad 104 overlies the device barrier layer 118 and comprises a first end 104 fe and a second end 104 se. The first end 104 fe overlies the top electrode 116, and a via 122 extends from the first end 104 fe, through the device barrier layer 118 and the device dielectric layer 120, to the top electrode 116. In alternative embodiments, the via 122 extends to the bottom electrode 112 instead of the top electrode 116. The second end 104 se is distal from the first end 104 fe and is laterally offset from the piezoelectric device 106.
  • The pad barrier layer 102 caps the pad 104, and a passivation layer 124 caps the pad barrier layer 102 and the device dielectric layer 120. Further, a pad opening 126 extends through the pad barrier layer 102 and the passivation layer 124 to expose the second end 104 se of the pad 104. Similar to the device barrier layer 118, the pad barrier layer 102 is configured to block hydrogen ions and/or other suitable errant materials from diffusing to the piezoelectric device 106 from over the pad 104. In some embodiments, the pad barrier layer 102 may be regarded as a hydrogen-barrier layer. Absent the pad barrier layer 102, hydrogen ions from hydrogen-containing semiconductor manufacturing processes performed after forming the pad 104 may diffuse to the piezoelectric layer 114 along the via 122.
  • Hydrogen ions that diffuse to the piezoelectric layer 114 may accumulate in the piezoelectric layer 114 and induce delamination and breakdown of the piezoelectric layer 114, whereby the piezoelectric device 106 may fail. Therefore, by blocking diffusion of hydrogen ions to the piezoelectric layer 114, the pad barrier layer 102 and the device barrier layer 118 may prevent delamination and breakdown of the piezoelectric layer 114. Hence, the pad barrier layer 102 and the device barrier layer 118 may prevent failure of the piezoelectric device 106.
  • Because the pad opening 126 extends through the pad barrier layer 102, hydrogen ions and/or other errant materials may extend through the pad barrier layer 102. However, because the pad opening 126 is at the second end 104 se of the pad 104, laterally offset from the piezoelectric device 106, the diffusion path from the pad opening 126 to the piezoelectric layer 114 may be long. Hence, the likelihood of hydrogen ions and/or other errant materials diffusing to the piezoelectric layer 114 from the pad opening 126 may be low.
  • In some embodiments, a thickness Tpb of the pad barrier layer 102 is about 200-600 angstroms, about 200-400 angstroms, about 400-600 angstroms, or some other suitable value. If the thickness Tpb is too small (e.g., less than about 200 angstroms), the pad barrier layer 102 may be unable to block diffusion of hydrogen ions and/or other errant materials through the pad barrier layer 102. If the thickness Tpb is too large (e.g., more than about 600 angstroms), material may be wasted and high topographical variation at the pad barrier layer 102 may present processing challenges that reduce manufacturing yields.
  • In some embodiments, the pad barrier layer 102 is crystalline and/or has a density greater than about 2 grams per cubic centimeter (g/cm3), 2.6 g/cm3, 5 g/cm3, or some other suitable value. It has been appreciated that such a density may block diffusion of hydrogen ions and/or other errant materials through the pad barrier layer 102.
  • In some embodiments, the pad barrier layer 102 is a metal oxide or some other suitable material. The metal oxide may, for example, be or comprise aluminum oxide (e.g., Al2O3), titanium oxide (e.g., TiO2), iron oxide (e.g., Fe2O3), zirconium oxide (e.g., ZrO2), zinc oxide (e.g., ZnO), copper oxide (e.g., CuO), tantalum oxide (e.g., Ta2O5), some other suitable type of metal oxide, or any combination of the foregoing. In some embodiments, the pad barrier layer 102 is dielectric. In some embodiments, during formation of the IC chip, the pad barrier layer 102 is deposited by a process that does not depend on hydrogen ions and/or other errant materials. For example, the pad barrier layer 102 may be deposited by physical vapor deposition (PVD) or some other suitable type of deposition.
  • In some embodiments, the device barrier layer 118 is a same material as the pad barrier layer 102. In other embodiments, the device barrier layer 118 is a different material than the pad barrier layer 102. In some embodiments, the device barrier layer 118 is crystalline and/or has a density greater than about 2 g/cm3, 2.6 g/cm3, 5 g/cm3, or some other suitable value. In some embodiments, the density is the same as that of the pad barrier layer 102. In some embodiments, the device barrier layer 118 is dielectric.
  • In some embodiments, the substrate 108 is a bulk substrate of silicon or some other suitable type of semiconductor material. In other embodiments, the substrate 108 is a semiconductor-on-insulator (SOI) substrate or some other suitable type of semiconductor substrate. To the extent that the substrate 108 is an SOI substrate, the semiconductor material of the SOI substrate may be silicon or some other suitable type of semiconductor material.
  • In some embodiments, the substrate dielectric layer 110 is or comprises silicon oxide and/or some other suitable dielectric(s). In some embodiments, the device dielectric layer 120 is or comprises silicon oxide and/or some other suitable dielectric(s). In some embodiments, the substrate dielectric layer 110 and the device dielectric layer 120 are or comprise a same material. In other embodiments, the substrate dielectric layer 110 and the device dielectric layer are or comprise different materials. In some embodiments, the passivation layer 124 is or comprise silicon nitride and/or some other suitable dielectric(s).
  • In some embodiments, a rate of diffusion of hydrogen ions through and/or in the pad barrier layer 102 is less than: 1) a rate of diffusion of hydrogen ions through and/or in the substrate dielectric layer 110; 2) a rate of diffusion of hydrogen ions through and/or in the device dielectric layer 120; 3) a rate of diffusion of hydrogen ions through and/or in the pad 104; 4) a rate of diffusion of hydrogen ions through and/or in the passivation layer 124; or 5) any combination of the foregoing. Similarly, in some embodiments, a rate of diffusion of hydrogen ions through and/or in the device barrier layer 118 is less than: 1) a rate of diffusion of hydrogen ions through and/or in the substrate dielectric layer 110; 2) a rate of diffusion of hydrogen ions through and/or in the device dielectric layer 120; 3) a rate of diffusion of hydrogen ions through and/or in the pad 104; 4) a rate of diffusion of hydrogen ions through and/or in the passivation layer 124; or 5) any combination of the foregoing. The rates of the pad barrier layer 102 and/or the device barrier layer 118 may, for example, be zero or close to zero.
  • In some embodiments, the piezoelectric layer 114 is or comprises lead zirconate titanate (e.g., PZT) and/or some other suitable piezoelectric material(s). In some embodiments, the bottom electrode 112 is or comprises titanium oxide, platinum, some other suitable metal(s) or conductive material(s), or any combination of the foregoing. In some embodiments, the top electrode 116 is or comprises titanium oxide, platinum, some other suitable metal(s) or conductive material(s), or any combination of the foregoing. In some embodiments, the bottom and top electrodes 112, 116 are or comprise a same material. In other embodiments, the bottom and top electrodes 112, 116 are or comprise different materials.
  • In some embodiments, the pad 104 is or comprises copper, aluminum copper, aluminum, some other suitable metal(s) or conductive material(s), or any combination of the foregoing. In some embodiments, the device barrier layer 118 is configured to block material of the pad 104 from diffusing from the pad 104 to the piezoelectric device 106. Such material may, for example, be or comprise copper and/or some other suitable material.
  • In some embodiments, while not shown, a bump structure, a wire bond structure, or some other suitable type of conductive structure is formed in the pad opening 126 to electrically couple the pad 104 and hence the piezoelectric device 106 to another IC chip, a printed circuit board (PCB), an interposer structure, or some other suitable structure.
  • With reference to FIG. 2 , an expanded cross-sectional view 200 of some embodiments of the IC chip of FIG. 1 is provided in which the piezoelectric device 106 surrounds a membrane 202. Upon application of a voltage from the top electrode 116 to the bottom electrode 112, the piezoelectric device 106 vibrates, thereby causing the membrane 202 to move within a sound opening 204. As such, the membrane 202 and the piezoelectric device 106 collectively form a piezoelectric speaker or some other suitable structure.
  • A pair of pads 104 and a pair of vias 122 electrically couple to the piezoelectric device 106. The pair of pads 104 comprises a top-electrode pad 104 t and a bottom-electrode pad 104 b, and the pair of vias 122 comprises a top-electrode via 122 t and a bottom-electrode via 122 b. The top-electrode pad 104 t and the top-electrode via 122 t correspond to the pad 104 and the via 122 illustrated and described with regard to FIG. 1 . The bottom-electrode pad 104 b and the bottom-electrode via 122 b are on an opposite side of the sound opening 204 as the top-electrode pad 104 t and the top-electrode via 122 t. Further, the bottom-electrode via 122 b extends from the bottom-electrode pad 104 b to the bottom electrode 112.
  • The pad barrier layer 102 caps both of the pads 104 and comprises a top-electrode barrier segment 102 t and a bottom-electrode barrier segment 102 b. The top-electrode barrier segment 102 t caps the top-electrode pad 104 t, whereas the bottom-electrode barrier segment 102 b caps the bottom-electrode pad 104 b.
  • By capping the pads 104, the pad barrier layer 102 prevents hydrogen ions and/or other errant particles from diffusing to the piezoelectric device 106 from over the top-electrode pad 104 t and the bottom-electrode pad 104 b. Absent the pad barrier layer 102, hydrogen ions from hydrogen-containing semiconductor manufacturing processes performed after forming the top-electrode pad 104 t and the bottom-electrode pad 104 b may diffuse to the piezoelectric layer 114 along the top-electrode via 122 t and/or along the bottom-electrode via 122 b. This may induce delamination and breakdown of the piezoelectric layer 114, whereby the piezoelectric device 106 may fail. Therefore, by blocking diffusion of hydrogen ions to the piezoelectric layer 114, the pad barrier layer 102 may prevent failure of the piezoelectric device 106.
  • A pair of pad openings 126 respectively expose the pads 104 respectively at locations laterally offset from the piezoelectric device 106, whereby diffusion paths from the pad openings 126 to the piezoelectric layer 114 may be long. Because the diffusion paths may be long, the likelihood of hydrogen ions and/or other errant materials diffusing to the piezoelectric layer 114 from the pad openings 126 may be low.
  • The substrate 108 is an SOI substrate and comprises a lower semiconductor layer 108 l, an insulator layer 108 i overlying the lower semiconductor layer 108 l, and an upper semiconductor layer 108 u overlying the insulator layer 108 i. In some embodiments, the insulator layer 108 i is or comprises silicon oxide and/or some other suitable dielectric(s). In some embodiments, the lower semiconductor layer 108 l and the upper semiconductor layers 108 u are or comprise silicon and/or some other suitable semiconductor(s).
  • The membrane 202 corresponds to a portion of the upper semiconductor layer 108 u and is connected to a remainder of the upper semiconductor layer 108 u outside the cross-sectional view 200 of FIG. 2 . Further, as described above, the membrane 202 moves in the sound opening 204 in response to vibrations from the piezoelectric device 106. As such, the piezoelectric device 106 may also be regarded as a piezoelectric actuator or some other suitable type of piezoelectric device, and the piezoelectric device 106 and the membrane 202 may collectively form a piezoelectric speaker.
  • The sound opening 204 extends through the substrate 108, the substrate dielectric layer 110, the device dielectric layer 120, and the passivation layer 124. Further, the substrate 108, the substrate dielectric layer 110, the device dielectric layer 120, and passivation layer 124 form a common sidewall in the sound opening 204. In alternative embodiments, the device dielectric layer 120 and/or the passivation layer 124 do not form the common sidewall, and/or the device barrier layer 118 further forms the common sidewall.
  • With reference to FIG. 3 , a top layout view 300 of some embodiments of the IC chip of FIG. 2 is provided. The cross-sectional view 200 of FIG. 2 may, for example, be taken along line A, and the portions of the IC chip illustrated in the cross-sectional view 200 of FIG. 2 may, for example, correspond to solid portions of line A.
  • The membrane 202 has a circular top geometry, and the sound opening 204 has six slit-shaped segments. The slit-shaped segments extend through the membrane 202 (see the cross-sectional view 200 of FIG. 2 ) and are evenly spaced circumferentially around the membrane 202 respectively at 0 degrees, 60 degrees, 120 degrees, 180 degrees, 240 degrees, and 300 degrees. In other embodiments, the slit-shaped segments may be unevenly spaced circumferentially around the membrane 202. Further, in other embodiments, the sound opening 204 has more or less slit-shaped segments. For example, the sound opening 204 may have 8, 12, or some other suitable number of slit-shaped segments.
  • The piezoelectric device 106 (constituents of which are shown in phantom) has a ring-shaped top geometry that extends in a closed path around the membrane 202. In alternative embodiments, the piezoelectric device 106 has some other suitable top geometry. Further, the top-electrode pad 104 t and the bottom-electrode pad 104 b (both shown in phantom) extend respectively from the top-electrode via 122 t and the bottom-electrode via 122 b respectively to locations laterally offset from the piezoelectric device 106.
  • The top-electrode and bottom- electrode barrier segments 102 t, 102 b (collectively the barrier segments 102 t, 102 b) of the pad barrier layer 102 are individual to and respectively overlap with the top-electrode pad 104 t and the bottom-electrode pad 104 b. Further, the barrier segments 102 t, 102 b have top geometrical shapes that respectively match top geometrical shapes of the top-electrode pad 104 t and the bottom-electrode pad 104 b. For example, the barrier segments 102 t, 102 b, as well as the top-electrode pad 104 t and the bottom-electrode pad 104 b, may have L-shaped top geometrical shapes or other suitable top geometrical shapes. In alternative embodiments, the barrier segments 102 t, 102 b have top geometrical shapes different than those of the top-electrode pad 104 t and the bottom-electrode pad 104 b.
  • While the sound opening 204 is illustrated with six slit-shaped segments circumferentially spaced around the membrane 202, more or less slit-shaped segments are amenable. For example, with reference to FIGS. 4A and 4B, top layout views 400A, 400B of some alternative embodiments of the IC chip of FIG. 3 are provided in which the number of slit-shaped segments is varied. In FIG. 4A, the sound opening 204 has eight slit-shaped segments. In FIG. 4B, the sound opening 204 has twelve slit-shaped segments.
  • With reference to FIGS. 5A-5G, cross-sectional views 500A-500G of some alternative embodiments of the IC chip of FIG. 2 are provided.
  • In FIG. 5A, the passivation layer 124 is on sidewalls of the membrane 202 and a top surface of the membrane 202. Further, the passivation layer 124 lines a common sidewall formed by the upper semiconductor layer 108 u, the substrate dielectric layer 110, and the device dielectric layer 120. This may change the rigidity of the membrane 202, whereby the membrane 202 may vibrate differently during use of the piezoelectric speaker collectively formed by the membrane 202 and the piezoelectric device 106.
  • In FIG. 5B, the passivation layer 124 and the pad barrier layer 102 are both on sidewalls of the membrane 202 and a top surface of the membrane 202. Further, the passivation layer 124 and the pad barrier layer 102 both line a common sidewall formed by the upper semiconductor layer 108 u, the substrate dielectric layer 110, and the device dielectric layer 120. This may change the rigidity of the membrane 202, whereby the membrane 202 may vibrate differently during use of the piezoelectric speaker collectively formed by the membrane 202 and the piezoelectric device 106. In some embodiments, the top-electrode and bottom- electrode barrier segments 102 t, 102 b of the pad barrier layer 102 are connected outside the cross-sectional view 500B of FIG. 5B.
  • In FIG. 5C, the top electrode 116 and the piezoelectric layer 114 form common sidewalls and share a common width less than that of the bottom electrode 112.
  • In FIG. 5D, the bottom and top electrodes 112, 116 and the piezoelectric layer 114 form common sidewalls and share a common width. Further, a getter layer 502 separates the piezoelectric device 106 from the substrate dielectric layer 110 and has a greater width than the common width. The getter layer 502 is configured to absorb hydrogen ions and/or other errant materials, whereby the getter layer 502 may prevent hydrogen ions and/or other errant materials from diffusing to and accumulating in the piezoelectric layer 114. As described above, hydrogen ions that accumulate in the piezoelectric layer 114 may induce delamination and breakdown of the piezoelectric layer 114, whereby the piezoelectric device 106 may fail. Accordingly, by absorbing hydrogen ions, the getter layer 502 may prevent device failure.
  • In some embodiments, the substrate dielectric layer 110 comprises hydrogen ions, which are absorbed by the getter layer 502 to prevent the hydrogen ions from diffusing to the piezoelectric layer 114. For example, the substrate dielectric layer 110 may comprise hydrogen ions in embodiments in which the substrate dielectric layer 110 is tetraethyl orthosilicate (TEOS) silicon oxide (e.g., TEOS-SiO2), silane silicon oxide (e.g., SiH4—SiO2), some other suitable oxide or dielectric, or any combination of the foregoing. In some embodiments, the getter layer 502 is or comprises titanium, barium, cerium, lanthanum, aluminum, magnesium, thorium, or some other suitable conductive getter material for hydrogen ions and/or other errant materials.
  • In FIG. 5E, the bottom electrode 112 and the getter layer 502 share a first common width and form first common sidewalls. Further, the piezoelectric layer 114 and the top electrode 116 share a second common width less than the first common width and form second common sidewalls laterally offset from the first common sidewalls.
  • In FIG. 5F, the getter layer 502 described with regard to FIG. 5D separates the top electrode 116 from the device barrier layer 118 instead of separating the bottom electrode 112 from the substrate dielectric layer 110. Further, the getter layer 502 forms common sidewalls with the top electrode 116 and the piezoelectric layer 114 and shares a common width with the top electrode 116 and the piezoelectric layer 114.
  • In FIG. 5G, a top-electrode getter layer 502 t is atop the top electrode 116, whereas a bottom-electrode getter layer 502 b is on an underside of the bottom electrode 112. The bottom-electrode getter layer 502 b and the bottom-electrode getter layer 502 b are respectively as their counterparts are described with regard to FIGS. 5E and 5F.
  • With reference to FIGS. 6, 7A, 7B, 8, 9A, 9B, 10, 11, 12A, 12B, 13, 14A, 14B, 15A, 15B, 16, 17A, 17B, 18, 19, 20A, and 20B, a series of views of some embodiments of a method for forming an IC chip in which a barrier layer caps a pad of a piezoelectric device is provided. Figures labeled with a suffix of “A” or with no suffix correspond to cross-sectional views, and figures labeled with a suffix of “B” correspond to top layout views for like numbered figured with a suffix of “A”. The cross-sectional views of figures labeled with a suffix “A” may, for example, be taken along line A or B (whichever is present) in the top layout views of corresponding figures labeled with a suffix of “B”. The method is illustrated forming an IC chip according to the embodiments of FIGS. 2 and 3 . However, the method may alternatively be employed to form an IC chip according to other suitable embodiments.
  • As illustrated by a cross-sectional view 600 of FIG. 6 , a substrate dielectric layer 110 is deposited over a substrate 108. The substrate 108 is an SOI substrate and comprises a lower semiconductor layer 108 l, an insulator layer 108 i overlying the lower semiconductor layer 108 l, and an upper semiconductor layer 108 u overlying the insulator layer 108 i. In alternative embodiments, the substrate 108 is a bulk semiconductor substrate or some other suitable type of semiconductor substrate. In some embodiments, the substrate dielectric layer 110 and the insulator layer 108 i are a same material. In other embodiments, the substrate dielectric layer 110 and the insulator layer 108 i are different materials.
  • Also illustrated by the cross-sectional view 600 of FIG. 6 , a device film 602 is deposited over the substrate dielectric layer 110 and comprises a bottom-electrode layer 1121, a piezoelectric layer 114 overlying the bottom-electrode layer 1121, and a top-electrode layer 1161 overlying the piezoelectric layer 114. In some embodiments, the bottom-electrode layer 1121 and the top-electrode layer 1161 are a same material. In other embodiments, the bottom-electrode layer 1121 and the top-electrode layer 1161 are different materials.
  • As illustrated by a cross-sectional view 700A of FIG. 7A, and a top layout view 700B of FIG. 7B, the device film 602 (see, e.g., FIG. 6 ) is patterned to form a piezoelectric device 106 having a ring-shaped top geometry (see, e.g., FIG. 7B) and extending in a closed path around a central area 702. In alternative embodiments, the piezoelectric device 106 may have some other suitable top geometry extending in a closed path around the central area 702. The piezoelectric device 106 comprises a bottom electrode 112, a patterned portion of the piezoelectric layer 114 (hereafter referred to more simply as the piezoelectric layer 114) overlying the bottom electrode 112, and a top electrode 116 overlying the piezoelectric layer 114.
  • The bottom electrode 112 corresponds to a patterned portion of the bottom-electrode layer 1121 (see, e.g., FIG. 6 ), whereas the top electrode 116 corresponds to a patterned portion of the top-electrode layer 1161. The piezoelectric layer 114 has a lesser width than the bottom electrode 112, and further has sidewalls laterally offset from sidewalls of the bottom electrode 112. The top electrode 116 has a lesser width than the piezoelectric layer 114, and further has sidewalls laterally offset from sidewalls of the piezoelectric layer 114.
  • In some embodiments, a process for performing the patterning does not employ hydrogen ions and/or other errant materials that may diffuse to and induce failure of the piezoelectric layer 114. Hydrogen ions that diffuse to the piezoelectric layer 114 may accumulate in the piezoelectric layer 114 and induce delamination and breakdown of the piezoelectric layer 114, whereby the piezoelectric device 106 may fail.
  • In some embodiments, a process for performing the patterning comprises: 1) performing a first photolithography/etching process into the top-electrode layer 1161 using a first mask to form the top electrode 116; 2) performing a second photolithography/etching process into the piezoelectric layer 114 using a second mask; and 3) performing a third photolithography/etching process into the bottom-electrode layer 1121 using a third mask to form the bottom electrode 112. In alternative embodiments, some other suitable process is performed for the patterning. For example, the top-electrode layer 1161 and the piezoelectric layer 114 may be patterned together using a common photolithography/etching process and a common mask, whereas the bottom-electrode layer 1121 may be patterned using a different photolithography/etching process and a different mask. As example, the top-electrode layer 1161, the piezoelectric layer 114, and the bottom-electrode layer 1121 may be patterned together using a common photolithography/etching process and a common mask. The two alternative examples use fewer masks and hence reduce manufacturing costs.
  • As illustrated by a cross-sectional view 800 of FIG. 8 , a device barrier layer 118 is deposited covering the piezoelectric device 106 and the substrate dielectric layer 110. The device barrier layer 118 is configured to block hydrogen and/or other suitable errant materials from diffusing to the piezoelectric layer 114 from over the device barrier layer 118. By blocking diffusion of errant materials (e.g., hydrogen ions) to the piezoelectric layer 114, the pad barrier layer 102 may prevent failure of the piezoelectric device 106.
  • In some embodiments, the device barrier layer 118 is a metal oxide or some other suitable material. The metal oxide may, for example, be or comprise aluminum oxide (e.g., Al2O3), titanium oxide (e.g., TiO2), iron oxide (e.g., Fe2O3), zirconium oxide (e.g., ZrO2), zinc oxide (e.g., ZnO), copper oxide (e.g., CuO), tantalum oxide (e.g., Ta2O5), some other suitable type of metal oxide, or any combination of the foregoing.
  • The device barrier layer 118 is deposited by a process that does not expose the piezoelectric layer 114 to hydrogen ions and/or other suitable errant materials. For example, the device barrier layer 118 may be deposited by physical vapor deposition (PVD), atomic layer deposition (ALD), or some other suitable deposition process(es).
  • As illustrated by a cross-sectional view 900A of FIG. 9A, and a top layout view 900B of FIG. 9B, the device barrier layer 118 is patterned to remove a central portion of the device barrier layer 118 surrounded by the piezoelectric device 106. Further, the patterning removes a peripheral portion of the device barrier layer 118 surrounding the piezoelectric device 106. At completion of the patterning, the piezoelectric device 106 remains covered (e.g., completely covered) by the device barrier layer 118. The patterning may, for example, be performed by a photolithography/etching process or by some other suitable process.
  • As illustrated by a cross-sectional view 1000 of FIG. 10 , a device dielectric layer 120 is deposited covering the device barrier layer 118. The device dielectric layer 120 may, for example, be or comprise TEOS oxide and/or some other suitable dielectric(s). In some embodiments, the device dielectric layer 120 is deposited by a deposition process that exposes the device barrier layer 118 to hydrogen ions and/or other errant materials. In such embodiments, the device barrier layer 118 blocks the errant material (e.g., the hydrogen ions) from accumulating in the piezoelectric layer 114. As described above, this may, for example, prevent failure of the piezoelectric device 106.
  • As illustrated by the cross-sectional view 1100 of FIG. 11 , the device dielectric layer 120 and the device barrier layer 118 are patterned to form a pair of via openings 1102. The via openings 1102 are individual to and respectively expose the top electrode 116 and the bottom electrode 112. In some embodiments, the patterning is performed by a process that does employ hydrogen ions and/or other errant materials that may diffuse to and induce failure of the piezoelectric layer 114. In some embodiments, the patterning is performed by a photolithography/etching process or by some other suitable patterning process.
  • As illustrated by a cross-sectional view 1200A of FIG. 12A, and a top layout view 1200B of FIG. 12B, a pair of pads 104 and a pair of vias 122 are formed. The pads 104 have first ends individual to and respectively overlying the via openings 1102 (see, e.g., FIG. 11 ). Further, the pads 104 have second ends distal from the first ends and laterally offset from the first ends. The vias 122 are individual to and respectively fill the via openings 1102. Further, the vias 122 extend respectively from the pads 104 respectively to the top electrode 116 and the bottom electrode 112. In some embodiments, the pads 104 and the vias 122 are part of a common layer. In other embodiments, the pads 104 are part of a first layer, whereas the vias 122 are part of a second layer that is different than the first layer.
  • In some embodiments, the pads 104 and the vias 122 are formed by a process that does not employ hydrogen ions and/or other errant materials that may diffuse to and induce failure of the piezoelectric layer 114. In some embodiments, a process for forming the pads 104 and the vias 122 comprises: 1) depositing a conductive layer covering the device dielectric layer 120 and filling the via openings 1102; and 2) performing a photolithography/etching process to pattern the conductive layer into the pads 104. In alternative embodiments, some other suitable process is performed for forming the pads 104 and the vias 122.
  • As illustrated by a cross-sectional view 1300 of FIG. 13 , a pad barrier layer 102 is deposited covering the pads 104 and the device dielectric layer 120. The pad barrier layer 102 is configured to block hydrogen ions and/or other suitable errant materials from diffusing to the piezoelectric device 106 from over the pad 104.
  • Absent the pad barrier layer 102, hydrogen ions from hydrogen-containing semiconductor manufacturing processes performed after forming the pad 104 may diffuse to the piezoelectric layer 114 along the vias 122. As described above, hydrogen ions that diffuse to the piezoelectric layer 114 may accumulate in the piezoelectric layer 114 and induce delamination and breakdown of the piezoelectric layer 114, whereby the piezoelectric device 106 may fail. Therefore, by blocking diffusion of hydrogen ions to the piezoelectric layer 114, the device barrier layer 118 may prevent delamination and breakdown of the piezoelectric layer 114. This, in turn, may prevent failure of the piezoelectric device 106.
  • The pad barrier layer 102 is deposited by a process that does not expose the pads 104 to hydrogen ions and/or other suitable errant materials. For example, the pad barrier layer 102 may be deposited by PVD, ALD, or some other suitable deposition process(es).
  • In some embodiments, a thickness Tpb of the pad barrier layer 102 is about 200-600 angstroms, about 200-400 angstroms, about 400-600 angstroms, or some other suitable value. If the thickness Tpb is too small (e.g., less than about 200 angstroms), the pad barrier layer 102 may be unable to block diffusion of hydrogen ions and/or other errant materials through the pad barrier layer 102. If the thickness Tpb is too large (e.g., more than about 600 angstroms), material may be wasted and high topographical variation at the pad barrier layer 102 may present processing challenges that reduce manufacturing yields.
  • In some embodiments, the pad barrier layer 102 is crystalline and/or has a density greater than about 2 g/cm3, 2.6 g/cm3, 5 g/cm3, or some other suitable value. It has been appreciated that such a density may block diffusion of hydrogen ions and/or other errant materials through the pad barrier layer 102. In some embodiments, the pad barrier layer 102 is a metal oxide or some other suitable material. The metal oxide may, for example, be or comprise aluminum oxide (e.g., Al2O3), titanium oxide (e.g., TiO2), iron oxide (e.g., Fe2O3), zirconium oxide (e.g., ZrO2), zinc oxide (e.g., ZnO), copper oxide (e.g., CuO), tantalum oxide (e.g., Ta2O5), some other suitable type of metal oxide, or any combination of the foregoing.
  • In some embodiments, the pad barrier layer 102 is a same material as the device barrier layer 118. In other embodiments, the pad barrier layer 102 is a different material than the device barrier layer 118. In some embodiments, the device barrier layer 118 is crystalline and/or has a density greater than about 2 g/cm3, 2.6 g/cm3, 5 g/cm3, or some other suitable value. In some embodiments, the density is the same as that of the pad barrier layer 102.
  • As illustrated by a cross-sectional view 1400A of FIG. 14A, and a top layout view 1400B of FIG. 14B, the pad barrier layer 102 is patterned to segment the pad barrier layer 102. A bottom-electrode barrier segment 102 b overlies and is localized to the pad 104 at the bottom electrode 112, and a top-electrode barrier segment 102 t overlies and is localized to the pad 104 at the top electrode 116. At completion of the patterning, the pads 104 remain covered (e.g., completely covered) by the pad barrier layer 102. The patterning may, for example, be performed by a photolithography/etching process or by some other suitable process.
  • As illustrated by a cross-sectional view 1500A of FIG. 15A, and a top layout view 1500B of FIG. 15B, the device and substrate dielectric layers 120, 110 and the upper semiconductor layer 108 u are patterned to form a plurality of slits 1502 at the central area 702 surrounded by the piezoelectric device 106. The slits 1502 overlie the insulator layer 108 i, and extend through the device and substrate dielectric layers 120, 110 and the upper semiconductor layer 108 u to the insulator layer 108 i. Further, the slits 1502 are circumferentially spaced around, and extend laterally into, a circular region of the upper semiconductor layer 108 u. The circular region is surrounded by the piezoelectric device (e.g., when viewed top down) and is hereafter referred to as a membrane 202.
  • In some embodiments, a process for forming the slits 1502 comprises: 1) forming a photoresist mask over the pad barrier layer 102 and the device dielectric layer 120; 2) performing a dry etch into the device and substrate dielectric layers 120, 110 and the upper semiconductor layer 108 u with the mask in place; and 3) performing plasma ashing to remove the photoresist mask. In alternative embodiments, some other suitable process is performed to form the slits 1502. In some embodiments, the dry etching and/or the plasma ashing expose the expose the IC chip being formed to hydrogen ions and/or other errant materials. In such embodiments, the pad barrier layer 102 and the device barrier layer 118 block the errant material (e.g., the hydrogen ions) from diffusing to and accumulating in the piezoelectric layer 114. As described above, this may, for example, prevent failure of the piezoelectric device 106.
  • As illustrated by a cross-sectional view 1600 of FIG. 16 , a passivation layer 124 is deposited covering the pad barrier layer 102, the device dielectric layer 120, and the membrane 202, and further lining the slits 1502. In some embodiments, the depositing exposes the IC chip being formed to hydrogen ions and/or other errant materials. In such embodiments, the pad barrier layer 102 and the device barrier layer 118 block the errant material (e.g., the hydrogen ions) from diffusing to and accumulating in the piezoelectric layer 114.
  • As illustrated by a cross-sectional view 1700A of FIG. 17A, and a top layout view 1700B of FIG. 17B, the passivation layer 124 and the pad barrier layer 102 are patterned to form pad openings 126 at ends of the pads 104 distal from the vias 122. Further, the patterning clears the passivation layer 124 from the membrane 202 and the slits 1502. In alternative embodiments, the passivation layer 124 persists at the membrane 202 and the slits 1502 (e.g., to form the IC chip according to the embodiments of FIG. 5A).
  • In some embodiments, a process for performing the patterning comprises: 1) forming a photoresist mask over the passivation layer 124; 2) performing a dry etch into the passivation layer 124 and the pad barrier layer 102 with the mask in place; and 3) performing plasma ashing to remove the photoresist mask. In alternative embodiments, some other suitable process is performed to form the pad openings 126.
  • In some embodiments, the dry etching and/or the plasma ashing expose the IC chip being formed to hydrogen ions and/or other errant materials. Because the pad openings 126 extend through the pad barrier layer 102, hydrogen ions and/or other errant materials may extend through the pad barrier layer 102. However, because the pad openings 126 are at ends of the pads 104 distal from the vias 122, the diffusion path from the pad openings 126 to the piezoelectric layer 114 may be long. Hence, the likelihood of hydrogen ions and/or other errant materials diffusing to the piezoelectric layer 114 is low.
  • As illustrated by a cross-sectional view 1800 of FIG. 18 , a sacrificial layer 1802 is deposited covering the IC chip being formed and filling the pad openings 126 (see, e.g., FIGS. 17A and 17B) and the slits 1502 (see, e.g., FIGS. 17A and 17B). In some embodiments, the sacrificial layer 1802 is silicon oxide and/or some other suitable dielectric(s).
  • As illustrated by a cross-sectional view 1900 of FIG. 19 , the IC chip of FIG. 18 is flipped vertically and the substrate 108 is patterned to form a sound opening 204 overlying and exposing the membrane 202. The patterning may, for example, be performed by a photolithography/etching process or by some other suitable process.
  • As illustrated by a cross-sectional view 2000A of FIG. 20A, and a top layout view 2000B of FIG. 20B, the IC chip is flipped vertically. Further, the sacrificial layer 1802 is removed. The removal may, for example, be performed by an etch using an etchant having a high selectivity for the sacrificial layer 1802 relative to underlying structure (e.g., the passivation layer 124 and the membrane 202).
  • By removing the sacrificial layer 1802, the sound opening 204 incorporates the slits 1502 (see, e.g., FIGS. 17A and 17B) and hence extends through the membrane 202. Further, the membrane 202 is released and may move in the sound opening 204. In response to application of a voltage across the piezoelectric layer 114, from the top electrode 116 to the bottom electrode 112, the piezoelectric device 106 may vibrate. The vibrations may move to the membrane 202 and cause the membrane 202 to vibrate, which generates sound waves in the sound opening 204. Accordingly, the piezoelectric device 106 and the membrane 202 coordinate to form a piezoelectric speaker.
  • While FIGS. 6, 7A, 7B, 8, 9A, 9B, 10, 11, 12A, 12B, 13, 14A, 14B, 15A, 15B, 16, 17A, 17B, 18, 19, 20A, and 20B are described with reference to a method, it will be appreciated that the structures shown in these figures are not limited to the method but rather may stand alone separate of the method. While FIGS. 6, 7A, 7B, 8, 9A, 9B, 10, 11, 12A, 12B, 13, 14A, 14B, 15A, 15B, 16, 17A, 17B, 18, 19, 20A, and 20B are described as a series of acts, it will be appreciated that the order of the acts may be altered in other embodiments. While FIGS. 6, 7A, 7B, 8, 9A, 9B, 10, 11, 12A, 12B, 13, 14A, 14B, 15A, 15B, 16, 17A, 17B, 18, 19, 20A, and 20B illustrate and describe as a specific set of acts, some acts that are illustrated and/or described may be omitted in other embodiments. Further, acts that are not illustrated and/or described may be included in other embodiments.
  • With reference to FIG. 21 , a block diagram 2100 of some embodiments of the method of FIGS. 6, 7A, 7B, 8, 9A, 9B, 10, 11, 12A, 12B, 13, 14A, 14B, 15A, 15B, 16, 17A, 17B, 18, 19, 20A, and 20B is provided.
  • At 2102, a device film is formed overlying a substrate, wherein the device film comprises a bottom-electrode layer, a piezoelectric layer over the bottom-electrode layer, and a top-electrode layer over the piezoelectric layer. See, for example, FIG. 6 .
  • At 2104, the device film is patterned to form a piezoelectric device extending in a closed path around a central area. See, for example, FIGS. 7A and 7B.
  • At 2106, a device barrier layer is formed covering the piezoelectric device, wherein the device barrier layer is configured to block diffusion of hydrogen ions and/or other errant materials. See, for example, FIGS. 8, 9A, and 9B.
  • At 2108, a device dielectric layer is deposited covering the device barrier layer and the piezoelectric device, wherein the device dielectric layer blocks hydrogen ions and/or other errant materials from diffusing to the piezoelectric layer while depositing the device dielectric layer. See, for example, FIG. 10 .
  • At 2110, a pair of pads is formed, wherein the pads have first ends respectively overlying and connected to a top electrode of the piezoelectric device and a bottom electrode of the piezoelectric device respectively by vias, and wherein the pads have second ends distal from the first ends and laterally offset from the piezoelectric device. See, for example, FIGS. 11, 12A, and 12B.
  • At 2112, a pad barrier layer is formed covering the pads, wherein the pad barrier layer is configured to block diffusion of hydrogen ions and/or other errant materials. See, for example, FIGS. 13, 14A, and 14B.
  • At 2114, the substrate is patterned to form a plurality of slits at the central area, wherein the slits are circumferentially spaced around a membrane of the substrate at the central area, and wherein the pad barrier layer blocks hydrogen ions and/or other errant materials from diffusing to the piezoelectric layer while forming the slits. See, for example, FIGS. 15A and 15B.
  • At 2116, a passivation layer is deposited covering the pad barrier layer, wherein the pad barrier layer blocks hydrogen ions and/or other errant materials from diffusing to the piezoelectric layer while depositing the passivation layer. See, for example, FIG. 16 .
  • At 2118, the pad barrier layer and the passivation layer are patterned to form pad openings respectively exposing the second ends of the pads, wherein hydrogen ions and/or other errant materials used while forming the pad openings are unlikely to diffuse to the piezoelectric layer through the pad openings because the second ends are distal from the vias. See, for example, FIGS. 17A and 17B.
  • At 2120, a sound opening is formed extending through the substrate to the membrane on an opposite side of the substrate as the piezoelectric device, wherein the forming of the sound opening releases the membrane to allow the membrane to move. See, for example, FIGS. 18, 19, 20A, and 20B.
  • While the block diagram 2100 of FIG. 21 is illustrated and described herein as a series of acts or events, it will be appreciated that the illustrated ordering of such acts or events is not to be interpreted in a limiting sense. For example, some acts may occur in different orders and/or concurrently with other acts or events apart from those illustrated and/or described herein. Further, not all illustrated acts may be required to implement one or more aspects or embodiments of the description herein, and one or more of the acts depicted herein may be carried out in one or more separate acts and/or phases.
  • With reference to FIG. 22 , a cross-sectional view 2200 of some first alternative embodiments of the method of FIGS. 6, 7A, 7B, 8, 9A, 9B, 10, 11, 12A, 12B, 13, 14A, 14B, 15A, 15B, 16, 17A, 17B, 18, 19, 20A, and 20B is provided in which the passivation layer 124 persists on the membrane 202 at completion of the method.
  • As illustrated by the cross-sectional view 2200 of FIG. 22 , the acts described with regard to FIGS. 6, 7A, 7B, 8, 9A, 9B, 10, 11, 12A, 12B, 13, 14A, 14B, 15A, 15B, and 16 are performed. Thereafter, the patterning described with regard to FIGS. 17A and 17B is performed, except that the patterning does not clear the passivation layer 124 from the membrane 202 and the slits 1502. Rather, the patterning forms openings 2202 extending through the passivation layer 124 respectively at the slits 1502 to expose the insulator layer 108 i. Thereafter, the acts described with regard to FIGS. 18, 19, 20A, and 20B are performed. The resulting IC chip may, for example, be as illustrated at FIG. 5A.
  • With reference to FIGS. 23-25 , a series of cross-sectional views 2300-2500 of some second alternative embodiments of the method of FIGS. 6, 7A, 7B, 8, 9A, 9B, 10, 11, 12A, 12B, 13, 14A, 14B, 15A, 15B, 16, 17A, 17B, 18, 19, 20A, and 20B is provided in which the pad barrier layer 102 and the passivation layer 124 are on the membrane 202 at completion of the method.
  • As illustrated by the cross-sectional view 2300 of FIG. 23 , the acts described with regard to FIGS. 6, 7A, 7B, 8, 9A, 9B, 10, 11, 12A, and 12B are performed. Further, the acts described with regard to FIGS. 15A and 15B are thereafter performed. Notably, the acts described with regard to FIGS. 13, 14A, and 14B are not performed. Hence, the pad barrier layer 102 is not formed before the patterning to form the slits 1502.
  • As illustrated by the cross-sectional view 2400 of FIG. 24 , the acts described with regard to FIGS. 13 and 16 are sequentially formed to respectively deposit the pad barrier layer 102 and the passivation layer 124. Hence, the pad barrier layer 102 and the passivation layer 124 are deposited after the patterning to form the slits 1502.
  • As illustrated by the cross-sectional view 2500 of FIG. 25 , the patterning described with regard to FIGS. 17A and 17B is performed, except that the patterning does not clear the pad barrier layer 102 and the passivation layer 124 from the membrane 202 and the slits 1502. Rather, the patterning forms openings 2502 extending through the passivation layer 124 and the pad barrier layer 102 respectively at the slits 1502 to expose the insulator layer 108 i. Thereafter, the acts described with regard to FIGS. 18, 19, 20A, and 20B are performed. The resulting IC chip may, for example, be as illustrated at FIG. 5B.
  • With reference to FIGS. 26 and 27 , a series of cross-sectional views 2600 and 2700 of some third alternative embodiments of the method of FIGS. 6, 7A, 7B, 8, 9A, 9B, 10, 11, 12A, 12B, 13, 14A, 14B, 15A, 15B, 16, 17A, 17B, 18, 19, 20A, and 20B is provided in which a getter layer 502 is on a bottom of the bottom electrode 112.
  • As illustrated by the cross-sectional view 2600 of FIG. 26 , the acts described with regard to FIG. 6 are performed, except that a getter layer 502 is deposited between the depositing of the substrate dielectric layer 110 and the depositing of the device film 602. The getter layer 502 is configured to absorb hydrogen ions and/or other errant materials, whereby the getter layer 502 may prevent hydrogen ions and/or other errant materials from accumulating in the piezoelectric layer 114. Further, the getter layer 502 is conductive and may, for example, be or comprise titanium, barium, cerium, lanthanum, aluminum, magnesium, thorium, or some other suitable conductive getter material for hydrogen ions and/or other errant materials.
  • As illustrated by the cross-sectional view 2700 of FIG. 27 , the acts described with regard to FIGS. 7A and 7B are performed, with a few exceptions. The bottom-electrode layer 1121 (see, e.g., FIG. 26 ), the piezoelectric layer 114, and the top-electrode layer 1161 (see, e.g., FIG. 26 ) are patterned with a common pattern. Further, the getter layer 502 is patterned with a pattern different than the common pattern. In some embodiments, the common pattern is the same as that illustrated for the piezoelectric layer 114 in FIGS. 7A and 7B and/or the different pattern is the same as that illustrated for the bottom-electrode layer 1121 in FIGS. 7A and 7B. Thereafter, the acts described with regard to FIGS. 8, 9A, 9B, 10, 11, 12A, 12B, 13, 14A, 14B, 15A, 15B, 16, 17A, 17B, 18, 19, 20A, and 20B are performed. The resulting IC chip may, for example, be as illustrated at FIG. 5D.
  • In some embodiments, the present disclosure provides an IC chip including: a substrate; a piezoelectric device overlying the substrate; a pad overlying the piezoelectric device; a via extending from the pad to the piezoelectric device; and a barrier layer overlying the pad; wherein the barrier layer is configured to block hydrogen ions from diffusing through the barrier layer, from over the barrier layer to the piezoelectric device. In some embodiments, the barrier layer includes aluminum oxide, titanium oxide, iron oxide, zirconium oxide, zinc oxide, copper oxide, or tantalum oxide. In some embodiments, the barrier layer has a density in excess of about 2 grams per cubic centimeter. In some embodiments, the IC chip further includes a dielectric layer between the pad and the piezoelectric device, wherein the via extends through the dielectric layer, and wherein a rate of diffusion of hydrogen ions through the dielectric layer is more than a rate of diffusion of hydrogen ions through the barrier layer. In some embodiments, the IC chip further includes a second barrier layer between the pad and the piezoelectric device, wherein the via extends through the second barrier layer, and wherein the second barrier layer is configured to block hydrogen ions from diffusing through the second barrier layer, from over the second barrier layer to the piezoelectric device. In some embodiments, the IC chip further includes: a second pad including a first end overlying the piezoelectric device; and a second via extending from the second pad to the piezoelectric device, wherein the barrier layer overlies and is level with the second pad. In some embodiments, the IC chip further includes a getter layer on an underside of the piezoelectric device and configured to getter hydrogen ions.
  • In some embodiments, the present disclosure provides another IC chip including: a substrate; a piezoelectric structure over the substrate, wherein the piezoelectric structure includes a bottom electrode, a piezoelectric layer overlying the bottom electrode, and a top electrode overlying the piezoelectric layer; a first hydrogen-barrier layer overlying the piezoelectric structure; a pad having a first end and a second end, wherein the first end overlies the first hydrogen-barrier layer and the piezoelectric structure and is electrically coupled to the top or bottom electrode, and wherein the second end is level with the piezoelectric structure; and a second hydrogen-barrier layer overlying the pad and the piezoelectric structure. In some embodiments, the second hydrogen-barrier layer is a metal oxide. In some embodiments, the first hydrogen-barrier layer extends along individual sidewalls respectively of the bottom electrode, the top electrode, and the piezoelectric layer. In some embodiments, the first and second hydrogen-barrier layers share a common density. In some embodiments, the substrate includes a moveable membrane at an opening extending through the substrate, wherein the piezoelectric structure extends in a closed path around the moveable membrane. In some embodiments, the second hydrogen-barrier layer is on a sidewall of the moveable membrane. In some embodiments, the IC chip further includes a passivation layer overlying the second hydrogen-barrier layer, wherein the passivation layer is on a sidewall of the moveable membrane, and wherein the second hydrogen-barrier layer is spaced from the moveable membrane. In some embodiments, the pad is elongated continuously from the first end of the pad to the second end of the pad, wherein the second end is distal from the first end and is laterally offset from the piezoelectric structure. In some embodiments, the IC chip further includes a passivation layer overlying the second hydrogen-barrier layer, wherein the passivation layer and the second hydrogen-barrier layer form a common sidewall at the second end of the pad, and wherein the second end is distal from and laterally offset from the first end and the piezoelectric structure.
  • In some embodiments, the present disclosure provides a method including: forming a piezoelectric structure over a substrate and including a first electrode, a piezoelectric layer overlying the first electrode, and a second electrode overlying the piezoelectric layer; depositing a dielectric layer covering the piezoelectric structure; forming a pad and a via, wherein the pad overlies the dielectric layer, and wherein the via extends through the dielectric layer, from the pad to the to the piezoelectric structure; depositing a barrier layer covering the pad and the piezoelectric structure; and performing a semiconductor manufacturing process after the depositing of the barrier layer, wherein the semiconductor manufacturing process exposes the barrier layer to ions, and wherein the barrier layer blocks the ions from passing through the barrier layer. In some embodiments, the depositing of the barrier layer is performed without a source of hydrogen, and wherein the ions are hydrogen ions. In some embodiments, the piezoelectric structure extends laterally in a closed path around a central area, wherein the semiconductor manufacturing process includes patterning the substrate to form a plurality of slits at the central area. In some embodiments, the semiconductor manufacturing process includes: depositing a passivation layer covering the barrier layer; and patterning the passivation layer and the barrier layer to form a pad opening exposing an end of the pad laterally offset from the piezoelectric structure.
  • The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.

Claims (20)

What is claimed is:
1. An integrated circuit (IC) chip comprising:
a substrate;
a piezoelectric device overlying the substrate;
a pad overlying the piezoelectric device;
a via extending from the pad to the piezoelectric device; and
a barrier layer overlying the pad;
wherein the barrier layer is configured to block hydrogen ions from diffusing through the barrier layer, from over the barrier layer to the piezoelectric device.
2. The IC chip according to claim 1, wherein the barrier layer comprises aluminum oxide, titanium oxide, iron oxide, zirconium oxide, zinc oxide, copper oxide, or tantalum oxide.
3. The IC chip according to claim 1, wherein the barrier layer has a density in excess of about 2 grams per cubic centimeter.
4. The IC chip according to claim 1, further comprising:
a dielectric layer between the pad and the piezoelectric device, wherein the via extends through the dielectric layer, and wherein a rate of diffusion of hydrogen ions through the dielectric layer is more than a rate of diffusion of hydrogen ions through the barrier layer.
5. The IC chip according to claim 1, further comprising:
a second barrier layer between the pad and the piezoelectric device, wherein the via extends through the second barrier layer, and wherein the second barrier layer is configured to block hydrogen ions from diffusing through the second barrier layer, from over the second barrier layer to the piezoelectric device.
6. The IC chip according to claim 1, further comprising:
a second pad comprising a first end overlying the piezoelectric device; and
a second via extending from the second pad to the piezoelectric device, wherein the barrier layer overlies and is level with the second pad.
7. The IC chip according to claim 1, further comprising:
a getter layer on an underside of the piezoelectric device and configured to getter hydrogen ions.
8. An integrated circuit (IC) chip comprising:
a substrate;
a piezoelectric structure over the substrate, wherein the piezoelectric structure comprises a bottom electrode, a piezoelectric layer overlying the bottom electrode, and a top electrode overlying the piezoelectric layer;
a first hydrogen-barrier layer overlying the piezoelectric structure;
a pad having a first end and a second end, wherein the first end overlies the first hydrogen-barrier layer and the piezoelectric structure and is electrically coupled to the top or bottom electrode, and wherein the second end is level with the piezoelectric structure; and
a second hydrogen-barrier layer overlying the pad and the piezoelectric structure.
9. The IC chip according to claim 8, wherein the second hydrogen-barrier layer is a metal oxide.
10. The IC chip according to claim 8, wherein the first hydrogen-barrier layer extends along individual sidewalls respectively of the bottom electrode, the top electrode, and the piezoelectric layer.
11. The IC chip according to claim 8, wherein the first and second hydrogen-barrier layers share a common density.
12. The IC chip according to claim 8, wherein the substrate comprises a moveable membrane at an opening extending through the substrate, and wherein the piezoelectric structure extends in a closed path around the moveable membrane.
13. The IC chip according to claim 12, wherein the second hydrogen-barrier layer is on a sidewall of the moveable membrane.
14. The IC chip according to claim 12, further comprising:
a passivation layer overlying the second hydrogen-barrier layer, wherein the passivation layer is on a sidewall of the moveable membrane, and wherein the second hydrogen-barrier layer is spaced from the moveable membrane.
15. The IC chip according to claim 8, wherein the pad is elongated continuously from the first end of the pad to the second end of the pad, and wherein the second end is distal from the first end and is laterally offset from the piezoelectric structure.
16. The IC chip according to claim 8, further comprising:
a passivation layer overlying the second hydrogen-barrier layer, wherein the passivation layer and the second hydrogen-barrier layer form a common sidewall at the second end of the pad, and wherein the second end is distal from and laterally offset from the first end and the piezoelectric structure.
17. A method comprising:
forming a piezoelectric structure over a substrate and comprising a first electrode, a piezoelectric layer overlying the first electrode, and a second electrode overlying the piezoelectric layer;
depositing a dielectric layer covering the piezoelectric structure;
forming a pad and a via, wherein the pad overlies the dielectric layer, and wherein the via extends through the dielectric layer, from the pad to the piezoelectric structure;
depositing a barrier layer covering the pad and the piezoelectric structure; and
performing a semiconductor manufacturing process after the depositing of the barrier layer, wherein the semiconductor manufacturing process exposes the barrier layer to ions, and wherein the barrier layer blocks the ions from passing through the barrier layer.
18. The method according to claim 17, wherein the depositing of the barrier layer is performed without a source of hydrogen, and wherein the ions are hydrogen ions.
19. The method according to claim 17, wherein the piezoelectric structure extends laterally in a closed path around a central area, and wherein the semiconductor manufacturing process comprises patterning the substrate to form a plurality of slits at the central area.
20. The method according to claim 17, wherein the semiconductor manufacturing process comprises:
depositing a passivation layer covering the barrier layer; and
patterning the passivation layer and the barrier layer to form a pad opening exposing an end of the pad laterally offset from the piezoelectric structure.
US17/577,715 2021-08-02 2022-01-18 Barrier layer on a piezoelectric-device pad Pending US20230037116A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/577,715 US20230037116A1 (en) 2021-08-02 2022-01-18 Barrier layer on a piezoelectric-device pad
DE102022101983.7A DE102022101983A1 (en) 2021-08-02 2022-01-28 BARRIER LAYER ON A PIEZOELECTRIC DEVICE PAD
KR1020220031586A KR20230019765A (en) 2021-08-02 2022-03-14 Barrier layer on a piezoelectric-device pad
TW111109792A TWI801168B (en) 2021-08-02 2022-03-17 Integrated circuit chip and method for forming the same
CN202210430608.2A CN115701768A (en) 2021-08-02 2022-04-22 Integrated circuit chip and forming method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163228275P 2021-08-02 2021-08-02
US17/577,715 US20230037116A1 (en) 2021-08-02 2022-01-18 Barrier layer on a piezoelectric-device pad

Publications (1)

Publication Number Publication Date
US20230037116A1 true US20230037116A1 (en) 2023-02-02

Family

ID=84889887

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/577,715 Pending US20230037116A1 (en) 2021-08-02 2022-01-18 Barrier layer on a piezoelectric-device pad

Country Status (5)

Country Link
US (1) US20230037116A1 (en)
KR (1) KR20230019765A (en)
CN (1) CN115701768A (en)
DE (1) DE102022101983A1 (en)
TW (1) TWI801168B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347147B1 (en) * 1998-12-07 2002-02-12 The United States Of America As Represented By The Sceretary Of The Navy High noise suppression microphone
US20210043721A1 (en) * 2019-08-05 2021-02-11 Taiwan Semiconductor Manufacturing Co., Ltd. Titanium layer as getter layer for hydrogen in a mim device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9029963B2 (en) * 2012-09-25 2015-05-12 Sand 9, Inc. MEMS microphone
US10115883B2 (en) * 2014-09-04 2018-10-30 Rohm Co., Ltd. Device using a piezoelectric element and method for manufacturing the same
US10861929B2 (en) * 2018-06-27 2020-12-08 Taiwan Semiconductor Manufacturing Co., Ltd. Electronic device including a capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347147B1 (en) * 1998-12-07 2002-02-12 The United States Of America As Represented By The Sceretary Of The Navy High noise suppression microphone
US20210043721A1 (en) * 2019-08-05 2021-02-11 Taiwan Semiconductor Manufacturing Co., Ltd. Titanium layer as getter layer for hydrogen in a mim device

Also Published As

Publication number Publication date
KR20230019765A (en) 2023-02-09
TWI801168B (en) 2023-05-01
TW202308187A (en) 2023-02-16
CN115701768A (en) 2023-02-10
DE102022101983A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
US20230353066A1 (en) MEMS Structure and Method of Forming Same
JP5754825B2 (en) 3D via capacitor with floating conductive plate for improved reliability
US6518092B2 (en) Semiconductor device and method for manufacturing
US10787360B2 (en) Semiconductor MEMS structure
US7943476B2 (en) Stack capacitor in semiconductor device and method for fabricating the same including one electrode with greater surface area
KR101896517B1 (en) Semicoductor devices having through vias and methods for fabricating the same
US20070111496A1 (en) Semiconductor device having dual stacked MIM capacitor and method of fabricating the same
JPWO2012029644A1 (en) Semiconductor device and manufacturing method thereof
US10618801B2 (en) MEMS structure with bilayer stopper and method for forming the same
US20220336726A1 (en) Piezoelectric device with hydrogen getter
US20090121315A1 (en) Method for producing an integrated circuit and arrangement comprising a substrate
US7528478B2 (en) Semiconductor devices having post passivation interconnections and a buffer layer
US20220254871A1 (en) Titanium layer as getter layer for hydrogen in a mim device
US20230037116A1 (en) Barrier layer on a piezoelectric-device pad
US20090293247A1 (en) Metal-insulator-metal capacitor structure
TW201216449A (en) Method for forming memory cell transistor
CN116113314A (en) Integrated capacitor and preparation method thereof
JP2001044195A (en) Semiconductor device and manufacture thereof
JP6717520B2 (en) Capacitor manufacturing method
US20230232159A1 (en) Top notch slit profile for mems device
WO2023133996A1 (en) Semiconductor structure and manufacturing method for semiconductor structure
US11839072B2 (en) Method for preparing semiconductor device with T-shaped landing pad structure
US11830812B2 (en) Semiconductor device with T-shaped landing pad structure
US20240032283A1 (en) Semiconductor device with air gap and method for preparing the same
KR100591182B1 (en) Method of forming interconnection line for semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, CHIH-MING;REEL/FRAME:058901/0001

Effective date: 20220118

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS