US20230031274A1 - Semiconductor device structure with conductive contacts of different widths and method for preparing the same - Google Patents

Semiconductor device structure with conductive contacts of different widths and method for preparing the same Download PDF

Info

Publication number
US20230031274A1
US20230031274A1 US17/387,203 US202117387203A US2023031274A1 US 20230031274 A1 US20230031274 A1 US 20230031274A1 US 202117387203 A US202117387203 A US 202117387203A US 2023031274 A1 US2023031274 A1 US 2023031274A1
Authority
US
United States
Prior art keywords
metal
layer
semiconductor device
device structure
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/387,203
Inventor
Ming-Hung Hsieh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanya Technology Corp
Original Assignee
Nanya Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanya Technology Corp filed Critical Nanya Technology Corp
Priority to US17/387,203 priority Critical patent/US20230031274A1/en
Assigned to NANYA TECHNOLOGY CORPORATION reassignment NANYA TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HSIEH, MING-HUNG
Priority to TW110139348A priority patent/TWI809539B/en
Priority to CN202210367940.9A priority patent/CN115692363A/en
Publication of US20230031274A1 publication Critical patent/US20230031274A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5283Cross-sectional geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • H01L21/32053Deposition of metallic or metal-silicide layers of metal-silicide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76858After-treatment introducing at least one additional element into the layer by diffusing alloying elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76885By forming conductive members before deposition of protective insulating material, e.g. pillars, studs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76888By rendering at least a portion of the conductor non conductive, e.g. oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides

Definitions

  • the present disclosure relates to a semiconductor device structure and a method for preparing the same, and more particularly, to a semiconductor device structure with conductive contact of different widths and a method for preparing the same.
  • Semiconductor devices are essential for many modern applications. With the advancement of electronic technology, semiconductor devices are becoming smaller in size while providing greater functionality and including greater amounts of integrated circuitry. Due to the miniaturized scale of semiconductor devices, various types and dimensions of semiconductor devices providing different functionalities are integrated and packaged into a single module. Furthermore, numerous manufacturing operations are implemented for integration of various types of semiconductor devices.
  • a semiconductor device structure in one embodiment, includes a dielectric layer disposed over a semiconductor substrate, and a first conductive contact penetrating through the dielectric layer.
  • the first conductive contact includes a first metal filling layer and a first metal silicide structure surrounding the first metal filling layer.
  • the semiconductor device structure also includes a second conductive contact penetrating through the dielectric layer.
  • the second conductive contact includes a second metal filling layer and a second metal silicide structure surrounding the second metal filling layer, and a first width of the first conductive contact is different from a second width of the second conductive contact.
  • the first metal filling layer is separated from the dielectric layer by the first metal silicide structure, and the second metal filling layer is separated from the dielectric layer by the second metal silicide structure.
  • the first metal filling layer is separated from the semiconductor substrate by the first metal silicide structure, and the second metal filling layer is separated from the semiconductor substrate by the second metal silicide structure.
  • a material of the first metal silicide structure is the same as a material of the second metal silicide structure.
  • a top surface of the first metal silicide structure is level with a top surface of the first metal filling layer, and a top surface of the second metal silicide structure is level with a top surface of the second metal filling layer.
  • the first metal silicide structure and the second metal silicide structure each comprise multiple sub-layers.
  • a semiconductor device structure in another embodiment, includes a dielectric layer disposed over a semiconductor substrate, and a conductive contact penetrating through the dielectric layer.
  • the semiconductor device structure also includes a metal oxide layer separating the conductive contact from the dielectric layer.
  • the conductive contact and the metal oxide layer include a same metal.
  • the metal oxide layer is in direct contact with the conductive contact. In some embodiments, a bottom surface of the metal oxide layer is level with a bottom surface of the conductive contact. In some embodiments, a top surface of the metal oxide layer is level with a top surface of the conductive contact.
  • a method for preparing a semiconductor device structure includes forming a dielectric layer over a semiconductor substrate, and forming a first opening and a second opening penetrating through the dielectric layer. A first width of the first opening is different from a second width of the second opening. The method also includes forming a first metal silicide structure and a second metal silicide structure in the first opening and the second opening, respectively.
  • the forming the first metal silicide structure and the second metal silicide structure includes forming a first silicon-containing layer and a second silicon-containing layer lining the first opening and the second opening, respectively, and transforming the first silicon-containing layer and the second silicon-containing layer into a first metal silicide layer and a second metal silicide layer, respectively.
  • the method further includes filling a remaining portion of the first opening with a first metal filling layer and filling a remaining portion of the second opening with a second metal filling layer.
  • the first silicon-containing layer and the second silicon-containing layer are formed by soaking the first opening and the second opening in silane. In some embodiments, a bottom surface and sidewalls of the first opening are covered by the first silicon-containing layer, and a bottom surface and sidewalls of the second opening are covered by the second silicon-containing layer. In some embodiments, the forming the first metal silicide structure and the second metal silicide structure further includes forming a third silicon-containing layer and a fourth silicon-containing layer over the first metal silicide layer and the second metal silicide layer, respectively, and transforming the third silicon-containing layer and the fourth silicon-containing layer into a third metal silicide layer and a fourth metal silicide layer, respectively. In some embodiments, the first metal filling layer is separated from the dielectric layer by the first metal silicide structure, and the second metal filling layer is separated from the dielectric layer by the second metal silicide structure.
  • a method for preparing a semiconductor device structure includes forming a sacrificial layer over a semiconductor substrate, and forming an opening penetrating through the sacrificial layer. The method also includes filling the opening with a metal pillar, and removing the sacrificial layer after the metal pillar is formed. The method further includes reducing a width of the metal pillar after the sacrificial layer is removed.
  • the width of the metal pillar is reduced by performing an oxidation process, such that a portion of the metal pillar is transformed into a metal oxide layer.
  • the metal oxide layer covers a top surface and sidewalls of a remaining portion of the metal pillar.
  • the method further includes forming a dielectric layer covering the metal oxide layer, and performing a planarization process to expose the remaining portion of the metal pillar.
  • the method further includes removing the metal oxide layer to expose the remaining portion of the metal pillar, and forming a dielectric layer covering the remaining portion of the metal pillar.
  • the method includes performing a planarization process to expose the remaining portion of the metal pillar.
  • a method for preparing a semiconductor device structure includes: forming a sacrificial layer over a semiconductor substrate; forming a first opening and a second opening penetrating through the sacrificial layer, wherein a first width of the first opening is different from a second width of the second opening; filling the first opening and the second opening with a first metal pillar and a second metal pillar; removing the sacrificial layer after the first metal pillar and the second metal pillar are formed; and reducing a width of the first metal pillar and a width of the second metal pillar after the sacrificial layer is removed.
  • the width of the first metal pillar is reduced by performing an oxidation process, such that a portion of the metal pillar is transformed into a metal oxide layer.
  • the metal oxide layer covers a top surface and sidewalls of a remaining portion of the first metal pillar.
  • the method for preparing a semiconductor device structure further comprises: forming a dielectric layer covering the metal oxide layer; and performing a planarization process to expose the remaining portion of the first metal pillar.
  • the method for preparing a semiconductor device structure further comprises: removing the metal oxide layer to expose the remaining portion of the first metal pillar; forming a dielectric layer covering the remaining portion of the first metal pillar; and performing a planarization process to expose the remaining portion of the first metal pillar.
  • the semiconductor device structure includes conductive contacts penetrating through a dielectric layer over a semiconductor substrate.
  • Each of the conductive contacts includes a metal filling layer and a metal silicide structure surrounding the metal filling layer.
  • the conductive contacts have different widths. Since the conductive contacts with different widths may be formed in similar processing steps using similar materials, the method for preparing the semiconductor device structure is simple and the fabrication cost and time of the semiconductor device structure can be reduced.
  • FIG. 1 is a cross-sectional view illustrating a semiconductor device structure, in accordance with some embodiments.
  • FIG. 2 is a cross-sectional view illustrating a semiconductor device structure, in accordance with some embodiments.
  • FIG. 3 is a cross-sectional view illustrating a semiconductor device structure, in accordance with some embodiments.
  • FIG. 4 is a flow diagram illustrating a method for preparing a semiconductor device structure, in accordance with some embodiments.
  • FIG. 5 is a flow diagram illustrating a method for preparing a semiconductor device structure, in accordance with some embodiments.
  • FIG. 6 is a cross-sectional view illustrating an intermediate stage of forming a dielectric layer over a semiconductor substrate during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 7 is a cross-sectional view illustrating an intermediate stage of forming a patterned mask over the dielectric layer during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 8 is a cross-sectional view illustrating an intermediate stage of etching the dielectric layer to form openings during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 9 is a cross-sectional view illustrating an intermediate stage of removing the patterned mask during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 10 is a cross-sectional view illustrating an intermediate stage of forming silicon-containing layers lining the openings during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 11 is a cross-sectional view illustrating an intermediate stage of transforming the silicon-containing layers into metal silicide layers during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 12 is a cross-sectional view illustrating an intermediate stage of repeating the step of forming silicon-containing layers during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 13 is a cross-sectional view illustrating an intermediate stage of repeating the step of transforming the silicon-containing layers into metal silicide layers during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 14 is a cross-sectional view illustrating an intermediate stage of forming metal silicide structures during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 15 is a cross-sectional view illustrating an intermediate stage of forming openings in a sacrificial layer over a semiconductor substrate during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 16 is a cross-sectional view illustrating an intermediate stage of filling the openings with metal pillars during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 17 is a cross-sectional view illustrating an intermediate stage of removing the sacrificial layer during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 18 is a cross-sectional view illustrating an intermediate stage of performing an oxidation process to transform portions of the metal pillars into metal oxide layers during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 19 is a cross-sectional view illustrating an intermediate stage of forming a dielectric layer over the metal oxide layers during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 20 is a cross-sectional view illustrating an intermediate stage of removing the metal oxide layers during the formation of the semiconductor device structure, in accordance with some embodiments.
  • first and second features are formed in direct contact
  • additional features may be formed between the first and second features, such that the first and second features may not be in direct contact
  • present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
  • spatially relative terms such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures.
  • the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
  • the apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
  • FIG. 1 is a cross-sectional view illustrating a semiconductor device structure 100 , in accordance with some embodiments.
  • the semiconductor device structure 100 includes a dielectric layer 103 disposed over a semiconductor substrate 101 , and conductive contacts 149 a and 149 b disposed in the dielectric layer 103 .
  • the conductive contacts 149 a and 149 b penetrate through the dielectric layer 103 to contact the semiconductor substrate 101 .
  • the conductive contact 149 a includes a metal filling layer 147 a and a metal silicide structure 145 a surrounding the metal filling layer 147 a
  • the conductive contact 149 b includes a metal filling layer 147 b and a metal silicide structure 145 b surrounding the metal filling layer 147 b
  • the metal filling layer 147 a is separated from the dielectric layer 103 and the semiconductor substrate 101 by the metal silicide structure 145 a
  • the metal filling layer 147 b is separated from the dielectric layer 103 and the semiconductor substrate 101 by the metal silicide structure 145 b
  • the metal filling layer 147 a is in direct contact with the metal silicide structure 145 a
  • the metal filling layer 147 b is in direct contact with the metal silicide structure 145 b.
  • the top surface T 1 of the metal silicide structure 145 a of the conductive contact 149 a is substantially level with the top surface T 2 of the metal filling layer 147 a of the conductive contact 149 a
  • the top surface T 3 of the metal silicide structure 145 b of the conductive contact 149 b is substantially level with the top surface T 4 of the metal filling layer 147 b of the conductive contact 149 b
  • the word “substantially” means preferably at least 90%, more preferably 95%, even more preferably 98%, and most preferably 99%.
  • the conductive contact 149 a has a width W 1
  • the conductive contact 149 b has a width W 2
  • the width W 2 is greater than the width W 1 .
  • FIG. 2 is a cross-sectional view illustrating a semiconductor device structure 200 a , in accordance with some embodiments.
  • the semiconductor device structure 200 a includes a dielectric layer 217 disposed over a semiconductor substrate 201 , and conductive contacts 213 ′ disposed in the dielectric layer 217 .
  • FIG. 2 shows that the semiconductor device structure 200 a includes two conductive contacts 213 ′, the present disclosure is not limited thereto.
  • the semiconductor device structure 200 a can have more, or fewer conductive contacts 213 ′, depend on the functional requirements of the semiconductor device structure 200 a.
  • the semiconductor device structure 200 a also includes metal oxide layers 215 disposed between the conductive contacts 213 ′ and the dielectric layer 217 .
  • the conductive contacts 213 ′ are separated from the dielectric layer 217 by the metal oxide layers 215 .
  • the conductive contacts 213 ′ and the metal oxide layers 215 include the same metal.
  • the top surfaces T 5 of the metal oxide layers 215 are substantially level with the top surfaces T 6 of the conductive contacts 213 ′.
  • the bottom surfaces B 1 of the metal oxide layers 215 are substantially level with the bottom surfaces B 2 of the conductive contacts 213 ′.
  • conductive contacts 213 ′ and the metal oxide layers 215 are in direct contact with the semiconductor substrate 201 .
  • FIG. 3 is a cross-sectional view illustrating a semiconductor device structure 200 b , in accordance with some embodiments.
  • the semiconductor device structure 200 b in FIG. 3 is similar to the semiconductor device structure 200 a in FIG. 2 . However, in FIG. 3 , the metal oxide layers 215 are removed such that the conductive contacts 213 ′ are in direct contact with the dielectric layer 217 .
  • the semiconductor device structure 200 b may comprise conductive contacts with different widths in the dielectric layer, which is not repeated herein for clarity.
  • FIG. 4 is a flow diagram illustrating a method 10 for forming a semiconductor device structure, such as the semiconductor device structure 100 shown in FIG. 1 , and the method 10 includes steps S 11 , S 13 , S 15 , S 17 , S 19 and S 21 , in accordance with some embodiments.
  • FIG. 5 is a flow diagram illustrating a method 30 for forming a semiconductor device structure, such as the semiconductor device structures 200 a and 200 b shown in FIGS. 2 and 3 , and the method 30 includes steps S 31 , S 33 , S 35 , S 37 , S 39 , S 41 , S 43 and S 45 , in accordance with some embodiments.
  • the steps S 11 to S 21 of FIG. 4 and the steps S 31 to S 45 of FIG. 5 are elaborated in connection with the following figures.
  • FIGS. 6 - 14 are cross-sectional views illustrating various stages of forming the semiconductor device structure 100 by the method 10 of FIG. 4 according to various embodiments of the present disclosure.
  • a semiconductor substrate 101 is provided.
  • the semiconductor substrate 101 may be a semiconductor wafer such as a silicon wafer.
  • the semiconductor substrate 101 may include elementary semiconductor materials, compound semiconductor materials, and/or alloy semiconductor materials. Examples of the elementary semiconductor materials may include, but are not limited to, crystal silicon, polycrystalline silicon, amorphous silicon, germanium, and/or diamond.
  • Examples of the compound semiconductor materials may include, but are not limited to, silicon carbide, gallium arsenic, gallium phosphide, indium phosphide, indium arsenide, and/or indium antimonide.
  • Examples of the alloy semiconductor materials may include, but are not limited to, SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP, and/or GaInAsP.
  • the semiconductor substrate 101 includes an epitaxial layer.
  • the semiconductor substrate 101 has an epitaxial layer overlying a bulk semiconductor.
  • the semiconductor substrate 101 is a semiconductor-on-insulator substrate which may include a substrate, a buried oxide layer over the substrate, and a semiconductor layer over the buried oxide layer, such as a silicon-on-insulator (SOI) substrate, a silicon germanium-on-insulator (SGOI) substrate, or a germanium-on-insulator (GOI) substrate.
  • SOI silicon-on-insulator
  • SGOI silicon germanium-on-insulator
  • GOI germanium-on-insulator
  • Semiconductor-on-insulator substrates can be fabricated using separation by implantation of oxygen (SIMOX), wafer bonding, and/or other suitable methods.
  • a dielectric layer 103 is formed over the semiconductor substrate 101 , as shown in FIG. 6 in accordance with some embodiments.
  • the respective step is illustrated as the step S 11 in the method 10 shown in FIG. 4 .
  • the dielectric layer 103 is made of silicon oxide, silicon nitride, silicon oxynitride, a low-k dielectric material or another suitable material.
  • the dielectric layer 103 may be formed by a deposition process, such as a chemical vapor deposition (CVD) process, a physical vapor deposition (PVD) process, an atomic layer deposition (ALD) process, a spin-on coating process, or another suitable method.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • ALD atomic layer deposition
  • a patterned mask 105 with openings 110 a and 110 b is formed over the dielectric layer 103 , as shown in FIG. 7 in accordance with some embodiments.
  • the dielectric layer 103 is exposed by the openings 110 a and 110 b .
  • the width W 1 of the opening 110 a is substantially equal to the width W 1 of the conductive contact 149 a (see FIG. 1 ).
  • the width W 1 of the opening 110 a and the width W 1 of the conductive contact 149 a are denoted by the same reference sign.
  • the width W 2 of the opening 110 b is substantially equal to the width W 2 of the conductive contact 149 b (see FIG. 1 ).
  • the width W 2 of the opening 110 b and the width W 2 of the conductive contact 149 b are denoted by the same reference sign.
  • the widths W 2 of the opening 110 b in the patterned mask 105 is greater than the width W 1 of the opening 110 a in the patterned mask 105 .
  • an etching process is performed on the dielectric layer 103 using the patterned mask 105 as an etching mask, such that openings 120 a and 120 b are formed in the dielectric layer 103 , as shown in FIG. 8 in accordance with some embodiments.
  • the etching process may be a wet etching process, a dry etching process, and a combination thereof.
  • the width of the opening 120 a is substantially equal to the width W 1 of the opening 110 a
  • the width of the opening 120 b is substantially equal to the width W 2 of the opening 110 b . Therefore, the width of the opening 120 b is greater than the width of the opening 120 a .
  • the openings 120 a and 120 b penetrate through the dielectric layer 103 , such that the semiconductor substrate 101 is exposed by the openings 120 a and 120 b , in accordance with some embodiments.
  • the respective step is illustrated as the step S 13 in the method 10 shown in FIG. 4 .
  • the patterned mask 105 is removed, as shown in FIG. 9 in accordance with some embodiments.
  • the patterned mask 105 is removed by a stripping process, an ashing process, an etching process, or another suitable process.
  • silicon-containing layers 123 a and 123 b are formed lining the openings 120 a and 120 b , respectively, as shown in FIG. 10 in accordance with some embodiments.
  • the respective step is illustrated as the step S 15 in the method 10 shown in FIG. 4 .
  • the silicon containing layer 123 a covers the sidewalls SW 1 and the bottom surface B 3 of the opening 120 a
  • the silicon containing layer 123 b covers the sidewalls SW 2 and the bottom surface B 4 of the opening 120 b.
  • the silicon-containing layers 123 a and 123 b are formed by soaking the openings 120 a and 120 b in at least one silicon-containing precursor, such as silane (SiH 4 ), disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), dichlorosilane (SiH 2 Cl 2 ), another silicon-containing precursor, or a combination thereof. It should be noted that the openings 120 a and 120 b are not fully filled by the silicon-containing layers 123 a and 123 b , in accordance with some embodiments.
  • the silicon-containing layers 123 a and 123 b are transformed into metal silicide layers 125 a and 125 b , as shown in FIG. 11 in accordance with some embodiments.
  • the respective step is illustrated as the step S 17 in the method 10 shown in FIG. 4 .
  • the silicon-containing layers 123 a and 123 b are transformed into metal silicide layers 125 a and 125 b by forming a metal material (not shown) over the silicon-containing layers 123 a and 123 b and thereafter performing an annealing process to react the metal material with the silicon-containing layers 123 a and 123 b.
  • the metal material includes nickel (Ni), titanium (Ti), cobalt (Co), tantalum (Ta), platinum (Pt), ytterbium (Yb), molybdenum (Mo), erbium (Er), or a combination thereof.
  • the metal silicide layers 125 a and 125 b include nickel silicide (NiSi), titanium silicide (TiSi), cobalt silicide (CoSi), tantalum silicide (TaSi), or a silicide material of a suitable metal material.
  • the metal silicide structures 145 a and 145 b shown in FIG. 1 are obtained after the metal silicide layers 125 a and 125 b are formed. In these cases, the process may proceed directly from the step S 17 to the step S 21 . In some embodiments, the steps S 15 and S 17 are sequentially repeated to form the metal silicide structures 145 a and 145 b , as indicated by the directional process arrow S 19 . In these cases, silicon-containing layers 133 a and 133 b are formed over the silicide layers 125 a and 125 b , as shown in FIG. 12 in accordance with some embodiments.
  • Some processes used to form the silicon-containing layers 133 a and 133 b are similar to, or the same as those used to form the silicon-containing layers 123 a and 123 b , and details thereof are not repeated herein.
  • the silicon-containing layers 133 a and 133 b are formed, the silicon-containing layers 133 a and 133 b are transformed into metal silicide layers 135 a and 135 b , as shown in FIG. 13 in accordance with some embodiments.
  • Some materials and processes used to form the metal silicide layers 135 a and 135 b are similar to, or the same as those used to form the metal silicide layers 125 a and 125 b , and details thereof are not repeated herein.
  • each of the metal silicide structures 145 a and 145 b may include multiple sub-layers, such as the metal silicide layers 125 a , 125 b , 135 a and 135 b , in accordance with some embodiments.
  • the metal silicide structures 145 a and 145 b formed in the openings 120 a and 120 b are shown in FIG. 14 in accordance with some embodiments. It should be noted that the openings 120 a and 120 b are not fully filled by the metal silicide structures 145 a and 145 b , in accordance with some embodiments.
  • the metal filling layers 147 a and 147 b may be formed simultaneously in the same process steps.
  • the metal filling layers 147 a and 147 b may be formed by a deposition process and a subsequent planarization process.
  • the deposition process may include a CVD process, a PVD process, an ALD process, a spin-on coating process, another suitable method, or a combination thereof.
  • the planarization process may include a chemical mechanical polishing (CMP) process.
  • the metal filling layers 147 a and 147 b may be formed separately by different steps.
  • the metal filling layer 147 b is formed after the metal filling layer 147 a .
  • the metal filling layers 147 a and 147 b are made of a conductive material, such as copper (Cu), tungsten (W), aluminum (Al), titanium (Ti), tantalum (Ta), gold (Au), silver (Ag), in accordance with some embodiments.
  • the semiconductor device structure 100 having conductive contacts 149 a and 149 b with different widths is obtained.
  • FIGS. 15 - 19 are cross-sectional views illustrating various stages of forming the semiconductor device structure 200 a by the method 30 of FIG. 5 according to various embodiments of the present disclosure.
  • a semiconductor substrate 201 similar to the semiconductor substrate 101 of the semiconductor device structure 100 , is provided, and a sacrificial layer 203 is formed over the semiconductor substrate 201 , in accordance with some embodiments.
  • the sacrificial layer 203 has openings 210 exposing the semiconductor substrate 201 .
  • the sacrificial layer 203 is made of a dielectric material.
  • the sacrificial layer 203 includes silicide oxide, silicide nitride, silicon oxynitride, a low-k dielectric material or another suitable material.
  • the sacrificial layer 203 may be formed by a deposition process, such as a CVD process, a PVD process, an ALD process, a spin-on coating process, or another suitable method.
  • each of the openings 210 penetrating through the sacrificial layer 203 has a width W 3 .
  • the openings 210 in the sacrificial layer 203 may be formed by an etching process, such as a wet etching process, a dry etching process, and a combination thereof.
  • the respective steps are illustrated as the steps S 31 and S 33 in the method 30 shown in FIG. 5 .
  • the openings 210 are filled with metal pillars 213 , as shown in FIG. 16 in accordance with some embodiments.
  • the respective step is illustrated as the step S 35 in the method 30 shown in FIG. 5 .
  • the widths of the metal pillars 213 are substantially equal to the widths W 3 of the openings 210 .
  • the metal pillars 213 include a conductive material such as aluminum (Al), copper (Cu), tungsten (W), titanium (Ti), tantalum (Ta), or a combination thereof.
  • the metal pillars 213 are formed by a deposition process and a subsequent planarization process.
  • the deposition process includes a CVD process, a PVD process, an ALD process, a sputtering process, a plating process, another suitable method, or a combination thereof.
  • the planarization process includes a CMP process.
  • the sacrificial layer 203 is removed, as shown in FIG. 17 in accordance with some embodiments.
  • the respective step is illustrated as the step S 37 in the method 30 shown in FIG. 5 .
  • the sacrificial layer 203 is removed by an etching process, a stripping process, an ashing process, or another suitable process. After the sacrificial layer 203 is removed, the metal pillars 213 are protruded from the top surface of the semiconductor substrate 201 .
  • the widths of the metal pillars 213 are reduced, as shown in FIG. 18 in accordance with some embodiments.
  • the widths of the metal pillars 213 are reduced by performing an oxidation process, such that portions of the metal pillars 213 are transformed into metal oxide layers 215 , and the remaining portions of the metal pillars 213 ′ (also referred to as conductive contacts) are obtained.
  • the respective step is illustrated as the step S 39 in the method 30 shown in FIG. 5 .
  • the resulting widths W 3 ′ of the remaining portions of the metal pillars 213 ′ are less than the original widths W 3 of the metal pillars 213 .
  • the outer portions of the metal pillars 213 i.e., the top portions and the sidewall portions of the metal pillars 213
  • the metal oxide layers 215 are formed over the sidewalls SW 3 and the top surface T 7 of the remaining portions of the metal pillars 213 ′, in accordance with some embodiments.
  • the step S 41 of removing the metal oxide layers 215 is optional. In the embodiments for forming the semiconductor device structure 200 a , the step S 41 is skipped after the metal oxide layers 215 are formed, and a dielectric layer 217 is formed covering the metal oxide layers 215 and the remaining portions of the metal pillars 213 ′, as shown in FIG. 19 in accordance with some embodiments.
  • the respective step is illustrated as the step S 43 in the method 30 shown in FIG. 5 .
  • the dielectric layer 217 is made of silicon oxide, silicon nitride, silicon oxynitride, a low-k dielectric material or another suitable material.
  • the dielectric layer 217 may be formed by a deposition process, such as a CVD process, a PVD process, an ALD process, a spin-on coating process, or another suitable method.
  • a planarization process is performed to remove excess portions of the dielectric layer 217 and the metal oxide layers 215 , such that the remaining portions of the metal pillars 213 ′ are exposed, as shown in FIG. 2 in accordance with some embodiments.
  • the respective step is illustrated as the step S 45 in the method 30 shown in FIG. 5 .
  • the planarization process may include a CMP process. After the planarization process is performed, the semiconductor device structure 200 a is obtained.
  • FIG. 20 is a cross-sectional view illustrating an intermediate stage of forming the semiconductor device structure 200 b by the method 30 of FIG. 5 according to various embodiments of the present disclosure.
  • Some processes used to form the semiconductor device structure 200 b are similar to, or the same as those used to form the semiconductor device structure 200 a , and details thereof are not repeated herein.
  • the step S 41 of removing the metal oxide layers 215 is performed on the structure of FIG. 18 , such that the top surface and the sidewalls of the remaining portions of the metal pillars 213 ′ are exposed. Then, the dielectric layer 217 is formed covering the structure of FIG.
  • the planarization process is performed to expose the remaining portions of the metal pillars 213 ′ (i.e., the steps S 43 and S 45 ), as shown in FIG. 3 in accordance with some embodiments.
  • the semiconductor device structure 200 b is obtained.
  • the sidewalls of the remaining portions of the metal pillars 213 ′ are in direct contact with the dielectric layer 217 .
  • the fabrication processes shown in FIGS. 15 - 19 can also be applied to prepare conductive contacts with different widths in the dielectric layer in a similar way, which is not repeated herein for clarity.
  • the semiconductor device structure 100 includes the conductive contacts 149 a and 149 b penetrating through the dielectric layer 103 over the semiconductor substrate 101 .
  • the conductive contact 149 a includes the metal filling layer 147 a and the metal silicide structure 145 a surrounding the metal filling layer 147 a
  • the conductive contact 149 b includes the metal filling layer 147 b and the metal silicide structure 145 b surrounding the metal filling layer 147 b .
  • the conductive contacts 149 a and 149 b have different widths (e.g., the widths W 1 and W 2 are different).
  • the conductive contacts 149 a and 149 b with different widths may be formed in similar processing steps using similar materials. As a result, the method for preparing the semiconductor device structure 100 is simple and the fabrication cost and time of the semiconductor device structure 100 can be reduced.
  • the semiconductor device structure 200 a includes the conductive contacts 213 ′ formed in the dielectric layer 217 over the semiconductor substrate 201 .
  • the semiconductor device structure 200 a also includes metal oxide layers 215 separating the conductive contacts 213 ′ from the dielectric layer 217 .
  • the conductive contacts 213 ′ are formed by performing a treatment process (e.g., an oxidation process) on the metal pillars 213 to reduce the widths of the metal pillars 213 , and the remaining portions of the metal pillars 213 become the conductive contacts 213 ′.
  • the metal oxide layers 215 are also formed by the treatment process.
  • a semiconductor device structure in one embodiment, includes a dielectric layer disposed over a semiconductor substrate, and a first conductive contact penetrating through the dielectric layer.
  • the first conductive contact includes a first metal filling layer and a first metal silicide structure surrounding the first metal filling layer.
  • the semiconductor device structure also includes a second conductive contact penetrating through the dielectric layer.
  • the second conductive contact includes a second metal filling layer and a second metal silicide structure surrounding the second metal filling layer, and a first width of the first conductive contact is different from a second width of the second conductive contact.
  • a semiconductor device structure in another embodiment, includes a dielectric layer disposed over a semiconductor substrate, and a conductive contact penetrating through the dielectric layer.
  • the semiconductor device structure also includes a metal oxide layer separating the conductive contact from the dielectric layer.
  • the conductive contact and the metal oxide layer include a same metal.
  • a method for preparing a semiconductor device structure includes forming a dielectric layer over a semiconductor substrate, and forming a first opening and a second opening penetrating through the dielectric layer. A first width of the first opening is different from a second width of the second opening. The method also includes forming a first metal silicide structure and a second metal silicide structure in the first opening and the second opening, respectively.
  • the forming the first metal silicide structure and the second metal silicide structure includes forming a first silicon-containing layer and a second silicon-containing layer lining the first opening and the second opening, respectively, and transforming the first silicon-containing layer and the second silicon-containing layer into a first metal silicide layer and a second metal silicide layer, respectively.
  • the method further includes filling a remaining portion of the first opening with a first metal filling layer and filling a remaining portion of the second opening with a second metal filling layer.
  • a method for preparing a semiconductor device structure includes forming a sacrificial layer over a semiconductor substrate, and forming an opening penetrating through the sacrificial layer. The method also includes filling the opening with a metal pillar, and removing the sacrificial layer after the metal pillar is formed. The method further includes reducing a width of the metal pillar after the sacrificial layer is removed.
  • a method for preparing a semiconductor device structure includes: forming a sacrificial layer over a semiconductor substrate; forming a first opening and a second opening penetrating through the sacrificial layer, wherein a first width of the first opening is different from a second width of the second opening; filling the first opening and the second opening with a first metal pillar and a second metal pillar; removing the sacrificial layer after the first metal pillar and the second metal pillar are formed; and reducing a width of the first metal pillar and a width of the second metal pillar after the sacrificial layer is removed.
  • the semiconductor device structure includes conductive contacts with different widths, and each of the conductive contacts includes a metal filling layer and a metal silicide structure surrounding the metal filling layer.
  • the method for preparing the semiconductor device structure having conductive contacts with different widths may be simple and the fabrication cost and time of the semiconductor device structure may be reduced.

Abstract

The present disclosure provides a semiconductor device structure with conductive contact of different widths and a method for preparing the semiconductor device structure. The semiconductor device structure includes a dielectric layer disposed over a semiconductor substrate, and a first conductive contact penetrating through the dielectric layer. The first conductive contact includes a first metal filling layer and a first metal silicide structure surrounding the first metal filling layer. The semiconductor device structure also includes a second conductive contact penetrating through the dielectric layer. The second conductive contact includes a second metal filling layer and a second metal silicide structure surrounding the second metal filling layer, and a first width of the first conductive contact is different from a second width of the second conductive contact.

Description

    TECHNICAL FIELD
  • The present disclosure relates to a semiconductor device structure and a method for preparing the same, and more particularly, to a semiconductor device structure with conductive contact of different widths and a method for preparing the same.
  • DISCUSSION OF THE BACKGROUND
  • Semiconductor devices are essential for many modern applications. With the advancement of electronic technology, semiconductor devices are becoming smaller in size while providing greater functionality and including greater amounts of integrated circuitry. Due to the miniaturized scale of semiconductor devices, various types and dimensions of semiconductor devices providing different functionalities are integrated and packaged into a single module. Furthermore, numerous manufacturing operations are implemented for integration of various types of semiconductor devices.
  • However, the manufacturing and integration of semiconductor devices involve many complicated steps and operations. Integration in semiconductor devices becomes increasingly complicated. An increase in complexity of manufacturing and integration of the semiconductor device may cause deficiencies. Accordingly, there is a continuous need to improve the manufacturing process of semiconductor devices so that the problems can be addressed.
  • This Discussion of the Background section is provided for background information only. The statements in this Discussion of the Background are not an admission that the subject matter disclosed in this section constitutes prior art to the present disclosure, and no part of this Discussion of the Background section may be used as an admission that any part of this application, including this Discussion of the Background section, constitutes prior art to the present disclosure.
  • SUMMARY
  • In one embodiment of the present disclosure, a semiconductor device structure is provided. The semiconductor device structure includes a dielectric layer disposed over a semiconductor substrate, and a first conductive contact penetrating through the dielectric layer. The first conductive contact includes a first metal filling layer and a first metal silicide structure surrounding the first metal filling layer. The semiconductor device structure also includes a second conductive contact penetrating through the dielectric layer. The second conductive contact includes a second metal filling layer and a second metal silicide structure surrounding the second metal filling layer, and a first width of the first conductive contact is different from a second width of the second conductive contact.
  • In some embodiments, the first metal filling layer is separated from the dielectric layer by the first metal silicide structure, and the second metal filling layer is separated from the dielectric layer by the second metal silicide structure. In some embodiments, the first metal filling layer is separated from the semiconductor substrate by the first metal silicide structure, and the second metal filling layer is separated from the semiconductor substrate by the second metal silicide structure. In some embodiments, a material of the first metal silicide structure is the same as a material of the second metal silicide structure. In some embodiments, a top surface of the first metal silicide structure is level with a top surface of the first metal filling layer, and a top surface of the second metal silicide structure is level with a top surface of the second metal filling layer. In some embodiments, the first metal silicide structure and the second metal silicide structure each comprise multiple sub-layers.
  • In another embodiment of the present disclosure, a semiconductor device structure is provided. The semiconductor device structure includes a dielectric layer disposed over a semiconductor substrate, and a conductive contact penetrating through the dielectric layer. The semiconductor device structure also includes a metal oxide layer separating the conductive contact from the dielectric layer. The conductive contact and the metal oxide layer include a same metal.
  • In some embodiments, the metal oxide layer is in direct contact with the conductive contact. In some embodiments, a bottom surface of the metal oxide layer is level with a bottom surface of the conductive contact. In some embodiments, a top surface of the metal oxide layer is level with a top surface of the conductive contact.
  • In another embodiment of the present disclosure, a method for preparing a semiconductor device structure is provided. The method includes forming a dielectric layer over a semiconductor substrate, and forming a first opening and a second opening penetrating through the dielectric layer. A first width of the first opening is different from a second width of the second opening. The method also includes forming a first metal silicide structure and a second metal silicide structure in the first opening and the second opening, respectively. The forming the first metal silicide structure and the second metal silicide structure includes forming a first silicon-containing layer and a second silicon-containing layer lining the first opening and the second opening, respectively, and transforming the first silicon-containing layer and the second silicon-containing layer into a first metal silicide layer and a second metal silicide layer, respectively. The method further includes filling a remaining portion of the first opening with a first metal filling layer and filling a remaining portion of the second opening with a second metal filling layer.
  • In some embodiments, the first silicon-containing layer and the second silicon-containing layer are formed by soaking the first opening and the second opening in silane. In some embodiments, a bottom surface and sidewalls of the first opening are covered by the first silicon-containing layer, and a bottom surface and sidewalls of the second opening are covered by the second silicon-containing layer. In some embodiments, the forming the first metal silicide structure and the second metal silicide structure further includes forming a third silicon-containing layer and a fourth silicon-containing layer over the first metal silicide layer and the second metal silicide layer, respectively, and transforming the third silicon-containing layer and the fourth silicon-containing layer into a third metal silicide layer and a fourth metal silicide layer, respectively. In some embodiments, the first metal filling layer is separated from the dielectric layer by the first metal silicide structure, and the second metal filling layer is separated from the dielectric layer by the second metal silicide structure.
  • In yet another embodiment of the present disclosure, a method for preparing a semiconductor device structure is provided. The method includes forming a sacrificial layer over a semiconductor substrate, and forming an opening penetrating through the sacrificial layer. The method also includes filling the opening with a metal pillar, and removing the sacrificial layer after the metal pillar is formed. The method further includes reducing a width of the metal pillar after the sacrificial layer is removed.
  • In some embodiments, the width of the metal pillar is reduced by performing an oxidation process, such that a portion of the metal pillar is transformed into a metal oxide layer. In some embodiments, the metal oxide layer covers a top surface and sidewalls of a remaining portion of the metal pillar. In some embodiments, the method further includes forming a dielectric layer covering the metal oxide layer, and performing a planarization process to expose the remaining portion of the metal pillar. In some embodiments, the method further includes removing the metal oxide layer to expose the remaining portion of the metal pillar, and forming a dielectric layer covering the remaining portion of the metal pillar. In addition, the method includes performing a planarization process to expose the remaining portion of the metal pillar.
  • In another embodiment of the present disclosure, a method for preparing a semiconductor device structure is provided. The method includes: forming a sacrificial layer over a semiconductor substrate; forming a first opening and a second opening penetrating through the sacrificial layer, wherein a first width of the first opening is different from a second width of the second opening; filling the first opening and the second opening with a first metal pillar and a second metal pillar; removing the sacrificial layer after the first metal pillar and the second metal pillar are formed; and reducing a width of the first metal pillar and a width of the second metal pillar after the sacrificial layer is removed.
  • In some embodiments, the width of the first metal pillar is reduced by performing an oxidation process, such that a portion of the metal pillar is transformed into a metal oxide layer.
  • In some embodiments, the metal oxide layer covers a top surface and sidewalls of a remaining portion of the first metal pillar.
  • In some embodiments, the method for preparing a semiconductor device structure further comprises: forming a dielectric layer covering the metal oxide layer; and performing a planarization process to expose the remaining portion of the first metal pillar.
  • In some embodiments, the method for preparing a semiconductor device structure further comprises: removing the metal oxide layer to expose the remaining portion of the first metal pillar; forming a dielectric layer covering the remaining portion of the first metal pillar; and performing a planarization process to expose the remaining portion of the first metal pillar.
  • Embodiments of a semiconductor device structure and method for preparing the same are provided in the disclosure. In some embodiments, the semiconductor device structure includes conductive contacts penetrating through a dielectric layer over a semiconductor substrate. Each of the conductive contacts includes a metal filling layer and a metal silicide structure surrounding the metal filling layer. In some embodiments, the conductive contacts have different widths. Since the conductive contacts with different widths may be formed in similar processing steps using similar materials, the method for preparing the semiconductor device structure is simple and the fabrication cost and time of the semiconductor device structure can be reduced.
  • The foregoing has outlined rather broadly the features and technical advantages of the present disclosure in order that the detailed description of the disclosure that follows may be better understood. Additional features and advantages of the disclosure will be described hereinafter, and form the subject of the claims of the disclosure. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the disclosure as set forth in the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It should be noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
  • FIG. 1 is a cross-sectional view illustrating a semiconductor device structure, in accordance with some embodiments.
  • FIG. 2 is a cross-sectional view illustrating a semiconductor device structure, in accordance with some embodiments.
  • FIG. 3 is a cross-sectional view illustrating a semiconductor device structure, in accordance with some embodiments.
  • FIG. 4 is a flow diagram illustrating a method for preparing a semiconductor device structure, in accordance with some embodiments.
  • FIG. 5 is a flow diagram illustrating a method for preparing a semiconductor device structure, in accordance with some embodiments.
  • FIG. 6 is a cross-sectional view illustrating an intermediate stage of forming a dielectric layer over a semiconductor substrate during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 7 is a cross-sectional view illustrating an intermediate stage of forming a patterned mask over the dielectric layer during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 8 is a cross-sectional view illustrating an intermediate stage of etching the dielectric layer to form openings during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 9 is a cross-sectional view illustrating an intermediate stage of removing the patterned mask during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 10 is a cross-sectional view illustrating an intermediate stage of forming silicon-containing layers lining the openings during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 11 is a cross-sectional view illustrating an intermediate stage of transforming the silicon-containing layers into metal silicide layers during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 12 is a cross-sectional view illustrating an intermediate stage of repeating the step of forming silicon-containing layers during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 13 is a cross-sectional view illustrating an intermediate stage of repeating the step of transforming the silicon-containing layers into metal silicide layers during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 14 is a cross-sectional view illustrating an intermediate stage of forming metal silicide structures during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 15 is a cross-sectional view illustrating an intermediate stage of forming openings in a sacrificial layer over a semiconductor substrate during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 16 is a cross-sectional view illustrating an intermediate stage of filling the openings with metal pillars during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 17 is a cross-sectional view illustrating an intermediate stage of removing the sacrificial layer during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 18 is a cross-sectional view illustrating an intermediate stage of performing an oxidation process to transform portions of the metal pillars into metal oxide layers during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 19 is a cross-sectional view illustrating an intermediate stage of forming a dielectric layer over the metal oxide layers during the formation of the semiconductor device structure, in accordance with some embodiments.
  • FIG. 20 is a cross-sectional view illustrating an intermediate stage of removing the metal oxide layers during the formation of the semiconductor device structure, in accordance with some embodiments.
  • DETAILED DESCRIPTION
  • The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
  • Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
  • FIG. 1 is a cross-sectional view illustrating a semiconductor device structure 100, in accordance with some embodiments. In some embodiments, the semiconductor device structure 100 includes a dielectric layer 103 disposed over a semiconductor substrate 101, and conductive contacts 149 a and 149 b disposed in the dielectric layer 103. In some embodiments, the conductive contacts 149 a and 149 b penetrate through the dielectric layer 103 to contact the semiconductor substrate 101.
  • In some embodiments, the conductive contact 149 a includes a metal filling layer 147 a and a metal silicide structure 145 a surrounding the metal filling layer 147 a, and the conductive contact 149 b includes a metal filling layer 147 b and a metal silicide structure 145 b surrounding the metal filling layer 147 b. In some embodiments, the metal filling layer 147 a is separated from the dielectric layer 103 and the semiconductor substrate 101 by the metal silicide structure 145 a, and the metal filling layer 147 b is separated from the dielectric layer 103 and the semiconductor substrate 101 by the metal silicide structure 145 b. In some embodiments, the metal filling layer 147 a is in direct contact with the metal silicide structure 145 a, and the metal filling layer 147 b is in direct contact with the metal silicide structure 145 b.
  • Moreover, in some embodiments, the top surface T1 of the metal silicide structure 145 a of the conductive contact 149 a is substantially level with the top surface T2 of the metal filling layer 147 a of the conductive contact 149 a, and the top surface T3 of the metal silicide structure 145 b of the conductive contact 149 b is substantially level with the top surface T4 of the metal filling layer 147 b of the conductive contact 149 b. Within the context of this disclosure, the word “substantially” means preferably at least 90%, more preferably 95%, even more preferably 98%, and most preferably 99%. In some embodiments, the conductive contact 149 a has a width W1, the conductive contact 149 b has a width W2, and the width W2 is greater than the width W1.
  • FIG. 2 is a cross-sectional view illustrating a semiconductor device structure 200 a, in accordance with some embodiments. In some embodiments, the semiconductor device structure 200 a includes a dielectric layer 217 disposed over a semiconductor substrate 201, and conductive contacts 213′ disposed in the dielectric layer 217. Although FIG. 2 shows that the semiconductor device structure 200 a includes two conductive contacts 213′, the present disclosure is not limited thereto. In some embodiments, the semiconductor device structure 200 a can have more, or fewer conductive contacts 213′, depend on the functional requirements of the semiconductor device structure 200 a.
  • Moreover, in some embodiments, the semiconductor device structure 200 a also includes metal oxide layers 215 disposed between the conductive contacts 213′ and the dielectric layer 217. In some embodiments, the conductive contacts 213′ are separated from the dielectric layer 217 by the metal oxide layers 215. In some embodiments, the conductive contacts 213′ and the metal oxide layers 215 include the same metal.
  • In some embodiments, the top surfaces T5 of the metal oxide layers 215 are substantially level with the top surfaces T6 of the conductive contacts 213′. In some embodiments, the bottom surfaces B1 of the metal oxide layers 215 are substantially level with the bottom surfaces B2 of the conductive contacts 213′. In some embodiments, conductive contacts 213′ and the metal oxide layers 215 are in direct contact with the semiconductor substrate 201.
  • FIG. 3 is a cross-sectional view illustrating a semiconductor device structure 200 b, in accordance with some embodiments. The semiconductor device structure 200 b in FIG. 3 is similar to the semiconductor device structure 200 a in FIG. 2 . However, in FIG. 3 , the metal oxide layers 215 are removed such that the conductive contacts 213′ are in direct contact with the dielectric layer 217. In some embodiments of the present disclosure, the semiconductor device structure 200 b may comprise conductive contacts with different widths in the dielectric layer, which is not repeated herein for clarity.
  • FIG. 4 is a flow diagram illustrating a method 10 for forming a semiconductor device structure, such as the semiconductor device structure 100 shown in FIG. 1 , and the method 10 includes steps S11, S13, S15, S17, S19 and S21, in accordance with some embodiments. FIG. 5 is a flow diagram illustrating a method 30 for forming a semiconductor device structure, such as the semiconductor device structures 200 a and 200 b shown in FIGS. 2 and 3 , and the method 30 includes steps S31, S33, S35, S37, S39, S41, S43 and S45, in accordance with some embodiments. The steps S11 to S21 of FIG. 4 and the steps S31 to S45 of FIG. 5 are elaborated in connection with the following figures.
  • FIGS. 6-14 are cross-sectional views illustrating various stages of forming the semiconductor device structure 100 by the method 10 of FIG. 4 according to various embodiments of the present disclosure. As shown in FIG. 6 , a semiconductor substrate 101 is provided. The semiconductor substrate 101 may be a semiconductor wafer such as a silicon wafer. Alternatively or additionally, the semiconductor substrate 101 may include elementary semiconductor materials, compound semiconductor materials, and/or alloy semiconductor materials. Examples of the elementary semiconductor materials may include, but are not limited to, crystal silicon, polycrystalline silicon, amorphous silicon, germanium, and/or diamond. Examples of the compound semiconductor materials may include, but are not limited to, silicon carbide, gallium arsenic, gallium phosphide, indium phosphide, indium arsenide, and/or indium antimonide. Examples of the alloy semiconductor materials may include, but are not limited to, SiGe, GaAsP, AlInAs, AlGaAs, GaInAs, GaInP, and/or GaInAsP.
  • In some embodiments, the semiconductor substrate 101 includes an epitaxial layer. For example, the semiconductor substrate 101 has an epitaxial layer overlying a bulk semiconductor. In some embodiments, the semiconductor substrate 101 is a semiconductor-on-insulator substrate which may include a substrate, a buried oxide layer over the substrate, and a semiconductor layer over the buried oxide layer, such as a silicon-on-insulator (SOI) substrate, a silicon germanium-on-insulator (SGOI) substrate, or a germanium-on-insulator (GOI) substrate. Semiconductor-on-insulator substrates can be fabricated using separation by implantation of oxygen (SIMOX), wafer bonding, and/or other suitable methods.
  • A dielectric layer 103 is formed over the semiconductor substrate 101, as shown in FIG. 6 in accordance with some embodiments. The respective step is illustrated as the step S11 in the method 10 shown in FIG. 4 . In some embodiments, the dielectric layer 103 is made of silicon oxide, silicon nitride, silicon oxynitride, a low-k dielectric material or another suitable material. The dielectric layer 103 may be formed by a deposition process, such as a chemical vapor deposition (CVD) process, a physical vapor deposition (PVD) process, an atomic layer deposition (ALD) process, a spin-on coating process, or another suitable method.
  • Subsequently, a patterned mask 105 with openings 110 a and 110 b is formed over the dielectric layer 103, as shown in FIG. 7 in accordance with some embodiments. In some embodiments, the dielectric layer 103 is exposed by the openings 110 a and 110 b. In some embodiments, the width W1 of the opening 110 a is substantially equal to the width W1 of the conductive contact 149 a (see FIG. 1 ). Hence, the width W1 of the opening 110 a and the width W1 of the conductive contact 149 a are denoted by the same reference sign. Moreover, the width W2 of the opening 110 b is substantially equal to the width W2 of the conductive contact 149 b (see FIG. 1 ). Hence, the width W2 of the opening 110 b and the width W2 of the conductive contact 149 b are denoted by the same reference sign. In some embodiments, the widths W2 of the opening 110 b in the patterned mask 105 is greater than the width W1 of the opening 110 a in the patterned mask 105.
  • Then, an etching process is performed on the dielectric layer 103 using the patterned mask 105 as an etching mask, such that openings 120 a and 120 b are formed in the dielectric layer 103, as shown in FIG. 8 in accordance with some embodiments. The etching process may be a wet etching process, a dry etching process, and a combination thereof. In some embodiments, the width of the opening 120 a is substantially equal to the width W1 of the opening 110 a, and the width of the opening 120 b is substantially equal to the width W2 of the opening 110 b. Therefore, the width of the opening 120 b is greater than the width of the opening 120 a. In addition, the openings 120 a and 120 b penetrate through the dielectric layer 103, such that the semiconductor substrate 101 is exposed by the openings 120 a and 120 b, in accordance with some embodiments. The respective step is illustrated as the step S13 in the method 10 shown in FIG. 4 .
  • After the openings 120 a and 120 b are formed in the dielectric layer 103, the patterned mask 105 is removed, as shown in FIG. 9 in accordance with some embodiments. In some embodiments, the patterned mask 105 is removed by a stripping process, an ashing process, an etching process, or another suitable process.
  • Next, silicon-containing layers 123 a and 123 b are formed lining the openings 120 a and 120 b, respectively, as shown in FIG. 10 in accordance with some embodiments. The respective step is illustrated as the step S15 in the method 10 shown in FIG. 4 . In some embodiments, the silicon containing layer 123 a covers the sidewalls SW1 and the bottom surface B3 of the opening 120 a, and the silicon containing layer 123 b covers the sidewalls SW2 and the bottom surface B4 of the opening 120 b.
  • In some embodiments, the silicon-containing layers 123 a and 123 b are formed by soaking the openings 120 a and 120 b in at least one silicon-containing precursor, such as silane (SiH4), disilane (Si2H6), trisilane (Si3H8), dichlorosilane (SiH2Cl2), another silicon-containing precursor, or a combination thereof. It should be noted that the openings 120 a and 120 b are not fully filled by the silicon-containing layers 123 a and 123 b, in accordance with some embodiments.
  • Subsequently, the silicon-containing layers 123 a and 123 b are transformed into metal silicide layers 125 a and 125 b, as shown in FIG. 11 in accordance with some embodiments. The respective step is illustrated as the step S17 in the method 10 shown in FIG. 4 . In some embodiments, the silicon-containing layers 123 a and 123 b are transformed into metal silicide layers 125 a and 125 b by forming a metal material (not shown) over the silicon-containing layers 123 a and 123 b and thereafter performing an annealing process to react the metal material with the silicon-containing layers 123 a and 123 b.
  • In some embodiments, the metal material includes nickel (Ni), titanium (Ti), cobalt (Co), tantalum (Ta), platinum (Pt), ytterbium (Yb), molybdenum (Mo), erbium (Er), or a combination thereof. In some embodiments, the metal silicide layers 125 a and 125 b include nickel silicide (NiSi), titanium silicide (TiSi), cobalt silicide (CoSi), tantalum silicide (TaSi), or a silicide material of a suitable metal material.
  • In some embodiments, the metal silicide structures 145 a and 145 b shown in FIG. 1 are obtained after the metal silicide layers 125 a and 125 b are formed. In these cases, the process may proceed directly from the step S17 to the step S21. In some embodiments, the steps S15 and S17 are sequentially repeated to form the metal silicide structures 145 a and 145 b, as indicated by the directional process arrow S19. In these cases, silicon-containing layers 133 a and 133 b are formed over the silicide layers 125 a and 125 b, as shown in FIG. 12 in accordance with some embodiments. Some processes used to form the silicon-containing layers 133 a and 133 b are similar to, or the same as those used to form the silicon-containing layers 123 a and 123 b, and details thereof are not repeated herein. After the silicon-containing layers 133 a and 133 b are formed, the silicon-containing layers 133 a and 133 b are transformed into metal silicide layers 135 a and 135 b, as shown in FIG. 13 in accordance with some embodiments. Some materials and processes used to form the metal silicide layers 135 a and 135 b are similar to, or the same as those used to form the metal silicide layers 125 a and 125 b, and details thereof are not repeated herein.
  • The steps S15 and S17 can be repeated multiple times, depend on the functional requirements of the semiconductor device structure 100. In other words, each of the metal silicide structures 145 a and 145 b may include multiple sub-layers, such as the metal silicide layers 125 a, 125 b, 135 a and 135 b, in accordance with some embodiments. The metal silicide structures 145 a and 145 b formed in the openings 120 a and 120 b are shown in FIG. 14 in accordance with some embodiments. It should be noted that the openings 120 a and 120 b are not fully filled by the metal silicide structures 145 a and 145 b, in accordance with some embodiments.
  • Then, the remaining portions of the openings 120 a and 120 b are filled with metal filling layers 147 a and 147 b, respectively, as shown in FIG. 1 in accordance with some embodiments. The respective step is illustrated as the step S21 in the method 10 shown in FIG. 4 . In some embodiments, the metal filling layers 147 a and 147 b may be formed simultaneously in the same process steps. For example, the metal filling layers 147 a and 147 b may be formed by a deposition process and a subsequent planarization process. The deposition process may include a CVD process, a PVD process, an ALD process, a spin-on coating process, another suitable method, or a combination thereof. The planarization process may include a chemical mechanical polishing (CMP) process.
  • In some embodiments, the metal filling layers 147 a and 147 b may be formed separately by different steps. For example, the metal filling layer 147 b is formed after the metal filling layer 147 a. In addition, the metal filling layers 147 a and 147 b are made of a conductive material, such as copper (Cu), tungsten (W), aluminum (Al), titanium (Ti), tantalum (Ta), gold (Au), silver (Ag), in accordance with some embodiments. After the metal filling layers 147 a and 147 b are formed, the semiconductor device structure 100 having conductive contacts 149 a and 149 b with different widths is obtained.
  • FIGS. 15-19 are cross-sectional views illustrating various stages of forming the semiconductor device structure 200 a by the method 30 of FIG. 5 according to various embodiments of the present disclosure. As shown in FIG. 15 , a semiconductor substrate 201, similar to the semiconductor substrate 101 of the semiconductor device structure 100, is provided, and a sacrificial layer 203 is formed over the semiconductor substrate 201, in accordance with some embodiments. In some embodiments, the sacrificial layer 203 has openings 210 exposing the semiconductor substrate 201.
  • In some embodiments, the sacrificial layer 203 is made of a dielectric material. For example, the sacrificial layer 203 includes silicide oxide, silicide nitride, silicon oxynitride, a low-k dielectric material or another suitable material. The sacrificial layer 203 may be formed by a deposition process, such as a CVD process, a PVD process, an ALD process, a spin-on coating process, or another suitable method. In addition, each of the openings 210 penetrating through the sacrificial layer 203 has a width W3. The openings 210 in the sacrificial layer 203 may be formed by an etching process, such as a wet etching process, a dry etching process, and a combination thereof. The respective steps are illustrated as the steps S31 and S33 in the method 30 shown in FIG. 5 .
  • Next, the openings 210 are filled with metal pillars 213, as shown in FIG. 16 in accordance with some embodiments. The respective step is illustrated as the step S35 in the method 30 shown in FIG. 5 . In some embodiments, the widths of the metal pillars 213 are substantially equal to the widths W3 of the openings 210. In some embodiments, the metal pillars 213 include a conductive material such as aluminum (Al), copper (Cu), tungsten (W), titanium (Ti), tantalum (Ta), or a combination thereof. In some embodiments, the metal pillars 213 are formed by a deposition process and a subsequent planarization process. The deposition process includes a CVD process, a PVD process, an ALD process, a sputtering process, a plating process, another suitable method, or a combination thereof. The planarization process includes a CMP process.
  • After the metal pillars 213 are formed, the sacrificial layer 203 is removed, as shown in FIG. 17 in accordance with some embodiments. The respective step is illustrated as the step S37 in the method 30 shown in FIG. 5 . In some embodiments, the sacrificial layer 203 is removed by an etching process, a stripping process, an ashing process, or another suitable process. After the sacrificial layer 203 is removed, the metal pillars 213 are protruded from the top surface of the semiconductor substrate 201.
  • Subsequently, the widths of the metal pillars 213 (i.e., the widths W3) are reduced, as shown in FIG. 18 in accordance with some embodiments. In some embodiments, the widths of the metal pillars 213 are reduced by performing an oxidation process, such that portions of the metal pillars 213 are transformed into metal oxide layers 215, and the remaining portions of the metal pillars 213′ (also referred to as conductive contacts) are obtained. The respective step is illustrated as the step S39 in the method 30 shown in FIG. 5 .
  • In some embodiments, the resulting widths W3′ of the remaining portions of the metal pillars 213′ are less than the original widths W3 of the metal pillars 213. In some embodiments, the outer portions of the metal pillars 213 (i.e., the top portions and the sidewall portions of the metal pillars 213) are transformed into the metal oxide layers 215. As a result, the metal oxide layers 215 are formed over the sidewalls SW3 and the top surface T7 of the remaining portions of the metal pillars 213′, in accordance with some embodiments.
  • The step S41 of removing the metal oxide layers 215 is optional. In the embodiments for forming the semiconductor device structure 200 a, the step S41 is skipped after the metal oxide layers 215 are formed, and a dielectric layer 217 is formed covering the metal oxide layers 215 and the remaining portions of the metal pillars 213′, as shown in FIG. 19 in accordance with some embodiments. The respective step is illustrated as the step S43 in the method 30 shown in FIG. 5 . In some embodiments, the dielectric layer 217 is made of silicon oxide, silicon nitride, silicon oxynitride, a low-k dielectric material or another suitable material. The dielectric layer 217 may be formed by a deposition process, such as a CVD process, a PVD process, an ALD process, a spin-on coating process, or another suitable method.
  • Then, a planarization process is performed to remove excess portions of the dielectric layer 217 and the metal oxide layers 215, such that the remaining portions of the metal pillars 213′ are exposed, as shown in FIG. 2 in accordance with some embodiments. The respective step is illustrated as the step S45 in the method 30 shown in FIG. 5 . The planarization process may include a CMP process. After the planarization process is performed, the semiconductor device structure 200 a is obtained.
  • FIG. 20 is a cross-sectional view illustrating an intermediate stage of forming the semiconductor device structure 200 b by the method 30 of FIG. 5 according to various embodiments of the present disclosure. Some processes used to form the semiconductor device structure 200 b are similar to, or the same as those used to form the semiconductor device structure 200 a, and details thereof are not repeated herein. In some embodiments, the step S41 of removing the metal oxide layers 215 is performed on the structure of FIG. 18 , such that the top surface and the sidewalls of the remaining portions of the metal pillars 213′ are exposed. Then, the dielectric layer 217 is formed covering the structure of FIG. 20 , and the planarization process is performed to expose the remaining portions of the metal pillars 213′ (i.e., the steps S43 and S45), as shown in FIG. 3 in accordance with some embodiments. After the planarization process is performed, the semiconductor device structure 200 b is obtained. In some embodiments, the sidewalls of the remaining portions of the metal pillars 213′ are in direct contact with the dielectric layer 217.
  • In some embodiments of the present disclosure, the fabrication processes shown in FIGS. 15-19 can also be applied to prepare conductive contacts with different widths in the dielectric layer in a similar way, which is not repeated herein for clarity.
  • Embodiments of the semiconductor device structure 100, 200 a and 200 b and method for preparing the same are provided in the disclosure. In some embodiments, the semiconductor device structure 100 includes the conductive contacts 149 a and 149 b penetrating through the dielectric layer 103 over the semiconductor substrate 101. The conductive contact 149 a includes the metal filling layer 147 a and the metal silicide structure 145 a surrounding the metal filling layer 147 a, and the conductive contact 149 b includes the metal filling layer 147 b and the metal silicide structure 145 b surrounding the metal filling layer 147 b. In some embodiments, the conductive contacts 149 a and 149 b have different widths (e.g., the widths W1 and W2 are different). The conductive contacts 149 a and 149 b with different widths may be formed in similar processing steps using similar materials. As a result, the method for preparing the semiconductor device structure 100 is simple and the fabrication cost and time of the semiconductor device structure 100 can be reduced.
  • In some embodiments, the semiconductor device structure 200 a includes the conductive contacts 213′ formed in the dielectric layer 217 over the semiconductor substrate 201. In some embodiments, the semiconductor device structure 200 a also includes metal oxide layers 215 separating the conductive contacts 213′ from the dielectric layer 217. The conductive contacts 213′ are formed by performing a treatment process (e.g., an oxidation process) on the metal pillars 213 to reduce the widths of the metal pillars 213, and the remaining portions of the metal pillars 213 become the conductive contacts 213′. In some embodiments, the metal oxide layers 215 are also formed by the treatment process. As a result, the method for preparing the semiconductor device structure 200 a is simple and the fabrication cost and time of the semiconductor device structure 200 a can be reduced.
  • In one embodiment of the present disclosure, a semiconductor device structure is provided. The semiconductor device structure includes a dielectric layer disposed over a semiconductor substrate, and a first conductive contact penetrating through the dielectric layer. The first conductive contact includes a first metal filling layer and a first metal silicide structure surrounding the first metal filling layer. The semiconductor device structure also includes a second conductive contact penetrating through the dielectric layer. The second conductive contact includes a second metal filling layer and a second metal silicide structure surrounding the second metal filling layer, and a first width of the first conductive contact is different from a second width of the second conductive contact.
  • In another embodiment of the present disclosure, a semiconductor device structure is provided. The semiconductor device structure includes a dielectric layer disposed over a semiconductor substrate, and a conductive contact penetrating through the dielectric layer. The semiconductor device structure also includes a metal oxide layer separating the conductive contact from the dielectric layer. The conductive contact and the metal oxide layer include a same metal.
  • In another embodiment of the present disclosure, a method for preparing a semiconductor device structure is provided. The method includes forming a dielectric layer over a semiconductor substrate, and forming a first opening and a second opening penetrating through the dielectric layer. A first width of the first opening is different from a second width of the second opening. The method also includes forming a first metal silicide structure and a second metal silicide structure in the first opening and the second opening, respectively. The forming the first metal silicide structure and the second metal silicide structure includes forming a first silicon-containing layer and a second silicon-containing layer lining the first opening and the second opening, respectively, and transforming the first silicon-containing layer and the second silicon-containing layer into a first metal silicide layer and a second metal silicide layer, respectively. The method further includes filling a remaining portion of the first opening with a first metal filling layer and filling a remaining portion of the second opening with a second metal filling layer.
  • In yet another embodiment of the present disclosure, a method for preparing a semiconductor device structure is provided. The method includes forming a sacrificial layer over a semiconductor substrate, and forming an opening penetrating through the sacrificial layer. The method also includes filling the opening with a metal pillar, and removing the sacrificial layer after the metal pillar is formed. The method further includes reducing a width of the metal pillar after the sacrificial layer is removed.
  • In another embodiment of the present disclosure, a method for preparing a semiconductor device structure is provided. The method includes: forming a sacrificial layer over a semiconductor substrate; forming a first opening and a second opening penetrating through the sacrificial layer, wherein a first width of the first opening is different from a second width of the second opening; filling the first opening and the second opening with a first metal pillar and a second metal pillar; removing the sacrificial layer after the first metal pillar and the second metal pillar are formed; and reducing a width of the first metal pillar and a width of the second metal pillar after the sacrificial layer is removed.
  • The embodiments of the present disclosure have some advantageous features. In some embodiments, the semiconductor device structure includes conductive contacts with different widths, and each of the conductive contacts includes a metal filling layer and a metal silicide structure surrounding the metal filling layer. The method for preparing the semiconductor device structure having conductive contacts with different widths may be simple and the fabrication cost and time of the semiconductor device structure may be reduced.
  • Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. For example, many of the processes discussed above can be implemented in different methodologies and replaced by other processes, or a combination thereof.
  • Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, and steps.

Claims (16)

What is claimed is:
1. A semiconductor device structure, comprising:
a dielectric layer disposed over a semiconductor substrate;
a first conductive contact penetrating through the dielectric layer, wherein the first conductive contact comprises a first metal filling layer and a first metal silicide structure surrounding the first metal filling layer; and
a second conductive contact penetrating through the dielectric layer, wherein the second conductive contact comprises a second metal filling layer and a second metal silicide structure surrounding the second metal filling layer, and wherein a first width of the first conductive contact is different from a second width of the second conductive contact.
2. The semiconductor device structure of claim 1, wherein the first metal filling layer is separated from the dielectric layer by the first metal silicide structure, and the second metal filling layer is separated from the dielectric layer by the second metal silicide structure.
3. The semiconductor device structure of claim 1, wherein the first metal filling layer is separated from the semiconductor substrate by the first metal silicide structure, and the second metal filling layer is separated from the semiconductor substrate by the second metal silicide structure.
4. The semiconductor device structure of claim 1, wherein a material of the first metal silicide structure is the same as a material of the second metal silicide structure.
5. The semiconductor device structure of claim 1, wherein a top surface of the first metal silicide structure is level with a top surface of the first metal filling layer, and a top surface of the second metal silicide structure is level with a top surface of the second metal filling layer.
6. The semiconductor device structure of claim 1, wherein the first metal silicide structure and the second metal silicide structure each comprise multiple sub-layers.
7. A method for preparing a semiconductor device structure, comprising:
forming a dielectric layer over a semiconductor substrate;
forming a first opening and a second opening penetrating through the dielectric layer, wherein a first width of the first opening is different from a second width of the second opening;
forming a first metal silicide structure and a second metal silicide structure in the first opening and the second opening, respectively, wherein the forming the first metal silicide structure and the second metal silicide structure comprises:
forming a first silicon-containing layer and a second silicon-containing layer lining the first opening and the second opening, respectively; and
transforming the first silicon-containing layer and the second silicon-containing layer into a first metal silicide layer and a second metal silicide layer, respectively; and
filling a remaining portion of the first opening with a first metal filling layer and filling a remaining portion of the second opening with a second metal filling layer.
8. The method for preparing a semiconductor device structure of claim 7, wherein the first silicon-containing layer and the second silicon-containing layer are formed by soaking the first opening and the second opening in silane.
9. The method for preparing a semiconductor device structure of claim 7, wherein a bottom surface and sidewalls of the first opening are covered by the first silicon-containing layer, and a bottom surface and sidewalls of the second opening are covered by the second silicon-containing layer.
10. The method for preparing a semiconductor device structure of claim 7, wherein the forming the first metal silicide structure and the second metal silicide structure further comprises:
forming a third silicon-containing layer and a fourth silicon-containing layer over the first metal silicide layer and the second metal silicide layer, respectively; and
transforming the third silicon-containing layer and the fourth silicon-containing layer into a third metal silicide layer and a fourth metal silicide layer, respectively.
11. The method for preparing a semiconductor device structure of claim 7, wherein the first metal filling layer is separated from the dielectric layer by the first metal silicide structure, and the second metal filling layer is separated from the dielectric layer by the second metal silicide structure.
12. A method for preparing a semiconductor device structure, comprising:
forming a sacrificial layer over a semiconductor substrate;
forming a first opening and a second opening penetrating through the sacrificial layer, wherein a first width of the first opening is different from a second width of the second opening;
filling the first opening and the second opening with a first metal pillar and a second metal pillar;
removing the sacrificial layer after the first metal pillar and the second metal pillar are formed; and
reducing a width of the first metal pillar and a width of the second metal pillar after the sacrificial layer is removed.
13. The method for preparing a semiconductor device structure of claim 12, wherein the width of the first metal pillar is reduced by performing an oxidation process, such that a portion of the metal pillar is transformed into a metal oxide layer.
14. The method for preparing a semiconductor device structure of claim 13, wherein the metal oxide layer covers a top surface and sidewalls of a remaining portion of the first metal pillar.
15. The method for preparing a semiconductor device structure of claim 14, further comprising:
forming a dielectric layer covering the metal oxide layer; and
performing a planarization process to expose the remaining portion of the first metal pillar.
16. The method for preparing a semiconductor device structure of claim 14, further comprising:
removing the metal oxide layer to expose the remaining portion of the first metal pillar;
forming a dielectric layer covering the remaining portion of the first metal pillar; and
performing a planarization process to expose the remaining portion of the first metal pillar.
US17/387,203 2021-07-28 2021-07-28 Semiconductor device structure with conductive contacts of different widths and method for preparing the same Pending US20230031274A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/387,203 US20230031274A1 (en) 2021-07-28 2021-07-28 Semiconductor device structure with conductive contacts of different widths and method for preparing the same
TW110139348A TWI809539B (en) 2021-07-28 2021-10-22 Semiconductor device structure with conductive contacts of different widths and method for preparing the same
CN202210367940.9A CN115692363A (en) 2021-07-28 2022-04-08 Semiconductor element structure with conductive contacts of different widths and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/387,203 US20230031274A1 (en) 2021-07-28 2021-07-28 Semiconductor device structure with conductive contacts of different widths and method for preparing the same

Publications (1)

Publication Number Publication Date
US20230031274A1 true US20230031274A1 (en) 2023-02-02

Family

ID=85039294

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/387,203 Pending US20230031274A1 (en) 2021-07-28 2021-07-28 Semiconductor device structure with conductive contacts of different widths and method for preparing the same

Country Status (3)

Country Link
US (1) US20230031274A1 (en)
CN (1) CN115692363A (en)
TW (1) TWI809539B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279375B2 (en) * 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
US9006099B2 (en) * 2011-06-08 2015-04-14 Great Wall Semiconductor Corporation Semiconductor device and method of forming a power MOSFET with interconnect structure silicide layer and low profile bump
DE102014107555A1 (en) * 2014-05-28 2015-12-03 Osram Opto Semiconductors Gmbh Electrical contact structure for a semiconductor device and semiconductor device
US11094597B2 (en) * 2018-09-28 2021-08-17 Taiwan Semiconductor Manufacturing Co., Ltd. Structure and formation method of semiconductor device with fin structures

Also Published As

Publication number Publication date
TWI809539B (en) 2023-07-21
CN115692363A (en) 2023-02-03
TW202306032A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
US20150325646A1 (en) Structures and formation methods of finfet device
US11393912B2 (en) Semiconductor structure with metal cap layer
US11670587B2 (en) Semiconductor device with copper-manganese liner and method for forming the same
US11393924B2 (en) Structure and formation method of semiconductor device with high contact area
US11652151B2 (en) Semiconductor device structure with fine conductive contact and method for preparing the same
US20230230918A1 (en) Method for preparing semiconductor device with copper-manganese liner
US20230031274A1 (en) Semiconductor device structure with conductive contacts of different widths and method for preparing the same
US11777012B2 (en) Method for preparing semiconductor device with annular semiconductor fin
US20230395505A1 (en) Semiconductor device structure with barrier portion
US20230395428A1 (en) Method for preparing semiconductor device structure with barrier portion
US11830836B2 (en) Semiconductor device with wire bond and method for preparing the same
US20230378070A1 (en) Semiconductor device structure with fluorine-catching layer
US20240032283A1 (en) Semiconductor device with air gap and method for preparing the same
US20230402319A1 (en) Method for preparing semiconductor device structure with fluorine-catching layer
US11948968B2 (en) Method for preparing semiconductor device structure with bottom capacitor electrode having crown-shaped structure and interconnect portion
US20230360957A1 (en) Method for preparing semiconductor device structure using nitrogen-containing pattern
US11164773B2 (en) Method for forming semiconductor device structure with air gap
US11830812B2 (en) Semiconductor device with T-shaped landing pad structure
US11839072B2 (en) Method for preparing semiconductor device with T-shaped landing pad structure
US11201091B2 (en) Semiconductor structure implementing series-connected transistor and resistor and method for forming the same
US11735470B2 (en) Method for forming semiconductor device structure with source/drain contact
US11508722B2 (en) Semiconductor device structure with series-connected transistor and resistor and method for forming the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: NANYA TECHNOLOGY CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HSIEH, MING-HUNG;REEL/FRAME:057099/0612

Effective date: 20210623

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED