US20230024750A1 - Sic single crystal manufacturing method, sic single crystal manufacturing device, and sic single crystal wafer - Google Patents

Sic single crystal manufacturing method, sic single crystal manufacturing device, and sic single crystal wafer Download PDF

Info

Publication number
US20230024750A1
US20230024750A1 US17/764,116 US202017764116A US2023024750A1 US 20230024750 A1 US20230024750 A1 US 20230024750A1 US 202017764116 A US202017764116 A US 202017764116A US 2023024750 A1 US2023024750 A1 US 2023024750A1
Authority
US
United States
Prior art keywords
single crystal
sic single
sic
growth
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/764,116
Other versions
US11932967B2 (en
Inventor
Tadaaki Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Tsusho Corp
Kwansei Gakuin Educational Foundation
Original Assignee
Toyota Tsusho Corp
Kwansei Gakuin Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Tsusho Corp, Kwansei Gakuin Educational Foundation filed Critical Toyota Tsusho Corp
Assigned to KWANSEI GAKUIN EDUCATIONAL FOUNDATION, TOYOTA TSUSHO CORPORATION reassignment KWANSEI GAKUIN EDUCATIONAL FOUNDATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANEKO, TADAAKI
Publication of US20230024750A1 publication Critical patent/US20230024750A1/en
Application granted granted Critical
Publication of US11932967B2 publication Critical patent/US11932967B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/063Heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/12Etching in gas atmosphere or plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide

Definitions

  • the present invention relates to a method for producing SiC single crystals, an apparatus for producing SiC single crystals, and a SiC single crystal wafer.
  • Silicon carbide has superior physical properties to silicon (Si), in terms of dielectric breakdown strength, thermal conductivity, radiation resistance and the like, and is being researched and developed as a material for electronic devices.
  • Warpage of SiC single crystal substrates has been regarded as a problem. Warpage, for example, is a factor that causes the exposure distance to deviate from the focal length of the optical system in the exposure step, and is also a factor that prevents suitable wafer chucking.
  • Patent Literature 1 describes a technology for annealing heat treatment at a temperature of 1300° C. to 2000° C. in a silicon carbide noncorrosive gas atmosphere after double-sided lapping and polishing. According to the description, this reduces the "warpage" caused by processing strain.
  • Patent Literature 1 JP 2008-103650 A
  • Non Patent Literature 1 Hiroyuki Matsunami, Tsunenobu Kimoto, Takashi Nakamura, Noboru Otani (eds.), "Semiconductor SiC Technology and Applications", 2nd Edition, Nikkan Kogyo Shimbun, Ltd., Sep. 30, 2011, pp. 36-37
  • the cause of "warpage" of SiC single crystal substrates is not only the warpage caused by processing strain (so-called Twyman effect) as described in Patent Literature 1, but also the warpage caused by internal stress introduced during ingot growth.
  • the warpage caused by internal stress becomes apparent when the diameter of the SiC single crystal substrate increases and the diameter of the SiC single crystal substrate becomes larger.
  • Patent Literature 1 for example, if the SiC single crystal substrate is annealed and heat-treated in the temperature range above 2000° C., surface carbonization becomes more pronounced due to the pyrolysis reaction caused by sublimation. As a result, it has been difficult to reduce the internal stress of SiC single crystal substrates, which is considered to be a problem as the diameter becomes larger.
  • Non Patent Literature 1 describes that internal stress has been suppressed by controlling the temperature distribution of crystals, and the problem of ingot cracking at 4 inches has been solved. However, if the diameter becomes larger, such as 6 inches and 8 inches, the problem of internal stress is expected to become even larger.
  • an object of the present invention is to provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation.
  • the present invention provides a method for producing SiC single crystals, including a stress reduction step of heating a SiC single crystal at 1800° C. or higher in an atmosphere containing Si and C elements to reduce internal stress in the SiC single crystal.
  • a stress reduction step of heating a SiC single crystal at 1800° C. or higher in an atmosphere containing Si and C elements to reduce internal stress in the SiC single crystal With this configuration, the present invention can provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation.
  • the SiC single crystal in the stress reduction step, is heated without changing the thickness and diameter of the SiC single crystal.
  • the present invention can provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation.
  • the SiC single crystal in the stress reduction step, is heated in a semi-closed space.
  • the SiC single crystal can be heated under the desired vapor pressure environment.
  • the SiC single crystal in the stress reduction step, is heated in an atmosphere containing an inert gas.
  • the SiC single crystal can be heated while suppressing SiC sublimation.
  • the SiC single crystal in the stress reduction step, is heated to uniformize the temperature of the SiC single crystal.
  • the generation of internal stress caused by the temperature distribution of the SiC single crystal can be suppressed.
  • a preferred mode of the present invention further includes a heat treatment step of heating the SiC single crystal and the SiC material at 1400° C. or higher in an atmosphere containing Si and C elements, and the heat treatment step includes an etching step and/or a growth step.
  • the SiC single crystal can be etched and grown at a lower temperature than the temperature in the stress reduction step.
  • the SiC single crystal and the SiC material are heated so that the SiC single crystal is on the high temperature side and the SiC material is on the low temperature side, and the SiC single crystal is etched.
  • the temperature difference between the SiC single crystal and the SiC material can be controlled, and the SiC single crystal with reduced internal stress can be etched.
  • the SiC single crystal and the SiC material are heated so that the SiC single crystal is on the low temperature side and the SiC material is on the high temperature side, and the SiC single crystal is crystal-grown.
  • the temperature difference between the SiC single crystal and the SiC material can be controlled, and the SiC single crystal with reduced internal stress can be crystal-grown.
  • the heat treatment step includes a step of heating the SiC single crystal and the SiC material in a semi-closed space having an atomic number ratio Si/C of 1 or less.
  • the heat treatment step includes a step of heating the SiC single crystal and the SiC material in a semi-closed space having an atomic number ratio Si/C of more than 1.
  • the heat treatment step includes a strained layer removal step of etching a strained layer on the SiC single crystal.
  • the heat treatment step includes a bunching decomposition step of decomposing macro-step bunching on the SiC single crystal to planarize the surface of the SiC single crystal.
  • the present invention realizes a planarized surface on the SiC single crystal, such that it is terminated by a step that presents the height of a full unit in the SiC single crystals.
  • the heat treatment step includes an epitaxial growth step of forming a growth layer having a BPD density of ⁇ 100/cm 2 .
  • a preferred mode of the present invention is a method for producing a SiC single crystal including the stress reduction step and the heat treatment step in this order. With this configuration, the present invention allows crystal growth of a high-quality growth layer on the SiC single crystal with reduced internal stress by the stress reduction step.
  • the present invention provides an apparatus for producing SiC single crystals, including a main container including a SiC material and capable of housing a SiC single crystal, and a heating furnace capable of heating the main container at 1800° C. or higher.
  • a heating furnace capable of heating the main container at 1800° C. or higher.
  • the heating furnace is capable of heating the SiC single crystal while uniformizing its temperature. With this configuration, in the present invention, the generation of internal stress caused by the temperature distribution of the SiC single crystal can be suppressed.
  • the heating furnace has a refratory container capable of housing the main container.
  • the SiC single crystal can be heated under the desired vapor pressure environment.
  • the present invention provides a SiC single crystal wafer with a warpage amount of ⁇ 30 ⁇ m and a diameter of 6 inches or more. With this configuration, the present invention can provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation, contributing to the production of high quality SiC devices.
  • the SiC single crystal wafer has a growth layer having a BPD density of ⁇ 100 cm 2 .
  • the present invention can provide a novel SiC single crystal that is expected to reduce internal stress and suppress defect formation, contributing to the production of high quality SiC devices.
  • the SiC single crystal wafer has a base substrate having a BPD density of 5000 cm 2 or more.
  • the present invention can provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation.
  • FIG. 1 schematically illustrates the stress reduction step according to an embodiment of the present invention.
  • FIG. 2 schematically illustrates the stress reduction step according to an embodiment of the present invention.
  • FIG. 3 schematically illustrates the etching step according to an embodiment of the present invention.
  • FIG. 4 schematically illustrates the etching step according to an embodiment of the present invention.
  • FIG. 5 schematically illustrates the growth step according to an embodiment of the present invention.
  • FIG. 6 schematically illustrates the growth step according to an embodiment of the present invention.
  • FIG. 7 schematically illustrates the raw material transport mechanism according to an embodiment of the present invention.
  • FIG. 8 illustrates an example of a combination of the stress reduction step, the etching step, and the growth step according to an embodiment of the present invention.
  • FIG. 9 illustrates an example of a combination of the stress reduction step, the etching step, and the growth step according to an embodiment of the present invention.
  • FIG. 10 illustrates an example of a combination of the stress reduction step, the etching step, and the growth step according to an embodiment of the present invention.
  • FIG. 11 illustrates an example of a producing apparatus according to an embodiment of the present invention.
  • FIG. 12 illustrates the method for determining the BPD conversion rate according to a reference example.
  • FIG. 13 illustrates a SiC wafer according to a reference example.
  • FIG. 14 illustrates a SiC wafer according to a reference example.
  • FIG. 15 is an Arrhenius plot according to a reference example.
  • An embodiment of the present invention includes at least a stress reduction step S 0 .
  • the stress reduction step S 0 includes reducing the warpage amount 0 d of a SiC single crystal 1 by causing slippage in the SiC single crystal 1 . It can also be understood that the total thickness variation (TTV) of the SiC single crystal 1 is also reduced.
  • the stress reduction step S 0 uniformizes the interlattice distance of the SiC single crystal 1 , reduces the internal stress of the SiC single crystal 1 , reduces the thermal stress of the SiC single crystal 1 , or reduces the residual stress of the SiC single crystal 1 .
  • the stress reduction step S 0 also includes heating at least the SiC single crystal 1 without changing the thickness and diameter, the volume, and the dimensions and size of the SiC single crystal 1 so as to inhibit etching or crystal growth on the surface of the SiC single crystal 1 .
  • the stress reduction step S 0 includes heating at least the SiC single crystal 1 in an atmosphere containing Si and C elements, such as a Si x C y gas atmosphere.
  • the stress reduction step S 0 includes heating at least the SiC single crystal 1 in a semi-closed space.
  • the "semi-closed space” in the present description refers to a space in which at least a portion of the vapor generated can be confined, although vacuation is still possible.
  • the SiC single crystal 1 is heated in an atmosphere containing an inert gas.
  • inert gas is any known inert gas in the SiC process, such as Ar gas.
  • the SiC single crystal 1 is heated in the temperature range where the SiC material sublimates.
  • the temperature range is, for example, 1800° C. or higher.
  • the SiC single crystal 1 is heated to uniformize the temperature in the SiC single crystal 1 .
  • the term "uniformize the temperature in the SiC single crystal 1" refers to heating the SiC single crystal 1 so that the temperature difference between the highest and lowest temperatures in the SiC single crystal 1 is within the allowable temperature difference, thus reducing the temperature gradient in the SiC single crystal 1 .
  • the allowable temperature difference is preferably 50° C. or less, more preferably 20° C. or less, even more preferably 10° C. or less, yet even more preferably 5° C. or less, yet even more preferably 2° C. or less, and yet even more preferably 1° C. or less.
  • Non Patent Literature 1 describes that a moderate temperature gradient is necessary to induce crystal growth, but the presence of the temperature gradient inside the crystal leads to residual thermal stress in the crystal itself.
  • Non Patent Literature 1 describes that, depending on the temperature distribution, residual thermal stress may be excessively high in some areas, especially when growing large-diameter single crystals, resulting in frequent crystal cracking problems.
  • Non Patent Literature 1 describes that reducing internal stress by optimizing the temperature gradient in the crystal in-plane direction during growth is necessary to reduce the stress components that have a significant impact on crystal cracking.
  • Non Patent Literature 1 describes that by reducing the local stress that induces crystal cracking, it is possible to achieve single crystal growth with no crystal cracking even in a 4-inch diameter crystal.
  • the effect of the internal stress in the SiC single crystal 1 is problematic when the diameter of the SiC single crystal 1 is, for example, 4 inches, and is even more problematic when the diameter of the SiC single crystal 1 is, for example, 6, 8, or 12 inches.
  • the SiC single crystal 1 is heated at a degree of vacuum such that sublimation of the SiC material and the raw material transport described later are suppressed.
  • the degree of vacuum is preferably 1.0 Pa or less, more preferably 10 -1 Pa or less, even more preferably 10 -2 Pa or less, yet even more preferably 10 -3 Pa or less, yet even more preferably 10 -4 Pa or less, and yet even more preferably 10 -5 Pa or less.
  • the degree of vacuum is preferably 10 -1 Pa or more, more preferably 10 -2 Pa or more, even more preferably 10 -3 Pa or more, yet even more preferably 10 -4 Pa or more, yet even more preferably 10 -5 Pa or more, and yet even more preferably 10 -6 Pa or more.
  • the SiC material 2 may be heated together with the SiC single crystal 1 to form an atmosphere containing the aforementioned Si and C elements.
  • the SiC single crystal 1 and the SiC material 2 are heated in close proximity.
  • the term “proximity” refers, for example, to the separation distance d 1 (not illustrated) between the SiC single crystal 1 and the SiC material 2 .
  • the separation distance d 1 is preferably 2.0 mm or less, more preferably 1.0 mm or less, even more preferably 0.5 mm or less, yet even more preferably 0.1 mm or less, and yet even more preferably 10 ⁇ m or less.
  • the separation distance d 1 is preferably 1.0 ⁇ m or more, more preferably 10 ⁇ m or more, even more preferably 0.1 mm or more, yet even more preferably 0.5 mm or more, and yet even more preferably 1.0 mm or more.
  • the SiC single crystal 1 and the SiC material 2 are heated to reduce the chemical potential difference or vapor pressure difference between the surfaces of the SiC single crystal 1 and the SiC material 2 , respectively.
  • each of the chemical potential difference and vapor pressure difference corresponds to the case where no raw material transport described later occurs.
  • the SiC single crystal 1 and the SiC material 2 are heated to reduce the temperature gradient between the SiC single crystal 1 and the SiC material 2 .
  • the term "reducing the temperature gradient between the SiC single crystal 1 and the SiC material 2" refers, for example, to heating the SiC single crystal 1 and the SiC material 2 so that the temperature difference between them is 10° C. or less.
  • the SiC single crystal 1 and the SiC material 2 are heated so that either the SiC single crystal 1 or the SiC material 2 becomes the source or the destination of the raw material transport, and equilibrium relationship between the SiC single crystal 1 and the SiC material 2 is achieved.
  • the stress reduction step S 0 reduces the internal stress of the SiC single crystal 1 to maintain the surface shape of the SiC single crystal 1 , which exhibits a three-dimensional structure such as a trench structure, whereby the strain introduced during the formation of the three-dimensional structure is alleviated. Specifically, in the stress reduction step S 0 , the internal stress and strain of the SiC single crystal 1 are reduced so as to suppress excessive etching (thinning) at the side walls and/or bottom of the trench structure.
  • the SiC single crystal 1 may be a SiC ingot produced by a known crystal growth method such as sublimation, or a SiC wafer sliced into a disk shape from the SiC ingot.
  • the polytype of the SiC single crystal 1 refers to a known polytype such as 3C, 4H, or 6H.
  • the cross-sectional size of the SiC single crystal 1 is a few centimeters, 2 inches, 3 inches, 4 inches, 6 inches, 8 inches, or 12 inches square. There is no limit to the size of the cross section.
  • the surface of the SiC single crystal 1 may be configured to have an off-angle of a few degrees (for example, from 0.4 to 8.0°) from the (0001) or (000-1) plane.
  • the "-" in the description herein refers to the bar in the Miller index notation.
  • the SiC material 2 may be a SiC ingot produced by sublimation or other method, a SiC wafer sliced into a disk shape from the SiC ingot, or SiC polycrystals.
  • the SiC material 2 may be SiC single crystals, SiC polycrystals, a SiC material forming a semi-closed space, or a SiC material exposed in a semi-closed space.
  • An embodiment of the present invention further includes a heat treatment step SX.
  • the heat treatment step SX includes heating the SiC single crystal 1 and the SiC material 2 in an atmosphere containing Si and C elements, such a Si x C y gas atmosphere.
  • the SiC single crystal 1 and the SiC material 2 are heated in a temperature range lower than that in the stress reduction step S 0 .
  • the temperature range is preferably 1400° C. or higher.
  • the term "low temperature range” refers to a temperature range where the lowest temperature in that range is low.
  • the heat treatment step SX includes an etching step S 1 and/or a growth step S 2 , acts as the etching step S 1 , or acts as the growth step S 2 .
  • the etching step S 1 includes heating the SiC single crystal 1 and the SiC material 2 so that the SiC single crystal 1 is on the high temperature side and the SiC material 2 is on the low temperature side, thereby etching the SiC single crystal 1 .
  • the etching step S 1 includes a strained layer removal step S 11 of placing the SiC single crystal 1 and the SiC material 2 in a semi-closed space having an atomic number ratio Si/C of 1 or less, and heating them to etch the SiC single crystal 1 , or acts as the strained layer removal step S 11 .
  • the etching step S 1 also includes a bunching decomposition step S 12 of placing the SiC single crystal 1 and the SiC material 2 in a semi-closed space having an atomic number ratio Si/C of more than 1 , and heating them to etch the SiC single crystal 1 , or acts as the bunching decomposition step S 12 .
  • the SiC single crystal 1 and the SiC material 2 are heated so that the surface 1 a of SiC single crystal 1 and the surface 2 a of the SiC material 2 are etched and grown, respectively.
  • the SiC single crystal 1 and the SiC material 2 are heated so that the SiC single crystal 1 and the SiC material 2 become the source and destination of raw material transport, respectively.
  • the strained layer removal step S 11 includes etching the strained layer 300 on the surface of the SiC single crystal 1 .
  • the strained layer 300 may include crystal dislocations 301 and/or damaged regions 302 .
  • the SiC single crystal 1 is etched so that the surface having the steps 102 a and the terraces 102 b presenting a lengthened terrace length W 2 is exposed, or the bunched surface is exposed.
  • the bunching decomposition step S 12 includes etching the surface 1 a of the SiC single crystal 1 having the steps 102 a and the terraces 102 b to decompose the MSBs of the surface 1 a so as to expose the surface having steps 103 a and terraces 103 b presenting a reduced terrace length W 3 , or to form a planarized, bunching-free surface.
  • the surface 1 a is terminated with the step that presents the height of a full unit in the SiC single crystals.
  • the growth step S 2 includes heating the SiC single crystal 1 and the SiC material 2 so that the SiC single crystal 1 is on the low temperature side and the SiC material 2 is on the high temperature side, and crystal-growing the SiC single crystal 1 to form a growth layer 10 on the surface of the SiC single crystal 1 .
  • the SiC single crystal 1 and the SiC material 2 are heated so that the surface 1 a of the SiC single crystal 1 and the surface 2 a of the SiC material 2 are grown and etched, respectively.
  • the SiC single crystal 1 and the SiC material 2 are heated so that they become the destination and source of raw material transport, respectively.
  • the growth step S 2 includes an epitaxial growth step S 21 of placing the SiC single crystal 1 and the SiC material 2 in a semi-closed space having an atomic number ratio Si/C of 1 or less, and heating them to grow the SiC single crystal 1 , or acts as the epitaxial growth step S 21 .
  • the growth step S 2 includes a bunching decomposition step S 22 of placing the SiC single crystal 1 and the SiC material 2 in a semi-closed space having an atomic number ratio Si/C of more than 1, and heating them to grow the SiC single crystal 1 , or acts as the bunching decomposition step S 22 .
  • the epitaxial growth step S 21 includes growing crystals so as to form the growth layer 10 having the steps 102 a and the terraces 102 b having the lengthened terrace length W 2 on the surface of the SiC single crystal 1 having steps 101 a and terraces 101 b presenting a reduced terrace length W 1 , or to form the growth layer 10 having a bunched surface on the base substrate 11 .
  • crystal growth is performed to form a growth layer having a basal plane dislocation density (BPD density) of ⁇ 100/cm 2 , or to convert the BPDs in the SiC single crystal 1 into other defects and dislocations, including threading edge dislocation (TED), to form at least a portion of the growth layer 10 .
  • BPD density basal plane dislocation density
  • the bunching decomposition step S 22 includes growing the SiC single crystal 1 on the growth layer 10 surface having the steps 102 a and the terraces 102 b to form the growth layer 10 having the steps 103 a and the terraces 103 b presenting the reduced terrace length W 3 , or to decompose the MSBs on the surface 1 a so as to form the growth layer 10 having a planarized, bunching-free surface.
  • the surface 1 a is terminated with the step that presents the height of a full unit in the SiC single crystals.
  • planarized, bunching-free surface refers to a SiC surface where macro-step bunching (MSB) has been decomposed.
  • MSBs in the description herein refers to those steps on the SiC surface that, by bunching, form a height that exceeds the full unit of each polytype.
  • MSBs are the steps that are bunched more than 4 molecular layers (5 or more molecular layers) for 4H-SiC and more than 6 molecular layers (7 or more molecular layers) for 6H-SiC.
  • the SiC single crystal 1 and the SiC material 2 are heated so that they become the source and destination of raw material transport, respectively.
  • the SiC single crystal 1 and the SiC material 2 are heated so that the SiC single crystal 1 and the SiC material 2 are the source or the destination of the raw material transport, respectively.
  • Si(v) As the surface 1 a of the SiC single crystal 1 is pyrolyzed, Si atoms (Si(v)) are desorbed from the surface 1 a .
  • the sublimed Si 2 C, SiC 2 , or the like reaches and diffuses into the terraces on the surface 2 a of the SiC material 2 due to, for example, the temperature gradient and takes over the polymorphism of the surface 2 a by reaching the steps, forming the growth layer 10 while presenting the aspect of step-flow growth.
  • each of the stress reduction step S 0 , the etching step S 1 , and the growth step S 2 includes a Si atom sublimation step of thermally sublimating Si atoms from the SiC material 2 , and a C atom sublimation step of sublimating C atoms remaining on the surface 2 a of the SiC material 2 by bonding them with Si atoms in the raw material transport space.
  • crystal growth is performed by the supersaturation and condensation of transported Si 2 C, SiC 2 , or the like on the surface 1 a or 1 b of the SiC single crystal 1 .
  • Each of the stress reduction step S 0 , the etching step S 1 , and the growth step S 2 includes a Si atom sublimation step of thermally sublimating Si atoms from the surface 1 a or 1 b of the SiC single crystal 1 , and a C atom sublimation step of sublimating C atoms remaining on the surface 1 a or 1 b of the SiC single crystal 1 by bonding them with Si atoms in the raw material transport space.
  • the stress reduction step S 0 reduces the temperature gradient between the SiC single crystal 1 and the SiC material 2 , and suppresses the raw material transport between the surface 1 a and/or 1 b and the surface 2 a while sustaining SiC sublimation from the surfaces 1 a , 1 b , and 2 a .
  • the stress reduction step S 0 reduces the vapor pressure difference at the surface of the SiC single crystal 1 and the SiC material 2 , or the stress reduction step S 0 uniformizes the vapor pressure difference at the surface of the SiC single crystal 1 and the SiC material 2 , and suppresses the raw material transport between the surface 1 a and/or 1 b and the surface 2 a while sustaining SiC sublimation from the surfaces 1 a , 1 b , and 2 a .
  • the stress reduction step S 0 reduces the chemical potential difference at the surface of SiC single crystal 1 and the SiC material 2 , or uniformizes the chemical potentials at the surfaces of the SiC single crystal 1 and the SiC material 2 , and suppresses the raw material transport between the surface 1 a and/or 1 b and the surface 2 a while sustaining SiC sublimation from the surfaces 1 a and 2 a .
  • the stress reduction step S 0 suppresses raw material transport between the surface 1 a and/or 1 b and the surface 2 a while sustaining SiC sublimation from the surfaces 1 a , 1 b and 2 a , based on the difference in crystal structure between the surfaces 1 a , 1 b , and 2 a , the temperature difference between the surfaces 1 a and 2 a , and at least some of the elements constituting the atmosphere.
  • the stress reduction step S 0 suppresses the raw material transport between the surface 1 a and/or 1 b and the surface 2 a while sustaining SiC sublimation from the surface 1 a , which is a Si or C plane, and the surface 2 a of the SiC material 2 , which is made of SiC polycrystals.
  • the stress reduction step S 0 suppresses the raw material transport between the surface 1 a and/or 1 b and the surface 2 a while allowing SiC sublimation to continue from the surface 1 a , which is a Si or C plane, and the surface 2 a , which is a Si or C plane, respectively, of the SiC material 2 , which is made SiC single crystals.
  • the term "suppress raw material transport" and “no raw material transport occurs” refer to reducing the increase or decrease in thickness at the transport source and destination after heating. Therefore, the atoms that constitute each of the source and destination of transport and destination can be the atoms that constitute each of the source and destination of transport after heating.
  • Si surface refers to a surface having an off-angle of a few degrees (for example, from 0.4 to 8.0°) from the (0001) plane.
  • C surface refers to a surface having an off-angle of a few degrees (for example, from 0.4 to 8.0°) from the (000-1) plane.
  • the driving force for raw material transport between the surfaces 1 a and 2 a in the etching step S 1 and the growth step S 2 is the vapor pressure difference between the SiC single crystal 1 and the SiC material 2 due to the temperature gradient formed.
  • the driving force for raw material transport between the surfaces 1 a and 2 a in the etching step S 1 and the growth step S 2 is not only the temperature gradient between the surfaces of the SiC single crystal 1 and the SiC material 2 , but also the chemical potential difference between the SiC single crystal 1 and the SiC material 2 .
  • the dopant concentration in the SiC single crystal 1 can be adjusted by supplying a dopant gas into the semi-closed space by a dopant gas supply means.
  • a dopant gas supply means When no dopant gas is supplied, it can be understood that the SiC single crystal 1 takes over the dopant concentration in the semi-closed space.
  • the raw material transport in each of the stress reduction step S 0 , the etching step S 1 , and the growth step S 2 is performed under the desired vapor pressure environment including a SiC-Si equilibrium vapor pressure environment and a SiC-C equilibrium vapor pressure environment.
  • SiC-Si vapor pressure environment refers to the vapor pressure environment when SiC (solid) and Si (liquid phase) are in phase equilibrium through a vapor phase.
  • the SiC-Si equilibrium vapor pressure environment is formed by heat-treating a semi-closed space having an atomic number ratio Si/C of more than 1.
  • SiC-C equilibrium vapor pressure environment refers to the environment of vapor pressure when SiC (solid phase) and C (solid phase) are in phase equilibrium through a vapor phase.
  • the SiC-C equilibrium vapor pressure environment is formed by heat-treating a semi-closed space having an atomic number ratio Si/C of 1 or less.
  • an embodiment of the present invention includes the stress reduction step S 0 , the strained layer removal step S 11 , the bunching decomposition step S 12 , the epitaxial growth step S 21 , and the bunching decomposition step S 22 in this order.
  • an embodiment of the present invention includes the strained layer removal step S 11 , the bunching decomposition step S 12 , the stress reduction step S 0 , the epitaxial growth step S 21 , and the bunching decomposition step S 22 in this order.
  • an embodiment of the present invention includes the strained layer removal step S 11 , the bunching decomposition step S 12 , the epitaxial growth step S 21 , the bunching decomposition step S 22 , and the stress reduction step S 0 in this order.
  • An embodiment of the present invention may include the strained layer removal step S 11 , the stress reduction step S 0 , and the bunching decomposition step S 12 in this order.
  • An embodiment of the present invention may include the epitaxial growth step S 21 , the stress reduction step S 0 and the bunching decomposition step S 22 in this order.
  • the order of the steps in an embodiment of the present invention may be determined in any order as appropriate in producing and realizing the SiC single crystal 1 having the desired quality.
  • the apparatus for producing SiC single crystals includes a main container 141 , a refractory container 142 , and a heating furnace 143 .
  • the main container 141 includes a material that includes, for example, SiC polycrystals. Therefore, at least a portion of the main container 141 can be the SiC material 2 or the source of transport (SiC material 2 ) in raw material transport.
  • the environment in the heated main container 141 is preferably, for example, a vapor pressure environment of a mixed system of a gas phase species containing Si elements and a gas phase species containing C element.
  • gas phase species containing Si elements include Si, Si 2 , Si 3 , Si 2 C, SiC 2 , and SiC.
  • gas phase species containing C elements examples include Si 2 C, SiC 2 , SiC, and C.
  • the dopant and dopant concentration of the main container 141 may be selected according to the dopant and dopant concentration of the growth layer 10 to be formed.
  • any structure that generates vapor pressure of a gas phase species containing Si elements and a gas phase species containing C elements in the internal space during the heating treatment of the main container 141 may be used.
  • Examples of the structure include a configuration in which the SiC polycrystals are partially exposed on the inner surface, and a configuration in which the SiC polycrystals are separately installed in the main container 141 .
  • the main container 141 may include an installation tool 141 a that can be used to install the SiC single crystal 1 and the SiC material 2 .
  • the installation tool 141 a is preferably thin.
  • the installation tool 141 a that has been thinned places each of the SiC single crystal 1 and the SiC material 2 in close proximity to each other, so as to reduce the separation distance d 1 between the SiC single crystal 1 and the SiC material 2 .
  • each of the plurality of the SiC single crystal bodies 1 and the SiC material bodies 2 may be placed in an alternating configuration.
  • the main container 141 may be configured without the installation tool 141 a . At this time, each of the plurality of the SiC single crystal bodies 1 and the SiC material bodies 2 may be placed in an alternating configuration.
  • the main container 141 is a fitting container including an upper container 141 c and a lower container 141 b that can be fitted to each other.
  • a minute gap is formed at the fitting part of the upper container 141 c and the lower container 141 b , through which the inside of the main container 141 can be evacuated (vacuated).
  • the main container 141 includes a Si vapor supply source.
  • the Si vapor supply source is used to adjust the atomic number ratio Si/C of the semi-closed space in the main container 141 to be more than 1.
  • Examples of the Si vapor supply source include solid Si (Si pellet such as Si pieces or Si powder) and Si compounds.
  • the entire main container 141 includes SiC polycrystals, as in an embodiment of the present invention, it can be understood that the atomic number ratio Si/C in the main container 141 exceeds 1 by installing a Si vapor supply source.
  • the atomic number ratio Si/C in the main container 141 exceeds 1 when the SiC single crystal 1 and the SiC material 2 that satisfy the stoichiometric ratio 1: 1 and the Si vapor supply source are installed in the SiC polycrystalline main container 141 that satisfies the stoichiometric ratio 1: 1.
  • the SiC-Si equilibrium vapor pressure environment according to an embodiment of the present invention is formed by heating a semi-closed space having an atomic number ratio Si/C of more than 1.
  • the SiC-C equilibrium vapor pressure environment according to an embodiment of the present invention is formed by heating a semi-closed space having an atomic number ratio Si/C of 1 or less.
  • the main container 141 may be configured to house predetermined members as appropriate to provide a SiC-Si equilibrium vapor pressure environment or SiC-C equilibrium vapor pressure environment.
  • the heating furnace 143 is capable of heating the main container 141 to reduce the temperature gradient so that the temperature of the main container 141 becomes uniform from the upper container 141 c to the lower container 141 b .
  • the heating furnace 143 also heats the main container 141 to form a temperature gradient so that the temperature decreases or increases from the upper container 141 c to the lower container 141 b . With this configuration, the temperature gradient in the thickness direction of the SiC single crystal 1 is controlled.
  • the heating furnace 143 includes a main heating chamber 143 c capable of heating the SiC single crystal 1 or the like to a temperature of 1000° C. to 2300° C., a preliminary chamber 143 a capable of preheating the object to be treated to a temperature of 500° C. or higher, a refractory container 142 capable of housing the main container 141 , and a moving means 143 b (moving table) capable of moving the refractory container 142 from the preliminary chamber 143 a to the main heating chamber 143 c .
  • a main heating chamber 143 c capable of heating the SiC single crystal 1 or the like to a temperature of 1000° C. to 2300° C.
  • a preliminary chamber 143 a capable of preheating the object to be treated to a temperature of 500° C. or higher
  • a refractory container 142 capable of housing the main container 141
  • a moving means 143 b moving table
  • the main heating chamber 143 c is, for example, regular hexagonal in planar cross-sectional view, and the refractory container 142 is installed inside it.
  • the main heating chamber 143 c includes heaters 143 d (mesh heaters).
  • Multilayer heat-reflective metal plates are fixed to the side walls and ceiling of the main heating chamber 143 c (not illustrated). The multilayer heat-reflective metal plates are configured to reflect the heat of the heaters 143 d toward the substantially central portion of the main heating chamber 143 c .
  • the heaters 143 d are installed in the main heating chamber 143 c to surround the refractory container 142 in which the object to be treated
  • the multilayer heat-reflective metal plates are installed on the outside of the heaters 143 d , which enables temperature increase in the temperature range of 1000° C. to 2300° C.
  • the heaters 143 d may be, for example, of resistance heating type or highfrequency induction heating type.
  • the heater 143 d may be configured to control the temperature gradient in the refractory container 142 .
  • the heater 143 d may be configured to reduce the temperature gradient in the refractory container 142 .
  • the heater 143 d may be configured to form a temperature gradient in the refractory container 142 .
  • the heaters 143 d may be configured so that more heaters are installed on the upper (or lower) side.
  • the heaters 143 d may be configured so that the width increases toward the upper (or lower) side.
  • the heaters 143 d may be configured to be able to increase the power supplied toward the upper (or lower) side.
  • the main heating chamber 143 c is connected to a vacuum formation valve 143 f for evacuating air from the main heating chamber 143 c , an inert gas injection valve 143 e for introducing an inert gas into the main heating chamber 143 c , and a vacuum gauge 143 g for measuring the degree of vacuum in the main heating chamber 143 c .
  • the vacuum formation valve 143 f is connected to a vacuum pump (not illustrated) that evacuates air and vacuates the main heating chamber 143 c .
  • a vacuum pump (not illustrated) that evacuates air and vacuates the main heating chamber 143 c .
  • the degree of vacuum in the main heating chamber 143 c can be adjusted preferably to 10 Pa or less, more preferably to 1.0 Pa or less, and even more preferably to 10 -3 Pa or less.
  • the vacuum pump include a turbo molecular pump.
  • the inert gas injection valve 143 e is connected to an inert gas supply source (not illustrated).
  • This inert gas injection valve 143 e and the inert gas supply source allow inert gas to be introduced into the main heating chamber 143 c in the range of 10 -5 to 10 4 Pa.
  • the inert gas may be, for example, Ar.
  • the inert gas injection valve 143 e is a dopant gas supply means capable of supplying a dopant gas into the main container 141 . That is, by selecting a dopant gas (for example, N 2 ) as the inert gas, the dopant concentration in the growth layer 10 can be increased.
  • a dopant gas for example, N 2
  • the preliminary chamber 143 a is connected to the main heating chamber 143 c , and is configured to allow the refractory container 142 to be moved thereinto by the moving means 143 b .
  • the preliminary chamber 143 a of the present embodiment is configured to be heated by the residual heat of the heaters 143 d of the main heating chamber 143 c .
  • the main heating chamber 143 c is heated to 2000° C.
  • the preliminary chamber 143 a is heated to about 1000° C., which allows the degassing treatment of the object to be treated (for example, the SiC single crystal 1 , the main container 141 , or the refractory container 142 ).
  • the moving means 143 b is configured to move between the main heating chamber 143 c and the preliminary chamber 143 a with the refractory container 142 on top of it.
  • the transfer between the main heating chamber 143 c and the preliminary chamber 143 a by the moving means 143 b can be completed in as little as one minute, so that temperature rise and fall at from 1.0 to 1000° C./min can be achieved. This allows for rapid temperature rise and fall, which makes it possible to observe the surface profile without low temperature growth history during temperature rise and fall.
  • the preliminary chamber 143 a is located below the main heating chamber 143 c , but the preliminary chamber 143 a may be installed in any other direction.
  • the moving means 143 b is a moving table on which the refractory container 142 is placed.
  • the contact area between the moving table and the refractory container 142 becomes the path for heat propagation. This makes it possible to form a temperature gradient in the refractory container 142 so that the contact area between the moving table and the refractory container 142 is on the low temperature side.
  • a temperature gradient is provided so that the temperature decreases from the upper container 142 b to the lower container 142 a of the refractory container 142 .
  • the direction of the temperature gradient can be set in any direction by changing the position of the contact area between the moving table and the refractory container 142 .
  • the temperature gradient can be set so that the temperature increases from the upper container 142 b to the lower container 142 a of the refractory container 142 .
  • This temperature gradient is preferably reduced or formed along the thickness direction of the SiC single crystal 1 and the SiC material 2 .
  • the temperature gradient may be formed or reduced by the configuration of the heater 143 d .
  • the vapor pressure environment of the gas-phase species containing Si elements in the heating furnace 143 is formed using the refractory container 142 and a Si vapor supply material.
  • a Si vapor supply material for example, any method that enables the formation of an environment of vapor pressure of a gas phase species containing Si elements around the main container 141 may be used in the apparatus for producing a SiC substrate of the present invention.
  • the refractory container 142 preferably includes a high-melting point material having a melting point equal to or higher than the melting point of the material constituting the main container 141 .
  • Examples of the refractory container 142 include C which is a general-purpose heat-resistant material, W, Re, Os, Ta, and Mo which are high-melting point metals, Ta 9 C 8 , HfC, TaC, NbC, ZrC, Ta 2 C, TiC, WC, and MoC which are carbides, HfN, TaN, BN, Ta 2 N, ZrN, and TiN which are nitrides, HfB 2 , TaB 2 , ZrB 2 , NB 2 , and TiB 2 which are borides, and SiC polycrystals.
  • C is a general-purpose heat-resistant material
  • W, Re, Os, Ta, and Mo which are high-melting point metals
  • Ta 9 C 8 HfC, TaC, NbC, ZrC, Ta 2 C, TiC, WC, and MoC which are carbides, HfN, TaN, BN, Ta 2 N, ZrN, and TiN which are ni
  • the refractory container 142 is a fitting container including the upper container 142 b and the lower container 142 a that can be fitted to each other, and is configured to house the main container 141 .
  • a minute gap 43 is formed at the fitting portion between the upper container 142 b and the lower container 142 a , through which the inside of the refractory container 142 can be evacuated (vacuated).
  • the refractory container 142 has a Si vapor supply material that can supply vapor pressure of gas-phase species containing Si elements in the refractory container 142 .
  • the Si vapor supply material should be configured to generate Si vapor in the refractory container 142 during the heat treatment, and examples thereof include solid Si (Si pellets such as Si pieces and Si powder) and Si compounds.
  • the Si vapor supply material is, for example, a thin film that coats the inner wall of the refractory container 142 .
  • the Si vapor supply material is, for example, a silicide material of the metal and Si atoms constituting the refractory container 142 .
  • the refractory container 142 can maintain the vapor pressure environment of the gas-phase species containing Si elements in the main container 141 by having a Si vapor supply material inside it. It can be understood that this is because the vapor pressure of the gas phase type containing Si elements in the main container 141 and the vapor pressure of the gas phase type containing Si elements outside the main container 141 are balanced.
  • the SiC single crystal substrate E 10 is housed in the main container 141 , and the main container 141 is housed in the refractory container 142 .
  • the SiC single crystal substrate E 10 installed under the above conditions is heat-treated under the following conditions.
  • FIG. 12 illustrates the method for determining the conversion rate from BPDs to other defects and dislocations (for example, TED) in the growth layer E 11 .
  • FIG. 12 (a) illustrates the growth of the growth layer E 11 by the heating step.
  • the BPDs present on the SiC single crystal substrate E 10 are converted to TEDs with a certain probability. Therefore, TEDs and BPDs are mixed on the surface of the growth layer E 11 , unless the BPDs are 100% converted.
  • FIG. 12 (b) illustrates the confirmation of defects in the growth layer E 11 using the KOH dissolution etching method.
  • the SiC single crystal substrate E 10 is immersed in a dissolved salt (for example, KOH) that has been heated to about 500° C., etch pits are formed in the dislocation or defect region, and the type of dislocation is determined by the size and shape of the etch pits.
  • KOH dissolved salt
  • FIG. 12 (c) illustrates the removal of the growth layer E 11 after KOH dissolution etching.
  • the growth layer E 11 is removed by thermal etching to reveal the surface of the SiC single crystal substrate E 10 .
  • FIG. 12 (d) illustrates the confirmation of defects in the SiC single crystal substrate E 10 after removal of the growth layer E 11 from the SiC single crystal substrate E 10 using the KOH dissolution etching method. By this method, the number of BPDs present on the surface of SiC single crystal substrate E 10 is evaluated.
  • the BPD conversion rate which is the conversion of BPDs to other defects and dislocations by heat treatment, can be obtained.
  • the number of BPDs in the surface of the growth layer E 11 in Reference Example 1 was about 0/cm 2 , and the number of BPDs in the surface of the SiC single crystal substrate E 10 was 1000/cm 2 . Therefore, it can be understood that BPDs are reduced and removed by heating the SiC single crystal substrate E 10 without MSBs on the surface in a semi-closed space having an atomic number ratio Si/C of 1 or less.
  • the SiC single crystal substrate E 10 was housed in the main container 141 , and the main container 141 was further housed in the refractory container 142 .
  • the atomic number ratio Si/C in the container exceeds 1.
  • the SiC single crystal substrate E 10 installed under the above conditions is heat-treated under the following conditions.
  • FIG. 13 is an SEM image of the surface of SiC single crystal substrate E 10 before the growth of the growth layer E 11 .
  • FIG. 13 (a) is a SEM image observed at a magnification of ⁇ 1000
  • FIG. 13 (b) is a SEM image observed at a magnification of ⁇ 100000.
  • the MSBs are formed on the surface of SiC single crystal substrate E 10 before the growth of the growth layer E 11 , and it can be understood that the steps having a height of 3.0 nm or more are arranged with an average terrace width of 42 nm. The step height was measured by AFM.
  • FIG. 14 is an SEM image of the surface of the SiC single crystal substrate E 10 after the growth of the growth layer E 11 .
  • FIG. 14 (a) is a SEM image observed at a magnification of ⁇ 1000
  • FIG. 14 (b) is a SEM image observed at a magnification of ⁇ 100000.
  • the SiC single crystal substrate E 10 having MSBs on the surface is heated in a semi-closed space having an atomic number ratio Si/C of more than 1 to form the growth layer E 11 in which the MSBs are decomposed.
  • FIG. 15 is a graph of the relationship between the heating temperature and the growth rate in the method for producing a SiC single crystal substrate of the present invention.
  • the horizontal axis of this graph is the reciprocal of the temperature, and the vertical axis of this graph is the logarithmic growth rate.
  • the results of growing the growth layer E 11 on the SiC single crystal substrate E 10 by placing the SiC single crystal substrate E 10 in a space (in the main container 141 ) having an atomic number ratio Si/C of more than 1 are marked with o.
  • the results of growing the growth layer E 11 on the SiC single crystal substrate E 10 by placing it in a space (in the main container 141 ) having an atomic number ratio Si/C of 1 or less are marked with x.
  • the SiC single crystal substrate E 10 is grown by using the chemical potential difference and temperature gradient as growth driving force under the condition that the vapor pressure environment between the SiC material and the SiC substrate becomes the SiC-C equilibrium vapor pressure environment or SiC-C equilibrium vapor pressure environment.
  • This chemical potential difference is the partial pressure difference of gas phase species generated at the surface of SiC polycrystals and SiC single crystals.
  • the SiC growth rate can be obtained by the following equation 1:
  • T is the temperature of the SiC material side
  • mi is the molecular weight of the gas phase species (Si x C y )
  • k is the Boltzmann constant.
  • the P transport source i - P transport destination i is the growth amount where the raw material gas becomes supersaturated and precipitated as SiC, and SiC, Si 2 C, and SiC 2 are assumed as raw material gases.
  • the dashed line is the result of thermodynamic calculation when SiC single crystals are grown from SiC polycrystals in the vapor pressure environment when SiC (solid) and Si (liquid phase) are in phase equilibrium through a vapor phase.
  • the results were obtained by thermodynamic calculations using the equation 1 under the following conditions (i) to (iv).
  • the volume of the SiC-Si equilibrium vapor pressure environment is constant.
  • the growth driving force is the temperature gradient in the main container 141 and the vapor pressure difference (chemical potential difference) between the SiC polycrystals and SiC single crystals.
  • the raw material gases are SiC, Si 2 C, and SiC 2 .
  • the double-dotted line is the result of thermodynamic calculation when SiC single crystals are grown from SiC polycrystals in the vapor pressure environment when SiC (solid phase) and C (solid phase) are in phase equilibrium through a vapor phase.
  • the results were obtained by thermodynamic calculations using the equation 1 under the following conditions (i) to (iv).
  • the volume of the SiC-C equilibrium vapor pressure environment is constant.
  • the growth driving force is the temperature gradient in the main container 141 and the vapor pressure difference (chemical potential difference) between the SiC polycrystals and SiC single crystals.
  • the raw material gases are SiC, Si 2 C, and SiC 2 .
  • the trend of the results of growing the growth layer E 11 on the SiC single crystal substrate E 10 in the space having an atomic number ratio Si/C of more than 1 (in the main container 141 ) (marked with o) is consistent with the trend of the results of the thermodynamic calculations of SiC growth in a SiC-Si equilibrium vapor pressure environment. It can be understood that the trend of the results of growing the growth layer E 11 on the SiC single crystal substrate E 10 in the space (in the main container 141 ) having an atomic number ratio Si/C of 1 or less (marked with ⁇ ) is consistent with the trend of the results of thermodynamic calculations of SiC growth in the SiC-C equilibrium vapor pressure environment.
  • a growth rate of 1.0 ⁇ m/min or more is achieved at a heating temperature of 1960° C. It can also be understood that a growth rate of more than 2.0 ⁇ m/min is achieved at a heating temperature of 2000° C. or higher.
  • a growth rate of 1.0 ⁇ m/min or more is achieved at a heating temperature of 2000° C. It can also be understood that a growth rate of 2.0 ⁇ m/min or more is achieved at a heating temperature of 2030° C. or higher.
  • the warpage amount 0 d of the SiC single crystal wafer produced according to an embodiment of the present invention is preferably ⁇ 30 ⁇ m, more preferably ⁇ 20 ⁇ m, even more preferably ⁇ 10 ⁇ m, and ye even more preferably ⁇ 1.0 ⁇ m.
  • the diameter of the SiC single crystal wafer produced according to an embodiment of the present invention is preferably 6 inches or more, more preferably 8 inches or more, and even more preferably 12 inches or more.
  • the BPD density of the growth layer 10 on the SiC single crystal wafer produced according to an embodiment of the present invention is preferably ⁇ 1000 /cm 2 , more preferably ⁇ 500 /cm 2 , and even more preferably ⁇ 100 /cm 2 .
  • the growth layer 10 on the SiC single crystal wafer produced according to an embodiment of the present invention refers to a growth layer having a doping concentration of > 1.0 ⁇ 10 17 /cm 3 .
  • the BPD density of the base substrate 11 directly below the growth layer 10 on the surface of the SiC single crystal wafer is, for example, 5000 /cm 2 or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

An object of the present invention is to provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation. In order to solve the above problems, the present invention provides a method for producing SiC single crystals, including a stress reduction step of heating a SiC single crystal at 1800° C. or higher in an atmosphere containing Si and C elements to reduce internal stress in the SiC single crystal. With this configuration, the present invention can provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation.

Description

    TECHNICAL FIELD
  • The present invention relates to a method for producing SiC single crystals, an apparatus for producing SiC single crystals, and a SiC single crystal wafer.
  • BACKGROUND ART
  • Silicon carbide (SiC) has superior physical properties to silicon (Si), in terms of dielectric breakdown strength, thermal conductivity, radiation resistance and the like, and is being researched and developed as a material for electronic devices.
  • In the related art, "warpage" of SiC single crystal substrates has been regarded as a problem. Warpage, for example, is a factor that causes the exposure distance to deviate from the focal length of the optical system in the exposure step, and is also a factor that prevents suitable wafer chucking.
  • In order to address this problem, a technology has been proposed to reduce "warpage" caused by processing strain by annealing heat treatment of SiC single crystal substrates.
  • For example, Patent Literature 1 describes a technology for annealing heat treatment at a temperature of 1300° C. to 2000° C. in a silicon carbide noncorrosive gas atmosphere after double-sided lapping and polishing. According to the description, this reduces the "warpage" caused by processing strain.
  • Citation List Patent Literature
  • Patent Literature 1: JP 2008-103650 A
  • Non Patent Literature
  • Non Patent Literature 1: Hiroyuki Matsunami, Tsunenobu Kimoto, Takashi Nakamura, Noboru Otani (eds.), "Semiconductor SiC Technology and Applications", 2nd Edition, Nikkan Kogyo Shimbun, Ltd., Sep. 30, 2011, pp. 36-37
  • SUMMARY OF INVENTION Technical Problem
  • The cause of "warpage" of SiC single crystal substrates is not only the warpage caused by processing strain (so-called Twyman effect) as described in Patent Literature 1, but also the warpage caused by internal stress introduced during ingot growth. The warpage caused by internal stress becomes apparent when the diameter of the SiC single crystal substrate increases and the diameter of the SiC single crystal substrate becomes larger.
  • In order to reduce such internal stress, it is necessary to heat the substrate in a temperature range close to that of ingot growth, but heating in this temperature range causes excessive etching and thinning of the SiC single crystal substrate due to SiC sublimation.
  • In the invention described in Patent Literature 1, for example, if the SiC single crystal substrate is annealed and heat-treated in the temperature range above 2000° C., surface carbonization becomes more pronounced due to the pyrolysis reaction caused by sublimation. As a result, it has been difficult to reduce the internal stress of SiC single crystal substrates, which is considered to be a problem as the diameter becomes larger.
  • Non Patent Literature 1 describes that internal stress has been suppressed by controlling the temperature distribution of crystals, and the problem of ingot cracking at 4 inches has been solved. However, if the diameter becomes larger, such as 6 inches and 8 inches, the problem of internal stress is expected to become even larger.
  • In view of the aforementioned problems, an object of the present invention is to provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation.
  • Solution to Problem
  • In order to solve the above problems, the present invention provides a method for producing SiC single crystals, including a stress reduction step of heating a SiC single crystal at 1800° C. or higher in an atmosphere containing Si and C elements to reduce internal stress in the SiC single crystal. With this configuration, the present invention can provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation.
  • In a preferred mode of the present invention, in the stress reduction step, the SiC single crystal is heated without changing the thickness and diameter of the SiC single crystal. With this configuration, the present invention can provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation.
  • In a preferred mode of the present invention, in the stress reduction step, the SiC single crystal is heated in a semi-closed space. With this configuration, in the present invention, the SiC single crystal can be heated under the desired vapor pressure environment.
  • In a preferred mode of the present invention, in the stress reduction step, the SiC single crystal is heated in an atmosphere containing an inert gas. With this configuration, in the present invention, the SiC single crystal can be heated while suppressing SiC sublimation.
  • In a preferred mode of the present invention, in the stress reduction step, the SiC single crystal is heated to uniformize the temperature of the SiC single crystal. With this configuration, in the present invention, the generation of internal stress caused by the temperature distribution of the SiC single crystal can be suppressed.
  • A preferred mode of the present invention further includes a heat treatment step of heating the SiC single crystal and the SiC material at 1400° C. or higher in an atmosphere containing Si and C elements, and the heat treatment step includes an etching step and/or a growth step. With this configuration, in the present invention, the SiC single crystal can be etched and grown at a lower temperature than the temperature in the stress reduction step.
  • In a preferred mode of the present invention, in the heat treatment step, the SiC single crystal and the SiC material are heated so that the SiC single crystal is on the high temperature side and the SiC material is on the low temperature side, and the SiC single crystal is etched. With this configuration, in the present invention, the temperature difference between the SiC single crystal and the SiC material can be controlled, and the SiC single crystal with reduced internal stress can be etched.
  • In a preferred mode of the present invention, in the heat treatment step, the SiC single crystal and the SiC material are heated so that the SiC single crystal is on the low temperature side and the SiC material is on the high temperature side, and the SiC single crystal is crystal-grown. With this configuration, in the present invention, the temperature difference between the SiC single crystal and the SiC material can be controlled, and the SiC single crystal with reduced internal stress can be crystal-grown.
  • In a preferred mode of the present invention, the heat treatment step includes a step of heating the SiC single crystal and the SiC material in a semi-closed space having an atomic number ratio Si/C of 1 or less. With this configuration, in the present invention, etching and crystal growth can be performed in the SiC single crystal with reduced internal stress in a SiC-C equilibrium vapor pressure environment.
  • In a preferred mode of the present invention, the heat treatment step includes a step of heating the SiC single crystal and the SiC material in a semi-closed space having an atomic number ratio Si/C of more than 1. With this configuration, in the present invention, etching and crystal growth can be performed in a SiC single crystal with reduced internal stress in a SiC-Si equilibrium vapor pressure environment.
  • In a preferred mode of the present invention, the heat treatment step includes a strained layer removal step of etching a strained layer on the SiC single crystal. With this configuration, the present invention achieves both the reduction of internal stress in the SiC single crystal and the removal of the strained layer caused by mechanical processing and other factors.
  • In a preferred mode of the present invention, the heat treatment step includes a bunching decomposition step of decomposing macro-step bunching on the SiC single crystal to planarize the surface of the SiC single crystal. With this configuration, the present invention realizes a planarized surface on the SiC single crystal, such that it is terminated by a step that presents the height of a full unit in the SiC single crystals.
  • In a preferred mode of the present invention, the heat treatment step includes an epitaxial growth step of forming a growth layer having a BPD density of < 100/cm2. With this configuration, in the present invention, the reduction of internal stress in the SiC single crystal and suitable BPD conversion can be both achieved.
  • A preferred mode of the present invention is a method for producing a SiC single crystal including the stress reduction step and the heat treatment step in this order. With this configuration, the present invention allows crystal growth of a high-quality growth layer on the SiC single crystal with reduced internal stress by the stress reduction step.
  • In order to solve the aforementioned problems, the present invention provides an apparatus for producing SiC single crystals, including a main container including a SiC material and capable of housing a SiC single crystal, and a heating furnace capable of heating the main container at 1800° C. or higher. With this configuration, the present invention can provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation.
  • In a preferred mode of the present invention, the heating furnace is capable of heating the SiC single crystal while uniformizing its temperature. With this configuration, in the present invention, the generation of internal stress caused by the temperature distribution of the SiC single crystal can be suppressed.
  • In a preferred mode of the present invention, the heating furnace has a refratory container capable of housing the main container. With this configuration, in the present invention, the SiC single crystal can be heated under the desired vapor pressure environment.
  • In order to solve the aforementioned problems, the present invention provides a SiC single crystal wafer with a warpage amount of < 30 µm and a diameter of 6 inches or more. With this configuration, the present invention can provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation, contributing to the production of high quality SiC devices.
  • In a preferred mode of the present invention, the SiC single crystal wafer has a growth layer having a BPD density of < 100 cm2. With this configuration, the present invention can provide a novel SiC single crystal that is expected to reduce internal stress and suppress defect formation, contributing to the production of high quality SiC devices.
  • In a preferred mode of the present invention, the SiC single crystal wafer has a base substrate having a BPD density of 5000 cm2 or more.
  • Advantageous Effects of Invention
  • The present invention can provide a novel SiC single crystal with reduced internal stress while suppressing SiC sublimation.
  • Other problems, features, and advantages will become apparent by reading the embodiments for implementing the present invention described below, when taken up together with the drawings and claims.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 schematically illustrates the stress reduction step according to an embodiment of the present invention.
  • FIG. 2 schematically illustrates the stress reduction step according to an embodiment of the present invention.
  • FIG. 3 schematically illustrates the etching step according to an embodiment of the present invention.
  • FIG. 4 schematically illustrates the etching step according to an embodiment of the present invention.
  • FIG. 5 schematically illustrates the growth step according to an embodiment of the present invention.
  • FIG. 6 schematically illustrates the growth step according to an embodiment of the present invention.
  • FIG. 7 schematically illustrates the raw material transport mechanism according to an embodiment of the present invention.
  • FIG. 8 illustrates an example of a combination of the stress reduction step, the etching step, and the growth step according to an embodiment of the present invention.
  • FIG. 9 illustrates an example of a combination of the stress reduction step, the etching step, and the growth step according to an embodiment of the present invention.
  • FIG. 10 illustrates an example of a combination of the stress reduction step, the etching step, and the growth step according to an embodiment of the present invention.
  • FIG. 11 illustrates an example of a producing apparatus according to an embodiment of the present invention.
  • FIG. 12 illustrates the method for determining the BPD conversion rate according to a reference example.
  • FIG. 13 illustrates a SiC wafer according to a reference example.
  • FIG. 14 illustrates a SiC wafer according to a reference example.
  • FIG. 15 is an Arrhenius plot according to a reference example.
  • DESCRIPTION OF EMBODIMENTS
  • A preferred embodiment of the present invention will be described below with reference to drawings.
  • The technical scope of the present invention is not limited to the embodiments illustrated in the accompanying drawings, and may be modified as necessary within the scope of the claims.
  • An embodiment of the present invention includes at least a stress reduction step S0.
  • As illustrated in FIG. 1 , it can be understood that the stress reduction step S0 includes reducing the warpage amount 0 d of a SiC single crystal 1 by causing slippage in the SiC single crystal 1. It can also be understood that the total thickness variation (TTV) of the SiC single crystal 1 is also reduced.
  • It can also be understood that the stress reduction step S0 uniformizes the interlattice distance of the SiC single crystal 1, reduces the internal stress of the SiC single crystal 1, reduces the thermal stress of the SiC single crystal 1, or reduces the residual stress of the SiC single crystal 1.
  • The stress reduction step S0 also includes heating at least the SiC single crystal 1 without changing the thickness and diameter, the volume, and the dimensions and size of the SiC single crystal 1 so as to inhibit etching or crystal growth on the surface of the SiC single crystal 1.
  • As illustrated in FIG. 2 , the stress reduction step S0 includes heating at least the SiC single crystal 1 in an atmosphere containing Si and C elements, such as a SixCy gas atmosphere.
  • At this time, it can be understood that pyrolysis, crystal growth, and others occur sequentially in the SiC single crystal 1, and Si and C elements circulate between the surfaces 1 a and 1 b of the SiC single crystal 1 and the atmosphere containing Si and C elements.
  • The stress reduction step S0 includes heating at least the SiC single crystal 1 in a semi-closed space. The "semi-closed space" in the present description refers to a space in which at least a portion of the vapor generated can be confined, although vacuation is still possible.
  • In the stress reduction step S0, the SiC single crystal 1 is heated in an atmosphere containing an inert gas. As used herein, the term "inert gas" is any known inert gas in the SiC process, such as Ar gas.
  • In the stress reduction step S0, the SiC single crystal 1 is heated in the temperature range where the SiC material sublimates. The temperature range is, for example, 1800° C. or higher.
  • In addition, in the stress reduction step S0, the SiC single crystal 1 is heated to uniformize the temperature in the SiC single crystal 1. As used herein, the term "uniformize the temperature in the SiC single crystal 1" refers to heating the SiC single crystal 1 so that the temperature difference between the highest and lowest temperatures in the SiC single crystal 1 is within the allowable temperature difference, thus reducing the temperature gradient in the SiC single crystal 1.
  • The allowable temperature difference is preferably 50° C. or less, more preferably 20° C. or less, even more preferably 10° C. or less, yet even more preferably 5° C. or less, yet even more preferably 2° C. or less, and yet even more preferably 1° C. or less.
  • Non Patent Literature 1 describes that a moderate temperature gradient is necessary to induce crystal growth, but the presence of the temperature gradient inside the crystal leads to residual thermal stress in the crystal itself.
  • Non Patent Literature 1 describes that, depending on the temperature distribution, residual thermal stress may be excessively high in some areas, especially when growing large-diameter single crystals, resulting in frequent crystal cracking problems.
  • Non Patent Literature 1 describes that reducing internal stress by optimizing the temperature gradient in the crystal in-plane direction during growth is necessary to reduce the stress components that have a significant impact on crystal cracking.
  • Non Patent Literature 1 describes that by reducing the local stress that induces crystal cracking, it is possible to achieve single crystal growth with no crystal cracking even in a 4-inch diameter crystal.
  • Thus, the effect of internal stress caused by temperature distribution in the SiC single crystal 1 seen as a problem as the diameter of wafers and ingots become larger.
  • It can be understood that the effect of the internal stress in the SiC single crystal 1 is problematic when the diameter of the SiC single crystal 1 is, for example, 4 inches, and is even more problematic when the diameter of the SiC single crystal 1 is, for example, 6, 8, or 12 inches.
  • In addition, in the stress reduction step S0, the SiC single crystal 1 is heated at a degree of vacuum such that sublimation of the SiC material and the raw material transport described later are suppressed.
  • The degree of vacuum is preferably 1.0 Pa or less, more preferably 10-1 Pa or less, even more preferably 10-2 Pa or less, yet even more preferably 10-3 Pa or less, yet even more preferably 10-4 Pa or less, and yet even more preferably 10-5 Pa or less. In addition, the degree of vacuum is preferably 10-1 Pa or more, more preferably 10-2 Pa or more, even more preferably 10-3 Pa or more, yet even more preferably 10-4 Pa or more, yet even more preferably 10-5 Pa or more, and yet even more preferably 10-6 Pa or more.
  • In the stress reduction step S0, the SiC material 2 may be heated together with the SiC single crystal 1 to form an atmosphere containing the aforementioned Si and C elements.
  • In the stress reduction step S0, the SiC single crystal 1 and the SiC material 2 are heated in close proximity. As used herein, the term "proximity" refers, for example, to the separation distance d 1 (not illustrated) between the SiC single crystal 1 and the SiC material 2.
  • The separation distance d 1 is preferably 2.0 mm or less, more preferably 1.0 mm or less, even more preferably 0.5 mm or less, yet even more preferably 0.1 mm or less, and yet even more preferably 10 µm or less. In addition, the separation distance d 1 is preferably 1.0 µm or more, more preferably 10 µm or more, even more preferably 0.1 mm or more, yet even more preferably 0.5 mm or more, and yet even more preferably 1.0 mm or more.
  • In the stress reduction step S0, the SiC single crystal 1 and the SiC material 2 are heated to reduce the chemical potential difference or vapor pressure difference between the surfaces of the SiC single crystal 1 and the SiC material 2, respectively. At this time, each of the chemical potential difference and vapor pressure difference corresponds to the case where no raw material transport described later occurs.
  • In the stress reduction step S0, the SiC single crystal 1 and the SiC material 2 are heated to reduce the temperature gradient between the SiC single crystal 1 and the SiC material 2. As used herein, the term "reducing the temperature gradient between the SiC single crystal 1 and the SiC material 2" refers, for example, to heating the SiC single crystal 1 and the SiC material 2 so that the temperature difference between them is 10° C. or less.
  • It can be understood that in the stress reduction step S0, the SiC single crystal 1 and the SiC material 2 are heated so that either the SiC single crystal 1 or the SiC material 2 becomes the source or the destination of the raw material transport, and equilibrium relationship between the SiC single crystal 1 and the SiC material 2 is achieved.
  • It can be understood that the stress reduction step S0 reduces the internal stress of the SiC single crystal 1 to maintain the surface shape of the SiC single crystal 1, which exhibits a three-dimensional structure such as a trench structure, whereby the strain introduced during the formation of the three-dimensional structure is alleviated. Specifically, in the stress reduction step S0, the internal stress and strain of the SiC single crystal 1 are reduced so as to suppress excessive etching (thinning) at the side walls and/or bottom of the trench structure.
  • The SiC single crystal 1 may be a SiC ingot produced by a known crystal growth method such as sublimation, or a SiC wafer sliced into a disk shape from the SiC ingot. The polytype of the SiC single crystal 1 refers to a known polytype such as 3C, 4H, or 6H.
  • The cross-sectional size of the SiC single crystal 1 is a few centimeters, 2 inches, 3 inches, 4 inches, 6 inches, 8 inches, or 12 inches square. There is no limit to the size of the cross section.
  • The surface of the SiC single crystal 1 may be configured to have an off-angle of a few degrees (for example, from 0.4 to 8.0°) from the (0001) or (000-1) plane. The "-" in the description herein refers to the bar in the Miller index notation.
  • The SiC material 2 may be a SiC ingot produced by sublimation or other method, a SiC wafer sliced into a disk shape from the SiC ingot, or SiC polycrystals.
  • The SiC material 2 may be SiC single crystals, SiC polycrystals, a SiC material forming a semi-closed space, or a SiC material exposed in a semi-closed space.
  • An embodiment of the present invention further includes a heat treatment step SX.
  • The heat treatment step SX includes heating the SiC single crystal 1 and the SiC material 2 in an atmosphere containing Si and C elements, such a SixCy gas atmosphere.
  • In the heat treatment step SX, the SiC single crystal 1 and the SiC material 2 are heated in a temperature range lower than that in the stress reduction step S0. The temperature range is preferably 1400° C. or higher. As used herein, the term "low temperature range" refers to a temperature range where the lowest temperature in that range is low.
  • It can be understood that the heat treatment step SX includes an etching step S1 and/or a growth step S2, acts as the etching step S1, or acts as the growth step S2.
  • The etching step S1 includes heating the SiC single crystal 1 and the SiC material 2 so that the SiC single crystal 1 is on the high temperature side and the SiC material 2 is on the low temperature side, thereby etching the SiC single crystal 1.
  • It can be understood that the etching step S1 includes a strained layer removal step S11 of placing the SiC single crystal 1 and the SiC material 2 in a semi-closed space having an atomic number ratio Si/C of 1 or less, and heating them to etch the SiC single crystal 1, or acts as the strained layer removal step S11.
  • It can be understood that the etching step S1 also includes a bunching decomposition step S12 of placing the SiC single crystal 1 and the SiC material 2 in a semi-closed space having an atomic number ratio Si/C of more than 1, and heating them to etch the SiC single crystal 1, or acts as the bunching decomposition step S12.
  • As illustrated in FIG. 3 , in the etching step S1, the SiC single crystal 1 and the SiC material 2 are heated so that the surface 1 a of SiC single crystal 1 and the surface 2 a of the SiC material 2 are etched and grown, respectively.
  • As illustrated in FIG. 3 , it can be understood that in the etching step S1, the SiC single crystal 1 and the SiC material 2 are heated so that the SiC single crystal 1 and the SiC material 2 become the source and destination of raw material transport, respectively.
  • As illustrated in FIG. 4 , the strained layer removal step S11 includes etching the strained layer 300 on the surface of the SiC single crystal 1. The strained layer 300 may include crystal dislocations 301 and/or damaged regions 302.
  • As illustrated in FIG. 4 , in the strained layer removal step S11, the SiC single crystal 1 is etched so that the surface having the steps 102 a and the terraces 102 b presenting a lengthened terrace length W2 is exposed, or the bunched surface is exposed.
  • As illustrated in FIG. 4 , the bunching decomposition step S12 includes etching the surface 1 a of the SiC single crystal 1 having the steps 102 a and the terraces 102 b to decompose the MSBs of the surface 1 a so as to expose the surface having steps 103 a and terraces 103 b presenting a reduced terrace length W3, or to form a planarized, bunching-free surface. At this time, the surface 1 a is terminated with the step that presents the height of a full unit in the SiC single crystals.
  • As illustrated in FIG. 5 , the growth step S2 includes heating the SiC single crystal 1 and the SiC material 2 so that the SiC single crystal 1 is on the low temperature side and the SiC material 2 is on the high temperature side, and crystal-growing the SiC single crystal 1 to form a growth layer 10 on the surface of the SiC single crystal 1.
  • As illustrated in FIG. 5 , in the growth step S2, the SiC single crystal 1 and the SiC material 2 are heated so that the surface 1 a of the SiC single crystal 1 and the surface 2 a of the SiC material 2 are grown and etched, respectively.
  • As illustrated in FIG. 5 , in the growth step S2, the SiC single crystal 1 and the SiC material 2 are heated so that they become the destination and source of raw material transport, respectively.
  • It can also be understood that the growth step S2 includes an epitaxial growth step S21 of placing the SiC single crystal 1 and the SiC material 2 in a semi-closed space having an atomic number ratio Si/C of 1 or less, and heating them to grow the SiC single crystal 1, or acts as the epitaxial growth step S21.
  • It can also be understood that the growth step S2 includes a bunching decomposition step S22 of placing the SiC single crystal 1 and the SiC material 2 in a semi-closed space having an atomic number ratio Si/C of more than 1, and heating them to grow the SiC single crystal 1, or acts as the bunching decomposition step S22.
  • As illustrated in FIG. 6 , the epitaxial growth step S21 includes growing crystals so as to form the growth layer 10 having the steps 102 a and the terraces 102 b having the lengthened terrace length W2 on the surface of the SiC single crystal 1 having steps 101 a and terraces 101 b presenting a reduced terrace length W1, or to form the growth layer 10 having a bunched surface on the base substrate 11.
  • As illustrated in FIG. 6 , in the epitaxial growth step S21, crystal growth is performed to form a growth layer having a basal plane dislocation density (BPD density) of < 100/cm2, or to convert the BPDs in the SiC single crystal 1 into other defects and dislocations, including threading edge dislocation (TED), to form at least a portion of the growth layer 10.
  • As illustrated in FIG. 6 , the bunching decomposition step S22 includes growing the SiC single crystal 1 on the growth layer 10 surface having the steps 102 a and the terraces 102 b to form the growth layer 10 having the steps 103 a and the terraces 103 b presenting the reduced terrace length W3, or to decompose the MSBs on the surface 1 a so as to form the growth layer 10 having a planarized, bunching-free surface. At this time, the surface 1 a is terminated with the step that presents the height of a full unit in the SiC single crystals.
  • As used herein, the term "planarized, bunching-free surface" refers to a SiC surface where macro-step bunching (MSB) has been decomposed.
  • The term "MSBs" in the description herein refers to those steps on the SiC surface that, by bunching, form a height that exceeds the full unit of each polytype.
  • In other words, MSBs are the steps that are bunched more than 4 molecular layers (5 or more molecular layers) for 4H-SiC and more than 6 molecular layers (7 or more molecular layers) for 6H-SiC.
  • In the etching step S1, the SiC single crystal 1 and the SiC material 2 are heated so that they become the source and destination of raw material transport, respectively.
  • In the stress reduction step S0, the SiC single crystal 1 and the SiC material 2 are heated so that the SiC single crystal 1 and the SiC material 2 are the source or the destination of the raw material transport, respectively.
  • As illustrated in FIG. 7 , in an embodiment of the present invention, it can be understood that in each of the stress reduction step S0, the etching step S1, and the growth step S2, the following reactions 1) to 5) are continuously performed. For the etching step S1, an example of the reaction step of raw material transport is described below.
  • Figure US20230024750A1-20230126-C00001
  • Figure US20230024750A1-20230126-C00002
  • Figure US20230024750A1-20230126-C00003
  • Figure US20230024750A1-20230126-C00004
  • Figure US20230024750A1-20230126-C00005
  • 1): As the surface 1 a of the SiC single crystal 1 is pyrolyzed, Si atoms (Si(v)) are desorbed from the surface 1 a.
  • 2) and 3): C atoms (C(s)) remaining on the surface 1 a due to desorption of Si atoms (Si(v)) react with Si vapor (Si(v)) in the raw material transport space, and sublimate into the raw material transport space as, for example, Si2C or SiC2.
  • 4) and 5): The sublimed Si2C, SiC2, or the like reaches and diffuses into the terraces on the surface 2 a of the SiC material 2 due to, for example, the temperature gradient and takes over the polymorphism of the surface 2 a by reaching the steps, forming the growth layer 10 while presenting the aspect of step-flow growth.
  • It can be understood that each of the stress reduction step S0, the etching step S1, and the growth step S2 includes a Si atom sublimation step of thermally sublimating Si atoms from the SiC material 2, and a C atom sublimation step of sublimating C atoms remaining on the surface 2 a of the SiC material 2 by bonding them with Si atoms in the raw material transport space.
  • In each of the stress reduction step S0, the etching step S1, and the growth step S2, crystal growth is performed by the supersaturation and condensation of transported Si2C, SiC2, or the like on the surface 1 a or 1 b of the SiC single crystal 1.
  • Each of the stress reduction step S0, the etching step S1, and the growth step S2 includes a Si atom sublimation step of thermally sublimating Si atoms from the surface 1 a or 1 b of the SiC single crystal 1, and a C atom sublimation step of sublimating C atoms remaining on the surface 1 a or 1 b of the SiC single crystal 1 by bonding them with Si atoms in the raw material transport space.
  • It can be understood that the stress reduction step S0 reduces the temperature gradient between the SiC single crystal 1 and the SiC material 2, and suppresses the raw material transport between the surface 1 a and/or 1 b and the surface 2 a while sustaining SiC sublimation from the surfaces 1 a, 1 b, and 2 a.
  • It can be understood that the stress reduction step S0 reduces the vapor pressure difference at the surface of the SiC single crystal 1 and the SiC material 2, or the stress reduction step S0 uniformizes the vapor pressure difference at the surface of the SiC single crystal 1 and the SiC material 2, and suppresses the raw material transport between the surface 1 a and/or 1 b and the surface 2 a while sustaining SiC sublimation from the surfaces 1 a, 1 b, and 2 a.
  • It can be understood that the stress reduction step S0 reduces the chemical potential difference at the surface of SiC single crystal 1 and the SiC material 2, or uniformizes the chemical potentials at the surfaces of the SiC single crystal 1 and the SiC material 2, and suppresses the raw material transport between the surface 1 a and/or 1 b and the surface 2 a while sustaining SiC sublimation from the surfaces 1 a and 2 a.
  • In addition, it can be understood that the stress reduction step S0 suppresses raw material transport between the surface 1 a and/or 1 b and the surface 2 a while sustaining SiC sublimation from the surfaces 1 a, 1 b and 2 a, based on the difference in crystal structure between the surfaces 1 a, 1 b, and 2 a, the temperature difference between the surfaces 1 a and 2 a, and at least some of the elements constituting the atmosphere.
  • It can be understood that the stress reduction step S0, for example, suppresses the raw material transport between the surface 1 a and/or 1 b and the surface 2 a while sustaining SiC sublimation from the surface 1 a, which is a Si or C plane, and the surface 2 a of the SiC material 2, which is made of SiC polycrystals.
  • It can be understood that the stress reduction step S0, for example, suppresses the raw material transport between the surface 1 a and/or 1 b and the surface 2 a while allowing SiC sublimation to continue from the surface 1 a, which is a Si or C plane, and the surface 2 a, which is a Si or C plane, respectively, of the SiC material 2, which is made SiC single crystals.
  • As used herein, the term "suppress raw material transport" and "no raw material transport occurs" refer to reducing the increase or decrease in thickness at the transport source and destination after heating. Therefore, the atoms that constitute each of the source and destination of transport and destination can be the atoms that constitute each of the source and destination of transport after heating.
  • As used herein, the term "Si surface" refers to a surface having an off-angle of a few degrees (for example, from 0.4 to 8.0°) from the (0001) plane.
  • As used herein, the term "C surface" refers to a surface having an off-angle of a few degrees (for example, from 0.4 to 8.0°) from the (000-1) plane.
  • It can be understood that the driving force for raw material transport between the surfaces 1 a and 2 a in the etching step S1 and the growth step S2 is the vapor pressure difference between the SiC single crystal 1 and the SiC material 2 due to the temperature gradient formed.
  • It can also be understood that the driving force for raw material transport between the surfaces 1 a and 2 a in the etching step S1 and the growth step S2 is not only the temperature gradient between the surfaces of the SiC single crystal 1 and the SiC material 2, but also the chemical potential difference between the SiC single crystal 1 and the SiC material 2.
  • In the raw material transport in each of the stress reduction step S0, the etching step S1, and the growth step S2, the dopant concentration in the SiC single crystal 1 can be adjusted by supplying a dopant gas into the semi-closed space by a dopant gas supply means. When no dopant gas is supplied, it can be understood that the SiC single crystal 1 takes over the dopant concentration in the semi-closed space.
  • The raw material transport in each of the stress reduction step S0, the etching step S1, and the growth step S2 is performed under the desired vapor pressure environment including a SiC-Si equilibrium vapor pressure environment and a SiC-C equilibrium vapor pressure environment.
  • As used herein, the term "SiC-Si vapor pressure environment" refers to the vapor pressure environment when SiC (solid) and Si (liquid phase) are in phase equilibrium through a vapor phase. The SiC-Si equilibrium vapor pressure environment is formed by heat-treating a semi-closed space having an atomic number ratio Si/C of more than 1.
  • As used herein, the term "SiC-C equilibrium vapor pressure environment" refers to the environment of vapor pressure when SiC (solid phase) and C (solid phase) are in phase equilibrium through a vapor phase. The SiC-C equilibrium vapor pressure environment is formed by heat-treating a semi-closed space having an atomic number ratio Si/C of 1 or less.
  • As illustrated in FIG. 8 , it can be understood that an embodiment of the present invention includes the stress reduction step S0, the strained layer removal step S11, the bunching decomposition step S12, the epitaxial growth step S21, and the bunching decomposition step S22 in this order.
  • As illustrated in FIG. 9 , it can be understood that an embodiment of the present invention includes the strained layer removal step S11, the bunching decomposition step S12, the stress reduction step S0, the epitaxial growth step S21, and the bunching decomposition step S22 in this order.
  • As illustrated in FIG. 10 , it can be understood that an embodiment of the present invention includes the strained layer removal step S11, the bunching decomposition step S12, the epitaxial growth step S21, the bunching decomposition step S22, and the stress reduction step S0 in this order.
  • An embodiment of the present invention may include the strained layer removal step S11, the stress reduction step S0, and the bunching decomposition step S12 in this order.
  • An embodiment of the present invention may include the epitaxial growth step S21, the stress reduction step S0 and the bunching decomposition step S22 in this order.
  • The order of the steps in an embodiment of the present invention may be determined in any order as appropriate in producing and realizing the SiC single crystal 1 having the desired quality.
  • As illustrated in FIG. 11 , the apparatus for producing SiC single crystals (hereinafter simply referred to as the "producing apparatus") includes a main container 141, a refractory container 142, and a heating furnace 143.
  • The main container 141 includes a material that includes, for example, SiC polycrystals. Therefore, at least a portion of the main container 141 can be the SiC material 2 or the source of transport (SiC material 2) in raw material transport.
  • The environment in the heated main container 141 is preferably, for example, a vapor pressure environment of a mixed system of a gas phase species containing Si elements and a gas phase species containing C element. Examples of the gas phase species containing Si elements include Si, Si2, Si3, Si2C, SiC2, and SiC.
  • Examples of the gas phase species containing C elements include Si2C, SiC2, SiC, and C.
  • The dopant and dopant concentration of the main container 141 may be selected according to the dopant and dopant concentration of the growth layer 10 to be formed.
  • Any structure that generates vapor pressure of a gas phase species containing Si elements and a gas phase species containing C elements in the internal space during the heating treatment of the main container 141 may be used. Examples of the structure include a configuration in which the SiC polycrystals are partially exposed on the inner surface, and a configuration in which the SiC polycrystals are separately installed in the main container 141.
  • The main container 141 may include an installation tool 141 a that can be used to install the SiC single crystal 1 and the SiC material 2.
  • The installation tool 141 a is preferably thin. The installation tool 141 a that has been thinned places each of the SiC single crystal 1 and the SiC material 2 in close proximity to each other, so as to reduce the separation distance d 1 between the SiC single crystal 1 and the SiC material 2.
  • At this time, each of the plurality of the SiC single crystal bodies 1 and the SiC material bodies 2 may be placed in an alternating configuration.
  • The main container 141 may be configured without the installation tool 141 a. At this time, each of the plurality of the SiC single crystal bodies 1 and the SiC material bodies 2 may be placed in an alternating configuration.
  • The main container 141 is a fitting container including an upper container 141 c and a lower container 141 b that can be fitted to each other. A minute gap is formed at the fitting part of the upper container 141 c and the lower container 141 b, through which the inside of the main container 141 can be evacuated (vacuated).
  • The main container 141 includes a Si vapor supply source. The Si vapor supply source is used to adjust the atomic number ratio Si/C of the semi-closed space in the main container 141 to be more than 1. Examples of the Si vapor supply source include solid Si (Si pellet such as Si pieces or Si powder) and Si compounds.
  • For example, when the entire main container 141 includes SiC polycrystals, as in an embodiment of the present invention, it can be understood that the atomic number ratio Si/C in the main container 141 exceeds 1 by installing a Si vapor supply source.
  • Specifically, it can be understood that the atomic number ratio Si/C in the main container 141 exceeds 1 when the SiC single crystal 1 and the SiC material 2 that satisfy the stoichiometric ratio 1: 1 and the Si vapor supply source are installed in the SiC polycrystalline main container 141 that satisfies the stoichiometric ratio 1: 1.
  • The SiC-Si equilibrium vapor pressure environment according to an embodiment of the present invention is formed by heating a semi-closed space having an atomic number ratio Si/C of more than 1.
  • The SiC-C equilibrium vapor pressure environment according to an embodiment of the present invention is formed by heating a semi-closed space having an atomic number ratio Si/C of 1 or less.
  • The main container 141 may be configured to house predetermined members as appropriate to provide a SiC-Si equilibrium vapor pressure environment or SiC-C equilibrium vapor pressure environment.
  • The heating furnace 143 is capable of heating the main container 141 to reduce the temperature gradient so that the temperature of the main container 141 becomes uniform from the upper container 141 c to the lower container 141 b.
  • The heating furnace 143 also heats the main container 141 to form a temperature gradient so that the temperature decreases or increases from the upper container 141 c to the lower container 141 b. With this configuration, the temperature gradient in the thickness direction of the SiC single crystal 1 is controlled.
  • As illustrated in FIG. 11 , the heating furnace 143 includes a main heating chamber 143 c capable of heating the SiC single crystal 1 or the like to a temperature of 1000° C. to 2300° C., a preliminary chamber 143 a capable of preheating the object to be treated to a temperature of 500° C. or higher, a refractory container 142 capable of housing the main container 141, and a moving means 143 b (moving table) capable of moving the refractory container 142 from the preliminary chamber 143 a to the main heating chamber 143 c.
  • The main heating chamber 143 c is, for example, regular hexagonal in planar cross-sectional view, and the refractory container 142 is installed inside it. The main heating chamber 143 c includes heaters 143 d (mesh heaters). Multilayer heat-reflective metal plates are fixed to the side walls and ceiling of the main heating chamber 143 c (not illustrated). The multilayer heat-reflective metal plates are configured to reflect the heat of the heaters 143 d toward the substantially central portion of the main heating chamber 143 c.
  • The heaters 143 d are installed in the main heating chamber 143 c to surround the refractory container 142 in which the object to be treated
  • is contained. At this time, the multilayer heat-reflective metal plates are installed on the outside of the heaters 143 d, which enables temperature increase in the temperature range of 1000° C. to 2300° C.
  • The heaters 143 d may be, for example, of resistance heating type or highfrequency induction heating type.
  • The heater 143 d may be configured to control the temperature gradient in the refractory container 142. The heater 143 d may be configured to reduce the temperature gradient in the refractory container 142. The heater 143 d may be configured to form a temperature gradient in the refractory container 142. For example, the heaters 143 d may be configured so that more heaters are installed on the upper (or lower) side. The heaters 143 d may be configured so that the width increases toward the upper (or lower) side. Alternatively, the heaters 143 d may be configured to be able to increase the power supplied toward the upper (or lower) side.
  • The main heating chamber 143 c is connected to a vacuum formation valve 143 f for evacuating air from the main heating chamber 143 c, an inert gas injection valve 143 e for introducing an inert gas into the main heating chamber 143 c, and a vacuum gauge 143 g for measuring the degree of vacuum in the main heating chamber 143 c.
  • The vacuum formation valve 143 f is connected to a vacuum pump (not illustrated) that evacuates air and vacuates the main heating chamber 143 c. By using the vacuum formation valve 143 f and the vacuum pump, the degree of vacuum in the main heating chamber 143 c can be adjusted preferably to 10 Pa or less, more preferably to 1.0 Pa or less, and even more preferably to 10-3 Pa or less. Examples of the vacuum pump include a turbo molecular pump.
  • The inert gas injection valve 143 e is connected to an inert gas supply source (not illustrated).
  • This inert gas injection valve 143 e and the inert gas supply source allow inert gas to be introduced into the main heating chamber 143 c in the range of 10-5 to 104 Pa. The inert gas may be, for example, Ar.
  • The inert gas injection valve 143 e is a dopant gas supply means capable of supplying a dopant gas into the main container 141. That is, by selecting a dopant gas (for example, N2) as the inert gas, the dopant concentration in the growth layer 10 can be increased.
  • The preliminary chamber 143 a is connected to the main heating chamber 143 c, and is configured to allow the refractory container 142 to be moved thereinto by the moving means 143 b. The preliminary chamber 143 a of the present embodiment is configured to be heated by the residual heat of the heaters 143 d of the main heating chamber 143 c. For example, when the main heating chamber 143 c is heated to 2000° C., the preliminary chamber 143 a is heated to about 1000° C., which allows the degassing treatment of the object to be treated (for example, the SiC single crystal 1, the main container 141, or the refractory container 142).
  • The moving means 143 b is configured to move between the main heating chamber 143 c and the preliminary chamber 143 a with the refractory container 142 on top of it.
  • The transfer between the main heating chamber 143 c and the preliminary chamber 143 a by the moving means 143 b can be completed in as little as one minute, so that temperature rise and fall at from 1.0 to 1000° C./min can be achieved. This allows for rapid temperature rise and fall, which makes it possible to observe the surface profile without low temperature growth history during temperature rise and fall.
  • In FIG. 11 , the preliminary chamber 143 a is located below the main heating chamber 143 c, but the preliminary chamber 143 a may be installed in any other direction.
  • The moving means 143 b according to the present embodiment is a moving table on which the refractory container 142 is placed. The contact area between the moving table and the refractory container 142 becomes the path for heat propagation. This makes it possible to form a temperature gradient in the refractory container 142 so that the contact area between the moving table and the refractory container 142 is on the low temperature side.
  • In the heating furnace 143 of the present embodiment, since the bottom of the refractory container 142 is in contact with the moving table, a temperature gradient is provided so that the temperature decreases from the upper container 142 b to the lower container 142 a of the refractory container 142.
  • The direction of the temperature gradient can be set in any direction by changing the position of the contact area between the moving table and the refractory container 142. For example, when a suspended type or the like is used for the moving table and the contact area is set on the ceiling of the refractory container 142, heat escapes in the upward direction. Therefore, the temperature gradient can be set so that the temperature increases from the upper container 142 b to the lower container 142 a of the refractory container 142. This temperature gradient is preferably reduced or formed along the thickness direction of the SiC single crystal 1 and the SiC material 2. As described above, the temperature gradient may be formed or reduced by the configuration of the heater 143 d.
  • The vapor pressure environment of the gas-phase species containing Si elements in the heating furnace 143 according to the present embodiment is formed using the refractory container 142 and a Si vapor supply material. For example, any method that enables the formation of an environment of vapor pressure of a gas phase species containing Si elements around the main container 141 may be used in the apparatus for producing a SiC substrate of the present invention.
  • The refractory container 142 preferably includes a high-melting point material having a melting point equal to or higher than the melting point of the material constituting the main container 141.
  • Examples of the refractory container 142 include C which is a general-purpose heat-resistant material, W, Re, Os, Ta, and Mo which are high-melting point metals, Ta9C8, HfC, TaC, NbC, ZrC, Ta2C, TiC, WC, and MoC which are carbides, HfN, TaN, BN, Ta2N, ZrN, and TiN which are nitrides, HfB2, TaB2, ZrB2, NB2, and TiB2 which are borides, and SiC polycrystals.
  • As illustrated in FIG. 11 , the refractory container 142, like the main container 141, is a fitting container including the upper container 142 b and the lower container 142 a that can be fitted to each other, and is configured to house the main container 141. A minute gap 43 is formed at the fitting portion between the upper container 142 b and the lower container 142 a, through which the inside of the refractory container 142 can be evacuated (vacuated).
  • The refractory container 142 has a Si vapor supply material that can supply vapor pressure of gas-phase species containing Si elements in the refractory container 142.
  • The Si vapor supply material should be configured to generate Si vapor in the refractory container 142 during the heat treatment, and examples thereof include solid Si (Si pellets such as Si pieces and Si powder) and Si compounds.
  • The Si vapor supply material is, for example, a thin film that coats the inner wall of the refractory container 142.
  • When the refractory container 142 is a metal compound such as TaC, the Si vapor supply material is, for example, a silicide material of the metal and Si atoms constituting the refractory container 142.
  • The refractory container 142 can maintain the vapor pressure environment of the gas-phase species containing Si elements in the main container 141 by having a Si vapor supply material inside it. It can be understood that this is because the vapor pressure of the gas phase type containing Si elements in the main container 141 and the vapor pressure of the gas phase type containing Si elements outside the main container 141 are balanced.
  • The present description describes the effects of the present invention with reference to Reference Examples 1 to 3.
  • Reference Example 1
  • Under the following conditions, the SiC single crystal substrate E10 is housed in the main container 141, and the main container 141 is housed in the refractory container 142.
  • SiC Single Crystal Substrate E10
    • Polymorphism: 4H-SiC
    • Substrate size: horizontal width (10 mm), vertical width (10 mm), thickness (0.3 mm)
    • Off-direction and off-angle: 4° off in <11-20> direction
    • Growth surface: (0001) plane
    • Presence or absence of MSB: absent
    • Presence or absence of strained layer: absent
    • Material: SiC polycrystals
    • Container size: diameter (60 mm), height (4.0 mm)
    • Distance between SiC single crystal substrate E10 and SiC material: 2.0 mm
    • Atomic number ratio Si/C in the container: 1 or less
    • Material: TaC
    • Container size: diameter (160 mm), height (60 mm)
    • Si vapor supply material (Si compound): TaSi2
  • The SiC single crystal substrate E10 installed under the above conditions is heat-treated under the following conditions.
    • Heating temperature: 1700° C.
    • Heating time: 300 min
    • Temperature gradient: 1.0° C./mm
    • Growth rate: 5.0 nm/min
    • Degree of vacuum of main heating chamber 143 c: 10-5 Pa
  • FIG. 12 illustrates the method for determining the conversion rate from BPDs to other defects and dislocations (for example, TED) in the growth layer E11.
  • FIG. 12 (a) illustrates the growth of the growth layer E11 by the heating step. During this heating step, the BPDs present on the SiC single crystal substrate E10 are converted to TEDs with a certain probability. Therefore, TEDs and BPDs are mixed on the surface of the growth layer E11, unless the BPDs are 100% converted.
  • FIG. 12 (b) illustrates the confirmation of defects in the growth layer E11 using the KOH dissolution etching method. In the KOH dissolution etching method, the SiC single crystal substrate E10 is immersed in a dissolved salt (for example, KOH) that has been heated to about 500° C., etch pits are formed in the dislocation or defect region, and the type of dislocation is determined by the size and shape of the etch pits. By this method, the number of BPDs present on the surface of the growth layer E11 is evaluated.
  • FIG. 12 (c) illustrates the removal of the growth layer E11 after KOH dissolution etching. In this method, after planarization by mechanical polishing or CMP to the depth of the etch pit, the growth layer E11 is removed by thermal etching to reveal the surface of the SiC single crystal substrate E10.
  • FIG. 12 (d) illustrates the confirmation of defects in the SiC single crystal substrate E10 after removal of the growth layer E11 from the SiC single crystal substrate E10 using the KOH dissolution etching method. By this method, the number of BPDs present on the surface of SiC single crystal substrate E10 is evaluated.
  • By comparing the number of BPDs in the surface of the growth layer E11 (see FIG. 12 (b)) with the number of BPDs in the surface of the SiC single crystal substrate E10 (see FIG. 12 (d)), according to the sequence illustrated in FIG. 12 , the BPD conversion rate, which is the conversion of BPDs to other defects and dislocations by heat treatment, can be obtained.
  • The number of BPDs in the surface of the growth layer E11 in Reference Example 1 was about 0/cm2, and the number of BPDs in the surface of the SiC single crystal substrate E10 was 1000/cm2. Therefore, it can be understood that BPDs are reduced and removed by heating the SiC single crystal substrate E10 without MSBs on the surface in a semi-closed space having an atomic number ratio Si/C of 1 or less.
  • In Reference Example 1, since the SiC-C equilibrium vapor pressure environment is formed in the main container 141 so that the atomic number ratio Si/C in the main container 141 is 1 or less, it can be understood that BPDs can be reduced and removed in the growth step S2.
  • Reference Example 2
  • Under the following conditions, the SiC single crystal substrate E10 was housed in the main container 141, and the main container 141 was further housed in the refractory container 142.
  • SiC Single Crystal Substrate E10
    • Polymorphism: 4H-SiC
    • Substrate size: horizontal width (10 mm), vertical width (10 mm), thickness (0.3 mm)
    • Off-direction and off-angle: 4° off in <11-20> direction
    • Growth surface: (0001) plane
    • Presence or absence of MSB: present
  • Material: SiC polycrystals
    • Container size: diameter (60 mm), height (4.0 mm)
    • Distance between SiC single crystal substrate E10 and SiC material: 2.0 mm
    • Si vapor supply source: Si piece
    • Atomic number ratio Si/C in the container: more than 1
  • By housing Si pieces along with a SiC single crystal substrate in the main container 141, the atomic number ratio Si/C in the container exceeds 1.
  • Material: TaC
    • Container size: 160 mm (diameter) × 60 mm (height)
    • Si vapor supply material (Si compound): TaSi2
  • The SiC single crystal substrate E10 installed under the above conditions is heat-treated under the following conditions.
    • Heating temperature: 1800° C.
    • Heating time: 60 min
    • Temperature gradient: 1.0° C./mm
    • Growth rate: 68 nm/min
    • Degree of vacuum of main heating chamber 143 c: 10-5 Pa
  • FIG. 13 is an SEM image of the surface of SiC single crystal substrate E10 before the growth of the growth layer E11. FIG. 13 (a) is a SEM image observed at a magnification of × 1000, and FIG. 13 (b) is a SEM image observed at a magnification of × 100000. The MSBs are formed on the surface of SiC single crystal substrate E10 before the growth of the growth layer E11, and it can be understood that the steps having a height of 3.0 nm or more are arranged with an average terrace width of 42 nm. The step height was measured by AFM.
  • FIG. 14 is an SEM image of the surface of the SiC single crystal substrate E10 after the growth of the growth layer E11. FIG. 14 (a) is a SEM image observed at a magnification of × 1000, and FIG. 14 (b) is a SEM image observed at a magnification of × 100000.
  • No MSBs are formed on the surface of the growth layer E11 of Reference Example 2, and it can be understood that the steps having a height of 1.0 nm (full unit cell) are regularly arranged with a terrace width of 14 nm. The step height was measured by AFM.
  • Therefore, it can be understood that the SiC single crystal substrate E10 having MSBs on the surface is heated in a semi-closed space having an atomic number ratio Si/C of more than 1 to form the growth layer E11 in which the MSBs are decomposed.
  • In Reference Example 2, he Si vapor supply source is installed so that the atomic number ratio Si/C in the main container 141 exceeds 1, so that a SiC-Si equilibrium vapor pressure environment is formed in the main container 141. Therefore, it can be understood that MSBs on the SiC single crystal substrate surface can be decomposed during the growth step S2.
  • Reference Example 3
  • FIG. 15 is a graph of the relationship between the heating temperature and the growth rate in the method for producing a SiC single crystal substrate of the present invention. The horizontal axis of this graph is the reciprocal of the temperature, and the vertical axis of this graph is the logarithmic growth rate. The results of growing the growth layer E11 on the SiC single crystal substrate E10 by placing the SiC single crystal substrate E10 in a space (in the main container 141) having an atomic number ratio Si/C of more than 1 are marked with o. The results of growing the growth layer E11 on the SiC single crystal substrate E10 by placing it in a space (in the main container 141) having an atomic number ratio Si/C of 1 or less are marked with x.
  • In the graph in FIG. 15 , the results of thermodynamic calculations for SiC substrate growth in a SiC-Si equilibrium vapor pressure environment are depicted as dashed lines (Arrhenius plot), and the results of thermodynamic calculations for SiC substrate growth in a SiC-C equilibrium vapor pressure environment are depicted as double-dotted lines (Arrhenius plot).
  • In the present method, the SiC single crystal substrate E10 is grown by using the chemical potential difference and temperature gradient as growth driving force under the condition that the vapor pressure environment between the SiC material and the SiC substrate becomes the SiC-C equilibrium vapor pressure environment or SiC-C equilibrium vapor pressure environment. An example of this chemical potential difference is the partial pressure difference of gas phase species generated at the surface of SiC polycrystals and SiC single crystals.
  • When the partial pressure difference of the vapor generated from the SiC material (source) and the SiC substrate (transport destination) is considered as the growth amount, the SiC growth rate can be obtained by the following equation 1:
  • G r o w t h r a t e i = S i C,S i 2 C,S i C 2 P t r a n s p o r t s o u r c e i -P t r a n s p o r t d e s t i n a t i o n i 2 π m i k T
  • Where T is the temperature of the SiC material side, mi is the molecular weight of the gas phase species (SixCy), and k is the Boltzmann constant. The Ptransport source i - Ptransport destination i is the growth amount where the raw material gas becomes supersaturated and precipitated as SiC, and SiC, Si2C, and SiC2 are assumed as raw material gases.
  • Therefore, the dashed line is the result of thermodynamic calculation when SiC single crystals are grown from SiC polycrystals in the vapor pressure environment when SiC (solid) and Si (liquid phase) are in phase equilibrium through a vapor phase. The results were obtained by thermodynamic calculations using the equation 1 under the following conditions (i) to (iv).
  • The volume of the SiC-Si equilibrium vapor pressure environment is constant.
  • (ii) The growth driving force is the temperature gradient in the main container 141 and the vapor pressure difference (chemical potential difference) between the SiC polycrystals and SiC single crystals.
  • (iii) The raw material gases are SiC, Si2C, and SiC2.
  • (iv) The adsorption coefficient of the raw material on the steps of SiC single crystal substrate E10 is 0.001.
  • The double-dotted line is the result of thermodynamic calculation when SiC single crystals are grown from SiC polycrystals in the vapor pressure environment when SiC (solid phase) and C (solid phase) are in phase equilibrium through a vapor phase. The results were obtained by thermodynamic calculations using the equation 1 under the following conditions (i) to (iv).
  • The volume of the SiC-C equilibrium vapor pressure environment is constant.
  • (ii) The growth driving force is the temperature gradient in the main container 141 and the vapor pressure difference (chemical potential difference) between the SiC polycrystals and SiC single crystals.
  • (iii) The raw material gases are SiC, Si2C, and SiC2.
  • (iv) The adsorption coefficient of the raw material on the steps of SiC single crystal substrate E10 is 0.001.
  • The data for each chemical species used in the thermodynamic calculations were used from JANAF thermochemical tables.
  • According to the graphs in FIG. 15 , it can be understood that the trend of the results of growing the growth layer E11 on the SiC single crystal substrate E10 in the space having an atomic number ratio Si/C of more than 1 (in the main container 141) (marked with o) is consistent with the trend of the results of the thermodynamic calculations of SiC growth in a SiC-Si equilibrium vapor pressure environment. It can be understood that the trend of the results of growing the growth layer E11 on the SiC single crystal substrate E10 in the space (in the main container 141) having an atomic number ratio Si/C of 1 or less (marked with ×) is consistent with the trend of the results of thermodynamic calculations of SiC growth in the SiC-C equilibrium vapor pressure environment.
  • In a SiC-Si equilibrium vapor pressure environment, it can be understood that a growth rate of 1.0 µm/min or more is achieved at a heating temperature of 1960° C. It can also be understood that a growth rate of more than 2.0 µm/min is achieved at a heating temperature of 2000° C. or higher. On the other hand, in the SiC—C equilibrium vapor pressure environment, it can be understood that a growth rate of 1.0 µm/min or more is achieved at a heating temperature of 2000° C. It can also be understood that a growth rate of 2.0 µm/min or more is achieved at a heating temperature of 2030° C. or higher.
  • The warpage amount 0 d of the SiC single crystal wafer produced according to an embodiment of the present invention is preferably < 30 µm, more preferably < 20 µm, even more preferably < 10 µm, and ye even more preferably < 1.0 µm.
  • The diameter of the SiC single crystal wafer produced according to an embodiment of the present invention is preferably 6 inches or more, more preferably 8 inches or more, and even more preferably 12 inches or more.
  • The BPD density of the growth layer 10 on the SiC single crystal wafer produced according to an embodiment of the present invention is preferably < 1000 /cm2, more preferably < 500 /cm2, and even more preferably < 100 /cm2.
  • The growth layer 10 on the SiC single crystal wafer produced according to an embodiment of the present invention refers to a growth layer having a doping concentration of > 1.0 × 1017 /cm3.
  • In one embodiment of the present invention, it can be understood that the BPD density of the base substrate 11 directly below the growth layer 10 on the surface of the SiC single crystal wafer is, for example, 5000 /cm2 or more.
  • REFERENCE SIGNS LIST
    • 0 d Warpage amounl
    • 1 SiC single crystal
    • 1 a Surface
    • 1 b Surface
    • 2 SiC material
    • 2 a Surface
    • 10 Growth layer
    • 11 Base substrate
    • 43 Gap
    • 1 SiC single crystal
    • 1 a Surface
    • 1 b Surface
    • 2 SiC material
    • 2 a Surface
    • 10 Growth layer
    • 11 Base substrate
    • 43 Gap
    • 101 a Step
    • 101 b Terrace
    • 102 a Step
    • 102 b Terrace
    • 103 a Step
    • 103 b Terrace
    • 141 Main container
    • 141 a Installation tool
    • 141 b Lower container
    • 141 c Upper container
    • 142 Refractory container
    • 142 a Lower container
    • 142 b Upper container
    • 143 Heating furnace
    • 143 a Preliminary chamber
    • 143 b Moving means
    • 143 c Main heating chamber
    • 143 d Heater
    • 143 e Inert gas injection valve
    • 143 f Vacuum formation valve
    • 143 g Vacuum gauge
    • 300 Strained layer
    • 301 Crystal dislocation
    • 302 Damaged region
    • E10 SiC single crystal substrate
    • E11 Growth layer
    • W1 Terrace length
    • W2 Terrace length
    • W3 Terrace length
    • d 1 Separation distance
    • S0 Stress reduction step
    • SX Heat treatment step
    • S1 Etching step
    • S11 Strained layer removal step
    • S12 Bunching decomposition step
    • S2 Growth step
    • S21 Epitaxial growth step
    • S22 Bunching decomposition step

Claims (20)

1. A method for producing SiC single crystals, comprising a stress reduction step of heating a SiC single crystal at 1800° C. or higher in an atmosphere containing Si and C elements to reduce internal stress in the SiC single crystal.
2. The producing method according to claim 1, wherein in the stress reduction step, the SiC single crystal is heated without changing the thickness and diameter of the SiC single crystal.
3. The producing method according to claim 1, wherein in the stress reduction step, the SiC single crystal is heated in a semi-closed space.
4. The producing method according to claim 1, wherein in the stress reduction step, the SiC single crystal is heated in an atmosphere containing an inert gas.
5. The producing method according to claim 1, wherein in the stress reduction step, the SiC single crystal is heated to uniformize the temperature of the SiC single crystal.
6. The producing method according to claim 1, further comprising a heat treatment step of heating the SiC single crystal and the SiC material at 1400° C. or higher in an atmosphere containing Si and C elements, wherein the heat treatment step comprises an etching step and/or a growth step.
7. The producing method according to claim 6, wherein in the heat treatment step, the SiC single crystal and the SiC material are heated so that the SiC single crystal is on the high temperature side and the SiC material is on the low temperature side, and the SiC single crystal is etched.
8. The producing method according to claim 6, wherein in the heat treatment step, the SiC single crystal and the SiC material are heated so that the SiC single crystal is on the low temperature side and the SiC material is on the high temperature side, and the SiC single crystal is crystal-grown.
9. The producing method according to claim 6, wherein the heat treatment step comprises a step of heating the SiC single crystal and the SiC material in a semi-closed space having an atomic number ratio Si/C of 1 or less.
10. The producing method according to claim 6, wherein the heat treatment step comprises a step of heating the SiC single crystal and the SiC material in a semi-closed space having an atomic number ratio Si/C of more than 1.
11. The producing method according to claim 6, wherein the heat treatment step comprises a strained layer removal step of etching the strained layer on the SiC single crystal.
12. The producing method according to claim 6, wherein the heat treatment step comprises a bunching decomposition step of decomposing macro-step bunching on the SiC single crystal to planarize the surface of the SiC single crystal.
13. The producing method according to claim 6, wherein the heat treatment step comprises an epitaxial growth step of forming a growth layer having a BPD density of < 100 /cm2.
14. The producing method according to claim 6, wherein the method for producing the SiC single crystal comprises the stress reduction step and the heat treatment step in this order.
15. An apparatus for producing SiC single crystals, comprising a main container comprised of a SiC material and capable of housing a SiC single crystal, and a heating furnace capable of heating the main container at 1800° C. or higher.
16. The producing apparatus according to claim 15, wherein the heating furnace is capable of heating the SiC single crystal while uniformizing its temperature.
17. The producing apparatus according to claim 15, wherein the heating furnace comprises a refractory container capable of housing the main container.
18. A SiC single crystal wafer having a warpage amount of < 30 µm and a diameter of 6 inches or more.
19. The SiC single crystal wafer according to claim 18, wherein the SiC single crystal wafer has a growth layer having a BPD density of < 100 cm2.
20. The SiC single crystal wafer according to claim 19, wherein the SiC single crystal wafer has a base substrate having a BPD density of 5000 /cm2 or more.
US17/764,116 2019-09-27 2020-09-24 SiC single crystal manufacturing method, SiC single crystal manufacturing device, and SiC single crystal wafer Active 2040-10-08 US11932967B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019178069 2019-09-27
JP2019-178069 2019-09-27
PCT/JP2020/036003 WO2021060368A1 (en) 2019-09-27 2020-09-24 Sic single crystal manufacturing method, sic single crystal manufacturing device, and sic single crystal wafer

Publications (2)

Publication Number Publication Date
US20230024750A1 true US20230024750A1 (en) 2023-01-26
US11932967B2 US11932967B2 (en) 2024-03-19

Family

ID=75167056

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/764,116 Active 2040-10-08 US11932967B2 (en) 2019-09-27 2020-09-24 SiC single crystal manufacturing method, SiC single crystal manufacturing device, and SiC single crystal wafer

Country Status (6)

Country Link
US (1) US11932967B2 (en)
EP (1) EP4036281A4 (en)
JP (1) JPWO2021060368A1 (en)
CN (1) CN114423889A (en)
TW (1) TW202120758A (en)
WO (1) WO2021060368A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117535788A (en) * 2024-01-10 2024-02-09 乾晶半导体(衢州)有限公司 Single crystal growth method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7339434B1 (en) 2021-10-20 2023-09-05 日本碍子株式会社 SiC single crystal substrate and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160215414A1 (en) * 2014-09-30 2016-07-28 Nippon Steel & Sumikin Materials Co., Ltd. Silicon carbide single crystal wafer and method of manufacturing a silicon carbide single crystal ingot
US20160231256A1 (en) * 2013-09-20 2016-08-11 Nippon Steel & Sumikin Materials Co., Ltd. Method for evaluating internal stress of silicon carbide monocrystalline wafer and method for predicting warpage in silicone carbide monocrystalline wafer
US20170137962A1 (en) * 2015-11-16 2017-05-18 National Chung-Shan Institute Of Science And Technology Fabrication Method for Growing Single Crystal of Multi-Type Compound
US20210091187A1 (en) * 2019-09-20 2021-03-25 Fuji Electric Co., Ltd. Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3550967B2 (en) * 1997-09-11 2004-08-04 富士電機ホールディングス株式会社 Heat treatment method for silicon carbide substrate
JP5014737B2 (en) 2006-09-21 2012-08-29 新日本製鐵株式会社 Method for manufacturing SiC single crystal substrate
CN102543718A (en) * 2010-12-14 2012-07-04 北京天科合达蓝光半导体有限公司 Method for decreasing warp and bow of silicon carbide wafer
JP6080075B2 (en) 2013-06-13 2017-02-15 学校法人関西学院 Surface treatment method for SiC substrate
JP6232329B2 (en) 2014-03-31 2017-11-15 東洋炭素株式会社 Method for removing work-affected layer of SiC seed crystal, method for producing SiC seed crystal and SiC substrate
JP6335722B2 (en) 2014-08-29 2018-05-30 昭和電工株式会社 Method for annealing silicon carbide single crystal
US11359307B2 (en) 2016-04-28 2022-06-14 Kwansei Gakuin Educational Foundation Vapour-phase epitaxial growth method, and method for producing substrate equipped with epitaxial layer
KR102604446B1 (en) 2017-03-22 2023-11-22 토요타 쯔우쇼우 가부시키가이샤 Method for manufacturing modified SiC wafer, SiC wafer with epitaxial layer, method for manufacturing same, and surface treatment method
JP2018158858A (en) 2017-03-22 2018-10-11 日本電信電話株式会社 Crystal growth method and apparatus
CN106968018B (en) 2017-04-10 2019-02-05 山东大学 A kind of growing method for the single-crystal silicon carbide material that germanium nitrogen is co-doped with
JP7085833B2 (en) 2017-12-25 2022-06-17 昭和電工株式会社 Method for manufacturing silicon carbide single crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160231256A1 (en) * 2013-09-20 2016-08-11 Nippon Steel & Sumikin Materials Co., Ltd. Method for evaluating internal stress of silicon carbide monocrystalline wafer and method for predicting warpage in silicone carbide monocrystalline wafer
US20160215414A1 (en) * 2014-09-30 2016-07-28 Nippon Steel & Sumikin Materials Co., Ltd. Silicon carbide single crystal wafer and method of manufacturing a silicon carbide single crystal ingot
US20170137962A1 (en) * 2015-11-16 2017-05-18 National Chung-Shan Institute Of Science And Technology Fabrication Method for Growing Single Crystal of Multi-Type Compound
US20210091187A1 (en) * 2019-09-20 2021-03-25 Fuji Electric Co., Ltd. Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117535788A (en) * 2024-01-10 2024-02-09 乾晶半导体(衢州)有限公司 Single crystal growth method

Also Published As

Publication number Publication date
WO2021060368A1 (en) 2021-04-01
EP4036281A4 (en) 2023-08-02
EP4036281A1 (en) 2022-08-03
US11932967B2 (en) 2024-03-19
TW202120758A (en) 2021-06-01
JPWO2021060368A1 (en) 2021-04-01
CN114423889A (en) 2022-04-29

Similar Documents

Publication Publication Date Title
JP7278550B2 (en) SiC semiconductor substrate, its manufacturing method, and its manufacturing apparatus
US20220181156A1 (en) SiC EPITAXIAL SUBSTRATE MANUFACTURING METHOD AND MANUFACTURING DEVICE THEREFOR
WO2021025085A1 (en) SiC SUBSTRATE, SiC EPITAXIAL SUBSTRATE, SiC INGOT AND PRODUCTION METHODS THEREOF
US20230024750A1 (en) Sic single crystal manufacturing method, sic single crystal manufacturing device, and sic single crystal wafer
WO2020218483A1 (en) Method of manufacturing semiconductor substrate, manufacturing apparatus therefor, and epitaxial growth method
US20220333270A1 (en) SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, SiC INGOT PRODUCED BY GROWING SAID SiC SEED CRYSTAL AND METHOD FOR PRODUCING SAME, AND SiC WAFER PRODUCED FROM SAID SiC INGOT AND SiC WAFER WITH EPITAXIAL FILM AND METHODS RESPECTIVELY FOR PRODUCING SAID SiC WAFER AND SAID SiC WAFER WITH EPITAXIAL FILM
EP3879010A1 (en) Sic semiconductor substrate, and, production method therefor and production device therefor
US20220181149A1 (en) METHOD AND DEVICE FOR MANUFACTURING SiC SUBSTRATE, AND METHOD FOR REDUCING MACRO-STEP BUNCHING OF SiC SUBSTRATE
US11952678B2 (en) Method for manufacturing etched SiC substrate and grown SiC substrate by material tranportation and method for epitaxial growth by material transportation
US20220316089A1 (en) Method for producing semiconductor substrates and device for producing semiconductor substrates
US20220359667A1 (en) Sic substrate, sic substrate production method, sic semiconductor device, and sic semiconductor device production method
TW202120753A (en) SiC substrate production method
TW202044350A (en) SiC substrate manufacturing method and manufacturing device, and method for reducing work-affected layer in SiC substrate

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: TOYOTA TSUSHO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KANEKO, TADAAKI;REEL/FRAME:060504/0470

Effective date: 20220228

Owner name: KWANSEI GAKUIN EDUCATIONAL FOUNDATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KANEKO, TADAAKI;REEL/FRAME:060504/0470

Effective date: 20220228

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE