US20230009338A1 - Pulley force detection device for weight-training fitness equipment - Google Patents

Pulley force detection device for weight-training fitness equipment Download PDF

Info

Publication number
US20230009338A1
US20230009338A1 US17/810,880 US202217810880A US2023009338A1 US 20230009338 A1 US20230009338 A1 US 20230009338A1 US 202217810880 A US202217810880 A US 202217810880A US 2023009338 A1 US2023009338 A1 US 2023009338A1
Authority
US
United States
Prior art keywords
weight
pulley
measurement device
detection module
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/810,880
Inventor
Yu-Yu Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20230009338A1 publication Critical patent/US20230009338A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0062Monitoring athletic performances, e.g. for determining the work of a user on an exercise apparatus, the completed jogging or cycling distance
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/06User-manipulated weights
    • A63B21/062User-manipulated weights including guide for vertical or non-vertical weights or array of weights to move against gravity forces
    • A63B21/0626User-manipulated weights including guide for vertical or non-vertical weights or array of weights to move against gravity forces with substantially vertical guiding means
    • A63B21/0628User-manipulated weights including guide for vertical or non-vertical weights or array of weights to move against gravity forces with substantially vertical guiding means for vertical array of weights
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/15Arrangements for force transmissions
    • A63B21/151Using flexible elements for reciprocating movements, e.g. ropes or chains
    • A63B21/154Using flexible elements for reciprocating movements, e.g. ropes or chains using special pulley-assemblies
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/40Acceleration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/50Force related parameters
    • A63B2220/51Force
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/50Force related parameters
    • A63B2220/51Force
    • A63B2220/52Weight, e.g. weight distribution
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/50Force related parameters
    • A63B2220/58Measurement of force related parameters by electric or magnetic means
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/805Optical or opto-electronic sensors
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/15Miscellaneous features of sport apparatus, devices or equipment with identification means that can be read by electronic means
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/50Wireless data transmission, e.g. by radio transmitters or telemetry

Definitions

  • the present invention relates to a device for detecting a force applied in exercise, and more particularly to a pulley force detection device of weight-training fitness equipment.
  • the primary objective of the present invention is to provide a pulley force detection device that is suitable for use in and combination with a weight-training fitness equipment.
  • a technical solution adapted in the present invention comprises a measured element arranged on a stator portion of a pulley of fitness equipment, and a detection module arranged on a rotor portion.
  • the detection module comprises at least one measuring element corresponding to the measured element to detect a motion stroke, a speed, and a power value during force application to a pulley body.
  • the measured element is alternatively arranged on the rotor portion of the pulley, while the measuring element is arranged on the stator portion of the pulley.
  • the pulley force detection device of the present invention is combinable with a weight measurement device for detecting a weight of a weight block connected to the weight measurement device, a movement detecting accelerometer for detecting at least one acceleration signal of the weight measurement device during movement, and at least one movement detecting element for detecting a movement of the weight measurement device during movement.
  • a pulley force detection device for a weight-training fitness equipment, comprising a pulley device including a stator portion fixed to a top frame of the weight-training fitness equipment and a rotor portion rotatably mounted to the stator portion.
  • a pull cord extended around the rotor portion of the pulley device, having a mounting end and a free end.
  • a weight measurement device connected between the mounting end of the pull cord and a weight block of the weight-training fitness equipment, such that the pull cord, upon being acted upon by a force applied to the free end thereof, drives the rotor portion to rotate so as to pull and move the weight block through the weight measurement device.
  • the weight measurement device includes at least one strain gauge mounted on a side wall of the weight measurement device for detecting a weight of the weight block and correspondingly generates a weight signal to a detection module.
  • a movement detecting accelerometer is electrically connected to the detection module for detecting at least one acceleration signal of the weight measurement device and transmitting the at least one acceleration signal to the detection module.
  • a magnet mounted on a vertical frame of a strength machine, and a magnetism detecting element is electrically connected to the detection module and mounted on the weight measurement device at a place corresponding to the at least one magnet at a distance therebetween.
  • an optical transmitter is mounted on a vertical frame of a strength machine, and an optical receiver is electrically connected to the detection module and mounted on the weight measurement device at a place corresponding to the at least one optical transmitter at a distance therebetween.
  • an optical reflector is mounted on a vertical frame of the weight-training fitness equipment, and an optical transceiver is electrically connected to the detection module and mounted on the weight measurement device at a place corresponding to the at least one optical reflector at a distance therebetween.
  • a barcode is mounted on a vertical frame of the weight-training fitness equipment, and a barcode reader is electrically connected to the detection module and mounted on the weight measurement device at a place corresponding to the barcode at a distance therebetween.
  • the present invention may also comprise a weight measurement device.
  • the weight measurement device comprises an electronic control module. By means of the weight measurement device, a weight signal of the weight block can be measured.
  • options of arrangement including a stand-alone arrangement and an add-on arrangement, are available for mounting to or combining with various types of exercise and fitness equipment, allowing the user to get aware of force application rate, motion stroke or weight, and power that the user applies in doing exercises.
  • FIG. 1 is a schematic view showing an example of arrangement for a pulley force detection device according to a first embodiment of the present invention
  • FIG. 2 is a front-side schematic view showing a rotor portion of the pulley force detection device shown in FIG. 1 ;
  • FIG. 3 is a schematic view showing a detection module mounted on the rotor portion of the pulley force detection device according to the present invention
  • FIG. 4 is a cross-sectional view taken along line A-A of FIG. 1 ;
  • FIG. 5 is a circuit diagram for the first embodiment as shown in FIGS. 1 - 4 ;
  • FIG. 6 is a cross-sectional view showing a second embodiment according to the present invention, which incorporated with a first embodiment of a weight measurement device;
  • FIG. 7 illustrates an example of application in which the present invention is used with a weight-training fitness equipment
  • FIG. 8 is a perspective view showing a second embodiment of the weight measurement device shown in FIG. 6 ;
  • FIG. 9 is a perspective view showing a third embodiment of the weight measurement device shown in FIG. 6 ;
  • FIG. 10 is a perspective view showing a fourth embodiment of a weight measurement device shown in FIG. 6 ;
  • FIG. 11 is a circuit diagram adapted for the second embodiment as shown in FIGS. 6 - 10 ;
  • FIG. 12 is a perspective view showing a third embodiment according to the present invention.
  • FIG. 13 is a perspective view showing a fourth embodiment according to the present invention.
  • FIG. 14 is a perspective view showing a fifth embodiment according to the present invention.
  • FIG. 15 is a perspective view showing a sixth embodiment according to the present invention.
  • FIG. 16 is a perspective view showing a seventh embodiment according to the present invention.
  • FIG. 17 is a perspective view showing an eighth embodiment according to the present invention.
  • a pulley force detection device 100 comprises a rotor portion 1 and a stator portion 2 .
  • the rotor portion 1 comprises a pulley body 11 and a bearing 12 .
  • the pulley body 11 has an outer circumference in and along which a grooved track 13 is formed for receiving a pull cord 3 in the grooved track 13 .
  • the stator portion 2 includes an axle 21 and a support frame 22 that supports the axle 21 .
  • the support frame 22 has a bottom that is connected, by means of a connection mechanism 4 , to a weight block 5 of a known weight-training fitness equipment.
  • the rotor portion 1 is rotatably mounted, by means of the bearing 12 , to the axle 21 of the stator portion 2 .
  • the pull cord 3 when receiving a force applied thereto, drives the pulley body 11 to rotate about a rotation center defined by the axle 21 .
  • the instant embodiment includes a detection module 6 arranged on the rotor portion 1 , and a measured element 7 arranged on the stator portion 2 .
  • FIG. 5 is a circuit diagram for the first embodiment as shown in FIGS. 1 - 4 .
  • the detection module 6 comprises at least one measuring element 61 a , 61 b mounted on a sidewall of the rotor portion 1 and corresponded to the measured element 7 .
  • the measuring element 61 a , 61 b may precisely measure at least one force signal that a force is applied to the pulley body 11 to cause rotation thereof.
  • the force signal measured by the measuring element 61 a , 61 b is transmitted to a processing unit 68 .
  • the detection module 6 further comprises a transmission module 62 that is connected to the processing unit 68 .
  • the transmission module 62 is operable to transmit out the force signal measured by the measuring element 61 a , 61 b in a wireless manner.
  • the transmission module 62 can be a low-power wireless transmission module (such as Bluetooth, ANT+, and Wi-Fi) that comprises an operation unit (such as a microcontroller unit, MCU) to transmit the force signal measured by the measuring element 61 a , 61 b to an electronic device 69 (such as a smart phone or a smart personal wearable device) or a control station arranged on an exercise apparatus.
  • an operation unit such as a microcontroller unit, MCU
  • a power source 63 supplies electrical energy necessary for operation of the measuring element 61 a , 61 b and the transmission module 62 .
  • the power source 63 can be one of a permanent battery and a rechargeable battery.
  • the measured element 7 comprises at least one magnet or a ring magnet 71 of multiple poles arranged in a ring manner, which is embedded in or fixed to the stator portion 2 and corresponds to the measuring element 61 a , 61 b , so as to form a concentric arrangement to allow the measuring element 61 a , 61 b of the detection module 6 to make detection thereon for conversion and determination of a motion stroke.
  • the magnet or the multiple-pole ring magnets 71 can be replaced by a barcode, in such a way that the barcode is attached to or printed on the stator portion 2 to correspond to the measuring element 61 a , 61 b , forming a concentric arrangement to allow the measuring element 61 a , 61 b of the detection module 6 to make detection thereon for conversion and determination of a motion stroke.
  • the measuring element 61 a , 61 b may comprise at least one Hall effect element or a reed switch for measuring a state of variation of the magnetic poles of the magnet of the measured element 7 .
  • the measuring element 61 a , 61 b may alternatively or additionally comprise at least one opto-coupling diode assembly for detecting a state of variation of the barcode of the measured element 7 .
  • a housing 64 may be further included for fixing and protecting the measuring element 61 a , 61 b , the transmission module 62 , and the power source 63 on the rotor portion 1 .
  • the detection module 6 may further comprise a display device 65 (such as an LED or LCD) to display a state of operation of the rotor portion 1 .
  • a display device 65 such as an LED or LCD
  • the detection module 6 may further comprise an automatic wake-up element 66 , which can be for example a reed switch, a relay, a Hall effect element, or a vibration switch.
  • an automatic wake-up element 66 can be for example a reed switch, a relay, a Hall effect element, or a vibration switch.
  • the detection module 6 may further comprise a three-axial or more than three-axial accelerometer (G-sensor) 67 for measuring at least one acceleration signal of rotation or movement of the rotor portion 1 .
  • G-sensor three-axial accelerometer
  • FIG. 6 a schematic cross-sectional view showing a pulley force detection device 100 a according to a second embodiment of the present invention is provided, which incorporated with a first embodiment of a weight measurement device.
  • Constituent elements of the instant embodiment are generally similar to those of the first embodiment described above, and thus, for consistency purposes, identical elements are designated with the same reference numerals.
  • the measured element 7 is arranged on the rotor portion 1
  • a detection module 6 a is arranged on the stator portion 2 .
  • the measuring element 61 a , 61 b of the detection module 6 a may similarly measure at least one force signal generated when the pulley body 11 is acted upon by a force applied thereto.
  • the bottom of the support frame 22 of the stator portion 2 is connected to a first embodiment of a weight measurement device 8 , and a bottom of the weight measurement device 8 is further connected, by means of a connection mechanism 4 to a weight block.
  • the weight measurement device 8 is formed with a pair of corresponding hollowed portions 81 a , 81 b .
  • a pair of strain gauges 82 a , 82 b are mounted on side walls of the hollowed portions 81 a , 81 b respectively.
  • the strain gauges 82 a , 82 b are electrically connected to the detection module 6 a through signal lines 83 .
  • FIG. 7 illustrates an example of application of the present invention, in which the pulley force detection device 100 a of the second embodiment as shown in FIG. 6 is used with a weight-training fitness equipment 9 .
  • the bottom of the weight measurement device 8 is connected to the weight block 5 through the connection mechanism 4 .
  • One end of a pull cord 3 is positioned on a top frame 91 of the weight-training fitness equipment 9 , and then extended around the pulley body 11 of the rotor portion 1 of the pulley force detection device 100 a .
  • the other end of the pull cord 3 is connected to a handle bar 84 of the weight-training fitness equipment 9 , so that a user may apply a force to pull the handlebar 84 to pull the rotor portion 1 to rotate.
  • the force applied by the user transmits through the pulley force detection device 100 a , the weight measurement device 8 , and the connection mechanism 4 to pull and move the weight block 5 .
  • the measuring element 61 a , 61 b of the detection module 6 a measures and transmits the force signal that the pulley body 11 is acted upon by the force to rotate to the detection module 6 a .
  • a weight of the weight block 5 is detected by the strain gauges 82 a , 82 b according to amounts of deformation of the hollowed portions 81 a , 81 b of the weight measurement device 8 , and a weight signal is transmitted to the detection module 6 a through the signal lines 83 .
  • the detection module 6 a may be further electrically connected to a control station 85 of the weight-training fitness equipment 9 .
  • FIG. 8 is a perspective view showing a second embodiment of the weight measurement device.
  • the weight measurement device 8 a of the instant embodiment is identical to that of the first embodiment as shown in FIG. 6 for most structures thereof.
  • a pair of strain gauges 82 a , 82 b are mounted on side walls of the hollowed portions 81 a , 81 b respectively.
  • a difference between the second embodiment of the weight measurement device 8 a and the first embodiment of the weight measurement device 8 shown in FIG. 6 resides in that a three-axial or more than three-axial movement detecting accelerometer 86 is further mounted on a selected position of the weight measurement device 8 a for measuring at least one acceleration signal of the weight measurement device 8 a during movement and then transmitting the acceleration signal to the detection module 6 a.
  • FIG. 9 is a perspective view showing a third embodiment of a weight measurement device.
  • the weight measurement device 8 b of the instant embodiment is also identical to that of the first embodiment as shown in FIG. 6 for most structures thereof.
  • a pair of strain gauges 82 a , 82 b are mounted on side walls of the hollowed portions 81 a , 81 b respectively.
  • a difference between the third embodiment of the weight measurement device 8 b and the first embodiment of the weight measurement device 8 shown in FIG. 6 resides in that at least one magnet 87 a is mounted on a vertical frame 92 of the weight-training fitness equipment 9 as shown in FIG. 7 .
  • At least one magnetism detecting element 87 b such as a known reed switch is mounted on a selected place of the weight measurement device 8 b , corresponding to the magnet 87 a at a suitable distance therebetween.
  • the magnetism detecting element 87 b acts as a movement detecting element capable of generating at least one movement signal of the weight measurement device 8 b during movement by means of detecting the magnetism change with respect to the magnet 87 a and then transmitting the movement signal to the detection module 6 a.
  • FIG. 10 is a perspective view showing a fourth embodiment of a weight measurement device.
  • the weight measurement device 8 c of the instant embodiment is identical to that of the third embodiment as shown in FIG. 9 for most structures thereof.
  • a pair of strain gauges 82 a , 82 b are mounted on side walls of the hollowed portions 81 a , 81 b respectively.
  • a difference between the fourth embodiment of the weight measurement device 8 c and the third embodiment of the weight measurement device 8 b shown in FIG. 9 resides in that at least one optical transmitter 88 a is mounted on the vertical frame 92 of the weight-training fitness equipment 9 as shown in FIG. 7 .
  • At least one optical receiver 88 b is mounted on a selected place of the weight measurement device 8 c , corresponding to the optical transmitter 88 a at a suitable distance from the optical transmitter 88 a .
  • the optical receiver 88 b is capable of generating at least one movement signal of the weight measurement device 8 c during movement by means of receiving the optical signal transmitted from the optical transmitter 88 a and then transmitting the movement signal to the detection module 6 a .
  • the optical transmitter 88 a may be replaced by an optical reflector, and the optical receiver 88 b may be replaced by a known optical transceiver.
  • FIG. 11 a circuit diagram adapted for the second embodiment as shown in FIGS. 5 - 10 is shown. Constituent components of the instant embodiment are generally the same as those of the circuit diagram of the first embodiment shown in FIG. 5 , and for consistency purposes, identical elements are designated with the same reference numerals.
  • the measuring element 61 a , 61 b of the detection module 6 a measures and transmits the force signal that the pulley body 11 is acted upon by the force to rotate to the processing unit 68 .
  • a weight of the weight block 5 is detected by the strain gauges 82 a , 82 b according to amounts of deformation of the hollowed portions 81 a , 81 b , and a weight signal is transmitted to the processing unit 68 .
  • the acceleration signal generated by the accelerometer 67 is transmitted to the processing unit 68 .
  • the acceleration signal generated by the movement detecting accelerometer 86 is transmitted to the processing unit 68 .
  • the movement signal generated by the magnetism detecting element 87 b shown in FIG. 9 or the movement signal generated by the optical receiver 88 b shown in FIG. 10 is also transmitted to the processing unit 68 .
  • the force signal, the weight signal, the acceleration signals and the movement signal may be transmitted, in either a wired manner or a wireless manner, to the electronic device 69 (such as a smart phone or a smart personal wearable device) or the control station 85 arranged on the weight-training fitness equipment 9 .
  • the electronic device 69 such as a smart phone or a smart personal wearable device
  • the control station 85 arranged on the weight-training fitness equipment 9 .
  • FIG. 12 is a perspective view showing a third embodiment according to the present invention.
  • a pulley device 100 b includes a rotor portion 1 and a stator portion 2 .
  • the stator portion 2 is fixed to a top frame 91 of a weight-training fitness equipment by means of a support frame 22 .
  • the rotor portion 1 is rotatably mounted to the stator portion 2 .
  • a pull cord 3 is extended around the rotor portion 1 of the pulley device 100 b .
  • a weight measurement device 8 a is connected between a mounting end 31 of the pull cord 3 and a weight block 5 of the weight-training fitness equipment, such that the pull cord 3 , upon being acted upon by a force applied to the free end 32 of the pull cord 3 , drives the pulley body 11 of the rotor portion 1 to rotate, so as to pull and move the weight block 5 through the weight measurement device 8 a.
  • the weight measurement device 8 a is identical to that of the embodiment as shown in FIG. 8 .
  • the weight measurement device 8 a includes at least one strain gauge mounted on a side wall of the weight measurement device 8 a for detecting a weight of the weight block 5 and correspondingly generates a weight signal to a detection module 6 b .
  • a pair of strain gauges 82 a , 82 b are mounted on side walls of a pair of hollowed portions 81 a , 81 b respectively, and the strain gauges 82 a , 82 b are electrically connected to the detection module 6 b.
  • a three-axial or more than three-axial movement detecting accelerometer 86 is mounted on a selected position of the weight measurement device 8 a for measuring at least one acceleration signal of the weight measurement device 8 a during movement and then transmitting the acceleration signal to the detection module 6 b.
  • FIG. 13 is a perspective view showing a fourth embodiment according to the present invention.
  • a weight measurement device 8 a 1 of the instant embodiment is identical to that of the embodiment as shown in FIG. 12 for most structures thereof.
  • a difference between the weight measurement device 8 a 1 of the instant embodiment and the embodiment of the weight measurement device 8 a shown in FIG. 12 resides in that the three-axial or more than three-axial movement detecting accelerometer 86 is mounted on a selected position of a casing of the weight measurement device 8 a 1 for measuring at least one acceleration signal of the weight measurement device 8 a 1 during movement and then transmitting the acceleration signal to the detection module 6 b .
  • the movement detecting accelerometer 86 may be mounted on the weight block 5 of a weight-training fitness equipment.
  • FIG. 14 is a perspective view showing a fifth embodiment according to the present invention.
  • a weight measurement device 8 b of the instant embodiment is identical to that of the embodiment as shown in FIG. 9 .
  • a pair of strain gauges 82 a , 82 b are mounted on side walls of the hollowed portions 81 a , 81 b of the weight measurement device 8 b respectively.
  • a magnet 87 a is mounted on a vertical frame 92 of a weight-training fitness equipment. Further, at least one magnetism detecting element 87 b such as a known reed switch is mounted on a selected place of the weight measurement device 8 b , corresponding to the magnet 87 a at a suitable distance therebetween.
  • the magnetism detecting element 87 b acts as a movement detecting element capable of generating at least one movement signal of the weight measurement device 8 b during movement by means of detecting the magnetism change with respect to the magnet 87 a and then transmitting the movement signal to the detection module 6 b.
  • FIG. 15 is a perspective view showing a sixth embodiment according to the present invention.
  • a weight measurement device 8 c of the instant embodiment is identical to that of the embodiment as shown in FIG. 9 .
  • a pair of strain gauges 82 a , 82 b are mounted on side walls of the hollowed portions 81 a , 81 b of the weight measurement device 8 d respectively.
  • An optical transmitter 88 a is mounted on the vertical frame 92 of a weight-training fitness equipment.
  • an optical receiver 88 b is mounted on a selected place of the weight measurement device 8 c , corresponding to the optical transmitter 88 a at a suitable distance from the optical transmitter 88 a .
  • the optical receiver 88 b is capable of generating at least one movement signal of the weight measurement device 8 c during movement by means of receiving the optical signal transmitted from the optical transmitter 88 a and then transmitting the movement signal to the detection module 6 b.
  • FIG. 16 is a perspective view showing a seventh embodiment according to the present invention.
  • a weight measurement device 8 d of the instant embodiment is identical to that of the embodiment as shown in FIG. 15 for most structures thereof.
  • a pair of strain gauges 82 a , 82 b are mounted on side walls of the hollowed portions 81 a , 81 b of the weight measurement device 8 e respectively.
  • a difference between the instant embodiment of the weight measurement device 8 d and the embodiment of the weight measurement device 8 c shown in FIG. 15 resides in that at least one optical reflector 89 a is mounted on the vertical frame 92 of a weight-training fitness equipment.
  • an optical transceiver 89 b is mounted on a selected place of the weight measurement device 8 d , corresponding to the optical reflector 89 a at a suitable distance therebetween.
  • the optical transceiver 89 b is capable of generating at least one movement signal of the weight measurement device 8 d during movement by means of receiving a reflecting signal from the optical reflector 89 a and then transmitting the movement signal to the detection module 6 b.
  • FIG. 17 is a perspective view showing an eighth embodiment according to the present invention.
  • a weight measurement device 8 e of the instant embodiment is identical to that of the embodiment as shown in FIG. 16 for most structures thereof.
  • a pair of strain gauges 82 a , 82 b are mounted on side walls of the hollowed portions 81 a , 81 b of the weight measurement device 8 f respectively.
  • a difference between the instant embodiment of the weight measurement device 8 e and the embodiment of the weight measurement device 8 d shown in FIG. 16 resides in that a barcode 89 c is mounted on the vertical frame 92 of a weight-training fitness equipment.
  • a barcode reader 89 d is mounted on a selected place of the weight measurement device 8 e , corresponding to the barcode 89 c at a suitable distance therebetween.
  • the barcode reader 89 d is capable of generating at least one movement signal of the weight measurement device 8 e during movement by means of reading the barcode 89 c and then transmitting the movement signal to the detection module 6 b.

Abstract

A pulley force detection device for a weight-training fitness equipment includes a measured element arranged on a stator portion of a pulley of the fitness equipment, and a detection module arranged on a rotor portion. The detection module includes at least one measuring element corresponding to the measured element to detect a motion stroke, a speed, and a power value during force application to a pulley body. Alternatively, the measured element is arrangeable on the rotor portion of the pulley, while the measuring element is arranged on the stator portion of the pulley. The pulley force detection device is further combinable with a weight measurement device for detecting a weight of the weight block.

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to a device for detecting a force applied in exercise, and more particularly to a pulley force detection device of weight-training fitness equipment.
  • 2. The Related Arts
  • Among different types of exercise, different persons favor different items of exercise. Some sport lovers favor simple exercises, such as walking, hiking, jumping, jogging, and cycling, while other sport lovers love to do exercise with various types of fitness equipment.
  • When a sporter uses fitness equipment to do exercise, although it is possible to fulfill the purpose of exercising, yet it is not possible to know and measure the amount of exercise that has been taken. In the known designs of fitness equipment, it almost just involves one single purpose of simply exercising. A sporter, when using such equipment for doing exercise, cannot timely realize and correctly measure whether the amount of exercising is proper.
  • In order to help a sporter to understand the amount of exercise that has been taken when the sporter is doing exercise, a detection designed for detecting an exercise state that a person is taking was available. There are problems for such known detections in detecting the exercise state of a sporter. For example, taking a weight training apparatus as an example, a detection structure (such as a laser transmitting/receiving device, a separate optical coupler, and a reflection detection sensor) that is applied to measure the exercise state and the exercise amount of a sporter requires a sophisticated circuit design and a complicated mechanism to operate therewith. However, component costs are high, and assembly is difficult.
  • Further, considering the disadvantages of known fitness equipment that involves a pulley, the following shortcomings are known:
  • (1) Calculating a movement stroke of a sporter is not available.
  • (2) Separate arrangement (in which a measuring element and a measured element are arranged on different parts) makes assembly of such a separate arrangement difficult.
  • (3) Data errors are excessively large.
  • (4) Only reciprocating rounds or counts can be computed.
  • (5) No precise computation of stroke speed is available.
  • (6) No function of automatic wake-up and electricity consumption is available.
  • (7) No calculation of acceleration or deceleration of a sporter is available.
  • (8) No precise computation of force application time of a sporter is available.
  • (9) Measurements of stroke speed and weight of a weight block cannot be done on one device.
  • (10) Measurement of exercise power of a sporter cannot be done on the same device.
  • (11) The structure is complicated; the cost is high; and maintenance is difficult.
  • (12) There is no way to arrange as a stand-alone device.
  • SUMMARY OF THE INVENTION
  • In view of the above-discussed shortcomings of the known devices, the primary objective of the present invention is to provide a pulley force detection device that is suitable for use in and combination with a weight-training fitness equipment.
  • A technical solution adapted in the present invention comprises a measured element arranged on a stator portion of a pulley of fitness equipment, and a detection module arranged on a rotor portion. The detection module comprises at least one measuring element corresponding to the measured element to detect a motion stroke, a speed, and a power value during force application to a pulley body.
  • In the other embodiment of the present invention, the measured element is alternatively arranged on the rotor portion of the pulley, while the measuring element is arranged on the stator portion of the pulley.
  • Preferably, the pulley force detection device of the present invention is combinable with a weight measurement device for detecting a weight of a weight block connected to the weight measurement device, a movement detecting accelerometer for detecting at least one acceleration signal of the weight measurement device during movement, and at least one movement detecting element for detecting a movement of the weight measurement device during movement.
  • In another embodiment of the present invention, a pulley force detection device for a weight-training fitness equipment, comprising a pulley device including a stator portion fixed to a top frame of the weight-training fitness equipment and a rotor portion rotatably mounted to the stator portion. A pull cord extended around the rotor portion of the pulley device, having a mounting end and a free end. A weight measurement device connected between the mounting end of the pull cord and a weight block of the weight-training fitness equipment, such that the pull cord, upon being acted upon by a force applied to the free end thereof, drives the rotor portion to rotate so as to pull and move the weight block through the weight measurement device. The weight measurement device includes at least one strain gauge mounted on a side wall of the weight measurement device for detecting a weight of the weight block and correspondingly generates a weight signal to a detection module.
  • Preferably, a movement detecting accelerometer is electrically connected to the detection module for detecting at least one acceleration signal of the weight measurement device and transmitting the at least one acceleration signal to the detection module. A magnet mounted on a vertical frame of a strength machine, and a magnetism detecting element is electrically connected to the detection module and mounted on the weight measurement device at a place corresponding to the at least one magnet at a distance therebetween.
  • Optionally, an optical transmitter is mounted on a vertical frame of a strength machine, and an optical receiver is electrically connected to the detection module and mounted on the weight measurement device at a place corresponding to the at least one optical transmitter at a distance therebetween.
  • Optionally, an optical reflector is mounted on a vertical frame of the weight-training fitness equipment, and an optical transceiver is electrically connected to the detection module and mounted on the weight measurement device at a place corresponding to the at least one optical reflector at a distance therebetween.
  • Optionally, a barcode is mounted on a vertical frame of the weight-training fitness equipment, and a barcode reader is electrically connected to the detection module and mounted on the weight measurement device at a place corresponding to the barcode at a distance therebetween.
  • Concerning efficacy, based on the arrangement provided in the present invention, precise and accurate measurements of a motion stroke, a speed, and a weight of the pulley body resulting from application of a force thereto can be made, and a value of power applied by the user can be accurately calculated. The present invention may also comprise a weight measurement device. The weight measurement device comprises an electronic control module. By means of the weight measurement device, a weight signal of the weight block can be measured.
  • Further, in application of the present invention, options of arrangement, including a stand-alone arrangement and an add-on arrangement, are available for mounting to or combining with various types of exercise and fitness equipment, allowing the user to get aware of force application rate, motion stroke or weight, and power that the user applies in doing exercises.
  • A technical measure adopted in the present invention will be further described with reference to embodiments provided below and the attached drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view showing an example of arrangement for a pulley force detection device according to a first embodiment of the present invention;
  • FIG. 2 is a front-side schematic view showing a rotor portion of the pulley force detection device shown in FIG. 1 ;
  • FIG. 3 is a schematic view showing a detection module mounted on the rotor portion of the pulley force detection device according to the present invention;
  • FIG. 4 is a cross-sectional view taken along line A-A of FIG. 1 ;
  • FIG. 5 is a circuit diagram for the first embodiment as shown in FIGS. 1-4 ;
  • FIG. 6 is a cross-sectional view showing a second embodiment according to the present invention, which incorporated with a first embodiment of a weight measurement device;
  • FIG. 7 illustrates an example of application in which the present invention is used with a weight-training fitness equipment;
  • FIG. 8 is a perspective view showing a second embodiment of the weight measurement device shown in FIG. 6 ;
  • FIG. 9 is a perspective view showing a third embodiment of the weight measurement device shown in FIG. 6 ;
  • FIG. 10 is a perspective view showing a fourth embodiment of a weight measurement device shown in FIG. 6 ;
  • FIG. 11 is a circuit diagram adapted for the second embodiment as shown in FIGS. 6-10 ;
  • FIG. 12 is a perspective view showing a third embodiment according to the present invention;
  • FIG. 13 is a perspective view showing a fourth embodiment according to the present invention;
  • FIG. 14 is a perspective view showing a fifth embodiment according to the present invention;
  • FIG. 15 is a perspective view showing a sixth embodiment according to the present invention;
  • FIG. 16 is a perspective view showing a seventh embodiment according to the present invention; and
  • FIG. 17 is a perspective view showing an eighth embodiment according to the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring to FIGS. 1 and 2 , a pulley force detection device 100 according to a first embodiment of the present invention comprises a rotor portion 1 and a stator portion 2. The rotor portion 1 comprises a pulley body 11 and a bearing 12. The pulley body 11 has an outer circumference in and along which a grooved track 13 is formed for receiving a pull cord 3 in the grooved track 13. The stator portion 2 includes an axle 21 and a support frame 22 that supports the axle 21. The support frame 22 has a bottom that is connected, by means of a connection mechanism 4, to a weight block 5 of a known weight-training fitness equipment.
  • The rotor portion 1 is rotatably mounted, by means of the bearing 12, to the axle 21 of the stator portion 2. The pull cord 3, when receiving a force applied thereto, drives the pulley body 11 to rotate about a rotation center defined by the axle 21.
  • Referring jointly to FIGS. 3-4 , the instant embodiment includes a detection module 6 arranged on the rotor portion 1, and a measured element 7 arranged on the stator portion 2. FIG. 5 is a circuit diagram for the first embodiment as shown in FIGS. 1-4 .
  • The detection module 6 comprises at least one measuring element 61 a, 61 b mounted on a sidewall of the rotor portion 1 and corresponded to the measured element 7. By means of a spatial arrangement relationship between the measuring element 61 a, 61 b and the measured element 7, the measuring element 61 a, 61 b may precisely measure at least one force signal that a force is applied to the pulley body 11 to cause rotation thereof. The force signal measured by the measuring element 61 a, 61 b is transmitted to a processing unit 68.
  • The detection module 6 further comprises a transmission module 62 that is connected to the processing unit 68. The transmission module 62 is operable to transmit out the force signal measured by the measuring element 61 a, 61 b in a wireless manner. The transmission module 62 can be a low-power wireless transmission module (such as Bluetooth, ANT+, and Wi-Fi) that comprises an operation unit (such as a microcontroller unit, MCU) to transmit the force signal measured by the measuring element 61 a, 61 b to an electronic device 69 (such as a smart phone or a smart personal wearable device) or a control station arranged on an exercise apparatus.
  • A power source 63 supplies electrical energy necessary for operation of the measuring element 61 a, 61 b and the transmission module 62. The power source 63 can be one of a permanent battery and a rechargeable battery.
  • The measured element 7 comprises at least one magnet or a ring magnet 71 of multiple poles arranged in a ring manner, which is embedded in or fixed to the stator portion 2 and corresponds to the measuring element 61 a, 61 b, so as to form a concentric arrangement to allow the measuring element 61 a, 61 b of the detection module 6 to make detection thereon for conversion and determination of a motion stroke. The magnet or the multiple-pole ring magnets 71 can be replaced by a barcode, in such a way that the barcode is attached to or printed on the stator portion 2 to correspond to the measuring element 61 a, 61 b, forming a concentric arrangement to allow the measuring element 61 a, 61 b of the detection module 6 to make detection thereon for conversion and determination of a motion stroke.
  • In the preferred embodiment of the present invention, the measuring element 61 a, 61 b may comprise at least one Hall effect element or a reed switch for measuring a state of variation of the magnetic poles of the magnet of the measured element 7. The measuring element 61 a, 61 b may alternatively or additionally comprise at least one opto-coupling diode assembly for detecting a state of variation of the barcode of the measured element 7.
  • In the preferred embodiment of the present invention, a housing 64 may be further included for fixing and protecting the measuring element 61 a, 61 b, the transmission module 62, and the power source 63 on the rotor portion 1.
  • Preferably, the detection module 6 may further comprise a display device 65 (such as an LED or LCD) to display a state of operation of the rotor portion 1.
  • Preferably, the detection module 6 may further comprise an automatic wake-up element 66, which can be for example a reed switch, a relay, a Hall effect element, or a vibration switch.
  • Preferably, the detection module 6 may further comprise a three-axial or more than three-axial accelerometer (G-sensor) 67 for measuring at least one acceleration signal of rotation or movement of the rotor portion 1.
  • Referring to FIG. 6 , a schematic cross-sectional view showing a pulley force detection device 100 a according to a second embodiment of the present invention is provided, which incorporated with a first embodiment of a weight measurement device. Constituent elements of the instant embodiment are generally similar to those of the first embodiment described above, and thus, for consistency purposes, identical elements are designated with the same reference numerals. In the instant embodiment, the measured element 7 is arranged on the rotor portion 1, while a detection module 6 a is arranged on the stator portion 2. Due to the spatial arrangement relationship between the measuring element 61 a, 61 b of the detection module 6 a and the measured element 7, the measuring element 61 a, 61 b may similarly measure at least one force signal generated when the pulley body 11 is acted upon by a force applied thereto.
  • Further, the bottom of the support frame 22 of the stator portion 2 is connected to a first embodiment of a weight measurement device 8, and a bottom of the weight measurement device 8 is further connected, by means of a connection mechanism 4 to a weight block.
  • The weight measurement device 8 is formed with a pair of corresponding hollowed portions 81 a, 81 b. A pair of strain gauges 82 a, 82 b are mounted on side walls of the hollowed portions 81 a, 81 b respectively. The strain gauges 82 a, 82 b are electrically connected to the detection module 6 a through signal lines 83.
  • FIG. 7 illustrates an example of application of the present invention, in which the pulley force detection device 100 a of the second embodiment as shown in FIG. 6 is used with a weight-training fitness equipment 9. The bottom of the weight measurement device 8 is connected to the weight block 5 through the connection mechanism 4.
  • One end of a pull cord 3 is positioned on a top frame 91 of the weight-training fitness equipment 9, and then extended around the pulley body 11 of the rotor portion 1 of the pulley force detection device 100 a. The other end of the pull cord 3 is connected to a handle bar 84 of the weight-training fitness equipment 9, so that a user may apply a force to pull the handlebar 84 to pull the rotor portion 1 to rotate. The force applied by the user transmits through the pulley force detection device 100 a, the weight measurement device 8, and the connection mechanism 4 to pull and move the weight block 5.
  • During this operation, the measuring element 61 a, 61 b of the detection module 6 a measures and transmits the force signal that the pulley body 11 is acted upon by the force to rotate to the detection module 6 a. Meanwhile, a weight of the weight block 5 is detected by the strain gauges 82 a, 82 b according to amounts of deformation of the hollowed portions 81 a, 81 b of the weight measurement device 8, and a weight signal is transmitted to the detection module 6 a through the signal lines 83. The detection module 6 a may be further electrically connected to a control station 85 of the weight-training fitness equipment 9.
  • FIG. 8 is a perspective view showing a second embodiment of the weight measurement device. The weight measurement device 8 a of the instant embodiment is identical to that of the first embodiment as shown in FIG. 6 for most structures thereof. A pair of strain gauges 82 a, 82 b are mounted on side walls of the hollowed portions 81 a, 81 b respectively. A difference between the second embodiment of the weight measurement device 8 a and the first embodiment of the weight measurement device 8 shown in FIG. 6 resides in that a three-axial or more than three-axial movement detecting accelerometer 86 is further mounted on a selected position of the weight measurement device 8 a for measuring at least one acceleration signal of the weight measurement device 8 a during movement and then transmitting the acceleration signal to the detection module 6 a.
  • FIG. 9 is a perspective view showing a third embodiment of a weight measurement device. The weight measurement device 8 b of the instant embodiment is also identical to that of the first embodiment as shown in FIG. 6 for most structures thereof. A pair of strain gauges 82 a, 82 b are mounted on side walls of the hollowed portions 81 a, 81 b respectively. A difference between the third embodiment of the weight measurement device 8 b and the first embodiment of the weight measurement device 8 shown in FIG. 6 resides in that at least one magnet 87 a is mounted on a vertical frame 92 of the weight-training fitness equipment 9 as shown in FIG. 7 . Further, at least one magnetism detecting element 87 b such as a known reed switch is mounted on a selected place of the weight measurement device 8 b, corresponding to the magnet 87 a at a suitable distance therebetween. The magnetism detecting element 87 b acts as a movement detecting element capable of generating at least one movement signal of the weight measurement device 8 b during movement by means of detecting the magnetism change with respect to the magnet 87 a and then transmitting the movement signal to the detection module 6 a.
  • FIG. 10 is a perspective view showing a fourth embodiment of a weight measurement device. The weight measurement device 8 c of the instant embodiment is identical to that of the third embodiment as shown in FIG. 9 for most structures thereof. A pair of strain gauges 82 a, 82 b are mounted on side walls of the hollowed portions 81 a, 81 b respectively. A difference between the fourth embodiment of the weight measurement device 8 c and the third embodiment of the weight measurement device 8 b shown in FIG. 9 resides in that at least one optical transmitter 88 a is mounted on the vertical frame 92 of the weight-training fitness equipment 9 as shown in FIG. 7 . Further, at least one optical receiver 88 b is mounted on a selected place of the weight measurement device 8 c, corresponding to the optical transmitter 88 a at a suitable distance from the optical transmitter 88 a. The optical receiver 88 b is capable of generating at least one movement signal of the weight measurement device 8 c during movement by means of receiving the optical signal transmitted from the optical transmitter 88 a and then transmitting the movement signal to the detection module 6 a. Alternatively, the optical transmitter 88 a may be replaced by an optical reflector, and the optical receiver 88 b may be replaced by a known optical transceiver.
  • As shown in FIG. 11 , a circuit diagram adapted for the second embodiment as shown in FIGS. 5-10 is shown. Constituent components of the instant embodiment are generally the same as those of the circuit diagram of the first embodiment shown in FIG. 5 , and for consistency purposes, identical elements are designated with the same reference numerals.
  • During exercise, the measuring element 61 a, 61 b of the detection module 6 a measures and transmits the force signal that the pulley body 11 is acted upon by the force to rotate to the processing unit 68. A weight of the weight block 5 is detected by the strain gauges 82 a, 82 b according to amounts of deformation of the hollowed portions 81 a, 81 b, and a weight signal is transmitted to the processing unit 68. Meanwhile, the acceleration signal generated by the accelerometer 67 is transmitted to the processing unit 68. The acceleration signal generated by the movement detecting accelerometer 86 is transmitted to the processing unit 68. The movement signal generated by the magnetism detecting element 87 b shown in FIG. 9 or the movement signal generated by the optical receiver 88 b shown in FIG. 10 is also transmitted to the processing unit 68.
  • The force signal, the weight signal, the acceleration signals and the movement signal may be transmitted, in either a wired manner or a wireless manner, to the electronic device 69 (such as a smart phone or a smart personal wearable device) or the control station 85 arranged on the weight-training fitness equipment 9.
  • FIG. 12 is a perspective view showing a third embodiment according to the present invention. In this embodiment, a pulley device 100 b includes a rotor portion 1 and a stator portion 2. The stator portion 2 is fixed to a top frame 91 of a weight-training fitness equipment by means of a support frame 22. The rotor portion 1 is rotatably mounted to the stator portion 2.
  • A pull cord 3 is extended around the rotor portion 1 of the pulley device 100 b. A weight measurement device 8 a is connected between a mounting end 31 of the pull cord 3 and a weight block 5 of the weight-training fitness equipment, such that the pull cord 3, upon being acted upon by a force applied to the free end 32 of the pull cord 3, drives the pulley body 11 of the rotor portion 1 to rotate, so as to pull and move the weight block 5 through the weight measurement device 8 a.
  • The weight measurement device 8 a is identical to that of the embodiment as shown in FIG. 8 . The weight measurement device 8 a includes at least one strain gauge mounted on a side wall of the weight measurement device 8 a for detecting a weight of the weight block 5 and correspondingly generates a weight signal to a detection module 6 b. For example, a pair of strain gauges 82 a, 82 b are mounted on side walls of a pair of hollowed portions 81 a, 81 b respectively, and the strain gauges 82 a, 82 b are electrically connected to the detection module 6 b.
  • A three-axial or more than three-axial movement detecting accelerometer 86 is mounted on a selected position of the weight measurement device 8 a for measuring at least one acceleration signal of the weight measurement device 8 a during movement and then transmitting the acceleration signal to the detection module 6 b.
  • FIG. 13 is a perspective view showing a fourth embodiment according to the present invention. A weight measurement device 8 a 1 of the instant embodiment is identical to that of the embodiment as shown in FIG. 12 for most structures thereof. A difference between the weight measurement device 8 a 1 of the instant embodiment and the embodiment of the weight measurement device 8 a shown in FIG. 12 resides in that the three-axial or more than three-axial movement detecting accelerometer 86 is mounted on a selected position of a casing of the weight measurement device 8 a 1 for measuring at least one acceleration signal of the weight measurement device 8 a 1 during movement and then transmitting the acceleration signal to the detection module 6 b. Optionally, the movement detecting accelerometer 86 may be mounted on the weight block 5 of a weight-training fitness equipment.
  • FIG. 14 is a perspective view showing a fifth embodiment according to the present invention. A weight measurement device 8 b of the instant embodiment is identical to that of the embodiment as shown in FIG. 9 . A pair of strain gauges 82 a, 82 b are mounted on side walls of the hollowed portions 81 a, 81 b of the weight measurement device 8 b respectively. A magnet 87 a is mounted on a vertical frame 92 of a weight-training fitness equipment. Further, at least one magnetism detecting element 87 b such as a known reed switch is mounted on a selected place of the weight measurement device 8 b, corresponding to the magnet 87 a at a suitable distance therebetween. The magnetism detecting element 87 b acts as a movement detecting element capable of generating at least one movement signal of the weight measurement device 8 b during movement by means of detecting the magnetism change with respect to the magnet 87 a and then transmitting the movement signal to the detection module 6 b.
  • FIG. 15 is a perspective view showing a sixth embodiment according to the present invention. A weight measurement device 8 c of the instant embodiment is identical to that of the embodiment as shown in FIG. 9 . A pair of strain gauges 82 a, 82 b are mounted on side walls of the hollowed portions 81 a, 81 b of the weight measurement device 8 d respectively. An optical transmitter 88 a is mounted on the vertical frame 92 of a weight-training fitness equipment. Further, an optical receiver 88 b is mounted on a selected place of the weight measurement device 8 c, corresponding to the optical transmitter 88 a at a suitable distance from the optical transmitter 88 a. The optical receiver 88 b is capable of generating at least one movement signal of the weight measurement device 8 c during movement by means of receiving the optical signal transmitted from the optical transmitter 88 a and then transmitting the movement signal to the detection module 6 b.
  • FIG. 16 is a perspective view showing a seventh embodiment according to the present invention. A weight measurement device 8 d of the instant embodiment is identical to that of the embodiment as shown in FIG. 15 for most structures thereof. A pair of strain gauges 82 a, 82 b are mounted on side walls of the hollowed portions 81 a, 81 b of the weight measurement device 8 e respectively. A difference between the instant embodiment of the weight measurement device 8 d and the embodiment of the weight measurement device 8 c shown in FIG. 15 resides in that at least one optical reflector 89 a is mounted on the vertical frame 92 of a weight-training fitness equipment. Further, an optical transceiver 89 b is mounted on a selected place of the weight measurement device 8 d, corresponding to the optical reflector 89 a at a suitable distance therebetween. The optical transceiver 89 b is capable of generating at least one movement signal of the weight measurement device 8 d during movement by means of receiving a reflecting signal from the optical reflector 89 a and then transmitting the movement signal to the detection module 6 b.
  • FIG. 17 is a perspective view showing an eighth embodiment according to the present invention. A weight measurement device 8 e of the instant embodiment is identical to that of the embodiment as shown in FIG. 16 for most structures thereof. A pair of strain gauges 82 a, 82 b are mounted on side walls of the hollowed portions 81 a, 81 b of the weight measurement device 8 f respectively. A difference between the instant embodiment of the weight measurement device 8 e and the embodiment of the weight measurement device 8 d shown in FIG. 16 resides in that a barcode 89 c is mounted on the vertical frame 92 of a weight-training fitness equipment. Further, a barcode reader 89 d is mounted on a selected place of the weight measurement device 8 e, corresponding to the barcode 89 c at a suitable distance therebetween. The barcode reader 89 d is capable of generating at least one movement signal of the weight measurement device 8 e during movement by means of reading the barcode 89 c and then transmitting the movement signal to the detection module 6 b.
  • Based on the arrangement provided in the present invention, precise and accurate measurements of a motion stroke, a speed, and a weight of the pulley body resulting from application of a force thereto can be made, and a value of power applied by the user can be accurately calculated. Further, in application of the present invention, options of arrangement, including a stand-alone arrangement and an add-on arrangement, are available for mounting to or combining with various types of exercise and fitness equipment, allowing the user to get aware of force application rate, motion stroke or weight, and power that the user applies in doing exercises.
  • The embodiments described above are provided only for illustrating the present invention and are not intended to limit the scope of the present invention that is defined in the claims. Equivalent modifications or substitutes that come in the inventive spirit disclosed in the present invention are considered falling within the scope defined by the claims.

Claims (20)

What is claimed is:
1. A pulley force detection device for a weight-training fitness equipment, comprising:
a stator portion including an axle and a support frame that supports the axle, a weight block being connected to a bottom of the support frame;
a rotor portion including a pulley body and a bearing, the rotor portion being rotatably mounted, by means of the bearing, to the axle of the stator portion, the pulley body having an outer circumference in which a grooved track is formed in order to receive a pull cord in the grooved track, an end of the pull cord being connected to the weight block, such that the pull cord, upon being acted upon by a force applied thereto, drives the pulley body to rotate about a rotation center defined by the axle so as to pull and move the weight block;
a measured element arranged on the stator portion; and
a detection module including:
at least one measuring element arranged on the rotor portion and corresponds to the measured element, wherein when the pulley body is caused to rotate by the force, the at least one measuring element generating at least one force signal through detecting the measured element;
a transmission module connected to the at least one measuring element to receive the at least one force signal generated by the measuring element and transmit the at least one force signal in a wireless manner, and
a power source for supplying an electrical energy to the at least one measuring element and the transmission module.
2. The pulley force detection device according to claim 1, wherein the measured element is selected from one of ring magnet and barcode, which is positioned on the stator portion in such a manner as being arranged in a concentric form around a center defined by the axle.
3. The pulley force detection device according to claim 1, wherein the at least one measuring element comprises one of a Hall effect element, a reed switch, and an opto-coupling diode.
4. The pulley force detection device according to claim 1, wherein the transmission module a low-power wireless transmission module, which comprises one of Bluetooth, ANT+ and Wi-Fi, for transmitting the force signal generated by the at least one measuring element to one of a control station, a smart phone, and a smart personal wearable device.
5. The pulley force detection device according to claim 1, wherein the detection module further comprises an automatic wake-up element, which comprises one of a reed switch, a relay, a Hall effect element, and a vibration switch.
6. The pulley force detection device according to claim 1, wherein the detection module further comprises one of three-axial or more than three-axial accelerometer that detects at least one acceleration signal of the rotor portion.
7. A pulley force detection device for a weight-training fitness equipment, comprising:
a stator portion including an axle and a support frame that supports the axle, a weight block being connected to a bottom of the support frame;
a rotor portion including a pulley body and a bearing, the rotor portion being rotatably mounted, by means of the bearing, to the axle of the stator portion, the pulley body having an outer circumference in which a grooved track is formed in order to receive a pull cord in the grooved track, an end of the pull cord being connected to the weight block, such that the pull cord, upon being acted upon by a force applied to a free end thereof, drives the pulley body to rotate about a rotation center defined by the axle so as to pull and move the weight block;
a measured element arranged on the rotor portion; and
a detection module including:
at least one measuring element arranged on the stator portion and corresponds to the measured element, wherein when the pulley body is caused to rotate by the force, the at least one measuring element generating at least one force signal through detecting the measured element.
8. The pulley force detection device according to claim 7, wherein the measured element is selected from one of ring magnet and barcode, which is positioned on the rotor portion in such a manner as being arranged in a concentric form around a center defined by the axle.
9. The pulley force detection device according to claim 7, wherein the at least one measuring element comprises one of a Hall effect element, a reed switch, and an opto-coupling diode.
10. The pulley force detection device according to claim 7, wherein the detection module further comprises one of three-axial or more than three-axial accelerometer that detects at least one acceleration signal of the rotor portion.
11. The pulley force detection device according to claim 7, further comprising a weight measurement device connected between the bottom of the support frame and the weight block, the weight measurement device including at least one strain gauge electrically connected to the detection module for detecting a weight of the weight block and generates, in response thereto, a weight signal transmitted to the detection module.
12. The pulley force detection device according to claim 11, further comprising a three-axial or more than three-axial movement detecting accelerometer electrically connected to the detection module for detecting at least one acceleration signal of the weight measurement device and transmitting the at least one acceleration signal to the detection module.
13. The pulley force detection device according to claim 11, further comprising:
at least one magnet mounted on a vertical frame of a strength machine; and
at least one magnetism detecting element electrically connected to the detection module and mounted on the weight measurement device at a place corresponding to the at least one magnet at a distance therebetween.
14. The pulley force detection device according to claim 11, further comprising:
at least one optical transmitter mounted on a vertical frame of a strength machine; and
at least one optical receiver electrically connected to the detection module and mounted on the weight measurement device at a place corresponding to the at least one optical transmitter at a distance therebetween.
15. A pulley force detection device for a weight-training fitness equipment, comprising:
a pulley device including a stator portion fixed to a top frame of the weight-training fitness equipment and a rotor portion rotatably mounted to the stator portion;
a pull cord extended around the rotor portion of the pulley device, having a mounting end and a free end; and
a weight measurement device connected between the mounting end of the pull cord and a weight block of the weight-training fitness equipment, such that the pull cord, upon being acted upon by a force applied to the free end thereof, drives the rotor portion to rotate so as to pull and move the weight block through the weight measurement device;
wherein the weight measurement device includes at least one strain gauge mounted on a side wall of the weight measurement device for detecting a weight of the weight block and correspondingly generates a weight signal to a detection module.
16. The pulley force detection device according to claim 15, further comprising a three-axial or more than three-axial movement detecting accelerometer electrically connected to the detection module for detecting at least one acceleration signal of the weight measurement device and transmitting the at least one acceleration signal to the detection module.
17. The pulley force detection device according to claim 15, further comprising:
at least one magnet mounted on a vertical frame of the weight-training fitness equipment; and
at least one magnetism detecting element electrically connected to the detection module and mounted on the weight measurement device at a place corresponding to the at least one magnet at a distance therebetween.
18. The pulley force detection device according to claim 15, further comprising:
at least one optical transmitter mounted on a vertical frame of the weight-training fitness equipment; and
at least one optical receiver electrically connected to the detection module and mounted on the weight measurement device at a place corresponding to the at least one optical transmitter at a distance therebetween.
19. The pulley force detection device according to claim 15, further comprising:
at least one optical reflector mounted on a vertical frame of the weight-training fitness equipment; and
an optical transceiver electrically connected to the detection module and mounted on the weight measurement device at a place corresponding to the at least one optical reflector at a distance therebetween.
20. The pulley force detection device according to claim 15, further comprising:
a barcode mounted on a vertical frame of the weight-training fitness equipment; and
a barcode reader electrically connected to the detection module and mounted on the weight measurement device at a place corresponding to the barcode at a distance therebetween.
US17/810,880 2021-07-08 2022-07-06 Pulley force detection device for weight-training fitness equipment Pending US20230009338A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW110208025U TWM622395U (en) 2021-07-08 2021-07-08 Pulley force sensing device for heavy training fitness equipment
TW110208025 2021-07-08

Publications (1)

Publication Number Publication Date
US20230009338A1 true US20230009338A1 (en) 2023-01-12

Family

ID=80785707

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/810,880 Pending US20230009338A1 (en) 2021-07-08 2022-07-06 Pulley force detection device for weight-training fitness equipment

Country Status (2)

Country Link
US (1) US20230009338A1 (en)
TW (1) TWM622395U (en)

Also Published As

Publication number Publication date
TWM622395U (en) 2022-01-21

Similar Documents

Publication Publication Date Title
US9468793B2 (en) System for monitoring fitness performance
CN109069899B (en) Measurement system for use in fitness equipment
US20220111256A1 (en) Weight Machine Sensor
US20140221160A1 (en) Sensor Device and System for Fitness Equipment
US7318790B2 (en) Revolution counter for wrist exerciser
WO2002037732A2 (en) Feedback system for monitoring and measuring physical exercise related information
US10732058B2 (en) Force measurement system for exercise equipment
JP2018126373A (en) Multiple jump detection system and jumping rope and jump board for use in the same
CN103394178A (en) Digital inertia dumbbell capable of measuring motion parameters
US20230009338A1 (en) Pulley force detection device for weight-training fitness equipment
CN102564448B (en) There is the pedometer of footwear dress sensor and transmitter
CN111521175B (en) Independent rotation angle conversion linear displacement device
US11117018B2 (en) System for measuring, monitoring and displaying physical parameters of exercises on selectorized fitness machines
CN110893273A (en) Constant-speed muscle strength training equipment
KR102436607B1 (en) Attached internet of thing fitness exercise information collection apparatus and method thereof
US20090063088A1 (en) Wristwatch type acceleration detection module
CN210128811U (en) Distance measuring device suitable for drop impact test
KR20100104021A (en) Assembly and the operating method for exercise amount measuring
CN106139560B (en) Exercise data detection method and equipment
RU2319531C2 (en) System for exercising and measuring parameters of figure-skater's movements on executing of complicated coordination physical twisting actions
CN210278154U (en) Sports equipment handle capable of detecting sports characteristics
US20240024735A1 (en) Treadmill with Running Form Detection Device
US20230398397A1 (en) Connected exercise device
CN211536330U (en) Constant-speed muscle strength training equipment
CN216836720U (en) Speed measuring device and system

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION