US20220389650A1 - Launderable activated cotton - Google Patents
Launderable activated cotton Download PDFInfo
- Publication number
- US20220389650A1 US20220389650A1 US17/821,249 US202217821249A US2022389650A1 US 20220389650 A1 US20220389650 A1 US 20220389650A1 US 202217821249 A US202217821249 A US 202217821249A US 2022389650 A1 US2022389650 A1 US 2022389650A1
- Authority
- US
- United States
- Prior art keywords
- cotton
- wax
- treating
- dye
- activated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P1/00—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
- D06P1/0024—Dyeing and bleaching in one process
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06L—DRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
- D06L4/00—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
- D06L4/10—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06L—DRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
- D06L4/00—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
- D06L4/10—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen
- D06L4/13—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen using inorganic agents
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06L—DRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
- D06L4/00—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
- D06L4/10—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen
- D06L4/15—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs using agents which develop oxygen using organic agents
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/73—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
- D06M11/76—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon oxides or carbonates
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/263—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/643—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M16/00—Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
- D06M16/003—Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic with enzymes or microorganisms
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P1/00—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
- D06P1/22—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using vat dyestuffs including indigo
- D06P1/228—Indigo
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P1/00—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
- D06P1/30—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using sulfur dyes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P1/00—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
- D06P1/44—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
- D06P1/673—Inorganic compounds
- D06P1/67333—Salts or hydroxides
- D06P1/6735—Salts or hydroxides of alkaline or alkaline-earth metals with anions different from those provided for in D06P1/67341
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P1/00—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
- D06P1/44—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
- D06P1/673—Inorganic compounds
- D06P1/67333—Salts or hydroxides
- D06P1/6735—Salts or hydroxides of alkaline or alkaline-earth metals with anions different from those provided for in D06P1/67341
- D06P1/67375—Salts or hydroxides of alkaline or alkaline-earth metals with anions different from those provided for in D06P1/67341 with sulfur-containing anions
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P3/00—Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
- D06P3/58—Material containing hydroxyl groups
- D06P3/60—Natural or regenerated cellulose
- D06P3/6025—Natural or regenerated cellulose using vat or sulfur dyes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P3/00—Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
- D06P3/58—Material containing hydroxyl groups
- D06P3/60—Natural or regenerated cellulose
- D06P3/66—Natural or regenerated cellulose using reactive dyes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/02—Natural fibres, other than mineral fibres
- D06M2101/04—Vegetal fibres
- D06M2101/06—Vegetal fibres cellulosic
Definitions
- the present disclosure is directed to a process for increasing the strength and decreasing the wettability of cotton materials.
- Cotton is a natural fiber with a negative environmental impact when processed.
- the fiber is bleached, finished with strong alkali to prepare for a dying process, and dyed.
- the strong alkali has to be neutralized at each stage of production in particular to mitigate the damaging effluent that would otherwise be released into the worlds aqueous eco systems.
- Cotton is at the top end of this estimate, requiring more water to process than polyester, viscose rayon, and wool. Thus, it is likely that the production and dying of cotton fabric is a significant contributor.
- An embodiment described in examples herein provides a method for treating cotton.
- the method includes treating the cotton with soda ash at a temperature of less than about 150° F. (about 66° C.) and a pH of about 9.5, bleaching the cotton with hydrogen peroxide at a temperature of less than about 150° F. (about 66° C.), and neutralizing the hydrogen peroxide.
- the pH is lowered with an organic acid to between about 6 and about 7, and the cotton is dyed at a temperature of less than about 150° F. (about 66° C.).
- the cotton is treated with a wax lock compound.
- Another embodiment described herein provides an activated cotton material, including a layer of natural wax locked to the surface of cotton fibers by a wax lock.
- FIG. 1 is a process flow diagram of a method for treating and dying cotton fabric.
- FIG. 2 is a process flow diagram of a dying process that uses a reduction dye.
- the cotton is bleached to remove color bodies, forming a white material.
- the bleaching can be performed by the use of hydrogen peroxide or other bleaches, such as hypochlorite bleach, among others.
- the yarn is then formed into a fabric, for example, by knitting or weaving.
- the currently used techniques for treating cotton form an absorbent fabric with a color selected by the techniques used.
- the alkali treatment reduced the strength of the cotton fibers, for example, by as much as 50% or more, from the raw cotton.
- a process is provided herein for producing a cotton product, termed an activated cotton, which leaves the natural wax in place on the cotton fibers, lowers water usage, and improves the properties of the cotton.
- the natural wax coating on the cotton fibers imparts high performance properties to yarns and fabrics, for example, increasing the cooling properties of the fabric by allowing water vapor to pass through the fabric without being adsorbed.
- the process includes the addition of a compound termed a wax lock.
- the wax coating on natural cotton is generally removed during Keiring. Further, even if left on by a milder process, home laundering will remove the natural wax in very few cycles. To overcome this, the activated cotton is treated with the wax lock to fix the wax in place on the fabric.
- the wax lock includes a silicone compound that interacts with the natural wax to prevent surfactants from removing the wax.
- a bleach activator for example, glyceryl triacetate (triacetin)
- triacetin glyceryl triacetate
- the triacetin is available from Cekal Specialties of Mt. Holly, N.C., USA, under the tradename CEKASSIST BIO.
- a sequestering agent such as ethylenediaminetetraacetic acid (EDTA)
- EDTA ethylenediaminetetraacetic acid
- the sequestering agent is CEKAQUEST PB from Cekal Specialties, which is also helping stabilize the hydrogen peroxide bleach. The decreasing concentration of the divalent metal ions will further stabilize the hydrogen peroxide during the bleaching procedure.
- the peroxide bleach is neutralized by the addition of a catalase enzyme.
- a catalase enzyme Any number of catalase enzymes may be used in the current procedures.
- the catalase is CEKAZYME EPK200 from Cekal Specialties.
- a test strip is used to confirm that the peroxide is eliminated. If not, in some embodiments, a water wash is used to rinse any remaining peroxide from the cotton.
- the pH is lowered to a pH of less than about 8, less than about 7, or between 6.5 and 7. In some embodiments, this is performed by the addition of an organic acid, such as citric acid, acetic acid, or others. In some embodiments, the pH is checked to confirm that it is between 6.5 and 7. If not, more acid may be added, and the pH retested
- a surface tension test may be used to confirm that the pretreatment process 102 did not damage or remove the natural wax coating.
- the surface tension test is performed by placing a drop of water on the cotton, such as a fabric surface, and noting if the water beads or is absorbed.
- a goniometer is used to determine the surface tension of the surface, which may be used to determine the efficacy of the treatment.
- the dying process 104 is described with respect to blocks 116 to 126 . It can be noted that the generic procedure of FIG. 1 will work with all dyes. However, specific information on the use of reduction dyes, such as pre-reduced indigo and pre-reduced sulfur dyes, is described further with respect to FIG. 2 .
- the wax lock is a blend that includes an acrylic oligomer, such as available from Cekal Specialties as CEKAPEL NFWR.
- the acrylic polymer blend includes 20-30 wt. % of a liquid, crosslinking acrylic polymer.
- the blend also includes 5-10 wt. % of dipropylene glycol. The dipropylene glycol lowers the viscosity of the polymer blend, improving the uptake into the cotton.
- the wax lock compound is a blend that includes natural plant material isolated from plant wastes, for example, the by-products that accumulate during the processing of cereal grains in the food industry.
- a crosslinker may be included in the blend to assist in locking the natural wax and the natural plant material to the fibers of the cotton.
- the natural plant material is available from Rudolf GmbH of Geresreid, Del., as RUCO®-DRY BIO CGR.
- the crosslinker is available from Rudolf as RUCO®-LINK XHC.
- Other products from Rudulf can be used as the wax lock in embodiments.
- RUCO®-DRY BIO NPE is a combined natural plant product and cross-linking agent that can be used as the wax lock.
- the cotton is dried to fix the wax lock compound.
- this is performed at a temperature of less than about 400° F. (about 204° C.), or less than about 390° F. (about 199° C.), or less than about 350° F. (about 177° C.), or less than about 310° F. (about 154° C.), or between about 300° F. (about 149°) and about 390° F. (about 199° C.), for example, on a frame or moving line at a speed of about 25 to about 30 yds./min (or about 23 to about 27 meters/min).
- FIG. 2 is a process flow diagram of a dying process 200 that uses a reduction dye.
- a reduction dye is a dye that is insoluble in water until it is reduced.
- the RD is an indigo dye, a sulfur dye, a pre-reduced indigo dye, a pre-reduced sulfur dye, or other reduction dyes.
- the pre-reduced dye is not fully reduced, for example, only being reduced by about 60%.
- the dyeing process 200 begins with the treatment of the cotton with sodium sulfate at block 116 , for example, using about 30 g/l to about 50 g/l.
- Na 2 CO 3 sodium sulfate
- Na 2 CO 3 sodium ash
- the pH may be checked, and more Na 2 CO 3 added if needed to adjust the pH to 9.5.
- the RD is added to the solution.
- a reducing agent is added at block 204 to fully reduce the dye for solubilization.
- the reducing agent may be a catalase, such as CEKAZYME EPK200 from Cekal added at about 4 g/l to about 6 g/l.
- the reducing agent is sodium borohydride, hydrogen sulfide, or sodium hydrosulfite, among others.
- a mordant or dye fixative agent, is added to assist in adhering the dye to the cloth.
- the mordant is Al 2 (SO 4 ) 3 , FeSO 4 , CuSO 4 , ZnSO 4 , or MnSO 4 , among others.
- the mordant is selected based on the efficacy and the potential effects on the color. Further, the mordant may increase the efficacy of the reducing agent, for example, if a catalase is used, by increasing the ORP of the catalase solution.
- the mordant can be added at about 10 g/l to about 20 g/l.
- the dye liquor and reducing agent are heated to a maximum temperature of about 140° F. (about 60° C.) at a rate of about 2° F./min (about 1.1° C./min.).
- the dye is allowed to stay in contact with the cotton for a sufficient period of time for absorbance, for example, 30 min., 45 min., 60 min., or longer.
- an oxidizer is added to the mixture to oxidize the reduced dye.
- the oxidizer is hydrogen peroxide, air, oxygen, a water solution of ozone, and the like.
- hydrogen peroxide is added at between about 1 g/l and about 5 g/l.
- the dye is allowed to oxidize in air for about 20 to about 30 minutes. The amount of oxidation controls the color, with higher levels of oxidation correlated to darker colors.
- the dye, mordant, and salts are rinsed from the solution.
- the pH is lowered to less than 8, or less than 7, or about 6.5. This is performed by the addition of an organic acid, such as citric acid, acetic acid, or the like.
- a water rinse is performed to remove the acid and any remaining dyes or salts. In some embodiments, the pH is checked to confirm that it is between 6.5 and 7. If not, more acid may be added, and the pH retested.
- any number of other dyes may be used in embodiments described herein, including, including vat dyes, sulfur dyes, pre-reduced versions of vat and sulfur dyes, and other dyes that are insoluble and are applied to substrates via redox methods.
- Other dyes include azo dyes, such as direct dyes, metal complex dyes, reactive dyes, substantive dyes, and aniline dyes, such as natural and synthetic indigo dye, among others.
- the treatment process described herein, for example, with respect to FIG. 1 was tested on cotton fabric using the parameters described in Table 1.
- the dye used in the process described in Table 1 can be a reduction dye, such as pre-reduced indigo and pre-reduced sulfur dyes, as shown in Table 2.
- the cotton fabric prepared using this technique with a silicone softener as the wax lock compound retained the natural wax through greater than 25 laundering cycles using a cool wash cycle, 1 g/L Tide laundry detergent, and a cool dry cycle. This was tested by performed a surface tension test after each laundering cycle by applying a water droplet and determining that it beaded on the cotton fabric.
- the natural wax lock products from Rudolph, Ruco-Dry Bio CGR and Ruco-Dry Bio NPE are highly effective.
- the burst strength of the cotton fabric was compared to a sample of cotton fabric that was treated by the normal caustic wash.
- the test performed to determine the strength was the Mullen diaphragm burst test, following ASTM D3787.
- the strength retained by the cotton fibers depended on the initial lengths of the cotton fibers, e.g., the quality of the cotton.
- a sample of fabric made using a high quality cotton and treated using the procedure described with respect to FIG. 1 provided an average burst strength of up to 210 psi (about 1448 kPa), versus a sample of the same fabric treated with the standard Kiering procedure, which had an average burst strength of about 110 psi (about 758 kPa).
- An embodiment described in examples herein provides a method for treating cotton.
- the method includes treating the cotton with soda ash at a temperature of less than about 150° F. (about 66° C.) and a pH of about 9.5, bleaching the cotton with hydrogen peroxide at a temperature of less than about 150° F. (about 66° C.), and neutralizing the hydrogen peroxide.
- the pH is lowered with an organic acid to between about 6 and about 7, and the cotton is dyed at a temperature of less than about 150° F. (about 66° C.).
- the cotton is treated with a wax lock compound.
- the method includes treating cotton fabric. In an aspect, the method includes treating cotton yarn.
- the method includes adding a bleach activator with the soda ash. In an aspect, the method includes adding a sequestering agent with the soda ash.
- the method includes adding an arylesterase catalyst with the hydrogen peroxide.
- neutralizing includes adding an enzyme to degrade the hydrogen peroxide.
- the organic acid includes citric acid.
- the dyeing includes treating the cotton with sodium sulfate, treating the cotton with soda ash to raise the pH to about 9.5, treating the cotton with a dye solution, and rinsing the cotton.
- the dye solution is neutralized to a pH of about 6.5, and the cotton is rinsed.
- the dye solution includes a pre-reduced dye.
- the method includes adding a reducing agent to the dye solution.
- the method includes adding a mordant to the dye solution.
- the method includes treating the cotton with an oxidant.
- Another embodiment described herein provides an activated cotton material, including a layer of natural wax locked to the surface of cotton fibers by a wax lock.
- the activated cotton material includes a dye. In an aspect, the activated cotton material includes a pre-reduced dye. In an aspect, the pre-reduced dye comprises indigo.
- the wax lock includes a silicone compound. In an aspect, the wax lock includes an acrylic oligomer. In an aspect, the wax lock includes a natural plant material. In an aspect, the wax lock comprises a natural plant material combined with a cross-linking agent.
- the activated cotton material includes cotton fabric. In an aspect, the activated cotton material includes cotton yarn.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Coloring (AREA)
Abstract
Description
- This application is a Continuation-In-Part and claims priority under 35 USC § 120 TO U.S. patent application Ser. No. 17/582,204, filed on Jan. 24, 2022 titled: “Launderable Activated Cotton”; (Attorney Docket No. 53265-0003001); which claims priority under 35 USC § 119(e) to U.S. Provisional Patent Application Ser. No. 63/141,219, filed on Jan. 25, 2021 titled: “Activated Cotton Fabric and Related Methods”; (Attorney Docket No. 53265-0003P01), the entire contents of each and together, are hereby incorporated by reference.
- The present disclosure is directed to a process for increasing the strength and decreasing the wettability of cotton materials.
- Cotton is a natural fiber with a negative environmental impact when processed. Currently, the fiber is bleached, finished with strong alkali to prepare for a dying process, and dyed. The strong alkali has to be neutralized at each stage of production in particular to mitigate the damaging effluent that would otherwise be released into the worlds aqueous eco systems.
- A substantial amount of water waste is generated by repeatedly washing off the alkali involved in wet processing. For example, a report in the Planet Tracker, “Will Fashion Dye Another Day” (December 2020), notes that “textile production requires an estimated 430 liters or 114 US gallons to produce 1 kg of textile fabric.” The report continues, stating that an estimated 8,000 toxic chemicals, used globally, are used to turn raw materials into textiles. Many of these chemicals are released into freshwater sources as waste streams. For example, “the dyeing and treatment of textiles is estimated to cause 20% of global industrial water pollution.”
- Cotton is at the top end of this estimate, requiring more water to process than polyester, viscose rayon, and wool. Thus, it is likely that the production and dying of cotton fabric is a significant contributor.
- Further, the current processing techniques used for cotton are energy intensive, requiring multiple drying cycles. Reducing the heat used in dyeing and shortening the dye cycles will lower the energy demand.
- An embodiment described in examples herein provides a method for treating cotton. The method includes treating the cotton with soda ash at a temperature of less than about 150° F. (about 66° C.) and a pH of about 9.5, bleaching the cotton with hydrogen peroxide at a temperature of less than about 150° F. (about 66° C.), and neutralizing the hydrogen peroxide. The pH is lowered with an organic acid to between about 6 and about 7, and the cotton is dyed at a temperature of less than about 150° F. (about 66° C.). The cotton is treated with a wax lock compound.
- Another embodiment described herein provides an activated cotton material, including a layer of natural wax locked to the surface of cotton fibers by a wax lock.
-
FIG. 1 is a process flow diagram of a method for treating and dying cotton fabric. -
FIG. 2 is a process flow diagram of a dying process that uses a reduction dye. - The industry standard technique for treating cotton for dying is termed Kiering. Kiering is generally performed on cotton fabric or yarn to prepare it for dyeing. It uses a scouring process in which hot alkali (NaOH) solutions are used to saponify the natural wax coating on the cotton fibers, removing the wax. This increases the absorbency (hydrophilicity) of the cotton fabric, making the fabric easier to dye. However, multiple rinses of water are required to remove the alkali solutions. Further, the alkali softens the fabric by partially breaking down the fibers, leading to a lower strength product.
- After the scouring, the cotton is bleached to remove color bodies, forming a white material. The bleaching can be performed by the use of hydrogen peroxide or other bleaches, such as hypochlorite bleach, among others.
- The treated cotton can then be dyed, for example, as yarns or fabric, depending on the products. In the dying process, the cotton may be passed through, or soaked in, baths that include chemicals that help the dye to adhere to the cotton, for example, by forming hydroxyl groups at the surface of the cotton. The cotton is then passed through, or soaked in, a bath containing the dye. This is often followed by multiple rinses to remove any excess dye that does not adhere to the cloth.
- If the treating and dying process is performed on a cotton yarn, the yarn is then formed into a fabric, for example, by knitting or weaving. The currently used techniques for treating cotton form an absorbent fabric with a color selected by the techniques used. However, the alkali treatment reduced the strength of the cotton fibers, for example, by as much as 50% or more, from the raw cotton.
- A process is provided herein for producing a cotton product, termed an activated cotton, which leaves the natural wax in place on the cotton fibers, lowers water usage, and improves the properties of the cotton. The natural wax coating on the cotton fibers imparts high performance properties to yarns and fabrics, for example, increasing the cooling properties of the fabric by allowing water vapor to pass through the fabric without being adsorbed. To implement this, the process includes the addition of a compound termed a wax lock.
- As described, the wax coating on natural cotton is generally removed during Keiring. Further, even if left on by a milder process, home laundering will remove the natural wax in very few cycles. To overcome this, the activated cotton is treated with the wax lock to fix the wax in place on the fabric. In some embodiments, the wax lock includes a silicone compound that interacts with the natural wax to prevent surfactants from removing the wax.
- In other embodiments, the wax lock is a cross-linking agent, such as a synthetic acrylic oligomer, that is applied before the final drying process and activated during drying. The cross-linking agent forms cross-links that hold the natural wax in place on the fibers. This makes the cotton fabric hydrophobic and enables it maintain the hydrophobicity during numerous home laundering cycles, for example, greater than 20 cycles, greater than 25 cycles, greater than 30 cycles, or longer.
- In the process, the bleaching is performed using hydrogen peroxide. A peroxide activator, triacetin, is used along with a sequestering agent to protect the cotton fiber and the natural wax. The triacetin gradually lowers the pH, creating conditions for the peroxide to be a highly effective bleaching agent to prepare the cotton for dying. This allows the elimination of the strong caustic alkali used in used in traditional bleaching and dye preparation methods. This also creates conditions for an enzyme bleach catalyst to be effective.
- The process changes and combinations described herein shorten the process further and increase water savings. This provides a more stable, repeatable, and ecologically favorable process. Further, the natural wax coating on the cotton will withstand 30 or more home laundering cycles with a surfactant, such as laundry detergent.
-
FIG. 1 is a process flow diagram of amethod 100 for activating cotton. As described herein, the process may be used on cotton at any number of points in the production of a cotton product, including, for example, on cotton slivers, yarn, or fabric, among others. An example of the process is described in the examples section below. It should be noted that the individual steps may be rearranged, eliminated, or modified. For example, in some embodiments, the soda ash pretreatment may be eliminated. It should also be noted that no surfactants are used in the process to avoid removing the natural wax coating. - The
method 100 includes three basic processes, apretreatment process 102 used to clean the cotton and bleach it to remove color bodies and prepare the cotton for dying. A dyingprocess 104 is used to impart color to the cotton. Afinishing process 106 is then used to apply the wax lock to lock the natural wax coating on the cotton fibers, allowing multiple home launderings without removing the wax coating. Thepretreatment process 102 begins atblock 108 with a soda ash pretreatment. The use of soda ash, Na2CO3, is in place of caustic soda (NaOH) used in the standard Kiering process. The use of NaOH sets the pH at 12.5, which damages the cotton fibers and removes the natural wax by saponification. The soda ash sets the pH of the treatment, for example, to about 10, or about 9.5. The lower pH prevents, or decreases, the likelihood of saponification of the wax coating. Further, this is performed at a lower temperature than previous pretreatment procedures, for example, about 150° F. (66° C.). - During the soda ash pretreatment at
block 108, a bleach activator, for example, glyceryl triacetate (triacetin), is added for activation of hydrogen peroxide in the subsequent bleaching procedure. The triacetin is available from Cekal Specialties of Mt. Holly, N.C., USA, under the tradename CEKASSIST BIO. Further, a sequestering agent, such as ethylenediaminetetraacetic acid (EDTA), is used to lower the concentration of divalent metal ions, such as magnesium (II) and calcium (II). In an embodiment, the sequestering agent is CEKAQUEST PB from Cekal Specialties, which is also helping stabilize the hydrogen peroxide bleach. The decreasing concentration of the divalent metal ions will further stabilize the hydrogen peroxide during the bleaching procedure. - At
block 110, a bleaching procedure is performed using a 50% solution of hydrogen peroxide. During the bleaching procedure, an arylesterase catalyst is added to speed the reaction between the peroxide and the color bodies. Generally, the arylesterase catalyst is produced by microorganisms, for example, in a commercial production process. Any number of arylesterase catalysts can be used in the current procedures. In an embodiment, the arylesterase catalyst is obtained from Cekal Specialties under the tradename CEKAZYME BB. - At
block 112, the peroxide bleach is neutralized by the addition of a catalase enzyme. Any number of catalase enzymes may be used in the current procedures. In an embodiment, the catalase is CEKAZYME EPK200 from Cekal Specialties. In some embodiments, a test strip is used to confirm that the peroxide is eliminated. If not, in some embodiments, a water wash is used to rinse any remaining peroxide from the cotton. - At
block 114, the pH is lowered to a pH of less than about 8, less than about 7, or between 6.5 and 7. In some embodiments, this is performed by the addition of an organic acid, such as citric acid, acetic acid, or others. In some embodiments, the pH is checked to confirm that it is between 6.5 and 7. If not, more acid may be added, and the pH retested - A surface tension test may be used to confirm that the
pretreatment process 102 did not damage or remove the natural wax coating. In some embodiments, the surface tension test is performed by placing a drop of water on the cotton, such as a fabric surface, and noting if the water beads or is absorbed. In other embodiments, a goniometer is used to determine the surface tension of the surface, which may be used to determine the efficacy of the treatment. - The dying
process 104 is described with respect toblocks 116 to 126. It can be noted that the generic procedure ofFIG. 1 will work with all dyes. However, specific information on the use of reduction dyes, such as pre-reduced indigo and pre-reduced sulfur dyes, is described further with respect toFIG. 2 . - The
dyeing process 104 begins atblock 116, with the treatment of the cotton with sodium sulfate. Atblock 118, Na2CO3 (soda ash) is added to raise the pH to about 9.5, or about 10. The pH may be checked, and more Na2CO3 added if needed to adjust the pH to 9.5. The use of the weak alkali helps retain and protect the cotton wax and the cotton cellulose. It is used in place of the caustic soda (NaOH) used in the standard Kiering procedure, which would set the pH at 12.5, damaging the cotton and removing the natural wax via saponification. - At
block 120, the dying compound is added to the solution. In some embodiments, the dye is a reactive dye, although any number of other types of dyes may be used, including direct dyes, sulfur dyes, azoic dyes, or vat dyes, among others. The dye liquor is heated to a maximum temperature of about 140° F. (about 60° C.) at a rate of about 2° F./min (about 1.1° C./min.). The dye is allowed to stay in contact with the cotton for a sufficient period of time for absorbance, for example, 30 min., 45 min., 60 min., or longer. - At
block 122, the dye and salts are rinsed from the solution. Atblock 124, the pH is lowered to less than 8, or less than 7, or about 6.5. This is performed by the addition of an organic acid, such as citric acid, acetic acid, or the like. Atblock 126, a water rinse is performed to remove the acid and any remaining dyes or salts. In some embodiments, the pH is checked to confirm that it is between 6.5 and 7. If not, more acid may be added, and the pH retested. - The
finishing process 106 begins atblock 128 with the application of the wax lock. As described herein, the wax lock locks the natural wax to the cotton fibers, slowing its removal by laundering. The wax lock may include silicone compounds, acrylic oligomers, or combinations. Other materials may be used, such as other types of oligomers or monomers. Generally, the wax lock is hydrophobic, further protecting the natural was from being removed by laundering. The silicone wax lock compound used in some embodiments is available from Apexical Specialty Chemicals of Spartanburg, S.C., USA, as Apexosil 2137. In some embodiments, a small amount of acrylic monomers or oligomers may be included, such as about 1 wt. %, about 2 wt. %, about 5 wt. %, about 10 wt. %, about 20 wt. %, or higher. - In some embodiments, the wax lock is a blend that includes an acrylic oligomer, such as available from Cekal Specialties as CEKAPEL NFWR. In this example, the acrylic polymer blend includes 20-30 wt. % of a liquid, crosslinking acrylic polymer. The blend also includes 5-10 wt. % of dipropylene glycol. The dipropylene glycol lowers the viscosity of the polymer blend, improving the uptake into the cotton.
- Similar materials are available from other suppliers. These include blends in the Hycar line from Lubrizol, Corp. of Wickliffe, Ohio, USA. Other materials are available from Apexical Specialty Chemicals, Huntsman Chemicals of Charlotte, N.C., USA, and Chemours of Wilmington, Del., USA.
- In some embodiments, the wax lock compound is a blend that includes natural plant material isolated from plant wastes, for example, the by-products that accumulate during the processing of cereal grains in the food industry. A crosslinker may be included in the blend to assist in locking the natural wax and the natural plant material to the fibers of the cotton. The natural plant material is available from Rudolf GmbH of Geresreid, Del., as RUCO®-DRY BIO CGR. The crosslinker is available from Rudolf as RUCO®-LINK XHC. Other products from Rudulf can be used as the wax lock in embodiments. For example, RUCO®-DRY BIO NPE is a combined natural plant product and cross-linking agent that can be used as the wax lock.
- At
block 130, the cotton is dried to fix the wax lock compound. In various embodiments, this is performed at a temperature of less than about 400° F. (about 204° C.), or less than about 390° F. (about 199° C.), or less than about 350° F. (about 177° C.), or less than about 310° F. (about 154° C.), or between about 300° F. (about 149°) and about 390° F. (about 199° C.), for example, on a frame or moving line at a speed of about 25 to about 30 yds./min (or about 23 to about 27 meters/min). -
FIG. 2 is a process flow diagram of a dyingprocess 200 that uses a reduction dye. Like numbered items, including thepretreatment process 102 andfinishing process 106, are as described with respect toFIG. 1 . As used herein, a reduction dye (RD) is a dye that is insoluble in water until it is reduced. In various embodiments, the RD is an indigo dye, a sulfur dye, a pre-reduced indigo dye, a pre-reduced sulfur dye, or other reduction dyes. Generally, the pre-reduced dye is not fully reduced, for example, only being reduced by about 60%. - As for the dying
process 104 ofFIG. 1 , thedyeing process 200 begins with the treatment of the cotton with sodium sulfate atblock 116, for example, using about 30 g/l to about 50 g/l. Atblock 118, Na2CO3 (soda ash) is added to raise the pH to about 9.5, or about 10, for example, using about 6 g/l to about 10 g/l. The pH may be checked, and more Na2CO3 added if needed to adjust the pH to 9.5. - At
block 202, the RD is added to the solution. As the dye is not soluble until it is reduced, a reducing agent is added atblock 204 to fully reduce the dye for solubilization. In some embodiments, the reducing agent may be a catalase, such as CEKAZYME EPK200 from Cekal added at about 4 g/l to about 6 g/l. In other embodiments, the reducing agent is sodium borohydride, hydrogen sulfide, or sodium hydrosulfite, among others. - At
block 206, a mordant, or dye fixative agent, is added to assist in adhering the dye to the cloth. In some embodiments, the mordant is Al2(SO4)3, FeSO4, CuSO4, ZnSO4, or MnSO4, among others. The mordant is selected based on the efficacy and the potential effects on the color. Further, the mordant may increase the efficacy of the reducing agent, for example, if a catalase is used, by increasing the ORP of the catalase solution. The mordant can be added at about 10 g/l to about 20 g/l. - The dye liquor and reducing agent are heated to a maximum temperature of about 140° F. (about 60° C.) at a rate of about 2° F./min (about 1.1° C./min.). The dye is allowed to stay in contact with the cotton for a sufficient period of time for absorbance, for example, 30 min., 45 min., 60 min., or longer.
- At
block 208, an oxidizer is added to the mixture to oxidize the reduced dye. In various embodiments, the oxidizer is hydrogen peroxide, air, oxygen, a water solution of ozone, and the like. In some embodiments, hydrogen peroxide is added at between about 1 g/l and about 5 g/l. In other embodiments, the dye is allowed to oxidize in air for about 20 to about 30 minutes. The amount of oxidation controls the color, with higher levels of oxidation correlated to darker colors. - At
block 122, the dye, mordant, and salts are rinsed from the solution. Atblock 124, the pH is lowered to less than 8, or less than 7, or about 6.5. This is performed by the addition of an organic acid, such as citric acid, acetic acid, or the like. Atblock 126, a water rinse is performed to remove the acid and any remaining dyes or salts. In some embodiments, the pH is checked to confirm that it is between 6.5 and 7. If not, more acid may be added, and the pH retested. - It can be noted that all of the enzymes described herein are available from other suppliers. For example, AB Enzymes of Darmstadt, Del., produces analogous arylesterase catalysts and catalase enzymes that may be used in the processes described herein.
- Further, any number of other dyes may be used in embodiments described herein, including, including vat dyes, sulfur dyes, pre-reduced versions of vat and sulfur dyes, and other dyes that are insoluble and are applied to substrates via redox methods. Other dyes than can be used include azo dyes, such as direct dyes, metal complex dyes, reactive dyes, substantive dyes, and aniline dyes, such as natural and synthetic indigo dye, among others.
- The treatment process described herein, for example, with respect to
FIG. 1 , was tested on cotton fabric using the parameters described in Table 1. The dye used in the process described in Table 1 can be a reduction dye, such as pre-reduced indigo and pre-reduced sulfur dyes, as shown in Table 2. - The cotton fabric prepared using this technique with a silicone softener as the wax lock compound retained the natural wax through greater than 25 laundering cycles using a cool wash cycle, 1 g/L Tide laundry detergent, and a cool dry cycle. This was tested by performed a surface tension test after each laundering cycle by applying a water droplet and determining that it beaded on the cotton fabric. As described herein, the natural wax lock products from Rudolph, Ruco-Dry Bio CGR and Ruco-Dry Bio NPE, are highly effective.
- The burst strength of the cotton fabric was compared to a sample of cotton fabric that was treated by the normal caustic wash. The test performed to determine the strength was the Mullen diaphragm burst test, following ASTM D3787. The strength retained by the cotton fibers depended on the initial lengths of the cotton fibers, e.g., the quality of the cotton. A sample of fabric made using a high quality cotton and treated using the procedure described with respect to
FIG. 1 provided an average burst strength of up to 210 psi (about 1448 kPa), versus a sample of the same fabric treated with the standard Kiering procedure, which had an average burst strength of about 110 psi (about 758 kPa). - A sample of fabric prepared from a lower quality cotton, e.g., with shorter fiber lengths, still maintained a significant strength advantage when treated with the procedure of
FIG. 1 versus the normal Kiering procedure. The fabric prepared from the lower quality cotton that was treated with the standard Kiering procedure had an average burst strength of about 93.9 psi (647 kPa). A sample of the same fabric treated with the procedure ofFIG. 1 had an average burst strength of about 109.8 psi (757 kPa). -
TABLE 1 Parameters for treating process applied to cotton fabric DWELL TEMP, in PRETREATING PRODUCT/ TIME ° F. STAGE DOSE ACTION (MIN) (in ° C.) PROCESS NOTES 1 2 g/ l Soda Ash 30 150 (66) Dwell (Na2CO3) 3 g/l Triacetin 0.5 g/l Sequestering agent 2 5.0 g/ l Hydrogen 10 150 (66) Dwell Check pH 9.5-10 Peroxide (H202, 50 vol. %) 0.2 g/ l 10 150 (66) Dwell Arylesterase catalyst 3 0.5 g/l Catalase Enzyme 15 120 (49) Dwell Check Peroxide Eliminated 4 0.32 g/l Citric Acid 12 Dwell Check pH 6.5-7 Water-Only Wash 120 (49) Optional, if peroxide is not eliminated Surface Tension Water beading on Test for Wax surface TEMP, in DYEING PRODUCT/ DWELL ° F. STAGE DOSE ACTION (MIN) (in ° C.) PROCESS NOTES 1 30 g/ l Sodium Sulfate 10 100 (38) Treat 10-15 Min 1A 6 g/l Soda Ash Dense 10 100 (38) Treat 1B Add Reactive Dye 10 100 (38) 2 Heat Dye Liquor 20 140 (60) Heat 3° F./min to 140° F. Max Temp. 3 Run 45 Mins 45 140 (60) Dwell 140° F. Max Temp. 4 Water Rinse 10 120 (49) Dwell 5 0.625 g/l Citric Acid 12 120 (49) Dwell 6 Water Rinse 8 120 (49)- Dwell 140° F. (60° C.) 140 (60) Max Temp. TEMP, in WAXLOCK PRODUCT/ DWELL ° F. STAGE DOSE ACTION (MIN) (in ° C.) PROCESS NOTES 1 3-10% Wax lock Treat Wax lock OWB (silicone, acrylic, natural product) 2 Fixing wax lock 300 (149)- Dry 25-30 Yds /Min 390 (199) (23-27 m/min.) On Frame -
TABLE 2 Parameters for dying cotton fabric using a pre-reduced dye DYEING PRODUCT/ DWELL TEMP, in STAGE DOSE ACTION (MIN) ° F. (in ° C.) PROCESS NOTES 1 30 g/ l Sodium Sulfate 10 100 (38) Treat 10-15 Min 1A 6 g/ l Soda Ash 10 100 (38) Treat (Sodium Carbonate) 2 Pre-reduced Dye 10 100 (38) 2A 4 g/l Catalase Enzyme 2B 10 g/ l Aluminum Sulfate 10 100 (38) 2 Heat Dye Liquor 20 140 (60) Heat 2° F./min to 140° F. Max Temp. Check pH 3 Run 45 Mins 45 140 (60) Dwell 140° F. Max Temp. 4 Water Rinse 10 120 (49) Dwell 4A 1 g/ l Hydrogen peroxide 10 120 (49) Dwell Oxidation 5 0.625 g/l Citric Acid 12 120 (49) Dwell Neutralize pH (to about 7.0) 6 Water Rinse 8 120 (49)- Dwell 140° F. (60° C.) 140 (60) Max Temp. - An embodiment described in examples herein provides a method for treating cotton. The method includes treating the cotton with soda ash at a temperature of less than about 150° F. (about 66° C.) and a pH of about 9.5, bleaching the cotton with hydrogen peroxide at a temperature of less than about 150° F. (about 66° C.), and neutralizing the hydrogen peroxide. The pH is lowered with an organic acid to between about 6 and about 7, and the cotton is dyed at a temperature of less than about 150° F. (about 66° C.). The cotton is treated with a wax lock compound.
- In an aspect, the method includes treating cotton fabric. In an aspect, the method includes treating cotton yarn.
- In an aspect, the method includes adding a bleach activator with the soda ash. In an aspect, the method includes adding a sequestering agent with the soda ash.
- In an aspect, the method includes adding an arylesterase catalyst with the hydrogen peroxide.
- In an aspect, neutralizing includes adding an enzyme to degrade the hydrogen peroxide.
- In an aspect, the organic acid includes citric acid.
- In an aspect, the dyeing includes treating the cotton with sodium sulfate, treating the cotton with soda ash to raise the pH to about 9.5, treating the cotton with a dye solution, and rinsing the cotton. The dye solution is neutralized to a pH of about 6.5, and the cotton is rinsed.
- In an aspect, the dye solution includes a pre-reduced dye. In an aspect, the method includes adding a reducing agent to the dye solution. In an aspect, the method includes adding a mordant to the dye solution. In an aspect, the method includes treating the cotton with an oxidant.
- In an aspect, the method includes treating the cotton with the wax lock. In an aspect, the method includes drying the cotton at between about 300° F. (about 149° C.) and 390° F. (about 199° C.). In an aspect, the wax lock includes a silicone compound. In an aspect, the method includes wax lock includes an acrylic compound.
- Another embodiment described herein provides an activated cotton material, including a layer of natural wax locked to the surface of cotton fibers by a wax lock.
- In an aspect, the activated cotton material includes a dye. In an aspect, the activated cotton material includes a pre-reduced dye. In an aspect, the pre-reduced dye comprises indigo.
- In an aspect, the wax lock includes a silicone compound. In an aspect, the wax lock includes an acrylic oligomer. In an aspect, the wax lock includes a natural plant material. In an aspect, the wax lock comprises a natural plant material combined with a cross-linking agent.
- In an aspect, the activated cotton material includes cotton fabric. In an aspect, the activated cotton material includes cotton yarn.
- Other implementations are also within the scope of the following claims.
Claims (27)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/821,249 US20220389650A1 (en) | 2021-01-25 | 2022-08-22 | Launderable activated cotton |
| PCT/US2023/030780 WO2024044158A1 (en) | 2022-08-22 | 2023-08-22 | Launderable activated cotton |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202163141219P | 2021-01-25 | 2021-01-25 | |
| US17/582,204 US11987926B2 (en) | 2021-01-25 | 2022-01-24 | Launderable activated cotton |
| US17/821,249 US20220389650A1 (en) | 2021-01-25 | 2022-08-22 | Launderable activated cotton |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/582,204 Continuation-In-Part US11987926B2 (en) | 2021-01-25 | 2022-01-24 | Launderable activated cotton |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20220389650A1 true US20220389650A1 (en) | 2022-12-08 |
Family
ID=84286022
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/821,249 Pending US20220389650A1 (en) | 2021-01-25 | 2022-08-22 | Launderable activated cotton |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20220389650A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024044164A1 (en) * | 2022-08-22 | 2024-02-29 | Energy Ogre Llc | Launderable activated cotton garment |
| WO2024044158A1 (en) * | 2022-08-22 | 2024-02-29 | Energy Ogre Llc | Launderable activated cotton |
| US11987927B2 (en) | 2021-01-25 | 2024-05-21 | Energy Ogre Llc | Launderable activated cotton |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3954652A (en) * | 1972-09-02 | 1976-05-04 | Basf Aktiengesellschaft | Bleaching agent |
| US4322214A (en) * | 1979-04-18 | 1982-03-30 | Asahi Chemical Company Limited | Dyeing method |
| US4917706A (en) * | 1988-02-01 | 1990-04-17 | Sandoz Ltd. | Liquid compositions of prereduced sulfur dyes and production thereof |
| US4985545A (en) * | 1987-01-05 | 1991-01-15 | Mitsubishi Kasei Corporation | Water-soluble formazan colorant containing reactive group and method of dyeing by its use |
| US20050266753A1 (en) * | 2004-05-26 | 2005-12-01 | Xinggao Fang | Textile treatment and resulting textile |
| US20060042020A1 (en) * | 2002-12-20 | 2006-03-02 | Novozymes North America, Inc. | Treatment of fabrics, fibers, or yarns |
| WO2016178662A1 (en) * | 2015-05-04 | 2016-11-10 | Carbtex Technology, Inc. | Articles of ignition resistant cotton fibers |
-
2022
- 2022-08-22 US US17/821,249 patent/US20220389650A1/en active Pending
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3954652A (en) * | 1972-09-02 | 1976-05-04 | Basf Aktiengesellschaft | Bleaching agent |
| US4322214A (en) * | 1979-04-18 | 1982-03-30 | Asahi Chemical Company Limited | Dyeing method |
| US4985545A (en) * | 1987-01-05 | 1991-01-15 | Mitsubishi Kasei Corporation | Water-soluble formazan colorant containing reactive group and method of dyeing by its use |
| US4917706A (en) * | 1988-02-01 | 1990-04-17 | Sandoz Ltd. | Liquid compositions of prereduced sulfur dyes and production thereof |
| US4917706B1 (en) * | 1988-02-01 | 1993-03-16 | Liquid compositions of prereduced sulfur dyes and production thereof | |
| US4917706B2 (en) * | 1988-02-01 | 1996-02-20 | Sandoz Ltd | Liquid compositions of prereduced sulfur dyes and production thereof |
| US20060042020A1 (en) * | 2002-12-20 | 2006-03-02 | Novozymes North America, Inc. | Treatment of fabrics, fibers, or yarns |
| US20050266753A1 (en) * | 2004-05-26 | 2005-12-01 | Xinggao Fang | Textile treatment and resulting textile |
| WO2016178662A1 (en) * | 2015-05-04 | 2016-11-10 | Carbtex Technology, Inc. | Articles of ignition resistant cotton fibers |
Non-Patent Citations (1)
| Title |
|---|
| Siddiquee, Comparative study of conventional and enzymatic pretreatment (scouring and bleaching) of cotton knitted fabric, International Journal of Engineering and Technology, 3(1), 2014, pg. 37-43 (Year: 2014) * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11987927B2 (en) | 2021-01-25 | 2024-05-21 | Energy Ogre Llc | Launderable activated cotton |
| US11987926B2 (en) | 2021-01-25 | 2024-05-21 | Energy Ogre Llc | Launderable activated cotton |
| WO2024044164A1 (en) * | 2022-08-22 | 2024-02-29 | Energy Ogre Llc | Launderable activated cotton garment |
| WO2024044158A1 (en) * | 2022-08-22 | 2024-02-29 | Energy Ogre Llc | Launderable activated cotton |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11987927B2 (en) | Launderable activated cotton | |
| US20220389650A1 (en) | Launderable activated cotton | |
| FR2715668A1 (en) | Finishing of fibrous textile materials. | |
| Hauser | Fabric finishing: Pretreatment/textile wet processing | |
| CN111910446A (en) | Polyester-cotton blended yarn dyeing process | |
| CN106381679A (en) | Fabric pad-steaming bleaching method based on TBLC activate hydrogen peroxide system | |
| US5910622A (en) | Method for treating fibrous cellulosic materials | |
| WO2021158538A1 (en) | Cationization of textiles by padding and drying | |
| CN1528973A (en) | A biological enzyme continuous desizing, scouring-bath pretreatment process for cotton woven fabrics | |
| US20240060230A1 (en) | Launderable activated cotton garment | |
| WO2024044158A1 (en) | Launderable activated cotton | |
| GB2399094A (en) | Treatment of lyocell containing fibres/fabrics with aqueous carboxylic acid at above atmospheric pressure & elevated temperature, prior to dyeing & tumbling | |
| CN106521923B (en) | A kind of TBLC activated hydrogen peroxide system cotton fabric rolls steaming method for bleaching | |
| WO2002103104A2 (en) | Dyeing and finishing of lyocell fabrics | |
| US12325955B2 (en) | One step dyeing process of a polyester/natural fiber blended fabric | |
| JP7693958B2 (en) | Method for dyeing cellulosic textile products | |
| JP2010163719A (en) | Method for mercerization on composite fiber structure of polylactic acid fiber and cotton or cellulosic fiber | |
| US12281436B2 (en) | Sustainable fabric preparation process for dyeing with botanical (plant) dyes | |
| JP4312337B2 (en) | Method for modifying cellulosic fibers | |
| Uddin et al. | Effects of different soaping and fixing agents on washing fastness of reactive dyed cotton fabric | |
| JPH04316687A (en) | Coloring of cellulosic fiber structure containing protein fiber | |
| US6663677B2 (en) | Methods for use in wool whitening and garment washing | |
| JPS5887363A (en) | Refining of fiber product | |
| CN117684404A (en) | Operation method capable of greatly improving dyeing fastness of jean sheet | |
| CN117822329A (en) | Dyeing method of cotton-containing textile materials |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ENERGY OGRE LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STEWART, GRAHAM RALPH;REEL/FRAME:060857/0252 Effective date: 20220819 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| AS | Assignment |
Owner name: OGRE SHIELD, LLC DBA INNOVO FIBER, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ENERGY OGRE, LLC;REEL/FRAME:067762/0511 Effective date: 20240618 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |