US20220385392A1 - Collision-Tolerant Modulation and Fault Recovery in 5G and 6G Messages - Google Patents

Collision-Tolerant Modulation and Fault Recovery in 5G and 6G Messages Download PDF

Info

Publication number
US20220385392A1
US20220385392A1 US17/881,801 US202217881801A US2022385392A1 US 20220385392 A1 US20220385392 A1 US 20220385392A1 US 202217881801 A US202217881801 A US 202217881801A US 2022385392 A1 US2022385392 A1 US 2022385392A1
Authority
US
United States
Prior art keywords
modulation
message
states
amplitude
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/881,801
Other versions
US11522634B1 (en
Inventor
David E. Newman
R. Kemp Massengill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US17/881,801 priority Critical patent/US11522634B1/en
Priority to US18/070,731 priority patent/US12095550B2/en
Publication of US20220385392A1 publication Critical patent/US20220385392A1/en
Application granted granted Critical
Publication of US11522634B1 publication Critical patent/US11522634B1/en
Assigned to ULTRALOGIC 6G, LLC reassignment ULTRALOGIC 6G, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MASSENGILL, R. KEMP, NEWMAN, DAVID E.
Assigned to MASSENGILL, R. KEMP, NEWMAN, DAVID E. reassignment MASSENGILL, R. KEMP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ULTRALOGIC 6G, LLC
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/0048Decoding adapted to other signal detection operation in conjunction with detection of multiuser or interfering signals, e.g. iteration between CDMA or MIMO detector and FEC decoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3488Multiresolution systems

Definitions

  • the disclosure pertains to wireless message demodulation, and particularly to methods for demodulating collided messages.
  • a method for transmitting a wireless message comprising: receiving or determining a modulation scheme comprising a plurality of modulation states, wherein: the modulation scheme includes amplitude modulation with integer Namp predetermined amplitude levels; the modulation scheme includes phase modulation with integer Nphase predetermined phase levels; each modulation state comprises, at least, one of the predetermined amplitude levels and one of the predetermined phase levels; and each modulation state is different from every superposition of any two of the modulation states; modulating each message element, of a message comprising message elements, according to the modulation scheme; adjusting a clock or timing to synchronize with a recipient or causing the clock or timing of the recipient to synchronize with a transmitter; adjusting a transmission power level to provide a particular received signal level at the recipient; and transmitting the message to the recipient.
  • a method for demodulating a wireless message comprising: receiving or determining a modulation scheme comprising Nstate modulation states, each modulation state configured to be unequal to every superposition of any two of the modulation states; receiving or determining one or more predetermined amplitude levels and one or more predetermined phase levels; receiving the message comprising message elements; for each message element, determining at least one amplitude value and at least one phase value of the message element; and determining, according to the at least one amplitude value and the at least one phase value, whether the message element comprises: one of the modulation states of the modulation scheme; a sum of two of the modulation states of the modulation scheme; or an incompatible state comprising none of the modulation states and no sum of any two of the modulation states of the modulation scheme.
  • non-transitory computer-readable media in a wireless receiver, the media containing instructions that when executed in a computing environment cause a method to be performed, the method comprising: receiving a demodulation reference comprising reference elements, each reference element comprising a resource element modulated according to a modulation scheme, the modulation scheme comprising two or more modulation states and one or more predetermined amplitude levels and one or more predetermined phase levels, each modulation state comprising one of the predetermined amplitude levels and one of the predetermined phase levels, wherein each modulation state differs from every sum of any two of the modulation states; determining, based on the demodulation reference, the predetermined amplitude level or levels and the predetermined phase level or levels; receiving a message comprising message elements, each message element comprising a modulated resource element; and for each message element, determining whether the message element is modulated according to: one of the modulation states; or 2 times one of the modulation states; or a sum of two different modulation states; or none of the above
  • FIG. 1 A is a schematic showing an exemplary embodiment of interference states in an on-off modulation scheme, according to some embodiments.
  • FIG. 1 B is a schematic showing an exemplary embodiment of two signals interfering, according to some embodiments.
  • FIG. 1 C is a schematic showing an exemplary embodiment of interference states in a two-level amplitude-modulation scheme, according to some embodiments.
  • FIG. 1 D is a schematic showing an exemplary embodiment of interference states in a six-level amplitude-modulation scheme, according to some embodiments.
  • FIG. 2 is a flowchart showing an exemplary embodiment of a process for demodulating an amplitude-modulated message with interference, according to some embodiments.
  • FIG. 3 A is a phase chart showing an exemplary embodiment of states in a two-level phase-modulation scheme, according to some embodiments.
  • FIG. 3 B is a schematic showing an exemplary embodiment of interfering phase-modulated waves, according to some embodiments.
  • FIG. 3 C is a phase chart showing an exemplary embodiment of states in a three-level phase-modulation scheme, according to some embodiments.
  • FIG. 3 D is a phase chart showing an exemplary embodiment of states in a five-level phase-modulation scheme, according to some embodiments.
  • FIG. 4 is a flowchart showing an exemplary embodiment of a process for demodulating a phase-modulated message with interference, according to some embodiments.
  • FIG. 5 is a phase chart showing an exemplary embodiment of states of a modulation scheme with both amplitude and phase modulation with interference, according to some embodiments.
  • FIG. 6 is a flowchart showing an exemplary embodiment of a process for demodulating a message with amplitude and phase modulation, according to some embodiments.
  • FIG. 7 A is a constellation chart showing an exemplary embodiment of states of a PAM modulation scheme with interference, according to some embodiments.
  • FIG. 7 B is a constellation chart showing an exemplary embodiment of states of a modified PAM modulation scheme with interference, according to some embodiments.
  • FIG. 8 is a flowchart showing an exemplary embodiment of a procedure for demodulating a message with PAM modulation and interference, according to some embodiments.
  • Systems and methods disclosed herein can provide urgently needed wireless communication protocols for recovering and demodulating messages despite collisions with other messages transmitted at the same time.
  • the modulation states of a modulation scheme are configured so that none of the modulation states equals the superposition of two other modulation states.
  • a transmitter can modulate a message according to those modulation states and thereby enable a receiver to demodulate the message elements even when collided with an intruder message that is modulated according to the same modulation scheme.
  • the correct demodulation may be unambiguous in some cases or, in other cases, may indicate a small number of possible modulation states which can then be tested according to an error-detection code. Recovery of collided messages may save time and energy by avoiding retransmissions.
  • Embodiments disclosed below include versions with amplitude modulation, phase modulation, classical amplitude-phase modulation, and pulse-amplitude modulation schemes.
  • 5G represents fifth-generation
  • 6G sixth-generation, wireless technology in which a network (or cell or LAN Local Area Network or RAN Radio Access Network or the like) may include a base station (or gNB or generation-node-B or eNB or evolution-node-B or AP Access Point) in signal communication with a plurality of user devices (or UE or User Equipment or user nodes or terminals or wireless transmit-receive units) and operationally connected to a core network (CN) which handles non-radio tasks, such as administration, and is usually connected to a larger network such as the Internet.
  • CN core network
  • the time-frequency space is generally configured as a “resource grid” including a number of “resource elements”, each resource element being a specific unit of time termed a “symbol period” or “symbol-time”, and a specific frequency and bandwidth termed a “subcarrier” (or “subchannel” in some references).
  • Symbol periods may be termed “OFDM symbols” (Orthogonal Frequency-Division Multiplexing) in references.
  • the time domain may be divided into ten-millisecond frames, one-millisecond subframes, and some number of slots, each slot including 14 symbol periods. The number of slots per subframe ranges from 1 to 8 depending on the “numerology” selected.
  • the frequency axis is divided into “resource blocks” (also termed “resource element groups” or “REG” or “channels” in references) including 12 subcarriers, each subcarrier at a slightly different frequency.
  • the “numerology” of a resource grid corresponds to the subcarrier spacing in the frequency domain. Subcarrier spacings of 15, 30, 60, 120, and 240 kHz are defined in various numerologies. Each subcarrier can be independently modulated to convey message information. Thus a resource element, spanning a single symbol period in time and a single subcarrier in frequency, is the smallest unit of a message.
  • “Classical” amplitude-phase modulation refers to message elements modulated in both amplitude and phase
  • “PAM” pulse-amplitude modulation
  • the two signals may be called the “I” and “Q” branch signals (for In-phase and Quadrature-phase) or “real and imaginary” among others.
  • Standard modulation schemes in 5G and 6G include BPSK (binary phase-shift keying), QPSK (quad phase-shift keying), 16 QAM (quadrature amplitude modulation with 16 modulation states), 64 QAM, 256 QAM and higher orders.
  • 16 QAM modulated according to PAM exhibits two phase levels at zero and 90 degrees (or in practice, for carrier suppression, ⁇ 45 degrees) and four amplitude levels including two positive and two negative, thus forming 16 distinct modulation states.
  • classical amplitude-phase modulation in 16 QAM includes four positive amplitude levels and four phases of the raw signal, which are multiplexed to produce the 16 states of the modulation scheme.
  • the extremely legacy “on-off” modulation refers to transmitting message bits with amplitude modulation in which one state has zero transmission.
  • Communication in 5G and 6G generally takes place on abstract message “channels” (not to be confused with frequency channels) representing different types of messages, embodied as a PDCCH and PUCCH (physical downlink and uplink control channels) for transmitting control information, PDSCH and PUSCH (physical downlink and uplink shared channels) for transmitting data and other non-control information, PBCH (physical broadcast channel) for transmitting information to multiple user devices, among other channels that may be in use.
  • PDCCH and PUCCH physical downlink and uplink control channels
  • PDSCH and PUSCH physical downlink and uplink shared channels
  • PBCH physical broadcast channel
  • one or more random access channels may include multiple random access channels in a single cell.
  • CRC cyclic redundancy code
  • RNTI radio network temporary identity
  • SNR signal-to-noise ratio
  • SINK signal-to-interference-and-noise ratio
  • RRC radio resource control
  • Digitization refers to repeatedly measuring a waveform using, for example, a fast ADC (analog-to-digital converter) or the like.
  • each modulated resource element of a message is referred to as a “modulated message resource element”, or more simply as a “message element”, in examples below.
  • a “demodulation reference” is a set of Nref modulated “reference resource elements” that exhibit levels of a modulation scheme (as opposed to conveying data). Thus integer Nref is the number of reference resource elements in the demodulation reference.
  • a “calibration set” is one or more amplitude values (and optionally phase values), which have been determined according to a demodulation reference, representing the predetermined modulation levels of a modulation scheme.
  • the modulation scheme includes integer Nlevel predetermined amplitude or phase levels. Amplitudes may be specified in terms of an arbitrary “amplitude unit”, such as 1 or 3 units of amplitude.
  • a “superposition” or “sum-signal” of two modulation states is a signal produced by receiving the two modulation states simultaneously, so that the two modulation states overlap in time.
  • a first modulation state is “consistent” or “compatible” with a superposition of two other modulation states if the amplitude and phase of the first modulation state are equal to the amplitude and phase of the superposition.
  • a first modulation state is “inconsistent” or “incompatible” with a superposition of two other modulation states if the first modulation state differs, in amplitude or phase, from the superposition of the two other modulation states.
  • Low-complexity refers to devices and procedures necessary for wireless communication, exclusive of devices and procedures that provide high-performance communication.
  • 5G/6G specifications include many procedures and requirements that greatly exceed those necessary for wireless communication, in order to provide high-performance communications at low latency and high reliability for users that demand it.
  • low-complexity procedures generally require less computation and less signal processing.
  • low-complexity procedures may be tailored to minimize the number of separate operations required of a device per unit of time.
  • 5G and 6G specifications include a very wide range of options and contingencies and versions and formats and types and modes for many operations, to achieve maximum flexibility.
  • a low-complexity specification may include defaults for each operation, and those defaults may be the simplest choices, or at least simpler than standard 5G and 6G procedures. “Simpler” procedures generally require fewer computation steps and/or smaller memory spaces than corresponding procedures in standard 5G/6G. Computation steps may be measured in floating-point calculations, for example.
  • Reduced-capability refers to wireless devices that cannot comply with 5G or 6G protocols, absent the systems and methods disclosed herein.
  • regular 5G and 6G user devices are required to receive a 5 MHz bandwidth in order to receive system information messages.
  • Regular user devices are required to perform high-speed signal processing such as digitizing the received waveform, applying digital filtering or Fourier transforming an incoming waveform, phase-dependent integrating at several GHz frequency, and separating closely-spaced subcarriers.
  • a reduced-capability device may not need the high performance gained by such procedures, and may be incapable of performing them.
  • a reduced-capability device may be able to receive a narrow-band wireless signal, demodulate the message, and interpret the content without further processing.
  • states of an amplitude modulation scheme are disclosed, enabling recovery of an original “subject” message despite a second “intruding” message, according to some embodiments.
  • FIG. 1 A is a schematic showing an exemplary embodiment of interference states in an on-off modulation scheme, according to some embodiments.
  • a highly schematic example involves just a portion of a modulation scheme, to illustrate message collision mitigation in a particular case.
  • the received amplitude is indicated in the first column (1 or 2 in this case, arbitrary units), and the type of state (dot for a modulation state, circle for ambiguous state, star for unambiguous state, and x for incompatible state) is indicated symbolically in the second column and further explained in the third column, for each amplitude value.
  • a first state is a modulation “on” state 101 with amplitude 1 unit and symbolized as a dot 102 to indicate that it is a modulation state (“MOD STATE”) of the modulation scheme, as indicated 103 .
  • a second state 104 with amplitude 2 units as indicated, is not one of the modulation states, but instead is the superposition signal when two of the modulation states are transmitted at the same time. For example, a first user device may transmit a first (subject) message to a base station, and a second user device may transmit a second (intruding) message at the same time.
  • the two user devices have previously adjusted their transmitted power levels and clock frequencies as directed by the base station, so the subject message and the intruding message are synchronous and arrive at the base station with the same received amplitude of one unit.
  • the two signals therefore interfere constructively, producing a resultant superposition with twice the amplitude of the first signal, as suggested by the formula 104 .
  • the two signals each have an amplitude of 1 unit
  • the received sum-signal has an amplitude of 2 units.
  • the receiver can recognize the collision according to the received amplitude being a sum-signal value of 2 units. Because this amplitude can only be produced by two simultaneous transmissions of 1 unit, the receiver can recover the original value of the subject signal by dividing the received signal by 2.
  • the receiver can determine, from the received signal amplitude of 2 amplitude units, that both signals had the same amplitude of 1 unit, and therefore the subject signal must have had an amplitude of 1 unit. Hence the receiver can unambiguously demodulate the message element of the subject signal as having an amplitude of 1 unit, and the unambiguous state is indicated by a star 105 . In some embodiments, the receiver may ignore the intruding message. In other embodiments, the receiver may attempt to demodulate the intruding message as well as the subject message.
  • FIG. 1 B is a schematic showing an exemplary embodiment of two signals interfering, according to some embodiments.
  • a first signal pulse 111 arrives at a receiver at the same time as an intruding signal pulse 112 (with the same phase, frequency, an amplitude), thereby forming a superposition 113 with twice the amplitude.
  • the interfering user devices have been adjusted by the base station to have the same as-received amplitude, clock frequency, phase, and timing (as is normal for 5G and 6G networks).
  • the receiver upon receiving the superposition 113 , can determine that the received amplitude is 2 units, thereby implying that two signals of 1 unit amplitude were transmitted at the same time, and therefore that the original first signal message element was transmitted with 1 amplitude unit. Thus the receiver can demodulate the first signal message element unambiguously despite the interference.
  • FIG. 1 C is a schematic showing an exemplary embodiment of interference states in a two-level amplitude-modulation scheme, according to some embodiments.
  • a subject message is transmitted with modulation according to a modulation scheme that has two modulation states, with amplitudes of 1 unit and 3 units, respectively.
  • another user device transmits an intruding message element, modulated according to the same scheme (and previously synchronized and power-adjusted by the same base station), a collision results.
  • the as-received superposition can have several different amplitudes.
  • a superposition with an amplitude of 2 units 122 is due to a collision of two message elements with 1 amplitude unit, as described above. Since the 2-unit state 122 involves two identical inputs, demodulation is unambiguous as indicated by a star. Likewise, a superposition with an amplitude of 6 units 126 must have been a 3+ 3 collision, and therefore the subject message element must have had an amplitude of 3 units.
  • a superposition with 4 amplitude units 124 is the result of a 1-unit signal colliding with a 3-unit signal, and is indicated as ambiguous.
  • the 4-unit signal 124 is ambiguous because the receiver cannot determine which user device (the subject or the intruder) transmitted which signal.
  • the subject message element could be either the 1-unit signal or the 3-unit signal.
  • the ambiguous state 124 is indicated by a “o” logo, whereas the unambiguous states 122 and 126 are indicated by a star.
  • the receiver may recover the intended subject message element, from a collided 4 -unit amplitude signal, by demodulating the message element twice, once for each of the possible contributing amplitude levels, and then testing the resulting message versions with an associated error-detection code. For example, the receiver may demodulate the message in two versions, one with the collided message element assigned to the 1-unit state 121 and the other version with the ambiguous message element assigned to the 3-unit state 123 . The receiver can then select the correct version by comparing the message to an embedded parity or error-detection code, or by determining whether one of the versions is nonsense or improperly formatted, or by comparing each version of the message to an expected message type, or otherwise.
  • the figure also shows a 5-unit sum-signal 125 labeled as “incompatible”, meaning that the 5-unit amplitude is incompatible with all the modulation states, such that no combination of the modulation states (that is, the 1-unit and 3-unit amplitude states) can produce the 5-unit signal.
  • a receiver receives a 5-unit signal 125 , the receiver can determine that the message is somehow corrupted and may request a retransmission. Alternatively, the receiver may attempt to recover the intended subject message element by constructing multiple versions of the message according to each of the modulation states and testing each version against an error-detection code associated with the subject message.
  • the receiver In most cases, it is not necessary for the receiver to test all of possible versions of the ambiguous or faulted message elements, because the correct version is likely to be found before all the possibilities have been explored.
  • the receiver generally tests versions of the message until finding the one version that agrees with the error-detection code, and then stops. On average, the number of version tests required to find the right one is about one-half the maximum number of possible versions.
  • the receiver can unambiguously demodulate the received signal in the 1-unit state 121 or the 3-unit state 123 because they are modulation states of the modulation scheme.
  • the receiver can also unambiguously demodulate the 2-unit superposition state 122 and the 6 -unit superposition state 126 because they uniquely represent the 1-unit and 3-unit states respectively.
  • the receiver can demodulate the 4-unit superposition state 124 as either the 1-unit or the 3-unit state, and can select among them by comparing each version of the message to a parity or other error-detection code, for example. If the receiver detects the 5-unit signal, then the receiver may determine that the message is irretrievably corrupted, or the receiver may try each of the modulation states and select the one that agrees with an error-detection code.
  • FIG. 1 D is a schematic showing an exemplary embodiment of interference states in a six-level amplitude-modulation scheme, according to some embodiments.
  • 16 as-received sum-signal types are shown according to the amplitude of the received signal (that is, 1- 16 amplitude units), type inferred from the amplitude (modulation state, ambiguous, unambiguous, and incompatible), and the superposition components where relevant.
  • the 5-unit state is now a modulation state 131 in this example.
  • the 2-unit state 130 is unambiguous, corresponding to two 1-unit transmissions at the same time.
  • the 9-unit and 13-unit states are incompatible with the modulation scheme (that is, unable to be constructed by superposition of any two of the modulation states).
  • the additional modulation states there are now six ambiguous superposition states 132 , 133 , 134 , 135 , 136 , 137 , each of which can be constructed from the modulation states in more than one way.
  • the receiver can attempt to demodulate those ambiguous signals by testing each of the component amplitude values as indicated in the figure. For example, upon receiving the 8-unit signal 133 , the receiver can prepare message versions with the collided message element assigned to each one of the component amplitude levels, namely 1, 3, 5, and 7 units, and select the correct assignment using an error-detection code.
  • a network may select the number of modulation states in the modulation scheme as a compromise between the information-carrying density of the message elements versus the number of component values that must be tested to recover a collided message element.
  • Arranging and testing the message versions can take substantial time and computing power. Before starting the search for the correct version, the receiver can calculate the number of versions likely needed to find the original message. If the predicted number of versions is too large, the receiver can request a retransmission instead.
  • the modulation states are selected so that no modulation state equals the superposition of two other modulation states.
  • the message elements configured as one of the modulation states are intrinsically unambiguous.
  • the other unambiguous message elements are superpositions with only one choice for the contributing modulation states, such as a 2-unit signal.
  • the ambiguous message elements may be demodulated by testing the message with each of the component amplitude values substituting for the collided message element and comparing to an error-detection code.
  • An incompatible state is likely faulted by noise or complex interference, in which case the receiver may attempt to recover the message by testing all of the modulation states in place of the faulted message element, or it may request a retransmission.
  • An advantage of transmitting using specific modulation states, selected so that no modulation state can be formed from the superposition of any two other modulation states, may be that message collisions with other like-modulated transmissions may be recovered.
  • Another advantage may be that the receiver may determine which message elements are collided, according to their modulation level, and thereby avoid wasting time varying the uncollided message elements.
  • Another advantage may be that the number of message versions needed to demodulate each collided message element, may be a small number because only certain combinations of the modulation states could add to the observed signal, thereby reducing the number of versions that the receiver may need to test.
  • Another advantage may be to identify “incompatible” states which cannot be constructed from any two of the modulation states.
  • Another advantage may be that the disclosed procedures are low-complexity involving elementary arithmetic and logic which may be compatible with devices that may have difficulty complying with prior-art procedures.
  • Another advantage may be that the disclosed procedures may be implemented as a software (or firmware) update, without requiring new hardware development, and therefore may be implemented at low cost, according to some embodiments.
  • the disclosed procedures may be implemented as a system or apparatus, a method, or instructions in non-transient computer-readable media for causing a computing environment, such as a user device, a base station, or other signally coupled component of a wireless network, to implement the procedure.
  • Particular embodiments may include one, some, or none of the above-mentioned advantages.
  • Other advantages will be apparent to one of ordinary skill in the art, given this teaching. This comment applies additionally to other embodiments and lists of advantages provided below. The advantages listed in this paragraph are true for each of the lists of advantages in examples below.
  • FIG. 2 is a flowchart showing an exemplary embodiment of a process for demodulating an amplitude-modulated message with collisions, according to some embodiments.
  • a receiver receives a message, each message element originally modulated according to either 1 or 3 amplitude units, however some of the message elements may be collided with another like-modulated intruder signal.
  • the receiver measures the amplitude of each message element, and at 203 selects the message elements that have an amplitude of 1 or 3 units, and at 204 demodulates them normally, for example by comparing to a calibration set of predetermined amplitude levels exhibited by a demodulation reference, and then assigning a numerical code (associated with each modulation state or each amplitude level in the calibration set) to each message element accordingly.
  • the receiver determines whether each element is 2 or 6 units in amplitude, and if so, divides the amplitude by 2 and demodulates normally at 206 . Of the remaining message elements, the receiver asks at 207 if the amplitude is 4 units, in which case the receiver can try both 1 and 3 amplitude units in that collided message element at 209 . The receiver can thereby determine, according to an error-detection code, which version of the message is correct.
  • the receiver can declare a faulted message and request a retransmission, or it can try altering the faulted message element or elements to each of the modulation states and thereby find the correct message. After all the message elements have been demodulated, the task is done at 210 .
  • the receiver can bypass the other steps and, at 211 , can try varying each of the remaining message elements to each of the modulation states. If there are more than one faulted message element, the receiver can vary them in a nested grid search covering all possible modulation states for each the faulted message elements in various combinations, and testing each variation against the error-detection code. If any of those combinations agrees with the error-detection code, the message is properly demodulated. If not, the receiver can abandon the message, request a retransmission, or other action depending on network rules.
  • the foregoing examples pertain to amplitude modulated messages using certain selected amplitude states as modulation states.
  • the following examples provide phase modulation states that can enable recovery of collided messages, according to some embodiments.
  • FIG. 3 A is a phase chart showing an exemplary embodiment of modulation states in a two-level phase-modulation scheme, according to some embodiments.
  • modulation states of a phase-modulation scheme are shown in a polar plot with amplitude radially and phase azimuthally.
  • a circle 301 represents a single amplitude, such as 1 unit of amplitude.
  • the modulation states are shown as dots 302 and 303 on that circle 301 .
  • the angular positions of the dots 302 , 303 indicate their phase as 0 and 90 degrees, respectively.
  • Two more locations, 304 and 305 are shown as “x” indicating that they are not used as modulation states.
  • the reason for excluding those states 304 , 305 is to avoid destructive interference. For example, if the subject message is modulated according to 302 and an intruder signal is modulated at the opposite state 304 , the resulting superposition would be zero amplitude, which may confuse the receiver.)
  • the depicted scheme may be termed “2PSK” having only two modulation states 302 , 303 separated by one phase step of 90 degrees. All of the modulation states, and the superposition signals from collisions, are restricted to one quadrant of the phase chart, to avoid destructive interference.
  • Two colliding modulation states can produce one of three possible superposition signals 306 , 307 , 308 depending on which modulation states are present in the subject and intruder signals.
  • One unambiguous state 306 (star) is the resultant of a first signal modulated with the modulation state 302 , plus an intruder modulated with the same modulation state 302 , thereby doubling the amplitude but leaving the phase unchanged.
  • the receiver upon detecting a message element with zero phase and an amplitude of 2 units, can deduce that both the subject message and the intruder signal are modulated as 302 , and thereby demodulate the message element unambiguously by dividing the amplitude by 2.
  • the receiver can receive a message element exhibiting the amplitude and phase of unambiguous state 307 , with an amplitude of 2 units and 90 degrees of phase, in which case the receiver can demodulate the message element as if it were the modulation state 303 .
  • the ambiguous state 308 due to the superposition of a 302 signal added to a 303 signal.
  • the amplitude of the 308 state is about 1.4 amplitude units, as shown by an arrow 309 , and the phase is 45 degrees, as shown by the angle 310 .
  • the state 308 is ambiguous because the receiver cannot determine, from the amplitude and phase, whether the subject message is the 302 or the 303 modulation state.
  • the receiver can demodulate the subject message twice, once with each of the two choices ( 302 and 303 ) for the ambiguous message element, and testing each version against the parity or CRC, and if one of the versions is in agreement, the task is done. If neither version is in agreement, the receiver may request a retransmission, among other options.
  • a parity check or an error-detection code such as a CRC code
  • An advantage of modulating messages according to the two-phase modulation scheme of FIG. 3 A may be that collided message elements may exhibit the unambiguous states 306 or 307 , which enable straightforward demodulation, or the ambiguous state 308 , which can be demodulated according to each of the possible contributing amplitude levels. In this way the message may be recovered despite intrusion interference by another transmitter using the same modulation scheme.
  • FIG. 3 B is a schematic showing an exemplary embodiment of interfering phase-modulated waves, according to some embodiments.
  • two waves 311 and 312 represent the signals from the subject message and the intruder, respectively. These waves may represent the first signal modulated as the modulation state 302 and an intruder wave modulated at the modulation state 303 , that is, at the same amplitude but differing in phase by 90 degrees.
  • the receiver receives a single superposition signal 313 equal to the combination of those two waves 311 , 312 .
  • the superposition has an amplitude of 1.414 units and a phase of 45 degrees as shown.
  • the receiver may deduce that two signals are interfering, in which one signal has zero degrees and the other one has 90 degrees.
  • the superposition signal is ambiguous because the receiver cannot determine which of those component waves is due to the subject signal.
  • the receiver can prepare two demodulated message versions, one with the collided message element assumed to be the zero-degree modulation state and the other with the collided message element assumed to be the 90-degree modulation state, while checking both versions against an error-detection code or parity.
  • FIG. 3 C is a phase chart showing an exemplary embodiment of modulation states in a three-level phase-modulation scheme, according to some embodiments.
  • three modulation states are indicated as dots 323 , on a circle 321 representing an amplitude of 1 unit, at 120 degree intervals.
  • the modulation scheme may be termed 3PSK, with three modulation states.
  • a second circle 322 represents 2 amplitude units.
  • the resulting superposition state 324 is unambiguous because both of the contributing modulation states 323 are identical, and there is no other combination of two modulation states that result in the same state 324 .
  • the receiver can demodulate the state 324 , with an amplitude of 2 units and a phase of 0, as if it were the modulation state 323 .
  • the three unambiguous states are shown as stars to indicate that the receiver can demodulate them by dividing the amplitude by 2 and treating them as the corresponding modulation state.
  • the subject message element and the intruder signal may have different modulation states.
  • the resulting superposition would have the same 1-unit amplitude, and a phase midway between the two components.
  • the signal 325 is the result of a collision between two modulation states separated by one phase step, as indicated by dotted arrows.
  • collided states 325 are ambiguous because the receiver generally does not know which of the components corresponds to the subject message element. Therefore, the receiver may demodulate the subject message two ways, inserting each of the two component modulation states into the two message versions, testing each version against a parity or error-detection test.
  • FIG. 3 D is a phase chart showing an exemplary embodiment of states in a five-level phase-modulation scheme, according to some embodiments.
  • a modulation scheme has five modulation states 335 on a unit amplitude circle 332 , separated by a phase step of 72 degrees.
  • the modulation scheme may be termed 5PSK. If a subject message element and an intruder signal both have the same modulation state, their signals combine to produce an unambiguous superposition signal at twice the amplitude (circle 334 ) and the same phase.
  • the receiver can demodulate this signal by dividing the amplitude by 2, or by substituting the same-phase modulation state for the collided message element.
  • the signal 336 is formed by a collision of two simultaneous transmissions of the modulation state 339 , as indicated by dotted arrows.
  • the receiver upon detecting a 2-unit amplitude signal, can demodulate it as if it were the modulation state 339 at the same phase.
  • the subject message element and the intruder signal combine to generate a superposition signal at an amplitude of about 1.6 amplitude units (circle 333 ) and a phase which is a weighted average of the contributing modulation states, which in this case is a phase midway between the two components.
  • state 337 is formed from the two modulation states closest in phase.
  • the receiver can detect the faulted state, determine according to the amplitude that it is ambiguous and that the two contributing modulation states are different modulation states.
  • the receiver can then demodulate the message twice, according to the two possible contributing modulation states, and test both versions.
  • the resulting superposition signal amplitude is about 0.6 amplitude units (circle 331 ), and a phase midway between the two components.
  • the ambiguous state 338 is formed from a collision of two non-adjacent modulation states as shown. However, in this case the phase of the resulting signal is the same as the phase of one of the modulation states (zero degrees in the example).
  • the receiver can determine, from the amplitude, that the signal 338 represents an ambiguous state, and can determine which two modulation states contributed to the signal according to the observed phase, plus-or-minus 72 degrees, thereby indicating the two interfering modulation states.
  • the receiver can then demodulate the subject message element two ways according to the contributing modulation states, and can test both versions against the error-detection code.
  • An advantage of the two-state modulation scheme of FIG. 3 A may be that most of the accessible states are either modulation states or unambiguous states.
  • An advantage of the three-state modulation scheme of FIG. 3 C may be that the superposition signals are either 1 or 2 amplitude units, simplifying identification.
  • An advantage of the five-state modulation scheme of FIG. 3 D may be that it encodes more bits per message element (specifically, 2.3 bits per element for the 5-state scheme, 1.6 bits per element for the 3-state scheme, and 1 bit exactly for the 2-state scheme). Many other phase-modulation schemes are possible, with modulation states selected for demodulating collided message elements into a single unambiguous modulation state or a small number of possible modulation states.
  • phase-modulation schemes with odd numbers of modulation states can be distributed around the entire phase circle, but phase-only modulation schemes with an even number of modulation states generally perform best if restricted to one quadrant of phase, such as the two-state scheme of FIG. 3 A .
  • phase-only modulation schemes with an even number of modulation states generally perform best if restricted to one quadrant of phase, such as the two-state scheme of FIG. 3 A .
  • the superposition of a positive modulation state with a negative modulation state causes complete or nearly complete cancellation, in which case the receiver may have insufficient information from a null message element to determine which modulation state was intended, if any.
  • modulation schemes with odd numbers of modulation states larger than five or seven modulation states for example, can result in very small sum-signal amplitudes when the colliding modulation states are nearly 180 degrees apart in phase.
  • FIG. 4 is a flowchart showing an exemplary embodiment of a process for demodulating a phase-modulated message with collisions, according to some embodiments.
  • a receiver receives a message modulated in 3PSK using only the modulation states with phases of 0, 120, and 240 degrees, as in FIG. 3 C .
  • the receiver determines whether the particular message element is modulated according to one of the modulation state phases at 402 , and if so, it demodulates the message element normally at 403 (for example, by comparing the phase to a predetermined calibration set of legal phase levels of the modulation scheme) and is done at 409 .
  • the receiver determines whether the received phase has an intermediate value of 60, 180, or 300 degrees, and if so, the receiver checks the amplitude at 405 . If the amplitude is the same as the amplitude of the modulation states (1 amplitude unit in this example) and the phase is intermediate between two modulation states, then the message element is one of the ambiguous but recoverable states such as 325 . For example, if the received amplitude is 60 degrees, the subject message element may have been initially modulated at zero degrees or 120 degrees.
  • the receiver can then try to determine the correct assignment for the collided message element by assigning the collided message element to each of the adjacent modulation states, and testing each version of the message with the error-detection code at 406 . If either version agrees with the error-detection code at 407 , the task is done. If not, or if the amplitude is not 1 unit at 405 , then the receiver can request a retransmission.
  • the receiver can determine that the message element is irretrievably faulted and can request a retransmission at 408 .
  • the receiver can try substituting each of the modulation states for the faulted message element in turn, or other message-recovery strategy according to network rules.
  • the following examples pertain to modulation schemes that employ both amplitude and phase modulation, but with modulation states selected to enable demodulation of collided messages.
  • FIG. 5 is a phase chart showing an exemplary embodiment of modulation states of a modulation scheme with both amplitude and phase modulation, and with collisions, according to some embodiments.
  • five amplitude levels are shown as circles: 501 corresponding to 1 unit, 502 with 2 units, 503 with 3 units, 504 with 4 units, and 505 with 6 units of amplitude.
  • the four modulation states are shown as dots such as modulation states 506 and 507 at zero phase with 1 and 3 amplitude units, respectively, and modulation states 516 and 517 at 90 degrees phase.
  • the other states are generated by a collision between a subject message element and an intruder signal modulated according to the same modulation scheme.
  • the unambiguous sum-signal 508 is the result of a collision between a subject message element and an intruder signal both modulated according to the modulation state 506 , and hence the message element may be demodulated unambiguously as the modulation state 506 .
  • the superposition signal 510 is the superposition of two signals both modulated at the modulation state 507 , and therefore can be unambiguously demodulated as state 507 .
  • the 90-degree states 518 and 520 at 2 and 6 units of amplitude are unambiguous because they can be demodulated as the modulation states 516 and 517 respectively.
  • the ambiguous state 509 at zero degrees and 4 units of amplitude may be generated by a collision between a subject message element modulated as modulation state 506 and an intruder signal modulated as modulation state 507 , or vice-versa. Hence, the sum-signal 509 is marked as ambiguous.
  • the receiver can try each of the two component modulation states, 506 and 507 , to determine which one is the originally modulated subject message element, by comparing with an error-detection code for example. Likewise, the superposition signal 519 indicates that the subject message element is modulated in either the modulation state 516 or 517 .
  • the ambiguous state 521 is the superposition of the two modulation states 506 and 516 , both at 1 unit of amplitude but differing in phase by 90 degrees, so the receiver can try both of those modulation states in demodulating the message.
  • the signal 522 may represent either modulation state 507 or 517 .
  • the signal 524 is the superposition of modulation states 517 and 506
  • the signal 523 is the superposition of modulation states 507 and 516 .
  • the receiver Since the receiver has no way to determine which of the component modulation states is due to the subject message element, in each of these cases, the demodulation is ambiguous. In each case, the receiver can use the received amplitude and phase to narrow down the number of possible component states to just two modulation states, and can then test those two variations against the error-detection code.
  • the receiver can save substantial time by using the modulation scheme logic to narrow down the number of message variations required for message recovery, instead of testing all of the modulation states in the modulation scheme, which may be prohibitively expensive. For example, if a message includes multiple collided message elements, the receiver can substitute the possible component modulation states according to the observed amplitude and phase, and can avoid testing the other combinations that are incompatible with the observed amplitude and phase. In this case, the number of possible modulation states for each collided ambiguous state is just two possibilities, rather than the four modulation states. Thus the receiver can save time by testing only those two possible modulation states, since there is no need to test the other modulation states that do not contribute to the observed signal.
  • the message may have six collided message elements with ambiguous signals, in which case the receiver could find the correct modulation states for all of the collided message elements by testing, at most, only 36 versions. In contrast, if the receiver tested all combinations of the modulation states in each of the six faulted message elements, the number of tests would be 1296 possible versions.
  • the modulation scheme including only modulation states that do not combine to each other in superposition, can greatly reduce the number of variations needed to resolve ambiguities and recover a collided message, according to some embodiments.
  • FIG. 6 is a flowchart showing an exemplary embodiment of a process for demodulating a message with amplitude and phase modulation, according to some embodiments.
  • a receiver receives a message modulated according to a modulation scheme with, in this case, four modulation states at 1 or 3 amplitude units and zero or 90 degrees phase.
  • the receiver recovers the intended subject message, despite collisions with an intruder signal modulated according to the same scheme.
  • the receiver checks that the received phase is either zero or 90 degrees. If so, at 603 it checks that the amplitude is 1 or 3 units. If so, then at 604 the receiver determines that the message element is not collided, and demodulates as usual, by comparing the measured amplitude and phase values to a calibration set of predetermined amplitude and phase levels of the modulation scheme, selecting the closest match, and is done at 617 .
  • the receiver can check at 605 if the amplitude is 2 or 6 units, in which case the receiver can determine that the signal is an unambiguous combination of two identical modulation states, and can therefore divide the amplitude by 2 and demodulate normally at 606 .
  • the receiver can check if the amplitude is 4 units at 607 , and if so, can try both 1 unit and 3 units of amplitude with the same phase, testing each variation with the error-detection code at 609 . This state corresponds to 509 or 519 of the previous figure. However, if the amplitude is not one of 1, 2, 3, 4, or 6 the receiver can determine that the message element is faulted and can request a retransmission at 608 .
  • the receiver can check if the phase is 45 degrees, and if so, can check at 611 if the received amplitude is 1.4 or 4.2 units, and if so, the receiver can deduce the amplitude of the subject message element by dividing the received amplitude by 1.414, thereby obtaining either 1 or 3 amplitude units. These correspond to the ambiguous states 521 and 522 of the previous figure. The receiver can then try two versions of the message element, with phases of zero or 90 degrees, and can test each with the error-detection code at 613 . However, if at 611 the phase is 45 and the amplitude is not 1.4 or 4.2, then the receiver can determine that the message element is not recoverable and request a retransmission at 612 .
  • the receiver can check if the phase is 18 or 72 degrees. These correspond to the states 523 and 524 of the previous figure. If the phase is 18 degrees, then the receiver can try either 507 or 516 (that is, 3 units amplitude at zero degrees, or 1 unit at 90 degrees), whereas if the phase is 72 degrees, the receiver can try 506 or 517 (3 units at 90 degrees, or 1 unit at zero degrees), testing each version against the error-detection code at 616 . Optionally, the receiver can also check the amplitude of these signals, which should be about 3.2 units, and reject the message otherwise.
  • the receiver can request a retransmission at 615 . It may be noted that, although the logic appears complicated when described in words, each step in this procedure is elementary, so even a reduced-capability processor should be able to perform the logical steps.
  • the foregoing examples pertain to classical amplitude and phase modulation of the transmitted signal.
  • the following examples include pulse-amplitude modulation PAM and its modifications to permit demodulation of collided message elements.
  • FIG. 7 A is a constellation chart showing an exemplary embodiment of the modulation states of a PAM modulation scheme with collisions, according to some embodiments.
  • a constellation chart displays the modulation states of a message element according to its I-branch and Q-branch signals on orthogonal axes.
  • the Q-branch is 90-degrees offset relative to the I-branch. They are both modulated in positive and negative amplitudes (negative amplitudes corresponding to a 180-degree phase change).
  • the branch amplitude axes are marked at 1-unit intervals out to +/ ⁇ 6 units.
  • the displayed chart is for 16 QAM with PAM modulation, showing 16 modulation states as dots 701 .
  • Ambiguous sum signals are shown as small circles such as 710 .
  • the ambiguous states can be generated by many different combinations of the modulation states.
  • Diamonds such as 705 indicate “null” states with zero transmission in one or both of the branches.
  • Diamonds along the I-branch axis correspond to cancellation of the Q-branch amplitudes.
  • FIG. 7 B is a constellation chart showing an exemplary embodiment of the modulation states of a modified PAM modulation scheme with collisional interference, according to some embodiments.
  • the modulation states are restricted to the positive quadrant (0 to 90 degrees), including four modulation states shown as dots 751 .
  • the modulation states have 1 or 3 amplitude units in both I and Q branches.
  • Four unambiguous signals such as 752 are shown as stars.
  • the state 752 is unambiguous because there is only one way to construct it from the modulation states, and the contributions from the subject and intruder are identical; hence the receiver can demodulate the unambiguous signal by dividing the branch amplitudes by 2.
  • the lack of any negative amplitude states in the restricted modulation scheme enables these unambiguous states 752 because they allow only one way to construct the sum-signal 752 .
  • the remaining five ambiguous states are ambiguous because they can be generated in at least two different ways.
  • the number of versions that the receiver needs to test, on average, to find the correct message demodulation has been greatly reduced, relative to that of FIG. 7 A , since the modulation states are restricted to one quadrant with positive amplitudes. With the reduced number of possibilities, the receiver may demodulate the message even if several message elements are collided, and may do so faster than by waiting for a retransmission, according to some embodiments.
  • FIG. 8 is a flowchart showing an exemplary embodiment of a procedure for demodulating a message with PAM modulation and interference, according to some embodiments.
  • a receiver receives a message element which was modulated by the transmitting entity in PAM according to a restricted modulation scheme with positive I-branch and Q-branch modulation states of +1 and +3 amplitude units only.
  • the receiver determines whether the message element is one of the modulation states, with branch amplitudes of +1 or +3 units. If so, the receiver demodulates the message element normally at 803 and is done at 811 .
  • the receiver checks whether the received I-branch amplitude is +2 or +6 units, and the Q-branch amplitude is +2 or +6, in which case the state is an unambiguous one, the receiver can divide each branch amplitude by 2, and can then demodulate normally at 805 .
  • the receiver determines whether the I or Q branch amplitude equals 4 units, implying an ambiguous combination of +1 and +3 units. In this case, the receiver can try to find the correct combination by varying the I and Q amplitudes as +1 and +3 units at 807 , consistent with the observed I and Q values, while testing each message version with the error-detection code.
  • the receiver can try both possibilities, testing each against the error-detection code until the correct message is found.
  • Each of the other ambiguous states can be generated in two different ways, and therefore the receiver can find the correct message element modulation by testing those two versions.
  • the receiver can request a retransmission at 808 .
  • the disclosed systems and methods can provide demodulation for collided messages in which the subject message and the intruder are both modulated according to a restricted set of modulation states which are selected so that no modulation state equals a superposition of two other modulation states.
  • the receiver can demodulate the message elements that exhibit one of the modulation states in the normal way, by comparing the modulation levels of the received signal to certain predetermined modulation levels in a calibration set, which may be provided by a previous demodulation reference, for example.
  • certain superposition states differ from the modulation states due to a collision, but are nonetheless unambiguous since they can be formed in only one way, from identical subject and intruder signals.
  • the receiver can demodulate those unambiguous signals by dividing by 2 and demodulating normally.
  • there are also ambiguous states which can be generated by more than one combination of modulation states in which case the receiver can recover the original subject message by assigning each collided message element to each of the modulation states that could have contributed to the observed sum-signal state, while comparing the resulting message to an error-detection code or parity or the like.
  • the observed modulation values of the message element are incompatible with all of the modulation states, and all combinations of the modulation states, of the modulation scheme. In that case, the message element is faulted (other than a simple collision).
  • the receiver can request a retransmission of the message.
  • the receiver can demodulate the original message and avoid the delays and costs involved in waiting for a retransmitted version of the message, according to some embodiments.
  • the wireless embodiments of this disclosure may be aptly suited for cloud backup protection, according to some embodiments.
  • the cloud backup can be provided cyber-security, such as blockchain, to lock or protect data, thereby preventing malevolent actors from making changes.
  • cyber-security may thereby avoid changes that, in some applications, could result in hazards including lethal hazards, such as in applications related to traffic safety, electric grid management, law enforcement, or national security.
  • non-transitory computer-readable media may include instructions that, when executed by a computing environment, cause a method to be performed, the method according to the principles disclosed herein.
  • the instructions (such as software or firmware) may be upgradable or updatable, to provide additional capabilities and/or to fix errors and/or to remove security vulnerabilities, among many other reasons for updating software.
  • the updates may be provided monthly, quarterly, annually, every 2 or 3 or 4 years, or upon other interval, or at the convenience of the owner, for example.
  • the updates (especially updates providing added capabilities) may be provided on a fee basis. The intent of the updates may be to cause the updated software to perform better than previously, and to thereby provide additional user satisfaction.
  • the systems and methods may be fully implemented in any number of computing devices.
  • instructions are laid out on computer readable media, generally non-transitory, and these instructions are sufficient to allow a processor in the computing device to implement the method of the invention.
  • the computer readable medium may be a hard drive or solid state storage having instructions that, when run, or sooner, are loaded into random access memory.
  • Inputs to the application e.g., from the plurality of users or from any one user, may be by any number of appropriate computer input devices.
  • users may employ vehicular controls, as well as a keyboard, mouse, touchscreen, joystick, trackpad, other pointing device, or any other such computer input device to input data relevant to the calculations.
  • Data may also be input by way of one or more sensors on the robot, an inserted memory chip, hard drive, flash drives, flash memory, optical media, magnetic media, or any other type of file—storing medium.
  • the outputs may be delivered to a user by way of signals transmitted to robot steering and throttle controls, a video graphics card or integrated graphics chipset coupled to a display that maybe seen by a user.
  • any number of other tangible outputs will also be understood to be contemplated by the invention.
  • outputs may be stored on a memory chip, hard drive, flash drives, flash memory, optical media, magnetic media, or any other type of output.
  • the invention may be implemented on any number of different types of computing devices, e.g., embedded systems and processors, personal computers, laptop computers, notebook computers, net book computers, handheld computers, personal digital assistants, mobile phones, smart phones, tablet computers, and also on devices specifically designed for these purpose.
  • a user of a smart phone or Wi-Fi-connected device downloads a copy of the application to their device from a server using a wireless Internet connection.
  • An appropriate authentication procedure and secure transaction process may provide for payment to be made to the seller.
  • the application may download over the mobile connection, or over the Wi-Fi or other wireless network connection.
  • the application may then be run by the user.
  • Such a networked system may provide a suitable computing environment for an implementation in which a plurality of users provide separate inputs to the system and method.
  • the terms “for example”, “e.g.”, “for instance”, “such as”, and “like” and the terms “comprising”, “having”, “including”, and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that the listing is not to be considered as excluding other additional components or items.
  • Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Modulation schemes for 5G and 6G are disclosed that can be demodulated accurately even when two transmissions collide. The modulation states are configured to reveal the interference and, in most cases, provide an unambiguous determination of the original content. In other cases, when inevitable ambiguities remain, the number of possible states is greatly reduced, enabling rapid selection of the correct state using error-detection codes. The states of the modulation scheme may include phase modulation or amplitude modulation or both, and may be based on classical amplitude-phase modulation or pulse-amplitude modulation. Each state is structured so that any collision, between any two of the states, produces a readily identified amplitude-phase combination, from which the original message and the intruding message can be deduced. Enhanced network throughput and reliability, with fewer retransmission and dropped messages, may result. Many other aspects are disclosed.

Description

    PRIORITY CLAIMS AND RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 17/716,244, entitled “Recovery and Demodulation of Collided 5G/6G Message Elements”, filed Apr. 8, 2022, which claims the benefit of U.S. Provisional Patent Application Ser. No. 63/210,216, entitled “Low-Complexity Access and Machine-Type Communication in 5G”, filed Jun. 14, 2021, and U.S. Provisional Patent Application Ser. No. 63/214,489, entitled “Low-Complexity Access and Machine-Type Communication in 5G”, filed Jun. 24, 2021, and U.S. Provisional Patent Application Ser. No. 63/220,669, entitled “Low-Complexity Access and Machine-Type Communication in 5G”, filed Jul. 12, 2021, and U.S. Provisional Patent Application Ser. No. 63/234,911, entitled “Short Demodulation Reference for Improved Reception in 5G”, filed Aug. 19, 2021, and U.S. Provisional Patent Application Ser. No. 63/272,352, entitled “Sidelink V2V, V2X, and Low-Complexity IoT Communications in 5G and 6G”, filed Oct. 27, 2021, and U.S. Provisional Patent Application Ser. No. 63/313,380, entitled “Short-Form 5G/6G Pulse-Amplitude Demodulation References”, filed Feb. 24, 2022, and U.S. Provisional Patent Application Ser. No. 63/321,879, entitled “Low-Complexity Demodulation of 5G and 6G Messages”, filed Mar. 21, 2022, and U.S. Provisional Patent Application Ser. No. 63/327,005, entitled “Recovery and Demodulation of Collided 5G/6G Message Elements”, filed Apr. 4, 2022, all of which are hereby incorporated by reference in their entireties.
  • FIELD OF THE INVENTION
  • The disclosure pertains to wireless message demodulation, and particularly to methods for demodulating collided messages.
  • BACKGROUND OF THE INVENTION
  • When two wireless messages are transmitted on the same frequency at the same time, the signals “collide”, or interfere with each other, generally producing a complex superposition signal which is incomprehensible to the receiver. What is needed is means for a receiver to recover the original message from the superposition waveform.
  • This Background is provided to introduce a brief context for the Summary and Detailed Description that follow. This Background is not intended to be an aid in determining the scope of the claimed subject matter nor be viewed as limiting the claimed subject matter to implementations that solve any or all of the disadvantages or problems presented above.
  • SUMMARY OF THE INVENTION
  • In a first aspect, there is a method for transmitting a wireless message, the method comprising: receiving or determining a modulation scheme comprising a plurality of modulation states, wherein: the modulation scheme includes amplitude modulation with integer Namp predetermined amplitude levels; the modulation scheme includes phase modulation with integer Nphase predetermined phase levels; each modulation state comprises, at least, one of the predetermined amplitude levels and one of the predetermined phase levels; and each modulation state is different from every superposition of any two of the modulation states; modulating each message element, of a message comprising message elements, according to the modulation scheme; adjusting a clock or timing to synchronize with a recipient or causing the clock or timing of the recipient to synchronize with a transmitter; adjusting a transmission power level to provide a particular received signal level at the recipient; and transmitting the message to the recipient.
  • In another aspect, there is a method for demodulating a wireless message, the method comprising: receiving or determining a modulation scheme comprising Nstate modulation states, each modulation state configured to be unequal to every superposition of any two of the modulation states; receiving or determining one or more predetermined amplitude levels and one or more predetermined phase levels; receiving the message comprising message elements; for each message element, determining at least one amplitude value and at least one phase value of the message element; and determining, according to the at least one amplitude value and the at least one phase value, whether the message element comprises: one of the modulation states of the modulation scheme; a sum of two of the modulation states of the modulation scheme; or an incompatible state comprising none of the modulation states and no sum of any two of the modulation states of the modulation scheme.
  • In another aspect, there is non-transitory computer-readable media in a wireless receiver, the media containing instructions that when executed in a computing environment cause a method to be performed, the method comprising: receiving a demodulation reference comprising reference elements, each reference element comprising a resource element modulated according to a modulation scheme, the modulation scheme comprising two or more modulation states and one or more predetermined amplitude levels and one or more predetermined phase levels, each modulation state comprising one of the predetermined amplitude levels and one of the predetermined phase levels, wherein each modulation state differs from every sum of any two of the modulation states; determining, based on the demodulation reference, the predetermined amplitude level or levels and the predetermined phase level or levels; receiving a message comprising message elements, each message element comprising a modulated resource element; and for each message element, determining whether the message element is modulated according to: one of the modulation states; or 2 times one of the modulation states; or a sum of two different modulation states; or none of the above.
  • This Summary is provided to introduce a selection of concepts in a simplified form. The concepts are further described in the Detailed Description section. Elements or steps other than those described in this Summary are possible, and no element or step is necessarily required. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended for use as an aid in determining the scope of the claimed subject matter. The claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
  • These and other embodiments are described in further detail with reference to the figures and accompanying detailed description as provided below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a schematic showing an exemplary embodiment of interference states in an on-off modulation scheme, according to some embodiments.
  • FIG. 1B is a schematic showing an exemplary embodiment of two signals interfering, according to some embodiments.
  • FIG. 1C is a schematic showing an exemplary embodiment of interference states in a two-level amplitude-modulation scheme, according to some embodiments.
  • FIG. 1D is a schematic showing an exemplary embodiment of interference states in a six-level amplitude-modulation scheme, according to some embodiments.
  • FIG. 2 is a flowchart showing an exemplary embodiment of a process for demodulating an amplitude-modulated message with interference, according to some embodiments.
  • FIG. 3A is a phase chart showing an exemplary embodiment of states in a two-level phase-modulation scheme, according to some embodiments.
  • FIG. 3B is a schematic showing an exemplary embodiment of interfering phase-modulated waves, according to some embodiments.
  • FIG. 3C is a phase chart showing an exemplary embodiment of states in a three-level phase-modulation scheme, according to some embodiments.
  • FIG. 3D is a phase chart showing an exemplary embodiment of states in a five-level phase-modulation scheme, according to some embodiments.
  • FIG. 4 is a flowchart showing an exemplary embodiment of a process for demodulating a phase-modulated message with interference, according to some embodiments.
  • FIG. 5 is a phase chart showing an exemplary embodiment of states of a modulation scheme with both amplitude and phase modulation with interference, according to some embodiments.
  • FIG. 6 is a flowchart showing an exemplary embodiment of a process for demodulating a message with amplitude and phase modulation, according to some embodiments.
  • FIG. 7A is a constellation chart showing an exemplary embodiment of states of a PAM modulation scheme with interference, according to some embodiments.
  • FIG. 7B is a constellation chart showing an exemplary embodiment of states of a modified PAM modulation scheme with interference, according to some embodiments.
  • FIG. 8 is a flowchart showing an exemplary embodiment of a procedure for demodulating a message with PAM modulation and interference, according to some embodiments.
  • Like reference numerals refer to like elements throughout.
  • DETAILED DESCRIPTION
  • Systems and methods disclosed herein (the “systems” and “methods”, also occasionally termed “embodiments” or “arrangements” or “versions”, generally according to present principles) can provide urgently needed wireless communication protocols for recovering and demodulating messages despite collisions with other messages transmitted at the same time. The modulation states of a modulation scheme are configured so that none of the modulation states equals the superposition of two other modulation states. A transmitter can modulate a message according to those modulation states and thereby enable a receiver to demodulate the message elements even when collided with an intruder message that is modulated according to the same modulation scheme. For each message element, the correct demodulation may be unambiguous in some cases or, in other cases, may indicate a small number of possible modulation states which can then be tested according to an error-detection code. Recovery of collided messages may save time and energy by avoiding retransmissions. Embodiments disclosed below include versions with amplitude modulation, phase modulation, classical amplitude-phase modulation, and pulse-amplitude modulation schemes.
  • Terms herein generally follow 3GPP (third generation partnership project) standards, but with clarification where needed to resolve ambiguities. As used herein, “5G” represents fifth-generation, and “6G” sixth-generation, wireless technology in which a network (or cell or LAN Local Area Network or RAN Radio Access Network or the like) may include a base station (or gNB or generation-node-B or eNB or evolution-node-B or AP Access Point) in signal communication with a plurality of user devices (or UE or User Equipment or user nodes or terminals or wireless transmit-receive units) and operationally connected to a core network (CN) which handles non-radio tasks, such as administration, and is usually connected to a larger network such as the Internet. The time-frequency space is generally configured as a “resource grid” including a number of “resource elements”, each resource element being a specific unit of time termed a “symbol period” or “symbol-time”, and a specific frequency and bandwidth termed a “subcarrier” (or “subchannel” in some references). Symbol periods may be termed “OFDM symbols” (Orthogonal Frequency-Division Multiplexing) in references. The time domain may be divided into ten-millisecond frames, one-millisecond subframes, and some number of slots, each slot including 14 symbol periods. The number of slots per subframe ranges from 1 to 8 depending on the “numerology” selected. The frequency axis is divided into “resource blocks” (also termed “resource element groups” or “REG” or “channels” in references) including 12 subcarriers, each subcarrier at a slightly different frequency. The “numerology” of a resource grid corresponds to the subcarrier spacing in the frequency domain. Subcarrier spacings of 15, 30, 60, 120, and 240 kHz are defined in various numerologies. Each subcarrier can be independently modulated to convey message information. Thus a resource element, spanning a single symbol period in time and a single subcarrier in frequency, is the smallest unit of a message. “Classical” amplitude-phase modulation refers to message elements modulated in both amplitude and phase, whereas “PAM” (pulse-amplitude modulation) refers to separately amplitude-modulating two signals and then adding them with a 90-degree phase shift. The two signals may be called the “I” and “Q” branch signals (for In-phase and Quadrature-phase) or “real and imaginary” among others. Standard modulation schemes in 5G and 6G include BPSK (binary phase-shift keying), QPSK (quad phase-shift keying), 16 QAM (quadrature amplitude modulation with 16 modulation states), 64 QAM, 256 QAM and higher orders. Most of the examples below relate to QPSK or 16 QAM, with straightforward extension to the other levels of modulation. For example, 16 QAM modulated according to PAM exhibits two phase levels at zero and 90 degrees (or in practice, for carrier suppression, ±45 degrees) and four amplitude levels including two positive and two negative, thus forming 16 distinct modulation states. For comparison, classical amplitude-phase modulation in 16 QAM includes four positive amplitude levels and four phases of the raw signal, which are multiplexed to produce the 16 states of the modulation scheme. In addition, the extremely legacy “on-off” modulation refers to transmitting message bits with amplitude modulation in which one state has zero transmission. Communication in 5G and 6G generally takes place on abstract message “channels” (not to be confused with frequency channels) representing different types of messages, embodied as a PDCCH and PUCCH (physical downlink and uplink control channels) for transmitting control information, PDSCH and PUSCH (physical downlink and uplink shared channels) for transmitting data and other non-control information, PBCH (physical broadcast channel) for transmitting information to multiple user devices, among other channels that may be in use. In addition, one or more random access channels may include multiple random access channels in a single cell. “CRC” (cyclic redundancy code) is an error-detection code. “RNTI” (radio network temporary identity) is a network-assigned user code. “SNR” (signal-to-noise ratio) and “SINK” (signal-to-interference-and-noise ratio) are used interchangeably unless specifically indicated. “RRC” (radio resource control) is a control-type message from a base station to a user device. “Digitization” refers to repeatedly measuring a waveform using, for example, a fast ADC (analog-to-digital converter) or the like.
  • In addition to the 3GPP terms, the following terms are defined herein. Although in references a modulated resource element of a message may be referred to as a “symbol”, this may be confused with the same term for a time interval (“symbol-time”), among other things. Therefore, each modulated resource element of a message is referred to as a “modulated message resource element”, or more simply as a “message element”, in examples below. A “demodulation reference” is a set of Nref modulated “reference resource elements” that exhibit levels of a modulation scheme (as opposed to conveying data). Thus integer Nref is the number of reference resource elements in the demodulation reference. A “calibration set” is one or more amplitude values (and optionally phase values), which have been determined according to a demodulation reference, representing the predetermined modulation levels of a modulation scheme. Generally the modulation scheme includes integer Nlevel predetermined amplitude or phase levels. Amplitudes may be specified in terms of an arbitrary “amplitude unit”, such as 1 or 3 units of amplitude. A “superposition” or “sum-signal” of two modulation states is a signal produced by receiving the two modulation states simultaneously, so that the two modulation states overlap in time. A first modulation state is “consistent” or “compatible” with a superposition of two other modulation states if the amplitude and phase of the first modulation state are equal to the amplitude and phase of the superposition. Likewise, a first modulation state is “inconsistent” or “incompatible” with a superposition of two other modulation states if the first modulation state differs, in amplitude or phase, from the superposition of the two other modulation states.
  • “Low-complexity” refers to devices and procedures necessary for wireless communication, exclusive of devices and procedures that provide high-performance communication. 5G/6G specifications include many procedures and requirements that greatly exceed those necessary for wireless communication, in order to provide high-performance communications at low latency and high reliability for users that demand it. Compared to scheduled and managed 5G/6G messaging, low-complexity procedures generally require less computation and less signal processing. For example, low-complexity procedures may be tailored to minimize the number of separate operations required of a device per unit of time. 5G and 6G specifications include a very wide range of options and contingencies and versions and formats and types and modes for many operations, to achieve maximum flexibility. A low-complexity specification may include defaults for each operation, and those defaults may be the simplest choices, or at least simpler than standard 5G and 6G procedures. “Simpler” procedures generally require fewer computation steps and/or smaller memory spaces than corresponding procedures in standard 5G/6G. Computation steps may be measured in floating-point calculations, for example.
  • “Reduced-capability” refers to wireless devices that cannot comply with 5G or 6G protocols, absent the systems and methods disclosed herein. For example, regular 5G and 6G user devices are required to receive a 5 MHz bandwidth in order to receive system information messages. Regular user devices are required to perform high-speed signal processing such as digitizing the received waveform, applying digital filtering or Fourier transforming an incoming waveform, phase-dependent integrating at several GHz frequency, and separating closely-spaced subcarriers. A reduced-capability device, on the other hand, may not need the high performance gained by such procedures, and may be incapable of performing them. A reduced-capability device may be able to receive a narrow-band wireless signal, demodulate the message, and interpret the content without further processing.
  • Turning now to the figures, in a first example, states of an amplitude modulation scheme are disclosed, enabling recovery of an original “subject” message despite a second “intruding” message, according to some embodiments.
  • FIG. 1A is a schematic showing an exemplary embodiment of interference states in an on-off modulation scheme, according to some embodiments. As depicted in this non-limiting example, a highly schematic example involves just a portion of a modulation scheme, to illustrate message collision mitigation in a particular case. The received amplitude is indicated in the first column (1 or 2 in this case, arbitrary units), and the type of state (dot for a modulation state, circle for ambiguous state, star for unambiguous state, and x for incompatible state) is indicated symbolically in the second column and further explained in the third column, for each amplitude value. A first state is a modulation “on” state 101 with amplitude 1 unit and symbolized as a dot 102 to indicate that it is a modulation state (“MOD STATE”) of the modulation scheme, as indicated 103. A second state 104, with amplitude 2 units as indicated, is not one of the modulation states, but instead is the superposition signal when two of the modulation states are transmitted at the same time. For example, a first user device may transmit a first (subject) message to a base station, and a second user device may transmit a second (intruding) message at the same time. The two user devices have previously adjusted their transmitted power levels and clock frequencies as directed by the base station, so the subject message and the intruding message are synchronous and arrive at the base station with the same received amplitude of one unit. The two signals therefore interfere constructively, producing a resultant superposition with twice the amplitude of the first signal, as suggested by the formula 104. For example, if the two signals each have an amplitude of 1 unit, the received sum-signal has an amplitude of 2 units. In the disclosed embodiment, the receiver can recognize the collision according to the received amplitude being a sum-signal value of 2 units. Because this amplitude can only be produced by two simultaneous transmissions of 1 unit, the receiver can recover the original value of the subject signal by dividing the received signal by 2. The receiver can determine, from the received signal amplitude of 2 amplitude units, that both signals had the same amplitude of 1 unit, and therefore the subject signal must have had an amplitude of 1 unit. Hence the receiver can unambiguously demodulate the message element of the subject signal as having an amplitude of 1 unit, and the unambiguous state is indicated by a star 105. In some embodiments, the receiver may ignore the intruding message. In other embodiments, the receiver may attempt to demodulate the intruding message as well as the subject message.
  • FIG. 1B is a schematic showing an exemplary embodiment of two signals interfering, according to some embodiments. As depicted in this non-limiting example, a first signal pulse 111 arrives at a receiver at the same time as an intruding signal pulse 112 (with the same phase, frequency, an amplitude), thereby forming a superposition 113 with twice the amplitude. The interfering user devices have been adjusted by the base station to have the same as-received amplitude, clock frequency, phase, and timing (as is normal for 5G and 6G networks). The receiver, upon receiving the superposition 113, can determine that the received amplitude is 2 units, thereby implying that two signals of 1 unit amplitude were transmitted at the same time, and therefore that the original first signal message element was transmitted with 1 amplitude unit. Thus the receiver can demodulate the first signal message element unambiguously despite the interference.
  • FIG. 1C is a schematic showing an exemplary embodiment of interference states in a two-level amplitude-modulation scheme, according to some embodiments. As depicted in this non-limiting example, a subject message is transmitted with modulation according to a modulation scheme that has two modulation states, with amplitudes of 1 unit and 3 units, respectively. If another user device transmits an intruding message element, modulated according to the same scheme (and previously synchronized and power-adjusted by the same base station), a collision results. Depending on which modulation state is transmitted by the subject and intruder signals, the as-received superposition can have several different amplitudes. For example, a superposition with an amplitude of 2 units 122 is due to a collision of two message elements with 1 amplitude unit, as described above. Since the 2-unit state 122 involves two identical inputs, demodulation is unambiguous as indicated by a star. Likewise, a superposition with an amplitude of 6 units 126 must have been a 3+3 collision, and therefore the subject message element must have had an amplitude of 3 units. On the other hand, a superposition with 4 amplitude units 124 is the result of a 1-unit signal colliding with a 3-unit signal, and is indicated as ambiguous. The 4-unit signal 124 is ambiguous because the receiver cannot determine which user device (the subject or the intruder) transmitted which signal. The subject message element could be either the 1-unit signal or the 3-unit signal. The ambiguous state 124 is indicated by a “o” logo, whereas the unambiguous states 122 and 126 are indicated by a star.
  • The receiver may recover the intended subject message element, from a collided 4-unit amplitude signal, by demodulating the message element twice, once for each of the possible contributing amplitude levels, and then testing the resulting message versions with an associated error-detection code. For example, the receiver may demodulate the message in two versions, one with the collided message element assigned to the 1-unit state 121 and the other version with the ambiguous message element assigned to the 3-unit state 123. The receiver can then select the correct version by comparing the message to an embedded parity or error-detection code, or by determining whether one of the versions is nonsense or improperly formatted, or by comparing each version of the message to an expected message type, or otherwise.
  • The figure also shows a 5-unit sum-signal 125 labeled as “incompatible”, meaning that the 5-unit amplitude is incompatible with all the modulation states, such that no combination of the modulation states (that is, the 1-unit and 3-unit amplitude states) can produce the 5-unit signal. If a receiver receives a 5-unit signal 125, the receiver can determine that the message is somehow corrupted and may request a retransmission. Alternatively, the receiver may attempt to recover the intended subject message element by constructing multiple versions of the message according to each of the modulation states and testing each version against an error-detection code associated with the subject message.
  • In most cases, it is not necessary for the receiver to test all of possible versions of the ambiguous or faulted message elements, because the correct version is likely to be found before all the possibilities have been explored. The receiver generally tests versions of the message until finding the one version that agrees with the error-detection code, and then stops. On average, the number of version tests required to find the right one is about one-half the maximum number of possible versions.
  • To summarize: the receiver can unambiguously demodulate the received signal in the 1-unit state 121 or the 3-unit state 123 because they are modulation states of the modulation scheme. The receiver can also unambiguously demodulate the 2-unit superposition state 122 and the 6-unit superposition state 126 because they uniquely represent the 1-unit and 3-unit states respectively. The receiver can demodulate the 4-unit superposition state 124 as either the 1-unit or the 3-unit state, and can select among them by comparing each version of the message to a parity or other error-detection code, for example. If the receiver detects the 5-unit signal, then the receiver may determine that the message is irretrievably corrupted, or the receiver may try each of the modulation states and select the one that agrees with an error-detection code.
  • FIG. 1D is a schematic showing an exemplary embodiment of interference states in a six-level amplitude-modulation scheme, according to some embodiments. As depicted in this non-limiting example, 16 as-received sum-signal types are shown according to the amplitude of the received signal (that is, 1-16 amplitude units), type inferred from the amplitude (modulation state, ambiguous, unambiguous, and incompatible), and the superposition components where relevant. The 5-unit state is now a modulation state 131 in this example. The 2-unit state 130 is unambiguous, corresponding to two 1-unit transmissions at the same time. The 9-unit and 13-unit states are incompatible with the modulation scheme (that is, unable to be constructed by superposition of any two of the modulation states). With the additional modulation states, there are now six ambiguous superposition states 132, 133, 134, 135, 136, 137, each of which can be constructed from the modulation states in more than one way. The receiver can attempt to demodulate those ambiguous signals by testing each of the component amplitude values as indicated in the figure. For example, upon receiving the 8-unit signal 133, the receiver can prepare message versions with the collided message element assigned to each one of the component amplitude levels, namely 1, 3, 5, and 7 units, and select the correct assignment using an error-detection code.
  • The example indicates that, as the number of modulation states is increased, the number of possible component states in a collided message element also increases. Therefore a network may select the number of modulation states in the modulation scheme as a compromise between the information-carrying density of the message elements versus the number of component values that must be tested to recover a collided message element.
  • Arranging and testing the message versions can take substantial time and computing power. Before starting the search for the correct version, the receiver can calculate the number of versions likely needed to find the original message. If the predicted number of versions is too large, the receiver can request a retransmission instead.
  • In summary, the modulation states are selected so that no modulation state equals the superposition of two other modulation states. Hence, the message elements configured as one of the modulation states are intrinsically unambiguous. The other unambiguous message elements are superpositions with only one choice for the contributing modulation states, such as a 2-unit signal. Finally, the ambiguous message elements may be demodulated by testing the message with each of the component amplitude values substituting for the collided message element and comparing to an error-detection code. An incompatible state is likely faulted by noise or complex interference, in which case the receiver may attempt to recover the message by testing all of the modulation states in place of the faulted message element, or it may request a retransmission.
  • An advantage of transmitting using specific modulation states, selected so that no modulation state can be formed from the superposition of any two other modulation states, may be that message collisions with other like-modulated transmissions may be recovered. Another advantage may be that the receiver may determine which message elements are collided, according to their modulation level, and thereby avoid wasting time varying the uncollided message elements. Another advantage may be that the number of message versions needed to demodulate each collided message element, may be a small number because only certain combinations of the modulation states could add to the observed signal, thereby reducing the number of versions that the receiver may need to test. Another advantage may be to identify “incompatible” states which cannot be constructed from any two of the modulation states.
  • Another advantage may be that the disclosed procedures are low-complexity involving elementary arithmetic and logic which may be compatible with devices that may have difficulty complying with prior-art procedures. Another advantage may be that the disclosed procedures may be implemented as a software (or firmware) update, without requiring new hardware development, and therefore may be implemented at low cost, according to some embodiments. The disclosed procedures may be implemented as a system or apparatus, a method, or instructions in non-transient computer-readable media for causing a computing environment, such as a user device, a base station, or other signally coupled component of a wireless network, to implement the procedure. Particular embodiments may include one, some, or none of the above-mentioned advantages. Other advantages will be apparent to one of ordinary skill in the art, given this teaching. This comment applies additionally to other embodiments and lists of advantages provided below. The advantages listed in this paragraph are true for each of the lists of advantages in examples below.
  • FIG. 2 is a flowchart showing an exemplary embodiment of a process for demodulating an amplitude-modulated message with collisions, according to some embodiments. As depicted in this non-limiting example, at 201 a receiver receives a message, each message element originally modulated according to either 1 or 3 amplitude units, however some of the message elements may be collided with another like-modulated intruder signal. At 202, the receiver measures the amplitude of each message element, and at 203 selects the message elements that have an amplitude of 1 or 3 units, and at 204 demodulates them normally, for example by comparing to a calibration set of predetermined amplitude levels exhibited by a demodulation reference, and then assigning a numerical code (associated with each modulation state or each amplitude level in the calibration set) to each message element accordingly.
  • For the message elements not equal to 1 or 3 amplitude units, at 205 the receiver determines whether each element is 2 or 6 units in amplitude, and if so, divides the amplitude by 2 and demodulates normally at 206. Of the remaining message elements, the receiver asks at 207 if the amplitude is 4 units, in which case the receiver can try both 1 and 3 amplitude units in that collided message element at 209. The receiver can thereby determine, according to an error-detection code, which version of the message is correct.
  • If the message element amplitude is none of the above values, then at 208 the receiver can declare a faulted message and request a retransmission, or it can try altering the faulted message element or elements to each of the modulation states and thereby find the correct message. After all the message elements have been demodulated, the task is done at 210.
  • As an alternative, shown in dash, after determining that the message element amplitude is not 1, 2, 3, or 6 amplitude units, the receiver can bypass the other steps and, at 211, can try varying each of the remaining message elements to each of the modulation states. If there are more than one faulted message element, the receiver can vary them in a nested grid search covering all possible modulation states for each the faulted message elements in various combinations, and testing each variation against the error-detection code. If any of those combinations agrees with the error-detection code, the message is properly demodulated. If not, the receiver can abandon the message, request a retransmission, or other action depending on network rules.
  • The foregoing examples pertain to amplitude modulated messages using certain selected amplitude states as modulation states. In contrast, the following examples provide phase modulation states that can enable recovery of collided messages, according to some embodiments.
  • FIG. 3A is a phase chart showing an exemplary embodiment of modulation states in a two-level phase-modulation scheme, according to some embodiments. As depicted in this non-limiting example, modulation states of a phase-modulation scheme are shown in a polar plot with amplitude radially and phase azimuthally. A circle 301 represents a single amplitude, such as 1 unit of amplitude. The modulation states are shown as dots 302 and 303 on that circle 301. The angular positions of the dots 302, 303 indicate their phase as 0 and 90 degrees, respectively. Two more locations, 304 and 305, are shown as “x” indicating that they are not used as modulation states. (The reason for excluding those states 304, 305 is to avoid destructive interference. For example, if the subject message is modulated according to 302 and an intruder signal is modulated at the opposite state 304, the resulting superposition would be zero amplitude, which may confuse the receiver.) The depicted scheme may be termed “2PSK” having only two modulation states 302, 303 separated by one phase step of 90 degrees. All of the modulation states, and the superposition signals from collisions, are restricted to one quadrant of the phase chart, to avoid destructive interference.
  • Two colliding modulation states can produce one of three possible superposition signals 306, 307, 308 depending on which modulation states are present in the subject and intruder signals. One unambiguous state 306 (star) is the resultant of a first signal modulated with the modulation state 302, plus an intruder modulated with the same modulation state 302, thereby doubling the amplitude but leaving the phase unchanged. The receiver, upon detecting a message element with zero phase and an amplitude of 2 units, can deduce that both the subject message and the intruder signal are modulated as 302, and thereby demodulate the message element unambiguously by dividing the amplitude by 2. Likewise, the receiver can receive a message element exhibiting the amplitude and phase of unambiguous state 307, with an amplitude of 2 units and 90 degrees of phase, in which case the receiver can demodulate the message element as if it were the modulation state 303.
  • In addition there is the ambiguous state 308, due to the superposition of a 302 signal added to a 303 signal. The amplitude of the 308 state is about 1.4 amplitude units, as shown by an arrow 309, and the phase is 45 degrees, as shown by the angle 310. The state 308 is ambiguous because the receiver cannot determine, from the amplitude and phase, whether the subject message is the 302 or the 303 modulation state. If the subject message includes a parity check or an error-detection code such as a CRC code, then the receiver can demodulate the subject message twice, once with each of the two choices (302 and 303) for the ambiguous message element, and testing each version against the parity or CRC, and if one of the versions is in agreement, the task is done. If neither version is in agreement, the receiver may request a retransmission, among other options.
  • An advantage of modulating messages according to the two-phase modulation scheme of FIG. 3A, may be that collided message elements may exhibit the unambiguous states 306 or 307, which enable straightforward demodulation, or the ambiguous state 308, which can be demodulated according to each of the possible contributing amplitude levels. In this way the message may be recovered despite intrusion interference by another transmitter using the same modulation scheme.
  • FIG. 3B is a schematic showing an exemplary embodiment of interfering phase-modulated waves, according to some embodiments. As depicted in this non-limiting example, two waves 311 and 312, represent the signals from the subject message and the intruder, respectively. These waves may represent the first signal modulated as the modulation state 302 and an intruder wave modulated at the modulation state 303, that is, at the same amplitude but differing in phase by 90 degrees. The receiver receives a single superposition signal 313 equal to the combination of those two waves 311, 312. The superposition has an amplitude of 1.414 units and a phase of 45 degrees as shown. The receiver, detecting the wave 313 modulated as the state 308, may deduce that two signals are interfering, in which one signal has zero degrees and the other one has 90 degrees. The superposition signal is ambiguous because the receiver cannot determine which of those component waves is due to the subject signal. To demodulate the message and recover the subject message element, the receiver can prepare two demodulated message versions, one with the collided message element assumed to be the zero-degree modulation state and the other with the collided message element assumed to be the 90-degree modulation state, while checking both versions against an error-detection code or parity. Although such testing takes time and computational energy, it involves substantially less time and energy than requesting, receiving, and analyzing a retransmitted version when only a few of the message elements are collided, and therefore may be worth the effort to recover the message. However, if too many message elements are collided in the ambiguous state 308, or are otherwise faulted, then the receiver can request a retransmission without attempting a search that is likely to require an excessive search effort.
  • FIG. 3C is a phase chart showing an exemplary embodiment of modulation states in a three-level phase-modulation scheme, according to some embodiments. As depicted in this non-limiting example, three modulation states are indicated as dots 323, on a circle 321 representing an amplitude of 1 unit, at 120 degree intervals. The modulation scheme may be termed 3PSK, with three modulation states. A second circle 322 represents 2 amplitude units. When a subject message element and an intruder signal are both modulated according to the same modulation state, the resulting superposition has twice the original amplitude and the same phase, such as state 324. The collision, combining two of the amplitude-1 phase-0 modulation states, is indicated by dotted arrows. The resulting superposition state 324 is unambiguous because both of the contributing modulation states 323 are identical, and there is no other combination of two modulation states that result in the same state 324. Hence the receiver can demodulate the state 324, with an amplitude of 2 units and a phase of 0, as if it were the modulation state 323. The three unambiguous states are shown as stars to indicate that the receiver can demodulate them by dividing the amplitude by 2 and treating them as the corresponding modulation state.
  • In another case, the subject message element and the intruder signal may have different modulation states. In that case, the resulting superposition would have the same 1-unit amplitude, and a phase midway between the two components. For example, the signal 325 is the result of a collision between two modulation states separated by one phase step, as indicated by dotted arrows. Such collided states 325 are ambiguous because the receiver generally does not know which of the components corresponds to the subject message element. Therefore, the receiver may demodulate the subject message two ways, inserting each of the two component modulation states into the two message versions, testing each version against a parity or error-detection test.
  • FIG. 3D is a phase chart showing an exemplary embodiment of states in a five-level phase-modulation scheme, according to some embodiments. As depicted in this non-limiting example, a modulation scheme has five modulation states 335 on a unit amplitude circle 332, separated by a phase step of 72 degrees. The modulation scheme may be termed 5PSK. If a subject message element and an intruder signal both have the same modulation state, their signals combine to produce an unambiguous superposition signal at twice the amplitude (circle 334) and the same phase. The receiver can demodulate this signal by dividing the amplitude by 2, or by substituting the same-phase modulation state for the collided message element. For example, the signal 336 is formed by a collision of two simultaneous transmissions of the modulation state 339, as indicated by dotted arrows. The receiver, upon detecting a 2-unit amplitude signal, can demodulate it as if it were the modulation state 339 at the same phase.
  • If the subject message element and the intruder signal are separated by one phase step, they combine to generate a superposition signal at an amplitude of about 1.6 amplitude units (circle 333) and a phase which is a weighted average of the contributing modulation states, which in this case is a phase midway between the two components. For example, state 337 is formed from the two modulation states closest in phase. The receiver can detect the faulted state, determine according to the amplitude that it is ambiguous and that the two contributing modulation states are different modulation states. The receiver can then demodulate the message twice, according to the two possible contributing modulation states, and test both versions.
  • If the subject message element and the intruder signal differ by two phase steps, or 144 degrees, the resulting superposition signal amplitude is about 0.6 amplitude units (circle 331), and a phase midway between the two components. For example, the ambiguous state 338 is formed from a collision of two non-adjacent modulation states as shown. However, in this case the phase of the resulting signal is the same as the phase of one of the modulation states (zero degrees in the example). The receiver can determine, from the amplitude, that the signal 338 represents an ambiguous state, and can determine which two modulation states contributed to the signal according to the observed phase, plus-or-minus 72 degrees, thereby indicating the two interfering modulation states. The receiver can then demodulate the subject message element two ways according to the contributing modulation states, and can test both versions against the error-detection code.
  • An advantage of the two-state modulation scheme of FIG. 3A, may be that most of the accessible states are either modulation states or unambiguous states. An advantage of the three-state modulation scheme of FIG. 3C, may be that the superposition signals are either 1 or 2 amplitude units, simplifying identification. An advantage of the five-state modulation scheme of FIG. 3D, may be that it encodes more bits per message element (specifically, 2.3 bits per element for the 5-state scheme, 1.6 bits per element for the 3-state scheme, and 1 bit exactly for the 2-state scheme). Many other phase-modulation schemes are possible, with modulation states selected for demodulating collided message elements into a single unambiguous modulation state or a small number of possible modulation states. In general, phase-modulation schemes with odd numbers of modulation states can be distributed around the entire phase circle, but phase-only modulation schemes with an even number of modulation states generally perform best if restricted to one quadrant of phase, such as the two-state scheme of FIG. 3A. This is because the superposition of a positive modulation state with a negative modulation state causes complete or nearly complete cancellation, in which case the receiver may have insufficient information from a null message element to determine which modulation state was intended, if any. In addition, modulation schemes with odd numbers of modulation states, larger than five or seven modulation states for example, can result in very small sum-signal amplitudes when the colliding modulation states are nearly 180 degrees apart in phase.
  • FIG. 4 is a flowchart showing an exemplary embodiment of a process for demodulating a phase-modulated message with collisions, according to some embodiments. As depicted in this non-limiting example, at 401 a receiver receives a message modulated in 3PSK using only the modulation states with phases of 0, 120, and 240 degrees, as in FIG. 3C. To demodulate a particular message element, the receiver determines whether the particular message element is modulated according to one of the modulation state phases at 402, and if so, it demodulates the message element normally at 403 (for example, by comparing the phase to a predetermined calibration set of legal phase levels of the modulation scheme) and is done at 409. In this case (3PSK), all of the modulation states and all of the unambiguous states are demodulated based on phase alone, irrespective of the received amplitude, because the unambiguous collided states have the same phase as the subject message element, and therefore the amplitude is irrelevant. In a modulation scheme involving only phase modulation, interference that distorts the amplitude while leaving the phase unchanged may be correctly demodulated according to phase alone, as illustrated by states 323 and 324 in FIG. 3C.
  • If the received phase is not one of the legal phases of the modulation scheme, then at 404 the receiver determines whether the received phase has an intermediate value of 60, 180, or 300 degrees, and if so, the receiver checks the amplitude at 405. If the amplitude is the same as the amplitude of the modulation states (1 amplitude unit in this example) and the phase is intermediate between two modulation states, then the message element is one of the ambiguous but recoverable states such as 325. For example, if the received amplitude is 60 degrees, the subject message element may have been initially modulated at zero degrees or 120 degrees. After demodulating the rest of the message elements, the receiver can then try to determine the correct assignment for the collided message element by assigning the collided message element to each of the adjacent modulation states, and testing each version of the message with the error-detection code at 406. If either version agrees with the error-detection code at 407, the task is done. If not, or if the amplitude is not 1 unit at 405, then the receiver can request a retransmission.
  • If at 404 the phase of the received signal is not one of the legal phases nor one of the intermediate phases, then the receiver can determine that the message element is irretrievably faulted and can request a retransmission at 408. Alternatively, the receiver can try substituting each of the modulation states for the faulted message element in turn, or other message-recovery strategy according to network rules.
  • The following examples pertain to modulation schemes that employ both amplitude and phase modulation, but with modulation states selected to enable demodulation of collided messages.
  • FIG. 5 is a phase chart showing an exemplary embodiment of modulation states of a modulation scheme with both amplitude and phase modulation, and with collisions, according to some embodiments. As depicted in this non-limiting example, five amplitude levels are shown as circles: 501 corresponding to 1 unit, 502 with 2 units, 503 with 3 units, 504 with 4 units, and 505 with 6 units of amplitude. There are no relevant states with 5 units of amplitude in this example. The four modulation states are shown as dots such as modulation states 506 and 507 at zero phase with 1 and 3 amplitude units, respectively, and modulation states 516 and 517 at 90 degrees phase.
  • The other states are generated by a collision between a subject message element and an intruder signal modulated according to the same modulation scheme. There are four unambiguous sum-signals indicated by stars. For example, the unambiguous sum-signal 508 is the result of a collision between a subject message element and an intruder signal both modulated according to the modulation state 506, and hence the message element may be demodulated unambiguously as the modulation state 506. Likewise the superposition signal 510 is the superposition of two signals both modulated at the modulation state 507, and therefore can be unambiguously demodulated as state 507. Similarly, the 90-degree states 518 and 520 at 2 and 6 units of amplitude are unambiguous because they can be demodulated as the modulation states 516 and 517 respectively.
  • The ambiguous state 509 at zero degrees and 4 units of amplitude may be generated by a collision between a subject message element modulated as modulation state 506 and an intruder signal modulated as modulation state 507, or vice-versa. Hence, the sum-signal 509 is marked as ambiguous. The receiver can try each of the two component modulation states, 506 and 507, to determine which one is the originally modulated subject message element, by comparing with an error-detection code for example. Likewise, the superposition signal 519 indicates that the subject message element is modulated in either the modulation state 516 or 517.
  • Four additional superposition states 521, 522, 523, 524 are shown with both amplitude and phase modulation, corresponding to certain combinations of the modulation states as indicated by dotted lines. The ambiguous state 521 is the superposition of the two modulation states 506 and 516, both at 1 unit of amplitude but differing in phase by 90 degrees, so the receiver can try both of those modulation states in demodulating the message. Likewise the signal 522 may represent either modulation state 507 or 517. The signal 524 is the superposition of modulation states 517 and 506, while the signal 523 is the superposition of modulation states 507 and 516. Since the receiver has no way to determine which of the component modulation states is due to the subject message element, in each of these cases, the demodulation is ambiguous. In each case, the receiver can use the received amplitude and phase to narrow down the number of possible component states to just two modulation states, and can then test those two variations against the error-detection code.
  • The receiver can save substantial time by using the modulation scheme logic to narrow down the number of message variations required for message recovery, instead of testing all of the modulation states in the modulation scheme, which may be prohibitively expensive. For example, if a message includes multiple collided message elements, the receiver can substitute the possible component modulation states according to the observed amplitude and phase, and can avoid testing the other combinations that are incompatible with the observed amplitude and phase. In this case, the number of possible modulation states for each collided ambiguous state is just two possibilities, rather than the four modulation states. Thus the receiver can save time by testing only those two possible modulation states, since there is no need to test the other modulation states that do not contribute to the observed signal. To consider a specific example, the message may have six collided message elements with ambiguous signals, in which case the receiver could find the correct modulation states for all of the collided message elements by testing, at most, only 36 versions. In contrast, if the receiver tested all combinations of the modulation states in each of the six faulted message elements, the number of tests would be 1296 possible versions. Hence the modulation scheme, including only modulation states that do not combine to each other in superposition, can greatly reduce the number of variations needed to resolve ambiguities and recover a collided message, according to some embodiments.
  • FIG. 6 is a flowchart showing an exemplary embodiment of a process for demodulating a message with amplitude and phase modulation, according to some embodiments. As depicted in this non-limiting example, at 601 a receiver receives a message modulated according to a modulation scheme with, in this case, four modulation states at 1 or 3 amplitude units and zero or 90 degrees phase. The receiver recovers the intended subject message, despite collisions with an intruder signal modulated according to the same scheme.
  • At 602, the receiver checks that the received phase is either zero or 90 degrees. If so, at 603 it checks that the amplitude is 1 or 3 units. If so, then at 604 the receiver determines that the message element is not collided, and demodulates as usual, by comparing the measured amplitude and phase values to a calibration set of predetermined amplitude and phase levels of the modulation scheme, selecting the closest match, and is done at 617.
  • If at 603 the amplitude is not 1 or 3 units, the receiver can check at 605 if the amplitude is 2 or 6 units, in which case the receiver can determine that the signal is an unambiguous combination of two identical modulation states, and can therefore divide the amplitude by 2 and demodulate normally at 606.
  • If at 605 the amplitude is none of the above, the receiver can check if the amplitude is 4 units at 607, and if so, can try both 1 unit and 3 units of amplitude with the same phase, testing each variation with the error-detection code at 609. This state corresponds to 509 or 519 of the previous figure. However, if the amplitude is not one of 1, 2, 3, 4, or 6 the receiver can determine that the message element is faulted and can request a retransmission at 608.
  • Up to this point in the chart, only zero or 90 degree phases have been considered. At 602, if the phase is not zero nor 90, then at 610 the receiver can check if the phase is 45 degrees, and if so, can check at 611 if the received amplitude is 1.4 or 4.2 units, and if so, the receiver can deduce the amplitude of the subject message element by dividing the received amplitude by 1.414, thereby obtaining either 1 or 3 amplitude units. These correspond to the ambiguous states 521 and 522 of the previous figure. The receiver can then try two versions of the message element, with phases of zero or 90 degrees, and can test each with the error-detection code at 613. However, if at 611 the phase is 45 and the amplitude is not 1.4 or 4.2, then the receiver can determine that the message element is not recoverable and request a retransmission at 612.
  • If, at 610, the phase is not zero or 45 or 90 degrees, then at 614 the receiver can check if the phase is 18 or 72 degrees. These correspond to the states 523 and 524 of the previous figure. If the phase is 18 degrees, then the receiver can try either 507 or 516 (that is, 3 units amplitude at zero degrees, or 1 unit at 90 degrees), whereas if the phase is 72 degrees, the receiver can try 506 or 517 (3 units at 90 degrees, or 1 unit at zero degrees), testing each version against the error-detection code at 616. Optionally, the receiver can also check the amplitude of these signals, which should be about 3.2 units, and reject the message otherwise.
  • If the received phase is none of the above, or if the phase and amplitude are inconsistent with the modulation states of the modulation scheme, then the receiver can request a retransmission at 615. It may be noted that, although the logic appears complicated when described in words, each step in this procedure is elementary, so even a reduced-capability processor should be able to perform the logical steps.
  • The foregoing examples pertain to classical amplitude and phase modulation of the transmitted signal. The following examples include pulse-amplitude modulation PAM and its modifications to permit demodulation of collided message elements.
  • FIG. 7A is a constellation chart showing an exemplary embodiment of the modulation states of a PAM modulation scheme with collisions, according to some embodiments. As depicted in this non-limiting example, a constellation chart displays the modulation states of a message element according to its I-branch and Q-branch signals on orthogonal axes. The Q-branch is 90-degrees offset relative to the I-branch. They are both modulated in positive and negative amplitudes (negative amplitudes corresponding to a 180-degree phase change). The branch amplitude axes are marked at 1-unit intervals out to +/−6 units. The displayed chart is for 16 QAM with PAM modulation, showing 16 modulation states as dots 701. Four unambiguous states 711 are shown as stars, each unambiguous state corresponding to a subject message element with 3-unit branch amplitudes in both I and Q branches, added to an intruder signal which is also modulated as I=3, Q=3. Ambiguous sum signals are shown as small circles such as 710. The ambiguous states can be generated by many different combinations of the modulation states. For example, the ambiguous state 707 can be generated by a subject message element with branch amplitudes of (I=+3, Q=+1) collided with an intruder at (I=−1, Q=+1), or alternatively by a subject (I=−1, Q=−1) collided with an intruder (I=+3, Q=+3), or alternatively by (I=+3, Q=−1) with (Q=−1, I=+3), to mention just a few of the possible combinations.
  • Diamonds such as 705 indicate “null” states with zero transmission in one or both of the branches. For example, the diamond at 705 corresponds to a subject element at (I=+1, Q=+3) combined with an intruder at (I=−1, Q=+3), or vice-versa, among other possibilities in which the I-branch amplitude cancels to zero. Diamonds along the I-branch axis correspond to cancellation of the Q-branch amplitudes. In addition, the central point 703 corresponds to cancellation of both the I and Q amplitudes, such as a subject message element with branch amplitudes of (I=+1, Q=+1), combined with an intruder having (1=−1, Q=−1), or vice-versa, among many other possibilities. Since the positive and negative values cancel each other, the sum-signal is zero.
  • It is difficult for the receiver to demodulate the message when there are so many possible combinations. Therefore a restricted set of modulation states may be employed, as described in the next example.
  • FIG. 7B is a constellation chart showing an exemplary embodiment of the modulation states of a modified PAM modulation scheme with collisional interference, according to some embodiments. As depicted in this non-limiting example, the modulation states are restricted to the positive quadrant (0 to 90 degrees), including four modulation states shown as dots 751. The modulation states have 1 or 3 amplitude units in both I and Q branches. Four unambiguous signals such as 752 are shown as stars. For example, 752 can be formed by adding a subject message element with (1=1, Q=3) to an intruder with the same modulation (I=1, Q=3). The state 752 is unambiguous because there is only one way to construct it from the modulation states, and the contributions from the subject and intruder are identical; hence the receiver can demodulate the unambiguous signal by dividing the branch amplitudes by 2. The lack of any negative amplitude states in the restricted modulation scheme enables these unambiguous states 752 because they allow only one way to construct the sum-signal 752.
  • The remaining five ambiguous states, shown as circles such as 753, are ambiguous because they can be generated in at least two different ways. For example, 753 can be formed by a message element with (I=+1, Q=+3) collided with an intruder at (I=+3, Q=+3), or it can be formed from a subject (I=+3, Q=+3) collided with intruder (I=+1, Q=+3), and therefore the receiver needs to consider both versions. The number of versions that the receiver needs to test, on average, to find the correct message demodulation has been greatly reduced, relative to that of FIG. 7A, since the modulation states are restricted to one quadrant with positive amplitudes. With the reduced number of possibilities, the receiver may demodulate the message even if several message elements are collided, and may do so faster than by waiting for a retransmission, according to some embodiments.
  • FIG. 8 is a flowchart showing an exemplary embodiment of a procedure for demodulating a message with PAM modulation and interference, according to some embodiments. As depicted in this non-limiting example, at 801 a receiver receives a message element which was modulated by the transmitting entity in PAM according to a restricted modulation scheme with positive I-branch and Q-branch modulation states of +1 and +3 amplitude units only. At 802, the receiver determines whether the message element is one of the modulation states, with branch amplitudes of +1 or +3 units. If so, the receiver demodulates the message element normally at 803 and is done at 811. If not, then at 804 the receiver checks whether the received I-branch amplitude is +2 or +6 units, and the Q-branch amplitude is +2 or +6, in which case the state is an unambiguous one, the receiver can divide each branch amplitude by 2, and can then demodulate normally at 805.
  • At 806, the receiver determines whether the I or Q branch amplitude equals 4 units, implying an ambiguous combination of +1 and +3 units. In this case, the receiver can try to find the correct combination by varying the I and Q amplitudes as +1 and +3 units at 807, consistent with the observed I and Q values, while testing each message version with the error-detection code. For example, a state may have branch amplitudes of (I=2, Q=4), in which case the state may be made from a subject message element with (I=1, Q=1) and an intruder with (I=1, Q=3), or a subject with (I=1, Q=3) and an intruder with (I=1, Q=1). The receiver can try both possibilities, testing each against the error-detection code until the correct message is found. Each of the other ambiguous states can be generated in two different ways, and therefore the receiver can find the correct message element modulation by testing those two versions.
  • If at 806 the branch amplitudes are equal to none of the levels listed, or if all of the variations fail the error-detection test, then the receiver can request a retransmission at 808.
  • The disclosed systems and methods, implemented in certain embodiments, can provide demodulation for collided messages in which the subject message and the intruder are both modulated according to a restricted set of modulation states which are selected so that no modulation state equals a superposition of two other modulation states. The receiver can demodulate the message elements that exhibit one of the modulation states in the normal way, by comparing the modulation levels of the received signal to certain predetermined modulation levels in a calibration set, which may be provided by a previous demodulation reference, for example. In addition, certain superposition states differ from the modulation states due to a collision, but are nonetheless unambiguous since they can be formed in only one way, from identical subject and intruder signals. Therefore the receiver can demodulate those unambiguous signals by dividing by 2 and demodulating normally. In many cases, there are also ambiguous states which can be generated by more than one combination of modulation states, in which case the receiver can recover the original subject message by assigning each collided message element to each of the modulation states that could have contributed to the observed sum-signal state, while comparing the resulting message to an error-detection code or parity or the like. In addition, in some cases the observed modulation values of the message element are incompatible with all of the modulation states, and all combinations of the modulation states, of the modulation scheme. In that case, the message element is faulted (other than a simple collision). Likewise, if all of the message versions fail the error-detection test, then the message is somehow faulted. In either case, the receiver can request a retransmission of the message. In many cases of collided messages, if the subject message and the intruder signal are both modulated according to the same restricted modulation scheme, the receiver can demodulate the original message and avoid the delays and costs involved in waiting for a retransmitted version of the message, according to some embodiments.
  • The wireless embodiments of this disclosure may be aptly suited for cloud backup protection, according to some embodiments. Furthermore, the cloud backup can be provided cyber-security, such as blockchain, to lock or protect data, thereby preventing malevolent actors from making changes. The cyber-security may thereby avoid changes that, in some applications, could result in hazards including lethal hazards, such as in applications related to traffic safety, electric grid management, law enforcement, or national security.
  • In some embodiments, non-transitory computer-readable media may include instructions that, when executed by a computing environment, cause a method to be performed, the method according to the principles disclosed herein. In some embodiments, the instructions (such as software or firmware) may be upgradable or updatable, to provide additional capabilities and/or to fix errors and/or to remove security vulnerabilities, among many other reasons for updating software. In some embodiments, the updates may be provided monthly, quarterly, annually, every 2 or 3 or 4 years, or upon other interval, or at the convenience of the owner, for example. In some embodiments, the updates (especially updates providing added capabilities) may be provided on a fee basis. The intent of the updates may be to cause the updated software to perform better than previously, and to thereby provide additional user satisfaction.
  • The systems and methods may be fully implemented in any number of computing devices. Typically, instructions are laid out on computer readable media, generally non-transitory, and these instructions are sufficient to allow a processor in the computing device to implement the method of the invention. The computer readable medium may be a hard drive or solid state storage having instructions that, when run, or sooner, are loaded into random access memory. Inputs to the application, e.g., from the plurality of users or from any one user, may be by any number of appropriate computer input devices. For example, users may employ vehicular controls, as well as a keyboard, mouse, touchscreen, joystick, trackpad, other pointing device, or any other such computer input device to input data relevant to the calculations. Data may also be input by way of one or more sensors on the robot, an inserted memory chip, hard drive, flash drives, flash memory, optical media, magnetic media, or any other type of file—storing medium. The outputs may be delivered to a user by way of signals transmitted to robot steering and throttle controls, a video graphics card or integrated graphics chipset coupled to a display that maybe seen by a user. Given this teaching, any number of other tangible outputs will also be understood to be contemplated by the invention. For example, outputs may be stored on a memory chip, hard drive, flash drives, flash memory, optical media, magnetic media, or any other type of output. It should also be noted that the invention may be implemented on any number of different types of computing devices, e.g., embedded systems and processors, personal computers, laptop computers, notebook computers, net book computers, handheld computers, personal digital assistants, mobile phones, smart phones, tablet computers, and also on devices specifically designed for these purpose. In one implementation, a user of a smart phone or Wi-Fi-connected device downloads a copy of the application to their device from a server using a wireless Internet connection. An appropriate authentication procedure and secure transaction process may provide for payment to be made to the seller. The application may download over the mobile connection, or over the Wi-Fi or other wireless network connection. The application may then be run by the user. Such a networked system may provide a suitable computing environment for an implementation in which a plurality of users provide separate inputs to the system and method.
  • It is to be understood that the foregoing description is not a definition of the invention but is a description of one or more preferred exemplary embodiments of the invention. The invention is not limited to the particular embodiments(s) disclosed herein, but rather is defined solely by the claims below. Furthermore, the statements contained in the foregoing description relate to particular embodiments and are not to be construed as limitations on the scope of the invention or on the definition of terms used in the claims, except where a term or phrase is expressly defined above. Various other embodiments and various changes and modifications to the disclosed embodiment(s) will become apparent to those skilled in the art. For example, the specific combination and order of steps is just one possibility, as the present method may include a combination of steps that has fewer, greater, or different steps than that shown here. All such other embodiments, changes, and modifications are intended to come within the scope of the appended claims.
  • As used in this specification and claims, the terms “for example”, “e.g.”, “for instance”, “such as”, and “like” and the terms “comprising”, “having”, “including”, and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that the listing is not to be considered as excluding other additional components or items. Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation.

Claims (20)

1. A method for transmitting a wireless message, the method comprising:
a) receiving or determining a modulation scheme comprising a plurality of modulation states, wherein:
i) the modulation scheme includes amplitude modulation with integer Namp predetermined amplitude levels;
ii) the modulation scheme includes phase modulation with integer Nphase predetermined phase levels;
iii) each modulation state comprises, at least, one of the predetermined amplitude levels and one of the predetermined phase levels; and
iv) each modulation state is different from every superposition of any two of the modulation states;
b) modulating each message element, of a message comprising message elements, according to the modulation scheme;
c) adjusting a clock or timing to synchronize with a recipient or causing the clock or timing of the recipient to synchronize with a transmitter;
d) adjusting a transmission power level to provide a particular received signal level at the recipient; and
e) transmitting the message to the recipient.
2. The method of claim 1, wherein the message is transmitted according to 5G or 6G technology.
3. The method of claim 1, wherein:
a) Namp is 1;
b) Nphase is 3; and
c) the predetermined phase levels are separated by 120 degrees.
4. The method of claim 1, wherein:
a) Namp is 1;
b) Nphase is 5; and
c) the predetermined phase levels are separated by 72 degrees.
5. The method of claim 1, wherein:
a) Namp is 1;
b) Nphase is an even number;
c) the predetermined phase levels span, at most, 90 degrees of phase.
6. The method of claim 1, wherein:
a) Namp is greater than 1;
b) Nphase is greater than 1;
c) each modulation state comprises one of the predetermined amplitude levels multiplexed with one of the predetermined phase levels.
7. The method of claim 1, wherein:
a) the modulation scheme includes two or more predetermined amplitude levels;
b) all of the predetermined amplitude levels are positive in value;
c) the modulation scheme includes exactly two predetermined phase levels;
d) the two predetermined phase levels differ by 90 degrees; and
e) each modulation state comprises an amplitude-modulated I-branch signal phase-modulated at one of the predetermined phase levels, added to an amplitude-modulated Q-branch signal phase-modulated at the other predetermined phase level.
8. A method for demodulating a wireless message, the method comprising:
a) receiving or determining a modulation scheme comprising Nstate modulation states, each modulation state configured to be unequal to every superposition of any two of the modulation states;
b) receiving or determining one or more predetermined amplitude levels and one or more predetermined phase levels;
c) receiving the message comprising message elements;
d) for each message element, determining at least one amplitude value and at least one phase value of the message element; and
e) determining, according to the at least one amplitude value and the at least one phase value, whether the message element comprises:
i) one of the modulation states of the modulation scheme;
ii) a sum of two of the modulation states of the modulation scheme; or
iii) an incompatible state comprising none of the modulation states and no sum of any two of the modulation states of the modulation scheme.
9. The method of claim 8, further comprising:
a) if the phase value of the message element comprises the predetermined phase level of a particular modulation state of the modulation scheme, and the amplitude value of the message element comprises the predetermined amplitude level of the particular modulation state, then demodulating the message element according to the particular modulation state.
10. The method of claim 8, further comprising:
a) if the phase value of the message element comprises the predetermined phase level of a particular modulation state of the modulation scheme, and the amplitude value of the message element comprises 2 times the predetermined amplitude level of the particular modulation state, then demodulating the message element according to the particular modulation state.
11. The method of claim 8, further comprising:
a) if the message element comprises a sum of two different modulation states of the modulation scheme, sequentially demodulating the message element according to each of the two different modulation states and determining whether the message, including the message element so demodulated, agrees with an error-detection code associated with the message.
12. The method of claim 11, further comprising:
a) if the message disagrees with the error-detection code when the message element is demodulated according to each of the different modulation states, transmitting a request for retransmission of the message.
13. The method of claim 8, further comprising:
a) if the message element fails to comprise any sum of any two modulation states of the modulation scheme, sequentially replacing the message element by each of the modulation states of the modulation scheme, and determining whether the message, including the message element so replaced, agrees with an error-detection code associated with the message.
14. The method of claim 13, further comprising:
a) if the message disagrees with the error-detection code when the message element is replaced by each of the modulation states of the modulation scheme, transmitting a request for retransmission of the message.
15. The method of claim 8, further comprising:
a) receiving a demodulation reference comprising reference elements, each reference element comprising a resource element modulated according to a modulation state the modulation scheme, and
b) determining, according to each of the reference elements, one or more of the predetermined amplitude levels of the modulation scheme, or one or more of the predetermined phase levels of the modulation scheme.
16. Non-transitory computer-readable media in a wireless receiver, the media containing instructions that when executed in a computing environment cause a method to be performed, the method comprising:
a) receiving a demodulation reference comprising reference elements, each reference element comprising a resource element modulated according to a modulation scheme, the modulation scheme comprising two or more modulation states and one or more predetermined amplitude levels and one or more predetermined phase levels, each modulation state comprising one of the predetermined amplitude levels and one of the predetermined phase levels, wherein each modulation state differs from every sum of any two of the modulation states;
b) determining, based on the demodulation reference, the predetermined amplitude level or levels and the predetermined phase level or levels;
c) receiving a message comprising message elements, each message element comprising a modulated resource element; and
d) for each message element, determining whether the message element is modulated according to:
i) one of the modulation states; or
ii) 2 times one of the modulation states; or
iii) a sum of two different modulation states; or
iv) none of the above.
17. The media of claim 16, the method further comprising:
a) if the message element is modulated according to a sum of two different modulation states, determining a plurality of modulation states that, when added to other modulation states, comprise the modulation of the message element; and
b) successively replacing the message element with each modulation state of the plurality of modulation states, and determining whether the message, including the replaced message element, is faulted.
18. The media of claim 17, wherein the determining whether the message is faulted, comprises at least one of:
a) comparing a hash or digest of the message, including the replaced message element, to an error-detection code associated with the message;
b) determining whether the message, including the replaced message element, comprises nonsense when demodulated;
c) determining whether the message, including the replaced message element, violates a formatting convention; and
d) determining whether the message, including the replaced message element, is an unexpected type.
19. The media of claim 16, the method further comprising:
a) receiving or determining a list or table indicating which of the modulation states represent particular combinations of amplitudes and phases;
b) storing the list or table in a memory; and
c) at a later time, receiving a particular message element comprising a particular amplitude and a particular phase, and determining, from the list or table, which modulation states of the modulation scheme are compatible with the particular message element.
20. The media of claim 16, the method further comprising:
a) determining that the message disagrees with an associated error-detection code;
b) determining which of the message elements are problem elements, wherein a problem element is a message element that differs from each of the modulation states and differs from two times each of the modulation states of the modulation scheme;
c) altering each of the problem elements according to each of the modulation states of the modulation scheme, in a nested grid search configured to include all possible combinations of all modulation states; and
d) testing the message, including the problem elements so altered, for agreement with an associated error-detection code.
US17/881,801 2021-06-14 2022-08-05 Collision-tolerant modulation and fault recovery in 5G and 6G messages Active US11522634B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/881,801 US11522634B1 (en) 2021-06-14 2022-08-05 Collision-tolerant modulation and fault recovery in 5G and 6G messages
US18/070,731 US12095550B2 (en) 2021-06-14 2022-11-29 Modulation schemes for recovering collided states in 5G/6G

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US202163210216P 2021-06-14 2021-06-14
US202163214489P 2021-06-24 2021-06-24
US202163220669P 2021-07-12 2021-07-12
US202163234911P 2021-08-19 2021-08-19
US202163272352P 2021-10-27 2021-10-27
US202263313380P 2022-02-24 2022-02-24
US202263321879P 2022-03-21 2022-03-21
US202263327005P 2022-04-04 2022-04-04
US17/716,244 US11418279B1 (en) 2021-06-14 2022-04-08 Recovery and demodulation of collided 5G/6G message elements
US17/881,801 US11522634B1 (en) 2021-06-14 2022-08-05 Collision-tolerant modulation and fault recovery in 5G and 6G messages

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/716,244 Continuation US11418279B1 (en) 2021-06-14 2022-04-08 Recovery and demodulation of collided 5G/6G message elements

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/070,731 Continuation US12095550B2 (en) 2021-06-14 2022-11-29 Modulation schemes for recovering collided states in 5G/6G

Publications (2)

Publication Number Publication Date
US20220385392A1 true US20220385392A1 (en) 2022-12-01
US11522634B1 US11522634B1 (en) 2022-12-06

Family

ID=82611726

Family Applications (3)

Application Number Title Priority Date Filing Date
US17/716,244 Active US11418279B1 (en) 2021-06-14 2022-04-08 Recovery and demodulation of collided 5G/6G message elements
US17/881,801 Active US11522634B1 (en) 2021-06-14 2022-08-05 Collision-tolerant modulation and fault recovery in 5G and 6G messages
US18/070,731 Active 2042-04-22 US12095550B2 (en) 2021-06-14 2022-11-29 Modulation schemes for recovering collided states in 5G/6G

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US17/716,244 Active US11418279B1 (en) 2021-06-14 2022-04-08 Recovery and demodulation of collided 5G/6G message elements

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/070,731 Active 2042-04-22 US12095550B2 (en) 2021-06-14 2022-11-29 Modulation schemes for recovering collided states in 5G/6G

Country Status (1)

Country Link
US (3) US11418279B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11418279B1 (en) * 2021-06-14 2022-08-16 Ultralogic 6G, Llc Recovery and demodulation of collided 5G/6G message elements
US11502893B1 (en) * 2021-06-14 2022-11-15 Ultralogic 6G, Llc Short-form 5G/6G pulse-amplitude demodulation references
US11736320B2 (en) * 2022-02-14 2023-08-22 Ultralogic 6G, Llc Multiplexed amplitude-phase modulation for 5G/6G noise mitigation

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7209522B1 (en) * 2002-12-12 2007-04-24 Marvell International Ltd. Blast MIMO signal processing method and apparatus
US20160373201A1 (en) * 2015-06-22 2016-12-22 Samsung Electronics Co., Ltd. Receiver and decoding method thereof
WO2016208959A1 (en) * 2015-06-22 2016-12-29 Samsung Electronics Co., Ltd. Method and apparatus for multiuser superposition transmission
US20170214502A1 (en) * 2016-01-26 2017-07-27 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving signal in wireless communication system
US10212020B2 (en) * 2015-06-09 2019-02-19 Samsung Electronics Co., Ltd Apparatus and method for superposition transmissions
US20200252193A1 (en) * 2019-01-31 2020-08-06 Cox Communications, Inc. Systems and methods for non-orthogonal multiple access over networks
US20200389348A1 (en) * 2020-01-07 2020-12-10 Allen LeRoy Limberg Apparatus For Demodulating Dual-Mapped QAM Signals With Labeling Diversity To Benefit Bit-Reliability Averaging
US11153780B1 (en) * 2020-11-13 2021-10-19 Ultralogic 5G, Llc Selecting a modulation table to mitigate 5G message faults
US20220140940A1 (en) * 2021-02-19 2022-05-05 David E. Newman AI-Based Error Detection and Correction in 5G/6G Messaging
US20220255779A1 (en) * 2021-06-14 2022-08-11 David E. Newman Amplitude-Variation Encoding for High-Density 5G/6G Modulation
US11418372B1 (en) * 2021-06-14 2022-08-16 Ultralogic 6G, Llc Low-complexity demodulation of 5G and 6G messages
US11418279B1 (en) * 2021-06-14 2022-08-16 Ultralogic 6G, Llc Recovery and demodulation of collided 5G/6G message elements
US11463296B2 (en) * 2021-02-19 2022-10-04 Ultralogic 6G, Llc Error correction by merging copies of PAM-modulated 5G/6G messages

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7590094B2 (en) * 2003-09-25 2009-09-15 Via Telecom Co., Ltd. Tristate requests for flexible packet retransmission
US20060011482A1 (en) 2004-07-13 2006-01-19 Barkey Dale P Electrocodeposition of lead free tin alloys
US7532676B2 (en) 2005-10-20 2009-05-12 Trellis Phase Communications, Lp Single sideband and quadrature multiplexed continuous phase modulation
US8027286B2 (en) * 2006-07-28 2011-09-27 Samsung Electronics Co., Ltd. Multi-layer multi-hop wireless system
FR2960114B1 (en) 2010-05-12 2013-01-18 Thales Sa METHOD FOR DEMODULATING SIGNALS OF A MULTI-ACCESS SYSTEM WHICH MAY ENTER IN COLLISION AND IMPLEMENTING EQUIPMENT
US8649453B2 (en) * 2012-03-30 2014-02-11 Telefonaktiebolaget L M Ericsson (Publ) Enhanced metrics for demodulation and soft information generation in the presence of a non-constant envelope modulated interferer
US10057896B2 (en) 2015-04-09 2018-08-21 Telefonaktiebolaget Lm Ericsson (Publ) Resolving colliding signals
US10778500B2 (en) 2016-06-27 2020-09-15 Lg Electronics Inc. Method for transmitting and receiving reference signal in wireless communication system and device therefor
US20180019794A1 (en) 2016-07-14 2018-01-18 Sharp Laboratories Of America, Inc. Systems and methods for downlink control information for multiple-user superposition transmission
KR102520883B1 (en) 2016-07-26 2023-04-13 삼성전자주식회사 Apparatus and method for mitigating interference in wirleess communicnation system
US10581662B2 (en) 2016-09-30 2020-03-03 Sony Corporation Interleaving aspects in signal space diversity overlapped with non-orthogonal colliding transmissions
SG11202000309RA (en) 2017-07-13 2020-02-27 Ntt Docomo Inc User terminal and radio communication method
EP3683996B1 (en) 2017-09-11 2023-05-31 LG Electronics Inc. Method for handling collision between csi-rs and dmrs in wireless communication system, and device therefor
US11863315B2 (en) 2017-12-04 2024-01-02 Qualcomm Incorporated Techniques and apparatuses for avoiding collisions on an uplink data channel and a cell-specific or UE-specific uplink control channel
CN111989888B (en) 2018-04-04 2023-10-03 交互数字专利控股公司 Method and apparatus for NOMA conflict mitigation and complexity reduction
EP3804443B1 (en) 2018-07-09 2023-05-10 Huawei Technologies Co., Ltd. Device and method for fast collision resolution
US20220103321A1 (en) 2019-03-29 2022-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Collision management of LTE NR reference signals
CN112423403A (en) 2019-08-23 2021-02-26 微芯片技术股份有限公司 Detecting conflicts on a network
US11218249B2 (en) * 2019-09-18 2022-01-04 Intel Corporation Apparatus, system and method of processing a wireless communication packet based on a cyclic redundancy check (CRC) result
US11792856B2 (en) 2020-02-13 2023-10-17 Qualcomm Incorporated Uplink collision handling
US11647507B2 (en) 2020-02-14 2023-05-09 Acer Incorporated Device and method for handling physical uplink control channel collision
US11005696B1 (en) 2020-05-01 2021-05-11 Huawei Technologies Co., Ltd. Modulation scheme in a wireless communication system
US20230396355A1 (en) * 2020-12-14 2023-12-07 Qualcomm Incorporated Wireless communications based on rateless codes and layered modulation
US11159357B1 (en) * 2021-03-22 2021-10-26 Uvic Industry Partnerships Inc. Efficient reliable communication with superimposed transmissions
US11387961B2 (en) * 2021-06-14 2022-07-12 Ultralogic 6G, Llc Short-form demodulation reference for improved reception in 5G and 6G
US20220159614A1 (en) * 2021-06-14 2022-05-19 David E. Newman Semaphore Messages for Rapid 5G and 6G Network Selection
US11770209B2 (en) * 2022-09-06 2023-09-26 Ultralogic 6G, Llc Signal quality input for error-detection codes in 5G and 6G
US11799585B2 (en) * 2022-09-06 2023-10-24 David E. Newman Error correction in 5G and 6G using AI-based analog-digital correlations
US11824667B2 (en) * 2022-09-06 2023-11-21 Ultralogic 6G Llc Waveform indicators for fault localization in 5G and 6G messages

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7209522B1 (en) * 2002-12-12 2007-04-24 Marvell International Ltd. Blast MIMO signal processing method and apparatus
US10212020B2 (en) * 2015-06-09 2019-02-19 Samsung Electronics Co., Ltd Apparatus and method for superposition transmissions
US20160373201A1 (en) * 2015-06-22 2016-12-22 Samsung Electronics Co., Ltd. Receiver and decoding method thereof
WO2016208959A1 (en) * 2015-06-22 2016-12-29 Samsung Electronics Co., Ltd. Method and apparatus for multiuser superposition transmission
US20170214502A1 (en) * 2016-01-26 2017-07-27 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving signal in wireless communication system
US20200252193A1 (en) * 2019-01-31 2020-08-06 Cox Communications, Inc. Systems and methods for non-orthogonal multiple access over networks
US20200389348A1 (en) * 2020-01-07 2020-12-10 Allen LeRoy Limberg Apparatus For Demodulating Dual-Mapped QAM Signals With Labeling Diversity To Benefit Bit-Reliability Averaging
US11153780B1 (en) * 2020-11-13 2021-10-19 Ultralogic 5G, Llc Selecting a modulation table to mitigate 5G message faults
US20220140940A1 (en) * 2021-02-19 2022-05-05 David E. Newman AI-Based Error Detection and Correction in 5G/6G Messaging
US11463296B2 (en) * 2021-02-19 2022-10-04 Ultralogic 6G, Llc Error correction by merging copies of PAM-modulated 5G/6G messages
US11469856B2 (en) * 2021-02-19 2022-10-11 Ultralogic 6G, Llc Retransmission of selected message portions in 5G/6G
US20220255779A1 (en) * 2021-06-14 2022-08-11 David E. Newman Amplitude-Variation Encoding for High-Density 5G/6G Modulation
US11418372B1 (en) * 2021-06-14 2022-08-16 Ultralogic 6G, Llc Low-complexity demodulation of 5G and 6G messages
US11418279B1 (en) * 2021-06-14 2022-08-16 Ultralogic 6G, Llc Recovery and demodulation of collided 5G/6G message elements

Also Published As

Publication number Publication date
US20220247512A1 (en) 2022-08-04
US11522634B1 (en) 2022-12-06
US11418279B1 (en) 2022-08-16
US12095550B2 (en) 2024-09-17
US20230086221A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
US11522634B1 (en) Collision-tolerant modulation and fault recovery in 5G and 6G messages
US11451429B2 (en) Modulation including zero-power states in 5G and 6G
US12074741B2 (en) Identifying faulted message elements by modulation consistency in 5G/6G
US11387935B2 (en) Error detection and correction by modulation quality in 5G/6G
US11398876B2 (en) Error detection and correction in 5G/6G pulse-amplitude modulation
US11824696B2 (en) Measuring and mitigating inter-subcarrier interference in 5G and 6G
US11799608B2 (en) Low-complexity method for identifying downlink messages in 5G and 6G
US12101176B1 (en) Amplitude-phase acceptance regions for 5G/6G message fault detection

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: ULTRALOGIC 6G, LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NEWMAN, DAVID E.;MASSENGILL, R. KEMP;REEL/FRAME:064006/0637

Effective date: 20230615

AS Assignment

Owner name: NEWMAN, DAVID E., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ULTRALOGIC 6G, LLC;REEL/FRAME:064897/0203

Effective date: 20230913

Owner name: MASSENGILL, R. KEMP, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ULTRALOGIC 6G, LLC;REEL/FRAME:064897/0203

Effective date: 20230913