US20220378992A1 - Dialysis system with a dialysate quality sensor - Google Patents

Dialysis system with a dialysate quality sensor Download PDF

Info

Publication number
US20220378992A1
US20220378992A1 US17/827,506 US202217827506A US2022378992A1 US 20220378992 A1 US20220378992 A1 US 20220378992A1 US 202217827506 A US202217827506 A US 202217827506A US 2022378992 A1 US2022378992 A1 US 2022378992A1
Authority
US
United States
Prior art keywords
dialysate
sensor
flow path
media
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/827,506
Inventor
Brandon Borillo
Tzu Tung Chen
Clayton Poppe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diality Inc
Original Assignee
Diality Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diality Inc filed Critical Diality Inc
Priority to US17/827,506 priority Critical patent/US20220378992A1/en
Assigned to DIALITY INC. reassignment DIALITY INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, TZU TUNG, BORILLO, Brandon, POPPE, CLAYTON
Publication of US20220378992A1 publication Critical patent/US20220378992A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1601Control or regulation
    • A61M1/1603Regulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1694Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes with recirculating dialysing liquid
    • A61M1/1696Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes with recirculating dialysing liquid with dialysate regeneration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1601Control or regulation
    • A61M1/1603Regulation parameters
    • A61M1/1605Physical characteristics of the dialysate fluid
    • A61M1/1609Physical characteristics of the dialysate fluid after use, i.e. downstream of dialyser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means
    • A61M2205/3313Optical measuring means used specific wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3324PH measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3327Measuring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/583Means for facilitating use, e.g. by people with impaired vision by visual feedback
    • A61M2205/584Means for facilitating use, e.g. by people with impaired vision by visual feedback having a color code

Definitions

  • the present invention relates to an artificial kidney system for use in providing dialysis. More particularly, the present invention is directed to a hemodialysis system having a dialysate quality sensor.
  • Hemodialysis is a medical procedure that is used to achieve the extracorporeal removal of waste products including creatine, urea, and free water from a patient's blood involving the diffusion of solutes across a semipermeable membrane. Failure to properly remove these waste products can result in renal failure.
  • the dialysis machine includes a dialyzer containing a large number of hollow fibers forming a semipermeable membrane through which the blood is transported.
  • the dialysis machine utilizes a dialysate liquid, containing the proper amounts of electrolytes and other essential constituents (such as glucose), that is also pumped through the dialyzer.
  • dialysate is prepared by mixing water with appropriate proportions of an acid concentrate and a bicarbonate concentrate.
  • the acid and the bicarbonate concentrate are separated until the final mixing right before use in the dialyzer as the calcium and magnesium in the acid concentrate will precipitate out when in contact with the high bicarbonate level in the bicarbonate concentrate.
  • the dialysate may also include appropriate levels of sodium, potassium, chloride, and glucose.
  • the dialysis process across the membrane is achieved by a combination of diffusion and convection.
  • the diffusion entails the migration of molecules by random motion from regions of high concentration to regions of low concentration.
  • convection entails the movement of solute typically in response to a difference in hydrostatic pressure.
  • the fibers forming the semipermeable membrane separate the blood plasma from the dialysate and provide a large surface area for diffusion to take place which allows waste, including urea, potassium and phosphate, to permeate into the dialysate while preventing the transfer of larger molecules such as blood cells, polypeptides, and certain proteins into the dialysate.
  • the dialysate flows in the opposite direction to blood flow in the extracorporeal circuit.
  • the countercurrent flow maintains the concentration gradient across the semipermeable membrane so as to increase the efficiency of the dialysis.
  • hemodialysis may provide for fluid removal, also referred to as ultrafiltration.
  • Ultrafiltration is commonly accomplished by lowering the hydrostatic pressure of the dialysate compartment of a dialyzer, thus allowing water containing dissolved solutes, including electrolytes and other permeable substances, to move across the membrane from the blood plasma to the dialysate.
  • fluid in the dialysate flow path portion of the dialyzer is higher than the blood flow portion, causing fluid to move from the dialysis flow path to the blood flow path. This is commonly referred to as reverse ultrafiltration. Since ultrafiltration and reverse ultrafiltration can increase the risks to a patient, ultrafiltration and reverse ultrafiltration are typically conducted while supervised by highly trained medical personnel.
  • hemodialysis suffers from numerous drawbacks.
  • An arteriovenous fistula is the most commonly recognized access point.
  • a doctor joins an artery and a vein together. Since this bypasses the patient's capillaries, blood flows rapidly.
  • the fistula must be punctured with large needles to deliver blood into, and return blood from, the dialyzer.
  • this procedure is done three times a week, for 3-4 hours at an out-patient facility.
  • patients conduct hemodialysis at home. Some forms of home dialysis are done for two hours, six days a week. Other forms use two and a half to three hour treatments, four to 5 days a week.
  • Currently offered home hemodialysis requires more frequent treatments than those in an out-patient setting.
  • Home hemodialysis suffers from still additional disadvantages.
  • Current home dialysis systems are big, complicated, intimidating and difficult to operate. The equipment requires significant training.
  • Home hemodialysis systems are currently too large to be portable, thereby preventing hemodialysis patients from traveling.
  • Home hemodialysis systems are expensive and require a high initial monetary investment, particularly compared to in-center hemodialysis where patients are not required to pay for the machinery.
  • Present home hemodialysis systems do not adequately provide for the reuse of supplies, making home hemodialysis economically less feasible to medical suppliers.
  • very few motivated patients undertake the drudgery of home hemodialysis.
  • hemodialysis system that was capable of being used in a variety of modes, such as with a filter to cleanse dialysate or without a filter.
  • a hemodialysis system including an arterial blood line for connecting to a patient's artery for collecting blood from a patient, a venous blood line for connecting to a patient's vein for returning blood to a patient, a reusable dialysis machine and a disposable dialyzer.
  • the arterial blood line and venous blood line may be typical constructions known to those skilled in the art.
  • the arterial blood line may be traditional flexible hollow tubing connected to a needle for collecting blood from a patient's artery.
  • the venous blood line may be a traditional flexible tube and needle for returning blood to a patient's vein.
  • Various constructions and surgical procedures may be employed to gain access to a patient's blood including an intravenous catheter, an arteriovenous fistula, or a synthetic graft.
  • the disposable dialyzer has a construction and design known to those skilled in the art including a blood flow path and a dialysate flow path.
  • the term “flow path” is intended to refer to one or more fluid conduits, also referred to as passageways, for transporting fluids.
  • the conduits may be constructed in any manner as can be determined by ones skilled in the art, such as including flexible medical tubing or non-flexible hollow metal or plastic housings.
  • the blood flow path transports blood in a closed loop system by connecting to the arterial blood line and venous blood line for transporting blood from a patient to the dialyzer and back to the patient.
  • dialysate flow path transports dialysate in a closed loop system from a supply of dialysate to the dialyzer and back to the dialysate supply. Both the blood flow path and the dialysate flow path pass through the dialyzer, but the flow paths are separated by the dialyzer's semipermeable membrane.
  • the hemodialysis system contains a reservoir for storing a dialysate solution.
  • the reservoir connects to the hemodialysis system's dialysate flow path to form a closed loop system for transporting dialysate from the reservoir to the hemodialysis system's dialyzer and back to the reservoir.
  • the hemodialysis system possesses two (or more) dialysate reservoirs which can be alternatively placed within the dialysate flow path. In such embodiments, when one reservoir possesses contaminated dialysate, dialysis treatment can continue using the other reservoir while the reservoir with contaminated dialysate is emptied and refilled.
  • the reservoirs may be of any size as required by clinicians to perform an appropriate hemodialysis treatment, or as required to hold accumulated dialysate and excess ultrafiltrate volume removed during an appropriate hemodialysis treatment. However, in some embodiments, the two reservoirs are the same size and are sufficiently small so as to enable the dialysis machine to be easily portable. Some acceptable reservoirs are 0.5 liters to 12.0 liters in size. Other reservoir sizes and volumes may be determined by one skilled in the art.
  • the hemodialysis system possesses one or more heaters thermally coupled to the reservoirs for heating dialysate stored within the reservoir(s).
  • the hemodialysis system can include temperature sensors for measuring the temperature of the dialysate within the reservoir(s).
  • the hemodialysis system can also include one or more fluid mass sensors for detecting the mass of fluid in the reservoir(s).
  • the fluid mass sensor(s) may be any type of sensor for determining the mass of fluid within the reservoir(s).
  • Acceptable fluid mass sensors include resistive strain gauge type sensors, magnetic or mechanical float type sensors, optical interfaces, conductive sensors, ultrasonic sensors, and weight measuring sensors such as a scale or load cell for measuring the weight of the dialysate in the reservoir(s).
  • the hemodialysis system comprises three primary pumps.
  • the first and second “dialysate” pumps are connected to the dialysate flow path for pumping dialysate through the dialysate flow path from a reservoir to the dialyzer and back to the reservoir.
  • a first pump is positioned in the dialysate flow path “upflow,” (meaning prior in the flow path) from the dialyzer while the second pumps is positioned in dialysate flow path “downflow” (meaning subsequent in the flow path) from the dialyzer.
  • the hemodialysis system's third primary pump is connected to the blood flow path.
  • This third primary pump or “blood” pump pumps blood from a patient through the arterial blood line, through the dialyzer, and through the venous blood line for return to a patient.
  • the third pump is positioned in the blood flow path, upflow from the dialyzer.
  • the hemodialysis system can also comprise one or more sorbent filters for removing toxins which have permeated from the blood plasma through the semipermeable membrane into the dialysate.
  • Filter materials for use within the filter are well known to those skilled in the art.
  • suitable materials include resin beds including zirconium based resins.
  • Acceptable materials are also described in U.S. Pat. No. 8,647,506 and U.S. Patent Publication No. 2014/0001112.
  • Other acceptable filter materials can be developed and utilized by those skilled in the art without undue experimentation.
  • the filter housing may include a vapor membrane capable of releasing gases such as ammonia.
  • the sorbent filter is connected to the dialysate flow path downflow from the dialyzer so as to remove toxins in the dialysate prior to the dialysate being transported back to a reservoir.
  • the filter is outside of the closed loop dialysate flow path, but instead is positioned within a separate closed loop “filter” flow path that selectively connects to either one of the two dialysate reservoirs.
  • the hemodialysis system includes an additional fluid pump for pumping contaminated dialysate through the filter flow path and its filter.
  • the hemodialysis system comprises two additional flow paths in the form of a “drain” flow path and a “fresh dialysate” flow path.
  • the drain flow path can include one or more fluid drain lines for draining the reservoirs of contaminated dialysate
  • the fresh dialysate flow path can include one or more fluid fill lines for transporting fresh dialysate from a supply of fresh dialysate to the reservoirs.
  • One or more fluid pumps may be connected to the drain flow path and/or the fresh dialysate flow path to transport the fluids to their intended destination.
  • the hemodialysis system can include a plurality of fluid valve assemblies for controlling the flow of blood through the blood flow path, for controlling the flow of dialysate through the dialysate flow path, and for controlling the flow of used dialysate through the filter flow path.
  • the valve assemblies may be of any type of electro-mechanical fluid valve construction as can be determined by one skilled in the art including, but not limited to, traditional electro-mechanical two-way fluid valves and three-way fluid valves.
  • a two-way valve is any type of valve with two ports, including an inlet port and an outlet port, wherein the valve simply permits or obstructs the flow of fluid through a fluid pathway.
  • a three-way valve possesses three ports and functions to shut off fluid flow in one fluid pathway while opening fluid flow in another pathway.
  • the dialysis machine's valve assemblies can include safety pinch valves, such as a pinch valve connected to the venous blood line for selectively permitting or obstructing the flow of blood through the venous blood line.
  • the pinch valve is provided so as to pinch the venous blood line and thereby prevent the flow of blood back to the patient in the event that an unsafe condition has been detected.
  • the hemodialysis system contains sensors for monitoring hemodialysis.
  • some embodiments of the hemodialysis system comprise at least one flow sensor connected to the dialysate flow path for detecting fluid flow (volumetric and/or velocity) within the dialysate flow path.
  • some embodiments of the hemodialysis system contain one or more pressure sensors for detecting the pressure within the dialysate flow path, or at least an occlusion sensor for detecting whether the dialysate flow path is blocked.
  • the dialysis machine also comprises one or more sensors for measuring the pressure and/or fluid flow within the blood flow path.
  • the pressure and flow rate sensors can be separate components, or pressure and flow rate measurements can be made by a single sensor.
  • the hemodialysis system can include a blood leak detector (“BLD”) which monitors the flow of dialysate through the dialysate flow path and detects whether blood has inappropriately diffused through the dialyzer's semipermeable membrane into the dialysate flow path.
  • BLD blood leak detector
  • the hemodialysis system comprises a blood leak sensor assembly incorporating a light source which emits light through the dialysate flow path, and a light sensor which receives the light that has been emitted through the dialysate flow path. After passing through the dialysate flow path, the received light is then analyzed to determine if the light has been altered to reflect possible blood in the dialysate.
  • the hemodialysis system comprises additional sensors, such as one or more dialysate quality sensors.
  • the hemodialysis system can comprise one or more dialysate quality sensors, such as an ammonia sensor for detecting the level of ammonia within the dialysate, and/or a pH sensor for detecting the pH within the dialysate.
  • the ammonia sensor and pH sensor are in the dialysate flow path immediately downstream of the filter.
  • the dialysis machine can have a bubble sensor connected to the arterial blood line and a bubble sensor connected to the venous blood line for detecting whether gaseous bubbles have formed in the blood flow path.
  • the dialysate quality sensor can be disposed directly in the dialysate flow path.
  • the dialysate quality sensor comprises a sensor media.
  • the sensor media includes a sensor configured to change color based on a pH level, ammonia level, or ammonium level of the dialysate.
  • sensor media is configured to change to a predetermined color when the level of ammonia or ammonium is in a range between 5 to 10 ppm (parts per million).
  • the sensor media is configured to change to a predetermined color when the pH level is outside a range of 6.4 to 7.0 pH.
  • the sensor media can also include an internal light source. The sensor media is configured to adjust the internal light source intensity and hue based on ambient light.
  • the dialysate quality sensor can also comprise a sensor body having a transparent wall, and a slot configured to house and secure the sensor media while directly exposing the sensor media to the dialysate.
  • the transparent wall is configured to allow broad spectrum light to traverse without interference.
  • the slot and the transparent wall of the sensor body are configured to be disposed on opposite sides from one another on the sensor body.
  • the slot and the transparent wall can be disposed on a same side as one another on the sensor body.
  • the sensor body can comprise a slot-covering material configured to seal the sensor media inside of the slot.
  • the dialysate quality sensor can further comprise a color reader configured to determine the color of the sensor media.
  • the color reader comprises a light emitter, and a light receiver configured to determine a color of light reflecting off the sensor media.
  • the color reader can be mounted to the transparent wall such that the color reader can receive light reflecting from the sensor media.
  • the dialyzer comprises a controller configured to transmit a quality status of the dialysate to a remote device based on at least the color of the sensor media.
  • the controller can also display the quality status of the dialysate on a display of the hemodialysis system based on at least the color of the sensor media.
  • the hemodialysis system further comprises a processor containing the dedicated electronics for controlling the hemodialysis system.
  • the processor contains power management and control electrical circuitry connected to the pump motors, valves, and dialysis machine sensors for controlling proper operation of the hemodialysis system.
  • the dialysis machine provides a hemodialysis system that is transportable, lightweight, easy to use, patient-friendly and capable of in-home use.
  • the hemodialysis system provides an extraordinary amount of control and monitoring not previously provided by hemodialysis systems so as to provide enhanced patient safety.
  • FIG. 1 is a flow chart illustrating a first embodiment of the hemodialysis system
  • FIG. 2 is the flow chart of FIG. 1 illustrating an embodiment where dialysate avoids the sorbent filter by flowing through the bypass flow path;
  • FIG. 3 is the flow chart of FIG. 1 illustrating an embodiment where dialysate flows through the sorbent filter in a closed loop dialysate flow path incorporating a first reservoir;
  • FIG. 4 is the flow chart of FIG. 1 illustrating an embodiment where dialysate flows through the sorbent filter in a closed loop dialysate flow path incorporating a second reservoir;
  • FIG. 5 is a flow chart illustrating an embodiment of the hemodialysis system including a closed loop filter flow path which is filtering the fluid in a first reservoir;
  • FIG. 6 is a flow chart illustrating the second embodiment of the hemodialysis system shown in FIG. 5 wherein the filter flow path which is filtering the fluid in a second reservoir;
  • FIG. 7 A is a flow chart illustrating a hemodialysis system having a system for replenishing dialysate with minerals in accordance with some embodiments
  • FIG. 7 B is a flow chart illustrating a hemodialysis system having a system for replenishing dialysate with minerals in accordance with some embodiments
  • FIG. 8 illustrates a dialysate quality sensor in accordance with some embodiments
  • FIG. 9 illustrates a cross-sectional view of the dialysate quality sensor shown in FIG. 8 ;
  • FIG. 10 illustrates a cross-sectional view of the dialysate quality sensor shown in FIG. 8 ;
  • FIGS. 11 A- 11 B are cross-sectional views of the dialysate quality sensor shown in FIG. 8 , illustrating how a sensor media can be positioned within the sensor body in accordance with some embodiments;
  • FIGS. 12 A- 12 B are cross-sectional views of the dialysate quality sensor shown in FIG. 8 , illustrating how a sensor media can be positioned within the sensor body in accordance with some embodiments;
  • FIG. 13 illustrates the dialysate quality sensor with a color reader in accordance with some embodiments
  • FIG. 14 illustrates the dialysate quality sensor with a color reader and a pH-sensing medium in accordance with some embodiments
  • FIG. 15 illustrates the dialysate quality sensor with a color reader and a pH-sensing medium in accordance with some embodiments
  • FIG. 16 illustrates the dialysate quality sensor with a color reader in accordance with some embodiments.
  • FIG. 17 illustrates the dialysate quality sensor with a color reader in accordance with some embodiments present disclosure.
  • the hemodialysis system comprises a blood flow path 53 and a dialysate flow path 54 .
  • the hemodialysis system further comprises a reusable dialysis machine and disposable components for performing hemodialysis.
  • the blood flow path 53 includes an arterial blood line 1 for connecting to a patient's artery for collecting blood from a patient, and a venous blood line 14 for connecting to a patient's vein for returning blood to a patient.
  • the arterial blood line 1 and venous blood line 14 may be typical constructions known to those skilled in the art.
  • the blood flow path 53 transports blood in a closed loop system by connecting to the arterial blood line 1 and venous blood line 14 to a patient for transporting blood from a patient through the dialyzer 8 and back to the patient.
  • the hemodialysis system comprises a supply of heparin 6 and a heparin pump connected to the blood flow path 53 .
  • the heparin pump delivers small volumes of heparin anticoagulant into the blood flow to reduce the risk of blood clotting in the machine.
  • the heparin pump can take the form of a linearly actuated syringe pump, or the heparin pump may be a bag connected with a small peristaltic or infusion pump.
  • the hemodialysis system further comprises a dialyzer 8 in the dialysate flow path 54 which is of a construction and design known to those skilled in the art.
  • the dialyzer 8 includes a large number of hollow fibers which form a semipermeable membrane. Suitable dialyzers can be obtained from Fresenius Medical Care, Baxter International, Inc., Nipro Medical Corporation, and other manufacturers of hollow fiber dialyzers.
  • Both the blood flow path 53 and dialysate flow path 54 travel through the dialyzer 8 which comprises an inlet for receiving dialysate, an outlet for expelling dialysate, an inlet for receiving blood from a patient, and an outlet for returning blood to a patient.
  • the dialysate flows in the opposite direction to the blood flowing through the dialyzer 8 with the dialysate flow path 54 isolated from the blood flow path 53 by a semipermeable membrane (not shown).
  • the dialysate flow path 54 transports dialysate in a closed loop system in which dialysate is pumped from a reservoir ( 17 or 20 ) to the dialyzer 8 and back to the reservoir ( 17 or 20 ). Both the blood flow path 53 and the dialysate flow path 54 pass through the dialyzer 8 , but are separated by the dialyzer's 8 semipermeable membrane.
  • the hemodialysis system includes three primary pumps ( 5 , 26 & 33 ) for pumping blood and dialysate.
  • the term “pump” is meant to refer to both the pump actuator which uses suction or pressure to move a fluid, and the pump motor for mechanically moving the actuator.
  • Suitable pump actuators may include an impeller, piston, diaphragm, the lobes of a lobe pump, screws of a screw pump, rollers or linear moving fingers of a peristaltic pump, or any other mechanical construction for moving fluid as can be determined by those skilled in the art.
  • the pump's ( 5 , 26 , or 33 ) motor is the electromechanical apparatus for moving the actuator.
  • the motor may be connected to the pump actuator by shafts or the like.
  • each of the pump actuators consist of a peristaltic pump mechanism wherein each pump actuator includes a rotor with a number of cams attached to the external circumference of the rotor in the form of “rollers”, “shoes”, “wipers”, or “lobes” which compress the flexible tube.
  • the rotor turns, the part of the tube under compression is pinched closed (or “occludes”) forcing the fluid to be pumped through the tube.
  • the tube opens to its natural state after the passing of the cam fluid flow is induced through the tube.
  • the first and second primary pumps ( 26 and 33 ) are connected to the dialysate flow path 54 for pumping dialysate through the dialysate flow path 54 from the reservoir ( 17 or 20 ) to the dialyzer 8 and back to the reservoir ( 17 or 20 ).
  • a first pump 26 is connected to the dialysate flow path 54 “upstream”, (meaning prior in the flow path) from the dialyzer 8 while the second pump 33 is connected to the dialysate flow path 54 “downstream” (meaning subsequent in the flow path) from the dialyzer 8 .
  • the hemodialysis system's third primary pump 5 is connected to the blood flow path 53 .
  • the third primary pump 5 also referred to as the blood pump, pumps blood from a patient through the arterial blood line 1 , through the dialyzer 8 , and through the venous blood line 14 for return to a patient. It is preferred that the third primary pump 5 be connected to the blood flow path 53 upstream from the dialyzer 8 .
  • the hemodialysis system can contain more or less than three primary pumps.
  • the dialysate may be pumped through the dialyzer 8 utilizing only a single pump.
  • the hemodialysis system contains two pumps.
  • the hemodialysis system can have two or more reservoirs ( 17 and 20 ) for storing dialysate solution.
  • the hemodialysis system can have one reservoir 17 for storing dialysate solution.
  • Both of the reservoirs ( 17 and 20 ) may be connected simultaneously to the dialysate flow path 54 to form one large source of dialysate.
  • the hemodialysis system comprises a valve assembly 21 for introducing either, but not both, of the two reservoirs ( 17 or 20 ) into the dialysate flow path 54 to form a closed loop system for transporting a dialysate from one of the two reservoirs ( 17 or 20 ) to the dialyzer 8 and back to that same reservoir ( 17 or 20 ).
  • the hemodialysis system's valve 21 is controlled to remove the first reservoir 17 from the dialysate flow path 54 and substitute the second reservoir 20 , which has fresh dialysate 75 , into the dialysate flow path 54 .
  • the hemodialysis system's valve 21 is controlled to remove the first reservoir 17 from the dialysate flow path 54 and substitute the second reservoir 20 , which has fresh dialysate 75 , into the dialysate flow path 54 .
  • the hemodialysis system may switch between each reservoir 17 and 20 multiple times over the course of a treatment.
  • the presence of two reservoirs ( 17 and 20 ) as opposed to one reservoir allows for the measurement of the flow rate for pump calibration or ultrafiltration measurement, while isolating the other reservoir ( 17 or 20 ) while it is being drained or filled.
  • the reservoirs ( 17 and 20 ) may be of any size as required to hold accumulated dialysate and excess ultrafiltrate volume removed during an appropriate hemodialysis treatment, some preferred reservoir(s) have a total volume between 8 liters and 12 liters.
  • the hemodialysis system also comprises a sorbent filter 36 (also referred to herein as a “filter”) connected to the dialysate flow path 54 for removing toxins which have permeated from the blood plasma through the semipermeable membrane into the dialysate.
  • the filter 36 is connected to the dialysate flow path 54 downstream from the dialyzer 8 so as to remove toxins transferred by the dialyzer 8 into the dialysate prior to the dialysate being transported to the reservoir ( 17 or 20 ).
  • Filter 36 materials for use with the dialysis machine are well known to those skilled in the art. For example, suitable materials include resin beds including zirconium based resins.
  • the filter 36 comprises a housing containing layers of zirconium oxide, zirconium phosphate, urease, and carbon.
  • Acceptable materials are described in U.S. Pat. No. 8,647,506 and U.S. Patent Application Publication No. 2014/0001112.
  • Other acceptable filter 36 materials can be developed and utilized by those skilled in the art without undue experimentation.
  • the filter's 36 housing may or may not include a degassing membrane 80 capable of releasing gases including air and carbon dioxide, but not liquids, and particularly not the dialysate liquid flowing through the filter.
  • the dialysate flow path 54 includes a degasser 80 positioned downstream of the sorbent filter 36 .
  • the sorbent filter 36 has an air inlet having a filter 36 a , pressure sensor, and pump 44 . Sorbent regeneration degassing may be accomplished by introducing a stream of air through the air inlet, which is substantially free of CO 2 , into the regenerated dialysate.
  • the pump 44 introduces the stream of air into the sorbent filter 36 at about the same approximate flowrate as the flowrate of the liquid through the dialysate flow path.
  • the combined air-liquid fluid may then be exposed to a hydrophobic membrane within the degasser 80 where the gas is free to exit the system, but liquid continues to flow through the dialysate flow path.
  • dialyzer 8 further comprises a sorbent dialysis device (not shown).
  • a sorbent dialysis device ammonia in the dialysate is generated by a reaction of urea with urease. The ammonia in equilibrium with ammonium is adsorbed by an ion exchange material. After some time, the capacity of the ion exchange material for ammonium is used up and ammonia and/or ammonium start to leach out.
  • a dialysate quality sensor 700 (not shown in FIGS. 1 - 6 ) is required in order to detect whether an unsafe amount of ammonia is present in the dialysate due to leaching from the sorbent dialysis device.
  • the dialysis flow path 54 can include one or more dialysate quality sensors 700 , such as an ammonium sensor 37 and/or a pH sensor 38 .
  • the dialysis flow path 54 comprises an ammonium sensor 37 and a pH sensor 38 , both of which can be located immediately downstream of the sorbent filter 36 (best illustrated in FIGS. 1 - 6 ).
  • the filter 36 may begin to release ammonium ions as a result of the filtering chemical reaction.
  • ammonium ions in the dialysis fluid can harm the patient.
  • the ammonium sensor 37 measures the quantity of ammonium ions in parts per million (ppm). In some embodiments, when the measurement reaches a range of approximately 1 ppm to 20 ppm, a warning state will be activated, and treatment with this dialysate can be automatically stopped.
  • the dialysis fluid can be drained, and dialysis treatment may continue by using fresh dialysate 75 using the alternative reservoir ( 17 or 20 ).
  • the pH sensor 38 also acts as a safety feature and supports the measurement of ammonium ions.
  • the pH of the dialysis fluid changes, the equilibrium state of ammonia (NH3) and ammonium ions (NH4+) can change.
  • a warning state can be activated, and the dialysis treatment can be ended.
  • some embodiments of the hemodialysis system comprise a reagent bag 39 and reagent pump 40 for introducing reagents into the dialysate flow path 54 immediately after the sorbent filter 36 .
  • the reagent bag 39 holds a concentrated solution of salts and ions to reinfuse the filter dialysis fluid.
  • the sorbent filter 36 also removes beneficial ions from the dialysis fluid, such as calcium and salt. Before the filtered dialysis fluid can be recirculated, it must be reinfused with calcium and salts so that the dialysis fluid does not draw these beneficial ions from the patient's blood.
  • the reagent bag 39 will hold between 1 and 3 liters of concentrated reagent.
  • the reagent pump 40 can be any type of pump such as a peristaltic pump or diaphragm pump.
  • a conductivity sensor 41 may be positioned within the dialysate flow path 54 immediately after the reagent bag 39 . In this way, the conductivity sensor 41 serves as a safety feature, measuring the total dissolved solids of the regenerated dialysis fluid. In the event that the total dissolved solids are detected to not be within a prescribed range, the operation of the reagent pump 40 can be increased or decreased, or alternatively, treatment can be stopped entirely.
  • the fluid can be redirected by 3-way valves 29 and 32 through the dialyzer bypass path 30 so that dialysate does not meet the patient's blood in the dialyzer 8 .
  • the 3-way valve 29 directs dialysis fluid to the dialyzer's 8 inlet and the 3-way valve 32 directs dialysate from the dialyzer's 8 outlet back through the dialysate flow path 54 .
  • the dialysis fluid is redirected by 3-way valves 29 and 32 to bypass the dialyzer 8 , through dialyzer bypass path 30 .
  • the hemodialysis system further comprises a drain flow path 55 to dispose of waste dialysate from the reservoirs ( 17 and 20 ).
  • the drain flow path 55 is connected to both reservoirs ( 17 and 20 ).
  • Waste dialysate may drain through the drain flow path 55 through a gravity feed, or the hemodialysis system may include a pump 44 of any type as can be selected by those skilled in the art to pump used dialysate to be discarded, such as to a traditional building sewer line 45 .
  • the hemodialysis system can include a source 46 of dialysate fluid to replenish each of the reservoirs ( 17 and 20 ).
  • the source of dialysate fluid includes a supply of clean water 46 that is mixed with concentrated reagents ( 48 and 50 ) to provide dialysate of desired properties.
  • the supply of clean water 46 is provided by a reverse osmosis (“RO”) machine located adjacent to the device which produces clean water and then adds chemical concentrates to create the dialysate fluid.
  • RO reverse osmosis
  • the fluid is supplied through a “fresh dialysate” flow path 56 to the reservoirs ( 17 and 20 ).
  • the hemodialysis system comprises a source of concentrated reagents which can be stored in disposable bags.
  • the concentrated reagents contain one or more of the following: bicarbonate solution, acid solution, lactate solution, salt solution. It is necessary to separate some of the reagents into two bags ( 48 and 50 ) to prevent undesirable interactions or precipitation of solutes.
  • the concentrated reagent sources ( 48 and 50 ) are connected by reagent pumps ( 47 and 49 ) to the supply line 46 . The activation of the reagent pumps ( 47 and 49 ) introduces the concentrated reagents from reagent sources ( 48 and 50 ) into the supply of water to provide dialysate to the reservoirs ( 17 and 20 ).
  • the hemodialysis system can include a supplemental “bypass” flow path 35 that selectively transports dialysis around the sorbent filter 36 .
  • the bypass flow path 35 includes a 3-way valve 34 upstream of the sorbent filter 36 . In this way, the 3-way valve 34 is switched to direct the dialysis fluid through sorbent filter 36 , or alternatively, the 3-way valve 34 is switched to direct dialysate through the bypass flow path 35 to avoid the sorbent filter 36 .
  • the 3-way valve 34 is switched to direct the dialysis fluid down the bypass flow path 35 .
  • a sorbent filter 71 is located outside of the closed loop dialysate flow path 54 .
  • the hemodialysis system includes a separate closed loop “filter” flow path 57 that selectively connects to either one of the two dialysate reservoirs ( 17 or 20 ), and the sorbent filter 71 is positioned in-series in the closed loop filter flow path 57 .
  • the dialysis machine includes an additional fluid pump 58 for pumping contaminated dialysate through the filter flow path 57 and the sorbent filter 71 . As illustrated in FIGS.
  • some embodiments comprise a filter flow path 57 having a 3-way valve 43 which determines which reservoir ( 17 or 20 ) is drained of contaminated dialysate.
  • FIG. 5 illustrates the 3-way valve 43 connecting reservoir 20 , but not reservoir 17 , to the filter flow path 57 .
  • FIG. 6 illustrates the 3-way valve 43 connecting reservoir 17 , but not reservoir 20 , to the filter flow path 57 .
  • the filter flow path 57 may include a pump 58 , or the dialysate may dispense contaminated dialysate from reservoirs ( 17 or 20 ) through a gravity feed.
  • the filter flow path 57 includes a pressure sensor 59 , a check valve 60 , an ammonium sensor 69 , and a pH sensor 70 .
  • This embodiment of the hemodialysis machine also includes a system for introducing reagents into the filter flow path 57 .
  • the filter flow path 57 includes a first reagent source 61 , preferably containing salts, and a second reagent source 65 , preferably containing bicarbonate and lactate solution. These reagents are introduced into the filter flow path 57 using pumps ( 62 and 66 ), and mixers ( 63 and 67 ).
  • the filter flow path 57 also possesses safety features in the form of (1) an ammonium sensor 69 to ensure that the filter 71 is not spent and/or introducing unacceptable ammonium ions into the dialysate; (2) a pH sensor 70 to support the measurement of ammonium ions and detect pH within the dialysate; and (3) conductivity sensors ( 64 and 68 ) which monitor whether the reagents have been properly introduced into the cleaned dialysate to provide the proper amounts of beneficial ions.
  • the filter flow path 57 comprises a pair of check valves ( 51 and 52 ) which open and close to ensure that the now cleaned dialysate is returned to the reservoir ( 17 or 20 ) from which the contaminated dialysate had been drained from.
  • the hemodialysis system can comprise a heater 23 thermally connected to the dialysate flow path 54 or to reservoirs ( 17 and/or 20 ) for heating the dialysate to a desired temperature.
  • a single heater 23 is thermally coupled to the dialysate flow path 54 downstream of both reservoirs ( 17 and 20 ).
  • the hemodialysis may include additional heaters 23 , and the one or more heaters 23 may be in different locations.
  • the hemodialysis system includes two heaters 23 , with a single heater 23 thermally coupled to each reservoir ( 17 and 20 ).
  • the one or more heaters 23 are preferably activated by electricity and includes a resistor which produces heat with the passage of an electric current.
  • the various embodiments of the hemodialysis system described herein can possess various sensors for monitoring hemodialysis, and in particular, the dialysate flow path 54 and blood flow path 53 .
  • some embodiments of the hemodialysis system can comprise one or more flow sensors 25 connected to the dialysate flow path 54 for detecting fluid flow (volumetric and/or velocity) within the dialysate flow path 54 .
  • the hemodialysis system does not comprise a flow sensor 25 .
  • the some hemodialysis system embodiments comprise one or more pressure, or occlusion, sensors ( 27 ) for detecting the pressure within the dialysate flow path 54 .
  • some embodiments of the hemodialysis system can comprise one or more sensors for measuring the pressure ( 4 , 7 and 9 ) with or without fluid flow 11 within the blood flow path 53 .
  • the hemodialysis system comprises temperature sensors ( 15 , 22 and 24 ) for measuring the temperature of the dialysate throughout the dialysate flow path 54 .
  • the hemodialysis system can comprise fluid mass sensors for detecting the mass of fluid in the reservoirs ( 17 and 20 ).
  • the fluid mass sensors can include either capacitive fluid mass sensors ( 15 and 18 ) such as those described in U.S. Pat. No. 9,649,419, or ultrasonic fluid level sensors.
  • the weight, and therefore level of dialysate, of each reservoir ( 17 and 20 ) is measured by a strain gauge sensor ( 16 or 19 ) connected to a processor (described in further detail below).
  • the hemodialysis system does not comprise a bubble sensor 3 in the arterial line, a flow sensor 11 in the blood circuit, the dialysate flow sensor 25 in the dialysis circuit, and pressure sensor 27 in the dialysis circuit.
  • the hemodialysis system can include a blood leak detector 31 which monitors the flow of dialysate through the dialysate flow path 54 and detects whether blood has inappropriately diffused through the dialyzer's 8 semipermeable membrane into the dialysate flow path 54 .
  • the hemodialysis system also contains a first pinch valve 2 connected to the arterial blood line 1 for selectively permitting or obstructing the flow of blood through the arterial blood line 1 , and a second pinch valve 13 connected to the venous blood line 14 for selectively permitting or obstructing the flow of blood through the venous blood line 14 .
  • the pinch valves ( 2 and 13 ) are provided so as to pinch the arterial blood line 1 and venous blood line 14 , respectively, to prevent the flow of blood back to the patient in the event that any of the sensors have detected an unsafe condition.
  • the hemodialysis system includes blood line bubble sensors ( 3 and 12 ) to detect if an air bubble travels backwards down the arterial line 1 (blood leak sensor 3 ) or venous line 14 (blood leak sensor 12 ).
  • the blood flow path 53 may include a bubble trap 10 which has a pocket of pressurized air inside a plastic housing. Bubbles rise to the top of the bubble trap 10 , while blood continues to flow to the lower outlet of the bubble trap 10 . This component reduces the risk of bubbles traveling into the patient's blood.
  • the hemodialysis system includes a variety of fluid valves for controlling the flow of fluid through the various flow paths of the hemodialysis system.
  • the various valves include pinch valves and 2-way valves which must be opened or closed, and 3-way valves which divert dialysate through a desired flow pathway as intended.
  • some embodiments of the hemodialysis system comprise a 3-way valve 21 located at the reservoirs' ( 17 and 20 ) outlets which determines from which reservoir ( 17 or 20 ) dialysate passes through the dialyzer 8 .
  • An additional 3-way valve 42 determines to which reservoir ( 17 or 20 ) the used dialysate is sent to.
  • 2-way valves ( 51 and 52 ), which may be pinch valves, are located at the reservoirs' ( 17 and 20 ) inlets to permit or obstruct the supply of fresh dialysate to the reservoirs ( 17 and 20 ).
  • alternative valves may be employed as can be determined by those skilled in the art, and the present invention is not intended to be limited the specific 2-way valve or 3-way valve that has been identified.
  • the hemodialysis system includes a processor (not shown) and a user interface (not shown).
  • the processor contains the dedicated electronics for controlling the hemodialysis system including the hardware and software, and power management circuitry connected to the pump motors, sensors (including reservoir mass strain gauge sensor(s) ( 16 and/or 19 ), blood leak sensor 31 , ammonia sensor 37 , pressure and flow rate sensors ( 4 , 7 , 9 , 11 , 25 , 27 , and 59 ), temperature sensors ( 22 , 24 and 28 ), blood line bubble sensors ( 3 and 12 ), valves ( 2 , 13 , 21 , 29 , 32 , 34 , 42 , 43 , 51 , 52 , and 60 ), and heater 23 for controlling proper operation of the hemodialysis system.
  • sensors including reservoir mass strain gauge sensor(s) ( 16 and/or 19 ), blood leak sensor 31 , ammonia sensor 37 , pressure and flow rate sensors ( 4 , 7 , 9 , 11 , 25 , 27 , and 59 ), temperature
  • the processor monitors each of the various sensors ( 3 , 4 , 7 , 9 , 11 , 12 , 15 , 16 , 18 , 19 , 22 , 24 , 25 , 27 , 28 , 31 , 37 , 59 ) to ensure that hemodialysis treatment is proceeding in accordance with a preprogrammed procedure input by medical personnel into the user interface.
  • the processor may be a general-purpose computer or microprocessor including hardware and software as can be determined by those skilled in the art to monitor the various sensors ( 3 , 4 , 7 , 9 , 11 , 12 , 15 , 16 , 18 , 19 , 22 , 24 , 25 , 27 , 28 , 31 , 37 , and 59 ) and provide automated or directed control of the heater 23 , pumps ( 5 , 6 , 26 , 33 , 40 , 44 , 47 and 49 ), and pinch valves ( 2 and 13 ).
  • the processor may be located within the electronics of a circuit board or within the aggregate processing of multiple circuit boards and memory cards.
  • the hemodialysis system includes a power supply for providing power to the processor, user interface, pump motors, valves ( 2 , 13 , 21 , 29 , 32 , 34 , 42 , 43 , 51 , 52 , and 60 ) and sensors ( 3 , 4 , 7 , 9 , 11 , 12 , 15 , 16 , 18 , 19 , 22 , 24 , 25 , 27 , 28 , 31 , 37 , and 59 ).
  • the processor can also be connected to the dialysis machine sensors ( 3 , 4 , 7 , 9 , 11 , 12 , 15 , 16 , 18 , 19 , 22 , 24 , 25 , 27 , 28 , 31 , 37 , and 59 ), pumps ( 5 , 6 , 26 , 33 , 40 , 44 , 47 and 49 ), and pinch valves ( 2 and 13 ) by traditional electrical circuitry.
  • the processor is electrically connected to the first, second and third primary pumps ( 5 , 26 , and 33 ) for controlling the activation and rotational velocity of the pump motors, which in turn controls the pump actuators, which in turn controls the pressure and fluid velocity of blood through the blood flow path 53 and the pressure and fluid velocity of dialysate through the dialysate flow path 54 .
  • the processor can maintain, increase or decrease the pressure and/or fluid flow within the dialysate flow path within the dialyzer 8 .
  • the processor can control the pressure differential across the dialyzer's 8 semipermeable membrane to maintain a predetermined pressure differential (zero, positive or negative), or maintain a predetermined pressure range. For example, most hemodialysis is performed with a zero or near zero pressure differential across the semipermeable membrane, and to this end, the processor can monitor and control the pumps ( 5 , 26 , and 33 ) to maintain this desired zero or near zero pressure differential.
  • the processor may monitor the pressure sensors ( 4 , 7 , 9 , 27 , and 59 ) and control the pump motors, and in turn pump actuators, to increase and maintain positive pressure in the blood flow path 53 within the dialyzer 8 relative to the pressure of the dialysate flow path 54 within the dialyzer 8 .
  • this pressure differential can be affected by the processor to provide ultrafiltration and the transfer of free water and dissolved solutes from the blood to the dialysate.
  • the processor monitors the blood flow sensor 11 to control the blood pump 5 flowrate. It uses the dialysate flow sensor 25 to control the dialysate flow rate from the upstream dialysate pump 26 . The processor then uses the mass strain gauge sensor(s) ( 16 and/or 19 ) to control the flowrate from the downstream dialysate pump 33 .
  • the change in fluid level (or volume) in the dialysate reservoir ( 17 or 20 ) is identical to the change in volume of the patient. By monitoring and controlling the level in the reservoir ( 17 or 20 ), forward, reverse, or zero ultrafiltration can be accomplished.
  • the processor monitors all of the various sensors ( 3 , 4 , 7 , 9 , 11 , 12 , 15 , 16 , 18 , 19 , 22 , 24 , 25 , 27 , 28 , 31 , 37 , and 59 ) to ensure that the hemodialysis machine is operating efficiently and safely, and in the event that an unsafe or non-specified condition is detected, the processor corrects the deficiency or ceases further hemodialysis treatment.
  • the processor signals an alarm, the pumps are deactivated ( 5 , 6 , 26 , 33 , 40 , 44 , 47 and 49 ), and the pinch valves ( 2 and 13 ) are closed to prevent further blood flow back to the patient.
  • the processor signals an alarm and ceases further hemodialysis treatment.
  • the dialysis machine's user interface may include a keyboard or touch screen (not shown) for enabling a patient or medical personnel to input commands concerning treatment or enable a patient or medical personnel to monitor performance of the hemodialysis system.
  • the processor may include Wi-Fi or Bluetooth connectivity for the transfer of information or control to a remote location.
  • FIG. 8 illustrates a dialysate quality sensor 700 in accordance with some embodiments of the present disclosure.
  • the dialysate quality sensor 700 comprises a sensor body 707 , a lumen 710 , and a sensor media retainer 715 for housing a sensor media 1000 (not shown).
  • the dialysate quality sensor 700 can be disposed directly in the dialysate flow path 54 .
  • the dialysate quality sensor 700 is coupled to the dialysate flow path 54 of the dialyzer 8 .
  • the dialysate flow path 54 is in fluid connection with the lumen 710 .
  • the lumen 710 can comprise a circular or substantially circular cross-sectional area.
  • the sensor media retainer 715 can be a slot in the sensor body 707 configured to hold and secure the sensor media 1000 (not shown) in place while directly exposing the sensor media 1000 to the dialysate.
  • the sensor media retainer 715 can also be a compartment attached to the sensor body 707 .
  • the sensor media retainer 715 can be sealed using a cover (not shown) that can be inserted into the opening of the sensor media retainer 715 so as to create a seal.
  • the sensor media retainer 715 can be sealed by filling the opening with adhesive such that the sensor body 707 is secured in place.
  • the sensor media retainer 715 can be hermitically sealed once the sensor media 1000 (not shown) is inserted.
  • the sensor media retainer 715 and the sensor body 707 are one integrated component.
  • the sensor body 707 can include a transparent wall 720 disposed on or integrated with the sensor body 707 , such that there is a direct line of sight from the transparent wall 720 to the sensor media 1000 (not shown), which is in the sensor media retainer 715 .
  • the transparent wall 720 and the sensor media retainer 715 are disposed on the same wall or side of the sensor body 707 .
  • the transparent wall 720 and the sensor media retainer 715 are disposed on opposite walls of the sensor body 707 .
  • the transparent wall 720 is configured to allow a broad spectrum light to pass through or traverse without any interference.
  • the transparent wall 720 can be made of a clear medical grade material such as a medical grade plastic.
  • the transparent wall 720 is positioned relative to the sensor media retainer 715 such that a direct line of sight exists from the transparent wall 720 to the sensor media 1000 , and wherein the transparent wall 720 is made of material such that broad spectrum light can pass therethrough without any interference.
  • FIG. 9 is a cross-sectional view at “Section A” of the dialysate quality sensor 700 illustrated in FIG. 8 .
  • a center portion of dialysate quality sensor 700 can be narrower or have a smaller cross-sectional area than both ends of the lumen 710 .
  • the dialysate quality sensor 700 can include a window 805 between sensor media retainer 715 and lumen 710 .
  • the window 805 can be smaller than the sensor media 1000 so that the sensor media 1000 is secured within the lumen 710 area of the sensor media retainer 715 . In this way, the window 805 allows the sensor media 1000 (not shown in FIG. 9 ) to be directly exposed to the dialysate flow path 54 within lumen 710 .
  • FIG. 10 illustrates a cross-sectional view at “Section B” of the dialysate quality sensor 700 illustrated in FIG. 8 .
  • the dialysate quality sensor 700 can have a narrow center portion 905 .
  • the end portions ( 910 and 915 ) of dialysate quality sensor 700 can be 0.25 inches in diameter.
  • the dialysate quality sensor 700 is not restricted to any particular dimensions.
  • the end portions ( 910 and 915 ) are configured to be attachable and detachable to the dialysate flow path 54 of dialyzer 8 . In this way the end portions ( 910 and 915 ) are configured for solvent wielding or bonding in tubing.
  • the dialysate flow path 54 can include pathways (e.g., conduits) that can be coupled and decoupled to end portions ( 910 and 915 ).
  • the dialysate quality sensor 700 can be replaced with a new sensor 700 once the sensor media 1000 of the dialysate quality sensor 700 needs to be replaced.
  • the dialysate quality sensor 700 can have different configurations such that the sensor media 1000 can be placed in different configurations within the dialysate quality sensor 700 .
  • FIGS. 11 A and 11 B illustrate cross-sectional views at “Section A” of the dialysate quality sensor 700 illustrated in FIG. 8 .
  • the sensor media retainer 715 comprises an opening, wherein the opening is positioned on a top portion of the dialysate quality sensor 700 .
  • FIG. 11 A show a sensor media 1000 being inserted into the sensor media retainer 715 (e.g., slot or compartment). As shown in FIG. 11 A , the sensor media 1000 is being inserted into the sensor media retainer 715 from the top of the dialysate quality sensor 700 , through the opening.
  • the sensor body 707 can comprise a slot-covering material configured to seal the sensor media 1000 inside of the slot.
  • FIG. 11 B further illustrates the dialysate quality sensor 700 comprising a cover 1005 .
  • the cover 1005 is configured to be positioned on the sensor media retainer 715 so as to seal said opening on the top portion of the dialysate quality sensor 700 .
  • cover 1005 can be hermetically sealed using various means such as adhesive, thermal welding, etc.
  • FIGS. 12 A and 12 B also illustrate cross-sectional views at “Section A” of the dialysate quality sensor 700 illustrated in FIG. 8 , illustrating an alternative configuration of the dialysate quality sensor 700 .
  • the sensor media retainer 715 is positioned with the opening of the sensor media retainer 715 on a side of the dialysate quality sensor 700 rather than the top (as shown in FIGS. 11 A and 11 B ).
  • the sensor media 1000 is being inserted into the sensor media retainer 715 from the side of the dialysate quality sensor 700 .
  • FIG. 12 B further illustrates the dialysate quality sensor 700 comprising the cover 1005 .
  • the cover 1005 is configured to be positioned on the sensor media retainer 715 so as to seal said opening on the side portion of the dialysate quality sensor 700 . Once cover 1005 is positioned, it can be hermetically sealed using various means such as adhesive, thermal welding, etc.
  • the sensor media 1000 includes a sensor configured to change color based on a pH level, ammonia level, or ammonium level of the dialysate.
  • sensor media 1000 is configured to change to a predetermined color when the level of ammonia or ammonium is in a range between 5 to 10 ppm.
  • the sensor media 1000 is configured to change to a predetermined color when the pH level is outside a range of 6.4 to 7.0 pH.
  • the sensor media 1000 can comprise an internal light source. Specifically, the sensor media 1000 is configured to adjust the internal light source intensity and hue based on ambient light.
  • FIG. 13 illustrates the dialysate quality sensor 700 with an optical detector or color reader 1200 configured to determine the color of the sensor media 1000 .
  • the color reader 1200 can include an emitter 1205 and a receiver 1210 .
  • the color reader 1200 is mounted to or adjacent to the transparent wall such that the color reader can receive light reflecting from the sensor media 1000 .
  • the emitter 1205 and receiver 1210 of the color reader 1200 can be positioned adjacent to the transparent wall 720 .
  • the emitter 1205 and receiver 1210 are positioned adjacent to one another.
  • the emitter 1205 is configured to transmit a broad spectrum light onto the sensor media 1000 through the transparent wall 720 .
  • the sensor media 1000 is configured such that a side portion of the sensor media 1000 is read by the color media 1200 .
  • the sensor media 1000 is housed within the sensor media retainer 715 and is configured so as to reflect light therefrom.
  • a backside of the sensor media 1000 is positioned such that the sensor media 1000 can be read by the color reader 1200 and lights can be emitted therethrough by the emitter 1205 .
  • the receiver 1210 is configured to determine the color of the light reflected off the sensor media 1000 . And, based on the color of the reflected light, the level of ammonia, ammonium and/or the pH of the dialysate can be determined.
  • the sensor media 1000 can be an ammonia and/or ammonium color changing media.
  • the sensor media 1000 is configured to change to a predetermined color range when a certain level (ppm) of ammonia/ammonium is present in the dialysate.
  • the sensor media 1000 can also be a pH sensor, which can change to a certain color when the dialysate has a certain pH range (e.g., 6.4-7.0).
  • the sensor media 1000 can have a plurality of sensing portions.
  • the sensor media 1000 can have a portion that is configured to sense ammonia/ammonium and another portion configured to sense pH.
  • the sensor media 1000 can also have 3 portions, each portion is configured to detect ammonia, ammonium, or pH.
  • the receiver 1210 can be configured to read color from two or more regions of the sensor media 1000 . In this way, the dialysate quality sensor 700 can measure different characteristics of the dialysate in order to obtain a better reading of the dialysate's quality state.
  • FIG. 14 illustrates the dialysate quality sensor 700 with the sensor media 1000 being attached to a transparent media 1305 , which can be inserted or slotted into sensor media retainer 715 of the sensor body 707 .
  • the transparent media 1305 can be comprised of glass, a clear plastic, or other suitable material that does not interfere with lights emitted from an optical detector comprising the emitter 1205 .
  • the sensor media 1000 can be a pH sensor, which is configured to change to a certain color at a certain pH range. For example, the pH sensor can change to yellow when the pH of the dialysate is between 6.4-7.0.
  • the sensor media 1000 can be placed at various locations such as, but not limited to, attached to a clear medium, the transparent wall 720 portion of the sensor body 707 , or the transparent cover 1005 (not shown).
  • FIG. 15 illustrates the dialysate quality sensor 700 with the sensor media 1000 being attached to the transparent wall 720 portion of the sensor body 707 .
  • the sensor media 1000 can be adhesively attached to the inside of the transparent wall 720 portion via an opening or hole 1405 in the sensor body 707 .
  • the opening or hole 1405 is positioned opposite from where the sensor media 1000 is housed in the sensor body 707 and will require sealing with a plug or cap of material, or adhesion.
  • the hole 1405 can be covered by direct adhesion between the sensor media 1000 and the transparent wall 720 , or be capped or plugged with the cover 1005 .
  • the sensor media 1000 can also be attached to the backside of the cover 1005 , which can be made of a transparent material.
  • FIG. 16 illustrates a method for measuring the color of the sensor media 1000 in accordance with some embodiments of the present disclosure.
  • the color reader 1200 comprises a light source 1900 and a color sensor 1700 .
  • the color reader 1200 can measure the color of the sensor media 1000 by exposing the sensor media 1000 to the light source 1900 , such as a broad spectrum light (or other spectral frequency).
  • the broad spectrum light or other spectral frequency
  • the sensor media 1000 is configured to reflect light therefrom so as measure the color of the light by the color sensor 1700 .
  • FIG. 17 illustrates an alternative method for measuring the color of the sensor media 1000 in accordance with some embodiments of the present disclosure.
  • the color reader 1200 comprises light source 1900 and color sensor 1700 .
  • the color reader can be coupled to fiber optic cables ( 1500 a and 1500 b ).
  • fiber optic cable 1500 a is operatively connected to the color sensor 1700 and fiber optic cable 1500 b is operatively connected to the light source 1900 .
  • the fiber optic cables ( 1500 a and 1500 b ) can transmit and receive light to and from the sensor media 1000 .
  • the color reader 1200 can be positioned at a non-direct line of sight location.
  • the hemodialysis system provides increased flexibility of treatment options based on the required frequency of dialysis, the characteristics of the patient, the availability of dialysate or water and the desired portability of the dialysis machine.
  • the blood flow path 53 transports blood in a closed loop system by connecting to the arterial blood line 1 and venous blood line 14 to a patient for transporting blood from a patient to the dialyzer 8 and back to the patient.
  • a first method of using the hemodialysis system does not require the use of a sorbent filter 36 .
  • Water is introduced to the machine through the fresh dialysate flow path 56 from a water supply 46 such as water supplied through RO. If needed, chemical concentrates from reagent sources ( 48 and 50 ) are added to the clean water using the chemical concentrate pumps ( 47 and 49 ).
  • the mixed dialysate is then introduced to reservoirs ( 17 and 20 ).
  • the fresh dialysate 75 from a first reservoir ( 17 or 20 ) is recirculated past the dialyzer 8 through sorbent filter bypass path 35 back to the same reservoir ( 17 or 20 ).
  • the reservoir ( 17 or 20 ) When the volume of the reservoir ( 17 or 20 ) has been recirculated once, the reservoir ( 17 or 20 ) is emptied through the drain flow path 55 and the reservoir ( 17 or 20 ) is refilled through the fresh dialysate flow path 56 .
  • hemodialysis treatment continues using the second reservoir ( 17 or 20 ).
  • the processor switches all pertinent valves ( 21 , 42 , 43 , 51 and 52 ) to remove the first reservoir 20 from patient treatment, and inserts the second reservoir 17 into the dialysate flow path 54 .
  • the fresh dialysate 75 from the second reservoir 17 is recirculated past the dialyzer 8 through sorbent filter bypass path 35 and back to the same reservoir 17 .
  • This switching back and forth between reservoirs ( 17 and 20 ) continues until the dialysis treatment is complete. This operation is similar, but not the same, as traditional single-pass systems because no sorbent filter 36 is used.
  • the sorbent filter 36 filters the dialysate after it has passed through the dialyzer 8 .
  • the processor switches the 3-way valve 34 to incorporate the sorbent filter 36 into the dialysate flow path 54 , and the processor switches the various valve assemblies ( 21 , 42 , 43 , 51 and 52 ) to utilize reservoir 17 during dialysis treatment.
  • Fresh dialysate 75 is recirculated through the dialyzer 8 and sorbent filter 36 , and thereafter the dialysate is sent back to the same reservoir 17 through the dialysate flow path 54 .
  • This recirculation continues as determined by the processor including, but not limited to, because the sorbent filter 36 has been spent, or the dialysate fluid is contaminated, or ultrafiltration has resulted in the reservoir 17 becoming full and requiring that it be drained and refilled. Meanwhile, in the event the fluid in reservoir 20 is contaminated, it is drained through the drain flow path 55 , and then the reservoir 20 is refilled using the fresh dialysate flow path 56 .
  • the processor switches the various valve assemblies ( 21 , 42 , 43 , 51 and 52 ) to remove reservoir 17 from the dialysate flow path 54 , and to instead insert reservoir 20 within the dialysis flow path 54 for dialysis treatment.
  • Fresh dialysate 75 is recirculated through the dialyzer 8 and sorbent filter 36 back to the same reservoir 20 . Again, this recirculation continues using reservoir 20 , as determined by the processor, until switching back to reservoir 17 , or until dialysis treatment has been completed.
  • contaminated fluid 76 in reservoir 17 is drained through the drain flow path 55 . Thereafter, reservoir 17 is refilled using the fresh dialysate flow path 56 .
  • this switching back and forth between reservoirs ( 17 and 20 ) continues until the dialysis treatment is complete.
  • hemodialysis treatment is conducted in similar manner as illustrated in FIG. 2 in which the sorbent filter 36 is not utilized within the dialysate flow path 54 .
  • the fresh dialysate 75 be directed through the sorbent filter bypass path 35 so as to avoid the sorbent filter 36 .
  • the fresh dialysate 75 from the first reservoir ( 17 or 20 ) is recirculated past the dialyzer 8 through sorbent filter bypass path 35 and directed back to the same reservoir ( 17 or 20 ).
  • the hemodialysis system does not include sorbent filter 36 .
  • the hemodialysis system includes a single sorbent filter 71 which is within a separate closed loop flow path referred to herein as the filter flow path 57 .
  • FIGS. 5 and 6 illustrate the hemodialysis system including two sorbent filters 36 and 71 , the sorbent filter 36 within the dialysate flow path 54 is optional and does not need to be incorporated within this embodiment of the hemodialysis system.
  • dialysis treatment is implemented while switching back and forth between reservoirs ( 17 and 20 ).
  • the various valve assemblies 21 , 42 , 43 , 51 and 52 ) are switched to insert the second reservoir 20 into the closed loop filter flow path 57 .
  • the contaminated water 76 is drained from the reservoir 20 through pump 58 and pressure sensor 59 . Thereafter the contaminated water 76 is filtered through the sorbent filter 71 .
  • Reagents 61 and 65 may be introduced into the filter flow path 57 using a gravity feed or pumps 62 and 66 .
  • the reagents 61 and 65 are mixed within the mixers 63 and 67 before the now cleaned dialysate is tested for compliance by conductivity testers 64 and 68 , ammonium sensor 69 , and pH sensor 70 . If testing shows the water is now clean, it is directed back to reservoir 20 .
  • the processor continues to monitor the output of the various sensors including those within the dialysate flow path 54 .
  • the water within reservoir 17 has become contaminated, it is removed from the dialysate flow path 54 and reservoir 20 is substituted in its place by once again switching all of the pertinent valve assemblies ( 21 , 42 , 43 , 51 and 52 ).
  • the fresh dialysate 75 from the second reservoir 20 is recirculated in the closed loop dialysate flow path 54 past the dialyzer 8 and directed back to the same reservoir 20 .
  • the now contaminated water 76 in reservoir 17 is drained through pump 58 and pressure sensor 59 before being filtered through the sorbent filter 71 .
  • reagents 61 and 65 may be introduced into the filter flow path 57 where the reagents 61 and 65 are mixed within the mixers 63 and 67 .
  • the now clean dialysate is tested for compliance by conductivity testers 64 and 68 , ammonium sensor 69 and pH sensor 70 before filling reservoir 17 . This process of alternating reservoirs ( 17 and 20 ) continues until the prescribed hemodialysis treatment is completed, or a fault is detected which requires that treatment be halted.
  • FIG. 7 A illustrates still an additional embodiment of the hemodialysis system which operates in recirculating mode where the dialysate flows in a closed-loop system through the sorbent filter 36 .
  • the blood flow path 53 transports blood in a closed loop system by connecting to the arterial blood line 1 and venous blood line 14 to a patient for transporting blood from a patient to the dialyzer 8 and back to the patient.
  • Dialysate is stored in a reservoir 17 with the level of dialysate's measured by a fluid mass sensor 19 , such as a mass strain gauge or load cell 19 , and the dialysate's temperature maintained by a heater 23 .
  • Dialysate is recirculated through the dialyzer 8 and sorbent filter 36 using pumps 26 and 33 . Thereafter, the dialysate is sent back to the same reservoir 17 through the dialysate flow path 54 .
  • sources of chemical concentrates from reagent sources are provided which can be added to the clean water, as necessary, to maintain proper chemicals in the dialysate.
  • the first reagent source 48 contains salts and the second reagent source 50 contains bicarbonate and lactate solution.
  • the chemical concentrates are introduced into the dialysate flow path 54 using the chemical concentrate pumps ( 47 and 49 ) where the clean water and chemical concentrates are mixed with mixers ( 63 and 67 ).
  • the dialysate flow path 54 may include a flow sensor 25 , one or more pressure sensors 27 , and a sample port 79 .
  • the dialysate flow path 54 also includes a conductivity sensor 41 positioned between the second mixer 67 and reservoir 17 , and includes an ammonia sensor 37 , a pH sensor 38 and a combined conductivity/temperature sensor 24 positioned between the reservoir 17 and dialyzer 8 .
  • a control processor 77 is connected to the various sensors (e.g., 3 , 4 , 7 , 11 , 12 , 15 , 16 , 19 , 24 , 25 , and 27 ) and pumps ( 5 , 6 , 26 , 33 , 44 , 47 and 49 ) to control the hemodialysis treatment.
  • the embodiment of the hemodialysis system illustrated in FIG. 7 A operates in a closed loop recirculating mode where the dialysate flows through the sorbent filter 36 .
  • Dialysate is stored in a reservoir 17 and recirculated through the dialyzer 8 and sorbent filter 36 .
  • Chemical concentrates 48 and 50 are added to the filtered water, as necessary. Recirculation continues as determined by the processor until treatment has completed, the sorbent filter 36 has been spent, the dialysate fluid is contaminated, or ultrafiltration has resulted in the reservoir 17 becoming full and requiring that it be drained.
  • Reagent sources ( 48 and 50 ) can contain the same or different infusate/reagent solutions having one or more of the following chemical compounds: calcium acetate, calcium chloride, magnesium acetate, magnesium chloride, potassium acetate, potassium chloride, sodium bicarbonate, and sodium carbonate.
  • these compounds are infused with the dialysate coming out of the sorbent filter 36 to replenish essential sodium ions in the dialysate while also balancing the pH of the dialysate. In this way, the pH of the dialysate can be controlled to closely match with the pH of blood.
  • the reagent solution from one or more of the reagent sources ( 48 and 50 ) can be added to the dialysate flow path 54 after the sorbent filter 36 to bring the pH back to the desired level. This process works because fluid leaving the sorbent filter 36 at lower pH generally needs more sodium reinfused than fluid at a higher pH.
  • the reagent solution in one of the reagent sources 48 or 50 can have the following compounds: calcium chloride (CaCl 2 ), magnesium chloride (MgCl 2 ), and potassium acetate (KAc).
  • the reagent solution can have the following compound concentrations (approximately): CaCl 2 25—40 mM millimolar); MgCl 2 12.5—20 mM; and KAc 75—120 mM.
  • the reagent solution have the following compound concentrations (approximately): CaCl 2 —32.04 mM (millimolar); MgCl 2 —16.02 mM; and KAc—96.12 mM. It should be noted that other molarities can also be used as long as the approximate molar ratio of each compound is maintained.
  • the concentration of the sodium carbonate solution can be approximately 1.5 M.
  • sodium carbonate is considered one of the most essential salts due to its highly basicity.
  • sodium carbonate includes two molecules of sodium per compound.
  • sodium carbonate is the preferred reagent because each mole of Na 2 CO 3 can turn one mole of CO 2 into sodium bicarbonate (NaHCO 3 ) which is closer to a safe and physiologic pH range in the dialysate.
  • reagent source 48 can be the solution of CaCl 2 , MgCl 2 , and KAc
  • the reagent source 50 can be the reagent solution of Na 2 CO 3
  • reagent source 48 can be 3-4 L and reagent source 50 can be 0.5-1.0 L.
  • reagent source 48 can be the solution of Na 2 CO 3
  • the reagent source 50 can the reagent solution of CaCl 2 , MgCl 2 , and KAc.
  • reagent sources ( 48 and 50 ) can be combined into a single reagent source having an reagent solution with one or more of the following chemical compounds: calcium acetate, calcium chloride, magnesium acetate, magnesium chloride, potassium acetate, potassium chloride, sodium bicarbonate, and sodium carbonate.
  • reagent solutions from reagent source 48 and reagent source 50 are added to the dialysate flow path 54 after the sorbent filter 36 .
  • the reagent solutions from reagent sources ( 48 and 50 ) can enter the dialysate flow path 54 at the same location or at different locations and are mixed with one or more mixers ( 63 or 67 ).
  • the reagent solution from reagent source 48 is inserted into the dialysate flow path 54 before the first mixer 63 , and the reagent solution from reagent source 50 is inserted into the dialysate flow path 54 after the first mixer 63 .
  • the dialysate and reagent solution in the dialysate flow path 54 are mixed again using a second downstream mixer 67 (e.g., second mixer 67 ).
  • a single mixer can be used after the injection point.
  • two or more mixers can be used at various locations downstream of the sorbent filter 36 but before dialysate reservoir 17 .
  • the dialysate flow path 54 can have a second reservoir to store new and/or refreshed dialysate—dialysate with renewed essential minerals content.
  • logic code programs, modules, processes, methods, and the order in which the respective elements of each method are performed are purely exemplary. Depending on the implementation, they may be performed in any order or in parallel, unless indicated otherwise in the present disclosure. Further, the logic code is not related, or limited to any particular programming language, and may comprise one or more modules that execute on one or more processors in a distributed, non-distributed, or multiprocessing environment.

Abstract

A portable hemodialysis system is provided including a dialyzer, a closed loop blood flow path which transports blood from a patient through the dialyzer and back to the patient, and a closed loop dialysate flow path which transports dialysate through the dialyzer. Preferably, the hemodialysis system comprises a sorbent filter in the dialysate flow path. Furthermore, the hemodialysis system comprises a dialysate quality sensor disposed directly in the dialysate flow path. The dialysate quality sensor is configured to change color based on a pH level, ammonia level, or ammonium level of the dialysate.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority to, and the benefit of, U.S. Provisional Patent Application No. 63/195,161, filed May 31, 2021, which is hereby expressly incorporated by reference in its entirety for all purposes.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to an artificial kidney system for use in providing dialysis. More particularly, the present invention is directed to a hemodialysis system having a dialysate quality sensor.
  • Applicant hereby incorporate is herein by reference any and all patents and published patent applications cited or referred to in this application.
  • Hemodialysis is a medical procedure that is used to achieve the extracorporeal removal of waste products including creatine, urea, and free water from a patient's blood involving the diffusion of solutes across a semipermeable membrane. Failure to properly remove these waste products can result in renal failure.
  • During hemodialysis, the patient's blood is removed by an arterial line, treated by a dialysis machine, and returned to the body by a venous line. The dialysis machine includes a dialyzer containing a large number of hollow fibers forming a semipermeable membrane through which the blood is transported. In addition, the dialysis machine utilizes a dialysate liquid, containing the proper amounts of electrolytes and other essential constituents (such as glucose), that is also pumped through the dialyzer.
  • Typically, dialysate is prepared by mixing water with appropriate proportions of an acid concentrate and a bicarbonate concentrate. Preferably, the acid and the bicarbonate concentrate are separated until the final mixing right before use in the dialyzer as the calcium and magnesium in the acid concentrate will precipitate out when in contact with the high bicarbonate level in the bicarbonate concentrate. The dialysate may also include appropriate levels of sodium, potassium, chloride, and glucose.
  • The dialysis process across the membrane is achieved by a combination of diffusion and convection. The diffusion entails the migration of molecules by random motion from regions of high concentration to regions of low concentration. Meanwhile, convection entails the movement of solute typically in response to a difference in hydrostatic pressure. The fibers forming the semipermeable membrane separate the blood plasma from the dialysate and provide a large surface area for diffusion to take place which allows waste, including urea, potassium and phosphate, to permeate into the dialysate while preventing the transfer of larger molecules such as blood cells, polypeptides, and certain proteins into the dialysate.
  • Typically, the dialysate flows in the opposite direction to blood flow in the extracorporeal circuit. The countercurrent flow maintains the concentration gradient across the semipermeable membrane so as to increase the efficiency of the dialysis. In some instances, hemodialysis may provide for fluid removal, also referred to as ultrafiltration. Ultrafiltration is commonly accomplished by lowering the hydrostatic pressure of the dialysate compartment of a dialyzer, thus allowing water containing dissolved solutes, including electrolytes and other permeable substances, to move across the membrane from the blood plasma to the dialysate. In rarer circumstances, fluid in the dialysate flow path portion of the dialyzer is higher than the blood flow portion, causing fluid to move from the dialysis flow path to the blood flow path. This is commonly referred to as reverse ultrafiltration. Since ultrafiltration and reverse ultrafiltration can increase the risks to a patient, ultrafiltration and reverse ultrafiltration are typically conducted while supervised by highly trained medical personnel.
  • Unfortunately, hemodialysis suffers from numerous drawbacks. An arteriovenous fistula is the most commonly recognized access point. To create a fistula, a doctor joins an artery and a vein together. Since this bypasses the patient's capillaries, blood flows rapidly. For each dialysis session, the fistula must be punctured with large needles to deliver blood into, and return blood from, the dialyzer. Typically, this procedure is done three times a week, for 3-4 hours at an out-patient facility. To a lesser extent, patients conduct hemodialysis at home. Some forms of home dialysis are done for two hours, six days a week. Other forms use two and a half to three hour treatments, four to 5 days a week. Currently offered home hemodialysis requires more frequent treatments than those in an out-patient setting.
  • Home hemodialysis suffers from still additional disadvantages. Current home dialysis systems are big, complicated, intimidating and difficult to operate. The equipment requires significant training. Home hemodialysis systems are currently too large to be portable, thereby preventing hemodialysis patients from traveling. Home hemodialysis systems are expensive and require a high initial monetary investment, particularly compared to in-center hemodialysis where patients are not required to pay for the machinery. Present home hemodialysis systems do not adequately provide for the reuse of supplies, making home hemodialysis economically less feasible to medical suppliers. As a result of the above-mentioned disadvantages, very few motivated patients undertake the drudgery of home hemodialysis.
  • Accordingly, there is a significant need for a hemodialysis system that is transportable, lightweight, easy to use, patient-friendly and thus capable of in-clinic or in-home use.
  • Moreover, it would be desirable to provide a hemodialysis system that possessed no single-point of failure in the pumps, motors, tubes, or electronics which would endanger a patient.
  • In addition, it would be desirable to provide a hemodialysis system that was capable of being used in a variety of modes, such as with a filter to cleanse dialysate or without a filter.
  • Aspects of the present invention fulfill these needs and provide further related advantages as described in the following summary.
  • SUMMARY OF THE INVENTION
  • According to a first aspect of the invention, a hemodialysis system is provided including an arterial blood line for connecting to a patient's artery for collecting blood from a patient, a venous blood line for connecting to a patient's vein for returning blood to a patient, a reusable dialysis machine and a disposable dialyzer.
  • The arterial blood line and venous blood line may be typical constructions known to those skilled in the art. For example, the arterial blood line may be traditional flexible hollow tubing connected to a needle for collecting blood from a patient's artery. Similarly, the venous blood line may be a traditional flexible tube and needle for returning blood to a patient's vein. Various constructions and surgical procedures may be employed to gain access to a patient's blood including an intravenous catheter, an arteriovenous fistula, or a synthetic graft.
  • Preferably, the disposable dialyzer has a construction and design known to those skilled in the art including a blood flow path and a dialysate flow path. The term “flow path” is intended to refer to one or more fluid conduits, also referred to as passageways, for transporting fluids. The conduits may be constructed in any manner as can be determined by ones skilled in the art, such as including flexible medical tubing or non-flexible hollow metal or plastic housings. The blood flow path transports blood in a closed loop system by connecting to the arterial blood line and venous blood line for transporting blood from a patient to the dialyzer and back to the patient. Meanwhile, the dialysate flow path transports dialysate in a closed loop system from a supply of dialysate to the dialyzer and back to the dialysate supply. Both the blood flow path and the dialysate flow path pass through the dialyzer, but the flow paths are separated by the dialyzer's semipermeable membrane.
  • In some embodiments, the hemodialysis system contains a reservoir for storing a dialysate solution. The reservoir connects to the hemodialysis system's dialysate flow path to form a closed loop system for transporting dialysate from the reservoir to the hemodialysis system's dialyzer and back to the reservoir. In some exemplar embodiments, the hemodialysis system possesses two (or more) dialysate reservoirs which can be alternatively placed within the dialysate flow path. In such embodiments, when one reservoir possesses contaminated dialysate, dialysis treatment can continue using the other reservoir while the reservoir with contaminated dialysate is emptied and refilled. The reservoirs may be of any size as required by clinicians to perform an appropriate hemodialysis treatment, or as required to hold accumulated dialysate and excess ultrafiltrate volume removed during an appropriate hemodialysis treatment. However, in some embodiments, the two reservoirs are the same size and are sufficiently small so as to enable the dialysis machine to be easily portable. Some acceptable reservoirs are 0.5 liters to 12.0 liters in size. Other reservoir sizes and volumes may be determined by one skilled in the art.
  • In some embodiments, the hemodialysis system possesses one or more heaters thermally coupled to the reservoirs for heating dialysate stored within the reservoir(s). In addition, the hemodialysis system can include temperature sensors for measuring the temperature of the dialysate within the reservoir(s). The hemodialysis system can also include one or more fluid mass sensors for detecting the mass of fluid in the reservoir(s). The fluid mass sensor(s) may be any type of sensor for determining the mass of fluid within the reservoir(s). Acceptable fluid mass sensors include resistive strain gauge type sensors, magnetic or mechanical float type sensors, optical interfaces, conductive sensors, ultrasonic sensors, and weight measuring sensors such as a scale or load cell for measuring the weight of the dialysate in the reservoir(s).
  • In some exemplar embodiments, the hemodialysis system comprises three primary pumps. The first and second “dialysate” pumps are connected to the dialysate flow path for pumping dialysate through the dialysate flow path from a reservoir to the dialyzer and back to the reservoir. In some embodiments, a first pump is positioned in the dialysate flow path “upflow,” (meaning prior in the flow path) from the dialyzer while the second pumps is positioned in dialysate flow path “downflow” (meaning subsequent in the flow path) from the dialyzer. In some embodiments, the hemodialysis system's third primary pump is connected to the blood flow path. This third primary pump or “blood” pump pumps blood from a patient through the arterial blood line, through the dialyzer, and through the venous blood line for return to a patient. In exemplar embodiments, the third pump is positioned in the blood flow path, upflow from the dialyzer.
  • The hemodialysis system can also comprise one or more sorbent filters for removing toxins which have permeated from the blood plasma through the semipermeable membrane into the dialysate. Filter materials for use within the filter are well known to those skilled in the art. For example, suitable materials include resin beds including zirconium based resins. Acceptable materials are also described in U.S. Pat. No. 8,647,506 and U.S. Patent Publication No. 2014/0001112. Other acceptable filter materials can be developed and utilized by those skilled in the art without undue experimentation. Depending upon the type of filter material, the filter housing may include a vapor membrane capable of releasing gases such as ammonia.
  • In a first embodiment, the sorbent filter is connected to the dialysate flow path downflow from the dialyzer so as to remove toxins in the dialysate prior to the dialysate being transported back to a reservoir. In a second embodiment, the filter is outside of the closed loop dialysate flow path, but instead is positioned within a separate closed loop “filter” flow path that selectively connects to either one of the two dialysate reservoirs. In some embodiments, the hemodialysis system includes an additional fluid pump for pumping contaminated dialysate through the filter flow path and its filter.
  • In some embodiments, the hemodialysis system comprises two additional flow paths in the form of a “drain” flow path and a “fresh dialysate” flow path. The drain flow path can include one or more fluid drain lines for draining the reservoirs of contaminated dialysate, and the fresh dialysate flow path can include one or more fluid fill lines for transporting fresh dialysate from a supply of fresh dialysate to the reservoirs. One or more fluid pumps may be connected to the drain flow path and/or the fresh dialysate flow path to transport the fluids to their intended destination.
  • In addition, the hemodialysis system can include a plurality of fluid valve assemblies for controlling the flow of blood through the blood flow path, for controlling the flow of dialysate through the dialysate flow path, and for controlling the flow of used dialysate through the filter flow path. The valve assemblies may be of any type of electro-mechanical fluid valve construction as can be determined by one skilled in the art including, but not limited to, traditional electro-mechanical two-way fluid valves and three-way fluid valves. A two-way valve is any type of valve with two ports, including an inlet port and an outlet port, wherein the valve simply permits or obstructs the flow of fluid through a fluid pathway. Conversely, a three-way valve possesses three ports and functions to shut off fluid flow in one fluid pathway while opening fluid flow in another pathway. In addition, the dialysis machine's valve assemblies can include safety pinch valves, such as a pinch valve connected to the venous blood line for selectively permitting or obstructing the flow of blood through the venous blood line. The pinch valve is provided so as to pinch the venous blood line and thereby prevent the flow of blood back to the patient in the event that an unsafe condition has been detected.
  • According to some embodiments, the hemodialysis system contains sensors for monitoring hemodialysis. To this end, some embodiments of the hemodialysis system comprise at least one flow sensor connected to the dialysate flow path for detecting fluid flow (volumetric and/or velocity) within the dialysate flow path. In addition, some embodiments of the hemodialysis system contain one or more pressure sensors for detecting the pressure within the dialysate flow path, or at least an occlusion sensor for detecting whether the dialysate flow path is blocked. In some embodiments, the dialysis machine also comprises one or more sensors for measuring the pressure and/or fluid flow within the blood flow path. The pressure and flow rate sensors can be separate components, or pressure and flow rate measurements can be made by a single sensor.
  • Furthermore, some embodiments of the hemodialysis system can include a blood leak detector (“BLD”) which monitors the flow of dialysate through the dialysate flow path and detects whether blood has inappropriately diffused through the dialyzer's semipermeable membrane into the dialysate flow path. In some exemplar embodiments, the hemodialysis system comprises a blood leak sensor assembly incorporating a light source which emits light through the dialysate flow path, and a light sensor which receives the light that has been emitted through the dialysate flow path. After passing through the dialysate flow path, the received light is then analyzed to determine if the light has been altered to reflect possible blood in the dialysate.
  • According to some embodiments, the hemodialysis system comprises additional sensors, such as one or more dialysate quality sensors. The hemodialysis system can comprise one or more dialysate quality sensors, such as an ammonia sensor for detecting the level of ammonia within the dialysate, and/or a pH sensor for detecting the pH within the dialysate. In some embodiments, the ammonia sensor and pH sensor are in the dialysate flow path immediately downstream of the filter. In addition, the dialysis machine can have a bubble sensor connected to the arterial blood line and a bubble sensor connected to the venous blood line for detecting whether gaseous bubbles have formed in the blood flow path.
  • In some embodiments, the dialysate quality sensor can be disposed directly in the dialysate flow path. The dialysate quality sensor comprises a sensor media. The sensor media includes a sensor configured to change color based on a pH level, ammonia level, or ammonium level of the dialysate. In some embodiments, sensor media is configured to change to a predetermined color when the level of ammonia or ammonium is in a range between 5 to 10 ppm (parts per million). In some embodiments, the sensor media is configured to change to a predetermined color when the pH level is outside a range of 6.4 to 7.0 pH. The sensor media can also include an internal light source. The sensor media is configured to adjust the internal light source intensity and hue based on ambient light.
  • The dialysate quality sensor can also comprise a sensor body having a transparent wall, and a slot configured to house and secure the sensor media while directly exposing the sensor media to the dialysate. The transparent wall is configured to allow broad spectrum light to traverse without interference.
  • In some embodiments, the slot and the transparent wall of the sensor body are configured to be disposed on opposite sides from one another on the sensor body. In alternative embodiments, the slot and the transparent wall can be disposed on a same side as one another on the sensor body. Additionally, the sensor body can comprise a slot-covering material configured to seal the sensor media inside of the slot.
  • The dialysate quality sensor can further comprise a color reader configured to determine the color of the sensor media. The color reader comprises a light emitter, and a light receiver configured to determine a color of light reflecting off the sensor media. The color reader can be mounted to the transparent wall such that the color reader can receive light reflecting from the sensor media.
  • The dialyzer comprises a controller configured to transmit a quality status of the dialysate to a remote device based on at least the color of the sensor media. The controller can also display the quality status of the dialysate on a display of the hemodialysis system based on at least the color of the sensor media.
  • The hemodialysis system further comprises a processor containing the dedicated electronics for controlling the hemodialysis system. The processor contains power management and control electrical circuitry connected to the pump motors, valves, and dialysis machine sensors for controlling proper operation of the hemodialysis system.
  • The dialysis machine provides a hemodialysis system that is transportable, lightweight, easy to use, patient-friendly and capable of in-home use.
  • In addition, the hemodialysis system provides an extraordinary amount of control and monitoring not previously provided by hemodialysis systems so as to provide enhanced patient safety.
  • Other features and advantages of the present invention will be appreciated by those skilled in the art upon reading the detailed description, which follows with reference to the Drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flow chart illustrating a first embodiment of the hemodialysis system;
  • FIG. 2 is the flow chart of FIG. 1 illustrating an embodiment where dialysate avoids the sorbent filter by flowing through the bypass flow path;
  • FIG. 3 is the flow chart of FIG. 1 illustrating an embodiment where dialysate flows through the sorbent filter in a closed loop dialysate flow path incorporating a first reservoir;
  • FIG. 4 is the flow chart of FIG. 1 illustrating an embodiment where dialysate flows through the sorbent filter in a closed loop dialysate flow path incorporating a second reservoir;
  • FIG. 5 is a flow chart illustrating an embodiment of the hemodialysis system including a closed loop filter flow path which is filtering the fluid in a first reservoir;
  • FIG. 6 is a flow chart illustrating the second embodiment of the hemodialysis system shown in FIG. 5 wherein the filter flow path which is filtering the fluid in a second reservoir;
  • FIG. 7A is a flow chart illustrating a hemodialysis system having a system for replenishing dialysate with minerals in accordance with some embodiments;
  • FIG. 7B is a flow chart illustrating a hemodialysis system having a system for replenishing dialysate with minerals in accordance with some embodiments
  • FIG. 8 illustrates a dialysate quality sensor in accordance with some embodiments;
  • FIG. 9 illustrates a cross-sectional view of the dialysate quality sensor shown in FIG. 8 ;
  • FIG. 10 illustrates a cross-sectional view of the dialysate quality sensor shown in FIG. 8 ;
  • FIGS. 11A-11B are cross-sectional views of the dialysate quality sensor shown in FIG. 8 , illustrating how a sensor media can be positioned within the sensor body in accordance with some embodiments;
  • FIGS. 12A-12B are cross-sectional views of the dialysate quality sensor shown in FIG. 8 , illustrating how a sensor media can be positioned within the sensor body in accordance with some embodiments;
  • FIG. 13 illustrates the dialysate quality sensor with a color reader in accordance with some embodiments;
  • FIG. 14 illustrates the dialysate quality sensor with a color reader and a pH-sensing medium in accordance with some embodiments;
  • FIG. 15 illustrates the dialysate quality sensor with a color reader and a pH-sensing medium in accordance with some embodiments;
  • FIG. 16 illustrates the dialysate quality sensor with a color reader in accordance with some embodiments; and
  • FIG. 17 illustrates the dialysate quality sensor with a color reader in accordance with some embodiments present disclosure.
  • DETAILED DESCRIPTION OF THE INVENTION
  • While the present invention is capable of embodiment in various forms, as shown in the drawings, hereinafter will be described the presently preferred embodiments of the invention with the understanding that the present disclosure is to be considered as an exemplification of the invention, and it is not intended to limit the invention to the specific embodiments illustrated.
  • As illustrated in FIGS. 1-7B, the hemodialysis system comprises a blood flow path 53 and a dialysate flow path 54. The hemodialysis system further comprises a reusable dialysis machine and disposable components for performing hemodialysis. The blood flow path 53 includes an arterial blood line 1 for connecting to a patient's artery for collecting blood from a patient, and a venous blood line 14 for connecting to a patient's vein for returning blood to a patient. The arterial blood line 1 and venous blood line 14 may be typical constructions known to those skilled in the art.
  • The blood flow path 53 transports blood in a closed loop system by connecting to the arterial blood line 1 and venous blood line 14 to a patient for transporting blood from a patient through the dialyzer 8 and back to the patient. In some embodiments, the hemodialysis system comprises a supply of heparin 6 and a heparin pump connected to the blood flow path 53. The heparin pump delivers small volumes of heparin anticoagulant into the blood flow to reduce the risk of blood clotting in the machine. The heparin pump can take the form of a linearly actuated syringe pump, or the heparin pump may be a bag connected with a small peristaltic or infusion pump.
  • The hemodialysis system further comprises a dialyzer 8 in the dialysate flow path 54 which is of a construction and design known to those skilled in the art. Preferably, the dialyzer 8 includes a large number of hollow fibers which form a semipermeable membrane. Suitable dialyzers can be obtained from Fresenius Medical Care, Baxter International, Inc., Nipro Medical Corporation, and other manufacturers of hollow fiber dialyzers. Both the blood flow path 53 and dialysate flow path 54 travel through the dialyzer 8 which comprises an inlet for receiving dialysate, an outlet for expelling dialysate, an inlet for receiving blood from a patient, and an outlet for returning blood to a patient. Preferably, the dialysate flows in the opposite direction to the blood flowing through the dialyzer 8 with the dialysate flow path 54 isolated from the blood flow path 53 by a semipermeable membrane (not shown).
  • As explained in greater detail below, the dialysate flow path 54 transports dialysate in a closed loop system in which dialysate is pumped from a reservoir (17 or 20) to the dialyzer 8 and back to the reservoir (17 or 20). Both the blood flow path 53 and the dialysate flow path 54 pass through the dialyzer 8, but are separated by the dialyzer's 8 semipermeable membrane.
  • In some embodiments, the hemodialysis system includes three primary pumps (5, 26 & 33) for pumping blood and dialysate. For purposes herein, the term “pump” is meant to refer to both the pump actuator which uses suction or pressure to move a fluid, and the pump motor for mechanically moving the actuator. Suitable pump actuators may include an impeller, piston, diaphragm, the lobes of a lobe pump, screws of a screw pump, rollers or linear moving fingers of a peristaltic pump, or any other mechanical construction for moving fluid as can be determined by those skilled in the art. Meanwhile, the pump's (5, 26, or 33) motor is the electromechanical apparatus for moving the actuator. The motor may be connected to the pump actuator by shafts or the like. In an exemplar embodiment, the dialysate and/or blood flow through traditional flexible tubing and each of the pump actuators consist of a peristaltic pump mechanism wherein each pump actuator includes a rotor with a number of cams attached to the external circumference of the rotor in the form of “rollers”, “shoes”, “wipers”, or “lobes” which compress the flexible tube. As the rotor turns, the part of the tube under compression is pinched closed (or “occludes”) forcing the fluid to be pumped through the tube. Additionally, as the tube opens to its natural state after the passing of the cam fluid flow is induced through the tube.
  • The first and second primary pumps (26 and 33) are connected to the dialysate flow path 54 for pumping dialysate through the dialysate flow path 54 from the reservoir (17 or 20) to the dialyzer 8 and back to the reservoir (17 or 20). A first pump 26 is connected to the dialysate flow path 54 “upstream”, (meaning prior in the flow path) from the dialyzer 8 while the second pump 33 is connected to the dialysate flow path 54 “downstream” (meaning subsequent in the flow path) from the dialyzer 8. Meanwhile, the hemodialysis system's third primary pump 5 is connected to the blood flow path 53. The third primary pump 5, also referred to as the blood pump, pumps blood from a patient through the arterial blood line 1, through the dialyzer 8, and through the venous blood line 14 for return to a patient. It is preferred that the third primary pump 5 be connected to the blood flow path 53 upstream from the dialyzer 8.
  • The hemodialysis system can contain more or less than three primary pumps. For example, the dialysate may be pumped through the dialyzer 8 utilizing only a single pump. However, in some preferred embodiments, the hemodialysis system contains two pumps. In these embodiments, it is even more preferred that the hemodialysis system contain a first pump 26 upstream from the dialyzer 8 and a second pump 33 downflow from the dialyzer 8.
  • In some embodiments, such as those illustrated in FIGS. 1-6 , the hemodialysis system can have two or more reservoirs (17 and 20) for storing dialysate solution. Alternatively, and as illustrated in FIGS. 7A & 7B, the hemodialysis system can have one reservoir 17 for storing dialysate solution.
  • Both of the reservoirs (17 and 20) may be connected simultaneously to the dialysate flow path 54 to form one large source of dialysate. However, this is not considered preferred. Instead, in some embodiments, the hemodialysis system comprises a valve assembly 21 for introducing either, but not both, of the two reservoirs (17 or 20) into the dialysate flow path 54 to form a closed loop system for transporting a dialysate from one of the two reservoirs (17 or 20) to the dialyzer 8 and back to that same reservoir (17 or 20). After the dialysate in the first reservoir 17 has been used, is no longer sufficiently clean, or does not possess appropriate chemical properties, the hemodialysis system's valve 21 is controlled to remove the first reservoir 17 from the dialysate flow path 54 and substitute the second reservoir 20, which has fresh dialysate 75, into the dialysate flow path 54. Thus, when one reservoir (17 or 20) possesses contaminated dialysate 76 (as shown in FIGS. 2-6 ), and that reservoir (17 or 20) needs to be emptied and refilled with freshly generated dialysis fluid 75, dialysis treatment can continue using the other reservoir (17 or 20).
  • In this manner, the hemodialysis system may switch between each reservoir 17 and 20 multiple times over the course of a treatment. Furthermore, the presence of two reservoirs (17 and 20) as opposed to one reservoir allows for the measurement of the flow rate for pump calibration or ultrafiltration measurement, while isolating the other reservoir (17 or 20) while it is being drained or filled. Though the reservoirs (17 and 20) may be of any size as required to hold accumulated dialysate and excess ultrafiltrate volume removed during an appropriate hemodialysis treatment, some preferred reservoir(s) have a total volume between 8 liters and 12 liters.
  • As illustrated in FIGS. 1-7B, the hemodialysis system also comprises a sorbent filter 36 (also referred to herein as a “filter”) connected to the dialysate flow path 54 for removing toxins which have permeated from the blood plasma through the semipermeable membrane into the dialysate. In a first embodiment, the filter 36 is connected to the dialysate flow path 54 downstream from the dialyzer 8 so as to remove toxins transferred by the dialyzer 8 into the dialysate prior to the dialysate being transported to the reservoir (17 or 20). Filter 36 materials for use with the dialysis machine are well known to those skilled in the art. For example, suitable materials include resin beds including zirconium based resins. Preferably, the filter 36 comprises a housing containing layers of zirconium oxide, zirconium phosphate, urease, and carbon. Acceptable materials are described in U.S. Pat. No. 8,647,506 and U.S. Patent Application Publication No. 2014/0001112. Other acceptable filter 36 materials can be developed and utilized by those skilled in the art without undue experimentation.
  • The filter's 36 housing may or may not include a degassing membrane 80 capable of releasing gases including air and carbon dioxide, but not liquids, and particularly not the dialysate liquid flowing through the filter. For example, in some embodiments, and as illustrated in FIGS. 7A & 7B the dialysate flow path 54 includes a degasser 80 positioned downstream of the sorbent filter 36. The sorbent filter 36, in turn, has an air inlet having a filter 36 a, pressure sensor, and pump 44. Sorbent regeneration degassing may be accomplished by introducing a stream of air through the air inlet, which is substantially free of CO2, into the regenerated dialysate. Preferably, the pump 44 introduces the stream of air into the sorbent filter 36 at about the same approximate flowrate as the flowrate of the liquid through the dialysate flow path. The combined air-liquid fluid may then be exposed to a hydrophobic membrane within the degasser 80 where the gas is free to exit the system, but liquid continues to flow through the dialysate flow path.
  • In some embodiments, dialyzer 8 further comprises a sorbent dialysis device (not shown). In the sorbent dialysis device, ammonia in the dialysate is generated by a reaction of urea with urease. The ammonia in equilibrium with ammonium is adsorbed by an ion exchange material. After some time, the capacity of the ion exchange material for ammonium is used up and ammonia and/or ammonium start to leach out. As such, a dialysate quality sensor 700 (not shown in FIGS. 1-6 ) is required in order to detect whether an unsafe amount of ammonia is present in the dialysate due to leaching from the sorbent dialysis device. In some embodiments, the dialysis flow path 54 can include one or more dialysate quality sensors 700, such as an ammonium sensor 37 and/or a pH sensor 38. In some embodiments, the dialysis flow path 54 comprises an ammonium sensor 37 and a pH sensor 38, both of which can be located immediately downstream of the sorbent filter 36 (best illustrated in FIGS. 1-6 ). When the sorbent filter 36 has been exhausted, the filter 36 may begin to release ammonium ions as a result of the filtering chemical reaction. At certain levels, ammonium ions in the dialysis fluid can harm the patient. Preferably, the ammonium sensor 37 measures the quantity of ammonium ions in parts per million (ppm). In some embodiments, when the measurement reaches a range of approximately 1 ppm to 20 ppm, a warning state will be activated, and treatment with this dialysate can be automatically stopped.
  • Alternatively, when the ppm of ammonium ions passes above a certain ppm threshold (e.g., 5 ppm, 10 ppm), the dialysis fluid can be drained, and dialysis treatment may continue by using fresh dialysate 75 using the alternative reservoir (17 or 20). Similarly, the pH sensor 38 also acts as a safety feature and supports the measurement of ammonium ions. As the pH of the dialysis fluid changes, the equilibrium state of ammonia (NH3) and ammonium ions (NH4+) can change. In some embodiments, if the pH of the dialysis fluid is measured to be outside the range of approximately 6.4 to 7.8 pH, a warning state can be activated, and the dialysis treatment can be ended.
  • As illustrated in FIGS. 1-6 , some embodiments of the hemodialysis system comprise a reagent bag 39 and reagent pump 40 for introducing reagents into the dialysate flow path 54 immediately after the sorbent filter 36. The reagent bag 39 holds a concentrated solution of salts and ions to reinfuse the filter dialysis fluid. Through the action of filtering waste, the sorbent filter 36 also removes beneficial ions from the dialysis fluid, such as calcium and salt. Before the filtered dialysis fluid can be recirculated, it must be reinfused with calcium and salts so that the dialysis fluid does not draw these beneficial ions from the patient's blood. Preferably, the reagent bag 39 will hold between 1 and 3 liters of concentrated reagent. The reagent pump 40 can be any type of pump such as a peristaltic pump or diaphragm pump. To ensure that the hemodialysis system is introducing the proper amount of salts and ions into the dialysate, a conductivity sensor 41 may be positioned within the dialysate flow path 54 immediately after the reagent bag 39. In this way, the conductivity sensor 41 serves as a safety feature, measuring the total dissolved solids of the regenerated dialysis fluid. In the event that the total dissolved solids are detected to not be within a prescribed range, the operation of the reagent pump 40 can be increased or decreased, or alternatively, treatment can be stopped entirely. For example, if a fault state is detected in the dialysis fluid, then the fluid can be redirected by 3- way valves 29 and 32 through the dialyzer bypass path 30 so that dialysate does not meet the patient's blood in the dialyzer 8. More specifically, the 3-way valve 29 directs dialysis fluid to the dialyzer's 8 inlet and the 3-way valve 32 directs dialysate from the dialyzer's 8 outlet back through the dialysate flow path 54. However, if a fault state is detected in the dialysis fluid, such as the temperature being too low or excessive ammonium ions are detected in the dialysate, then the dialysis fluid is redirected by 3- way valves 29 and 32 to bypass the dialyzer 8, through dialyzer bypass path 30.
  • For the embodiment illustrated in FIGS. 1-4 , the hemodialysis system further comprises a drain flow path 55 to dispose of waste dialysate from the reservoirs (17 and 20). In the embodiment illustrated in the FIGS. 1-4 , the drain flow path 55 is connected to both reservoirs (17 and 20). Waste dialysate may drain through the drain flow path 55 through a gravity feed, or the hemodialysis system may include a pump 44 of any type as can be selected by those skilled in the art to pump used dialysate to be discarded, such as to a traditional building sewer line 45.
  • According to the embodiment illustrated in FIGS. 1-4 , the hemodialysis system can include a source 46 of dialysate fluid to replenish each of the reservoirs (17 and 20). Preferably, the source of dialysate fluid includes a supply of clean water 46 that is mixed with concentrated reagents (48 and 50) to provide dialysate of desired properties. In a preferred embodiment, the supply of clean water 46 is provided by a reverse osmosis (“RO”) machine located adjacent to the device which produces clean water and then adds chemical concentrates to create the dialysate fluid. The fluid is supplied through a “fresh dialysate” flow path 56 to the reservoirs (17 and 20). In some preferred embodiments, the hemodialysis system comprises a source of concentrated reagents which can be stored in disposable bags. Preferably, the concentrated reagents contain one or more of the following: bicarbonate solution, acid solution, lactate solution, salt solution. It is necessary to separate some of the reagents into two bags (48 and 50) to prevent undesirable interactions or precipitation of solutes. The concentrated reagent sources (48 and 50) are connected by reagent pumps (47 and 49) to the supply line 46. The activation of the reagent pumps (47 and 49) introduces the concentrated reagents from reagent sources (48 and 50) into the supply of water to provide dialysate to the reservoirs (17 and 20).
  • Still with reference to FIGS. 1-4 , as an alternative to using the sorbent filter 36, the hemodialysis system can include a supplemental “bypass” flow path 35 that selectively transports dialysis around the sorbent filter 36. The bypass flow path 35 includes a 3-way valve 34 upstream of the sorbent filter 36. In this way, the 3-way valve 34 is switched to direct the dialysis fluid through sorbent filter 36, or alternatively, the 3-way valve 34 is switched to direct dialysate through the bypass flow path 35 to avoid the sorbent filter 36. For example, if a sorbent filter 36 is not available, or if the sorbent filter 36 has become spent, or if a sorbent filter 36 is not required or preferred for a particular patient treatment, then the 3-way valve 34 is switched to direct the dialysis fluid down the bypass flow path 35.
  • In an alternative embodiment, and as illustrated in FIGS. 5 and 6 , a sorbent filter 71 is located outside of the closed loop dialysate flow path 54. The hemodialysis system includes a separate closed loop “filter” flow path 57 that selectively connects to either one of the two dialysate reservoirs (17 or 20), and the sorbent filter 71 is positioned in-series in the closed loop filter flow path 57. Preferably, the dialysis machine includes an additional fluid pump 58 for pumping contaminated dialysate through the filter flow path 57 and the sorbent filter 71. As illustrated in FIGS. 5 and 6 , some embodiments comprise a filter flow path 57 having a 3-way valve 43 which determines which reservoir (17 or 20) is drained of contaminated dialysate. For example, FIG. 5 illustrates the 3-way valve 43 connecting reservoir 20, but not reservoir 17, to the filter flow path 57. Further, FIG. 6 illustrates the 3-way valve 43 connecting reservoir 17, but not reservoir 20, to the filter flow path 57. The filter flow path 57 may include a pump 58, or the dialysate may dispense contaminated dialysate from reservoirs (17 or 20) through a gravity feed. In addition, preferably the filter flow path 57 includes a pressure sensor 59, a check valve 60, an ammonium sensor 69, and a pH sensor 70.
  • This embodiment of the hemodialysis machine also includes a system for introducing reagents into the filter flow path 57. As illustrated in FIGS. 5 and 6 , the filter flow path 57 includes a first reagent source 61, preferably containing salts, and a second reagent source 65, preferably containing bicarbonate and lactate solution. These reagents are introduced into the filter flow path 57 using pumps (62 and 66), and mixers (63 and 67). Preferably the filter flow path 57 also possesses safety features in the form of (1) an ammonium sensor 69 to ensure that the filter 71 is not spent and/or introducing unacceptable ammonium ions into the dialysate; (2) a pH sensor 70 to support the measurement of ammonium ions and detect pH within the dialysate; and (3) conductivity sensors (64 and 68) which monitor whether the reagents have been properly introduced into the cleaned dialysate to provide the proper amounts of beneficial ions. Finally, the filter flow path 57 comprises a pair of check valves (51 and 52) which open and close to ensure that the now cleaned dialysate is returned to the reservoir (17 or 20) from which the contaminated dialysate had been drained from.
  • In some embodiments, and as illustrated in FIGS. 1-7B, the hemodialysis system can comprise a heater 23 thermally connected to the dialysate flow path 54 or to reservoirs (17 and/or 20) for heating the dialysate to a desired temperature. For example, in the embodiments illustrated in FIGS. 1-6 , a single heater 23 is thermally coupled to the dialysate flow path 54 downstream of both reservoirs (17 and 20). However, the hemodialysis may include additional heaters 23, and the one or more heaters 23 may be in different locations. For example, in an alternative embodiment, the hemodialysis system includes two heaters 23, with a single heater 23 thermally coupled to each reservoir (17 and 20). The one or more heaters 23 are preferably activated by electricity and includes a resistor which produces heat with the passage of an electric current.
  • In addition, the various embodiments of the hemodialysis system described herein can possess various sensors for monitoring hemodialysis, and in particular, the dialysate flow path 54 and blood flow path 53. To this end, some embodiments of the hemodialysis system can comprise one or more flow sensors 25 connected to the dialysate flow path 54 for detecting fluid flow (volumetric and/or velocity) within the dialysate flow path 54. In other embodiments, the hemodialysis system does not comprise a flow sensor 25. In addition, the some hemodialysis system embodiments comprise one or more pressure, or occlusion, sensors (27) for detecting the pressure within the dialysate flow path 54. Additionally, some embodiments of the hemodialysis system can comprise one or more sensors for measuring the pressure (4, 7 and 9) with or without fluid flow 11 within the blood flow path 53.
  • In some embodiments, the hemodialysis system comprises temperature sensors (15, 22 and 24) for measuring the temperature of the dialysate throughout the dialysate flow path 54. In addition, the hemodialysis system can comprise fluid mass sensors for detecting the mass of fluid in the reservoirs (17 and 20). Further, some embodiments of the fluid mass sensors can include either capacitive fluid mass sensors (15 and 18) such as those described in U.S. Pat. No. 9,649,419, or ultrasonic fluid level sensors. In some embodiments, the weight, and therefore level of dialysate, of each reservoir (17 and 20) is measured by a strain gauge sensor (16 or 19) connected to a processor (described in further detail below).
  • In some embodiments, and as illustrated in FIG. 7B, the hemodialysis system does not comprise a bubble sensor 3 in the arterial line, a flow sensor 11 in the blood circuit, the dialysate flow sensor 25 in the dialysis circuit, and pressure sensor 27 in the dialysis circuit.
  • Furthermore, in some embodiments, and as illustrated in FIGS. 1-7B, the hemodialysis system can include a blood leak detector 31 which monitors the flow of dialysate through the dialysate flow path 54 and detects whether blood has inappropriately diffused through the dialyzer's 8 semipermeable membrane into the dialysate flow path 54.
  • Preferably, the hemodialysis system also contains a first pinch valve 2 connected to the arterial blood line 1 for selectively permitting or obstructing the flow of blood through the arterial blood line 1, and a second pinch valve 13 connected to the venous blood line 14 for selectively permitting or obstructing the flow of blood through the venous blood line 14. The pinch valves (2 and 13) are provided so as to pinch the arterial blood line 1 and venous blood line 14, respectively, to prevent the flow of blood back to the patient in the event that any of the sensors have detected an unsafe condition. Providing still additional safety features, the hemodialysis system includes blood line bubble sensors (3 and 12) to detect if an air bubble travels backwards down the arterial line 1 (blood leak sensor 3) or venous line 14 (blood leak sensor 12). Further, the blood flow path 53 may include a bubble trap 10 which has a pocket of pressurized air inside a plastic housing. Bubbles rise to the top of the bubble trap 10, while blood continues to flow to the lower outlet of the bubble trap 10. This component reduces the risk of bubbles traveling into the patient's blood.
  • To control the flow and direction of blood and dialysate through the hemodialysis system, the hemodialysis system includes a variety of fluid valves for controlling the flow of fluid through the various flow paths of the hemodialysis system. The various valves include pinch valves and 2-way valves which must be opened or closed, and 3-way valves which divert dialysate through a desired flow pathway as intended. In addition to the valves identified above, some embodiments of the hemodialysis system comprise a 3-way valve 21 located at the reservoirs' (17 and 20) outlets which determines from which reservoir (17 or 20) dialysate passes through the dialyzer 8. An additional 3-way valve 42 determines to which reservoir (17 or 20) the used dialysate is sent to. Finally, 2-way valves (51 and 52), which may be pinch valves, are located at the reservoirs' (17 and 20) inlets to permit or obstruct the supply of fresh dialysate to the reservoirs (17 and 20). Of course, alternative valves may be employed as can be determined by those skilled in the art, and the present invention is not intended to be limited the specific 2-way valve or 3-way valve that has been identified.
  • In addition, the hemodialysis system includes a processor (not shown) and a user interface (not shown). The processor contains the dedicated electronics for controlling the hemodialysis system including the hardware and software, and power management circuitry connected to the pump motors, sensors (including reservoir mass strain gauge sensor(s) (16 and/or 19), blood leak sensor 31, ammonia sensor 37, pressure and flow rate sensors (4, 7, 9, 11, 25, 27, and 59), temperature sensors (22, 24 and 28), blood line bubble sensors (3 and 12), valves (2, 13, 21, 29, 32, 34, 42, 43, 51, 52, and 60), and heater 23 for controlling proper operation of the hemodialysis system. The processor monitors each of the various sensors (3, 4, 7, 9, 11, 12, 15, 16, 18, 19, 22, 24, 25, 27, 28, 31, 37, 59) to ensure that hemodialysis treatment is proceeding in accordance with a preprogrammed procedure input by medical personnel into the user interface. The processor may be a general-purpose computer or microprocessor including hardware and software as can be determined by those skilled in the art to monitor the various sensors (3, 4, 7, 9, 11, 12, 15, 16, 18, 19, 22, 24, 25, 27, 28, 31, 37, and 59) and provide automated or directed control of the heater 23, pumps (5, 6, 26, 33, 40, 44, 47 and 49), and pinch valves (2 and 13). The processor may be located within the electronics of a circuit board or within the aggregate processing of multiple circuit boards and memory cards.
  • Also not shown, the hemodialysis system includes a power supply for providing power to the processor, user interface, pump motors, valves (2, 13, 21, 29, 32, 34, 42, 43, 51, 52, and 60) and sensors (3, 4, 7, 9, 11, 12, 15, 16, 18, 19, 22, 24, 25, 27, 28, 31, 37, and 59). The processor can also be connected to the dialysis machine sensors (3, 4, 7, 9, 11, 12, 15, 16, 18, 19, 22, 24, 25, 27, 28, 31, 37, and 59), pumps (5, 6, 26, 33, 40, 44, 47 and 49), and pinch valves (2 and 13) by traditional electrical circuitry.
  • In operation, the processor is electrically connected to the first, second and third primary pumps (5, 26, and 33) for controlling the activation and rotational velocity of the pump motors, which in turn controls the pump actuators, which in turn controls the pressure and fluid velocity of blood through the blood flow path 53 and the pressure and fluid velocity of dialysate through the dialysate flow path 54. By independently controlling operation of the dialysate pumps 26 and 33, the processor can maintain, increase or decrease the pressure and/or fluid flow within the dialysate flow path within the dialyzer 8. Moreover, by controlling all three pumps (5, 26, and 33) independently, the processor can control the pressure differential across the dialyzer's 8 semipermeable membrane to maintain a predetermined pressure differential (zero, positive or negative), or maintain a predetermined pressure range. For example, most hemodialysis is performed with a zero or near zero pressure differential across the semipermeable membrane, and to this end, the processor can monitor and control the pumps (5, 26, and 33) to maintain this desired zero or near zero pressure differential. Alternatively, the processor may monitor the pressure sensors (4, 7, 9, 27, and 59) and control the pump motors, and in turn pump actuators, to increase and maintain positive pressure in the blood flow path 53 within the dialyzer 8 relative to the pressure of the dialysate flow path 54 within the dialyzer 8. Advantageously, this pressure differential can be affected by the processor to provide ultrafiltration and the transfer of free water and dissolved solutes from the blood to the dialysate.
  • In some embodiments, the processor monitors the blood flow sensor 11 to control the blood pump 5 flowrate. It uses the dialysate flow sensor 25 to control the dialysate flow rate from the upstream dialysate pump 26. The processor then uses the mass strain gauge sensor(s) (16 and/or 19) to control the flowrate from the downstream dialysate pump 33. The change in fluid level (or volume) in the dialysate reservoir (17 or 20) is identical to the change in volume of the patient. By monitoring and controlling the level in the reservoir (17 or 20), forward, reverse, or zero ultrafiltration can be accomplished.
  • Moreover, the processor monitors all of the various sensors (3, 4, 7, 9, 11, 12, 15, 16, 18, 19, 22, 24, 25, 27, 28, 31, 37, and 59) to ensure that the hemodialysis machine is operating efficiently and safely, and in the event that an unsafe or non-specified condition is detected, the processor corrects the deficiency or ceases further hemodialysis treatment. For example, if the venous blood line 14 pressure sensor 9 indicates an unsafe pressure or the bubble sensor 12 detects a gaseous bubble in the venous blood line 14, the processor signals an alarm, the pumps are deactivated (5, 6, 26, 33, 40, 44, 47 and 49), and the pinch valves (2 and 13) are closed to prevent further blood flow back to the patient. Similarly, if the blood leak sensor 31 detects that blood has permeated the dialyzer's 8 semipermeable membrane, the processor signals an alarm and ceases further hemodialysis treatment.
  • The dialysis machine's user interface may include a keyboard or touch screen (not shown) for enabling a patient or medical personnel to input commands concerning treatment or enable a patient or medical personnel to monitor performance of the hemodialysis system. Moreover, the processor may include Wi-Fi or Bluetooth connectivity for the transfer of information or control to a remote location.
  • Hereinafter will be identified the various components of the preferred hemodialysis system with the numbers corresponding to the components illustrated in the Figures.
  • 1 Arterial tubing connection
    2 Pinch valve, arterial line. Used to shut off the flow connection with
    the patient, in case of an identified warning state potentially harmful
    to the patient.
    3 Bubble sensor, arterial line
    4 Pressure sensor, blood pump inlet
    5 Blood pump
    6 Heparin supply and pump
    7 Pressure sensor, dialyzer input
    8 Dialyzer
    9 Pressure sensor, dialyzer output
    10 Bubble trap
    11 Flow sensor, blood Circuit
    12 Bubble sensor, venous line
    13 Pinch valve, venous line
    14 Venous tubing connection
    15 Primary fluid mass sensor, first reservoir
    16 Mass strain gauge sensor, second reservoir
    17 First reservoir which holds dialysis fluid
    18 Primary fluid mass sensor, second reservoir
    19 Mass strain gauge sensor, first reservoir
    20 Second reservoir which holds dialysis fluid
    21 3-way valve, reservoir outlet.
    22 Temperature sensor, heater inlet.
    23 Fluid heater for heating the dialysis fluid from approximately room
    temperature or tap temperature, up to the human body temperature of
    37° C.
    24 Combined conductivity and temperature sensor
    25 Flow sensor, Dialysis Circuit
    26 Dialysis pump, dialyzer inlet
    27 Pressure sensor, Dialysis Circuit
    28 Temperature sensor, dialyzer inlet
    29 3-way valve, dialyzer inlet
    30 Bypass path, dialyzer
    31 Blood leak detector
    32 3-way valve, dialyzer outlet
    33 Dialysis pump, dialyzer outlet
    34 3-way valve, sorbent filter bypass
    35 Sorbent filter bypass path
    36 Sorbent filter
    37 Ammonium ion sensor.
    38 pH sensor
    39 Reagent bag holds a concentrated solution of salts and ions
    40 Pump, sorbent filter reinfusion.
    41 Combined conductivity and temperature sensor, sorbent filter outlet.
    42 3-way valve, reservoir recirculation.
    43 3-way valve, reservoir drain.
    44 Pump, reservoir drain.
    45 Drain line connection.
    46 Fresh dialysate supply
    47 Pump which delivers concentrated reagents from reagent bag into
    fresh dialysate flow path
    48 Reagent bag which holds a concentrated reagent that is introduced
    into fresh dialysate flow path.
    49 Pump which delivers concentrated reagents from reagent bag into the
    water line.
    50 Reagent bag which holds a concentrated reagent that will be mixed
    with water to form dialysis fluid.
    51 Pinch valve, first reservoir inlet.
    52 Pinch valve, second reservoir inlet.
    53 Blood flow path
    54 Dialysate flow path
    55 Drain flow path
    56 Fresh dialysis flow path
    57 Filter flow path
    58 Pump, filter flow path
    59 Pressure sensor, filter flow path
    60 Check valve
    61 Reagents - salts
    62 Pump, reagents
    63 Mixer
    64 Conductivity tester
    65 Reagents - bicarbonate/lactate
    66 Pump, reagents
    67 Mixer
    68 Conductivity tester
    69 Ammonium ion sensor
    70 pH sensor
    71 Sorbent filter
    75 Fresh dialysate
    76 Contaminated dialysate
    80 Degasser
  • The Dialysate Quality Sensor
  • FIG. 8 illustrates a dialysate quality sensor 700 in accordance with some embodiments of the present disclosure. The dialysate quality sensor 700 comprises a sensor body 707, a lumen 710, and a sensor media retainer 715 for housing a sensor media 1000 (not shown). In some embodiments, the dialysate quality sensor 700 can be disposed directly in the dialysate flow path 54. Specifically, in operation, the dialysate quality sensor 700 is coupled to the dialysate flow path 54 of the dialyzer 8. Specifically, the dialysate flow path 54 is in fluid connection with the lumen 710. As illustrated, the lumen 710 can comprise a circular or substantially circular cross-sectional area. However, other cross-sectional shapes and dimensions can be determined by one skilled in the art. The sensor media retainer 715 can be a slot in the sensor body 707 configured to hold and secure the sensor media 1000 (not shown) in place while directly exposing the sensor media 1000 to the dialysate. The sensor media retainer 715 can also be a compartment attached to the sensor body 707. The sensor media retainer 715 can be sealed using a cover (not shown) that can be inserted into the opening of the sensor media retainer 715 so as to create a seal. Alternatively, the sensor media retainer 715 can be sealed by filling the opening with adhesive such that the sensor body 707 is secured in place. Additionally, the sensor media retainer 715 can be hermitically sealed once the sensor media 1000 (not shown) is inserted. In some embodiments, the sensor media retainer 715 and the sensor body 707 are one integrated component.
  • The sensor body 707 can include a transparent wall 720 disposed on or integrated with the sensor body 707, such that there is a direct line of sight from the transparent wall 720 to the sensor media 1000 (not shown), which is in the sensor media retainer 715. In some embodiments, the transparent wall 720 and the sensor media retainer 715 are disposed on the same wall or side of the sensor body 707. Alternatively, in some embodiments, and as best illustrated in FIG. 8 , the transparent wall 720 and the sensor media retainer 715 are disposed on opposite walls of the sensor body 707. The transparent wall 720 is configured to allow a broad spectrum light to pass through or traverse without any interference. The transparent wall 720 can be made of a clear medical grade material such as a medical grade plastic. Other configurations and materials can be determined by one skilled in the art, wherein the transparent wall 720 is positioned relative to the sensor media retainer 715 such that a direct line of sight exists from the transparent wall 720 to the sensor media 1000, and wherein the transparent wall 720 is made of material such that broad spectrum light can pass therethrough without any interference.
  • FIG. 9 is a cross-sectional view at “Section A” of the dialysate quality sensor 700 illustrated in FIG. 8 . As shown, a center portion of dialysate quality sensor 700 can be narrower or have a smaller cross-sectional area than both ends of the lumen 710. In this way, a Venturi effect can be achieved. Further, the dialysate quality sensor 700 can include a window 805 between sensor media retainer 715 and lumen 710. The window 805 can be smaller than the sensor media 1000 so that the sensor media 1000 is secured within the lumen 710 area of the sensor media retainer 715. In this way, the window 805 allows the sensor media 1000 (not shown in FIG. 9 ) to be directly exposed to the dialysate flow path 54 within lumen 710.
  • FIG. 10 illustrates a cross-sectional view at “Section B” of the dialysate quality sensor 700 illustrated in FIG. 8 . As shown, the dialysate quality sensor 700 can have a narrow center portion 905. In some embodiments, and as shown in FIG. 8 , the end portions (910 and 915) of dialysate quality sensor 700 can be 0.25 inches in diameter. Though, the dialysate quality sensor 700 is not restricted to any particular dimensions. The end portions (910 and 915) are configured to be attachable and detachable to the dialysate flow path 54 of dialyzer 8. In this way the end portions (910 and 915) are configured for solvent wielding or bonding in tubing. In other words, the dialysate flow path 54 can include pathways (e.g., conduits) that can be coupled and decoupled to end portions (910 and 915). In this way, the dialysate quality sensor 700 can be replaced with a new sensor 700 once the sensor media 1000 of the dialysate quality sensor 700 needs to be replaced.
  • The dialysate quality sensor 700 can have different configurations such that the sensor media 1000 can be placed in different configurations within the dialysate quality sensor 700. For example, FIGS. 11A and 11B illustrate cross-sectional views at “Section A” of the dialysate quality sensor 700 illustrated in FIG. 8 . In this embodiment, the sensor media retainer 715 comprises an opening, wherein the opening is positioned on a top portion of the dialysate quality sensor 700. FIG. 11A show a sensor media 1000 being inserted into the sensor media retainer 715 (e.g., slot or compartment). As shown in FIG. 11A, the sensor media 1000 is being inserted into the sensor media retainer 715 from the top of the dialysate quality sensor 700, through the opening. Additionally, the sensor body 707 can comprise a slot-covering material configured to seal the sensor media 1000 inside of the slot. FIG. 11B further illustrates the dialysate quality sensor 700 comprising a cover 1005. In this embodiment, the cover 1005 is configured to be positioned on the sensor media retainer 715 so as to seal said opening on the top portion of the dialysate quality sensor 700. Once cover 1005 is positioned, it can be hermetically sealed using various means such as adhesive, thermal welding, etc.
  • Moreover, FIGS. 12A and 12B also illustrate cross-sectional views at “Section A” of the dialysate quality sensor 700 illustrated in FIG. 8 , illustrating an alternative configuration of the dialysate quality sensor 700. Specifically, in this embodiment, the sensor media retainer 715 is positioned with the opening of the sensor media retainer 715 on a side of the dialysate quality sensor 700 rather than the top (as shown in FIGS. 11A and 11B). As shown in FIG. 12A, the sensor media 1000 is being inserted into the sensor media retainer 715 from the side of the dialysate quality sensor 700. FIG. 12B further illustrates the dialysate quality sensor 700 comprising the cover 1005. In this embodiment, the cover 1005 is configured to be positioned on the sensor media retainer 715 so as to seal said opening on the side portion of the dialysate quality sensor 700. Once cover 1005 is positioned, it can be hermetically sealed using various means such as adhesive, thermal welding, etc.
  • Moreover, the sensor media 1000 includes a sensor configured to change color based on a pH level, ammonia level, or ammonium level of the dialysate. In some embodiments, sensor media 1000 is configured to change to a predetermined color when the level of ammonia or ammonium is in a range between 5 to 10 ppm. In some embodiments, the sensor media 1000 is configured to change to a predetermined color when the pH level is outside a range of 6.4 to 7.0 pH. Additionally, the sensor media 1000 can comprise an internal light source. Specifically, the sensor media 1000 is configured to adjust the internal light source intensity and hue based on ambient light.
  • FIG. 13 illustrates the dialysate quality sensor 700 with an optical detector or color reader 1200 configured to determine the color of the sensor media 1000. The color reader 1200 can include an emitter 1205 and a receiver 1210. Moreover, in some embodiments, the color reader 1200 is mounted to or adjacent to the transparent wall such that the color reader can receive light reflecting from the sensor media 1000. Specifically, the emitter 1205 and receiver 1210 of the color reader 1200 can be positioned adjacent to the transparent wall 720. In this embodiment, the emitter 1205 and receiver 1210 are positioned adjacent to one another. The emitter 1205 is configured to transmit a broad spectrum light onto the sensor media 1000 through the transparent wall 720. Further, the sensor media 1000 is configured such that a side portion of the sensor media 1000 is read by the color media 1200. Specifically, the sensor media 1000 is housed within the sensor media retainer 715 and is configured so as to reflect light therefrom. For example, and as illustrated in FIG. 14 , a backside of the sensor media 1000 is positioned such that the sensor media 1000 can be read by the color reader 1200 and lights can be emitted therethrough by the emitter 1205. The receiver 1210 is configured to determine the color of the light reflected off the sensor media 1000. And, based on the color of the reflected light, the level of ammonia, ammonium and/or the pH of the dialysate can be determined. In some embodiments, the sensor media 1000 can be an ammonia and/or ammonium color changing media. The sensor media 1000 is configured to change to a predetermined color range when a certain level (ppm) of ammonia/ammonium is present in the dialysate. The sensor media 1000 can also be a pH sensor, which can change to a certain color when the dialysate has a certain pH range (e.g., 6.4-7.0).
  • In some embodiments, the sensor media 1000 can have a plurality of sensing portions. For example, the sensor media 1000 can have a portion that is configured to sense ammonia/ammonium and another portion configured to sense pH. The sensor media 1000 can also have 3 portions, each portion is configured to detect ammonia, ammonium, or pH. The receiver 1210 can be configured to read color from two or more regions of the sensor media 1000. In this way, the dialysate quality sensor 700 can measure different characteristics of the dialysate in order to obtain a better reading of the dialysate's quality state.
  • FIG. 14 illustrates the dialysate quality sensor 700 with the sensor media 1000 being attached to a transparent media 1305, which can be inserted or slotted into sensor media retainer 715 of the sensor body 707. The transparent media 1305 can be comprised of glass, a clear plastic, or other suitable material that does not interfere with lights emitted from an optical detector comprising the emitter 1205. In this embodiment, the sensor media 1000 can be a pH sensor, which is configured to change to a certain color at a certain pH range. For example, the pH sensor can change to yellow when the pH of the dialysate is between 6.4-7.0.
  • The sensor media 1000 can be placed at various locations such as, but not limited to, attached to a clear medium, the transparent wall 720 portion of the sensor body 707, or the transparent cover 1005 (not shown).
  • FIG. 15 illustrates the dialysate quality sensor 700 with the sensor media 1000 being attached to the transparent wall 720 portion of the sensor body 707. The sensor media 1000 can be adhesively attached to the inside of the transparent wall 720 portion via an opening or hole 1405 in the sensor body 707. In this embodiment, the opening or hole 1405 is positioned opposite from where the sensor media 1000 is housed in the sensor body 707 and will require sealing with a plug or cap of material, or adhesion. Once the sensor media 1000 is placed in the sensor body 707, the hole 1405 can be covered by direct adhesion between the sensor media 1000 and the transparent wall 720, or be capped or plugged with the cover 1005. The sensor media 1000 can also be attached to the backside of the cover 1005, which can be made of a transparent material.
  • FIG. 16 illustrates a method for measuring the color of the sensor media 1000 in accordance with some embodiments of the present disclosure. The color reader 1200 comprises a light source 1900 and a color sensor 1700. The color reader 1200 can measure the color of the sensor media 1000 by exposing the sensor media 1000 to the light source 1900, such as a broad spectrum light (or other spectral frequency). In this embodiment, the broad spectrum light (or other spectral frequency) is transmitted from the light source 1900 onto the sensor media 1000 through the transparent wall 720. Further, the sensor media 1000 is configured to reflect light therefrom so as measure the color of the light by the color sensor 1700.
  • FIG. 17 illustrates an alternative method for measuring the color of the sensor media 1000 in accordance with some embodiments of the present disclosure. As shown in FIG. 17 , the color reader 1200 comprises light source 1900 and color sensor 1700. The color reader can be coupled to fiber optic cables (1500 a and 1500 b). In some embodiments, fiber optic cable 1500 a is operatively connected to the color sensor 1700 and fiber optic cable 1500 b is operatively connected to the light source 1900. In this way, the fiber optic cables (1500 a and 1500 b) can transmit and receive light to and from the sensor media 1000. In this embodiment, the color reader 1200 can be positioned at a non-direct line of sight location.
  • Treatment Options
  • The hemodialysis system provides increased flexibility of treatment options based on the required frequency of dialysis, the characteristics of the patient, the availability of dialysate or water and the desired portability of the dialysis machine. For all treatments, the blood flow path 53 transports blood in a closed loop system by connecting to the arterial blood line 1 and venous blood line 14 to a patient for transporting blood from a patient to the dialyzer 8 and back to the patient.
  • With reference to FIG. 2 , a first method of using the hemodialysis system does not require the use of a sorbent filter 36. Water is introduced to the machine through the fresh dialysate flow path 56 from a water supply 46 such as water supplied through RO. If needed, chemical concentrates from reagent sources (48 and 50) are added to the clean water using the chemical concentrate pumps (47 and 49). The mixed dialysate is then introduced to reservoirs (17 and 20). For this treatment, the fresh dialysate 75 from a first reservoir (17 or 20) is recirculated past the dialyzer 8 through sorbent filter bypass path 35 back to the same reservoir (17 or 20). When the volume of the reservoir (17 or 20) has been recirculated once, the reservoir (17 or 20) is emptied through the drain flow path 55 and the reservoir (17 or 20) is refilled through the fresh dialysate flow path 56.
  • Meanwhile, while the first reservoir (17 or 20) is being emptied and refilled, hemodialysis treatment continues using the second reservoir (17 or 20). For example, and as illustrated in FIG. 2 , once the processor has determined that all dialysate has recirculated once, or determined that the dialysate is contaminated, the processor switches all pertinent valves (21, 42, 43, 51 and 52) to remove the first reservoir 20 from patient treatment, and inserts the second reservoir 17 into the dialysate flow path 54. The fresh dialysate 75 from the second reservoir 17 is recirculated past the dialyzer 8 through sorbent filter bypass path 35 and back to the same reservoir 17. This switching back and forth between reservoirs (17 and 20) continues until the dialysis treatment is complete. This operation is similar, but not the same, as traditional single-pass systems because no sorbent filter 36 is used.
  • Alternatively, and as illustrated in FIG. 3 , the sorbent filter 36 filters the dialysate after it has passed through the dialyzer 8. To this end, the processor switches the 3-way valve 34 to incorporate the sorbent filter 36 into the dialysate flow path 54, and the processor switches the various valve assemblies (21, 42, 43, 51 and 52) to utilize reservoir 17 during dialysis treatment. Fresh dialysate 75 is recirculated through the dialyzer 8 and sorbent filter 36, and thereafter the dialysate is sent back to the same reservoir 17 through the dialysate flow path 54. This recirculation continues as determined by the processor including, but not limited to, because the sorbent filter 36 has been spent, or the dialysate fluid is contaminated, or ultrafiltration has resulted in the reservoir 17 becoming full and requiring that it be drained and refilled. Meanwhile, in the event the fluid in reservoir 20 is contaminated, it is drained through the drain flow path 55, and then the reservoir 20 is refilled using the fresh dialysate flow path 56.
  • As illustrated in FIG. 4 , once the processor has determined that continued use of reservoir 17 for dialysis treatment is not appropriate, the processor switches the various valve assemblies (21, 42, 43, 51 and 52) to remove reservoir 17 from the dialysate flow path 54, and to instead insert reservoir 20 within the dialysis flow path 54 for dialysis treatment. Fresh dialysate 75 is recirculated through the dialyzer 8 and sorbent filter 36 back to the same reservoir 20. Again, this recirculation continues using reservoir 20, as determined by the processor, until switching back to reservoir 17, or until dialysis treatment has been completed. While dialysis treatment continues using reservoir 20, contaminated fluid 76 in reservoir 17 is drained through the drain flow path 55. Thereafter, reservoir 17 is refilled using the fresh dialysate flow path 56. Like other treatment methods, this switching back and forth between reservoirs (17 and 20) continues until the dialysis treatment is complete.
  • In still an additional embodiment, and as illustrated in FIGS. 5 and 6 , hemodialysis treatment is conducted in similar manner as illustrated in FIG. 2 in which the sorbent filter 36 is not utilized within the dialysate flow path 54. Though it is possible to utilize the sorbent filter 36 within the dialysate flow path 54, for this embodiment it is preferred that the fresh dialysate 75 be directed through the sorbent filter bypass path 35 so as to avoid the sorbent filter 36. During treatment, the fresh dialysate 75 from the first reservoir (17 or 20) is recirculated past the dialyzer 8 through sorbent filter bypass path 35 and directed back to the same reservoir (17 or 20). Even more preferably for this embodiment, the hemodialysis system does not include sorbent filter 36. Instead, with reference to FIGS. 5 and 6 , the hemodialysis system includes a single sorbent filter 71 which is within a separate closed loop flow path referred to herein as the filter flow path 57. Though FIGS. 5 and 6 illustrate the hemodialysis system including two sorbent filters 36 and 71, the sorbent filter 36 within the dialysate flow path 54 is optional and does not need to be incorporated within this embodiment of the hemodialysis system.
  • Like the prior embodiments, dialysis treatment is implemented while switching back and forth between reservoirs (17 and 20). With reference to FIG. 5 , while dialysis treatment uses the fresh dialysate 75 in reservoir 17, the various valve assemblies (21, 42, 43, 51 and 52) are switched to insert the second reservoir 20 into the closed loop filter flow path 57. The contaminated water 76 is drained from the reservoir 20 through pump 58 and pressure sensor 59. Thereafter the contaminated water 76 is filtered through the sorbent filter 71. Reagents 61 and 65 may be introduced into the filter flow path 57 using a gravity feed or pumps 62 and 66. The reagents 61 and 65 are mixed within the mixers 63 and 67 before the now cleaned dialysate is tested for compliance by conductivity testers 64 and 68, ammonium sensor 69, and pH sensor 70. If testing shows the water is now clean, it is directed back to reservoir 20.
  • With reference to FIG. 6 , the processor continues to monitor the output of the various sensors including those within the dialysate flow path 54. Once the water within reservoir 17 has become contaminated, it is removed from the dialysate flow path 54 and reservoir 20 is substituted in its place by once again switching all of the pertinent valve assemblies (21, 42, 43, 51 and 52). The fresh dialysate 75 from the second reservoir 20 is recirculated in the closed loop dialysate flow path 54 past the dialyzer 8 and directed back to the same reservoir 20. Meanwhile, the now contaminated water 76 in reservoir 17 is drained through pump 58 and pressure sensor 59 before being filtered through the sorbent filter 71. Again, reagents 61 and 65 may be introduced into the filter flow path 57 where the reagents 61 and 65 are mixed within the mixers 63 and 67. The now clean dialysate is tested for compliance by conductivity testers 64 and 68, ammonium sensor 69 and pH sensor 70 before filling reservoir 17. This process of alternating reservoirs (17 and 20) continues until the prescribed hemodialysis treatment is completed, or a fault is detected which requires that treatment be halted.
  • FIG. 7A illustrates still an additional embodiment of the hemodialysis system which operates in recirculating mode where the dialysate flows in a closed-loop system through the sorbent filter 36. Like other embodiments, the blood flow path 53 transports blood in a closed loop system by connecting to the arterial blood line 1 and venous blood line 14 to a patient for transporting blood from a patient to the dialyzer 8 and back to the patient. Dialysate is stored in a reservoir 17 with the level of dialysate's measured by a fluid mass sensor 19, such as a mass strain gauge or load cell 19, and the dialysate's temperature maintained by a heater 23. Dialysate is recirculated through the dialyzer 8 and sorbent filter 36 using pumps 26 and 33. Thereafter, the dialysate is sent back to the same reservoir 17 through the dialysate flow path 54.
  • In the embodiment illustrated in FIG. 7A, sources of chemical concentrates from reagent sources (48 and 50) are provided which can be added to the clean water, as necessary, to maintain proper chemicals in the dialysate. Preferably, the first reagent source 48 contains salts and the second reagent source 50 contains bicarbonate and lactate solution. The chemical concentrates are introduced into the dialysate flow path 54 using the chemical concentrate pumps (47 and 49) where the clean water and chemical concentrates are mixed with mixers (63 and 67). Again, the dialysate flow path 54 may include a flow sensor 25, one or more pressure sensors 27, and a sample port 79.
  • In some embodiments, the dialysate flow path 54 also includes a conductivity sensor 41 positioned between the second mixer 67 and reservoir 17, and includes an ammonia sensor 37, a pH sensor 38 and a combined conductivity/temperature sensor 24 positioned between the reservoir 17 and dialyzer 8. A control processor 77 is connected to the various sensors (e.g., 3, 4, 7, 11, 12, 15, 16, 19, 24, 25, and 27) and pumps (5, 6, 26, 33, 44, 47 and 49) to control the hemodialysis treatment.
  • The embodiment of the hemodialysis system illustrated in FIG. 7A operates in a closed loop recirculating mode where the dialysate flows through the sorbent filter 36. Dialysate is stored in a reservoir 17 and recirculated through the dialyzer 8 and sorbent filter 36. Chemical concentrates 48 and 50 are added to the filtered water, as necessary. Recirculation continues as determined by the processor until treatment has completed, the sorbent filter 36 has been spent, the dialysate fluid is contaminated, or ultrafiltration has resulted in the reservoir 17 becoming full and requiring that it be drained.
  • Reagent sources (48 and 50) can contain the same or different infusate/reagent solutions having one or more of the following chemical compounds: calcium acetate, calcium chloride, magnesium acetate, magnesium chloride, potassium acetate, potassium chloride, sodium bicarbonate, and sodium carbonate. One or more of these compounds are infused with the dialysate coming out of the sorbent filter 36 to replenish essential sodium ions in the dialysate while also balancing the pH of the dialysate. In this way, the pH of the dialysate can be controlled to closely match with the pH of blood. For example, if the pH of the dialysate falls under 6.5, the reagent solution from one or more of the reagent sources (48 and 50) can be added to the dialysate flow path 54 after the sorbent filter 36 to bring the pH back to the desired level. This process works because fluid leaving the sorbent filter 36 at lower pH generally needs more sodium reinfused than fluid at a higher pH.
  • In some embodiments, the reagent solution in one of the reagent sources 48 or 50 can have the following compounds: calcium chloride (CaCl2), magnesium chloride (MgCl2), and potassium acetate (KAc). The reagent solution can have the following compound concentrations (approximately): CaCl2 25—40 mM millimolar); MgCl2 12.5—20 mM; and KAc 75—120 mM.
  • In an exemplar embodiment, the reagent solution have the following compound concentrations (approximately): CaCl2—32.04 mM (millimolar); MgCl2—16.02 mM; and KAc—96.12 mM. It should be noted that other molarities can also be used as long as the approximate molar ratio of each compound is maintained.
  • The concentration of the sodium carbonate solution can be approximately 1.5 M. Indeed, sodium carbonate is considered one of the most essential salts due to its highly basicity. Specifically, sodium carbonate includes two molecules of sodium per compound. In this way, sodium can be replenished into a system as necessary, while balancing out the system's pH when the system falls below a desired value, e.g., pH of 7.0. Thus, sodium carbonate is the preferred reagent because each mole of Na2CO3 can turn one mole of CO2 into sodium bicarbonate (NaHCO3) which is closer to a safe and physiologic pH range in the dialysate.
  • Specifically, in some preferred embodiments, reagent source 48 can be the solution of CaCl2, MgCl2, and KAc, and the reagent source 50 can be the reagent solution of Na2CO3. In this embodiment, reagent source 48 can be 3-4 L and reagent source 50 can be 0.5-1.0 L. However, other volumes are possible as long as the ratio is maintained. Alternatively, reagent source 48 can be the solution of Na2CO3, and the reagent source 50 can the reagent solution of CaCl2, MgCl2, and KAc. In some embodiments, reagent sources (48 and 50) can be combined into a single reagent source having an reagent solution with one or more of the following chemical compounds: calcium acetate, calcium chloride, magnesium acetate, magnesium chloride, potassium acetate, potassium chloride, sodium bicarbonate, and sodium carbonate.
  • As shown in FIG. 7A, reagent solutions from reagent source 48 and reagent source 50 are added to the dialysate flow path 54 after the sorbent filter 36. The reagent solutions from reagent sources (48 and 50) can enter the dialysate flow path 54 at the same location or at different locations and are mixed with one or more mixers (63 or 67).
  • In some embodiments, the reagent solution from reagent source 48 is inserted into the dialysate flow path 54 before the first mixer 63, and the reagent solution from reagent source 50 is inserted into the dialysate flow path 54 after the first mixer 63. Once the second reagent solution is inserted into the dialysate flow path 54, the dialysate and reagent solution in the dialysate flow path 54 are mixed again using a second downstream mixer 67 (e.g., second mixer 67).
  • In the embodiment where the reagent solutions from reagent sources (48 and 50) enter the dialysate flow path 54 at the same location, a single mixer can be used after the injection point. Alternatively, two or more mixers can be used at various locations downstream of the sorbent filter 36 but before dialysate reservoir 17. It should be noted that the dialysate flow path 54 can have a second reservoir to store new and/or refreshed dialysate—dialysate with renewed essential minerals content.
  • In closing, regarding the exemplary embodiments of the present invention as shown and described herein, it will be appreciated that a hemodialysis system is disclosed. The principles of the invention may be practiced in a number of configurations beyond those shown and described, so it is to be understood that the invention is not in any way limited by the exemplary embodiments, but is generally directed to a hemodialysis system and is able to take numerous forms to do so without departing from the spirit and scope of the invention. It will also be appreciated by those skilled in the art that the present invention is not limited to the particular geometries and materials of construction disclosed, but may instead entail other functionally comparable structures or materials, now known or later developed, without departing from the spirit and scope of the invention. Furthermore, the various features of each of the above-described embodiments may be combined in any logical manner and are intended to be included within the scope of the present invention.
  • Groupings of alternative embodiments, elements, or steps of the present invention are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other group members disclosed herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified.
  • Unless otherwise indicated, all numbers expressing a characteristic, item, quantity, parameter, property, term, and so forth used in the present specification and claims are to be understood as being modified in all instances by the term “about.” As used herein, the term “about” means that the characteristic, item, quantity, parameter, property, or term so qualified encompasses a range of plus or minus ten percent above and below the value of the stated characteristic, item, quantity, parameter, property, or term. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the Specification and attached claims are approximations that may vary. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical indication should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and values setting forth the broad scope of the invention are approximations, the numerical ranges and values set forth in the specific examples are reported as precisely as possible. Any numerical range or value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Recitation of numerical ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate numerical value falling within the range. Unless otherwise indicated herein, each individual value of a numerical range is incorporated into the present Specification as if it were individually recited herein.
  • The terms “a,” “an,” “the” and similar referents used in the context of describing the present invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the present invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the present specification should be construed as indicating any non-claimed element essential to the practice of the invention.
  • Specific embodiments disclosed herein may be further limited in the claims using consisting of or consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the present invention so claimed are inherently or expressly described and enabled herein.
  • It should be understood that the logic code, programs, modules, processes, methods, and the order in which the respective elements of each method are performed are purely exemplary. Depending on the implementation, they may be performed in any order or in parallel, unless indicated otherwise in the present disclosure. Further, the logic code is not related, or limited to any particular programming language, and may comprise one or more modules that execute on one or more processors in a distributed, non-distributed, or multiprocessing environment.
  • While several particular forms of the invention have been illustrated and described, it will be apparent that various modifications can be made without departing from the spirit and scope of the invention. Therefore, it is not intended that the invention be limited except by the following claims.

Claims (20)

What is claimed is:
1. A hemodialysis system with a sensor comprising:
a machine housing;
an arterial blood line for connecting to a patient's artery for collecting blood from the patient;
a venous blood line for connecting to the patient's vein for returning blood to the patient;
a dialyzer;
a blood flow path connected to the arterial blood line and the venous blood line, the blood flow path is configured to transport blood from the patient to the dialyzer and back to the patient;
a reservoir for storing dialysate;
a dialysate flow path, isolated from the blood flow path, connected to the reservoir and the dialyzer, the dialysate flow path is configured to transport dialysate from the reservoir to the dialyzer;
a first pump for pumping dialysate through the dialysate flow path;
a second pump for pumping blood through the blood flow path;
a sorbent filter connected to the dialysate flow path for removing toxins from the dialysate; and
a dialysate quality sensor disposed directly in the dialysate flow path, the dialysate quality sensor comprising a sensor media configured to change color based on a pH level, ammonia level, or ammonium level of the dialysate.
2. The hemodialysis system of claim 1, wherein the dialysate quality sensor further comprises a sensor body having a transparent wall and a slot, wherein the slot is configured to secure the sensor media while directly exposing the sensor media to the dialysate, wherein the transparent wall is configured to allow broad spectrum light to traverse without interference.
3. The hemodialysis system of claim 2, wherein the slot and the transparent wall are disposed on opposite sides of the sensor body.
4. The hemodialysis system of claim 2, wherein the slot and the transparent wall are disposed on a same side of the sensor body.
5. The hemodialysis system of claim 2, wherein the sensor body further comprises a slot-covering material configured to seal the sensor media inside of the slot.
6. The hemodialysis system of claim 2, wherein the dialysate quality sensor further comprises a color reader configured to determine the color of the sensor media, wherein the color reader is mounted to the transparent wall such that the color reader can receive light reflecting from the sensor media.
7. The hemodialysis system of claim 6, wherein the color reader comprises a light emitter and a light receiver, wherein the light emitter is configured to transmit a broad spectrum light onto the sensor media through the transparent wall, and wherein the light receiver is configured to determine a color of light reflecting off the sensor media.
8. The hemodialysis system of claim 1, further comprising a controller configured to transmit a quality status of the dialysate to a remote device based on at least the color of the sensor media.
9. The hemodialysis system of claim 1, further comprising a controller configured to display a quality status of the dialysate on a display of the hemodialysis system based on at least the color of the sensor media.
10. The hemodialysis system of claim 1, wherein the sensor media is configured to change color based on the level of ammonia or ammonium in the dialysate, and wherein the sensor media is further configured to change to a predetermined color when the level of ammonia or ammonium is in a range between 5 to 10 ppm.
11. The hemodialysis system of claim 1, wherein the sensor media is configured to change color based on the pH level of the dialysate, and wherein the sensor media is further configured to change to a predetermined color when the pH level is outside a range of 6.4 to 7.0 pH.
12. The hemodialysis system of claim 1, wherein the sensor media comprises an internal light source, and wherein the sensor media is configured to adjust the internal light source intensity based on ambient light.
13. A dialysate quality sensor, the sensor comprising:
a sensor body having a lumen and a transparent wall, the lumen configured to receive a flow of dialysate;
a sensor media configured to change color based on a pH level of the dialysate, ammonia level, or ammonium level in the dialysate;
a slot coupled to the sensor body, the slot configured to receive and secure the sensor media while exposing the sensor media directly to the flow of dialysate;
a slot cover configured to seal the slot to prevent dialysate from leaking out of the slot, wherein the transparent wall is disposed along the sensor body such that there is a direct line of sight to the sensor media.
14. The dialysate quality sensor of claim 13, wherein the transparent wall is configured to allow broad spectrum light to traverse without interference.
15. The dialysate quality sensor of claim 13, wherein the slot and the transparent wall are disposed on opposite sides of the sensor body.
16. The dialysate quality sensor of claim 13, wherein the slot and the transparent wall are disposed on a same side of the sensor body.
17. The dialysate quality sensor of claim 13, further comprising a color reader configured to determine the color of the sensor media, wherein the color reader is mounted adjacent to the transparent wall such that the color reader can receive light reflecting from the sensor media.
18. The dialysate quality sensor of claim 13, wherein the sensor media is configured to change color based on the level of ammonia or ammonium in the dialysate, and wherein the sensor media is further configured to change to a predetermined color when the level of ammonia or ammonium is in a range between 5 to 10 ppm.
19. The dialysate quality sensor of claim 13, wherein the sensor media is configured to change color based on the pH of the dialysate, and wherein the sensor media is further configured to change to a predetermined color when the pH level is outside a range of 6.4 to 7.0 pH.
20. The dialysate quality sensor of claim 13, wherein the sensor media comprises an internal light source.
US17/827,506 2021-05-31 2022-05-27 Dialysis system with a dialysate quality sensor Pending US20220378992A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/827,506 US20220378992A1 (en) 2021-05-31 2022-05-27 Dialysis system with a dialysate quality sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163195161P 2021-05-31 2021-05-31
US17/827,506 US20220378992A1 (en) 2021-05-31 2022-05-27 Dialysis system with a dialysate quality sensor

Publications (1)

Publication Number Publication Date
US20220378992A1 true US20220378992A1 (en) 2022-12-01

Family

ID=84194670

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/827,506 Pending US20220378992A1 (en) 2021-05-31 2022-05-27 Dialysis system with a dialysate quality sensor

Country Status (6)

Country Link
US (1) US20220378992A1 (en)
EP (1) EP4346938A1 (en)
CN (1) CN117440843A (en)
AU (1) AU2022284039A1 (en)
CA (1) CA3220718A1 (en)
WO (1) WO2022256265A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444498A (en) * 1981-02-27 1984-04-24 Bentley Laboratories Apparatus and method for measuring blood oxygen saturation
US5291884A (en) * 1991-02-07 1994-03-08 Minnesota Mining And Manufacturing Company Apparatus for measuring a blood parameter
US20030113931A1 (en) * 2001-12-14 2003-06-19 Li Pan Ammonia and ammonium sensors
US20070161113A1 (en) * 2006-01-06 2007-07-12 Ash Stephen R Ammonia sensor and system for use
US20170173248A1 (en) * 2015-12-17 2017-06-22 Fresenius Medical Care Holdings, Inc. System and Method for Controlling Venous Air Recovery in a Portable Dialysis System
US20180116555A1 (en) * 2016-10-28 2018-05-03 Drägerwerk AG & Co. KGaA Device for determining the concentration of at least one gas component in a breathing gas mixture
US20200030515A1 (en) * 2018-07-27 2020-01-30 Fresenius Medical Care Holdings, Inc. Method for tailoring dialysis treatment based on sensed potassium concentration in blood serum or dialysate
US20200129686A1 (en) * 2018-10-25 2020-04-30 Diality Inc. Dual reservoir hemodialysis system
US20200400584A1 (en) * 2016-09-09 2020-12-24 Medtronic, Inc. Fluid sensor card

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9199022B2 (en) * 2008-09-12 2015-12-01 Fresenius Medical Care Holdings, Inc. Modular reservoir assembly for a hemodialysis and hemofiltration system
US11517653B2 (en) * 2019-11-05 2022-12-06 Diality Inc. Hemodialysis system reservoir level sensor
CA3157481A1 (en) * 2019-11-05 2021-05-14 Clayton Poppe Hemodialysis system incorporating dialysate generator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444498A (en) * 1981-02-27 1984-04-24 Bentley Laboratories Apparatus and method for measuring blood oxygen saturation
US5291884A (en) * 1991-02-07 1994-03-08 Minnesota Mining And Manufacturing Company Apparatus for measuring a blood parameter
US20030113931A1 (en) * 2001-12-14 2003-06-19 Li Pan Ammonia and ammonium sensors
US20070161113A1 (en) * 2006-01-06 2007-07-12 Ash Stephen R Ammonia sensor and system for use
US20170173248A1 (en) * 2015-12-17 2017-06-22 Fresenius Medical Care Holdings, Inc. System and Method for Controlling Venous Air Recovery in a Portable Dialysis System
US20200400584A1 (en) * 2016-09-09 2020-12-24 Medtronic, Inc. Fluid sensor card
US20180116555A1 (en) * 2016-10-28 2018-05-03 Drägerwerk AG & Co. KGaA Device for determining the concentration of at least one gas component in a breathing gas mixture
US20200030515A1 (en) * 2018-07-27 2020-01-30 Fresenius Medical Care Holdings, Inc. Method for tailoring dialysis treatment based on sensed potassium concentration in blood serum or dialysate
US20200129686A1 (en) * 2018-10-25 2020-04-30 Diality Inc. Dual reservoir hemodialysis system

Also Published As

Publication number Publication date
WO2022256265A1 (en) 2022-12-08
CN117440843A (en) 2024-01-23
CA3220718A1 (en) 2022-12-08
AU2022284039A1 (en) 2024-01-18
EP4346938A1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
US10195327B2 (en) Sensing and storage system for fluid balance
EP2334412B1 (en) Priming system and method for dialysis systems
US11260155B2 (en) Dual reservoir hemodialysis system
AU2019271940A1 (en) Priming System And Method For Dialysis Systems
US11517653B2 (en) Hemodialysis system reservoir level sensor
US20220378992A1 (en) Dialysis system with a dialysate quality sensor
US20220378995A1 (en) Methods and systems for controlling dialysate salt concentration
US11904078B2 (en) Hemodialysis system with variable dialysate flow rate
US20240115782A1 (en) Hemodialysis system with variable dialysate flow rate
EP4331638A1 (en) Hemodialysis system with variable dialysate flow rate
US20230117917A1 (en) Hemodialysis system reservoir level sensor
CA3171881A1 (en) Hemodialysis system with variable dialysate flow rate
JP2024033781A (en) Hemodialysis system with variable dialysate flow rate
CN117717664A (en) Hemodialysis system with variable dialysate flow

Legal Events

Date Code Title Description
AS Assignment

Owner name: DIALITY INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BORILLO, BRANDON;CHEN, TZU TUNG;POPPE, CLAYTON;SIGNING DATES FROM 20220527 TO 20220528;REEL/FRAME:060744/0086

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER