US20220357248A1 - Smear staining apparatus, smear preparing apparatus, and smear staining method - Google Patents
Smear staining apparatus, smear preparing apparatus, and smear staining method Download PDFInfo
- Publication number
- US20220357248A1 US20220357248A1 US17/869,818 US202217869818A US2022357248A1 US 20220357248 A1 US20220357248 A1 US 20220357248A1 US 202217869818 A US202217869818 A US 202217869818A US 2022357248 A1 US2022357248 A1 US 2022357248A1
- Authority
- US
- United States
- Prior art keywords
- staining
- chamber
- chamber part
- staining solution
- glass slides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010186 staining Methods 0.000 title claims abstract description 241
- 238000007447 staining method Methods 0.000 title claims description 4
- 239000011521 glass Substances 0.000 claims abstract description 261
- 239000012192 staining solution Substances 0.000 claims abstract description 248
- 230000032258 transport Effects 0.000 claims abstract description 101
- 238000003780 insertion Methods 0.000 claims abstract description 78
- 230000037431 insertion Effects 0.000 claims abstract description 78
- 239000007788 liquid Substances 0.000 claims description 59
- 239000012530 fluid Substances 0.000 claims description 31
- 230000007246 mechanism Effects 0.000 claims description 30
- 238000009423 ventilation Methods 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 description 89
- 238000012545 processing Methods 0.000 description 62
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 33
- 239000000243 solution Substances 0.000 description 33
- 238000001035 drying Methods 0.000 description 22
- 238000007639 printing Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 8
- 125000006850 spacer group Chemical group 0.000 description 8
- 238000007664 blowing Methods 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000003860 storage Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000012137 double-staining Methods 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000008363 phosphate buffer Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000010817 Wright-Giemsa staining Methods 0.000 description 2
- AXIKDPDWFVPGOD-UHFFFAOYSA-O [7-(dimethylamino)phenothiazin-3-ylidene]-dimethylazanium;2-(2,4,5,7-tetrabromo-3,6-dihydroxyxanthen-10-ium-9-yl)benzoic acid Chemical compound C1=CC(=[N+](C)C)C=C2SC3=CC(N(C)C)=CC=C3N=C21.OC(=O)C1=CC=CC=C1C1=C(C=C(Br)C(O)=C2Br)C2=[O+]C2=C1C=C(Br)C(O)=C2Br AXIKDPDWFVPGOD-UHFFFAOYSA-O 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000008055 phosphate buffer solution Substances 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000005315 stained glass Substances 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/30—Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
- G01N1/31—Apparatus therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/2813—Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/30—Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/30—Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
- G01N1/31—Apparatus therefor
- G01N1/312—Apparatus therefor for samples mounted on planar substrates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00029—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
- G01N2035/00099—Characterised by type of test elements
- G01N2035/00138—Slides
Definitions
- the disclosure relates to a smear staining apparatus, a smear preparing apparatus, and a smear staining method.
- Patent Literature 1 discloses a smear staining apparatus that stains a smear on a glass slide.
- staining chambers to be filled with staining solutions are arranged side by side.
- a glass slide is inserted into each staining chamber from above.
- the liquid surface level of the staining solution in the staining chamber changes vertically depending on the number of the glass slides set. Due to the change of the liquid surface level, smear staining regions on the glass slides may not be immersed in the staining solution sufficiently, or print regions on the glass slides may come into contact with the staining solution and be soiled. To avoid such situations, the staining chamber needs to be configured so that the area of the liquid surface is sufficiently larger than the areas of the horizontal sections of the glass slides so as to reduce the range of change in the liquid surface.
- a staining solution for staining smears often contains a volatile component such as an organic solvent. For this reason, the staining solution easily evaporates when the area of the liquid surface is large. Thus, there are demands that the amount of staining solution in the staining chamber be maintained while the area of the liquid surface of the staining solution is sufficiently large.
- a smear staining apparatus may include: a chamber part in which glass slides can be placed and that is configured to contain a staining solution for staining a smear on each of the glass slides; a cover part that covers the chamber part from above and comprises an insertion hole through which the glass slides are transported to the chamber part; and a transport part that transports the glass slides to the chamber part through the insertion hole.
- a smear staining apparatus may include: a chamber part in which glass slides can be placed and that is configured to contain a staining solution for staining a smear on each of the glass slides; a fluid mechanism that supplies the chamber part with the staining solution; and a controller that causes the fluid mechanism to supply the chamber part in which the glass slides are placed, with the staining solution.
- a smear preparing apparatus comprises: a smearing unit that smears glass slides with samples; and a staining unit that includes the smear staining apparatus according to the first or second aspect.
- a smear staining method may include: filling a chamber part in which glass slides can be placed with a staining solution for staining a smear on each of the glass slides; and supplying the chamber part in which the glass slides are placed, with the staining solution.
- One or more aspects may maintain the amount of staining solution in a staining chamber in the smear staining apparatus.
- FIG. 1 is a schematic diagram illustrating an outline of a smear staining apparatus according to an embodiment.
- FIG. 2 is a schematic diagram illustrating another example configuration of a chamber part and a cover part in a smear staining apparatus.
- FIG. 3 is a schematic plan view illustrating an example overall configuration of a smear preparing apparatus.
- FIG. 4 is a perspective view illustrating a specific example configuration of a staining unit in a smear preparing apparatus.
- FIG. 5 is a perspective view illustrating a specific example configuration of a staining chamber in a smear preparing apparatus.
- FIG. 6 is an exploded perspective view illustrating a state where cover parts are removed from chamber parts, such as in FIG. 5 .
- FIG. 7 is a schematic top view of staining chambers and cleaning chambers, such as in FIG. 5 .
- FIG. 8 is an enlarged sectional view taken along line 800 - 800 in FIG. 7 .
- FIG. 9 is a partial sectional view taken along line 900 - 900 in FIG. 8 .
- FIG. 10 is a flowchart illustrating an example of how a staining unit operates.
- FIG. 11 is a flowchart illustrating staining processing and cleaning processing in FIG. 10 .
- FIG. 12A and FIG. 12B are diagrams each illustrating an example of a screen used to set timing for replenishment with a staining solution.
- FIG. 13 is a diagram illustrating example usages of chamber parts.
- FIG. 14 is a schematic diagram illustrating part of a fluid circuit.
- FIG. 15 is a flowchart illustrating staining solution supply processing.
- the smear staining apparatus 100 is an apparatus that performs smear staining processing on a glass slide 10 with a smear. In other words, the smear staining apparatus 100 stains the smear that is smeared on the glass slide 10 .
- the smear is a biological specimen collected from a subject (a tested subject), and is, for example, blood, cells, or the like.
- the smear staining apparatus 100 includes: a cover part 23 with insertion holes 21 ; and a chamber part 24 .
- the smear staining apparatus 100 also includes a transport part 30 .
- the chamber part 24 and the cover part 23 together constitute part or all of a staining chamber 20 for performing staining processing.
- the chamber part 24 is formed in the shape of a container capable of accommodating liquid.
- the chamber part 24 is configured to contain liquid.
- a plurality of glass slides can be placed in the chamber part 24 , and the chamber part 24 is filled with a staining solution 11 for staining a smear on the glass slide 10 .
- the staining solution 11 may contain a volatile organic solvent, such as methanol, ethanol, or xylene, as a main component.
- the organic solvent is used for processing to fixate or fix a smear applied to the glass slide 10 .
- the fixation processing or fixing processing is performed to prevent cells in a smear from changing in properties due to disintegration, decay, or the like.
- the staining processing is carried out by immersing the glass slide 10 in the staining solution 11 in the chamber part 24 for a predetermined period of time.
- the glass slide 10 is, for example, a rectangular, plate-shaped member.
- the glass slide 10 includes, for example, a stain section 10 a where a smear is placed, and a print section 10 b where various pieces of information, such as sample information, are presented.
- the stain section 10 a is formed over a predetermined range extending in the longitudinal direction including the center portion in the longitudinal direction.
- the print section 10 b is formed in one end portion of the glass slide 10 in the longitudinal direction, at a distance from the stain section 10 a.
- the print section 10 b is a portion where the side glass is coated with a resin material or the like to make printing thereon possible.
- Printable on the print section 10 b are a sample number, a date, a barcode or a two dimensional barcode, and the like.
- the entire stain section 10 a needs to be in contact with the staining solution 11 sufficiently.
- the print section 10 b comes into contact with the staining solution 11 , the print section 10 b gets soiled, making the print hard to read.
- the liquid surface 11 a of the staining solution 11 be maintained between the stain section 10 a and the print section 10 b.
- the level of liquid surface 11 a changes vertically (in the Z direction) depending on the number of glass slides 10 set in the chamber part 24 .
- the chamber part 24 is formed so that the area of a horizontal section of the staining solution 11 at least at the liquid surface level in the internal space (i.e., the area of the liquid surface 11 a ) is sufficiently larger than the areas of the horizontal sections of the glass slides 10 placed in the chamber part 24 .
- the smear staining apparatus 100 of an embodiment includes the cover part 23 .
- the cover part 23 includes the insertion holes 21 through which the glass slides 10 are inserted or transported, and the cover part 23 covers the chamber part 24 from above.
- the cover part 23 is disposed at a position higher than or above the liquid surface 11 a of the staining solution 11 in the chamber part 24 . Since the vapor of the staining solution 11 is likely to be held inside the space covered by the cover part 23 , evaporation of the volatile staining solution 11 is reduced accordingly.
- the cover part 23 may be provided integrally with the chamber part 24 , or the cover part 23 may be provided separately from the chamber part 24 .
- the cover part 23 extends from the end portions of the chamber part 24 toward the insertion holes 21 in the width direction (the X direction) of the glass slide 10 placed in the chamber part 24 .
- the cover part 23 covers all the region of the chamber part 24 except for the insertion holes 21 .
- the cover part 23 may partially cover the region above the chamber part 24 except for the insertion holes 21 . Even if the region except for the insertion holes 21 is not completely covered, the effect of reducing evaporation of the staining solution 11 can be achieved by the part covered by the cover part 23 . From the perspective of reducing evaporation of the staining solution 11 , it is preferable that the cover part 23 cover substantially the entire open region of the chamber part 24 except for the insertion holes 21 .
- each insertion hole 21 is a slit through which a single glass slide 10 can be inserted.
- the opening area of each insertion hole 21 is substantially the same as or slightly larger than the area of a horizontal section of the glass slide 10 .
- each insertion hole 21 is formed in a size such that only a single glass slide 10 can be inserted therethrough at once.
- the insertion hole 21 may be configured so that two or more glass slides 10 can be inserted through the common insertion hole 21 .
- FIG. 2 illustrates an example configuration having the insertion hole 21 of a different opening shape.
- the insertion hole 21 is an opening extending in the direction in which a plurality of glass slides 10 are arranged in the chamber part 24 , and is configured so that a plurality of glass slides 10 can be inserted therethrough.
- such an insertion hole 21 also allows a plurality of glass slides 10 to be received by the chamber part 24 and collectively stained in the staining solution 11 .
- FIG. 1 illustrates an example configuration having the insertion hole 21 of a different opening shape.
- the insertion hole 21 is an opening extending in the direction in which a plurality of glass slides 10 are arranged in the chamber part 24 , and is configured so that a plurality of glass slides 10 can be inserted therethrough.
- such an insertion hole 21 also allows a plurality of glass slides 10 to be received by the chamber part 24 and collectively stained
- the insertion hole 21 extends in the Y direction, and the glass slides 10 inserted through the insertion hole 21 are arranged in the Y direction.
- the opening area of the insertion hole 21 is equal to or larger than the total area of horizontal sections of the glass slides 10 .
- each glass slide 10 is held not to move in the chamber part 24 .
- the chamber part 24 includes slide holders 22 to hold the glass slides 10 immersed in the staining solution 11 .
- the insertion hole 21 is a large opening as illustrated in FIG. 2
- the glass slides 10 can be stably held by the slide holders 22 provided in the chamber part 24 .
- the example configuration in FIG. 1 may be provided with the slide holders 22 , such as in FIG. 2 . Note that the slide holders 22 do not necessarily have to be provided.
- the slide holders 22 are formed on the bottom portion of the chamber part 24 .
- Each slide holder 22 includes a portion, such as a recess portion and a wall portion, to support the periphery of a lower end portion 10 c of the glass slide 10 .
- the slide holder 22 may be columnar and configured to support the side surfaces of the glass slide 10 .
- the slide holder 22 may have a shape other than that illustrated in FIG. 2 .
- the slide holders 22 may be provided in the cover part 23 .
- the slide holders 22 may be provided in both the cover part 23 and the chamber part 24 .
- the slide holders 22 are configured to hold the respective glass slides 10 at holding positions arranged in a predetermined direction.
- the insertion hole 21 is an opening extending in a direction in which the glass slides 10 are arranged and is configured so that the glass slides 10 can be inserted or transported therethrough to the respective holding positions. Thereby, samples smeared on the glass slides 10 can be immersed in the staining solution 11 sufficiently.
- FIG. 1 illustrates an example where five insertion holes 21 are formed to be able to hold five glass slides 10
- the number of glass slides 10 that the slide holders 22 can hold is not limited to five as long as it is more than one. The same applies to FIG. 2 .
- the transport part 30 is capable of holding and transporting the glass slide 10 .
- the transport part 30 is configured to hold and transport a single glass slide 10 and move the glass slide 10 in and out through the insertion hole 21 .
- the transport part 30 can move one glass slide 10 in and out of the insertion holes 21 from above the chamber part 24 at a time. If a plurality of glass slides 10 are transported at once, staining processing cannot be started until all the smeared glass slides are ready for the processing.
- the configuration in which the transport part 30 transports one glass slide 10 at a time can shorten the time required for performing the staining processing on each glass slide 10 .
- the transport part 30 is a three-axis cartesian robot that can move horizontally and vertically (Z direction) and that includes a hand 31 to grip the glass slide 10 .
- the transport part 30 may be movable in one of the horizontal direction and the vertical direction, and the staining chamber 20 may be movable in the other one of the horizontal direction and the vertical direction.
- the hand 31 may be, for example, an open-and-close mechanism capable of gripping the glass slide 10 by sandwiching the glass slide 10 , or a suction mechanism that grips the glass slide 10 by sucking a predetermined portion of the glass slide 10 .
- the transport part 30 may be configured to be able to transport two or more glass slides 10 at once.
- the smear staining apparatus 100 configured as described above can reduce evaporation of the volatile staining solution 11 with the cover part 23 , even though the chamber part 24 is formed so that the area of the liquid surface 11 a of the staining solution 11 may be sufficiently large. As a result, the amount of the staining solution 11 used can be reduced. Further, even though the cover part 23 is provided, the insertion hole(s) 21 can be left open. Thus, the smear staining apparatus 100 can be operated with the cover part 23 fixed, without requiring the cover part 23 to be removed to open the insertion hole(s) during the operation of the smear staining apparatus 100 or to be configured to be able to open and close. Thus, even though the cover part 23 is provided with or in the chamber part 24 , the apparatus configuration and operation of the smear staining apparatus 100 can be simplified.
- the smear staining apparatus 100 illustrated in FIG. 1 is applied to a staining unit of a smear preparing apparatus 200 .
- the smear preparing apparatus 200 is an apparatus that performs smearing processing to smear a sample on the glass slide 10 and then performs staining processing to stain the sample on the glass slide 10 .
- the sample is, for example, blood.
- the overall configuration of the smear preparing apparatus 200 is described with reference to FIG. 3 .
- the smear staining apparatus 100 including the staining chamber 20 illustrated in FIG. 1 or 2 and the transport part 30 is provided in a staining unit 81 of the smear preparing apparatus 200 .
- the smear preparing apparatus 200 further includes a slide supplying unit 82 , a printing unit 83 , a smearing unit 84 , a drying unit 85 , and a slide storage unit 86 .
- the slide supplying unit 82 is configured to house a large number of unused glass slides 10 yet to be smeared with a sample.
- the slide supplying unit 82 can supply the printing unit 83 with the unsmeared glass slides 10 one at a time.
- the printing unit 83 can print various pieces of information such as sample information on the print section 10 b (see FIG. 8 ) of the glass slide 10 .
- the printing unit 83 can transport the printed glass slide 10 to the smearing unit 84 .
- the smearing unit 84 can aspirate a sample using a sample aspiration mechanism (not shown) and smear the sample on the stain section 10 a of the glass slide 10 (see FIG. 8 ) sent from the printing unit 83 .
- the smearing unit 84 can transport the glass slide 10 having undergone the smearing processing to the drying unit 85 .
- the drying unit 85 has a function to receive the sample-smeared glass slide 10 from the smearing unit 84 and dry the stain section 10 a.
- the staining unit 81 performs staining processing by the smear staining apparatus 100 on the sample on the glass slide 10 having undergone the smearing processing by the smearing unit 84 .
- the smeared glass slide 10 dried by the drying unit 85 undergoes staining processing in each staining chamber 20 and cleaning processing in each cleaning chamber 40 .
- the staining processing is completed with a drying step in a drying chamber 50 , and the stained glass slide 10 is sent to the slide storage unit 86 .
- the transport part 30 (see FIG. 1 ) performs transport of the glass slide 10 between members in the staining unit 81 and transport of the glass slide 10 to the slide storage unit 86 .
- the slide storage unit 86 has a function to store the stained glass slide 10 .
- the smear preparing apparatus 200 can automatically prepare a smear by subjecting the glass slide 10 to printing processing, sample smearing processing, and staining processing.
- the staining unit 81 includes the staining chambers 20 , the transport part 30 , the cleaning chambers 40 , the drying chamber 50 , and an air blowing unit 60 .
- the transport part 30 includes a first transport part 30 a and a second transport part 30 b.
- the smear preparing apparatus 200 includes a fluid circuit part 70 for supplying the staining solution 11 and a cleaning liquid 12 to the staining chambers 20 and the cleaning chambers 40 , respectively and for discharging the staining solution 11 and the cleaning liquid 12 from the staining chambers 20 and the cleaning chambers 40 , respectively.
- the smear preparing apparatus 200 includes a controller 71 that controls elements such as the transport part 30 and the air blowing unit 60 .
- the controller 71 may be a computer including components, such as a CPU (Central Processing Unit) 711 , a memory part 712 , such as memory, and a clock part 713 .
- the clock part 713 is, for example, one that can acquire time information, such as a system clock managed by the operation system of the controller 71 or a real-time clock in the controller 71 .
- the X direction is the width direction of the glass slide 10 inserted in the staining chamber 20 (i.e., the width direction of the insertion hole 21 )
- the Y direction is the direction in which the glass slides 10 are arranged in the staining chamber 20 (i.e., the thickness direction of the insertion hole 21 ).
- the Z direction is the vertical direction, which is the direction in which the glass slide 10 is inserted.
- the first transport part 30 a and the second transport part 30 b are disposed above (i.e., on the Z1 side of) the staining chambers 20 and the cleaning chambers 40 .
- Moving mechanisms 32 enable the first transport part 30 a and the second transport part 30 b to move in horizontal directions (i.e., the X direction and the Y direction).
- Each moving mechanism 32 includes a Y-axis motor 33 and an X-axis motor 34 and moves the first transport part 30 a or the second transport part 30 b in horizontal directions.
- the first transport part 30 a and the second transport part 30 b substantially have the same configuration.
- the first transport part 30 a and the second transport part 30 b each include a Z-axis motor 35 to raise and lower the hand 31 .
- the hand 31 can grip one glass slide 10 .
- FIG. 4 illustrates an example where a pair of hands 31 sandwich and grip the respective glass slides 10 in their thickness direction.
- the hand 31 may be configured to sandwich and grip the glass slide 10 in its width direction.
- the first transport part 30 a can move above the positions of the staining and cleaning chambers on the Y2 side, namely, a first staining chamber 20 a, a second staining chamber 20 b, a third staining chamber 20 c, and a first cleaning chamber 40 a .
- the second transport part 30 b can move above the positions of the staining and cleaning chambers on the Y1 side, namely, a second cleaning chamber 40 b, a fifth staining chamber 20 e, a fourth staining chamber 20 d, and a first cleaning chamber 40 a , as well as above the position of the drying chamber 50 and the transport path to the slide storage unit 86 (see FIG. 3 ).
- the first transport part 30 a and the second transport part 30 b can transport different glass slides 10 at the same time.
- the glass slide 10 is passed between the first transport part 30 a and the second transport part 30 b.
- the glass slide 10 may be passed at a position other than the first cleaning chamber 40 a.
- the cleaning chamber 40 can be filled with the cleaning liquid 12 to immerse the glass slide 10 therein.
- the cleaning chamber 40 has the same configuration as the staining chamber 20 .
- the glass slide 10 undergoes cleaning processing by being immersed in the cleaning liquid 12 in the cleaning chamber 40 .
- the cleaning processing is performed between steps of the staining processing and after all the steps of the staining processing.
- the drying chamber 50 is disposed side by side with the staining chambers 20 and the cleaning chambers 40 in the Y direction.
- the drying chamber 50 has a function to dry the glass slide 10 having undergone the staining processing and the cleaning processing.
- the drying chamber 50 can hold the glass slides 10 each being spaced away from another.
- the drying chamber 50 includes an air passage inside (not shown), and the air passage is connected to the air blowing unit 60 .
- the air blowing unit 60 has a function to blow air to the glass slides 10 held in the drying chamber 50 .
- the air blowing unit 60 includes, for example, an electrically-operated fan, and can forcibly send air into the air passage inside the drying chamber 50 .
- the smear preparing apparatus 200 includes a heater 51 to warm up the air sent from the air blowing unit 60 .
- the air thus warmed up can speed up the drying process of the glass slide 10 having undergone staining processing, shortening the time required to complete the staining processing.
- each staining chamber 20 incudes the chamber part 24 or a tub to be filled with the staining solution 11 .
- the chamber part 24 is provided separately from the cover part 23 .
- the cover part 23 is removably set in or set on the chamber part 24 (see FIG. 6 ). Thereby, even if the cover part 23 gets soiled by the staining solution 11 dripping from the glass slide 10 being transported, the cover part 23 can be removed from the staining chamber 20 and cleaned easily.
- the cover part 23 includes the slide holder 22 to hold the glass slides 10 placed in the chamber part 24 .
- the cover part 23 is set in such a manner as to be removable from the chamber part 24 together with the slide holder 22 . Since soil or extraneous matter attached to a part such as narrow gaps in the insertion holes 21 can be washed away, the maintainability of the staining chamber 20 improves.
- the slide holder 22 may be provided in the chamber part 24 so that only the cover part 23 can be removed from the chamber part 24 .
- the slide holder 22 is configured to hold the glass slides 10 inserted into the chamber part 24 by the transport part 30 .
- the glass slides 10 can be stably held with their stain sections 10 a immersed in the staining solution 11 in the chamber part 24 .
- the cover part 23 and the slide holder 22 are fixed to the chamber part 24 with part of the cover part 23 and the slide holder 22 being set inside the chamber part 24 .
- the transport part 30 inserts the glass slides 10 into the insertion holes 21 one by one. A smear applied to the glass slide 10 is stained by coming into contact with the staining solution 11 in the chamber part 24 .
- the cover part 23 can be removed from the inside of the chamber part 24 . Removal of the cover part 23 from the chamber part 24 enables the entire part of the slide holder 22 and the cover part 23 to be cleaned.
- the smear preparing apparatus 200 may be configured to be able to detect whether the cover part 23 is placed in the chamber part 24 .
- the cover part 23 is provided with a detection piece 25 .
- the detection piece 25 is detected by a sensor (not shown).
- At least one of the chamber part 24 and the cover part 23 is black. This makes soil which may be attached to the staining solution 11 during transport of the glass slide 10 less noticeable. It also helps reduce degradation of the chamber part 24 and the cover part 23 due to light, if the chamber part 24 and the cover part 23 are resin moldings. Although it may be preferable that both of the chamber part 24 and the cover part 23 are black, only one of them may be black. Also, neither the chamber part 24 nor the cover part 23 may be black.
- At least one of the chamber part 24 and the cover part 23 is made of any one of a polyphenylene sulfide (PPS) resin, a polypropylene (PP) resin, and a polyetherimide (PEI) resin.
- PPS polyphenylene sulfide
- PP polypropylene
- PEI polyetherimide
- both of the chamber part 24 and the cover part 23 is made of any one of the above materials, only one of them may be made of any one of the above materials.
- both of the chamber part 24 and the cover part 23 may be made of a material different from the above materials.
- the staining chambers 20 and the cleaning chambers 40 may be integrally formed.
- the five staining chambers 20 , the first staining chamber 20 a to the fifth staining chamber 20 e, and the two cleaning chambers 40 , the first cleaning chamber 40 a and the second cleaning chamber 40 b are integrally formed.
- the cleaning chamber 40 also includes the chamber part 24 to be filled with the cleaning liquid 12 and the cover part 23 to be removably set in or set on the chamber part 24 .
- a plurality of chamber parts 24 corresponding to the respective staining chambers 20 and cleaning chambers 40 are integrally provided.
- the chamber parts 24 include chamber parts 24 a to 24 e that correspond to the five staining chambers 20 .
- the chamber parts 24 further include chamber parts 24 f and 24 g that correspond to the two cleaning chambers 40 .
- the chamber parts 24 a to 24 g are segregated from one another by partitioning members 245 so that the liquids do not flow between them. These chamber parts 24 a to 24 g may be provided separately.
- Each of the chamber parts 24 a to 24 g is provided with its own supply port 26 a (see FIG. 8 ) and discharge port 26 b (see FIG. 8 ).
- the staining solutions 11 and the cleaning liquids 12 are supplied from the fluid circuit part 70 to the chamber parts 24 a to 24 g.
- the discharge ports 26 b the staining solutions 11 and the cleaning liquids 12 in the chamber parts 24 a to 24 g are discharged by the fluid circuit part 70 .
- the chamber parts 24 are open upward at their upper portions 241 , and each of their lower portions 242 includes a bottom surface. When attached to the chamber parts 24 from above, the cover part 23 is partially located inside the chamber parts 24 .
- the cover part 23 includes: the insertion holes 21 as many as the number of glass slides 10 capable of being set in each staining chamber 20 ; and the insertion holes 21 as many as the number of glass slides 10 capable of being set in each cleaning chamber 40 .
- the cover part 23 is split into two parts: a cover part 23 a and a cover part 23 b.
- the cover part 23 a includes the insertion holes 21 for the chamber parts 24 a to 24 c and the insertion holes 21 for the chamber part 24 f, and is set inside the chamber parts 24 a to 24 c and the chamber part 24 f.
- the cover part 23 b includes the insertion holes 21 for the chamber parts 24 d and 24 e and the insertion hole 21 for the chamber part 24 g, and is placed inside the chamber parts 24 d, 24 e and the chamber part 24 g.
- the cover part 23 a and the cover part 23 b may be formed integrally, or the cover part 23 may be provided individually for each of the chamber parts 24 a to 24 g.
- the insertion holes 21 in the staining chambers 20 and the insertion holes 21 in the cleaning chambers 40 have the same shape.
- the insertion holes 21 are provided side by side along a straight line in the thickness direction thereof (Y direction) at predetermined intervals.
- the cover part 23 is provided to cover the upper portions 241 of the chamber parts 24 from above.
- the cover part 23 is formed to extend from one end to the other end of each chamber part 24 in the Y direction.
- the cover part 23 includes top plates 231 formed on the respective sides of the insertion holes 21 in the X direction.
- the cover part 23 also covers the regions between the insertion holes 21 . Since the cover part 23 includes the slide holder 22 in this example configuration, the slide holder 22 surrounding each of the insertion holes 21 functions as part of the cover part 23 . This effectively helps prevent the staining solution 11 from evaporating through between the adjacent glass slides 10 .
- the cover parts 23 cover substantially the entire opening regions of the upper portions 241 of the chamber parts 24 a to 24 g (see FIG. 6 ), except for the insertion holes 21 for the glass slides 10 and ventilation portions 234 to be described later.
- the cover part 23 is provided with plate-shaped portions 232 protruding or rising upward from the outer edge portions of the respective top plates 231 to prevent droplets falling onto the top surface of the cover part 23 from scattering outside the staining chambers 20 and the cleaning chambers 40 .
- a spacer portion 202 is formed on an inner side surface 201 of each chamber part 24 to form a gap between the inner side surface 201 of the chamber part 24 and an outer side surface 222 of the cover part 23 .
- the spacer portion 202 includes a rib shape protruding from the surface of the partitioning member 245 toward the inside of the chamber part 24 in the Y direction, the partitioning member 245 extending vertically and constituting the inner side surface 201 .
- the end surface of the spacer portion 202 in the protruding direction comes into contact with the outer side surface 222 of the cover part 23 in the Y direction, forming a gap 92 (see FIG. 9 ) in the Y direction between the inner side surface 201 of the chamber part 24 and the outer side surface 222 of the cover part 23 .
- the staining solution 11 may leak outside the chamber part 24 or to another adjacent chamber passing through between the inner side surface 201 of the chamber part 24 and the outer side surface 222 of the cover part 23 due to capillary action.
- the spacer portion 202 may be provided on one of the inner side surface 201 of the chamber part 24 and the outer side surface 222 of the cover part 23 .
- the spacer portion 202 may be provided on the outer side surface 222 of the cover part 23 .
- the spacer portion 202 may be any protrusion other than the rib.
- the spacer portion 202 may be provided separately from the chamber part 24 or the cover part 23 .
- each chamber part 24 includes a first portion 243 (see FIG. 8 ) in which the glass slide 10 is held by the slide holder 22 .
- the chamber part 24 also includes second portions 244 (see FIG. 8 ) provided adjacent to the first portion 243 in the width direction of the glass slide 10 placed in the chamber part 24 (the X direction) to allow the staining solution 11 to flow between the first portion 243 and the second portions 244 .
- Each top plate 231 of the cover part 23 is provided to cover the corresponding second portion 244 of the chamber part 24 from above. Thereby, the second portions 244 adjacent to the first portion 243 can make the area of the liquid surface 11 a of the staining solution 11 sufficiently large. Even though the second portions 244 are provided, the top plates 231 of the cover part 23 can effectively help prevent evaporation of the staining solution 11 in the second portions 244 .
- regions directly above the second portions 244 and the top plates 231 form transport regions for the glass slide 10 .
- the transport regions are adjacent to the insertion holes 21 in the X direction.
- the transport part 30 transports the glass slide 10 by detouring the region directly above the glass slides 10 set in the first portion 243 and moving above the top plates 231 covering the second portions 244 .
- the staining chambers 20 and the cleaning chambers 40 are arranged from the Y2-side end portion toward the Y1 side in accordance with the order of processing steps of the staining processing and the cleaning processing.
- the transport part 30 transports the glass slides 10 to the first staining chamber 20 a to the fifth staining chamber 20 e and the first cleaning chamber 40 a and the second cleaning chamber 40 b one at a time, in turn from the first staining chamber 20 a closest to the Y2 side.
- the transport part 30 transports the glass slide 10 among the staining chambers 20 and the cleaning chambers 40 , moving along a route 90 that vertically overlaps the top plate 231 of the cover part 23 . This helps prevent the staining solution 11 dripping from the glass slide 10 being transported from soiling a portion of the set glass slide 10 outside the section to be stained.
- the widths of the first portion 243 and the second portion 244 are each equal to or larger than the width W 1 of the glass slide 10 .
- the first portion 243 has a width W 4 (see FIG. 8 )
- the second portion 244 has a width W 2 .
- the width W 4 not less than the width W 1 of one glass slide 10 is secured in the first portion 243
- the width W 2 not less than the width W 1 is also secured in each second portion 244 adjacent to the first portion 243 .
- the staining chambers 20 and the cleaning chambers 40 each have basically the same structure except for the number of the insertion holes 21 .
- the following describes the structure of one staining chamber 20 in detail.
- the staining solution 11 and the staining chamber 20 may be substituted with the cleaning liquid 12 and the cleaning chamber 40 , respectively.
- the first portion 243 of the chamber part 24 is deeper than each second portion 244 of the chamber part 24 .
- the first portion 243 is provided to a depth reaching the lower portion 242 of the chamber part 24
- the second portion 244 is provided in the upper portion 241 without reaching the lower portion 242 of the chamber part 24 .
- the depth of the first portion 243 is substantially equal to the sum of Z-direction lengths of the upper portion 241 and the lower portion 242 .
- the depth of the second portion 244 is substantially equal to the Z-direction length of the upper portion 241 . Consequently, in FIG.
- the inside dimension W 3 of the upper portion 241 of the chamber part 24 is larger than the inside dimension W 4 of the lower portion 242 of the chamber part 24 .
- This configuration enables taking in and out of the glass slide 10 to cause less change in the liquid surface of the staining solution 11 in the upper portion 241 , and owing to the small inside dimension W 4 of the lower portion 242 , reduces the liquid amount of the staining solution 11 used.
- the second portions 244 are disposed adjacent to the first portion 243 in the X direction, at the respective sides of the first portion 243 , and are covered by the top plates 231 .
- the second portions 244 are not provided in the lower portion 242 .
- the chamber part 24 has an internal space shaped like a letter-T in section formed by the first portion 243 and the second portions 244 on both sides of the first portion 243 .
- the internal space is a space portion forming a region for storing the staining solution 11 .
- the inside dimension W 4 of the lower portion 242 is substantially equal to the width of the first portion 243 .
- the inside dimension W 3 of the upper portion 241 is substantially equal to the sum of the width W 4 of the first portion 243 and the widths W 2 of the two second portions 244 on the respective sides. This configuration can increase the area of the liquid surface of the staining solution 11 in the upper portion 241 more effectively without increasing the volume of the chamber part 24 .
- the chamber part 24 includes a discharge port 27 to define the upper-limit level of the liquid surface 11 a of the staining solution 11 contained in the chamber part 24 .
- the liquid surface is going to exceed the upper-limit level, an excess part of the staining solution 11 is discharged through the discharge port 27 to keep the liquid surface 11 a at the upper-limit level.
- the staining solution 11 is additionally supplied to the chamber part 24 for example, the liquid surface can be kept at the constant upper limit without detection of the liquid surface 11 a or precise management of the liquid amount of the staining solution 11 to be added.
- the discharge port 27 has a tubular shape extending vertically, and is provided in the upper portion 241 of the chamber part 24 .
- the discharge port 27 is provided in each of the chamber parts 24 a to 24 g (see FIG. 6 ).
- the upper end portion 271 of the discharge port 27 is the upper-limit level for the liquid surface 11 a.
- the upper-limit level of the liquid surface 11 a is located higher than or above the stain section 10 a and lower than the print section 10 b of the glass slide 10 held by the slide holder 22 .
- the staining solution 11 does not reach the print section 10 b. Further, when the staining solution 11 additionally supplied to the chamber part 24 is in an amount such that the liquid surface 11 a is brought to the upper-limit level, the liquid surface 11 a can be kept close to the upper-limit level at all times. This helps prevent the staining solution from being deficient and failing to stain the vicinity of an upper end portion of the stain section 10 a.
- a collection tank 28 Provided under the discharge port 27 is a collection tank 28 .
- a lower end portion 272 of the discharge port 27 is open toward an opening 281 in an upper portion of the collection tank 28 .
- the staining solution 11 flowing into the discharge port 27 is sent from the discharge port 27 into the collection tank 28 .
- the collection tank 28 is provided adjacent to the staining chambers 20 and cleaning chambers 40 (see FIG. 6 ), extending in the Y direction. Liquids in the collection tank 28 are discharged through a discharge port 282 provided in the lowermost portion of the bottom portion of the collection tank 28 .
- the bottom portion of the collection tank 28 is provided with another discharge port 283 (see FIG. 6 ) at a position higher than or above the discharge port 282 .
- the discharge port 283 functions as a backup port of the discharge port 282 .
- a discharge port 203 (see FIG. 6 ) is provided near an upper end portion of the chamber part 24 .
- the discharge port 203 is an emergency discharge port used when neither of the discharge ports 282 and 283 is usable.
- the cover part 23 includes a bottom portion 223 which is to be placed inside the chamber part 24 and to hold the lower end portion 10 c of the glass slide 10 .
- the bottom portion 223 is located closer to the bottom surface of the chamber part 24 than to the liquid surface 11 a of the staining solution 11 , and gets immersed in the staining solution 11 .
- the cover part 23 is formed integrally with the bottom portion 223 .
- the top plates 231 and inner walls 233 of the cover part 23 are connected to the bottom portion 223 from both of its sides in the X direction.
- the broken piece or foreign matter is received by the bottom portion 223 of the cover part 23 .
- This can prevent the broken piece or foreign matter from accumulating in the chamber part 24 . Since the cover part 23 including the bottom portion 223 is removable from the staining chamber 20 , the broken piece or foreign matter having fallen on the bottom portion 223 can be easily removed.
- the slide holder 22 is detachably attached to the cover part 23 and the bottom portion 223 .
- the slide holder 22 is configured as a member with which the insertion holes 21 are integrally formed. Specifically, tubular holding wall portions surrounding the respective insertion holes 21 are arranged in the direction in which the insertion holes 21 are arranged and integrally constitute the slide holder 22 . In this case, removal of the slide holder 22 can open a region above the bottom portion 223 . Then, a broken piece and foreign matter having fallen on the bottom portion 223 can be removed even more easily.
- the slide holder 22 is thus a separate member from the cover part 23 , the precision management of the slide holder 22 coming into contact with the glass slides 10 can be easily performed. As a result, the positioning of each glass slide 10 and taking in and out of the glass slide 10 can be carried out easily and precisely.
- the slide holder 22 is provided for each cover part 23 .
- the slide holder 22 for the cover part 23 a (see FIG. 7 ) is configured as a single member that partitions groups of the insertion holes 21 corresponding to the chamber parts 24 a to 24 c and a group of the insertion holes 21 corresponding to the chamber part 24 f from one another.
- the slide holder 22 for the cover part 23 b (see FIG. 7 ) is configured as a single member that partitions groups of the insertion holes 21 corresponding to the chamber parts 24 d and 24 e and a group of the insertion holes 21 corresponding to the chamber part 24 g from one another.
- the slide holder 22 includes an attachment portion 224 used to attach the slide holder 22 to the cover part 23 .
- the attachment portion 224 is formed to extend from the upper end portion of the slide holder 22 to a space above the upper surface of one of the top plates 231 .
- the attachment portion 224 being secured to the top plate 231 by means of screwing or the like, the slide holder 22 is attached to the cover part 23 and the bottom portion 223 .
- the slide holder 22 is provided to extend from the cover part 23 toward the bottom portions of the chamber parts 24 (the Z2 side), and is configured to hold the glass slides 10 immersed in the staining solution 11 .
- the slide holder 22 thus extending from the cover part 23 toward the bottom portions of the chamber parts 24 supports the side surfaces of the glass slides 10 and stably holds the glass slides 10 .
- the slide holder 22 extends downward from a position where the top plate 231 is provided, to a position higher than or above the bottom portion 223 .
- the staining solution 11 and the cleaning liquid 12 can flow between the slide holder 22 and the bottom portion 223 .
- the gap in the slide holder 22 gradually gets smaller from the upper portion to the lower portion.
- the slide holder 22 thus has a function to guide each glass slide 10 so that its position in the X direction may be brought to a proper position.
- the slide holder 22 in the thickness direction of the glass slide 10 (the Y direction), at least parts of the slide holder 22 are tapered toward the upper end portion.
- the slide holder 22 is provided with guide portions 225 protruding from the slide holder 22 in the thickness direction of the slide holder 22 (the Y direction), and the guide portions 225 protrude in the Y direction less and less toward the upper end portion of the slide holder 22 .
- the gap between the guide portions 225 in the thickness direction also gets gradually smaller from the upper part to the lower part of the slide holder 22 .
- the slide holder 22 thus has a function to guide each glass slide 10 so that its position in the Y direction may be brought to a proper position.
- the slide holder 22 holds the glass slides 10 inserted in the chamber parts 24 upright with the longitudinal direction of the glass slides 10 being along the vertical direction (the Z direction).
- the slide holder 22 is also configured to hold the glass slides 10 at respective holding positions arranged in the thickness direction of the glass slides 10 (the Y direction) (see FIG. 7 ).
- the glass slides 10 can be placed to extend vertically in the chamber part 24 .
- the area of a horizontal section of the glass slide 10 being set is smaller than when the glass slide 10 is set with its longitudinal direction being along any other direction.
- the volume of the lower portion 242 of each chamber part 24 can be sufficiently reduced.
- the cover part 23 includes rib-shaped portions 227 (see FIG. 9 ) formed on side surface portions 226 in the X direction and the bottom portion 223 .
- the rib-shaped portions 227 are formed immediately below the guide portions 225 to support the lower edge portions of the glass slides 10 in the thickness direction.
- the cover part 23 includes the side surface portions 226 that connect the bottom portion 223 to the respective top plates 231 .
- the side surface portions 226 include communication ports 228 so that the staining solution 11 in the chamber part 24 can flow into the cover part 23 .
- the communication ports 228 can efficiently bring the staining solution 11 into contact with the glass slides 10 held in the cover part 23 , and thus enable efficient staining processing.
- the bottom portion 223 is formed integrally with the top plates 231 and the inner walls 233 .
- a lower portion of the inner wall 233 of the cover part 23 also functions as the side surface portions 226 of the cover part 23 .
- Each communication port 228 is located at a lower portion of the side surface portion 226 of the cover part 23 , near the bottom portion 223 .
- the communication port 228 penetrates through the side surface portion 226 to allow the outside of the cover part 23 to communicate with the inside of the cover part 23 where the glass slides 10 are set. Through the communication ports 228 , the staining solution 11 supplied to the chamber part 24 easily flows into the cover part 23 .
- the bottom portion 223 is located at a position upward of and spaced away from the bottom portion of the chamber part 24 .
- the side surface portions 226 is located at a position spaced away from the inner side surface of the chamber part 24 . Since a gap is thus created between the inner surface of the chamber part 24 and each of the bottom portion 223 and the side surface portions 226 , the bottom portion 223 and the side surface portions 226 do not hinder the flow of the staining solution 11 inside the chamber part 24 .
- the cover part 23 do not have to be provided with the bottom portion 223 and the side surface portions 226 .
- the lower end portions 10 c of the glass slides 10 may be supported by the bottom portion of the chamber part 24 .
- the cover part 23 may be provided only with the bottom portion 223 , without the side surface portions 226 .
- the side surface portions 226 can keep a broken piece or foreign matter having fallen on the bottom portion 223 from falling further down onto the bottom portion of the chamber part 24 .
- the top plates 231 of the cover part 23 are each formed to extend from the inner side surface 201 of the chamber part 24 toward the insertion holes 21 in the width direction of the glass slides 10 placed in the chamber part 24 (the X direction). Then, the inner walls 233 of the cover part 23 extend from the respective end portions of the top plates 231 on the insertion holes 21 side toward the bottom portion of the chamber part 24 or toward the bottom portion 223 of the cover part 23 to a position immersed under the liquid surface 11 a of the staining solution 11 .
- the inner side surfaces 201 on both sides of the chamber part 24 in the X direction, the top plates 231 , the inner walls 233 , and the liquid surface 11 a of the staining solution 11 surround and define spaces 91 .
- the evaporated staining solution 11 can be held within each space 91 isolated from the insertion holes 21 .
- the space 91 tends to become saturated by the vapors of the vaporized staining solution 11 , allowing a further reduction in the amount of the staining solution 11 evaporated.
- the cover part 23 includes the ventilation portions 234 to let the air or gas in the space surrounded by the inner side surface 201 of the chamber part 24 , the top plate 231 , the inner wall 233 , and the liquid surface 11 a of the staining solution 11 escape to the outside the chamber part 24 . If the surrounded space 91 were completely airtight, air discharge during the supply of the staining solution 11 and air supply during the discharge of the staining solution 11 would become difficult, possibly hindering the supply and discharge of the staining solution 11 . When the minimum air flow is secured by the ventilation portions 234 , the supply and discharge of the staining solution 11 may be facilitated even if the space 91 is formed to keep evaporated gas inside.
- the ventilation portions 234 are each formed by a penetration hole penetrating the lower surface side and the upper surface side of the cover part 23 .
- the opening area of the ventilation portion 234 is smaller than the opening area of the insertion hole 21 .
- the ventilation portions 234 form minute gaps between the slide holder 22 and the end portion of the top plate 231 on the slide holder 22 side.
- the ventilation portions 234 may be notched portions formed by notching of an end portion of the top plate 231 .
- each ventilation portion 234 which may for example be formed by a penetration hole may be connected to an end of a gas flowing tube the other end of which is connected to a valve. Then, if the valve is opened during supply and discharge of the staining solution 11 and closed during times other than the supply and discharge, gas flow can be minimized with airtightness of the space 91 achieved.
- the top plate 231 is formed to cover the range from the inner side surface 201 of the chamber part 24 to the slide holder 22 .
- the inner wall 233 is in contact with the slide holder 22 and extends downward along the slide holder 22 . Since substantially the entire region of the chamber part 24 except for the insertion holes 21 can be thus covered by the top plate 231 and the slide holder 22 , evaporation of the staining solution 11 can be reduced all the more effectively.
- the inner wall 233 extending along the slide holder 22 can increase the space 91 surrounded by the inner side surface 201 of the chamber part 24 , the top plate 231 , the inner wall 233 , and the liquid surface 11 a of the staining solution 11 . This leads to a further improvement in the effect of the cover part 23 reducing evaporation of the staining solution 11 .
- the controller 71 controls the smear preparing apparatus 200 .
- Step S 1 in FIG. 10 the chamber parts 24 of the staining chambers 20 and the cleaning chambers 40 are filled with the staining solutions 11 and the cleaning liquids 12 , respectively.
- the fluid circuit part 70 (see FIG. 4 ) supplies the staining solutions 11 and the cleaning liquids 12 to the staining chambers 20 and the cleaning chambers 40 through their respective supply ports 26 a (see FIG. 8 ).
- Step S 2 the transport part 30 transports the glass slides 10 to the first staining chamber 20 a (see FIG. 7 ) one by one, and staining processing is performed in the first staining chamber 20 a.
- Step S 11 in FIG. 11 the transport part 30 grips and takes out a single smeared glass slide 10 .
- the transport part 30 transports the glass slide 10 to a position above the first staining chamber 20 a, which is a transport destination. In this event, the transport part 30 transports the glass slide 10 following the route 90 illustrated in FIG. 7 .
- Step S 13 the transport part 30 inserts the gripped glass slide 10 into one of the insertion holes 21 in the transport-destination first staining chamber 20 a.
- the operation depicted in FIG. 11 is common to Steps S 3 to S 7 to be described later, with only differences being the position from which the glass slide 10 is taken out and the destination to which the glass slide 10 is transported.
- the first staining chamber 20 a is filled with a first staining solution 11 . Staining processing is performed in this state by immersing the glass slide 10 in the first staining solution 11 for a preset period of time T1.
- Step S 3 the transport part 30 transports the glass slide 10 to the second staining chamber 20 b (see FIG. 7 ), and staining processing is performed in the second staining chamber 20 b.
- Steps S 11 to S 13 in FIG. 11 the transport part 30 takes out the glass slide 10 from the first staining chamber 20 a and inserts the glass slide 10 into one of the insertion holes 21 in the second staining chamber 20 b.
- the glass slide 10 is immersed in a second staining solution 11 contained in the second staining chamber 20 b.
- Step S 4 the transport part 30 transports the glass slide 10 to the third staining chamber 20 c (see FIG. 7 ), and staining processing is performed in the third staining chamber 20 c.
- Steps S 11 to S 13 in FIG. 11 the transport part 30 takes out the glass slide 10 from the second staining chamber 20 b and places the glass slide 10 into one of the insertion holes 21 in the third staining chamber 20 c.
- the glass slide 10 is immersed in a third staining solution 11 contained in the third staining chamber 20 c.
- Step S 5 the transport part 30 transports the glass slide 10 to the first cleaning chamber 40 a (see FIG. 7 ), and cleaning processing is performed in the first cleaning chamber 40 a.
- the operation for the transport to the first cleaning chamber 40 a is similar to the operation for the transport to the staining chamber 20 .
- the transport part 30 grips and takes out a single glass slide 10 from the third staining chamber 20 c.
- Step S 12 following the route 90 (see FIG. 7 ), the transport part 30 transports the glass slide 10 to a position above the first cleaning chamber 40 a, which is a transport destination.
- Step S 13 the transport part 30 inserts the gripped glass slide 10 into one of the insertion holes 21 in the transport-destination first cleaning chamber 40 a.
- the glass slide 10 is immersed in a first cleaning liquid 12 contained in the first cleaning chamber 40 a.
- Step S 6 the transport part 30 transports the glass slide 10 to either the fourth staining chamber 20 d or the fifth staining chamber 20 e, and staining processing is performed in the fourth staining chamber 20 d or the fifth staining chamber 20 e (see FIG. 7 ), which is a transport destination.
- the fourth staining chamber 20 d and the fifth staining chamber 20 e are both filled with a fourth staining solution 11 .
- the transport part 30 takes out the glass slide 10 from the first cleaning chamber 40 a and inserts the glass slide 10 into one of the insertion holes 21 in the fourth staining chamber 20 d or the fifth staining chamber 20 e. For a preset period of time T5, the glass slide 10 is immersed in the fourth staining solution 11 .
- Step S 7 the transport part 30 transports the glass slide 10 to the second cleaning chamber 40 b (see FIG. 7 ), and cleaning processing is performed in the second cleaning chamber 40 b.
- Steps S 11 to S 13 in FIG. 11 the transport part 30 takes out the glass slide 10 from the fourth staining chamber 20 d or the fifth staining chamber 20 e and inserts the glass slide 10 into the insertion hole 21 in the second cleaning chamber 40 b.
- the glass slide 10 is immersed in a second cleaning liquid 12 in the second cleaning chamber 40 b.
- Step S 8 the transport part 30 transports the glass slide 10 to the drying chamber 50 (see FIG. 4 ), and the glass slide 10 is dried in the drying chamber 50 .
- the transport part 30 grips and takes out a single glass slide 10 from the second cleaning chamber 40 b.
- the transport part 30 transports the glass slide 10 to a position above the drying chamber 50 (see FIG. 4 ), which is a transport destination, and inserts the gripped glass slide 10 into the drying chamber 50 .
- the controller 71 turns on the heater 51 (see FIG. 4 ) and the air blowing unit 60 (see FIG. 4 ) to send hot air to the glass slide 10 held in the drying chamber 50 .
- the hot air is applied to the glass slide 10 in the drying chamber 50 for a preset period of time T7. With this, smear staining processing on a single glass slide 10 is complete.
- Step S 9 the transport part 30 takes out the single glass slide 10 having undergone the staining processing from the drying chamber 50 , and transports the glass slide 10 to the slide storage unit 86 (see FIG. 3 ). This is how the staining operation is performed.
- the controller 71 controls the smear preparing apparatus 200 .
- the chamber part 24 includes: a supply port 261 that supplies the staining solution 11 into the chamber part 24 while coming into contact with the staining solution 11 ; and the discharge port 27 that is disposed higher than or above the supply port 261 (the Z1 side) and discharges the staining solution 11 . Since the discharge port 27 is provided in an upper part of the chamber part 24 , an excess of the staining solution 11 can be discharged through the discharge port 27 . As a result, the liquid upper edge surface of the staining solution 11 can be kept constant in the chamber part 24 at all times, and therefore the fluid circuit or control for keeping the staining solution level constant can be simplified.
- the chamber part 24 when the chamber part 24 is replenished with the staining solution 11 from the supply port 261 in a lower part thereof, an excess of the staining solution 11 is discharged through the discharge port 27 in the upper part, which causes the staining solution 11 to be circulated and agitated within the chamber part, helping prevent problems such as uneven concentration or freshness of the staining solution 11 in the chamber.
- the smear preparing apparatus 200 can operate not only in a regular mode in which the printing unit 83 performs printing processing, the smearing unit 84 performs smearing processing, and the staining unit 81 performs staining processing, but also in a smearing mode in which printing processing and smearing processing are performed.
- the smear preparing apparatus 200 can also operate in a staining mode in which the staining unit 81 performs staining processing on the glass slide 10 smeared with a sample.
- the smear preparing apparatus 200 can also operate in a printing mode in which the printing unit 83 prints various pieces of information on the print section 10 b of the glass slide 10 . In other words, the user can select from the regular mode, the smearing mode, the staining mode, and the printing mode and cause the smear preparing apparatus 200 to operate in the selected mode.
- the controller 71 controls supply of a predetermined amount of the staining solution 11 into the chamber part 24 through the supply port 261 .
- the controller 71 controls replenishment of the chamber part 24 with the staining solution 11 when staining work is being or is to be performed on the glass slide 10 .
- the controller 71 also controls replenishment of the chamber part 24 with the staining solution 11 when at least one glass slide 10 is placed in the chamber part 24 .
- the controller 71 causes a fluid mechanism 700 to replenish the chamber part 24 with the staining solution 11 with at least one glass slide 10 placed in the chamber part 24 .
- the controller 71 also controls replenishment of the chamber part 24 with the staining solution 11 when the smear preparing apparatus 200 is set to the regular mode or the staining mode, in which the staining unit 81 performs staining processing.
- the staining solution 11 can be partially replaced (replenishment of the chamber part 24 with the staining solution 11 and discharge of an excess of the staining solution 11 ). Since partial replenishment with the staining solution 11 is carried out in the chamber part 24 , staining processing can be continued in the smear preparing apparatus 200 . Thereby, the liquid properties of the staining solution 11 (the staining properties of the staining solution 11 ) can be maintained without stopping the operation of the smear preparing apparatus 200 , which can improve the rate of operation. Further, since the staining solution 11 is not entirely replaced through supply after discharge, this helps prevent the sample staining level from changing before and after the replenishment with the staining solution 11 . Thereby, variation in staining quality is reduced.
- the smear preparing apparatus 200 is configured to be able to receive a setting from a user to determine the timing to supply the staining solution 11 into the chamber part 24 .
- the smear preparing apparatus 200 receives a setting for the timing to supply the staining solution 11 into the chamber part 24 , inputted by a user on a setting screen as illustrated in FIG. 12 .
- the replenishment timing for the staining solution 11 can be set for an undiluted solution group and a diluted staining solution group.
- the undiluted solution group includes an undiluted solution of the staining solution 11 and methanol.
- the diluted staining solution group includes a diluted staining solution which is a staining solution diluted with a phosphate buffer solution or the like. Grouping the staining solutions 11 based on the types of the staining solution 11 enables the timing to supply the staining solutions 11 to be set collectively and easily, compared to when the supply timing is set for each individual type of the staining solution 11 .
- a time elapsed and the number of glasses prepared (the number of glasses stained) since the last, the latest or a previous replenishment or supply with the staining solution 11 can be set as the timing to supply the chamber part 24 with the staining solution 11 .
- Setting an elapsed time allows replenishment with the staining solution 11 after every predetermined period of time to compensate for the staining solution 11 evaporated.
- Setting the number of glasses prepared allows replenishment with the staining solution 11 to compensate for the staining solution 11 that has flowed out as the glass slides 10 are transported out.
- the elapsed time may be set to, for example, a time between 30 minutes and 2 hours, both inclusive.
- the number of glasses prepared may be set to, for example, a value between 10 and 50, both inclusive.
- the controller 71 is configured to control the fluid mechanism 700 to replenish the chamber part 24 with the staining solution 11 based on an elapsed lapse since the last, the latest or a previous replenishment or supply with the staining solution 11 , the elapsed time being counted by the clock part 713 . Further, the controller 71 is configured to control the fluid mechanism 700 to replenish the chamber part 24 with the staining solution 11 based on the number of glass slides 10 prepared since the last replenishment with the staining solution 11 , the number of glasses being stored in the memory part 712 .
- the condition of the elapsed time and the condition of the number of glasses prepared may be independent of each other. Specifically, the elapsed time and the number of glasses prepared may be counted independently. For example, if the condition of the elapsed time and the condition of the number of glasses prepared coincide with each other, the staining solution 11 may be added two times in a row.
- an elapsed time since the last replenishment with the staining solution 11 can be set.
- a diluted staining solution only an elapsed time may be set because deterioration of the staining solution 11 is caused more dominantly by factors such as a lapse of time than the number of glasses prepared.
- the elapsed time may be set to, for example, a time between 12 minutes and 4 hours, both inclusive.
- the supply timing set may be a predetermined time of day, in addition to an elapsed time and the number of glasses prepared.
- the chamber part 24 may be replenished with the staining solution 11 when the clock strikes a predetermined time.
- the timing to supply the staining solution 11 may be set for each type of the staining solutions 11 without grouping the types of the staining solution 11 to be added.
- the controller 71 receives an instruction to perform staining work on glass slides.
- the controller 71 does not receive an instruction to perform staining work on glass slides.
- the controller 71 is configured to perform control such that replenishment of the chamber part 24 with the staining solution 11 is stopped when staining work on the glass slides 10 is paused, and replenishment of the chamber part 24 with the staining solution 11 is performed when staining work on the glass slides 10 is resumed. Since replenishment with the staining solution 11 is thus not performed while the staining work is paused, wasteful consumption of the staining solution 11 can be reduced.
- the controller 71 is configured to control the fluid mechanism 700 to replenish the chamber part 24 with the staining solution 11 upon receiving an instruction to perform staining work on the glass slides 10 .
- controller 71 is configured to control the fluid mechanism 700 to pause staining work and stop replenishment of the chamber part 24 with the staining solution 11 when receiving no instruction to perform staining work on the glass slides 10 , and to resume staining work and replenish the chamber part 24 with the staining solution 11 when receiving anew an instruction to perform staining work on the glass slides 10 .
- the controller 71 is configured to perform control such that when staining work on the glass slide 10 is paused and then resumed, the chamber part 24 is replenished with the staining solution 11 in an amount corresponding to the period of time of the pause. For example, if the pause time is N times a preset elapsed time, the controller 71 performs control such that the chamber part 24 is replenished with N times worth of the staining solution 11 . This configuration enables proper replenishment with the staining solution 11 to compensate for an amount evaporated or deteriorated during the pause time.
- the controller 71 is configured to control the fluid mechanism 700 so that when staining work on the glass slide 10 is paused and then resumed, the chamber part 24 may be replenished with the staining solution 11 in an amount corresponding to the pause time counted by the clock part 713 .
- the controller 71 is configured to perform control such that the chamber part 24 is replenished with the staining solution 11 in up to an amount corresponding to the capacity of the chamber part 24 .
- the controller 71 is configured so that if the amount of replenishment with N times worth of staining solution 11 exceeds the capacity of the chamber part 24 , the chamber part 24 is replenished with the staining solution 11 in an amount equal to the capacity of the chamber part 24 .
- Such a configuration does not permit excessive replenishment with the staining solution 11 , and is therefore effective in reducing wasteful consumption of the staining solution 11 .
- the controller 71 is configured to compare a predetermined amount with the amount of the staining solution 11 with which to replenish the chamber part 24 , stored in the memory part 712 , and control the fluid mechanism 700 to replenish the chamber part 24 with the staining solution 11 in up to the predetermined amount.
- the controller 71 is configured to perform control such that the chamber parts 24 are replenished with the staining solution 11 in an order from upstream to downstream.
- the glass slide 10 is placed in the plurality of chamber parts 24 by being transported in the order of the staining chambers 20 a, 20 b, 20 c, the cleaning chamber 40 a, the staining chamber 20 d, 20 e, and the cleaning chamber 40 b.
- the staining solutions 11 include methanol, a May Grünwald solution, and a Giemsa solution.
- the staining solutions 11 include methanol, a Wright solution, and a Giemsa solution.
- the staining solutions 11 include methanol and a Wright solution.
- the controller 71 is configured to set the order of priority such that the staining chambers 20 a, 20 b, 20 c, 20 d, and 20 e are prioritized in the order mentioned, and performs control such that the chamber part 24 in which the glass slide 10 is to be immersed first is replenished with the staining solution 11 first.
- methanol is put in the staining chamber 20 a
- an undiluted May Grünwald solution is put in the staining chamber 20 b
- a diluted staining solution of a May Grünwald solution is put in the staining chamber 20 c.
- a phosphate buffer is put in the cleaning chamber 40 a
- a diluted staining solution of a Giemsa solution is put in the staining chambers 20 d and 20 e .
- Pure water is put in the cleaning chamber 40 b.
- the methanol and the undiluted May Grünwald solution are categorized as the undiluted solution group
- the diluted staining solution of a May Grünwald solution and the diluted staining solution of a Giemsa solution are categorized as the diluted staining solution group.
- the pure water and the phosphate buffer are used for cleaning purposes and are therefore replaced after every cleaning of the glass slide 10 .
- methanol is put in the staining chamber 20 a
- an undiluted Wright solution is put in the staining chamber 20 b
- a diluted staining solution of a Wright solution is put in the staining chamber 20 c .
- a phosphate buffer is put in the cleaning chamber 40 a
- a diluted staining solution of a Giemsa solution is put in the staining chambers 20 d and 20 e. Pure water is put in the cleaning chamber 40 b.
- the methanol and the undiluted Wright solution are categorized as the undiluted solution group
- the diluted staining solution of a Wright solution and the diluted staining solution of a Giemsa solution are categorized as the diluted staining solution group.
- the pure water and the phosphate buffer are used for cleaning purposes and are therefore replaced after every cleaning of the glass slide 10 .
- methanol is put in the staining chamber 20 a
- an undiluted Wright solution is put in the staining chamber 20 b
- a diluted staining solution of a Wright solution is put in the staining chamber 20 c.
- a diluted staining solution of a Wright solution is put in the staining chambers 20 d and 20 e, and pure water is put in the cleaning chamber 40 b.
- the methanol and the undiluted Wright solution are categorized as the undiluted solution group
- the diluted staining solution of a Wright solution is categorized as the diluted staining solution group.
- the pure water is used for cleaning purposes and is therefore replaced after every cleaning of the glass slide 10 .
- FIG. 14 illustrates part of the fluid mechanism 700 that supplies staining solutions to the chamber parts 24 .
- the staining solution 11 is supplied to each staining chamber after being quantified using a diaphragm pump.
- an undiluted staining solution 11 is supplied from a staining solution chamber to a staining chamber after being quantified using a diaphragm pump.
- an undiluted staining solution 11 and a phosphate buffer solution are quantified and supplied to a staining solution dilution/agitation chamber, preparing a diluted staining solution as the staining solution 11 .
- the thus-prepared diluted staining solution as the staining solution 11 is supplied from the staining solution dilution/agitation chamber to a staining chamber after being quantified using a diaphragm pump.
- a diaphragm pump is used for the supply of a staining solution in an embodiment, the invention is not limited thereto.
- a staining solution may be supplied using a different type of pump, or using water pressure produced by difference in height.
- the fluid mechanism 700 is configured to supply a staining solution to the chamber part 24 as controlled by the controller 71 .
- each diaphragm pump in the fluid mechanism 700 is driven as controlled by the controller 71 .
- opening and closing of each valve in the fluid mechanism 700 are controlled by the controller 71 .
- the staining chambers may share a single diaphragm pump or be provided with their own diaphragm pumps.
- the staining solution 11 is supplied to a staining chamber from the supply port 261 provided in a lower part of the staining chamber. Further, an excess of the staining solution 11 overflows from the discharge port 27 provided higher than or above the supply port 261 , and is discharged to a waste solution chamber via the collection tank 28 .
- staining solution supply processing performed in the staining unit 81 of the smear preparing apparatus 200 .
- the controller 71 controls the smear preparing apparatus 200 . Further, the staining solution supply processing is performed for each chamber part 24 .
- Step S 21 in FIG. 15 it is determined whether a condition for replenishment with the staining solution 11 is met. If the condition is met, the processing proceeds to Step S 22 , and if the condition is not met, the processing in Step S 21 is repeated until the condition is met.
- the condition for replenishment with the staining solution 11 is, for example, when a predetermined period of time has elapsed since the last replenishment or when a predetermined number of glasses have been prepared since the last replenishment, in the mode in which the staining processing is performed.
- Step S 22 the chamber part 24 is replenished with the staining solution 11 .
- Step S 23 a counter for the condition for replenishment with the staining solution 11 is reset, and the processing proceeds back to Step S 21 .
- the reset of the counter is reset of an elapsed time when the replenishment is a result of a lapse of a predetermined elapsed time, and is reset of the number of glasses prepared when the replenishment is a result of preparation of a predetermined number of glasses. This is how the staining solution supply processing is performed.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
A smear staining apparatus may include: a chamber part in which glass slides can be placed and that is configured to contain a staining solution for staining a smear on each of the glass slides; a cover part that covers the chamber part from above and comprises an insertion hole through which the glass slides are transported to the chamber part; and a transport part that transports the glass slides to the chamber part through the insertion hole.
Description
- This application is a continuation application of International Application No. PCT/JP2017/001374, filed on Jan. 17, 2017, which claims priority based on the
Article 8 of Patent Cooperation Treaty from prior Japanese Patent Application No. 2016-016490, filed on Jan. 29, 2016, the entire contents of which are incorporated herein by reference. - The disclosure relates to a smear staining apparatus, a smear preparing apparatus, and a smear staining method.
- US Patent Application Publication No. 2010/0144018 (Patent Literature 1) discloses a smear staining apparatus that stains a smear on a glass slide. In the slide staining apparatus in
Patent Literature 1, staining chambers to be filled with staining solutions are arranged side by side. A glass slide is inserted into each staining chamber from above. - When a plurality of glass slides is set in the staining chamber, the liquid surface level of the staining solution in the staining chamber changes vertically depending on the number of the glass slides set. Due to the change of the liquid surface level, smear staining regions on the glass slides may not be immersed in the staining solution sufficiently, or print regions on the glass slides may come into contact with the staining solution and be soiled. To avoid such situations, the staining chamber needs to be configured so that the area of the liquid surface is sufficiently larger than the areas of the horizontal sections of the glass slides so as to reduce the range of change in the liquid surface.
- Meanwhile, a staining solution for staining smears often contains a volatile component such as an organic solvent. For this reason, the staining solution easily evaporates when the area of the liquid surface is large. Thus, there are demands that the amount of staining solution in the staining chamber be maintained while the area of the liquid surface of the staining solution is sufficiently large.
- A smear staining apparatus according to a first aspect may include: a chamber part in which glass slides can be placed and that is configured to contain a staining solution for staining a smear on each of the glass slides; a cover part that covers the chamber part from above and comprises an insertion hole through which the glass slides are transported to the chamber part; and a transport part that transports the glass slides to the chamber part through the insertion hole.
- A smear staining apparatus according to a second aspect may include: a chamber part in which glass slides can be placed and that is configured to contain a staining solution for staining a smear on each of the glass slides; a fluid mechanism that supplies the chamber part with the staining solution; and a controller that causes the fluid mechanism to supply the chamber part in which the glass slides are placed, with the staining solution.
- A smear preparing apparatus according to a third aspect comprises: a smearing unit that smears glass slides with samples; and a staining unit that includes the smear staining apparatus according to the first or second aspect.
- A smear staining method according to a fourth aspect may include: filling a chamber part in which glass slides can be placed with a staining solution for staining a smear on each of the glass slides; and supplying the chamber part in which the glass slides are placed, with the staining solution.
- One or more aspects may maintain the amount of staining solution in a staining chamber in the smear staining apparatus.
-
FIG. 1 is a schematic diagram illustrating an outline of a smear staining apparatus according to an embodiment. -
FIG. 2 is a schematic diagram illustrating another example configuration of a chamber part and a cover part in a smear staining apparatus. -
FIG. 3 is a schematic plan view illustrating an example overall configuration of a smear preparing apparatus. -
FIG. 4 is a perspective view illustrating a specific example configuration of a staining unit in a smear preparing apparatus. -
FIG. 5 is a perspective view illustrating a specific example configuration of a staining chamber in a smear preparing apparatus. -
FIG. 6 is an exploded perspective view illustrating a state where cover parts are removed from chamber parts, such as inFIG. 5 . -
FIG. 7 is a schematic top view of staining chambers and cleaning chambers, such as inFIG. 5 . -
FIG. 8 is an enlarged sectional view taken along line 800-800 inFIG. 7 . -
FIG. 9 is a partial sectional view taken along line 900-900 inFIG. 8 . -
FIG. 10 is a flowchart illustrating an example of how a staining unit operates. -
FIG. 11 is a flowchart illustrating staining processing and cleaning processing inFIG. 10 . -
FIG. 12A andFIG. 12B are diagrams each illustrating an example of a screen used to set timing for replenishment with a staining solution. -
FIG. 13 is a diagram illustrating example usages of chamber parts. -
FIG. 14 is a schematic diagram illustrating part of a fluid circuit. -
FIG. 15 is a flowchart illustrating staining solution supply processing. - An embodiment is described below using the drawings.
- With reference to
FIG. 1 , a description is given of an outline of asmear staining apparatus 100 according to an embodiment. - The
smear staining apparatus 100 is an apparatus that performs smear staining processing on aglass slide 10 with a smear. In other words, thesmear staining apparatus 100 stains the smear that is smeared on theglass slide 10. The smear is a biological specimen collected from a subject (a tested subject), and is, for example, blood, cells, or the like. - As illustrated in
FIG. 1 , thesmear staining apparatus 100 includes: acover part 23 withinsertion holes 21; and achamber part 24. Thesmear staining apparatus 100 also includes atransport part 30. In the example configuration inFIG. 1 , thechamber part 24 and thecover part 23 together constitute part or all of astaining chamber 20 for performing staining processing. - The
chamber part 24 is formed in the shape of a container capable of accommodating liquid. In other words, thechamber part 24 is configured to contain liquid. A plurality of glass slides can be placed in thechamber part 24, and thechamber part 24 is filled with astaining solution 11 for staining a smear on theglass slide 10. - Various types of the
staining solution 11 are used for the respective steps in the staining processing. Thestaining solution 11 may contain a volatile organic solvent, such as methanol, ethanol, or xylene, as a main component. The organic solvent is used for processing to fixate or fix a smear applied to theglass slide 10. The fixation processing or fixing processing is performed to prevent cells in a smear from changing in properties due to disintegration, decay, or the like. The staining processing is carried out by immersing theglass slide 10 in thestaining solution 11 in thechamber part 24 for a predetermined period of time. - The
glass slide 10 is, for example, a rectangular, plate-shaped member. Theglass slide 10 includes, for example, astain section 10 a where a smear is placed, and aprint section 10 b where various pieces of information, such as sample information, are presented. Thestain section 10 a is formed over a predetermined range extending in the longitudinal direction including the center portion in the longitudinal direction. Theprint section 10 b is formed in one end portion of theglass slide 10 in the longitudinal direction, at a distance from thestain section 10 a. For example, theprint section 10 b is a portion where the side glass is coated with a resin material or the like to make printing thereon possible. Printable on theprint section 10 b are a sample number, a date, a barcode or a two dimensional barcode, and the like. - In the staining processing, the
entire stain section 10 a needs to be in contact with thestaining solution 11 sufficiently. On the other hand, if theprint section 10 b comes into contact with thestaining solution 11, theprint section 10 b gets soiled, making the print hard to read. Thus, it is preferable that theliquid surface 11 a of thestaining solution 11 be maintained between thestain section 10 a and theprint section 10 b. - On the other hand, in the
staining chamber 20 in which a plurality of glass slides 10 can be set, the level ofliquid surface 11 a changes vertically (in the Z direction) depending on the number of glass slides 10 set in thechamber part 24. When the range of change in the liquid surface level is large, it is difficult to maintain theliquid surface 11 a between thestain section 10 a and theprint section 10 b. To reduce the range of change in theliquid surface 11 a, thechamber part 24 is formed so that the area of a horizontal section of thestaining solution 11 at least at the liquid surface level in the internal space (i.e., the area of theliquid surface 11 a) is sufficiently larger than the areas of the horizontal sections of the glass slides 10 placed in thechamber part 24. - The larger the area of the
liquid surface 11 a is, the more thestaining solution 11 containing an organic solvent evaporates. Thus, thesmear staining apparatus 100 of an embodiment includes thecover part 23. Thecover part 23 includes the insertion holes 21 through which the glass slides 10 are inserted or transported, and thecover part 23 covers thechamber part 24 from above. Specifically, thecover part 23 is disposed at a position higher than or above theliquid surface 11 a of thestaining solution 11 in thechamber part 24. Since the vapor of thestaining solution 11 is likely to be held inside the space covered by thecover part 23, evaporation of thevolatile staining solution 11 is reduced accordingly. Thecover part 23 may be provided integrally with thechamber part 24, or thecover part 23 may be provided separately from thechamber part 24. - In the example in
FIG. 1 , thecover part 23 extends from the end portions of thechamber part 24 toward the insertion holes 21 in the width direction (the X direction) of theglass slide 10 placed in thechamber part 24. Thus, inFIG. 1 , thecover part 23 covers all the region of thechamber part 24 except for the insertion holes 21. Thecover part 23 may partially cover the region above thechamber part 24 except for the insertion holes 21. Even if the region except for the insertion holes 21 is not completely covered, the effect of reducing evaporation of thestaining solution 11 can be achieved by the part covered by thecover part 23. From the perspective of reducing evaporation of thestaining solution 11, it is preferable that thecover part 23 cover substantially the entire open region of thechamber part 24 except for the insertion holes 21. - The
glass slide 10 is inserted into or transported to thechamber part 24 from above thechamber part 24 through one of the insertion holes 21. In the example configuration inFIG. 1 , a plurality of insertion holes 21 are provided in thecover part 23, eachinsertion hole 21 is a slit through which asingle glass slide 10 can be inserted. With these insertion holes 21, a plurality of glass slides 10 can be received by thechamber part 24 and stained collectively in thestaining solution 11. In this case, the opening area of eachinsertion hole 21 is substantially the same as or slightly larger than the area of a horizontal section of theglass slide 10. InFIG. 1 , eachinsertion hole 21 is formed in a size such that only asingle glass slide 10 can be inserted therethrough at once. - The
insertion hole 21 may be configured so that two or more glass slides 10 can be inserted through thecommon insertion hole 21.FIG. 2 illustrates an example configuration having theinsertion hole 21 of a different opening shape. InFIG. 2 , theinsertion hole 21 is an opening extending in the direction in which a plurality of glass slides 10 are arranged in thechamber part 24, and is configured so that a plurality of glass slides 10 can be inserted therethrough. Like inFIG. 1 , such aninsertion hole 21 also allows a plurality of glass slides 10 to be received by thechamber part 24 and collectively stained in thestaining solution 11. InFIG. 2 , theinsertion hole 21 extends in the Y direction, and the glass slides 10 inserted through theinsertion hole 21 are arranged in the Y direction. In this case, the opening area of theinsertion hole 21 is equal to or larger than the total area of horizontal sections of the glass slides 10. - For example, each
glass slide 10 is held not to move in thechamber part 24. In the example configuration inFIG. 2 , thechamber part 24 includesslide holders 22 to hold the glass slides 10 immersed in thestaining solution 11. When theinsertion hole 21 is a large opening as illustrated inFIG. 2 , the glass slides 10 can be stably held by theslide holders 22 provided in thechamber part 24. The example configuration inFIG. 1 may be provided with theslide holders 22, such as inFIG. 2 . Note that theslide holders 22 do not necessarily have to be provided. - In
FIG. 2 , theslide holders 22 are formed on the bottom portion of thechamber part 24. Eachslide holder 22 includes a portion, such as a recess portion and a wall portion, to support the periphery of alower end portion 10 c of theglass slide 10. Theslide holder 22 may be columnar and configured to support the side surfaces of theglass slide 10. Theslide holder 22 may have a shape other than that illustrated inFIG. 2 . Theslide holders 22 may be provided in thecover part 23. Theslide holders 22 may be provided in both thecover part 23 and thechamber part 24. - In
FIG. 2 , theslide holders 22 are configured to hold the respective glass slides 10 at holding positions arranged in a predetermined direction. Theinsertion hole 21 is an opening extending in a direction in which the glass slides 10 are arranged and is configured so that the glass slides 10 can be inserted or transported therethrough to the respective holding positions. Thereby, samples smeared on the glass slides 10 can be immersed in thestaining solution 11 sufficiently. - Although
FIG. 1 illustrates an example where fiveinsertion holes 21 are formed to be able to hold five glass slides 10, the number of glass slides 10 that theslide holders 22 can hold is not limited to five as long as it is more than one. The same applies toFIG. 2 . - The
transport part 30 is capable of holding and transporting theglass slide 10. In the example configuration inFIG. 1 , thetransport part 30 is configured to hold and transport asingle glass slide 10 and move theglass slide 10 in and out through theinsertion hole 21. Specifically, thetransport part 30 can move oneglass slide 10 in and out of the insertion holes 21 from above thechamber part 24 at a time. If a plurality of glass slides 10 are transported at once, staining processing cannot be started until all the smeared glass slides are ready for the processing. By contrast, the configuration in which thetransport part 30 transports oneglass slide 10 at a time can shorten the time required for performing the staining processing on eachglass slide 10. - Various configurations are employable for the
transport part 30. For example, in the example configuration inFIG. 1 , thetransport part 30 is a three-axis cartesian robot that can move horizontally and vertically (Z direction) and that includes ahand 31 to grip theglass slide 10. Alternatively, thetransport part 30 may be movable in one of the horizontal direction and the vertical direction, and thestaining chamber 20 may be movable in the other one of the horizontal direction and the vertical direction. Thehand 31 may be, for example, an open-and-close mechanism capable of gripping theglass slide 10 by sandwiching theglass slide 10, or a suction mechanism that grips theglass slide 10 by sucking a predetermined portion of theglass slide 10. Thetransport part 30 may be configured to be able to transport two or more glass slides 10 at once. - The
smear staining apparatus 100 configured as described above can reduce evaporation of thevolatile staining solution 11 with thecover part 23, even though thechamber part 24 is formed so that the area of theliquid surface 11 a of thestaining solution 11 may be sufficiently large. As a result, the amount of thestaining solution 11 used can be reduced. Further, even though thecover part 23 is provided, the insertion hole(s) 21 can be left open. Thus, thesmear staining apparatus 100 can be operated with thecover part 23 fixed, without requiring thecover part 23 to be removed to open the insertion hole(s) during the operation of thesmear staining apparatus 100 or to be configured to be able to open and close. Thus, even though thecover part 23 is provided with or in thechamber part 24, the apparatus configuration and operation of thesmear staining apparatus 100 can be simplified. - With reference to
FIG. 3 and so on, a description is given of an example configuration where thesmear staining apparatus 100 illustrated inFIG. 1 is applied to a staining unit of asmear preparing apparatus 200. Thesmear preparing apparatus 200 is an apparatus that performs smearing processing to smear a sample on theglass slide 10 and then performs staining processing to stain the sample on theglass slide 10. The sample is, for example, blood. - The overall configuration of the
smear preparing apparatus 200 is described with reference toFIG. 3 . - In the example configuration in
FIG. 3 , thesmear staining apparatus 100 including thestaining chamber 20 illustrated inFIG. 1 or 2 and thetransport part 30 is provided in astaining unit 81 of thesmear preparing apparatus 200. In the example configuration inFIG. 3 , thesmear preparing apparatus 200 further includes aslide supplying unit 82, aprinting unit 83, a smearingunit 84, a dryingunit 85, and aslide storage unit 86. - The
slide supplying unit 82 is configured to house a large number of unused glass slides 10 yet to be smeared with a sample. Theslide supplying unit 82 can supply theprinting unit 83 with the unsmeared glass slides 10 one at a time. - The
printing unit 83 can print various pieces of information such as sample information on theprint section 10 b (seeFIG. 8 ) of theglass slide 10. Theprinting unit 83 can transport the printedglass slide 10 to thesmearing unit 84. - The smearing
unit 84 can aspirate a sample using a sample aspiration mechanism (not shown) and smear the sample on thestain section 10 a of the glass slide 10 (seeFIG. 8 ) sent from theprinting unit 83. The smearingunit 84 can transport theglass slide 10 having undergone the smearing processing to the dryingunit 85. - The drying
unit 85 has a function to receive the sample-smearedglass slide 10 from the smearingunit 84 and dry thestain section 10 a. - The
staining unit 81 performs staining processing by thesmear staining apparatus 100 on the sample on theglass slide 10 having undergone the smearing processing by the smearingunit 84. In thestaining unit 81, the smearedglass slide 10 dried by the dryingunit 85 undergoes staining processing in each stainingchamber 20 and cleaning processing in each cleaningchamber 40. The staining processing is completed with a drying step in a dryingchamber 50, and the stainedglass slide 10 is sent to theslide storage unit 86. The transport part 30 (seeFIG. 1 ) performs transport of theglass slide 10 between members in thestaining unit 81 and transport of theglass slide 10 to theslide storage unit 86. - The
slide storage unit 86 has a function to store the stainedglass slide 10. - Thus configured, the
smear preparing apparatus 200 can automatically prepare a smear by subjecting theglass slide 10 to printing processing, sample smearing processing, and staining processing. - Next, an example configuration of the
staining unit 81 is described with reference toFIG. 4 . In the example configuration illustrated inFIG. 4 , thestaining unit 81 includes thestaining chambers 20, thetransport part 30, the cleaningchambers 40, the dryingchamber 50, and anair blowing unit 60. Thetransport part 30 includes afirst transport part 30 a and asecond transport part 30 b. Thesmear preparing apparatus 200 includes afluid circuit part 70 for supplying thestaining solution 11 and a cleaningliquid 12 to thestaining chambers 20 and thecleaning chambers 40, respectively and for discharging thestaining solution 11 and the cleaningliquid 12 from thestaining chambers 20 and thecleaning chambers 40, respectively. Thesmear preparing apparatus 200 includes acontroller 71 that controls elements such as thetransport part 30 and theair blowing unit 60. Thecontroller 71 may be a computer including components, such as a CPU (Central Processing Unit) 711, amemory part 712, such as memory, and aclock part 713. Theclock part 713 is, for example, one that can acquire time information, such as a system clock managed by the operation system of thecontroller 71 or a real-time clock in thecontroller 71. - Note that in the following, the X direction is the width direction of the
glass slide 10 inserted in the staining chamber 20 (i.e., the width direction of the insertion hole 21), and the Y direction is the direction in which the glass slides 10 are arranged in the staining chamber 20 (i.e., the thickness direction of the insertion hole 21). In addition, the Z direction is the vertical direction, which is the direction in which theglass slide 10 is inserted. - The
first transport part 30 a and thesecond transport part 30 b are disposed above (i.e., on the Z1 side of) thestaining chambers 20 and thecleaning chambers 40. Movingmechanisms 32 enable thefirst transport part 30 a and thesecond transport part 30 b to move in horizontal directions (i.e., the X direction and the Y direction). Each movingmechanism 32 includes a Y-axis motor 33 and anX-axis motor 34 and moves thefirst transport part 30 a or thesecond transport part 30 b in horizontal directions. - The
first transport part 30 a and thesecond transport part 30 b substantially have the same configuration. Thefirst transport part 30 a and thesecond transport part 30 b each include a Z-axis motor 35 to raise and lower thehand 31. - The
hand 31 can grip oneglass slide 10.FIG. 4 illustrates an example where a pair ofhands 31 sandwich and grip the respective glass slides 10 in their thickness direction. Thehand 31 may be configured to sandwich and grip theglass slide 10 in its width direction. - The
first transport part 30 a can move above the positions of the staining and cleaning chambers on the Y2 side, namely, afirst staining chamber 20 a, asecond staining chamber 20 b, athird staining chamber 20 c, and afirst cleaning chamber 40 a. Thesecond transport part 30 b can move above the positions of the staining and cleaning chambers on the Y1 side, namely, asecond cleaning chamber 40 b, afifth staining chamber 20 e, afourth staining chamber 20 d, and afirst cleaning chamber 40 a, as well as above the position of the dryingchamber 50 and the transport path to the slide storage unit 86 (seeFIG. 3 ). - The
first transport part 30 a and thesecond transport part 30 b can transport different glass slides 10 at the same time. The operation ranges of thefirst transport part 30 a and thesecond transport part 30 b overlap at thefirst cleaning chamber 40 a. At thefirst cleaning chamber 40 a, theglass slide 10 is passed between thefirst transport part 30 a and thesecond transport part 30 b. Theglass slide 10 may be passed at a position other than thefirst cleaning chamber 40 a. - The cleaning
chamber 40 can be filled with the cleaningliquid 12 to immerse theglass slide 10 therein. InFIG. 4 , the cleaningchamber 40 has the same configuration as the stainingchamber 20. In thecleaning chamber 40, theglass slide 10 undergoes cleaning processing by being immersed in the cleaningliquid 12 in thecleaning chamber 40. The cleaning processing is performed between steps of the staining processing and after all the steps of the staining processing. - In the example configuration in
FIG. 4 , the dryingchamber 50 is disposed side by side with thestaining chambers 20 and thecleaning chambers 40 in the Y direction. The dryingchamber 50 has a function to dry theglass slide 10 having undergone the staining processing and the cleaning processing. The dryingchamber 50 can hold the glass slides 10 each being spaced away from another. The dryingchamber 50 includes an air passage inside (not shown), and the air passage is connected to theair blowing unit 60. - The
air blowing unit 60 has a function to blow air to the glass slides 10 held in the dryingchamber 50. Theair blowing unit 60 includes, for example, an electrically-operated fan, and can forcibly send air into the air passage inside the dryingchamber 50. - In the example configuration in
FIG. 4 , thesmear preparing apparatus 200 includes aheater 51 to warm up the air sent from theair blowing unit 60. The air thus warmed up can speed up the drying process of theglass slide 10 having undergone staining processing, shortening the time required to complete the staining processing. - Next, the structures of the
staining chambers 20 and thecleaning chambers 40 are described with reference toFIGS. 4 to 7 . - In the example configuration illustrated in
FIGS. 4 to 6 , each stainingchamber 20 incudes thechamber part 24 or a tub to be filled with thestaining solution 11. Thechamber part 24 is provided separately from thecover part 23. Thecover part 23 is removably set in or set on the chamber part 24 (seeFIG. 6 ). Thereby, even if thecover part 23 gets soiled by thestaining solution 11 dripping from theglass slide 10 being transported, thecover part 23 can be removed from the stainingchamber 20 and cleaned easily. - In the example configuration illustrated in
FIGS. 5 and 6 , thecover part 23 includes theslide holder 22 to hold the glass slides 10 placed in thechamber part 24. Thus, thecover part 23 is set in such a manner as to be removable from thechamber part 24 together with theslide holder 22. Since soil or extraneous matter attached to a part such as narrow gaps in the insertion holes 21 can be washed away, the maintainability of thestaining chamber 20 improves. Alternatively, theslide holder 22 may be provided in thechamber part 24 so that only thecover part 23 can be removed from thechamber part 24. - The
slide holder 22 is configured to hold the glass slides 10 inserted into thechamber part 24 by thetransport part 30. By theslide holder 22, the glass slides 10 can be stably held with theirstain sections 10 a immersed in thestaining solution 11 in thechamber part 24. - When the
smear preparing apparatus 200 is in operation, as illustrated inFIGS. 4 and 5 , thecover part 23 and theslide holder 22 are fixed to thechamber part 24 with part of thecover part 23 and theslide holder 22 being set inside thechamber part 24. Thetransport part 30 inserts the glass slides 10 into the insertion holes 21 one by one. A smear applied to theglass slide 10 is stained by coming into contact with thestaining solution 11 in thechamber part 24. - When maintenance of the
smear preparing apparatus 200 is carried out, as illustrated inFIG. 6 , thecover part 23 can be removed from the inside of thechamber part 24. Removal of thecover part 23 from thechamber part 24 enables the entire part of theslide holder 22 and thecover part 23 to be cleaned. - Note that the
smear preparing apparatus 200 may be configured to be able to detect whether thecover part 23 is placed in thechamber part 24. In the example illustrated inFIGS. 5 and 6 , thecover part 23 is provided with adetection piece 25. When thecover part 23 is set in thechamber part 24, thedetection piece 25 is detected by a sensor (not shown). Such a configuration enables detection of whether thecover part 23 is being properly set in thechamber part 24 when thesmear preparing apparatus 200 is in operation, preventing thecover part 23 from being forgotten to be set. - Note that in the example configuration in
FIGS. 5 and 6 , at least one of thechamber part 24 and thecover part 23 is black. This makes soil which may be attached to thestaining solution 11 during transport of theglass slide 10 less noticeable. It also helps reduce degradation of thechamber part 24 and thecover part 23 due to light, if thechamber part 24 and thecover part 23 are resin moldings. Although it may be preferable that both of thechamber part 24 and thecover part 23 are black, only one of them may be black. Also, neither thechamber part 24 nor thecover part 23 may be black. - Further, in the example configuration in
FIGS. 5 and 6 , at least one of thechamber part 24 and thecover part 23 is made of any one of a polyphenylene sulfide (PPS) resin, a polypropylene (PP) resin, and a polyetherimide (PEI) resin. Thereby, the mechanical strength and chemical resistance of at least one of thechamber part 24 and thecover part 23 can be improved. Although it may be preferable that both of thechamber part 24 and thecover part 23 is made of any one of the above materials, only one of them may be made of any one of the above materials. Also, both of thechamber part 24 and thecover part 23 may be made of a material different from the above materials. - The
staining chambers 20 and thecleaning chambers 40 may be integrally formed. In the example configuration inFIGS. 5 and 6 , the fivestaining chambers 20, thefirst staining chamber 20 a to thefifth staining chamber 20 e, and the twocleaning chambers 40, thefirst cleaning chamber 40 a and thesecond cleaning chamber 40 b, are integrally formed. Thus, like thestaining chamber 20, the cleaningchamber 40 also includes thechamber part 24 to be filled with the cleaningliquid 12 and thecover part 23 to be removably set in or set on thechamber part 24. - In the example in
FIG. 6 , a plurality ofchamber parts 24 corresponding to therespective staining chambers 20 and cleaningchambers 40 are integrally provided. Specifically, thechamber parts 24 includechamber parts 24 a to 24 e that correspond to the fivestaining chambers 20. Thechamber parts 24 further includechamber parts cleaning chambers 40. Thechamber parts 24 a to 24 g are segregated from one another by partitioningmembers 245 so that the liquids do not flow between them. Thesechamber parts 24 a to 24 g may be provided separately. Each of thechamber parts 24 a to 24 g is provided with itsown supply port 26 a (seeFIG. 8 ) and dischargeport 26 b (seeFIG. 8 ). Through thesupply ports 26 a, thestaining solutions 11 and the cleaningliquids 12 are supplied from thefluid circuit part 70 to thechamber parts 24 a to 24 g. Through thedischarge ports 26 b, thestaining solutions 11 and the cleaningliquids 12 in thechamber parts 24 a to 24 g are discharged by thefluid circuit part 70. - The
chamber parts 24 are open upward at theirupper portions 241, and each of theirlower portions 242 includes a bottom surface. When attached to thechamber parts 24 from above, thecover part 23 is partially located inside thechamber parts 24. - The
cover part 23 includes: the insertion holes 21 as many as the number of glass slides 10 capable of being set in each stainingchamber 20; and the insertion holes 21 as many as the number of glass slides 10 capable of being set in each cleaningchamber 40. In the example inFIGS. 5 and 6 , thecover part 23 is split into two parts: acover part 23 a and acover part 23 b. Thecover part 23 a includes the insertion holes 21 for thechamber parts 24 a to 24 c and the insertion holes 21 for thechamber part 24 f, and is set inside thechamber parts 24 a to 24 c and thechamber part 24 f. Thecover part 23 b includes the insertion holes 21 for thechamber parts insertion hole 21 for thechamber part 24 g, and is placed inside thechamber parts chamber part 24 g. Note that thecover part 23 a and thecover part 23 b may be formed integrally, or thecover part 23 may be provided individually for each of thechamber parts 24 a to 24 g. - In an embodiment, the insertion holes 21 in the
staining chambers 20 and the insertion holes 21 in thecleaning chambers 40 have the same shape. The insertion holes 21 are provided side by side along a straight line in the thickness direction thereof (Y direction) at predetermined intervals. - In the example configuration in
FIGS. 5 and 6 , thecover part 23 is provided to cover theupper portions 241 of thechamber parts 24 from above. Thecover part 23 is formed to extend from one end to the other end of eachchamber part 24 in the Y direction. Thecover part 23 includestop plates 231 formed on the respective sides of the insertion holes 21 in the X direction. - In the example configuration in
FIGS. 5 and 6 , thecover part 23 also covers the regions between the insertion holes 21. Since thecover part 23 includes theslide holder 22 in this example configuration, theslide holder 22 surrounding each of the insertion holes 21 functions as part of thecover part 23. This effectively helps prevent thestaining solution 11 from evaporating through between the adjacent glass slides 10. - In the example configuration in
FIGS. 5 to 7 , thecover parts 23 cover substantially the entire opening regions of theupper portions 241 of thechamber parts 24 a to 24 g (seeFIG. 6 ), except for the insertion holes 21 for the glass slides 10 andventilation portions 234 to be described later. - Also, in the example configuration in
FIGS. 5 and 6 , thecover part 23 is provided with plate-shapedportions 232 protruding or rising upward from the outer edge portions of the respectivetop plates 231 to prevent droplets falling onto the top surface of thecover part 23 from scattering outside thestaining chambers 20 and thecleaning chambers 40. - Note that in the example configuration in
FIG. 6 , aspacer portion 202 is formed on aninner side surface 201 of eachchamber part 24 to form a gap between theinner side surface 201 of thechamber part 24 and anouter side surface 222 of thecover part 23. Specifically, thespacer portion 202 includes a rib shape protruding from the surface of thepartitioning member 245 toward the inside of thechamber part 24 in the Y direction, the partitioningmember 245 extending vertically and constituting theinner side surface 201. The end surface of thespacer portion 202 in the protruding direction comes into contact with theouter side surface 222 of thecover part 23 in the Y direction, forming a gap 92 (seeFIG. 9 ) in the Y direction between theinner side surface 201 of thechamber part 24 and theouter side surface 222 of thecover part 23. - If the
inner side surface 201 of thechamber part 24 and theouter side surface 222 of thecover part 23 are too close to each other, thestaining solution 11 may leak outside thechamber part 24 or to another adjacent chamber passing through between theinner side surface 201 of thechamber part 24 and theouter side surface 222 of thecover part 23 due to capillary action. By contrast, when a sufficient gap is kept by thespacer portion 202, leakage of thestaining solution 11 to the outside of thechamber part 24 can be reduced. Note that it suffices if thespacer portion 202 is provided on one of theinner side surface 201 of thechamber part 24 and theouter side surface 222 of thecover part 23. Thus, thespacer portion 202 may be provided on theouter side surface 222 of thecover part 23. Thespacer portion 202 may be any protrusion other than the rib. Thespacer portion 202 may be provided separately from thechamber part 24 or thecover part 23. - In the example configuration in
FIG. 6 , eachchamber part 24 includes a first portion 243 (seeFIG. 8 ) in which theglass slide 10 is held by theslide holder 22. Thechamber part 24 also includes second portions 244 (seeFIG. 8 ) provided adjacent to thefirst portion 243 in the width direction of theglass slide 10 placed in the chamber part 24 (the X direction) to allow thestaining solution 11 to flow between thefirst portion 243 and thesecond portions 244. Eachtop plate 231 of thecover part 23 is provided to cover the correspondingsecond portion 244 of thechamber part 24 from above. Thereby, thesecond portions 244 adjacent to thefirst portion 243 can make the area of theliquid surface 11 a of thestaining solution 11 sufficiently large. Even though thesecond portions 244 are provided, thetop plates 231 of thecover part 23 can effectively help prevent evaporation of thestaining solution 11 in thesecond portions 244. - In the example configuration in
FIGS. 5 and 6 , regions directly above thesecond portions 244 and thetop plates 231 form transport regions for theglass slide 10. The transport regions are adjacent to the insertion holes 21 in the X direction. Thetransport part 30 transports theglass slide 10 by detouring the region directly above the glass slides 10 set in thefirst portion 243 and moving above thetop plates 231 covering thesecond portions 244. - Specifically, as illustrated in
FIG. 7 , thestaining chambers 20 and thecleaning chambers 40 are arranged from the Y2-side end portion toward the Y1 side in accordance with the order of processing steps of the staining processing and the cleaning processing. Thetransport part 30 transports the glass slides 10 to thefirst staining chamber 20 a to thefifth staining chamber 20 e and thefirst cleaning chamber 40 a and thesecond cleaning chamber 40 b one at a time, in turn from thefirst staining chamber 20 a closest to the Y2 side. Thetransport part 30 transports theglass slide 10 among thestaining chambers 20 and thecleaning chambers 40, moving along aroute 90 that vertically overlaps thetop plate 231 of thecover part 23. This helps prevent thestaining solution 11 dripping from theglass slide 10 being transported from soiling a portion of the setglass slide 10 outside the section to be stained. - Note that in the X direction, the widths of the
first portion 243 and thesecond portion 244 are each equal to or larger than the width W1 of theglass slide 10. Specifically, thefirst portion 243 has a width W4 (seeFIG. 8 ), and thesecond portion 244 has a width W2. More specifically, the width W4 not less than the width W1 of oneglass slide 10 is secured in thefirst portion 243, and the width W2 not less than the width W1 is also secured in eachsecond portion 244 adjacent to thefirst portion 243. Thus, it is ensured that when theglass slide 10 is transported above thesecond portion 244, thestaining solution 11 dripping from the transportedglass slide 10 does not fall on theglass slide 10 being set. - Next, the structures of the
staining chambers 20 and thecleaning chambers 40 are described in detail with reference toFIGS. 8 and 9 . Thestaining chambers 20 and thecleaning chambers 40 each have basically the same structure except for the number of the insertion holes 21. Thus, the following describes the structure of onestaining chamber 20 in detail. In the following description, thestaining solution 11 and thestaining chamber 20 may be substituted with the cleaningliquid 12 and thecleaning chamber 40, respectively. - In the example configuration in
FIG. 8 , thefirst portion 243 of thechamber part 24 is deeper than eachsecond portion 244 of thechamber part 24. Thefirst portion 243 is provided to a depth reaching thelower portion 242 of thechamber part 24, and thesecond portion 244 is provided in theupper portion 241 without reaching thelower portion 242 of thechamber part 24. The depth of thefirst portion 243 is substantially equal to the sum of Z-direction lengths of theupper portion 241 and thelower portion 242. The depth of thesecond portion 244 is substantially equal to the Z-direction length of theupper portion 241. Consequently, inFIG. 8 , in the width direction of theglass slide 10 placed in the chamber part 24 (in the X direction), the inside dimension W3 of theupper portion 241 of thechamber part 24 is larger than the inside dimension W4 of thelower portion 242 of thechamber part 24. This configuration enables taking in and out of theglass slide 10 to cause less change in the liquid surface of thestaining solution 11 in theupper portion 241, and owing to the small inside dimension W4 of thelower portion 242, reduces the liquid amount of thestaining solution 11 used. - More specifically, the
second portions 244 are disposed adjacent to thefirst portion 243 in the X direction, at the respective sides of thefirst portion 243, and are covered by thetop plates 231. Thesecond portions 244 are not provided in thelower portion 242. Thus, thechamber part 24 has an internal space shaped like a letter-T in section formed by thefirst portion 243 and thesecond portions 244 on both sides of thefirst portion 243. Note that the internal space is a space portion forming a region for storing thestaining solution 11. The inside dimension W4 of thelower portion 242 is substantially equal to the width of thefirst portion 243. The inside dimension W3 of theupper portion 241 is substantially equal to the sum of the width W4 of thefirst portion 243 and the widths W2 of the twosecond portions 244 on the respective sides. This configuration can increase the area of the liquid surface of thestaining solution 11 in theupper portion 241 more effectively without increasing the volume of thechamber part 24. - In the example configuration in
FIG. 8 , thechamber part 24 includes adischarge port 27 to define the upper-limit level of theliquid surface 11 a of thestaining solution 11 contained in thechamber part 24. When the liquid surface is going to exceed the upper-limit level, an excess part of thestaining solution 11 is discharged through thedischarge port 27 to keep theliquid surface 11 a at the upper-limit level. Thereby, when thestaining solution 11 is additionally supplied to thechamber part 24 for example, the liquid surface can be kept at the constant upper limit without detection of theliquid surface 11 a or precise management of the liquid amount of thestaining solution 11 to be added. - In the example configuration in
FIG. 8 , thedischarge port 27 has a tubular shape extending vertically, and is provided in theupper portion 241 of thechamber part 24. Thedischarge port 27 is provided in each of thechamber parts 24 a to 24 g (seeFIG. 6 ). When theliquid surface 11 a of thestaining solution 11 exceeds anupper end portion 271 of thedischarge port 27, thestaining solution 11 is discharged through thedischarge port 27. In other words, theupper end portion 271 of thedischarge port 27 is the upper-limit level for theliquid surface 11 a. The upper-limit level of theliquid surface 11 a is located higher than or above thestain section 10 a and lower than theprint section 10 b of theglass slide 10 held by theslide holder 22. Thereby, even if theliquid surface 11 a rises to the upper-limit level, thestaining solution 11 does not reach theprint section 10 b. Further, when thestaining solution 11 additionally supplied to thechamber part 24 is in an amount such that theliquid surface 11 a is brought to the upper-limit level, theliquid surface 11 a can be kept close to the upper-limit level at all times. This helps prevent the staining solution from being deficient and failing to stain the vicinity of an upper end portion of thestain section 10 a. - Provided under the
discharge port 27 is acollection tank 28. Alower end portion 272 of thedischarge port 27 is open toward anopening 281 in an upper portion of thecollection tank 28. Thestaining solution 11 flowing into thedischarge port 27 is sent from thedischarge port 27 into thecollection tank 28. - Note that, to be able to collect the
staining solutions 11 and the cleaningliquids 12 from thedischarge ports 27 of therespective staining chambers 20 and cleaningchambers 40, thecollection tank 28 is provided adjacent to thestaining chambers 20 and cleaning chambers 40 (seeFIG. 6 ), extending in the Y direction. Liquids in thecollection tank 28 are discharged through adischarge port 282 provided in the lowermost portion of the bottom portion of thecollection tank 28. The bottom portion of thecollection tank 28 is provided with another discharge port 283 (seeFIG. 6 ) at a position higher than or above thedischarge port 282. Thedischarge port 283 functions as a backup port of thedischarge port 282. Note that a discharge port 203 (seeFIG. 6 ) is provided near an upper end portion of thechamber part 24. Thedischarge port 203 is an emergency discharge port used when neither of thedischarge ports - In the example configuration illustrated in
FIG. 8 , thecover part 23 includes abottom portion 223 which is to be placed inside thechamber part 24 and to hold thelower end portion 10 c of theglass slide 10. Thebottom portion 223 is located closer to the bottom surface of thechamber part 24 than to theliquid surface 11 a of thestaining solution 11, and gets immersed in thestaining solution 11. Thecover part 23 is formed integrally with thebottom portion 223. Specifically, thetop plates 231 andinner walls 233 of thecover part 23 are connected to thebottom portion 223 from both of its sides in the X direction. Thereby, even if theglass slide 10 is broken or foreign matter attaches to theglass slide 10, the broken piece or foreign matter is received by thebottom portion 223 of thecover part 23. This can prevent the broken piece or foreign matter from accumulating in thechamber part 24. Since thecover part 23 including thebottom portion 223 is removable from the stainingchamber 20, the broken piece or foreign matter having fallen on thebottom portion 223 can be easily removed. - Also, in the example configuration illustrated in
FIG. 8 , theslide holder 22 is detachably attached to thecover part 23 and thebottom portion 223. Theslide holder 22 is configured as a member with which the insertion holes 21 are integrally formed. Specifically, tubular holding wall portions surrounding the respective insertion holes 21 are arranged in the direction in which the insertion holes 21 are arranged and integrally constitute theslide holder 22. In this case, removal of theslide holder 22 can open a region above thebottom portion 223. Then, a broken piece and foreign matter having fallen on thebottom portion 223 can be removed even more easily. Further, when theslide holder 22 is thus a separate member from thecover part 23, the precision management of theslide holder 22 coming into contact with the glass slides 10 can be easily performed. As a result, the positioning of eachglass slide 10 and taking in and out of theglass slide 10 can be carried out easily and precisely. - The
slide holder 22 is provided for eachcover part 23. Specifically, theslide holder 22 for thecover part 23 a (seeFIG. 7 ) is configured as a single member that partitions groups of the insertion holes 21 corresponding to thechamber parts 24 a to 24 c and a group of the insertion holes 21 corresponding to thechamber part 24 f from one another. Similarly, theslide holder 22 for thecover part 23 b (seeFIG. 7 ) is configured as a single member that partitions groups of the insertion holes 21 corresponding to thechamber parts chamber part 24 g from one another. - The
slide holder 22 includes anattachment portion 224 used to attach theslide holder 22 to thecover part 23. Theattachment portion 224 is formed to extend from the upper end portion of theslide holder 22 to a space above the upper surface of one of thetop plates 231. By theattachment portion 224 being secured to thetop plate 231 by means of screwing or the like, theslide holder 22 is attached to thecover part 23 and thebottom portion 223. - In the example configuration in
FIG. 8 , theslide holder 22 is provided to extend from thecover part 23 toward the bottom portions of the chamber parts 24 (the Z2 side), and is configured to hold the glass slides 10 immersed in thestaining solution 11. Theslide holder 22 thus extending from thecover part 23 toward the bottom portions of thechamber parts 24 supports the side surfaces of the glass slides 10 and stably holds the glass slides 10. Theslide holder 22 extends downward from a position where thetop plate 231 is provided, to a position higher than or above thebottom portion 223. Thestaining solution 11 and the cleaningliquid 12 can flow between theslide holder 22 and thebottom portion 223. - In the width direction of the glass slide 10 (the X direction), the gap in the
slide holder 22 gradually gets smaller from the upper portion to the lower portion. Theslide holder 22 thus has a function to guide eachglass slide 10 so that its position in the X direction may be brought to a proper position. - Further, as illustrated in
FIG. 9 , in the thickness direction of the glass slide 10 (the Y direction), at least parts of theslide holder 22 are tapered toward the upper end portion. In the example inFIG. 9 , theslide holder 22 is provided withguide portions 225 protruding from theslide holder 22 in the thickness direction of the slide holder 22 (the Y direction), and theguide portions 225 protrude in the Y direction less and less toward the upper end portion of theslide holder 22. Thus, the gap between theguide portions 225 in the thickness direction also gets gradually smaller from the upper part to the lower part of theslide holder 22. Theslide holder 22 thus has a function to guide eachglass slide 10 so that its position in the Y direction may be brought to a proper position. - Thus configured, the
slide holder 22 holds the glass slides 10 inserted in thechamber parts 24 upright with the longitudinal direction of the glass slides 10 being along the vertical direction (the Z direction). Theslide holder 22 is also configured to hold the glass slides 10 at respective holding positions arranged in the thickness direction of the glass slides 10 (the Y direction) (seeFIG. 7 ). Thereby, the glass slides 10 can be placed to extend vertically in thechamber part 24. As a result, the area of a horizontal section of theglass slide 10 being set is smaller than when theglass slide 10 is set with its longitudinal direction being along any other direction. Thus, the volume of thelower portion 242 of eachchamber part 24 can be sufficiently reduced. - Note that the
cover part 23 includes rib-shaped portions 227 (seeFIG. 9 ) formed onside surface portions 226 in the X direction and thebottom portion 223. The rib-shapedportions 227 are formed immediately below theguide portions 225 to support the lower edge portions of the glass slides 10 in the thickness direction. - In the example configuration in
FIG. 8 , thecover part 23 includes theside surface portions 226 that connect thebottom portion 223 to the respectivetop plates 231. Theside surface portions 226 includecommunication ports 228 so that thestaining solution 11 in thechamber part 24 can flow into thecover part 23. Thecommunication ports 228 can efficiently bring thestaining solution 11 into contact with the glass slides 10 held in thecover part 23, and thus enable efficient staining processing. - Specifically, in the
cover part 23 ofFIG. 8 , thebottom portion 223 is formed integrally with thetop plates 231 and theinner walls 233. Thus, a lower portion of theinner wall 233 of thecover part 23 also functions as theside surface portions 226 of thecover part 23. Eachcommunication port 228 is located at a lower portion of theside surface portion 226 of thecover part 23, near thebottom portion 223. Thecommunication port 228 penetrates through theside surface portion 226 to allow the outside of thecover part 23 to communicate with the inside of thecover part 23 where the glass slides 10 are set. Through thecommunication ports 228, thestaining solution 11 supplied to thechamber part 24 easily flows into thecover part 23. - The
bottom portion 223 is located at a position upward of and spaced away from the bottom portion of thechamber part 24. Theside surface portions 226 is located at a position spaced away from the inner side surface of thechamber part 24. Since a gap is thus created between the inner surface of thechamber part 24 and each of thebottom portion 223 and theside surface portions 226, thebottom portion 223 and theside surface portions 226 do not hinder the flow of thestaining solution 11 inside thechamber part 24. - Note that the
cover part 23 do not have to be provided with thebottom portion 223 and theside surface portions 226. In such a case, thelower end portions 10 c of the glass slides 10 may be supported by the bottom portion of thechamber part 24. Thecover part 23 may be provided only with thebottom portion 223, without theside surface portions 226. When theside surface portions 226 are provided, theside surface portions 226 can keep a broken piece or foreign matter having fallen on thebottom portion 223 from falling further down onto the bottom portion of thechamber part 24. - In the example configuration in
FIG. 8 , thetop plates 231 of thecover part 23 are each formed to extend from theinner side surface 201 of thechamber part 24 toward the insertion holes 21 in the width direction of the glass slides 10 placed in the chamber part 24 (the X direction). Then, theinner walls 233 of thecover part 23 extend from the respective end portions of thetop plates 231 on the insertion holes 21 side toward the bottom portion of thechamber part 24 or toward thebottom portion 223 of thecover part 23 to a position immersed under theliquid surface 11 a of thestaining solution 11. Thereby, the inner side surfaces 201 on both sides of thechamber part 24 in the X direction, thetop plates 231, theinner walls 233, and theliquid surface 11 a of thestaining solution 11 surround and definespaces 91. Thereby, the evaporatedstaining solution 11 can be held within eachspace 91 isolated from the insertion holes 21. As a result, thespace 91 tends to become saturated by the vapors of the vaporizedstaining solution 11, allowing a further reduction in the amount of thestaining solution 11 evaporated. - In this example configuration, the
cover part 23 includes theventilation portions 234 to let the air or gas in the space surrounded by theinner side surface 201 of thechamber part 24, thetop plate 231, theinner wall 233, and theliquid surface 11 a of thestaining solution 11 escape to the outside thechamber part 24. If the surroundedspace 91 were completely airtight, air discharge during the supply of thestaining solution 11 and air supply during the discharge of thestaining solution 11 would become difficult, possibly hindering the supply and discharge of thestaining solution 11. When the minimum air flow is secured by theventilation portions 234, the supply and discharge of thestaining solution 11 may be facilitated even if thespace 91 is formed to keep evaporated gas inside. - In the example configuration in
FIG. 8 , theventilation portions 234 are each formed by a penetration hole penetrating the lower surface side and the upper surface side of thecover part 23. The opening area of theventilation portion 234 is smaller than the opening area of theinsertion hole 21. Theventilation portions 234 form minute gaps between theslide holder 22 and the end portion of thetop plate 231 on theslide holder 22 side. Instead of the penetration holes, theventilation portions 234 may be notched portions formed by notching of an end portion of thetop plate 231. Moreover, eachventilation portion 234 which may for example be formed by a penetration hole may be connected to an end of a gas flowing tube the other end of which is connected to a valve. Then, if the valve is opened during supply and discharge of thestaining solution 11 and closed during times other than the supply and discharge, gas flow can be minimized with airtightness of thespace 91 achieved. - Moreover, in the example configuration in
FIG. 8 , thetop plate 231 is formed to cover the range from theinner side surface 201 of thechamber part 24 to theslide holder 22. Theinner wall 233 is in contact with theslide holder 22 and extends downward along theslide holder 22. Since substantially the entire region of thechamber part 24 except for the insertion holes 21 can be thus covered by thetop plate 231 and theslide holder 22, evaporation of thestaining solution 11 can be reduced all the more effectively. Further, theinner wall 233 extending along theslide holder 22 can increase thespace 91 surrounded by theinner side surface 201 of thechamber part 24, thetop plate 231, theinner wall 233, and theliquid surface 11 a of thestaining solution 11. This leads to a further improvement in the effect of thecover part 23 reducing evaporation of thestaining solution 11. - With reference to
FIGS. 4, 7, 10, and 11 , a description is given of the staining operation performed by thestaining unit 81 of the smear preparing apparatus 200 (i.e., the staining operation by the smear staining apparatus 100). Thecontroller 71 controls thesmear preparing apparatus 200. - First, in Step S1 in
FIG. 10 , thechamber parts 24 of thestaining chambers 20 and thecleaning chambers 40 are filled with thestaining solutions 11 and the cleaningliquids 12, respectively. The fluid circuit part 70 (seeFIG. 4 ) supplies thestaining solutions 11 and the cleaningliquids 12 to thestaining chambers 20 and thecleaning chambers 40 through theirrespective supply ports 26 a (seeFIG. 8 ). - In Step S2, the
transport part 30 transports the glass slides 10 to thefirst staining chamber 20 a (seeFIG. 7 ) one by one, and staining processing is performed in thefirst staining chamber 20 a. - Specifically, in Step S11 in
FIG. 11 , thetransport part 30 grips and takes out a single smearedglass slide 10. In Step S12, thetransport part 30 transports theglass slide 10 to a position above thefirst staining chamber 20 a, which is a transport destination. In this event, thetransport part 30 transports theglass slide 10 following theroute 90 illustrated inFIG. 7 . In Step S13, thetransport part 30 inserts the grippedglass slide 10 into one of the insertion holes 21 in the transport-destination first stainingchamber 20 a. The operation depicted inFIG. 11 is common to Steps S3 to S7 to be described later, with only differences being the position from which theglass slide 10 is taken out and the destination to which theglass slide 10 is transported. - The
first staining chamber 20 a is filled with afirst staining solution 11. Staining processing is performed in this state by immersing theglass slide 10 in thefirst staining solution 11 for a preset period of time T1. - Referring back to
FIG. 10 , in Step S3, thetransport part 30 transports theglass slide 10 to thesecond staining chamber 20 b (seeFIG. 7 ), and staining processing is performed in thesecond staining chamber 20 b. Through Steps S11 to S13 inFIG. 11 , thetransport part 30 takes out theglass slide 10 from thefirst staining chamber 20 a and inserts theglass slide 10 into one of the insertion holes 21 in thesecond staining chamber 20 b. For a preset period of time T2, theglass slide 10 is immersed in asecond staining solution 11 contained in thesecond staining chamber 20 b. - In Step S4, the
transport part 30 transports theglass slide 10 to thethird staining chamber 20 c (seeFIG. 7 ), and staining processing is performed in thethird staining chamber 20 c. Through Steps S11 to S13 inFIG. 11 , thetransport part 30 takes out theglass slide 10 from thesecond staining chamber 20 b and places theglass slide 10 into one of the insertion holes 21 in thethird staining chamber 20 c. For a preset period of time T3, theglass slide 10 is immersed in athird staining solution 11 contained in thethird staining chamber 20 c. - In Step S5, the
transport part 30 transports theglass slide 10 to thefirst cleaning chamber 40 a (seeFIG. 7 ), and cleaning processing is performed in thefirst cleaning chamber 40 a. The operation for the transport to thefirst cleaning chamber 40 a is similar to the operation for the transport to thestaining chamber 20. Specifically, in Step S11 inFIG. 11 , thetransport part 30 grips and takes out asingle glass slide 10 from thethird staining chamber 20 c. In Step S12, following the route 90 (seeFIG. 7 ), thetransport part 30 transports theglass slide 10 to a position above thefirst cleaning chamber 40 a, which is a transport destination. In Step S13, thetransport part 30 inserts the grippedglass slide 10 into one of the insertion holes 21 in the transport-destination first cleaningchamber 40 a. For a preset period of time T4, theglass slide 10 is immersed in afirst cleaning liquid 12 contained in thefirst cleaning chamber 40 a. - In Step S6, the
transport part 30 transports theglass slide 10 to either thefourth staining chamber 20 d or thefifth staining chamber 20 e, and staining processing is performed in thefourth staining chamber 20 d or thefifth staining chamber 20 e (seeFIG. 7 ), which is a transport destination. Thefourth staining chamber 20 d and thefifth staining chamber 20 e are both filled with afourth staining solution 11. Through Steps S11 to S13 inFIG. 11 , thetransport part 30 takes out theglass slide 10 from thefirst cleaning chamber 40 a and inserts theglass slide 10 into one of the insertion holes 21 in thefourth staining chamber 20 d or thefifth staining chamber 20 e. For a preset period of time T5, theglass slide 10 is immersed in thefourth staining solution 11. - In Step S7, the
transport part 30 transports theglass slide 10 to thesecond cleaning chamber 40 b (seeFIG. 7 ), and cleaning processing is performed in thesecond cleaning chamber 40 b. Through Steps S11 to S13 inFIG. 11 , thetransport part 30 takes out theglass slide 10 from thefourth staining chamber 20 d or thefifth staining chamber 20 e and inserts theglass slide 10 into theinsertion hole 21 in thesecond cleaning chamber 40 b. For a preset period of time T6, theglass slide 10 is immersed in asecond cleaning liquid 12 in thesecond cleaning chamber 40 b. - In Step S8, the
transport part 30 transports theglass slide 10 to the drying chamber 50 (seeFIG. 4 ), and theglass slide 10 is dried in the dryingchamber 50. - Specifically, the
transport part 30 grips and takes out asingle glass slide 10 from thesecond cleaning chamber 40 b. Thetransport part 30 transports theglass slide 10 to a position above the drying chamber 50 (seeFIG. 4 ), which is a transport destination, and inserts the grippedglass slide 10 into the dryingchamber 50. Thecontroller 71 turns on the heater 51 (seeFIG. 4 ) and the air blowing unit 60 (seeFIG. 4 ) to send hot air to theglass slide 10 held in the dryingchamber 50. The hot air is applied to theglass slide 10 in the dryingchamber 50 for a preset period of time T7. With this, smear staining processing on asingle glass slide 10 is complete. - In Step S9, the
transport part 30 takes out thesingle glass slide 10 having undergone the staining processing from the dryingchamber 50, and transports theglass slide 10 to the slide storage unit 86 (seeFIG. 3 ). This is how the staining operation is performed. - With reference to
FIG. 8 andFIGS. 12 to 15 , a description is given of staining solution supply operation performed by thesmear preparing apparatus 200. Thecontroller 71 controls thesmear preparing apparatus 200. - As illustrated in
FIG. 8 , thechamber part 24 includes: asupply port 261 that supplies thestaining solution 11 into thechamber part 24 while coming into contact with thestaining solution 11; and thedischarge port 27 that is disposed higher than or above the supply port 261 (the Z1 side) and discharges thestaining solution 11. Since thedischarge port 27 is provided in an upper part of thechamber part 24, an excess of thestaining solution 11 can be discharged through thedischarge port 27. As a result, the liquid upper edge surface of thestaining solution 11 can be kept constant in thechamber part 24 at all times, and therefore the fluid circuit or control for keeping the staining solution level constant can be simplified. Further, when thechamber part 24 is replenished with thestaining solution 11 from thesupply port 261 in a lower part thereof, an excess of thestaining solution 11 is discharged through thedischarge port 27 in the upper part, which causes thestaining solution 11 to be circulated and agitated within the chamber part, helping prevent problems such as uneven concentration or freshness of thestaining solution 11 in the chamber. - The
smear preparing apparatus 200 can operate not only in a regular mode in which theprinting unit 83 performs printing processing, the smearingunit 84 performs smearing processing, and thestaining unit 81 performs staining processing, but also in a smearing mode in which printing processing and smearing processing are performed. Thesmear preparing apparatus 200 can also operate in a staining mode in which thestaining unit 81 performs staining processing on theglass slide 10 smeared with a sample. Thesmear preparing apparatus 200 can also operate in a printing mode in which theprinting unit 83 prints various pieces of information on theprint section 10 b of theglass slide 10. In other words, the user can select from the regular mode, the smearing mode, the staining mode, and the printing mode and cause thesmear preparing apparatus 200 to operate in the selected mode. - The
controller 71 controls supply of a predetermined amount of thestaining solution 11 into thechamber part 24 through thesupply port 261. For example, thecontroller 71 controls replenishment of thechamber part 24 with thestaining solution 11 when staining work is being or is to be performed on theglass slide 10. Thecontroller 71 also controls replenishment of thechamber part 24 with thestaining solution 11 when at least oneglass slide 10 is placed in thechamber part 24. Specifically, thecontroller 71 causes afluid mechanism 700 to replenish thechamber part 24 with thestaining solution 11 with at least oneglass slide 10 placed in thechamber part 24. Thecontroller 71 also controls replenishment of thechamber part 24 with thestaining solution 11 when thesmear preparing apparatus 200 is set to the regular mode or the staining mode, in which thestaining unit 81 performs staining processing. - Thereby, with a constant amount of the
staining solution 11 being maintained in thechamber part 24 using thesupply port 261, thestaining solution 11 can be partially replaced (replenishment of thechamber part 24 with thestaining solution 11 and discharge of an excess of the staining solution 11). Since partial replenishment with thestaining solution 11 is carried out in thechamber part 24, staining processing can be continued in thesmear preparing apparatus 200. Thereby, the liquid properties of the staining solution 11 (the staining properties of the staining solution 11) can be maintained without stopping the operation of thesmear preparing apparatus 200, which can improve the rate of operation. Further, since thestaining solution 11 is not entirely replaced through supply after discharge, this helps prevent the sample staining level from changing before and after the replenishment with thestaining solution 11. Thereby, variation in staining quality is reduced. - The
smear preparing apparatus 200 is configured to be able to receive a setting from a user to determine the timing to supply thestaining solution 11 into thechamber part 24. For example, thesmear preparing apparatus 200 receives a setting for the timing to supply thestaining solution 11 into thechamber part 24, inputted by a user on a setting screen as illustrated inFIG. 12 . In the example illustrated inFIG. 12 , the replenishment timing for thestaining solution 11 can be set for an undiluted solution group and a diluted staining solution group. The undiluted solution group includes an undiluted solution of thestaining solution 11 and methanol. The diluted staining solution group includes a diluted staining solution which is a staining solution diluted with a phosphate buffer solution or the like. Grouping thestaining solutions 11 based on the types of thestaining solution 11 enables the timing to supply thestaining solutions 11 to be set collectively and easily, compared to when the supply timing is set for each individual type of thestaining solution 11. - As illustrated in
FIG. 12A , for the undiluted solution group, a time elapsed and the number of glasses prepared (the number of glasses stained) since the last, the latest or a previous replenishment or supply with thestaining solution 11 can be set as the timing to supply thechamber part 24 with thestaining solution 11. Setting an elapsed time allows replenishment with thestaining solution 11 after every predetermined period of time to compensate for thestaining solution 11 evaporated. Setting the number of glasses prepared allows replenishment with thestaining solution 11 to compensate for thestaining solution 11 that has flowed out as the glass slides 10 are transported out. For the undiluted solution group, the elapsed time may be set to, for example, a time between 30 minutes and 2 hours, both inclusive. Further, the number of glasses prepared may be set to, for example, a value between 10 and 50, both inclusive. Thecontroller 71 is configured to control thefluid mechanism 700 to replenish thechamber part 24 with thestaining solution 11 based on an elapsed lapse since the last, the latest or a previous replenishment or supply with thestaining solution 11, the elapsed time being counted by theclock part 713. Further, thecontroller 71 is configured to control thefluid mechanism 700 to replenish thechamber part 24 with thestaining solution 11 based on the number of glass slides 10 prepared since the last replenishment with thestaining solution 11, the number of glasses being stored in thememory part 712. - The condition of the elapsed time and the condition of the number of glasses prepared may be independent of each other. Specifically, the elapsed time and the number of glasses prepared may be counted independently. For example, if the condition of the elapsed time and the condition of the number of glasses prepared coincide with each other, the
staining solution 11 may be added two times in a row. - As illustrated in
FIG. 12B , for the diluted solution group, an elapsed time since the last replenishment with thestaining solution 11 can be set. As to a diluted staining solution, only an elapsed time may be set because deterioration of thestaining solution 11 is caused more dominantly by factors such as a lapse of time than the number of glasses prepared. For the diluted solution group, the elapsed time may be set to, for example, a time between 12 minutes and 4 hours, both inclusive. - Note that the supply timing set may be a predetermined time of day, in addition to an elapsed time and the number of glasses prepared. Specifically, the
chamber part 24 may be replenished with thestaining solution 11 when the clock strikes a predetermined time. Further, the timing to supply thestaining solution 11 may be set for each type of thestaining solutions 11 without grouping the types of thestaining solution 11 to be added. - Note that in the regular mode and the staining mode, the
controller 71 receives an instruction to perform staining work on glass slides. On the other hand, when thesmear preparing apparatus 200 is in the smearing mode or printing mode, powered off, or in standby, thecontroller 71 does not receive an instruction to perform staining work on glass slides. - The
controller 71 is configured to perform control such that replenishment of thechamber part 24 with thestaining solution 11 is stopped when staining work on the glass slides 10 is paused, and replenishment of thechamber part 24 with thestaining solution 11 is performed when staining work on the glass slides 10 is resumed. Since replenishment with thestaining solution 11 is thus not performed while the staining work is paused, wasteful consumption of thestaining solution 11 can be reduced. Specifically, thecontroller 71 is configured to control thefluid mechanism 700 to replenish thechamber part 24 with thestaining solution 11 upon receiving an instruction to perform staining work on the glass slides 10. Further, thecontroller 71 is configured to control thefluid mechanism 700 to pause staining work and stop replenishment of thechamber part 24 with thestaining solution 11 when receiving no instruction to perform staining work on the glass slides 10, and to resume staining work and replenish thechamber part 24 with thestaining solution 11 when receiving anew an instruction to perform staining work on the glass slides 10. - The
controller 71 is configured to perform control such that when staining work on theglass slide 10 is paused and then resumed, thechamber part 24 is replenished with thestaining solution 11 in an amount corresponding to the period of time of the pause. For example, if the pause time is N times a preset elapsed time, thecontroller 71 performs control such that thechamber part 24 is replenished with N times worth of thestaining solution 11. This configuration enables proper replenishment with thestaining solution 11 to compensate for an amount evaporated or deteriorated during the pause time. To be more specific, thecontroller 71 is configured to control thefluid mechanism 700 so that when staining work on theglass slide 10 is paused and then resumed, thechamber part 24 may be replenished with thestaining solution 11 in an amount corresponding to the pause time counted by theclock part 713. - The
controller 71 is configured to perform control such that thechamber part 24 is replenished with thestaining solution 11 in up to an amount corresponding to the capacity of thechamber part 24. Specifically, thecontroller 71 is configured so that if the amount of replenishment with N times worth ofstaining solution 11 exceeds the capacity of thechamber part 24, thechamber part 24 is replenished with thestaining solution 11 in an amount equal to the capacity of thechamber part 24. Such a configuration does not permit excessive replenishment with thestaining solution 11, and is therefore effective in reducing wasteful consumption of thestaining solution 11. In other words, thecontroller 71 is configured to compare a predetermined amount with the amount of thestaining solution 11 with which to replenish thechamber part 24, stored in thememory part 712, and control thefluid mechanism 700 to replenish thechamber part 24 with thestaining solution 11 in up to the predetermined amount. - The
controller 71 is configured to perform control such that thechamber parts 24 are replenished with thestaining solution 11 in an order from upstream to downstream. As illustrated inFIG. 13 , theglass slide 10 is placed in the plurality ofchamber parts 24 by being transported in the order of thestaining chambers chamber 40 a, the stainingchamber cleaning chamber 40 b. For example, when double staining called May-Giemsa stain is to be performed, thestaining solutions 11 include methanol, a May Grünwald solution, and a Giemsa solution. When double staining called Wright-Giemsa stain is to be performed, thestaining solutions 11 include methanol, a Wright solution, and a Giemsa solution. When single staining called Wright stain is to be performed, thestaining solutions 11 include methanol and a Wright solution. In other words, thecontroller 71 is configured to set the order of priority such that thestaining chambers chamber part 24 in which theglass slide 10 is to be immersed first is replenished with thestaining solution 11 first. - For the double staining called May-Giemsa stain, methanol is put in the
staining chamber 20 a, an undiluted May Grünwald solution is put in thestaining chamber 20 b, and a diluted staining solution of a May Grünwald solution is put in thestaining chamber 20 c. Further, a phosphate buffer is put in thecleaning chamber 40 a, and a diluted staining solution of a Giemsa solution is put in thestaining chambers cleaning chamber 40 b. In such a case, for example, the methanol and the undiluted May Grünwald solution are categorized as the undiluted solution group, and the diluted staining solution of a May Grünwald solution and the diluted staining solution of a Giemsa solution are categorized as the diluted staining solution group. Note that the pure water and the phosphate buffer are used for cleaning purposes and are therefore replaced after every cleaning of theglass slide 10. - For the double staining called Wright-Giemsa stain, methanol is put in the
staining chamber 20 a, an undiluted Wright solution is put in thestaining chamber 20 b, and a diluted staining solution of a Wright solution is put in thestaining chamber 20 c. Further, a phosphate buffer is put in thecleaning chamber 40 a, and a diluted staining solution of a Giemsa solution is put in thestaining chambers cleaning chamber 40 b. In such a case, for example, the methanol and the undiluted Wright solution are categorized as the undiluted solution group, and the diluted staining solution of a Wright solution and the diluted staining solution of a Giemsa solution are categorized as the diluted staining solution group. Note that the pure water and the phosphate buffer are used for cleaning purposes and are therefore replaced after every cleaning of theglass slide 10. - For the single staining called Wright stain, methanol is put in the
staining chamber 20 a, an undiluted Wright solution is put in thestaining chamber 20 b, and a diluted staining solution of a Wright solution is put in thestaining chamber 20 c. A diluted staining solution of a Wright solution is put in thestaining chambers cleaning chamber 40 b. In such a case, for example, the methanol and the undiluted Wright solution are categorized as the undiluted solution group, and the diluted staining solution of a Wright solution is categorized as the diluted staining solution group. Note that the pure water is used for cleaning purposes and is therefore replaced after every cleaning of theglass slide 10. -
FIG. 14 illustrates part of thefluid mechanism 700 that supplies staining solutions to thechamber parts 24. Thestaining solution 11 is supplied to each staining chamber after being quantified using a diaphragm pump. For example, anundiluted staining solution 11 is supplied from a staining solution chamber to a staining chamber after being quantified using a diaphragm pump. Further, using a diaphragm pump, anundiluted staining solution 11 and a phosphate buffer solution are quantified and supplied to a staining solution dilution/agitation chamber, preparing a diluted staining solution as thestaining solution 11. Then, the thus-prepared diluted staining solution as thestaining solution 11 is supplied from the staining solution dilution/agitation chamber to a staining chamber after being quantified using a diaphragm pump. Although a diaphragm pump is used for the supply of a staining solution in an embodiment, the invention is not limited thereto. A staining solution may be supplied using a different type of pump, or using water pressure produced by difference in height. - The
fluid mechanism 700 is configured to supply a staining solution to thechamber part 24 as controlled by thecontroller 71. Specifically, each diaphragm pump in thefluid mechanism 700 is driven as controlled by thecontroller 71. Moreover, opening and closing of each valve in thefluid mechanism 700 are controlled by thecontroller 71. The staining chambers may share a single diaphragm pump or be provided with their own diaphragm pumps. - The
staining solution 11 is supplied to a staining chamber from thesupply port 261 provided in a lower part of the staining chamber. Further, an excess of thestaining solution 11 overflows from thedischarge port 27 provided higher than or above thesupply port 261, and is discharged to a waste solution chamber via thecollection tank 28. - With reference to
FIG. 15 , a description is given of staining solution supply processing performed in thestaining unit 81 of thesmear preparing apparatus 200. Thecontroller 71 controls thesmear preparing apparatus 200. Further, the staining solution supply processing is performed for eachchamber part 24. - First, in Step S21 in
FIG. 15 , it is determined whether a condition for replenishment with thestaining solution 11 is met. If the condition is met, the processing proceeds to Step S22, and if the condition is not met, the processing in Step S21 is repeated until the condition is met. The condition for replenishment with thestaining solution 11 is, for example, when a predetermined period of time has elapsed since the last replenishment or when a predetermined number of glasses have been prepared since the last replenishment, in the mode in which the staining processing is performed. - In Step S22, the
chamber part 24 is replenished with thestaining solution 11. In Step S23, a counter for the condition for replenishment with thestaining solution 11 is reset, and the processing proceeds back to Step S21. Note that the reset of the counter is reset of an elapsed time when the replenishment is a result of a lapse of a predetermined elapsed time, and is reset of the number of glasses prepared when the replenishment is a result of preparation of a predetermined number of glasses. This is how the staining solution supply processing is performed. - It should be noted that the embodiments disclosed herein should be interpreted as exemplary in every aspect and as nonrestrictive. The scope of the invention is defined not by the description of the above embodiments, but by the scope of claims, and includes every changes (modifications) made within the meaning and scope equivalent to the scope of claims.
Claims (21)
1-20. (canceled)
21. A smear staining apparatus comprising:
a chamber part in which glass slides can be placed, the chamber part configured to accommodate a staining solution for staining a smear on each of the glass slides;
a cover part comprising a top plate that covers the chamber part from above and comprises an insertion hole through which the glass slides are transported to the chamber part; and
a transport part that transports the glass slides to the chamber part through the insertion hole,
wherein the cover part comprises an inner wall that extends downwardly from an edge of the insertion hole of the top plate so that a lower end of the inner wall is immersed in the staining solution.
22. The smear staining apparatus according to claim 21 , wherein
the cover part comprises a slide holder configured to hold the glass slides, and
the slide holder that extends from the cover part toward a bottom portion of the chamber part and is configured to hold the glass slides immersed in the staining solution.
23. The smear staining apparatus according to claim 21 , wherein
the insertion hole comprises a plurality of insertion holes, and
each of the plurality of the insertion holes is a slit through which one glass slide is insertable.
24. The smear staining apparatus according to claim 22 , wherein
the slide holder is configured to:
hold the glass slides upright with a longitudinal direction of the glass slides being along a vertical direction; and
hold the glass slides at respective holding positions arranged in a thickness direction of the glass slides,
the chamber part comprises:
a first portion in which the glass slides are held by the slide holder; and
a second portion that is adjacent to the first portion in a width direction of the glass slides placed in the chamber part, wherein the staining solution can flow between the first portion and the second portion, and
the top plate of the cover part covers the second portion of the chamber part from above.
25. The smear staining apparatus according to claim 24 , wherein
the first portion is deeper than the second portion, and
in the width direction of the glass slides placed in the chamber part, an inside dimension of an upper part of the chamber part is larger than an inside dimension of a lower part of the chamber part.
26. The smear staining apparatus according to claim 24 , wherein
in the width direction of the glass slides placed in the chamber part, the second portion is placed adjacent to both sides of the first portion, and
the top plate covers the second portion adjacent to both sides of the first portion.
27. The smear staining apparatus according to claim 24 , wherein
the top plate extends from an inner side surface of the chamber part toward the insertion hole in the width direction of the glass slides placed in the chamber part, and
the cover part comprises an inner wall that extends from an end portion of the top plate on the insertion hole side, toward the bottom portion of the chamber part, to a position under a liquid surface of the staining solution.
28. The smear staining apparatus according to claim 27 , wherein
the cover part comprises a ventilation portion though which a gas in a space surrounded by the inner side surface of the chamber part, the top plate, the inner wall, and the liquid surface of the staining solution can go outside.
29. The smear staining apparatus according to claim 21 , wherein
the transport part is configured to hold and transport one glass slide and to take the glass slide in and out through the insertion hole one by one.
30. The smear staining apparatus according to claim 21 , further comprising:
a fluid mechanism that is configured to supply the chamber part with the staining solution; and
a controller that causes the fluid mechanism to supply the chamber part with the staining solution in a condition in which at least one glass slide is placed in the chamber part.
31. The smear staining apparatus according to claim 30 , wherein
the controller is able to receive a setting of timing to supply the chamber part with the staining solution.
32. The smear staining apparatus according to claim 31 , wherein
the controller is able to receive, as the setting of the timing to supply the chamber part with the staining solution, a setting of at least one of: a time of day; and an elapsed time since a previous supply with the staining solution, and
the controller comprises a clock part that counts time and causes the fluid mechanism to supply the chamber part with the staining solution based on at least one of: the time of day; and the elapsed time counted by the clock part since the previous supply with the staining solution.
33. The smear staining apparatus according to claim 31 , wherein
the controller is able to receive, as the setting of the timing to supply the chamber part with the staining solution, a setting of the number of the glass slides prepared since a previous supply with the staining solution, and
the controller comprises a memory part that stores the number of the glass slides prepared and causes the fluid mechanism to supply the chamber part with the staining solution based on the stored number of the glass slides prepared since the previous supply with the staining solution.
34. The smear staining apparatus according to claim 30 , wherein
the controller causes the fluid mechanism to supply the chamber part with the staining solution when receiving an instruction to perform staining on the glass slides.
35. The smear staining apparatus according to claim 30 , wherein
when receiving no instruction to perform staining on the glass slides, the controller pauses staining and causes the fluid mechanism to stop supplying the chamber part with the staining solution, and
when receiving anew an instruction to perform staining on the glass slides, the controller resumes staining and causes the fluid mechanism to supply the chamber part with the staining solution.
36. The smear staining apparatus according to claim 35 , wherein
the controller comprises a clock part that counts time, and in a condition in which staining on the glass slides is paused and then resumed, causes the fluid mechanism to supply the chamber part with the staining solution in an amount corresponding to a period of time of the pause counted by the clock part.
37. The smear staining apparatus according to claim 36 , wherein
the controller comprises a memory part that stores an amount of the staining solution with which to supply the chamber part,
the controller compares a predetermined amount with the amount of the staining solution stored in the memory part, and
the controller causes the fluid mechanism to supply the chamber part with the staining solution in up to the predetermined amount.
38. The smear staining apparatus according to claim 30 , wherein
the chamber part comprises a plurality of chamber parts in each of which the glass slides can be placed, and
the controller causes the fluid mechanism to supply the chamber parts with the staining solution in an order from upstream to downstream.
39. A smear staining apparatus comprising:
a chamber part in which glass slides can be placed and that is configured to contain a staining solution for staining a smear on each of the glass slides;
a fluid mechanism that supplies the chamber part with the staining solution; and
a controller that causes the fluid mechanism to supply the chamber part in which the glass slides are placed, with the staining solution.
40. A smear staining method comprising:
filling a chamber part in which glass slides can be placed with a staining solution for staining a smear on each of the glass slides; and
supplying the chamber part in which the glass slides are placed, with the staining solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/869,818 US20220357248A1 (en) | 2016-01-29 | 2022-07-21 | Smear staining apparatus, smear preparing apparatus, and smear staining method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016016490 | 2016-01-29 | ||
JP2016-016490 | 2016-01-29 | ||
US16/047,520 US11402305B2 (en) | 2016-01-29 | 2018-07-27 | Smear staining apparatus, smear preparing apparatus, and smear staining method |
US17/869,818 US20220357248A1 (en) | 2016-01-29 | 2022-07-21 | Smear staining apparatus, smear preparing apparatus, and smear staining method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/047,520 Continuation US11402305B2 (en) | 2016-01-29 | 2018-07-27 | Smear staining apparatus, smear preparing apparatus, and smear staining method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220357248A1 true US20220357248A1 (en) | 2022-11-10 |
Family
ID=59398315
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/047,520 Active 2038-04-25 US11402305B2 (en) | 2016-01-29 | 2018-07-27 | Smear staining apparatus, smear preparing apparatus, and smear staining method |
US17/869,818 Pending US20220357248A1 (en) | 2016-01-29 | 2022-07-21 | Smear staining apparatus, smear preparing apparatus, and smear staining method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/047,520 Active 2038-04-25 US11402305B2 (en) | 2016-01-29 | 2018-07-27 | Smear staining apparatus, smear preparing apparatus, and smear staining method |
Country Status (5)
Country | Link |
---|---|
US (2) | US11402305B2 (en) |
EP (1) | EP3410093A4 (en) |
JP (1) | JP6220101B1 (en) |
CN (3) | CN206960203U (en) |
WO (1) | WO2017130790A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020161895A1 (en) * | 2019-02-08 | 2020-08-13 | 平田機工株式会社 | Specimen preparation method |
CN110031279A (en) * | 2019-03-30 | 2019-07-19 | 吴淑华 | Sample fixed station |
CN110286023A (en) * | 2019-05-28 | 2019-09-27 | 郑州中普医疗器械有限公司 | Automatic constant-temperature high definition dyeing apparatus |
EP3977402A1 (en) * | 2019-05-28 | 2022-04-06 | PAIGE.AI, Inc. | Systems and methods for processing images to prepare slides for processed images for digital pathology |
JP7272878B2 (en) * | 2019-06-26 | 2023-05-12 | シスメックス株式会社 | Smear preparation device and smear preparation method |
JP7223648B2 (en) * | 2019-06-26 | 2023-02-16 | シスメックス株式会社 | Smear Preparation Apparatus, Smear Preparation Apparatus Control Method, and Specimen Processing Apparatus |
WO2020258169A1 (en) * | 2019-06-27 | 2020-12-30 | 深圳迈瑞生物医疗电子股份有限公司 | Method for dyeing sample, device for preparing smear, and dye solution combination |
CN110962145B (en) * | 2019-12-27 | 2024-07-30 | 桂林优利特医疗电子有限公司 | Device for preparing blood smear by self-adaptive bionic mechanical arm |
CN111751193B (en) * | 2020-07-02 | 2021-09-28 | 郑州中普医疗器械有限公司 | Glass slide upright semi-immersion fixed type constant-temperature dyeing bin unit and dyeing machine |
CN111999151B (en) * | 2020-08-25 | 2024-08-23 | 华南农业大学 | Slide glass dyeing device and application method thereof |
CN114323883B (en) * | 2021-12-31 | 2023-11-14 | 迈克医疗电子有限公司 | Slide processing apparatus |
CN114323882B (en) * | 2021-12-31 | 2024-03-29 | 迈克医疗电子有限公司 | Slide glass making device |
KR102674222B1 (en) * | 2022-09-19 | 2024-06-11 | 정은영 | Semi-automatic immunohistochemical staining machine |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7883667B2 (en) * | 2005-02-18 | 2011-02-08 | Preyas Shah | Methods and apparatus for efficiently using fluids in a slide stainer |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3352280A (en) * | 1964-05-01 | 1967-11-14 | Coulter Electronics | Centrifugal apparatus for slide staining |
JPS59154633U (en) * | 1983-04-01 | 1984-10-17 | オムロン株式会社 | liquid processing equipment |
JPS6011136A (en) | 1983-06-30 | 1985-01-21 | Chiyoda Seisakusho:Kk | Method and device for dyeing microscope specimen |
JPH0370355U (en) | 1989-11-15 | 1991-07-15 | ||
US5078969A (en) | 1989-12-14 | 1992-01-07 | Cell Analysis Systems, Inc. | Magnetic stirrer |
JPH04291157A (en) * | 1991-03-20 | 1992-10-15 | Hitachi Ltd | Specimen making apparatus |
DE4117833C2 (en) | 1991-05-29 | 1993-10-07 | Medite Ges Fuer Medizintechnik | Method and device for staining histological specimens arranged on slides |
EP0843169B1 (en) | 1995-02-25 | 2003-03-19 | Roche Diagnostics GmbH | Device for treating samples on microscope slides |
JP3467348B2 (en) * | 1995-05-09 | 2003-11-17 | シスメックス株式会社 | Slide glass storage device |
JP2901521B2 (en) | 1995-07-31 | 1999-06-07 | アロカ株式会社 | Biological tissue processing equipment |
FR2782800B1 (en) * | 1998-09-01 | 2000-10-20 | Abx Sa | DEVICE FOR THE AUTOMATIC PREPARATION OF BLOOD SPREADS ON BLADES |
DE19918442B4 (en) | 1999-04-23 | 2005-04-14 | Leica Microsystems Nussloch Gmbh | Staining automat for staining objects for microscopic examination |
DE19933153A1 (en) * | 1999-07-20 | 2001-02-08 | Byk Gulden Lomberg Chem Fab | Device for processing analytes on solid phases |
US6585936B1 (en) * | 2002-06-28 | 2003-07-01 | Preyas Sarabhai Shah | Slide stainer with controlled fluid flow |
NO20060555L (en) | 2006-02-02 | 2007-08-03 | Torstein Ljungmann | Apparatus for performing treatment operations in connection with staining of tissue samples on slides |
FR2931084B1 (en) * | 2008-05-19 | 2010-08-20 | Reactifs Ral | DEVICE FOR COLORING BLADES FOR MICROSCOPE EXAMINATION |
CN201218787Y (en) * | 2008-06-06 | 2009-04-08 | 曾勇 | Sheet making frame for chromosome |
US8158061B2 (en) | 2008-12-10 | 2012-04-17 | Rushabh Instruments, Llc | Automated slide staining apparatus |
US8877485B2 (en) * | 2009-12-09 | 2014-11-04 | Dako Denmark A/S | Apparatus and method for processing biological samples |
DE102010062543B4 (en) * | 2010-12-07 | 2019-03-28 | Leica Biosystems Nussloch Gmbh | Holding device for holding slides |
JP6013376B2 (en) * | 2011-02-28 | 2016-10-25 | ダコ・デンマーク・エー/エス | Two-phase immiscible system for pretreatment of embedded biological samples |
EP2518468B1 (en) * | 2011-04-26 | 2019-07-24 | Milestone S.r.l. | Method, processor and carrier for processing frozen slices of tissue of biospecimens |
CN102768142B (en) * | 2012-07-19 | 2014-09-10 | 广州市达诚医疗技术有限公司 | Dyeing device |
JP6182130B2 (en) * | 2014-11-26 | 2017-08-16 | シスメックス株式会社 | Smear preparation apparatus and smear preparation method |
CN204594776U (en) * | 2015-03-11 | 2015-08-26 | 姜刚录 | A kind of slide load bearing unit, carrier and overflow dyeing machine |
-
2017
- 2017-01-17 EP EP17744021.1A patent/EP3410093A4/en active Pending
- 2017-01-17 JP JP2017511785A patent/JP6220101B1/en active Active
- 2017-01-17 WO PCT/JP2017/001374 patent/WO2017130790A1/en active Application Filing
- 2017-02-03 CN CN201720106345.4U patent/CN206960203U/en active Active
- 2017-02-03 CN CN202211408538.7A patent/CN115639046A/en active Pending
- 2017-02-03 CN CN201710063744.1A patent/CN107144458B/en active Active
-
2018
- 2018-07-27 US US16/047,520 patent/US11402305B2/en active Active
-
2022
- 2022-07-21 US US17/869,818 patent/US20220357248A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7883667B2 (en) * | 2005-02-18 | 2011-02-08 | Preyas Shah | Methods and apparatus for efficiently using fluids in a slide stainer |
Also Published As
Publication number | Publication date |
---|---|
CN107144458A (en) | 2017-09-08 |
CN206960203U (en) | 2018-02-02 |
US11402305B2 (en) | 2022-08-02 |
CN115639046A (en) | 2023-01-24 |
CN107144458B (en) | 2022-12-13 |
EP3410093A1 (en) | 2018-12-05 |
WO2017130790A1 (en) | 2017-08-03 |
JP6220101B1 (en) | 2017-10-25 |
US20180356319A1 (en) | 2018-12-13 |
EP3410093A4 (en) | 2020-02-12 |
JPWO2017130790A1 (en) | 2018-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220357248A1 (en) | Smear staining apparatus, smear preparing apparatus, and smear staining method | |
CN107076652B (en) | Smear sample producing device and smear sample producing method | |
ES2927378T3 (en) | Automated slide processing apparatus | |
JP6047243B2 (en) | Automatic sample processing system and method of use thereof | |
AU2015239720B2 (en) | Automated specimen processing systems and multistep processing of microscope slides | |
WO2015133337A1 (en) | Screening apparatus and screening method | |
RU2012126082A (en) | DEVICE AND METHOD FOR PROCESSING BIOLOGICAL SAMPLES | |
JP6117937B2 (en) | Sample processing system and method for uniformly heating glass slide | |
US20070128073A1 (en) | Device for automatic preparation of blood smears on plates | |
HU230739B1 (en) | Apparatus and method for automatic staining masking, digitizing of slides | |
EP2286917A2 (en) | Access holes for feeding a multiwell filter plate | |
JP2000266760A (en) | Dispenser | |
JP6190799B2 (en) | Smear staining equipment | |
CN115279496B (en) | Automatic dyeing system and reaction chamber | |
US11579053B2 (en) | Specimen processing systems, pipette assemblies and methods for preparing reagents | |
WO2020261659A1 (en) | Automated analyzer | |
JP6117936B2 (en) | Sample processing system and method for suppressing evaporation | |
US20200110078A1 (en) | Electric field stirring apparatus, electric field stirring method, and pathological sample manufacturing apparatus | |
JP3854968B2 (en) | Supply tray for multiwell testing equipment | |
JP7125873B2 (en) | Analyzer and reagent container | |
JP5161639B2 (en) | Sample tray | |
JP2006512072A (en) | Analyzer for cell culture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |