US20220346971A1 - Decoupled spacer and plate and method of installing the same - Google Patents

Decoupled spacer and plate and method of installing the same Download PDF

Info

Publication number
US20220346971A1
US20220346971A1 US17/663,441 US202217663441A US2022346971A1 US 20220346971 A1 US20220346971 A1 US 20220346971A1 US 202217663441 A US202217663441 A US 202217663441A US 2022346971 A1 US2022346971 A1 US 2022346971A1
Authority
US
United States
Prior art keywords
plate
spacer
assembly
insertion tool
posterior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/663,441
Inventor
Jason Gray
Mark Fromhold
Brittany Hansen
Mark Miccio
Morgan Kunkle
Matthew Urban
Jason Zappacosta
Noah Hansell
Mark Adams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Globus Medical Inc
Original Assignee
Globus Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Globus Medical Inc filed Critical Globus Medical Inc
Priority to US17/663,441 priority Critical patent/US20220346971A1/en
Assigned to GLOBUS MEDICAL, INC. reassignment GLOBUS MEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZAPPACOSTA, JASON, ADAMS, MARK, FROMHOLD, MARK, GRAY, JASON, HANSELL, NOAH, HANSEN, BRITTANY, KUNKLE, MORGAN, MICCIO, MARK, URBAN, MATTHEW
Publication of US20220346971A1 publication Critical patent/US20220346971A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7059Cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8033Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers
    • A61B17/8042Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers the additional component being a cover over the screw head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages

Definitions

  • the present invention relates to bone fixation, and more specifically, to a method of installing an intervertebral spacer and plate.
  • a standalone spacer is one in which a spacer is attached to a plate.
  • the plate is configured to receive one or more screws that secure the standalone spacer to one or more adjacent vertebrae.
  • the combined spacer/plate structure is typically rigid, thereby reducing the flexibility of the patient at the implant site.
  • intervertebral spacer and plate assemblies that are inserted as a unit with an insertion tool, but are decoupled from each other when the insertion tool is removed. Further, methods of inserting the assemblies are also needed.
  • a method of installing an intervertebral spacer and plate assembly may include coupling an intervertebral spacer and plate to an insertion tool; delivering the coupled spacer and plate to a surgical site via the insertion tool, wherein the spacer and/or plate are received in an intervertebral disc space; inserting one or more bone screws into the plate to secure the plate to one or more adjacent vertebrae; and removing the insertion tool, such that the spacer is decoupled from the plate at the surgical site.
  • FIG. 1 is a perspective view of a spacer and plate assembly according to a first exemplary embodiment
  • FIG. 2 is a perspective view of the spacer shown in FIG. 1 ;
  • FIG. 3 is a top plan view of the spacer shown in FIG. 2 ;
  • FIG. 4 is a posterior elevational view of the spacer shown in FIG. 2 ;
  • FIG. 5 is a left lateral side elevational view of the spacer shown in FIG. 2 ;
  • FIG. 6 is a right lateral side elevational view of the spacer shown in FIG. 2 ;
  • FIG. 7 is a perspective view of the plate shown in FIG. 1 ;
  • FIG. 8 is a posterior elevational view of the plate shown in FIG. 7 ;
  • FIG. 9 is a top plan view of the plate shown in FIG. 7 ;
  • FIG. 10 is a left lateral side elevational view of the plate shown in FIG. 7 ;
  • FIG. 11 is a right lateral side elevational view of the plate shown in FIG. 7 .
  • FIG. 12 is a top plan view of the assembly shown in FIG. 1 ;
  • FIG. 13 is a posterior elevational view of the assembly shown in FIG. 1 ;
  • FIG. 15 is a left lateral side elevational view of the spacer shown in FIG. 1 .
  • FIG. 16 is a perspective view of the assembly components shown in FIG. 1 and an insertion tool for inserting the assembly;
  • FIG. 17 is a perspective view showing the plate of FIG. 7 having been inserted onto the insertion tool
  • FIG. 18 is a perspective view showing the spacer and plate assembly of FIG. 1 having been inserted onto the insertion tool;
  • FIG. 19 is a top plan view, in section, of the plate and spacer of the assembly shown in FIG. 1 having been inserted onto the insertion tool;
  • FIG. 20 is a top plan view of a spacer and plate assembly according to a second exemplary embodiment
  • FIG. 21 is a posterior elevational view of the assembly shown in FIG. 20 ;
  • FIG. 22 is a left lateral side elevational view of the assembly shown in FIG. 20 ;
  • FIG. 23 is an exploded posterior perspective view of the assembly shown in FIG. 20 ;
  • FIG. 24 is an exploded anterior perspective view of the assembly shown in FIG. 20 ;
  • FIG. 25 is a top plan view, in section, of the plate of FIG. 20 and an insertion tool for inserting the plate;
  • FIG. 26 is a perspective view of the plate and insertion tool of FIG. 25 ;
  • FIG. 27 is a top plan view, in section, of the assembly of FIG. 20 and the insertion tool for inserting the assembly;
  • FIG. 28 is a perspective view of the assembly and insertion tool of FIG. 27 ;
  • FIG. 29 is a top plan view, in section, of a spacer block and the spacer and insertion tool of FIG. 27 ;
  • FIG. 30 is a perspective view of the spacer block, spacer, and insertion tool of FIG. 29 ;
  • FIG. 31 is a top plan view of a spacer and plate assembly according to a third exemplary embodiment
  • FIG. 32 is a posterior elevational view of the assembly shown in FIG. 31 ;
  • FIG. 33 is a left lateral side elevational view of the assembly shown in FIG. 31 ;
  • FIG. 34 is an exploded anterior perspective view of the assembly shown in FIG. 20 ;
  • FIG. 35 is an exploded posterior perspective view of the assembly shown in FIG. 20 ;
  • FIG. 36 is a top plan view, in section, of the plate of FIG. 31 and an insertion tool for inserting the assembly of FIG. 31 ;
  • FIG. 37 is a perspective view of the plate and insertion tool of FIG. 36 ;
  • FIG. 38 is a top plan view, in section, of the assembly of FIG. 31 and the insertion tool for inserting the assembly;
  • FIG. 39 is a perspective view of the assembly and insertion tool of FIG. 38 ;
  • FIG. 40 is a top plan view, in section, of a spacer block and the spacer and insertion tool of FIG. 38 ;
  • FIG. 41 is a perspective view of the spacer block, spacer, and insertion tool of FIG. 40 ;
  • FIG. 41A is an anterior perspective view of an alternative plate for use with the spacer shown in FIG. 20 ;
  • FIG. 41B is a left perspective view of the plate shown in FIG. 41A ;
  • FIG. 41C is a left side elevational view of the plate shown in FIG. 41A ;
  • FIG. 41D is an anterior side elevational view of the plate shown in FIG. 41A ;
  • FIG. 42 is a top plan view of a spacer and plate assembly according to a fourth exemplary embodiment.
  • FIG. 43 is a posterior elevational view of the assembly shown in FIG. 42 ;
  • FIG. 44 is a left lateral side elevational view of the assembly shown in FIG. 42 ;
  • FIG. 45 is an exploded anterior perspective view of the assembly shown in FIG. 42 ;
  • FIG. 46 is an exploded posterior perspective view of the assembly shown in FIG. 42 ;
  • FIG. 47 is a top plan view, in section, of the plate of FIG. 42 and an insertion tool for inserting the assembly of FIG. 42 ;
  • FIG. 48 is a perspective view of the plate and insertion tool of FIG. 47 ;
  • FIG. 49 is a top plan view, in section, of the assembly of FIG. 42 and the insertion tool for inserting the assembly;
  • FIG. 50 is a perspective view of the assembly and insertion tool of FIG. 49 ;
  • FIG. 51 is a top plan view, in section, of a spacer block and the spacer and insertion tool of FIG. 49 ;
  • FIG. 52 is a perspective view of the spacer block, spacer, and insertion tool of FIG. 51 ;
  • FIG. 53 is a top plan view of a spacer and plate assembly according to a fifth exemplary embodiment
  • FIG. 54 is a posterior elevational view of the assembly shown in FIG. 53 ;
  • FIG. 55 is a left lateral side elevational view of the assembly shown in FIG. 53 ;
  • FIG. 56 is an exploded anterior perspective view of the assembly shown in FIG. 53 ;
  • FIG. 57 is an exploded posterior perspective view of the assembly shown in FIG. 53 ;
  • FIG. 58 is a top plan view, in section, of the assembly of FIG. 53 attached to an insertion tool for inserting the assembly of FIG. 53 ;
  • FIG. 59 is a perspective view of the assembly and insertion tool of FIG. 58 ;
  • FIG. 60 is a top plan view, in section, of the plate of FIG. 53 and the insertion tool for inserting the plate;
  • FIG. 61 is a perspective view of the plate and insertion tool of FIG. 60 ;
  • FIG. 62 is a top plan view, in section, of a spacer block and the spacer and insertion tool of FIG. 59 ;
  • FIG. 63 is a perspective view of the spacer block, spacer, and insertion tool of FIG. 62 ;
  • FIG. 64 is a top plan view of a spacer and plate assembly according to a sixth exemplary embodiment.
  • FIG. 65 is a left lateral side elevational view of the assembly shown in FIG. 64 ;
  • FIG. 66 is a posterior elevational view of the assembly shown in FIG. 64 ;
  • FIG. 67 is an exploded anterior perspective view of the assembly shown in FIG. 64 ;
  • FIG. 68 is a perspective view of a spacer and plate assembly according to a seventh exemplary embodiment
  • FIG. 69 is a perspective view of a spacer used with the assembly shown in FIG. 68 ;
  • FIG. 70 is a perspective view of a plate used with the assembly shown in FIG. 68 ;
  • FIG. 71 is a top plan view of the spacer shown in FIG. 69 ;
  • FIG. 72 is an anterior elevational view of the spacer shown in FIG. 69 ;
  • FIG. 73 is a right side elevational view of the spacer shown in FIG. 69 ;
  • FIG. 74 is a left side elevational view of the spacer shown in FIG. 69 ;
  • FIG. 75 is an anterior elevational view of the plate shown in FIG. 70 ;
  • FIG. 76 is a top plan view of the plate shown in FIG. 70 ;
  • FIG. 77 is a right side elevational view of the plate shown in FIG. 70 ;
  • FIG. 78 is a left side elevational view of the spacer shown in FIG. 70 ;
  • FIG. 79 is a top plan view of the assembly shown in FIG. 68 ;
  • FIG. 80 is an anterior elevational view of the assembly shown in FIG. 68 ;
  • FIG. 81 is a right side elevational view of the assembly shown in FIG. 68 ;
  • FIG. 82 is a left side elevational view of the assembly shown in FIG. 68 ;
  • FIG. 83 is a perspective view of a spacer and plate assembly according to an eighth exemplary embodiment.
  • FIG. 84 is a perspective view of a spacer used with the assembly shown in FIG. 83 ;
  • FIG. 85 is a perspective view of a plate used with the assembly shown in FIG. 83 ;
  • FIG. 86 is a top plan view of the spacer shown in FIG. 84 ;
  • FIG. 87 is an anterior elevational view of the spacer shown in FIG. 84 ;
  • FIG. 88 is a right side elevational view of the spacer shown in FIG. 84 ;
  • FIG. 89 is a left side elevational view of the spacer shown in FIG. 84 ;
  • FIG. 90 is an anterior elevational view of the plate shown in FIG. 85 ;
  • FIG. 91 is a posterior elevational view of the plate shown in FIG. 85 ;
  • FIG. 92 is a right side elevational view of the plate shown in FIG. 85 ;
  • FIG. 93 is a top plan view of the spacer shown in FIG. 85 ;
  • FIG. 94 is a top plan view of the assembly shown in FIG. 83 ;
  • FIG. 95 is an anterior elevational view of the assembly shown in FIG. 83 ;
  • FIG. 96 is a right side elevational view of the assembly shown in FIG. 83 ;
  • FIG. 97 is a left side elevational view of the assembly shown in FIG. 83 ;
  • FIG. 98 is a side elevational view, in section, of the assembly shown in FIG. 94 , taken along lines 98 - 98 of FIG. 94 ;
  • FIG. 99 is a perspective view of a spacer and plate assembly according to a ninth exemplary embodiment.
  • FIG. 100 is a perspective view of a spacer used with the assembly shown in FIG. 99 ;
  • FIG. 101 is a perspective view of a plate used with the assembly shown in FIG. 99 ;
  • FIG. 102 is a perspective view of the spacer shown in FIG. 100 ;
  • FIG. 103 is top plan view of the spacer shown in FIG. 100 ;
  • FIG. 104 is an anterior elevational view of the spacer shown in FIG. 100 ;
  • FIG. 105 is a posterior elevational view of the spacer shown in FIG. 100 ;
  • FIG. 106 is top plan view of the plate shown in FIG. 101 ;
  • FIG. 107 is a perspective view of the plate shown in FIG. 101 ;
  • FIG. 108 is an anterior elevational view of the plate shown in FIG. 101 ;
  • FIG. 109 is a posterior elevational view of the spacer shown in FIG. 101 ;
  • FIG. 110 is a top plan view of the assembly shown in FIG. 99 ;
  • FIG. 111 is an anterior elevational view of the assembly shown in FIG. 99 ;
  • FIG. 112 is a right side elevational view of the assembly shown in FIG. 99 ;
  • FIG. 113 is a left side elevational view of the assembly shown in FIG. 99 ;
  • FIG. 114 is an anterior elevational view of a spacer and plate assembly according to a tenth exemplary embodiment
  • FIG. 115 is a top plan view of the assembly shown in FIG. 114 ;
  • FIG. 116 is a right side elevational view of the assembly shown in FIG. 114 ;
  • FIG. 117 is a top plan view of a spacer and plate assembly according to an eleventh exemplary embodiment
  • FIG. 118 is a top plan view of a spacer and plate assembly according to a twelfth exemplary embodiment
  • FIG. 119 is a top plan view of a spacer and plate assembly according to a thirteenth exemplary embodiment
  • FIG. 120 is a top plan view of a spacer and plate assembly according to a fourteenth exemplary embodiment
  • FIG. 121 is a top plan view of a spacer and plate assembly according to a fifteenth exemplary embodiment
  • FIG. 122 is a top plan view of a spacer and plate assembly according to a sixteenth exemplary embodiment
  • FIG. 123 is posterior side elevation view of a spacer according to a seventeenth exemplary embodiment
  • FIG. 124 is an anterior side elevation view of the spacer shown in FIG. 123 ;
  • FIG. 125 is a top plan view of the spacer shown in FIG. 123 , with a plate and insertion device;
  • FIG. 126 is a top plan view of a spacer and plate assembly according to an eighteenth exemplary embodiment
  • FIG. 127 is a posterior side elevation view of the assembly shown in FIG. 126 ;
  • FIG. 128 is a top plan view of a spacer and plate assembly according to a nineteenth exemplary embodiment
  • FIG. 129 is a posterior side elevation view of the plate shown in FIG. 128 ;
  • FIG. 130 is a posterior side elevation view of the spacer shown in FIG. 128 .
  • figure numbers and/or figure reference labels in the claims is intended to identify one or more possible embodiments of the claimed subject matter in order to facilitate the interpretation of the claims. Such use is not to be construed as necessarily limiting the scope of those claims to the embodiments shown in the corresponding figures.
  • a spacer can be inserted into a disc space.
  • a standalone spacer can be attached to a plate.
  • the plate can receive one or more bone anchors or screws to attach to the plate to one or more adjacent vertebrae.
  • the plate and spacer are often rigidly connected and are not decoupled from one another.
  • the present application includes spacer and plate assemblies that can be coupled via an insertion instrument upon delivery to a surgical site.
  • a surgical site can be at or near a disc space, as one skilled in the art will appreciate.
  • the insertion instrument advantageously provides a single tool for delivering both the spacer and plate if desired. Once the spacer and plate are implanted at the surgical site, the insertion instrument can be removed. With the insertion instrument removed, the spacer and plate are considered decoupled from one another.
  • a surgeon advantageously has the option to implant both a plate and a spacer, a spacer by itself, or a plate by itself if desired.
  • intervertebral spacers and plates that can be used to space and fixedly secure two adjacent vertebrae.
  • an intervertebral spacer and plate assembly 100 (“assembly 100 ”) is provided.
  • assembly 100 can be used for cervical repair, although those skilled in the art will recognize that assembly 100 can be sized for thoracic or lumbar repair as well.
  • Assembly 100 is formed from two separate components, an intervertebral spacer 102 and a plate 104 .
  • spacer 102 and plate 104 are not directly connected to each other, but are instead each separately coupled to an insertion tool 106 , shown in FIGS. 16-19 .
  • spacer 102 includes a body 108 having a superior surface 110 and an opposing inferior surface 112 .
  • Each of superior surface 110 and inferior surface 112 can have a plurality of protrusions or fixation elements 114 extending outwardly therefrom. While fixation elements 114 are shown as being generally pyramidal in shape, those skilled in the art will recognize that fixation elements 114 can be other shapes, such as ribbed, or other suitable shapes. Fixation elements 114 are used to bite into a grip each of adjacent vertebrae (not shown) between which spacer 102 is inserted.
  • body 102 can have a generally U-shape, with generally parallel lateral sides 116 , 118 , connected to each other by an anterior portion 120 .
  • Lateral side 116 includes a convex arcuate posterior face 117 while lateral side 118 includes a convex arcuate posterior face 119 .
  • the space between lateral sides 116 , 118 can optionally be filled with graft material.
  • superior surface 110 along lateral side 118 includes a cutout 111 that slopes inferiorly in an anterior-to posterior direction.
  • inferior surface 112 along lateral side 116 includes a cutout 113 that slopes superiorly in an anterior-to posterior direction. Cutouts 111 , 113 allow for securing screws (not shown) to be inserted through plate 104 , along cutouts 111 , 113 , respectively, and into adjacent vertebrae (not shown) without engaging spacer 102 .
  • Lateral side 116 includes a tubular protrusion 122 extending in an anterior-posterior direction.
  • Protrusion 122 has an internally threaded passage 124 that is sized to accept a portion of insertion tool 106 as will be explained in detail below.
  • Passage 124 can have a closed anterior end 125 .
  • Lateral side 118 includes an open slot 126 that extends in an anterior-posterior direction.
  • An anterior end 128 of slot 126 extends medially inward and is sized to accept a portion of insertion tool 106 as will be explained in detail below.
  • plate 104 includes a body 130 having a superior surface 132 and an opposing inferior surface 134 .
  • the plate 104 is sized and configured to be received within a disc space, while in other embodiments, at least a portion of the plate 104 is sized and configured to be received outside of a disc space.
  • Each of superior surface 132 and inferior surface 134 can have a plurality of stabilizer elements 136 extending outwardly therefrom. In some embodiments, the stabilizer elements 136 can be for torsional stabilization.
  • one stabilizer element 136 is located along a central anterior-to-posterior axis, and a second stabilizer element 136 is located proximate to a lateral side of body 130 . While stabilizer elements 136 are shown as being generally ribbed in shape, those skilled in the art will recognize that stabilizer elements 136 can be other shapes, such as pyramidal, or other suitable shapes. Stabilizer elements 136 are used to bite into a grip each of adjacent vertebrae (not shown) between which spacer 102 is inserted.
  • body 130 can have a generally arcuate shape, with generally parallel lateral sides 138 , 140 .
  • Each lateral side 138 , 140 includes an anterior-to-posterior slot 142 , 144 , respectively.
  • Slot 142 includes a superior surface 146 and a generally parallel inferior surface 148
  • slot 144 includes a superior surface 150 and a generally parallel inferior surface 152 .
  • FIG. 13 when plate 104 is aligned with spacer 102 for insertion, slot 142 is aligned with threaded passage 124 and slot 144 is aligned with open slot 126 .
  • Body 130 includes a generally concave arcuate anterior face 156 that mates with convex arcuate faces 117 , 119 of spacer 102 when plate 104 is located against spacer 102 , as shown in FIG. 12 .
  • Body 130 also includes a generally convex posterior face 158 that extends generally parallel to anterior face 156 .
  • Through-holes 160 , 162 extend through body 130 in a posterior-to-anterior direction. Through-holes 160 , 162 are sized to allow a bone or securing screw (not shown) to be inserted therethrough to secure plate 104 to each of a superior vertebra (not shown) and an inferior vertebra (not shown), between which spacer 102 is being inserted.
  • Through-hole 160 extends in a superior-to-inferior direction so that its screw engages and secures to the inferior vertebra, while through-hole 162 extends in an inferior-to-superior direction so that its screw engages and secures the superior vertebra.
  • a locking screw 164 is disposed between through-holes 160 , 162 .
  • Locking screw 164 has a head 166 with diametrically opposed arcuate cutouts 168 , 170 that are sized to allow the securing screws discussed above to be inserted into through-holes 160 , 162 .
  • locking screw 164 is in a configuration relative to plate 104 as shown in FIG. 8 . After the securing screws secure plate 104 to the superior and inferior vertebra, locking screw 164 is rotated, for example, about 90 degrees, so that head 166 extends over the securing screws, preventing the securing screws from inadvertently backing out.
  • FIGS. 1 and 12-15 show assembly 100 . While plate 104 abuts spacer 102 , plate 104 is not rigidly connected to spacer 102 in any way so that spacer 102 and plate 104 remain separate, independent components. During insertion via an insertion tool, the spacer 102 and plate 104 can both be coupled to the insertion tool. After insertion to a surgical site, the spacer 102 and plate 104 are decoupled from one another.
  • Insertion tool 106 is used to insert spacer 102 and plate 104 .
  • Insertion tool 106 includes a distal end 170 having a first distal finger 172 and a second distal finger 174 that extends generally parallel to first distal finger 174 .
  • a gap 176 between fingers 172 , 174 forms a generally U-shaped cavity 176 that is sized to accept plate 104 therein, as shown in FIG. 17 .
  • This gap advantageously provides space for a surgeon to use a tool to insert one or more bone screws or anchors into the plate.
  • First distal finger 172 includes a rod 178 having a threaded end 180 that threads into threaded passage 124 in tubular protrusion 122 on spacer 102 , as shown in FIG. 19 .
  • Rod 178 has a proximal end (not shown) that can be rotated by the surgeon to threadingly secure threaded end 180 into threaded passage 124 .
  • Second distal finger 174 includes a prong 182 that extends generally toward first distal finger 172 .
  • Prong 182 is sized to fit into anterior end 128 of slot 126 on spacer 102 .
  • first insertion tool having only first distal finger 172 can be used in conjunction with a second insertion tool having only second distal finger 174 .
  • a method of installing assembly 100 may include providing spacer 102 , plate 104 , and insertion tool 106 as a kit, as shown in FIG. 16 .
  • plate 104 is connected to insertion tool 106 such that distal end 170 of insertion tool 106 extends distally of plate 104 (shown in FIG. 19 ).
  • Plate 104 is connected to insertion tool 106 by attaching plate 104 to each of first finger 172 and second finger 174 .
  • First finger 172 is inserted into slot 142
  • second finger 174 is inserted into second slot 144 .
  • Plate 104 is slid proximally onto each of first finger 172 and second finger 174 , with plate 104 engaging each of first finger 172 and second finger 174 with an interference fit.
  • spacer 102 is attached to distal end 170 of insertion tool 106 by attaching spacer 102 to each of first finger 172 and second finger 174 .
  • first finger 172 is connected to spacer 102 by threading threaded end 180 that threads into threaded passage 124 in tubular protrusion 122 on spacer 102 and inserting prong 182 on second finger 174 into slot 126 on spacer 102 and sliding spacer 102 proximally until prong 182 engages anterior end 128 of slot 126 , thereby frictionally engaging second finger 174 with spacer 102 .
  • spacer 102 is inserted between adjacent vertebrae. Gap 176 is sufficiently large between plate 104 and insertion tool 106 to allow securing devices, such as, for example, screws (not shown) to be inserted through through-holes 160 , 162 , and into inferior vertebra and superior vertebra, respectively, securing plate 104 to the vertebrae.
  • securing devices such as, for example, screws (not shown)
  • insertion tool 106 is removed, leaving spacer 102 and plate 104 , as separate components, in the patient's spinal column. While the plate 104 and spacer 102 are attached to the insertion tool 106 upon delivery to a surgical site, once the insertion tool 106 is removed, the plate 104 and spacer 102 can be viewed as decoupled or independent from one another.
  • assembly 200 An alternative embodiment of an intervertebral spacer and plate assembly 200 (“assembly 200 ”) is shown in FIGS. 20-28 .
  • assembly 200 can be used for lumbar repair, although those skilled in the art will recognize that assembly 200 can be sized for thoracic or cervical repair as well.
  • Assembly 200 is formed from two separate components, an intervertebral spacer 202 (“spacer 202 ”) and a plate 204 (“plate 204 ”).
  • spacer 202 and plate 204 are not connected to each other, but are instead each separately coupled to an insertion tool 206 , as shown in FIGS. 25-28 .
  • body 202 can have a generally oblong shape, with generally arcuate lateral sides 216 , 218 , connected to each other by an anterior portion 220 and a posterior portion 222 .
  • Lateral side 216 includes an indentation 217 while lateral side 218 includes a similar indentation 219 .
  • Indentations 217 , 219 reduce the lateral length of posterior portion 222 relative to the remaining lateral length of spacer 202 .
  • a space 223 bounded by lateral sides 216 , 218 , anterior portion 220 , and posterior portion 222 can optionally be filled with graft material.
  • Posterior portion 222 includes a first chamfered face 224 that extends in an inferior direction posteriorly from superior surface 210 and a second chamfered face 226 (shown in FIG. 23 ) that extends in a superior direction posteriorly from inferior surface 212 .
  • Chamfered faces 224 , 226 allow for securing screws (not shown) to be inserted through plate 204 , along chamfered faces 224 , 226 , respectively, and into adjacent vertebrae (not shown) without engaging spacer 202 .
  • Posterior portion 222 also includes a smooth, anteriorly directed hole 228 proximate to lateral side 216 . Hole 228 is sized to accept a non-threaded portion of insertion tool 206 as will be explained in detail below. Posterior portion 222 also includes a threaded, anteriorly directed hole 229 proximate to lateral side 218 . Hole 229 is sized to accept a threaded portion of insertion tool 206 as will be explained in detail below.
  • plate 204 includes a body 230 having a superior surface 232 and an opposing inferior surface 234 .
  • Each of superior surface 232 and inferior surface 234 can have a plurality of stabilizer elements 236 extending outwardly therefrom.
  • the stabilizer elements 236 can be for torsional stabilization.
  • stabilizer elements 236 are located along fingers 238 , 240 that extend anteriorly from plate 204 . While stabilizer elements 236 are shown as being generally ribbed in shape, those skilled in the art will recognize that stabilizer elements 236 can be other shapes, such as pyramidal, or other suitable shapes. Stabilizer elements 236 are used to bite into a grip each of adjacent vertebrae (not shown) between which spacer 202 is inserted.
  • body 230 can have a generally laterally elongate shape, with generally parallel lateral sides 242 , 244 .
  • Fingers 238 , 240 extend from lateral sides 242 , 244 , respectively.
  • Fingers 238 , 240 are sized to fit into indentations 217 , 219 respectively, while a space between fingers 238 , 340 is sized to allow posterior portion 222 of spacer 202 to be inserted therein.
  • through-holes 260 , 262 extend through body 230 in a posterior-to-anterior direction. Through-holes 260 , 262 are located on plate 204 to align with holes 228 , 229 when plate 204 and spacer 202 are coupled as shown in FIG. 20 .
  • Through-hole 260 can be smooth bored to allow for the passage of the non-threaded portion of insertion tool 206 .
  • Through-hole 262 can be smooth bored or threaded to allow for the insertion of the threaded portion of insertion tool 206 .
  • Additional through-holes 264 , 266 , 268 are provided in plate 204 and are sized to allow a securing screw (not shown) to be inserted therethrough to secure plate 204 to each of a superior vertebra (not shown) and an inferior vertebra (not shown), between which spacer 202 is being inserted.
  • Through-holes 264 , 266 each extends in a superior-to-inferior direction so that their respective screw each engages and secures to the inferior vertebra, while through-hole 268 extends in an inferior-to-superior direction so that its screw engages and secures the superior vertebra.
  • locking screws 270 , 272 , 274 are each is disposed adjacent to a respective through-hole 264 , 266 , 268 .
  • Each locking screw 270 , 272 , 274 has a head 276 , 278 , 280 with an arcuate cutout 282 , 284 , 286 , respectively, that is sized to allow the securing screws discussed above to be inserted into through-holes 264 , 266 , 268 .
  • locking screws 264 , 266 , 268 are in a configuration relative to plate 204 as shown in FIG. 21 .
  • locking screws 270 , 272 , 274 are rotated, for example, about 90 degrees, so that heads 276 , 278 , 280 each extends over its adjacent securing screws, preventing the securing screws from inadvertently backing out.
  • FIGS. 20-24, 27, and 28 show assembly 200 . While plate 204 is butted up against spacer 202 to form a coupled construct, plate 204 is not connected to spacer 202 so that spacer 202 and plate 204 remain separate, independent components that can be implanted together or on their own as part of a fusion procedure.
  • Insertion tool 206 is used to insert spacer 202 and plate 204 .
  • Insertion tool 206 includes a distal end 282 having a first distal finger 284 and a second distal finger 286 that extends generally parallel to first distal finger 282 .
  • First distal finger 282 is a generally smooth bore rod that is sized to pass through through-hole 260 in plate 204 and into hole 228 in spacer 202 .
  • Second distal finger 286 includes a rod 288 having a threaded end 290 that threads into threaded through-hole 262 in plate 204 , as shown in FIG. 25 , as well as into hole 229 in spacer, as shown in FIG. 27 .
  • Rod 288 has a proximal end (not shown) that can be rotated by the surgeon to threadingly secure threaded end 290 into hole 229 .
  • first insertion tool having only first distal finger 282 can be used in conjunction with a second insertion tool having only second distal finger 286 .
  • a method of installing assembly 200 may include providing spacer 202 , plate 204 , and insertion tool 206 as a kit, as shown in FIG. 28 .
  • plate 204 is releasably engaged with spacer 202 in the absence of securing plate 204 to spacer 202 such that plate 204 engages spacer 202 between first finger 238 and second finger 240 , as shown in FIG. 20 .
  • insertion tool 206 is inserted through plate 204 and into spacer 202 .
  • Such insertion is performed by inserting insertion tool 206 through first through-hole 260 and second through-hole 262 and into holes 228 , 230 of spacer 202 .
  • This is accomplished by threading threaded finger 286 of insertion tool 206 into plate 204 and into hole 229 in spacer 202 , as well as inserting unthreaded finger 282 of insertion tool 206 through plate 204 and into hole 228 in spacer 202 .
  • spacer 202 is implanted between adjacent vertebrae. Insertion tool 206 is removed such that spacer 202 is separate from plate 204 .
  • plate 204 is connected to the vertebrae.
  • insertion tool 206 can be releasably secured to only plate 204 . Then, plate 204 can be coupled to spacer 202 , after which time insertion tool 206 is then releasably secured to spacer 202 .
  • plate 204 is not required to secure spacer 202 between adjacent vertebrae; the compression of vertebrae toward each other is sufficient to maintain spacer 202 in place. In such a situation, plate 204 can be omitted. It is desired, however, to incorporate a substitute for plate 204 in order to provide desired spacing between plate 202 and insertion tool 206 .
  • Spacer block 290 has substantially the same anterior-to-posterior width as plate 204 , but without fingers 238 , 240 .
  • Spacer block 290 includes a pair of unthreaded, smooth bore through-holes 292 , 294 that align with holes 228 , 230 of spacer 202 so that fingers 282 , 286 of insertion tool 206 can be inserted therethrough and into hole 228 , 230 of spacer 202 for insertion of spacer 202 between adjacent vertebrae (not shown).
  • assembly 300 An alternative embodiment of an intervertebral spacer and plate assembly 300 (“assembly 300 ”) is shown in FIGS. 31-39 .
  • assembly 300 can be used for lumbar repair, although those skilled in the art will recognize that assembly 300 can be sized for thoracic or cervical repair as well.
  • Assembly 300 is formed from two separate components, an intervertebral spacer 302 (“spacer 302 ”) and a plate 304 (“plate 304 ”).
  • spacer 302 and plate 304 are not connected to each other, but are instead each separately coupled to an insertion tool 306 , as shown in FIGS. 38 and 39 .
  • spacer 302 is similar to spacer 202 , but, instead of a solid posterior portion 222 , posterior portion 322 of spacer 302 includes a gap 325 between two medially directed ends 324 , 326 . Gap 325 allows for spacer 302 to flex after insertion, which may provide enhanced mobility for the patient.
  • spacer 302 includes indentations 317 , 319 that are larger than indentations 217 , 219 on spacer 202 .
  • fingers 338 , 340 on plate 304 are wider than fingers 238 , 240 on plate 204 to accommodate the larger indentations 317 , 319 .
  • spacer 302 , plate 304 , and insertion tool 306 are similar, if not identical, to corresponding aspects of spacer 202 , plate 204 , and insertion tool 206 as discussed above. Those aspects are identified with element numbers corresponding to spacer 202 , plate 204 , and insertion tool 206 with respect to spacer 302 , plate 304 , and insertion tool 306 , respectively.
  • spacer block 390 includes fingers 396 , 398 that are insertable into indentations 317 , 319 .
  • Other aspects of spacer block 390 are similar, if not identical, to corresponding aspects of spacer block 290 as discussed above.
  • plate 304 ′ is similar to plate 304 , with the addition of a superior extension 393 on the posterior end 394 of plate 304 ′.
  • Extension 393 increases the overall height of plate 304 ′ and allows plate 304 ′ to be shouldered onto the vertebral body during insertion.
  • extension 393 can be straight.
  • extension 393 can be angled in a posterior direction.
  • assembly 400 An alternative embodiment of an intervertebral spacer and plate assembly 400 (“assembly 400 ”) is shown in FIGS. 42-50 .
  • assembly 400 can be used for lumbar repair, although those skilled in the art will recognize that assembly 400 can be sized for thoracic or cervical repair as well.
  • Assembly 400 is formed from two separate components, an intervertebral spacer 402 (“spacer 402 ”) and a plate 404 (“plate 404 ”).
  • spacer 402 and plate 404 are not connected to each other, but are instead each separately coupled to an insertion tool 406 , as shown in FIGS. 47 and 48 .
  • the spacer 402 and plate 404 can be decoupled from one another.
  • spacer 402 is similar to spacer 302 , but, instead of holes 260 , 262 for insertion of insertion tool 306 , lateral sides 416 , 418 include a recess 460 , 462 , respectively.
  • Recesses 460 , 462 extend anteriorly from indentations 317 , 319 toward anterior face 456 .
  • Each recess 460 , 462 includes a plurality of superior-to-inferior extending slots 464 .
  • FIGS. 45 and 46 show two slots 464 in each recess 460 , 462 , although those skilled in the art will recognize that more or less than two slots 464 can be provided.
  • fingers 338 , 340 on plate 404 each include a recess 438 , 440 , respectively that extend in an anterior-to-posterior direction along the length of each respective finger 338 , 340 .
  • Each recess 438 , 440 includes a plurality of superior-to-inferior extending slots 464 .
  • FIGS. 45 and 46 show two slots 442 in each recess 438 , 440 , although those skilled in the art will recognize that more or less than two slots 442 can be provided.
  • spacer 402 and plate 404 are similar, if not identical, to corresponding aspects of spacer 302 and plate 304 as discussed above. Those aspects are identified with element numbers corresponding to spacer 302 and plate 304 with respect to spacer 402 and plate 404 , respectively.
  • Insertion tool 406 is shown in FIGS. 47-52 .
  • Insertion tool 406 includes a distal end 470 having a first distal finger 472 and a second distal finger 474 that extends generally parallel to first distal finger 474 .
  • a gap between fingers 472 , 474 forms a generally U-shaped cavity 476 that is sized to accept plate 404 therein, as shown in FIGS. 47 and 48 .
  • First distal finger 472 includes a plurality of protrusions 478 that fit into recess 460 and slots 464 on spacer 402 and recess 438 and slots 442 on plate 404 .
  • second distal finger 474 includes a plurality of protrusions 480 that fit into recess 462 and slots 464 on spacer 402 and recess 440 and slots 442 on plate 404 .
  • a proximal end (not shown) of insertion tool 406 can include a pivot connection such that the opening of insertion tool 406 at the proximal end splays first distal finger 472 away from second distal finger 474 to release spacer 402 and plate 404 so that spacer 402 and plate 404 are separated components.
  • spacer block 490 includes slots 492 that receive protrusions 478 , 480 on insertion tool 406 .
  • Other aspects of spacer block 490 are similar, if not identical, to corresponding aspects of spacer block 390 as discussed above.
  • assembly 500 An alternative embodiment of an intervertebral spacer and plate assembly 500 (“assembly 500 ”) is shown in FIGS. 53-63 .
  • assembly 500 can be used for lumbar repair, although those skilled in the art will recognize that assembly 500 can be sized for thoracic or cervical repair as well.
  • Assembly 500 is formed from two separate components, an intervertebral spacer 502 (“spacer 502 ”) and a plate 504 (“plate 504 ”).
  • spacer 502 and plate 504 are not connected to each other, but are instead each separately coupled to an insertion tool 506 , as shown in FIGS. 58 and 59 .
  • Assembly 500 is similar to assembly 400 except that, instead of having gap 325 between two medially directed ends 324 , 326 , spacer 502 has a posterior portion 525 that extends fully between lateral sides 516 , 518 . Lateral sides 516 , 518 include indentations 517 , 519 that do not extend medially as far as indentations 317 , 319 respectively, formed in spacer 402 , as discussed above.
  • a spacer block 590 includes slots 592 that receive protrusions 478 , 480 on an insertion tool 4506 .
  • assembly 600 An alternative embodiment of an intervertebral spacer and plate assembly 600 (“assembly 600 ”) is shown in FIGS. 64-67 .
  • assembly 600 can be used for lumbar repair, although those skilled in the art will recognize that assembly 600 can be sized for thoracic or cervical repair as well.
  • Assembly 600 is formed from two separate components, an intervertebral spacer 602 (“spacer 602 ”) and a plate 604 (“plate 604 ”).
  • Plate 704 is shown in detail in FIGS. 75-78 .
  • Plate 602 has a body 610 having a generally arcuate shape, with generally parallel lateral sides 612 , 614 .
  • a posterior portion 616 , 618 , respectively, of each lateral side 612 , 614 includes an anterior-to-posterior recess 620 , 622 , respectively.
  • Each recess 620 , 622 includes a laterally projecting protrusion 624 having sloped superior and inferior sides (only one protrusion 624 is shown in FIG. 65 ).
  • Each recess 620 , 622 is in communication with a slot 628 , 630 , respectively that each extends medially.
  • a medial portion 628 , 629 of each lateral side 612 , 614 , respectively, include an oblique cutout 616 , 618 .
  • Plate 604 includes a body 630 having a generally laterally elongate shape, with generally parallel lateral sides 642 , 644 .
  • Fingers 638 , 640 extend from lateral sides 642 , 644 , respectively.
  • Fingers 638 , 640 are sized to fit into recesses 620 , 622 , respectively, in spacer 602 .
  • finger 638 includes a cutout 646 formed therein.
  • finger 640 includes a corresponding cutout.
  • An anterior end of each finger 638 , 640 includes a medially extending prong 648 , 650 that fits into a slot 628 , 630 , respectively.
  • An anterior face 652 of body 630 also includes two spaced apart tangs 654 , 656 .
  • through-holes 664 , 666 , 668 are provided in plate 604 and are sized to allow a securing screw (not shown) to be inserted therethrough to secure plate 604 to each of a superior vertebra (not shown) and an inferior vertebra (not shown), between which spacer 602 is being inserted.
  • Through-holes 664 , 666 each extends in a superior-to-inferior direction so that their respective screw each engages and secures to the inferior vertebra, while through-hole 668 extends in an inferior-to-superior direction so that its screw engages and secures the superior vertebra.
  • Locking screws 670 , 672 are each is disposed between respective through-holes 664 , 666 , 668 .
  • Each locking screw 670 , 672 has a head 676 with a pair of arcuate cutouts 682 , 684 that are sized to allow the securing screws discussed above to be inserted into through-holes 664 , 666 , 668 .
  • locking screws 664 , 666 , 668 are in a configuration relative to plate 604 as shown in FIG. 66 .
  • locking screws 670 , 672 are rotated, for example, about 90 degrees, so that heads 676 , 678 each extends over its adjacent securing screws, preventing the securing screws from inadvertently backing out.
  • the locking screws 670 , 672 (upon rotation) can abut a side of the securing screws to prevent inadvertent backing out.
  • Assembly 600 is fitted together by aligning fingers 638 , 640 and prongs 648 , 650 on plate 604 with recesses 620 , 622 and slots 628 , 630 , respectively, on spacer 602 , which also aligns lateral sides of tangs 654 , 656 with cutout 616 , 618 , respectively.
  • Plate 604 is slid down into spacer 602 , locking fingers 638 , 640 and prongs 648 , 650 into recesses 620 , 622 and slots 628 , 630 , respectively.
  • protrusion 624 slides into cutout 646 .
  • Tangs 654 , 656 engage cutouts 616 , 618 , respectively, stabilizing plate 604 with respect to spacer 602 .
  • Assembly 600 is inserted between adjacent vertebrae as a unit, and, unlike other embodiments of the present invention, remain as a unit after implantation.
  • assembly 700 Another alternative embodiment of an intervertebral spacer and plate assembly 700 (“assembly 700 ”) is shown in FIGS. 68-82 .
  • assembly 700 can be used for cervical repair, although those skilled in the art will recognize that assembly 400 can be sized for thoracic or lumbar repair as well.
  • Assembly 700 is formed from two separate components, an intervertebral spacer 702 (“spacer 702 ”) and a plate 704 (“plate 704 ”).
  • spacer 702 and plate 704 are not connected to each other, but are instead each separately coupled to an insertion tool similar to insertion tool 406 , shown in FIGS. 47 and 48 .
  • spacer 702 is similar to spacer 402 , but, instead of having gap 325 between two medially directed ends 324 , 326 , spacer 702 has a posterior portion 725 that extends fully between lateral sides 716 , 718 .
  • Recesses 760 , 762 extend anteriorly from posterior portion 725 toward anterior face 756 .
  • Each recess 760 , 762 includes a plurality of superior-to-inferior extending slots 764 .
  • FIGS. 73 and 74 show two slots 764 in each recess 760 , 762 , respectively, although those skilled in the art will recognize that more or less than two slots 764 can be provided.
  • Posterior portion 725 includes cutouts 728 , 730 to allow securing screws (not shown) to extend therethrough to secure plate 704 to adjacent vertebrae (not shown).
  • a first cutout 728 is formed in a superior surface 710 and is defined by side walls 732 , 734 and a bottom wall 736 .
  • side walls 732 , 734 and bottom wall 736 extend at oblique angles relative to each other, although those skilled in the art will recognize that side walls 732 , 734 can extend orthogonally to bottom wall 736 .
  • a second cutout 738 is formed in an inferior surface 712 and is defined by side walls 742 , 744 and a top wall 746 .
  • side walls 742 , 744 and top wall 746 extend at oblique angles relative to each other, although those skilled in the art will recognize that side walls 742 , 744 can extend orthogonally to top wall 746 .
  • Plate 704 is shown in detail in FIGS. 75-78 .
  • Plate 704 has a body 750 having a generally arcuate shape, with generally parallel lateral sides 752 , 754 .
  • Each lateral side 752 , 754 includes an anterior-to-posterior recess 776 , 778 , respectively.
  • Each recess 776 , 778 is in communication with a slot 760 , 762 in spacer 702 .
  • Plate 704 also includes through-openings 782 , 784 for securing screws (not shown) that are used to secure plate 704 to adjacent vertebrae (not shown).
  • a locking screw 786 can be rotated, for example, about 90 degrees after the securing screws have been inserted to keep the securing screws from backing out after insertion.
  • recess 776 is aligned with recess 760 and recess 778 is aligned with recess 762 so that an insertion tool, similar to insertion tool 406 , can extend through plate 704 and grip spacer 702 for insertion.
  • the insertion procedure for assembly 700 can be similar to that as is described above for assembly 400 .
  • insertion tool 406 having protrusions that engage plate 704
  • protrusions can be omitted and assembly 700 can rely on friction between plate 704 and insertion tool 406 , as well as between implant 702 and insertion tool 406 .
  • assembly 800 An alternative embodiment of an intervertebral spacer and plate assembly 800 (“assembly 800 ”) is shown in FIGS. 83-98 .
  • assembly 800 can be used for cervical repair, although those skilled in the art will recognize that assembly 800 can be sized for thoracic or lumbar repair as well.
  • Assembly 800 is formed from two separate components, an intervertebral spacer 802 (“spacer 802 ”) and a plate 804 (“plate 804 ”).
  • spacer 802 and plate 804 are not connected to each other, but instead merely engage each other.
  • spacer 802 includes a body 808 having a superior surface 810 and an opposing inferior surface 812 .
  • Each of superior surface 810 and inferior surface 812 can have a plurality of fixation elements 814 extending outwardly therefrom. While fixation elements 814 are shown as being generally pyramidal in shape, those skilled in the art will recognize that fixation elements 814 can be other shapes, such as ribbed, or other suitable shapes. Fixation elements 814 are used to bite into a grip each of adjacent vertebrae (not shown) between which spacer 802 is inserted.
  • body 802 can have a generally oblong shape, with generally linear lateral sides 816 , 818 , connected to each other by an anterior portion 820 and a posterior portion 822 , with a generally isosceles trapezoid interior space 823 defined therebetween that can optionally be filled with graft material.
  • Posterior portion 822 includes an arcuate face 824 that extends between lateral sides 816 , 818 .
  • a rounded protrusion 826 extends posteriorly from posterior portion 822 .
  • a pair of insertion tool engagement holes 828 , 829 are each located on opposing sides of protrusion 826 .
  • Holes 828 , 829 can be threaded or unthreaded, and can be through-holes or blind holes. Holes 828 , 829 are sized to accept arms of an insertion tool (not shown) for insertion of assembly 800 .
  • plate 804 includes a body 830 having an anterior surface 832 and an opposing posterior surface 834 .
  • plate 804 can have a generally “X” shape, with left and right superior arms 836 , 838 , respectively, and left and right inferior arms 840 , 842 , respectively.
  • Superior arms 836 , 838 include through-openings 844 , 846 that are angled in a superior direction to allow screws (not shown) to be inserted therethrough to secure plate 804 to a superior vertebra (not shown).
  • inferior arms 840 , 842 include through-openings 848 , 850 that are angled in an inferior direction to allow securing screws (not shown) to be inserted therethrough to secure plate 804 to an inferior vertebra (not shown).
  • locking screws 852 , 854 , 856 , 858 are each disposed adjacent to a respective through-opening 844 , 846 , 848 , 850 .
  • Each locking screw 852 , 854 , 856 , 858 has a head 860 with an arcuate cutout 862 , respectively, that is sized to allow the securing screws discussed above to be inserted into through-openings 844 , 846 , 848 , 850 .
  • locking screws 852 , 854 , 856 , 858 are in a configuration relative to plate 804 as shown in FIG. 95 .
  • locking screws 852 , 854 , 856 , 858 are rotated, for example, about 90 degrees, so that heads 860 each extends over its adjacent securing screws, preventing the securing screws from inadvertently backing out.
  • Plate 804 also includes a centrally located posterior recess 870 .
  • recess 870 can be generally oblong in shape, although those skilled in the art will recognize that recess 870 can be other shapes.
  • Recess 870 accepts a prong on an insertion device (not shown) for insertion of assembly 800 .
  • anterior surface 8732 of plate 804 includes a centrally located concave recess 874 that accepts protrusion 826 , as shown in FIG. 98 .
  • Protrusion 826 rides within recess 874 , forming an articulating joint that allows plate 804 to pivot relative to body 802 , providing some flexibility for the patient after assembly 800 is implanted.
  • FIGS. 83 and 95-98 show assembly 800 . While plate 804 is butted up against spacer 802 to form a coupled construct, plate 804 is not rigidly connected to spacer 802 so that spacer 802 and plate 804 remain separate, independent components throughout insertion and after insertion into the patient.
  • assembly 900 An alternative embodiment of an intervertebral spacer and plate assembly 900 (“assembly 900 ”) is shown in FIGS. 99-113 .
  • assembly 900 can be used for cervical repair, although those skilled in the art will recognize that assembly 900 can be sized for thoracic or lumbar repair as well.
  • Assembly 900 is formed from two separate components, an intervertebral spacer 902 and a plate 904 . Spacer 902 and plate 904 are never connected to each other, but instead merely engage each other.
  • spacer 902 includes a body 908 having a superior surface 910 and an opposing inferior surface 912 .
  • Each of superior surface 910 and inferior surface 912 can have a plurality of fixation elements 914 extending outwardly therefrom. While fixation elements 914 are shown as being generally pyramidal in shape, those skilled in the art will recognize that fixation elements 914 can be other shapes, such as ribbed, or other suitable shapes. Fixation elements 914 are used to bite into a grip each of adjacent vertebrae (not shown) between which spacer 902 is inserted.
  • body 902 can have a generally oblong shape, with generally linear lateral sides 916 , 918 , connected to each other by an anterior portion 920 and a posterior portion 922 , with a generally isosceles trapezoid interior space 923 defined therebetween that can optionally be filled with graft material.
  • Posterior portion 922 includes an arcuate face 924 that extends between lateral sides 916 , 918 .
  • a generally centrally located insertion tool engagement hole 928 extends through posterior portion 922 .
  • Hole 928 can be threaded, as shown in FIG. 100 , or unthreaded.
  • Hole 928 is sized to an insertion tool (not shown) for insertion of assembly 900 .
  • a pair of plate engagement slots 931 , 932 are each located on opposing sides of hole 928 .
  • Slots 931 , 932 are blind holes and are generally rectangular in shape, with rounded corners. Slots 931 , 932 are sized to accept posterior protrusions from plate 904 , as is discussed below.
  • plate 904 includes a body 930 having an anterior surface 933 and an opposing posterior surface 934 .
  • plate 940 can have a generally “rhomboid” shape, with a right superior arm 936 and a left inferior arm 940 .
  • Superior arm 936 includes a through-opening 944 that is angled in a superior direction to allow a screw (not shown) to be inserted therethrough to secure plate 904 to a superior vertebra (not shown).
  • inferior arm 940 includes a through-opening 948 that is angled in an inferior direction to allow a securing screw (not shown) to be inserted therethrough to secure plate 904 to an inferior vertebra (not shown).
  • locking screws 952 , 954 are each disposed adjacent to a respective through-opening 944 , 948 .
  • Each locking screw 952 , 954 has a head 960 with an arcuate cutout 962 , respectively, that is sized to allow the securing screws discussed above to be inserted into through-openings 944 , 948 .
  • locking screws 952 , 954 are in a configuration relative to plate 904 as shown in FIG. 108 .
  • locking screws 952 , 954 are rotated, for example, about 90 degrees, so that heads 960 each extends over its adjacent securing screws, preventing the securing screws from inadvertently backing out.
  • Plate 904 also includes a centrally located through-opening 970 .
  • through-opening 970 can be generally circular in shape, although those skilled in the art will recognize that through-opening 970 can be other shapes.
  • Through-opening 970 is unthreaded and allows an insertion device (not shown) to pass therethrough for engagement with hole 928 in spacer 902 for insertion of assembly 900 .
  • a posterior surface 972 of plate 904 includes a pair of diametrically opposed slots 974 , 976 that extend at an oblique angle away from through-opening 970 .
  • Slots 974 , 976 accept a prong of an insertion instrument (not shown) during implantation of assembly 900 , allowing the insertion instrument to be placed into slots 974 , 976 so that plate 904 is held rigidly on the insertion instrument without being able to rotate.
  • an anterior surface 980 of plate 904 includes a pair of diametrically opposed protrusions 982 , 984 that are sized and located to fit into plate engagement slots 931 , 932 .
  • a posterior end of locking screws 952 , 954 also extends outwardly from plate engagement slots 931 , 932 as well.
  • FIGS. 99 and 110-113 show assembly 900 . While plate 904 is butted up against spacer 902 to form a coupled construct, plate 904 is not connected to spacer 902 so that spacer 902 and plate 904 remain separate components throughout insertion and after insertion into the patient.
  • FIGS. 114-116 show an alternative plate 1004 that can be used with spacer 902 to form an assembly 1000 .
  • Plate 1004 has a generally rectangular shape with a centrally located through-opening 1070 .
  • through-opening 1070 can be generally circular in shape, although those skilled in the art will recognize that through-opening 1070 can be other shapes.
  • Through-opening 1070 is unthreaded and allows an insertion device (not shown) to pass therethrough for engagement with hole 928 in spacer 902 for insertion of assembly 1000 .
  • Plate 1004 has left and right superior through-openings 1044 , 1046 that are angled in a superior direction to allow screws (not shown) to be inserted therethrough to secure plate 1004 to a superior vertebra (not shown).
  • plate 1004 has left and right inferior through-openings 1048 , 1050 that are angled in an inferior direction to allow securing screws (not shown) to be inserted therethrough to secure plate 1004 to an inferior vertebra (not shown).
  • Locking screws 1052 , 1054 , 1056 , 1058 are each disposed adjacent to a respective through-opening 1044 , 1046 , 1048 , 1050 .
  • Each locking screw 1052 , 1054 , 1056 , 1058 has a head 1060 with an arcuate cutout 1062 , respectively, that is sized to allow the securing screws discussed above to be inserted into through-openings 1044 , 1046 , 1048 , 1050 .
  • locking screws 1052 , 1054 , 1056 , 1058 are in a configuration relative to plate 1004 as shown in FIG. 114 .
  • a posterior surface 1072 of plate 1004 also includes a pair of superior and inferior slots 1074 , 1076 on opposing sides of through-opening 1070 .
  • Slots 1074 , 1076 accept a prong of an insertion instrument (not shown) during implantation of assembly 1000 , allowing the insertion instrument to be placed into slots 1074 , 1076 so that plate 1004 is held rigidly on the insertion instrument without being able to rotate.
  • Assembly 1100 includes a spacer 1102 and a plate 1104 .
  • Plate 1102 has a body 1108 that includes a posterior surface 1110 .
  • Posterior surface 1110 includes a central through-opening 1112 that is sized to accept an insertion instrument 1106 .
  • Through-opening 1112 is threaded to match threads 1114 on a distal end 1116 of insertion instrument 1106 .
  • Posterior surface 1110 also includes a pair of concave recesses 1120 , 1122 , one on either side of through-opening 1112 .
  • Plate 1104 has a body 1130 that includes an anterior surface 1132 for mating with posterior surface 1110 of spacer 1102 .
  • Body 1130 includes a through-opening 1134 that extends posteriorly-to-anteriorly through the center of body 1130 .
  • Through-opening 1134 has a larger diameter than through-opening 1112 in spacer 1102 to allow distal end 1116 of insertion instrument 1106 to pass therethrough.
  • Anterior surface 1132 of body 1130 also includes a pair of convex protrusions 1140 , 1142 , one on either side of through-opening 1134 that extend into recesses 1120 , 1122 , respectively, when plate 1104 is butted against spacer 1102 , forming a solid construct.
  • Assembly 1200 includes a spacer 1202 and a plate 1204 .
  • Plate 1202 has a body 1208 that includes a posterior surface 1210 .
  • Posterior surface 1210 includes a central recess 1212 .
  • Posterior surface 1210 also includes a pair of threaded recesses 1220 , 1222 , one on either side of central recess 1212 .
  • Plate 1204 includes a body 1230 having an anterior surface 1232 .
  • a protrusion 1234 extends anteriorly from anterior surface 1232 and is sized to fit into central recess 1212 .
  • Body 1230 also includes a pair of lateral through-holes 1236 , 1238 that extend through body 1230 and align with threaded recesses 1220 , 1222 when protrusion 1234 is inserted into central recess 1212 .
  • an insertion instrument (not shown) having two prongs is inserted through through-holes 1236 , 1238 in plate 1104 and threaded into threaded recesses 1220 , 1222 in plate 1200 .
  • Assembly 1200 is inserted into plate 1204 is secured to a patient, then the insertion tool is unthreaded from threaded recesses 1220 , 1222 and removed from assembly 1200 .
  • Assembly 1300 includes a spacer 1302 and a plate 1304 .
  • Spacer 1302 includes a body 1308 having a central void 1309 formed therein.
  • a posterior side 1310 of spacer 1302 includes a pair of through-passages 1312 , 1314 into void 1309 .
  • Plate 1304 includes a pair of fingers 1320 , 1322 , each of which extends into one of through-passages 1312 , 1314 and into void 1309 .
  • fingers 1320 , 1322 splay open, temporarily securing plate 1304 to spacer 1302 for insertion.
  • fingers “un-splay” so that plate 1304 is no longer secured to spacer 1302 and spacer 1302 and plate 1304 are two separate entities.
  • Assembly 1300 includes a spacer 1302 and a plate 1304 .
  • Spacer 1302 includes a body 1308 having a central void 1309 formed therein.
  • a posterior side 1310 of spacer 1302 includes a pair of through-passages 1312 , 1314 into void 1309 .
  • Plate 1304 includes a pair of fingers 1320 , 1322 , each of which extends into one of through-passages 1312 , 1314 and into void 1309 .
  • fingers 1320 , 1322 splay open, temporarily securing plate 1304 to spacer 1302 for insertion.
  • fingers “un-splay” so that plate 1304 is no longer secured to spacer 1302 and spacer 1302 and plate 1304 are two separate entities.
  • Assembly 1400 includes a spacer 1402 and a plate 1404 .
  • Spacer 1402 includes a body 1408 .
  • a posterior side 1410 of spacer 1302 includes a pair of blind passages 1412 , 1414 extending into body 1408 .
  • Each of blind passages 1412 , 1414 widens to a receiving portion 1416 , 1418 , respectively, in a posterior-to-anterior direction.
  • Plate 1404 includes a pair of through-passages 1420 , 1422 extending parallel to each other in a posterior-to-anterior direction such that, when plate 1404 is aligned with spacer 1402 , passage 1420 aligns with passage 1412 and passage 1422 aligns with passage 1414 .
  • An insertion device 1406 includes two parallel hollow prongs 1430 , 1432 .
  • Each prong 1430 , 1432 is split posteriorly into two half portions 1430 a , 1430 b and 1432 a , 1432 b , each portion 1430 a , 1430 b , 1432 a , 1432 b having a lip.
  • prongs 1430 , 1432 of insertion device 1406 are inserted through through-passages 1420 , 1422 and into blind passages 1412 , 1414 , respectively, and rods (not shown) are inserted through prongs 1430 , 1432 , prong half portions 1430 a , 1430 b and 1432 a , 1432 b splay apart so that the lips on prongs 1430 , 1432 splay open and are retained within receiving portions 1416 , 1418 , respectively, temporarily securing plate 1404 to spacer 1402 for insertion.
  • fingers “un-splay” so that plate 1404 is no longer secured to spacer 1402 and spacer 1402 and plate 1404 are two separate entities.
  • Assembly 1500 includes a spacer 1502 and a plate 1504 .
  • Spacer 1502 includes a body 1508 having a central void 1509 formed therein.
  • a posterior side 1510 of spacer 1502 includes a pair of through-passages 1512 , 1514 into void 1509 .
  • Plate 1504 includes parallel through-passages 1516 , 1518 extending parallel to each other in a posterior-to-anterior direction such that, when plate 1504 is aligned with spacer 1502 , passage 1516 aligns with passage 1412 and passage 14221518 aligns with passage 1514 .
  • Insertion device 1506 includes a pair of fingers 1520 , 1522 , each of which extends through one of through-passages 1516 , 1518 and one of through-passages 1512 , 1514 and into void 1509 .
  • Each finger 1520 , 1522 includes a laterally extending lip 1524 , 1526 , respectively.
  • fingers 1520 , 1522 When two prongs of an insertion device (not shown) are inserted into through-passages 1516 , 1518 and 1512 , 1514 , with the prongs on medial sides of each of fingers 1520 , 1522 , fingers 1520 , 1522 are biased laterally so that lips 1524 , 1526 engage the posterior wall of void 1509 , temporarily securing plate 1504 to spacer 1502 for insertion.
  • fingers 1520 , 1522 bias back toward each other so that plate 1504 is no longer secured to spacer 1502 and spacer 1502 and plate 1504 are two separate entities.
  • Assembly 1600 includes a spacer 1602 and a plate 1604 .
  • Spacer 1602 includes a body 1608 .
  • a posterior side 1610 of spacer 1602 includes a blind slot 1612 extending into body 1608 .
  • Slot 1612 includes lateral sidewalls 1614 , 1616 .
  • Plate 1604 includes a tab 1620 sized to fit into slot 1612 with lateral space on either side of tab 1620 to accommodate fingers 1622 , 1624 .
  • Biased fingers 1622 , 1624 are pivotally connected to spacer 1604 with anterior ends 1626 , 1628 having a plurality of laterally extending fingers 1630 .
  • Posterior ends 1632 , 1634 of fingers 1622 , 1624 are engageable by an insertion device (not shown)
  • fingers 1622 , 1624 are against lateral sidewalls 1614 , 1616 of slot 1612 so that plate 1604 is engaged with spacer 1602 .
  • Fingers 1630 compress toward their respective fingers 1622 , 1624 , wedging spacer 1604 into spacer 1602 .
  • the insertion device is removed, allowing fingers 1622 , 1624 to bias away from sidewalls 1614 , 1616 , respectively, releasing spacer 1602 from plate 1604 .
  • Assembly 1700 includes a spacer 1702 and a plate 1704 .
  • Spacer 1702 includes a body 1708 having a central void 1709 formed therein.
  • a superior surface 1710 of spacer 1702 includes a central slot 1712 extending along a posterior surface 1714 to void 1709 .
  • an inferior surface 1720 includes a corresponding slot 1722 .
  • plate 1704 includes a slot 1730 extending along a top surface 1732 thereof and a slot 1734 extending along a bottom surface 1736 thereof.
  • Plate 1704 includes a pair of screw opening 1740 , 1742 and a centrally located blocking screw 1744 .
  • An alternative embodiment of a plate 1704 ′, shown in FIG. 124 uses multiple blocking screws 1740 ′, 1744 ′, each for an individual screw opening 1740 ′, 1742 ′, with locking screws 1744 ′, 1746 ′ disposed laterally away from a center of plate 1740 ′ to allow plate 1740 ′ to be thinner than plate 1740 and still be able to secure screws (not shown) in screw openings 1740 ′, 1742 ′.
  • FIG. 125 shows in insertion device 1706 gripping both spacer 1702 and either plate 1704 or plate 1704 ′.
  • Insertion device 1706 extends through slots 1730 , 1712 and slots 1734 , 1722 , securing spacer 1702 and plate 1704 , 1704 ′ to securing device 1706 .
  • insertion device 1704 is slid posteriorly, decupling spacer 1702 and plate 1704 , 1704 ′.
  • Assembly 1800 includes a spacer 1802 and a plate 1804 .
  • Spacer 1802 includes a body 1810 having a posterior portion 1812 .
  • Posterior portion 1812 includes a space 1814 that is sized to receive plate 1804 .
  • Plate 1804 can be inserted into space 1814 from a posterior direction or from a superior direction.
  • Spacer 1802 can include connections for an insertion device (not shown) similar to that disclosed with respect to spacer 102 , described above. Assembly 1800 can be inserted as a unit and then, after insertion, the insertion device is removed and spacer 1802 and plate 1804 remain as separate components in the patient's spinal column.
  • Assembly 1900 includes a spacer 1902 and a plate 1904 or plate 1904 ′.
  • Spacer 1902 includes a body 1910 having a posterior portion 1912 .
  • Posterior portion 1912 includes a threaded opening 1914 that is sized to receive an insertion tool (not shown).
  • Each of plates 1904 , 1904 ′ include a threaded connection 1920 , 1920 ′ extending therethrough. Threaded connections 1920 , 1920 ′ accept a threaded insertion device (not shown) that extends though plate 1904 , 1904 ′ and into threaded opening 1914 in plate 1902 .
  • the threaded connection between the insertion device and spacer 1902 and plate 1904 , 1904 ′ can be loose to provide for articulation during insertion, similar to the movement of a joystick.
  • spacers 102 - 1902 described above can be constructed from biocompatible material, such a, for example, bone, PEEK, titanium, with or without surface treatments, and with varying porosity.
  • any of the plates and spacers described above can be accompanied by other surgical implants, including rods and screws.
  • One of skill in the art will appreciate that any of the plates and spacers can be used on multiple levels of the spine.

Abstract

Intervertebral spacer assemblies, systems, and methods thereof. A method of insertion includes inserting an intervertebral spacer and plate together using an insertion tool and, upon removal of the insertion tool, the intervertebral spacer and plate are no longer considered connected/coupled and act as separate components.

Description

    REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of U.S. application Ser. No. 16/458,467, filed Jul. 1, 2019, which is a continuation of U.S. application Ser. No. 15/479,438, filed Apr. 5, 2017 (published as U.S. Pat. Pub. No. 2018-0289495), all of which are hereby incorporated by reference in their entirety.
  • BACKGROUND Field of the Invention
  • The present invention relates to bone fixation, and more specifically, to a method of installing an intervertebral spacer and plate.
  • Description of the Related Art
  • Various types of spacers can be used in spinal fusion procedures. A standalone spacer is one in which a spacer is attached to a plate. The plate is configured to receive one or more screws that secure the standalone spacer to one or more adjacent vertebrae. The combined spacer/plate structure is typically rigid, thereby reducing the flexibility of the patient at the implant site.
  • There exists a need for intervertebral spacer and plate assemblies that are inserted as a unit with an insertion tool, but are decoupled from each other when the insertion tool is removed. Further, methods of inserting the assemblies are also needed.
  • SUMMARY
  • This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
  • According to one embodiment, a method of installing an intervertebral spacer and plate assembly may include coupling an intervertebral spacer and plate to an insertion tool; delivering the coupled spacer and plate to a surgical site via the insertion tool, wherein the spacer and/or plate are received in an intervertebral disc space; inserting one or more bone screws into the plate to secure the plate to one or more adjacent vertebrae; and removing the insertion tool, such that the spacer is decoupled from the plate at the surgical site.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other aspects, features, and advantages of the present invention will become more fully apparent from the following detailed description, the appended claims, and the accompanying drawings in which like reference numerals identify similar or identical elements.
  • FIG. 1 is a perspective view of a spacer and plate assembly according to a first exemplary embodiment;
  • FIG. 2 is a perspective view of the spacer shown in FIG. 1;
  • FIG. 3 is a top plan view of the spacer shown in FIG. 2;
  • FIG. 4 is a posterior elevational view of the spacer shown in FIG. 2;
  • FIG. 5 is a left lateral side elevational view of the spacer shown in FIG. 2;
  • FIG. 6 is a right lateral side elevational view of the spacer shown in FIG. 2;
  • FIG. 7 is a perspective view of the plate shown in FIG. 1;
  • FIG. 8 is a posterior elevational view of the plate shown in FIG. 7;
  • FIG. 9 is a top plan view of the plate shown in FIG. 7;
  • FIG. 10 is a left lateral side elevational view of the plate shown in FIG. 7;
  • FIG. 11 is a right lateral side elevational view of the plate shown in FIG. 7,
  • FIG. 12 is a top plan view of the assembly shown in FIG. 1;
  • FIG. 13 is a posterior elevational view of the assembly shown in FIG. 1;
  • FIG. 14 is a right lateral side elevational view of the assembly shown in FIG. 1;
  • FIG. 15 is a left lateral side elevational view of the spacer shown in FIG. 1,
  • FIG. 16 is a perspective view of the assembly components shown in FIG. 1 and an insertion tool for inserting the assembly;
  • FIG. 17 is a perspective view showing the plate of FIG. 7 having been inserted onto the insertion tool;
  • FIG. 18 is a perspective view showing the spacer and plate assembly of FIG. 1 having been inserted onto the insertion tool;
  • FIG. 19 is a top plan view, in section, of the plate and spacer of the assembly shown in FIG. 1 having been inserted onto the insertion tool;
  • FIG. 20 is a top plan view of a spacer and plate assembly according to a second exemplary embodiment;
  • FIG. 21 is a posterior elevational view of the assembly shown in FIG. 20;
  • FIG. 22 is a left lateral side elevational view of the assembly shown in FIG. 20;
  • FIG. 23 is an exploded posterior perspective view of the assembly shown in FIG. 20;
  • FIG. 24 is an exploded anterior perspective view of the assembly shown in FIG. 20;
  • FIG. 25 is a top plan view, in section, of the plate of FIG. 20 and an insertion tool for inserting the plate;
  • FIG. 26 is a perspective view of the plate and insertion tool of FIG. 25;
  • FIG. 27 is a top plan view, in section, of the assembly of FIG. 20 and the insertion tool for inserting the assembly;
  • FIG. 28 is a perspective view of the assembly and insertion tool of FIG. 27;
  • FIG. 29 is a top plan view, in section, of a spacer block and the spacer and insertion tool of FIG. 27;
  • FIG. 30 is a perspective view of the spacer block, spacer, and insertion tool of FIG. 29;
  • FIG. 31 is a top plan view of a spacer and plate assembly according to a third exemplary embodiment;
  • FIG. 32 is a posterior elevational view of the assembly shown in FIG. 31;
  • FIG. 33 is a left lateral side elevational view of the assembly shown in FIG. 31;
  • FIG. 34 is an exploded anterior perspective view of the assembly shown in FIG. 20;
  • FIG. 35 is an exploded posterior perspective view of the assembly shown in FIG. 20;
  • FIG. 36 is a top plan view, in section, of the plate of FIG. 31 and an insertion tool for inserting the assembly of FIG. 31;
  • FIG. 37 is a perspective view of the plate and insertion tool of FIG. 36;
  • FIG. 38 is a top plan view, in section, of the assembly of FIG. 31 and the insertion tool for inserting the assembly;
  • FIG. 39 is a perspective view of the assembly and insertion tool of FIG. 38;
  • FIG. 40 is a top plan view, in section, of a spacer block and the spacer and insertion tool of FIG. 38;
  • FIG. 41 is a perspective view of the spacer block, spacer, and insertion tool of FIG. 40;
  • FIG. 41A is an anterior perspective view of an alternative plate for use with the spacer shown in FIG. 20;
  • FIG. 41B is a left perspective view of the plate shown in FIG. 41A;
  • FIG. 41C is a left side elevational view of the plate shown in FIG. 41A;
  • FIG. 41D is an anterior side elevational view of the plate shown in FIG. 41A;
  • FIG. 42 is a top plan view of a spacer and plate assembly according to a fourth exemplary embodiment;
  • FIG. 43 is a posterior elevational view of the assembly shown in FIG. 42;
  • FIG. 44 is a left lateral side elevational view of the assembly shown in FIG. 42;
  • FIG. 45 is an exploded anterior perspective view of the assembly shown in FIG. 42;
  • FIG. 46 is an exploded posterior perspective view of the assembly shown in FIG. 42;
  • FIG. 47 is a top plan view, in section, of the plate of FIG. 42 and an insertion tool for inserting the assembly of FIG. 42;
  • FIG. 48 is a perspective view of the plate and insertion tool of FIG. 47;
  • FIG. 49 is a top plan view, in section, of the assembly of FIG. 42 and the insertion tool for inserting the assembly;
  • FIG. 50 is a perspective view of the assembly and insertion tool of FIG. 49;
  • FIG. 51 is a top plan view, in section, of a spacer block and the spacer and insertion tool of FIG. 49;
  • FIG. 52 is a perspective view of the spacer block, spacer, and insertion tool of FIG. 51;
  • FIG. 53 is a top plan view of a spacer and plate assembly according to a fifth exemplary embodiment;
  • FIG. 54 is a posterior elevational view of the assembly shown in FIG. 53;
  • FIG. 55 is a left lateral side elevational view of the assembly shown in FIG. 53;
  • FIG. 56 is an exploded anterior perspective view of the assembly shown in FIG. 53;
  • FIG. 57 is an exploded posterior perspective view of the assembly shown in FIG. 53;
  • FIG. 58 is a top plan view, in section, of the assembly of FIG. 53 attached to an insertion tool for inserting the assembly of FIG. 53;
  • FIG. 59 is a perspective view of the assembly and insertion tool of FIG. 58;
  • FIG. 60 is a top plan view, in section, of the plate of FIG. 53 and the insertion tool for inserting the plate;
  • FIG. 61 is a perspective view of the plate and insertion tool of FIG. 60;
  • FIG. 62 is a top plan view, in section, of a spacer block and the spacer and insertion tool of FIG. 59;
  • FIG. 63 is a perspective view of the spacer block, spacer, and insertion tool of FIG. 62;
  • FIG. 64 is a top plan view of a spacer and plate assembly according to a sixth exemplary embodiment;
  • FIG. 65 is a left lateral side elevational view of the assembly shown in FIG. 64;
  • FIG. 66 is a posterior elevational view of the assembly shown in FIG. 64;
  • FIG. 67 is an exploded anterior perspective view of the assembly shown in FIG. 64;
  • FIG. 68 is a perspective view of a spacer and plate assembly according to a seventh exemplary embodiment;
  • FIG. 69 is a perspective view of a spacer used with the assembly shown in FIG. 68;
  • FIG. 70 is a perspective view of a plate used with the assembly shown in FIG. 68;
  • FIG. 71 is a top plan view of the spacer shown in FIG. 69;
  • FIG. 72 is an anterior elevational view of the spacer shown in FIG. 69;
  • FIG. 73 is a right side elevational view of the spacer shown in FIG. 69;
  • FIG. 74 is a left side elevational view of the spacer shown in FIG. 69;
  • FIG. 75 is an anterior elevational view of the plate shown in FIG. 70;
  • FIG. 76 is a top plan view of the plate shown in FIG. 70;
  • FIG. 77 is a right side elevational view of the plate shown in FIG. 70;
  • FIG. 78 is a left side elevational view of the spacer shown in FIG. 70;
  • FIG. 79 is a top plan view of the assembly shown in FIG. 68;
  • FIG. 80 is an anterior elevational view of the assembly shown in FIG. 68;
  • FIG. 81 is a right side elevational view of the assembly shown in FIG. 68;
  • FIG. 82 is a left side elevational view of the assembly shown in FIG. 68;
  • FIG. 83 is a perspective view of a spacer and plate assembly according to an eighth exemplary embodiment;
  • FIG. 84 is a perspective view of a spacer used with the assembly shown in FIG. 83;
  • FIG. 85 is a perspective view of a plate used with the assembly shown in FIG. 83;
  • FIG. 86 is a top plan view of the spacer shown in FIG. 84;
  • FIG. 87 is an anterior elevational view of the spacer shown in FIG. 84;
  • FIG. 88 is a right side elevational view of the spacer shown in FIG. 84;
  • FIG. 89 is a left side elevational view of the spacer shown in FIG. 84;
  • FIG. 90 is an anterior elevational view of the plate shown in FIG. 85;
  • FIG. 91 is a posterior elevational view of the plate shown in FIG. 85;
  • FIG. 92 is a right side elevational view of the plate shown in FIG. 85;
  • FIG. 93 is a top plan view of the spacer shown in FIG. 85;
  • FIG. 94 is a top plan view of the assembly shown in FIG. 83;
  • FIG. 95 is an anterior elevational view of the assembly shown in FIG. 83;
  • FIG. 96 is a right side elevational view of the assembly shown in FIG. 83;
  • FIG. 97 is a left side elevational view of the assembly shown in FIG. 83;
  • FIG. 98 is a side elevational view, in section, of the assembly shown in FIG. 94, taken along lines 98-98 of FIG. 94;
  • FIG. 99 is a perspective view of a spacer and plate assembly according to a ninth exemplary embodiment;
  • FIG. 100 is a perspective view of a spacer used with the assembly shown in FIG. 99;
  • FIG. 101 is a perspective view of a plate used with the assembly shown in FIG. 99;
  • FIG. 102 is a perspective view of the spacer shown in FIG. 100;
  • FIG. 103 is top plan view of the spacer shown in FIG. 100;
  • FIG. 104 is an anterior elevational view of the spacer shown in FIG. 100;
  • FIG. 105 is a posterior elevational view of the spacer shown in FIG. 100;
  • FIG. 106 is top plan view of the plate shown in FIG. 101;
  • FIG. 107 is a perspective view of the plate shown in FIG. 101;
  • FIG. 108 is an anterior elevational view of the plate shown in FIG. 101;
  • FIG. 109 is a posterior elevational view of the spacer shown in FIG. 101;
  • FIG. 110 is a top plan view of the assembly shown in FIG. 99;
  • FIG. 111 is an anterior elevational view of the assembly shown in FIG. 99;
  • FIG. 112 is a right side elevational view of the assembly shown in FIG. 99;
  • FIG. 113 is a left side elevational view of the assembly shown in FIG. 99;
  • FIG. 114 is an anterior elevational view of a spacer and plate assembly according to a tenth exemplary embodiment;
  • FIG. 115 is a top plan view of the assembly shown in FIG. 114;
  • FIG. 116 is a right side elevational view of the assembly shown in FIG. 114;
  • FIG. 117 is a top plan view of a spacer and plate assembly according to an eleventh exemplary embodiment;
  • FIG. 118 is a top plan view of a spacer and plate assembly according to a twelfth exemplary embodiment;
  • FIG. 119 is a top plan view of a spacer and plate assembly according to a thirteenth exemplary embodiment;
  • FIG. 120 is a top plan view of a spacer and plate assembly according to a fourteenth exemplary embodiment;
  • FIG. 121 is a top plan view of a spacer and plate assembly according to a fifteenth exemplary embodiment;
  • FIG. 122 is a top plan view of a spacer and plate assembly according to a sixteenth exemplary embodiment;
  • FIG. 123 is posterior side elevation view of a spacer according to a seventeenth exemplary embodiment;
  • FIG. 124 is an anterior side elevation view of the spacer shown in FIG. 123;
  • FIG. 125 is a top plan view of the spacer shown in FIG. 123, with a plate and insertion device;
  • FIG. 126 is a top plan view of a spacer and plate assembly according to an eighteenth exemplary embodiment;
  • FIG. 127 is a posterior side elevation view of the assembly shown in FIG. 126;
  • FIG. 128 is a top plan view of a spacer and plate assembly according to a nineteenth exemplary embodiment;
  • FIG. 129 is a posterior side elevation view of the plate shown in FIG. 128; and
  • FIG. 130 is a posterior side elevation view of the spacer shown in FIG. 128.
  • DETAILED DESCRIPTION
  • In the drawings, like numerals indicate like elements throughout. Certain terminology is used herein for convenience only and is not to be taken as a limitation on the present invention. The terminology includes the words specifically mentioned, derivatives thereof and words of similar import. The embodiments illustrated below are not intended to be exhaustive or to limit the invention to the precise form disclosed. These embodiments are chosen and described to best explain the principle of the invention and its application and practical use and to enable others skilled in the art to best utilize the invention.
  • The use of figure numbers and/or figure reference labels in the claims is intended to identify one or more possible embodiments of the claimed subject matter in order to facilitate the interpretation of the claims. Such use is not to be construed as necessarily limiting the scope of those claims to the embodiments shown in the corresponding figures.
  • It should be understood that the steps of the exemplary methods set forth herein are not necessarily required to be performed in the order described, and the order of the steps of such methods should be understood to be merely exemplary. Likewise, additional steps may be included in such methods, and certain steps may be omitted or combined, in methods consistent with various embodiments of the present invention.
  • Although the elements in the following method claims, if any, are recited in a particular sequence with corresponding labeling, unless the claim recitations otherwise imply a particular sequence for implementing some or all of those elements, those elements are not necessarily intended to be limited to being implemented in that particular sequence.
  • In performing spinal fusion procedures, a spacer can be inserted into a disc space. In some embodiments, a standalone spacer can be attached to a plate. The plate can receive one or more bone anchors or screws to attach to the plate to one or more adjacent vertebrae. The plate and spacer are often rigidly connected and are not decoupled from one another.
  • The present application includes spacer and plate assemblies that can be coupled via an insertion instrument upon delivery to a surgical site. In some embodiments, a surgical site can be at or near a disc space, as one skilled in the art will appreciate. The insertion instrument advantageously provides a single tool for delivering both the spacer and plate if desired. Once the spacer and plate are implanted at the surgical site, the insertion instrument can be removed. With the insertion instrument removed, the spacer and plate are considered decoupled from one another. By providing a spacer and plate that are independent and decoupled from one another, a surgeon advantageously has the option to implant both a plate and a spacer, a spacer by itself, or a plate by itself if desired.
  • The present disclosure provides embodiments of intervertebral spacers and plates that can be used to space and fixedly secure two adjacent vertebrae. According to one embodiment, shown in FIGS. 1-19, an intervertebral spacer and plate assembly 100 (“assembly 100”) is provided. In an exemplary embodiment, assembly 100 can be used for cervical repair, although those skilled in the art will recognize that assembly 100 can be sized for thoracic or lumbar repair as well.
  • Assembly 100 is formed from two separate components, an intervertebral spacer 102 and a plate 104. In some embodiments, spacer 102 and plate 104 are not directly connected to each other, but are instead each separately coupled to an insertion tool 106, shown in FIGS. 16-19.
  • Referring to FIGS. 1-6, spacer 102 includes a body 108 having a superior surface 110 and an opposing inferior surface 112. Each of superior surface 110 and inferior surface 112 can have a plurality of protrusions or fixation elements 114 extending outwardly therefrom. While fixation elements 114 are shown as being generally pyramidal in shape, those skilled in the art will recognize that fixation elements 114 can be other shapes, such as ribbed, or other suitable shapes. Fixation elements 114 are used to bite into a grip each of adjacent vertebrae (not shown) between which spacer 102 is inserted.
  • As shown in FIG. 2, body 102 can have a generally U-shape, with generally parallel lateral sides 116, 118, connected to each other by an anterior portion 120. Lateral side 116 includes a convex arcuate posterior face 117 while lateral side 118 includes a convex arcuate posterior face 119. The space between lateral sides 116, 118 can optionally be filled with graft material. The advantage of a U-shaped body is that if a surgeon decides to use the spacer 102 on its own, it can be easily backfilled through the opening of the “U”. Referring to FIGS. 2-4, superior surface 110 along lateral side 118 includes a cutout 111 that slopes inferiorly in an anterior-to posterior direction. Similarly, inferior surface 112 along lateral side 116 includes a cutout 113 that slopes superiorly in an anterior-to posterior direction. Cutouts 111, 113 allow for securing screws (not shown) to be inserted through plate 104, along cutouts 111, 113, respectively, and into adjacent vertebrae (not shown) without engaging spacer 102.
  • Lateral side 116 includes a tubular protrusion 122 extending in an anterior-posterior direction. Protrusion 122 has an internally threaded passage 124 that is sized to accept a portion of insertion tool 106 as will be explained in detail below. Passage 124 can have a closed anterior end 125.
  • Lateral side 118 includes an open slot 126 that extends in an anterior-posterior direction. An anterior end 128 of slot 126 extends medially inward and is sized to accept a portion of insertion tool 106 as will be explained in detail below.
  • Referring now to FIGS. 1 and 7-11, plate 104 includes a body 130 having a superior surface 132 and an opposing inferior surface 134. In some embodiments, the plate 104 is sized and configured to be received within a disc space, while in other embodiments, at least a portion of the plate 104 is sized and configured to be received outside of a disc space. Each of superior surface 132 and inferior surface 134 can have a plurality of stabilizer elements 136 extending outwardly therefrom. In some embodiments, the stabilizer elements 136 can be for torsional stabilization. In an exemplary embodiment, one stabilizer element 136 is located along a central anterior-to-posterior axis, and a second stabilizer element 136 is located proximate to a lateral side of body 130. While stabilizer elements 136 are shown as being generally ribbed in shape, those skilled in the art will recognize that stabilizer elements 136 can be other shapes, such as pyramidal, or other suitable shapes. Stabilizer elements 136 are used to bite into a grip each of adjacent vertebrae (not shown) between which spacer 102 is inserted.
  • As shown in FIG. 9, body 130 can have a generally arcuate shape, with generally parallel lateral sides 138, 140. Each lateral side 138, 140 includes an anterior-to- posterior slot 142, 144, respectively. Slot 142 includes a superior surface 146 and a generally parallel inferior surface 148, while slot 144 includes a superior surface 150 and a generally parallel inferior surface 152. As shown in FIG. 13, when plate 104 is aligned with spacer 102 for insertion, slot 142 is aligned with threaded passage 124 and slot 144 is aligned with open slot 126.
  • Body 130 includes a generally concave arcuate anterior face 156 that mates with convex arcuate faces 117, 119 of spacer 102 when plate 104 is located against spacer 102, as shown in FIG. 12. Body 130 also includes a generally convex posterior face 158 that extends generally parallel to anterior face 156.
  • Through- holes 160, 162 extend through body 130 in a posterior-to-anterior direction. Through- holes 160, 162 are sized to allow a bone or securing screw (not shown) to be inserted therethrough to secure plate 104 to each of a superior vertebra (not shown) and an inferior vertebra (not shown), between which spacer 102 is being inserted. Through-hole 160 extends in a superior-to-inferior direction so that its screw engages and secures to the inferior vertebra, while through-hole 162 extends in an inferior-to-superior direction so that its screw engages and secures the superior vertebra.
  • A locking screw 164 is disposed between through- holes 160, 162. Locking screw 164 has a head 166 with diametrically opposed arcuate cutouts 168, 170 that are sized to allow the securing screws discussed above to be inserted into through- holes 160, 162. During insertion of assembly 100, locking screw 164 is in a configuration relative to plate 104 as shown in FIG. 8. After the securing screws secure plate 104 to the superior and inferior vertebra, locking screw 164 is rotated, for example, about 90 degrees, so that head 166 extends over the securing screws, preventing the securing screws from inadvertently backing out.
  • FIGS. 1 and 12-15 show assembly 100. While plate 104 abuts spacer 102, plate 104 is not rigidly connected to spacer 102 in any way so that spacer 102 and plate 104 remain separate, independent components. During insertion via an insertion tool, the spacer 102 and plate 104 can both be coupled to the insertion tool. After insertion to a surgical site, the spacer 102 and plate 104 are decoupled from one another.
  • Referring now to FIGS. 16-19, insertion tool 106 is used to insert spacer 102 and plate 104. Insertion tool 106 includes a distal end 170 having a first distal finger 172 and a second distal finger 174 that extends generally parallel to first distal finger 174. A gap 176 between fingers 172, 174 forms a generally U-shaped cavity 176 that is sized to accept plate 104 therein, as shown in FIG. 17. This gap advantageously provides space for a surgeon to use a tool to insert one or more bone screws or anchors into the plate. First distal finger 172 includes a rod 178 having a threaded end 180 that threads into threaded passage 124 in tubular protrusion 122 on spacer 102, as shown in FIG. 19. Rod 178 has a proximal end (not shown) that can be rotated by the surgeon to threadingly secure threaded end 180 into threaded passage 124.
  • Second distal finger 174 includes a prong 182 that extends generally toward first distal finger 172. Prong 182 is sized to fit into anterior end 128 of slot 126 on spacer 102.
  • While a single insertion tool 106 is shown, those skilled in the art will recognize that multiple insertion tools can be used. For example, a first insertion tool having only first distal finger 172 can be used in conjunction with a second insertion tool having only second distal finger 174.
  • According to one embodiment, a method of installing assembly 100, for example, at the site of two adjacent vertebrae (not shown), may include providing spacer 102, plate 104, and insertion tool 106 as a kit, as shown in FIG. 16. Referring to FIG. 17, plate 104 is connected to insertion tool 106 such that distal end 170 of insertion tool 106 extends distally of plate 104 (shown in FIG. 19). Plate 104 is connected to insertion tool 106 by attaching plate 104 to each of first finger 172 and second finger 174. First finger 172 is inserted into slot 142, while second finger 174 is inserted into second slot 144. Plate 104 is slid proximally onto each of first finger 172 and second finger 174, with plate 104 engaging each of first finger 172 and second finger 174 with an interference fit.
  • Next, as shown in FIGS. 18 and 19, spacer 102 is attached to distal end 170 of insertion tool 106 by attaching spacer 102 to each of first finger 172 and second finger 174. Sequentially or simultaneously, first finger 172 is connected to spacer 102 by threading threaded end 180 that threads into threaded passage 124 in tubular protrusion 122 on spacer 102 and inserting prong 182 on second finger 174 into slot 126 on spacer 102 and sliding spacer 102 proximally until prong 182 engages anterior end 128 of slot 126, thereby frictionally engaging second finger 174 with spacer 102.
  • After assembly 100 is attached to insertion tool 106, spacer 102 is inserted between adjacent vertebrae. Gap 176 is sufficiently large between plate 104 and insertion tool 106 to allow securing devices, such as, for example, screws (not shown) to be inserted through through- holes 160, 162, and into inferior vertebra and superior vertebra, respectively, securing plate 104 to the vertebrae. After securing plate 104 to the vertebrae, insertion tool 106 is removed, leaving spacer 102 and plate 104, as separate components, in the patient's spinal column. While the plate 104 and spacer 102 are attached to the insertion tool 106 upon delivery to a surgical site, once the insertion tool 106 is removed, the plate 104 and spacer 102 can be viewed as decoupled or independent from one another.
  • An alternative embodiment of an intervertebral spacer and plate assembly 200 (“assembly 200”) is shown in FIGS. 20-28. In an exemplary embodiment, assembly 200 can be used for lumbar repair, although those skilled in the art will recognize that assembly 200 can be sized for thoracic or cervical repair as well.
  • Assembly 200 is formed from two separate components, an intervertebral spacer 202 (“spacer 202”) and a plate 204 (“plate 204”). In some embodiments, spacer 202 and plate 204 are not connected to each other, but are instead each separately coupled to an insertion tool 206, as shown in FIGS. 25-28.
  • Referring to FIGS. 20 and 22-24, spacer 202 includes a body 208 having a superior surface 210 and an opposing inferior surface 212. Each of superior surface 210 and inferior surface 212 can have a plurality of protrusions or fixation elements 214 extending outwardly therefrom. While fixation elements 214 are shown as being generally pyramidal in shape, those skilled in the art will recognize that fixation elements 214 can be other shapes, such as ribbed, or other suitable shapes. Fixation elements 214 are used to bite into a grip each of adjacent vertebrae (not shown) between which spacer 202 is inserted.
  • As shown in FIG. 20, body 202 can have a generally oblong shape, with generally arcuate lateral sides 216, 218, connected to each other by an anterior portion 220 and a posterior portion 222. Lateral side 216 includes an indentation 217 while lateral side 218 includes a similar indentation 219. Indentations 217, 219 reduce the lateral length of posterior portion 222 relative to the remaining lateral length of spacer 202. A space 223 bounded by lateral sides 216, 218, anterior portion 220, and posterior portion 222 can optionally be filled with graft material.
  • Posterior portion 222 includes a first chamfered face 224 that extends in an inferior direction posteriorly from superior surface 210 and a second chamfered face 226 (shown in FIG. 23) that extends in a superior direction posteriorly from inferior surface 212. Chamfered faces 224, 226 allow for securing screws (not shown) to be inserted through plate 204, along chamfered faces 224, 226, respectively, and into adjacent vertebrae (not shown) without engaging spacer 202.
  • Posterior portion 222 also includes a smooth, anteriorly directed hole 228 proximate to lateral side 216. Hole 228 is sized to accept a non-threaded portion of insertion tool 206 as will be explained in detail below. Posterior portion 222 also includes a threaded, anteriorly directed hole 229 proximate to lateral side 218. Hole 229 is sized to accept a threaded portion of insertion tool 206 as will be explained in detail below.
  • Referring now to FIGS. 20-24, plate 204 includes a body 230 having a superior surface 232 and an opposing inferior surface 234. Each of superior surface 232 and inferior surface 234 can have a plurality of stabilizer elements 236 extending outwardly therefrom. In some embodiments, the stabilizer elements 236 can be for torsional stabilization. In an exemplary embodiment, stabilizer elements 236 are located along fingers 238, 240 that extend anteriorly from plate 204. While stabilizer elements 236 are shown as being generally ribbed in shape, those skilled in the art will recognize that stabilizer elements 236 can be other shapes, such as pyramidal, or other suitable shapes. Stabilizer elements 236 are used to bite into a grip each of adjacent vertebrae (not shown) between which spacer 202 is inserted.
  • As shown in FIG. 20, body 230 can have a generally laterally elongate shape, with generally parallel lateral sides 242, 244. Fingers 238, 240 extend from lateral sides 242, 244, respectively. Fingers 238, 240 are sized to fit into indentations 217, 219 respectively, while a space between fingers 238, 340 is sized to allow posterior portion 222 of spacer 202 to be inserted therein.
  • Referring to FIG. 21, through- holes 260, 262 extend through body 230 in a posterior-to-anterior direction. Through- holes 260, 262 are located on plate 204 to align with holes 228, 229 when plate 204 and spacer 202 are coupled as shown in FIG. 20. Through-hole 260 can be smooth bored to allow for the passage of the non-threaded portion of insertion tool 206. Through-hole 262 can be smooth bored or threaded to allow for the insertion of the threaded portion of insertion tool 206.
  • Additional through- holes 264, 266, 268 are provided in plate 204 and are sized to allow a securing screw (not shown) to be inserted therethrough to secure plate 204 to each of a superior vertebra (not shown) and an inferior vertebra (not shown), between which spacer 202 is being inserted. Through- holes 264, 266 each extends in a superior-to-inferior direction so that their respective screw each engages and secures to the inferior vertebra, while through-hole 268 extends in an inferior-to-superior direction so that its screw engages and secures the superior vertebra.
  • Referring to FIG. 21, locking screws 270, 272, 274 are each is disposed adjacent to a respective through- hole 264, 266, 268. Each locking screw 270, 272, 274 has a head 276, 278, 280 with an arcuate cutout 282, 284, 286, respectively, that is sized to allow the securing screws discussed above to be inserted into through- holes 264, 266, 268. During insertion of assembly 200, locking screws 264, 266, 268 are in a configuration relative to plate 204 as shown in FIG. 21. After the securing screws secure plate 204 to the superior and inferior vertebra, locking screws 270, 272, 274 are rotated, for example, about 90 degrees, so that heads 276, 278, 280 each extends over its adjacent securing screws, preventing the securing screws from inadvertently backing out.
  • FIGS. 20-24, 27, and 28 show assembly 200. While plate 204 is butted up against spacer 202 to form a coupled construct, plate 204 is not connected to spacer 202 so that spacer 202 and plate 204 remain separate, independent components that can be implanted together or on their own as part of a fusion procedure.
  • Referring now to FIGS. 25-28, insertion tool 206 is used to insert spacer 202 and plate 204. Insertion tool 206 includes a distal end 282 having a first distal finger 284 and a second distal finger 286 that extends generally parallel to first distal finger 282. First distal finger 282 is a generally smooth bore rod that is sized to pass through through-hole 260 in plate 204 and into hole 228 in spacer 202.
  • Second distal finger 286 includes a rod 288 having a threaded end 290 that threads into threaded through-hole 262 in plate 204, as shown in FIG. 25, as well as into hole 229 in spacer, as shown in FIG. 27. Rod 288 has a proximal end (not shown) that can be rotated by the surgeon to threadingly secure threaded end 290 into hole 229.
  • While a single insertion tool 206 is shown, those skilled in the art will recognize that multiple insertion tools can be used. For example, a first insertion tool having only first distal finger 282 can be used in conjunction with a second insertion tool having only second distal finger 286.
  • According to one embodiment, a method of installing assembly 200, for example, at the site of two adjacent vertebrae (not shown), may include providing spacer 202, plate 204, and insertion tool 206 as a kit, as shown in FIG. 28.
  • As shown in FIGS. 23 and 24, plate 204 is releasably engaged with spacer 202 in the absence of securing plate 204 to spacer 202 such that plate 204 engages spacer 202 between first finger 238 and second finger 240, as shown in FIG. 20.
  • Next, insertion tool 206 is inserted through plate 204 and into spacer 202. Such insertion is performed by inserting insertion tool 206 through first through-hole 260 and second through-hole 262 and into holes 228, 230 of spacer 202. This is accomplished by threading threaded finger 286 of insertion tool 206 into plate 204 and into hole 229 in spacer 202, as well as inserting unthreaded finger 282 of insertion tool 206 through plate 204 and into hole 228 in spacer 202.
  • Next, spacer 202 is implanted between adjacent vertebrae. Insertion tool 206 is removed such that spacer 202 is separate from plate 204. Next, plate 204 is connected to the vertebrae.
  • Optionally, as shown in FIGS. 25 and 26, insertion tool 206 can be releasably secured to only plate 204. Then, plate 204 can be coupled to spacer 202, after which time insertion tool 206 is then releasably secured to spacer 202.
  • A situation may arise wherein plate 204 is not required to secure spacer 202 between adjacent vertebrae; the compression of vertebrae toward each other is sufficient to maintain spacer 202 in place. In such a situation, plate 204 can be omitted. It is desired, however, to incorporate a substitute for plate 204 in order to provide desired spacing between plate 202 and insertion tool 206.
  • To achieve this spacing, as shown in FIGS. 29 and 30, a spacer block 290 is provided. Spacer block 290 has substantially the same anterior-to-posterior width as plate 204, but without fingers 238, 240. Spacer block 290 includes a pair of unthreaded, smooth bore through- holes 292, 294 that align with holes 228, 230 of spacer 202 so that fingers 282, 286 of insertion tool 206 can be inserted therethrough and into hole 228, 230 of spacer 202 for insertion of spacer 202 between adjacent vertebrae (not shown).
  • An alternative embodiment of an intervertebral spacer and plate assembly 300 (“assembly 300”) is shown in FIGS. 31-39. In an exemplary embodiment, assembly 300 can be used for lumbar repair, although those skilled in the art will recognize that assembly 300 can be sized for thoracic or cervical repair as well.
  • Assembly 300 is formed from two separate components, an intervertebral spacer 302 (“spacer 302”) and a plate 304 (“plate 304”). In some embodiments, spacer 302 and plate 304 are not connected to each other, but are instead each separately coupled to an insertion tool 306, as shown in FIGS. 38 and 39.
  • Referring to FIGS. 31 and 34-35, spacer 302 is similar to spacer 202, but, instead of a solid posterior portion 222, posterior portion 322 of spacer 302 includes a gap 325 between two medially directed ends 324, 326. Gap 325 allows for spacer 302 to flex after insertion, which may provide enhanced mobility for the patient.
  • Additionally, spacer 302 includes indentations 317, 319 that are larger than indentations 217, 219 on spacer 202. Similarly, fingers 338, 340 on plate 304 are wider than fingers 238, 240 on plate 204 to accommodate the larger indentations 317, 319.
  • Other aspects of spacer 302, plate 304, and insertion tool 306 are similar, if not identical, to corresponding aspects of spacer 202, plate 204, and insertion tool 206 as discussed above. Those aspects are identified with element numbers corresponding to spacer 202, plate 204, and insertion tool 206 with respect to spacer 302, plate 304, and insertion tool 306, respectively.
  • With respect to a spacer block 390 shown in FIGS. 40 and 41, however, spacer block 390 includes fingers 396, 398 that are insertable into indentations 317, 319. Other aspects of spacer block 390 are similar, if not identical, to corresponding aspects of spacer block 290 as discussed above.
  • Instead of plate 304, an alternative plate 304′, shown in FIGS. 41A-41D can be provided. Plate 304′ is similar to plate 304, with the addition of a superior extension 393 on the posterior end 394 of plate 304′. Extension 393 increases the overall height of plate 304′ and allows plate 304′ to be shouldered onto the vertebral body during insertion. As shown in FIG. 41B, extension 393 can be straight. Alternatively, extension 393 can be angled in a posterior direction.
  • An alternative embodiment of an intervertebral spacer and plate assembly 400 (“assembly 400”) is shown in FIGS. 42-50. In an exemplary embodiment, assembly 400 can be used for lumbar repair, although those skilled in the art will recognize that assembly 400 can be sized for thoracic or cervical repair as well.
  • Assembly 400 is formed from two separate components, an intervertebral spacer 402 (“spacer 402”) and a plate 404 (“plate 404”). In some embodiments, spacer 402 and plate 404 are not connected to each other, but are instead each separately coupled to an insertion tool 406, as shown in FIGS. 47 and 48. Upon delivery to a surgical site, the spacer 402 and plate 404 can be decoupled from one another.
  • Referring to FIGS. 42-47, spacer 402 is similar to spacer 302, but, instead of holes 260, 262 for insertion of insertion tool 306, lateral sides 416, 418 include a recess 460, 462, respectively. Recesses 460, 462 extend anteriorly from indentations 317, 319 toward anterior face 456. Each recess 460, 462 includes a plurality of superior-to-inferior extending slots 464. FIGS. 45 and 46 show two slots 464 in each recess 460, 462, although those skilled in the art will recognize that more or less than two slots 464 can be provided.
  • Additionally, fingers 338, 340 on plate 404 each include a recess 438, 440, respectively that extend in an anterior-to-posterior direction along the length of each respective finger 338, 340. Each recess 438, 440 includes a plurality of superior-to-inferior extending slots 464. FIGS. 45 and 46 show two slots 442 in each recess 438, 440, although those skilled in the art will recognize that more or less than two slots 442 can be provided.
  • Other aspects of spacer 402 and plate 404 are similar, if not identical, to corresponding aspects of spacer 302 and plate 304 as discussed above. Those aspects are identified with element numbers corresponding to spacer 302 and plate 304 with respect to spacer 402 and plate 404, respectively.
  • Insertion tool 406 is shown in FIGS. 47-52. Insertion tool 406 includes a distal end 470 having a first distal finger 472 and a second distal finger 474 that extends generally parallel to first distal finger 474. A gap between fingers 472, 474 forms a generally U-shaped cavity 476 that is sized to accept plate 404 therein, as shown in FIGS. 47 and 48. First distal finger 472 includes a plurality of protrusions 478 that fit into recess 460 and slots 464 on spacer 402 and recess 438 and slots 442 on plate 404. Similarly, second distal finger 474 includes a plurality of protrusions 480 that fit into recess 462 and slots 464 on spacer 402 and recess 440 and slots 442 on plate 404.
  • A proximal end (not shown) of insertion tool 406 can include a pivot connection such that the opening of insertion tool 406 at the proximal end splays first distal finger 472 away from second distal finger 474 to release spacer 402 and plate 404 so that spacer 402 and plate 404 are separated components.
  • Referring to FIGS. 51 and 52, spacer block 490 includes slots 492 that receive protrusions 478, 480 on insertion tool 406. Other aspects of spacer block 490 are similar, if not identical, to corresponding aspects of spacer block 390 as discussed above.
  • An alternative embodiment of an intervertebral spacer and plate assembly 500 (“assembly 500”) is shown in FIGS. 53-63. In an exemplary embodiment, assembly 500 can be used for lumbar repair, although those skilled in the art will recognize that assembly 500 can be sized for thoracic or cervical repair as well.
  • Assembly 500 is formed from two separate components, an intervertebral spacer 502 (“spacer 502”) and a plate 504 (“plate 504”). In some embodiments, spacer 502 and plate 504 are not connected to each other, but are instead each separately coupled to an insertion tool 506, as shown in FIGS. 58 and 59.
  • Assembly 500 is similar to assembly 400 except that, instead of having gap 325 between two medially directed ends 324, 326, spacer 502 has a posterior portion 525 that extends fully between lateral sides 516, 518. Lateral sides 516, 518 include indentations 517, 519 that do not extend medially as far as indentations 317, 319 respectively, formed in spacer 402, as discussed above.
  • Additionally, referring to FIGS. 62 and 63, a spacer block 590 includes slots 592 that receive protrusions 478, 480 on an insertion tool 4506.
  • An alternative embodiment of an intervertebral spacer and plate assembly 600 (“assembly 600”) is shown in FIGS. 64-67. In an exemplary embodiment, assembly 600 can be used for lumbar repair, although those skilled in the art will recognize that assembly 600 can be sized for thoracic or cervical repair as well.
  • Assembly 600 is formed from two separate components, an intervertebral spacer 602 (“spacer 602”) and a plate 604 (“plate 604”). Plate 704 is shown in detail in FIGS. 75-78. Plate 602 has a body 610 having a generally arcuate shape, with generally parallel lateral sides 612, 614. A posterior portion 616, 618, respectively, of each lateral side 612, 614 includes an anterior-to- posterior recess 620, 622, respectively. Each recess 620, 622 includes a laterally projecting protrusion 624 having sloped superior and inferior sides (only one protrusion 624 is shown in FIG. 65). Each recess 620, 622 is in communication with a slot 628, 630, respectively that each extends medially. A medial portion 628, 629 of each lateral side 612, 614, respectively, include an oblique cutout 616, 618.
  • Plate 604 includes a body 630 having a generally laterally elongate shape, with generally parallel lateral sides 642, 644. Fingers 638, 640 extend from lateral sides 642, 644, respectively. Fingers 638, 640 are sized to fit into recesses 620, 622, respectively, in spacer 602. As shown in FIG. 65, finger 638 includes a cutout 646 formed therein. Although not shown, finger 640 includes a corresponding cutout. An anterior end of each finger 638, 640 includes a medially extending prong 648, 650 that fits into a slot 628, 630, respectively. An anterior face 652 of body 630 also includes two spaced apart tangs 654, 656.
  • Referring to FIG. 66, through- holes 664, 666, 668 are provided in plate 604 and are sized to allow a securing screw (not shown) to be inserted therethrough to secure plate 604 to each of a superior vertebra (not shown) and an inferior vertebra (not shown), between which spacer 602 is being inserted. Through- holes 664, 666 each extends in a superior-to-inferior direction so that their respective screw each engages and secures to the inferior vertebra, while through-hole 668 extends in an inferior-to-superior direction so that its screw engages and secures the superior vertebra.
  • Locking screws 670, 672 are each is disposed between respective through- holes 664, 666, 668. Each locking screw 670, 672 has a head 676 with a pair of arcuate cutouts 682, 684 that are sized to allow the securing screws discussed above to be inserted into through- holes 664, 666, 668. During insertion of assembly 600, locking screws 664, 666, 668 are in a configuration relative to plate 604 as shown in FIG. 66. After the securing screws secure plate 604 to the superior and inferior vertebra, locking screws 670, 672 are rotated, for example, about 90 degrees, so that heads 676, 678 each extends over its adjacent securing screws, preventing the securing screws from inadvertently backing out. In some embodiments, the locking screws 670, 672 (upon rotation) can abut a side of the securing screws to prevent inadvertent backing out.
  • Assembly 600 is fitted together by aligning fingers 638, 640 and prongs 648, 650 on plate 604 with recesses 620, 622 and slots 628, 630, respectively, on spacer 602, which also aligns lateral sides of tangs 654, 656 with cutout 616, 618, respectively. Plate 604 is slid down into spacer 602, locking fingers 638, 640 and prongs 648, 650 into recesses 620, 622 and slots 628, 630, respectively.
  • Additionally, protrusion 624 slides into cutout 646. Tangs 654, 656 engage cutouts 616, 618, respectively, stabilizing plate 604 with respect to spacer 602.
  • Assembly 600 is inserted between adjacent vertebrae as a unit, and, unlike other embodiments of the present invention, remain as a unit after implantation.
  • Another alternative embodiment of an intervertebral spacer and plate assembly 700 (“assembly 700”) is shown in FIGS. 68-82. In an exemplary embodiment, assembly 700 can be used for cervical repair, although those skilled in the art will recognize that assembly 400 can be sized for thoracic or lumbar repair as well.
  • Assembly 700 is formed from two separate components, an intervertebral spacer 702 (“spacer 702”) and a plate 704 (“plate 704”). In some embodiments, spacer 702 and plate 704 are not connected to each other, but are instead each separately coupled to an insertion tool similar to insertion tool 406, shown in FIGS. 47 and 48.
  • Referring to FIGS. 72-74, spacer 702 is similar to spacer 402, but, instead of having gap 325 between two medially directed ends 324, 326, spacer 702 has a posterior portion 725 that extends fully between lateral sides 716, 718. Recesses 760, 762 extend anteriorly from posterior portion 725 toward anterior face 756. Each recess 760, 762 includes a plurality of superior-to-inferior extending slots 764. FIGS. 73 and 74 show two slots 764 in each recess 760, 762, respectively, although those skilled in the art will recognize that more or less than two slots 764 can be provided.
  • Posterior portion 725 includes cutouts 728, 730 to allow securing screws (not shown) to extend therethrough to secure plate 704 to adjacent vertebrae (not shown). When viewed from a posterior-to-anterior direction, a first cutout 728 is formed in a superior surface 710 and is defined by side walls 732, 734 and a bottom wall 736. As shown in FIG. 72, side walls 732, 734 and bottom wall 736 extend at oblique angles relative to each other, although those skilled in the art will recognize that side walls 732, 734 can extend orthogonally to bottom wall 736.
  • Similarly, a second cutout 738 is formed in an inferior surface 712 and is defined by side walls 742, 744 and a top wall 746. As shown in FIG. 72, side walls 742, 744 and top wall 746 extend at oblique angles relative to each other, although those skilled in the art will recognize that side walls 742, 744 can extend orthogonally to top wall 746.
  • Plate 704 is shown in detail in FIGS. 75-78. Plate 704 has a body 750 having a generally arcuate shape, with generally parallel lateral sides 752, 754. Each lateral side 752, 754 includes an anterior-to- posterior recess 776, 778, respectively. Each recess 776, 778 is in communication with a slot 760, 762 in spacer 702.
  • Plate 704 also includes through- openings 782, 784 for securing screws (not shown) that are used to secure plate 704 to adjacent vertebrae (not shown). A locking screw 786 can be rotated, for example, about 90 degrees after the securing screws have been inserted to keep the securing screws from backing out after insertion. When plate 704 is aligned with spacer 702 as shown in FIGS. 79-82, through-opening 782 is aligned with first cutout 728 in spacer 702 and through-opening 784 is aligned with second cutout 730 in spacer 702 so that the securing screws can pass over or under spacer 702 and into their respective vertebrae.
  • Also, as shown in FIGS. 81 and 82, when plate 704 is aligned with spacer 702 for insertion, recess 776 is aligned with recess 760 and recess 778 is aligned with recess 762 so that an insertion tool, similar to insertion tool 406, can extend through plate 704 and grip spacer 702 for insertion.
  • The insertion procedure for assembly 700 can be similar to that as is described above for assembly 400. However, instead of insertion tool 406 having protrusions that engage plate 704, such protrusions can be omitted and assembly 700 can rely on friction between plate 704 and insertion tool 406, as well as between implant 702 and insertion tool 406.
  • An alternative embodiment of an intervertebral spacer and plate assembly 800 (“assembly 800”) is shown in FIGS. 83-98. In an exemplary embodiment, assembly 800 can be used for cervical repair, although those skilled in the art will recognize that assembly 800 can be sized for thoracic or lumbar repair as well.
  • Assembly 800 is formed from two separate components, an intervertebral spacer 802 (“spacer 802”) and a plate 804 (“plate 804”). In some embodiments, spacer 802 and plate 804 are not connected to each other, but instead merely engage each other.
  • Referring to FIGS. 84 and 86-89, spacer 802 includes a body 808 having a superior surface 810 and an opposing inferior surface 812. Each of superior surface 810 and inferior surface 812 can have a plurality of fixation elements 814 extending outwardly therefrom. While fixation elements 814 are shown as being generally pyramidal in shape, those skilled in the art will recognize that fixation elements 814 can be other shapes, such as ribbed, or other suitable shapes. Fixation elements 814 are used to bite into a grip each of adjacent vertebrae (not shown) between which spacer 802 is inserted.
  • As shown in FIG. 20, body 802 can have a generally oblong shape, with generally linear lateral sides 816, 818, connected to each other by an anterior portion 820 and a posterior portion 822, with a generally isosceles trapezoid interior space 823 defined therebetween that can optionally be filled with graft material.
  • Posterior portion 822 includes an arcuate face 824 that extends between lateral sides 816, 818. A rounded protrusion 826 extends posteriorly from posterior portion 822. A pair of insertion tool engagement holes 828, 829 are each located on opposing sides of protrusion 826. Holes 828, 829 can be threaded or unthreaded, and can be through-holes or blind holes. Holes 828, 829 are sized to accept arms of an insertion tool (not shown) for insertion of assembly 800.
  • Referring now to FIGS. 85 and 90-93, plate 804 includes a body 830 having an anterior surface 832 and an opposing posterior surface 834. Referring to FIGS. 90 and 91, plate 804 can have a generally “X” shape, with left and right superior arms 836, 838, respectively, and left and right inferior arms 840, 842, respectively. Superior arms 836, 838 include through- openings 844, 846 that are angled in a superior direction to allow screws (not shown) to be inserted therethrough to secure plate 804 to a superior vertebra (not shown). Similarly, inferior arms 840, 842 include through- openings 848, 850 that are angled in an inferior direction to allow securing screws (not shown) to be inserted therethrough to secure plate 804 to an inferior vertebra (not shown).
  • Referring to FIG. 90, locking screws 852, 854, 856, 858 are each disposed adjacent to a respective through- opening 844, 846, 848, 850. Each locking screw 852, 854, 856, 858 has a head 860 with an arcuate cutout 862, respectively, that is sized to allow the securing screws discussed above to be inserted into through- openings 844, 846, 848, 850. During insertion of assembly 800, locking screws 852, 854, 856, 858 are in a configuration relative to plate 804 as shown in FIG. 95. After the securing screws secure plate 804 to the superior and inferior vertebra, locking screws 852, 854, 856, 858 are rotated, for example, about 90 degrees, so that heads 860 each extends over its adjacent securing screws, preventing the securing screws from inadvertently backing out.
  • Plate 804 also includes a centrally located posterior recess 870. As shown in FIG. 90, recess 870 can be generally oblong in shape, although those skilled in the art will recognize that recess 870 can be other shapes. Recess 870 accepts a prong on an insertion device (not shown) for insertion of assembly 800.
  • Referring to FIG. 91, anterior surface 8732 of plate 804 includes a centrally located concave recess 874 that accepts protrusion 826, as shown in FIG. 98. Protrusion 826 rides within recess 874, forming an articulating joint that allows plate 804 to pivot relative to body 802, providing some flexibility for the patient after assembly 800 is implanted.
  • FIGS. 83 and 95-98 show assembly 800. While plate 804 is butted up against spacer 802 to form a coupled construct, plate 804 is not rigidly connected to spacer 802 so that spacer 802 and plate 804 remain separate, independent components throughout insertion and after insertion into the patient.
  • An alternative embodiment of an intervertebral spacer and plate assembly 900 (“assembly 900”) is shown in FIGS. 99-113. In an exemplary embodiment, assembly 900 can be used for cervical repair, although those skilled in the art will recognize that assembly 900 can be sized for thoracic or lumbar repair as well.
  • Assembly 900 is formed from two separate components, an intervertebral spacer 902 and a plate 904. Spacer 902 and plate 904 are never connected to each other, but instead merely engage each other.
  • Referring to FIGS. 99 and 102-105, spacer 902 includes a body 908 having a superior surface 910 and an opposing inferior surface 912. Each of superior surface 910 and inferior surface 912 can have a plurality of fixation elements 914 extending outwardly therefrom. While fixation elements 914 are shown as being generally pyramidal in shape, those skilled in the art will recognize that fixation elements 914 can be other shapes, such as ribbed, or other suitable shapes. Fixation elements 914 are used to bite into a grip each of adjacent vertebrae (not shown) between which spacer 902 is inserted.
  • As shown in FIG. 103, body 902 can have a generally oblong shape, with generally linear lateral sides 916, 918, connected to each other by an anterior portion 920 and a posterior portion 922, with a generally isosceles trapezoid interior space 923 defined therebetween that can optionally be filled with graft material.
  • Posterior portion 922 includes an arcuate face 924 that extends between lateral sides 916, 918. A generally centrally located insertion tool engagement hole 928 extends through posterior portion 922. Hole 928 can be threaded, as shown in FIG. 100, or unthreaded. Hole 928 is sized to an insertion tool (not shown) for insertion of assembly 900.
  • A pair of plate engagement slots 931, 932 are each located on opposing sides of hole 928. Slots 931, 932 are blind holes and are generally rectangular in shape, with rounded corners. Slots 931, 932 are sized to accept posterior protrusions from plate 904, as is discussed below.
  • Referring now to FIGS. 101 and 106-109, plate 904 includes a body 930 having an anterior surface 933 and an opposing posterior surface 934. Referring to FIGS. 108 and 109 and 91 plate can have a generally “rhomboid” shape, with a right superior arm 936 and a left inferior arm 940. Superior arm 936 includes a through-opening 944 that is angled in a superior direction to allow a screw (not shown) to be inserted therethrough to secure plate 904 to a superior vertebra (not shown). Similarly, inferior arm 940 includes a through-opening 948 that is angled in an inferior direction to allow a securing screw (not shown) to be inserted therethrough to secure plate 904 to an inferior vertebra (not shown).
  • Referring to FIG. 108, locking screws 952, 954 are each disposed adjacent to a respective through- opening 944, 948. Each locking screw 952, 954 has a head 960 with an arcuate cutout 962, respectively, that is sized to allow the securing screws discussed above to be inserted into through- openings 944, 948. During insertion of assembly 900, locking screws 952, 954 are in a configuration relative to plate 904 as shown in FIG. 108. After the securing screws secure plate 904 to the superior and inferior vertebra, locking screws 952, 954 are rotated, for example, about 90 degrees, so that heads 960 each extends over its adjacent securing screws, preventing the securing screws from inadvertently backing out.
  • Plate 904 also includes a centrally located through-opening 970. As shown in FIG. 108, through-opening 970 can be generally circular in shape, although those skilled in the art will recognize that through-opening 970 can be other shapes. Through-opening 970 is unthreaded and allows an insertion device (not shown) to pass therethrough for engagement with hole 928 in spacer 902 for insertion of assembly 900.
  • Referring still to FIG. 108, a posterior surface 972 of plate 904 includes a pair of diametrically opposed slots 974, 976 that extend at an oblique angle away from through-opening 970. Slots 974, 976 accept a prong of an insertion instrument (not shown) during implantation of assembly 900, allowing the insertion instrument to be placed into slots 974, 976 so that plate 904 is held rigidly on the insertion instrument without being able to rotate.
  • Referring now to FIGS. 106, 107, and 109, an anterior surface 980 of plate 904 includes a pair of diametrically opposed protrusions 982, 984 that are sized and located to fit into plate engagement slots 931, 932. A posterior end of locking screws 952, 954 also extends outwardly from plate engagement slots 931, 932 as well.
  • FIGS. 99 and 110-113 show assembly 900. While plate 904 is butted up against spacer 902 to form a coupled construct, plate 904 is not connected to spacer 902 so that spacer 902 and plate 904 remain separate components throughout insertion and after insertion into the patient.
  • FIGS. 114-116 show an alternative plate 1004 that can be used with spacer 902 to form an assembly 1000. Plate 1004 has a generally rectangular shape with a centrally located through-opening 1070. As shown in FIG. 114, through-opening 1070 can be generally circular in shape, although those skilled in the art will recognize that through-opening 1070 can be other shapes. Through-opening 1070 is unthreaded and allows an insertion device (not shown) to pass therethrough for engagement with hole 928 in spacer 902 for insertion of assembly 1000.
  • Plate 1004 has left and right superior through-openings 1044, 1046 that are angled in a superior direction to allow screws (not shown) to be inserted therethrough to secure plate 1004 to a superior vertebra (not shown). Similarly, plate 1004 has left and right inferior through-openings 1048, 1050 that are angled in an inferior direction to allow securing screws (not shown) to be inserted therethrough to secure plate 1004 to an inferior vertebra (not shown).
  • Locking screws 1052, 1054, 1056, 1058 are each disposed adjacent to a respective through- opening 1044, 1046, 1048, 1050. Each locking screw 1052, 1054, 1056, 1058 has a head 1060 with an arcuate cutout 1062, respectively, that is sized to allow the securing screws discussed above to be inserted into through- openings 1044, 1046, 1048, 1050. During insertion of assembly 1000, locking screws 1052, 1054, 1056, 1058 are in a configuration relative to plate 1004 as shown in FIG. 114. After the securing screws secure plate 904 to the superior and inferior vertebra, locking screws 1052, 1054, 1056, 1058 are rotated, for example, about 90 degrees, so that heads 1060 each extends over its adjacent securing screws, preventing the securing screws from inadvertently backing out.
  • A posterior surface 1072 of plate 1004 also includes a pair of superior and inferior slots 1074, 1076 on opposing sides of through-opening 1070. Slots 1074, 1076 accept a prong of an insertion instrument (not shown) during implantation of assembly 1000, allowing the insertion instrument to be placed into slots 1074, 1076 so that plate 1004 is held rigidly on the insertion instrument without being able to rotate.
  • Referring now to FIG. 117, an alternative embodiment of an intervertebral spacer and plate assembly 1100 (“assembly 1100”) is shown. Assembly 1100 includes a spacer 1102 and a plate 1104.
  • Plate 1102 has a body 1108 that includes a posterior surface 1110. Posterior surface 1110 includes a central through-opening 1112 that is sized to accept an insertion instrument 1106. Through-opening 1112 is threaded to match threads 1114 on a distal end 1116 of insertion instrument 1106. Posterior surface 1110 also includes a pair of concave recesses 1120, 1122, one on either side of through-opening 1112.
  • Plate 1104 has a body 1130 that includes an anterior surface 1132 for mating with posterior surface 1110 of spacer 1102. Body 1130 includes a through-opening 1134 that extends posteriorly-to-anteriorly through the center of body 1130. Through-opening 1134 has a larger diameter than through-opening 1112 in spacer 1102 to allow distal end 1116 of insertion instrument 1106 to pass therethrough.
  • Anterior surface 1132 of body 1130 also includes a pair of convex protrusions 1140, 1142, one on either side of through-opening 1134 that extend into recesses 1120, 1122, respectively, when plate 1104 is butted against spacer 1102, forming a solid construct.
  • Referring now to FIG. 118, an alternative embodiment of an intervertebral spacer and plate assembly 1200 (“assembly 1200”) is shown. Assembly 1200 includes a spacer 1202 and a plate 1204.
  • Plate 1202 has a body 1208 that includes a posterior surface 1210. Posterior surface 1210 includes a central recess 1212. Posterior surface 1210 also includes a pair of threaded recesses 1220, 1222, one on either side of central recess 1212.
  • Plate 1204 includes a body 1230 having an anterior surface 1232. A protrusion 1234 extends anteriorly from anterior surface 1232 and is sized to fit into central recess 1212. Body 1230 also includes a pair of lateral through- holes 1236, 1238 that extend through body 1230 and align with threaded recesses 1220, 1222 when protrusion 1234 is inserted into central recess 1212.
  • To insert assembly 1200 into a patient, an insertion instrument (not shown) having two prongs is inserted through through- holes 1236, 1238 in plate 1104 and threaded into threaded recesses 1220, 1222 in plate 1200. Assembly 1200 is inserted into plate 1204 is secured to a patient, then the insertion tool is unthreaded from threaded recesses 1220, 1222 and removed from assembly 1200.
  • Referring now to FIG. 119, an alternative embodiment of an intervertebral spacer and plate assembly 1300 (“assembly 1300”) is shown. Assembly 1300 includes a spacer 1302 and a plate 1304. Spacer 1302 includes a body 1308 having a central void 1309 formed therein. A posterior side 1310 of spacer 1302 includes a pair of through- passages 1312, 1314 into void 1309.
  • Plate 1304 includes a pair of fingers 1320, 1322, each of which extends into one of through- passages 1312, 1314 and into void 1309. When two prongs of an insertion device (not shown) are inserted into through- passages 1312, 1314, fingers 1320, 1322 splay open, temporarily securing plate 1304 to spacer 1302 for insertion. After insertion, when the insertion device is removed, fingers “un-splay” so that plate 1304 is no longer secured to spacer 1302 and spacer 1302 and plate 1304 are two separate entities.
  • Referring now to FIG. 119, an alternative embodiment of an intervertebral spacer and plate assembly 1300 (“assembly 1300”) is shown. Assembly 1300 includes a spacer 1302 and a plate 1304. Spacer 1302 includes a body 1308 having a central void 1309 formed therein. A posterior side 1310 of spacer 1302 includes a pair of through- passages 1312, 1314 into void 1309.
  • Plate 1304 includes a pair of fingers 1320, 1322, each of which extends into one of through- passages 1312, 1314 and into void 1309. When two prongs of an insertion device (not shown) are inserted into through- passages 1312, 1314, fingers 1320, 1322 splay open, temporarily securing plate 1304 to spacer 1302 for insertion. After insertion, when the insertion device is removed, fingers “un-splay” so that plate 1304 is no longer secured to spacer 1302 and spacer 1302 and plate 1304 are two separate entities.
  • Referring now to FIG. 120, an alternative embodiment of an intervertebral spacer and plate assembly 1400 (“assembly 1400”) is shown. Assembly 1400 includes a spacer 1402 and a plate 1404. Spacer 1402 includes a body 1408. A posterior side 1410 of spacer 1302 includes a pair of blind passages 1412, 1414 extending into body 1408. Each of blind passages 1412, 1414 widens to a receiving portion 1416, 1418, respectively, in a posterior-to-anterior direction.
  • Plate 1404 includes a pair of through- passages 1420, 1422 extending parallel to each other in a posterior-to-anterior direction such that, when plate 1404 is aligned with spacer 1402, passage 1420 aligns with passage 1412 and passage 1422 aligns with passage 1414.
  • An insertion device 1406 includes two parallel hollow prongs 1430, 1432. Each prong 1430, 1432 is split posteriorly into two half portions 1430 a, 1430 b and 1432 a, 1432 b, each portion 1430 a, 1430 b, 1432 a, 1432 b having a lip.
  • When prongs 1430, 1432 of insertion device 1406 are inserted through through- passages 1420, 1422 and into blind passages 1412, 1414, respectively, and rods (not shown) are inserted through prongs 1430, 1432, prong half portions 1430 a, 1430 b and 1432 a, 1432 b splay apart so that the lips on prongs 1430, 1432 splay open and are retained within receiving portions 1416, 1418, respectively, temporarily securing plate 1404 to spacer 1402 for insertion. After insertion, when the insertion device is removed, fingers “un-splay” so that plate 1404 is no longer secured to spacer 1402 and spacer 1402 and plate 1404 are two separate entities.
  • Referring now to FIG. 121, an alternative embodiment of an intervertebral spacer and plate assembly 1500 (“assembly 1500”) is shown. Assembly 1500 includes a spacer 1502 and a plate 1504. Spacer 1502 includes a body 1508 having a central void 1509 formed therein. A posterior side 1510 of spacer 1502 includes a pair of through- passages 1512, 1514 into void 1509.
  • Plate 1504 includes parallel through- passages 1516, 1518 extending parallel to each other in a posterior-to-anterior direction such that, when plate 1504 is aligned with spacer 1502, passage 1516 aligns with passage 1412 and passage 14221518 aligns with passage 1514.
  • Insertion device 1506 includes a pair of fingers 1520, 1522, each of which extends through one of through- passages 1516, 1518 and one of through- passages 1512, 1514 and into void 1509. Each finger 1520, 1522 includes a laterally extending lip 1524, 1526, respectively.
  • When two prongs of an insertion device (not shown) are inserted into through- passages 1516, 1518 and 1512, 1514, with the prongs on medial sides of each of fingers 1520, 1522, fingers 1520, 1522 are biased laterally so that lips 1524, 1526 engage the posterior wall of void 1509, temporarily securing plate 1504 to spacer 1502 for insertion. After insertion, when the insertion device 1506 is removed, fingers 1520, 1522 bias back toward each other so that plate 1504 is no longer secured to spacer 1502 and spacer 1502 and plate 1504 are two separate entities.
  • Referring now to FIG. 122, an alternative embodiment of an intervertebral spacer and plate assembly 1600 (“assembly 1600”) is shown. Assembly 1600 includes a spacer 1602 and a plate 1604. Spacer 1602 includes a body 1608. A posterior side 1610 of spacer 1602 includes a blind slot 1612 extending into body 1608. Slot 1612 includes lateral sidewalls 1614, 1616.
  • Plate 1604 includes a tab 1620 sized to fit into slot 1612 with lateral space on either side of tab 1620 to accommodate fingers 1622, 1624. Biased fingers 1622, 1624 are pivotally connected to spacer 1604 with anterior ends 1626, 1628 having a plurality of laterally extending fingers 1630. Posterior ends 1632, 1634 of fingers 1622, 1624 are engageable by an insertion device (not shown)
  • During insertion, fingers 1622, 1624 are against lateral sidewalls 1614, 1616 of slot 1612 so that plate 1604 is engaged with spacer 1602. Fingers 1630 compress toward their respective fingers 1622, 1624, wedging spacer 1604 into spacer 1602. After assembly 1600 is inserted, the insertion device is removed, allowing fingers 1622, 1624 to bias away from sidewalls 1614, 1616, respectively, releasing spacer 1602 from plate 1604.
  • Referring now to FIGS. 123-125, an alternative embodiment of an intervertebral spacer and plate assembly 1700 (“assembly 1700”) is shown. Assembly 1700 includes a spacer 1702 and a plate 1704. Spacer 1702 includes a body 1708 having a central void 1709 formed therein. A superior surface 1710 of spacer 1702 includes a central slot 1712 extending along a posterior surface 1714 to void 1709. Similarly, an inferior surface 1720 includes a corresponding slot 1722.
  • Referring to FIG. 123, plate 1704 includes a slot 1730 extending along a top surface 1732 thereof and a slot 1734 extending along a bottom surface 1736 thereof. Plate 1704 includes a pair of screw opening 1740, 1742 and a centrally located blocking screw 1744. An alternative embodiment of a plate 1704′, shown in FIG. 124, uses multiple blocking screws 1740′, 1744′, each for an individual screw opening 1740′, 1742′, with locking screws 1744′, 1746′ disposed laterally away from a center of plate 1740′ to allow plate 1740′ to be thinner than plate 1740 and still be able to secure screws (not shown) in screw openings 1740′, 1742′.
  • FIG. 125 shows in insertion device 1706 gripping both spacer 1702 and either plate 1704 or plate 1704′. Insertion device 1706 extends through slots 1730, 1712 and slots 1734, 1722, securing spacer 1702 and plate 1704, 1704′ to securing device 1706. After insertion, insertion device 1704 is slid posteriorly, decupling spacer 1702 and plate 1704, 1704′.
  • Referring to FIGS. 126 and 127, an alternative embodiment of an intervertebral spacer and plate assembly 1800 (“assembly 1800”) is shown. Assembly 1800 includes a spacer 1802 and a plate 1804. Spacer 1802 includes a body 1810 having a posterior portion 1812. Posterior portion 1812 includes a space 1814 that is sized to receive plate 1804. Plate 1804 can be inserted into space 1814 from a posterior direction or from a superior direction.
  • Spacer 1802 can include connections for an insertion device (not shown) similar to that disclosed with respect to spacer 102, described above. Assembly 1800 can be inserted as a unit and then, after insertion, the insertion device is removed and spacer 1802 and plate 1804 remain as separate components in the patient's spinal column.
  • Referring to FIGS. 128-130 an alternative embodiment of an intervertebral spacer and plate assembly 1900 (“assembly 1900”) is shown. Assembly 1900 includes a spacer 1902 and a plate 1904 or plate 1904′. Spacer 1902 includes a body 1910 having a posterior portion 1912. Posterior portion 1912 includes a threaded opening 1914 that is sized to receive an insertion tool (not shown). Each of plates 1904, 1904′ include a threaded connection 1920, 1920′ extending therethrough. Threaded connections 1920, 1920′ accept a threaded insertion device (not shown) that extends though plate 1904, 1904′ and into threaded opening 1914 in plate 1902. The threaded connection between the insertion device and spacer 1902 and plate 1904, 1904′ can be loose to provide for articulation during insertion, similar to the movement of a joystick. Once assembly 1900 is inserted, the insertion device is removed, and spacer 1902 and plate 1904, 1904′ remain as separate components in the patient's spinal column.
  • All of spacers 102-1902 described above can be constructed from biocompatible material, such a, for example, bone, PEEK, titanium, with or without surface treatments, and with varying porosity.
  • In some embodiments, any of the plates and spacers described above can be accompanied by other surgical implants, including rods and screws. One of skill in the art will appreciate that any of the plates and spacers can be used on multiple levels of the spine.
  • It will be further understood that various changes in the details, materials, and arrangements of the parts which have been described and illustrated in order to explain the nature of this invention may be made by those skilled in the art without departing from the scope of the invention as expressed in the following claims.

Claims (16)

What is claimed is:
1. A surgical method comprising:
(a) providing a plate and an intervertebral spacer adapted to be in contact with the plate, wherein both the plate and the spacer have lateral sides each having at least one recess;
(b) attaching, to the insertion tool, the plate and the spacer in contact with the plate by inserting the insertion tool to the recesses in the lateral sides of the plate and the spacer;
(c) delivering the attached plate and intervertebral spacer to a surgical site in a patient via the insertion tool;
(d) inserting the intervertebral spacer within a disc space;
(e) attaching the plate to one or more vertebral bodies adjacent the disc space; and
(f) removing the insertion tool such that the intervertebral spacer and plate are decoupled from each other at the surgical site.
2. The method of claim 1, wherein the insertion tool comprises a first distal finger and a second distal finger, and wherein step (b) includes inserting protrusions of the first and second fingers in the recesses of the plate and the spacer.
3. The method of claim 2, wherein each of the lateral sides of both the plate and the spacer includes at least two recesses and step (b) includes inserting protrusions of the first and second fingers in the at least two recesses of all of the lateral sides of the plate and the spacer.
4. The method of claim 2, wherein step (f) includes splaying the first and second fingers apart to release the insertion tool from the inserted plate and the inserted spacer.
5. The method of claim 4, wherein splaying includes pivoting the first and second fingers about a pivot point.
6. The method of claim 1, further comprising inserting graft material into an open graft area defined by the lateral sides of the intervertebral spacer.
7. The method of claim 1, wherein the plate includes an anterior surface and the intervertebral spacer includes a posterior surface and wherein step (a) comprises contacting the anterior surface with the posterior surface.
8. The method of claim 1, wherein:
the spacer includes a posterior side which together with the lateral sides define a graft window open to the posterior direction, the method further comprising inserting a graft material into the graft window which is open in the posterior direction.
9. A surgical method comprising:
(a) providing a plate and an intervertebral spacer adapted to be in contact with but not attached to the plate, wherein both the plate and the spacer have left and right lateral sides each having at least one recess open in a lateral direction to a central axis defined between a posterior end and an anterior end;
(b) attaching, to the insertion tool, the plate and the spacer in contact with the plate by inserting the insertion tool to the recesses in the left and right lateral sides of the plate and the spacer;
(c) delivering the attached plate and intervertebral spacer to a surgical site in a patient via the insertion tool with the attached plate and spacer;
(d) inserting the intervertebral spacer within a disc space;
(e) attaching the plate to one or more vertebral bodies adjacent the disc space; and
(f) removing the insertion tool such that the intervertebral spacer and plate are decoupled from each other at the surgical site.
10. The method of claim 9, wherein the insertion tool comprises a first distal finger and a second distal finger, and wherein step (b) includes inserting protrusions of the first and second fingers in the recesses of the plate and the spacer.
11. The method of claim 10, wherein each of the lateral sides of both the plate and the spacer includes at least two recesses and step (b) includes inserting protrusions of the first and second fingers in the at least two recesses of all of the lateral sides of the plate and the spacer.
12. The method of claim 10, wherein step (f) includes splaying the first and second fingers apart to release the insertion tool from the inserted plate and the inserted spacer.
13. The method of claim 12, wherein splaying includes pivoting the first and second fingers away from each other about a pivot point.
14. The method of claim 9, further comprising inserting graft material into an open graft area defined by the first and second lateral sides of the intervertebral spacer.
15. The method of claim 9, wherein the plate includes an anterior surface and the intervertebral spacer includes a posterior surface and wherein step (a) comprises contacting the anterior surface with the posterior surface.
16. The method of claim 9, wherein:
the spacer includes a posterior side which together with the lateral sides define a graft window open to the posterior direction, the method further comprising inserting a graft material into the graft window which is open in the posterior direction.
US17/663,441 2017-04-05 2022-05-16 Decoupled spacer and plate and method of installing the same Pending US20220346971A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/663,441 US20220346971A1 (en) 2017-04-05 2022-05-16 Decoupled spacer and plate and method of installing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/479,438 US10376385B2 (en) 2017-04-05 2017-04-05 Decoupled spacer and plate and method of installing the same
US16/458,467 US11369489B2 (en) 2017-04-05 2019-07-01 Decoupled spacer and plate and method of installing the same
US17/663,441 US20220346971A1 (en) 2017-04-05 2022-05-16 Decoupled spacer and plate and method of installing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/458,467 Continuation US11369489B2 (en) 2017-04-05 2019-07-01 Decoupled spacer and plate and method of installing the same

Publications (1)

Publication Number Publication Date
US20220346971A1 true US20220346971A1 (en) 2022-11-03

Family

ID=63710079

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/479,438 Active 2037-09-27 US10376385B2 (en) 2017-04-05 2017-04-05 Decoupled spacer and plate and method of installing the same
US16/458,467 Active 2038-02-08 US11369489B2 (en) 2017-04-05 2019-07-01 Decoupled spacer and plate and method of installing the same
US17/663,441 Pending US20220346971A1 (en) 2017-04-05 2022-05-16 Decoupled spacer and plate and method of installing the same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/479,438 Active 2037-09-27 US10376385B2 (en) 2017-04-05 2017-04-05 Decoupled spacer and plate and method of installing the same
US16/458,467 Active 2038-02-08 US11369489B2 (en) 2017-04-05 2019-07-01 Decoupled spacer and plate and method of installing the same

Country Status (1)

Country Link
US (3) US10376385B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11728339B2 (en) * 2019-09-24 2023-08-15 Meditech Spine, Llc Spinal fixation systems and methods
US11197765B2 (en) 2019-12-04 2021-12-14 Robert S. Bray, Jr. Artificial disc replacement device
US11839554B2 (en) 2020-01-23 2023-12-12 Robert S. Bray, Jr. Method of implanting an artificial disc replacement device

Family Cites Families (199)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1673630A (en) 1925-06-11 1928-06-12 Mechanical Rubber Co Paving construction
US2363405A (en) 1943-09-09 1944-11-21 James K Eichelberger Building construction
US2596957A (en) 1949-01-08 1952-05-13 Strombeck Becker Mfg Co Wooden toy train construction
US4599086A (en) 1985-06-07 1986-07-08 Doty James R Spine stabilization device and method
US4743256A (en) 1985-10-04 1988-05-10 Brantigan John W Surgical prosthetic implant facilitating vertebral interbody fusion and method
CH672588A5 (en) 1987-07-09 1989-12-15 Sulzer Ag
DE8807485U1 (en) 1988-06-06 1989-08-10 Mecron Medizinische Produkte Gmbh, 1000 Berlin, De
US5015247A (en) 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
US5609635A (en) 1988-06-28 1997-03-11 Michelson; Gary K. Lordotic interbody spinal fusion implants
ES2124288T3 (en) 1992-11-25 1999-02-01 Codman & Shurtleff PLATE SYSTEM FOR OSTEOSYNTHESIS.
US5364399A (en) 1993-02-05 1994-11-15 Danek Medical, Inc. Anterior cervical plating system
US6066175A (en) 1993-02-16 2000-05-23 Henderson; Fraser C. Fusion stabilization chamber
US5458641A (en) 1993-09-08 1995-10-17 Ramirez Jimenez; Juan J. Vertebral body prosthesis
US5397364A (en) 1993-10-12 1995-03-14 Danek Medical, Inc. Anterior interbody fusion device
US5514180A (en) 1994-01-14 1996-05-07 Heggeness; Michael H. Prosthetic intervertebral devices
CA2551185C (en) 1994-03-28 2007-10-30 Sdgi Holdings, Inc. Apparatus and method for anterior spinal stabilization
FR2727003B1 (en) 1994-11-18 1997-04-18 Euros Sa ANTERIOR STABILIZATION DEVICE OF THE LOMBO-SACRE SPINE
US6206922B1 (en) 1995-03-27 2001-03-27 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
US5989289A (en) 1995-10-16 1999-11-23 Sdgi Holdings, Inc. Bone grafts
ATE203886T1 (en) 1995-10-20 2001-08-15 Synthes Ag INTERVERBEL IMPLANT
WO1997020526A1 (en) 1995-12-08 1997-06-12 Bray Robert S Jr Anterior stabilization device
FR2742653B1 (en) 1995-12-21 1998-02-27 Colorado INTERSOMATIC VERTEBRAL CAGE
US5814084A (en) 1996-01-16 1998-09-29 University Of Florida Tissue Bank, Inc. Diaphysial cortical dowel
FR2747034B1 (en) 1996-04-03 1998-06-19 Scient X INTERSOMATIC CONTAINMENT AND MERGER SYSTEM
AU732421B2 (en) 1996-10-23 2001-04-26 Warsaw Orthopedic, Inc. Spinal spacer
US5728159A (en) 1997-01-02 1998-03-17 Musculoskeletal Transplant Foundation Serrated bone graft
US6139550A (en) 1997-02-11 2000-10-31 Michelson; Gary K. Skeletal plating system
US5861041A (en) 1997-04-07 1999-01-19 Arthit Sitiso Intervertebral disk prosthesis and method of making the same
US6045579A (en) 1997-05-01 2000-04-04 Spinal Concepts, Inc. Adjustable height fusion device
US6033438A (en) 1997-06-03 2000-03-07 Sdgi Holdings, Inc. Open intervertebral spacer
US5972368A (en) 1997-06-11 1999-10-26 Sdgi Holdings, Inc. Bone graft composites and spacers
US6146421A (en) 1997-08-04 2000-11-14 Gordon, Maya, Roberts And Thomas, Number 1, Llc Multiple axis intervertebral prosthesis
WO1999009914A1 (en) 1997-08-27 1999-03-04 University Of Florida Tissue Bank, Inc. Cortical bone cervical smith-robinson fusion implant
US7048762B1 (en) 1997-08-27 2006-05-23 Regeneration Technologies, Inc. Elongated cortical bone implant
US20020138143A1 (en) 1997-08-27 2002-09-26 Grooms Jamie M. Cortical bone cervical Smith-Robinson fusion implant
US6511509B1 (en) 1997-10-20 2003-01-28 Lifenet Textured bone allograft, method of making and using same
US5899939A (en) 1998-01-21 1999-05-04 Osteotech, Inc. Bone-derived implant for load-supporting applications
US6482233B1 (en) 1998-01-29 2002-11-19 Synthes(U.S.A.) Prosthetic interbody spacer
US6143033A (en) 1998-01-30 2000-11-07 Synthes (Usa) Allogenic intervertebral implant
US6986788B2 (en) 1998-01-30 2006-01-17 Synthes (U.S.A.) Intervertebral allograft spacer
USRE38614E1 (en) 1998-01-30 2004-10-05 Synthes (U.S.A.) Intervertebral allograft spacer
US7087082B2 (en) 1998-08-03 2006-08-08 Synthes (Usa) Bone implants with central chambers
US6258125B1 (en) 1998-08-03 2001-07-10 Synthes (U.S.A.) Intervertebral allograft spacer
US6258089B1 (en) 1998-05-19 2001-07-10 Alphatec Manufacturing, Inc. Anterior cervical plate and fixation system
US7147665B1 (en) 1998-07-22 2006-12-12 Sdgi Holdings, Inc. Threaded cylindrical multidiscoid single or multiple array disc prosthesis
EP1102568A1 (en) 1998-08-06 2001-05-30 SDGI Holdings, Inc. Composited intervertebral bone spacers
US6113637A (en) 1998-10-22 2000-09-05 Sofamor Danek Holdings, Inc. Artificial intervertebral joint permitting translational and rotational motion
US6174311B1 (en) 1998-10-28 2001-01-16 Sdgi Holdings, Inc. Interbody fusion grafts and instrumentation
US6156037A (en) 1998-10-28 2000-12-05 Sdgi Holdings, Inc. Anterior lateral spine cage-plate fixation device and technique
US6025538A (en) 1998-11-20 2000-02-15 Musculoskeletal Transplant Foundation Compound bone structure fabricated from allograft tissue
US6200347B1 (en) 1999-01-05 2001-03-13 Lifenet Composite bone graft, method of making and using same
US6206923B1 (en) 1999-01-08 2001-03-27 Sdgi Holdings, Inc. Flexible implant using partially demineralized bone
FR2788686B1 (en) 1999-01-26 2001-06-08 Scient X INTERSOMATIC IMPLANT WITH SAGITTAL INTRODUCTION SUITABLE FOR LATERAL SHIFT IN THE FRONTAL PLANE
US6929662B1 (en) 1999-02-04 2005-08-16 Synthes (Usa) End member for a bone fusion implant
US6294187B1 (en) 1999-02-23 2001-09-25 Osteotech, Inc. Load-bearing osteoimplant, method for its manufacture and method of repairing bone using same
US6245108B1 (en) 1999-02-25 2001-06-12 Spineco Spinal fusion implant
US6342074B1 (en) 1999-04-30 2002-01-29 Nathan S. Simpson Anterior lumbar interbody fusion implant and method for fusing adjacent vertebrae
US6558423B1 (en) 1999-05-05 2003-05-06 Gary K. Michelson Interbody spinal fusion implants with multi-lock for locking opposed screws
US7094239B1 (en) 1999-05-05 2006-08-22 Sdgi Holdings, Inc. Screws of cortical bone and method of manufacture thereof
US6231610B1 (en) 1999-08-25 2001-05-15 Allegiance Corporation Anterior cervical column support device
US7918888B2 (en) 1999-10-13 2011-04-05 Hamada James S Spinal fusion instrumentation, implant and method
US6830570B1 (en) 1999-10-21 2004-12-14 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
US6764491B2 (en) 1999-10-21 2004-07-20 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
WO2001028469A2 (en) 1999-10-21 2001-04-26 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
DE19952939A1 (en) 1999-11-03 2001-05-10 Tutogen Medical Gmbh Bone material implant
US6432106B1 (en) 1999-11-24 2002-08-13 Depuy Acromed, Inc. Anterior lumbar interbody fusion cage with locking plate
US6827740B1 (en) 1999-12-08 2004-12-07 Gary K. Michelson Spinal implant surface configuration
WO2001049220A1 (en) 1999-12-30 2001-07-12 Osteotech, Inc. Intervertebral implants
US6379385B1 (en) 2000-01-06 2002-04-30 Tutogen Medical Gmbh Implant of bone matter
US6709458B2 (en) 2000-02-04 2004-03-23 Gary Karlin Michelson Expandable push-in arcuate interbody spinal fusion implant with tapered configuration during insertion
WO2001078798A1 (en) 2000-02-10 2001-10-25 Regeneration Technologies, Inc. Assembled implant
AR027685A1 (en) 2000-03-22 2003-04-09 Synthes Ag METHOD AND METHOD FOR CARRYING OUT
US6821298B1 (en) 2000-04-18 2004-11-23 Roger P. Jackson Anterior expandable spinal fusion cage system
US6350283B1 (en) 2000-04-19 2002-02-26 Gary K. Michelson Bone hemi-lumbar interbody spinal implant having an asymmetrical leading end and method of installation thereof
EP1280564B1 (en) 2000-05-12 2005-08-31 Osteotech, Inc. Surface demineralized osteoimplant and method for making same
US6579318B2 (en) 2000-06-12 2003-06-17 Ortho Development Corporation Intervertebral spacer
AU2001274821A1 (en) 2000-06-13 2001-12-24 Gary K. Michelson Manufactured major long bone ring implant shaped to conform to a prepared intervertebral implantation space
WO2002002156A2 (en) 2000-07-03 2002-01-10 Osteotech, Inc. Osteogenic implants derived from bone
US6808537B2 (en) 2000-07-07 2004-10-26 Gary Karlin Michelson Expandable implant with interlocking walls
WO2002003885A2 (en) 2000-07-10 2002-01-17 Michelson Gary K Flanged interbody spinal fusion implants
US6852126B2 (en) 2000-07-17 2005-02-08 Nuvasive, Inc. Stackable interlocking intervertebral support system
US6638310B2 (en) 2000-07-26 2003-10-28 Osteotech, Inc. Intervertebral spacer and implant insertion instrumentation
US6629998B1 (en) 2000-08-23 2003-10-07 Chih-I Lin Intervertebral retrieval device
US6761738B1 (en) 2000-09-19 2004-07-13 Sdgi Holdings, Inc. Reinforced molded implant formed of cortical bone
US6432436B1 (en) 2000-10-03 2002-08-13 Musculoskeletal Transplant Foundation Partially demineralized cortical bone constructs
AU2002225831A1 (en) 2000-11-03 2002-05-15 Osteotech, Inc. Spinal intervertebral implant and method of making
US6520993B2 (en) 2000-12-29 2003-02-18 Depuy Acromed, Inc. Spinal implant
US6468311B2 (en) 2001-01-22 2002-10-22 Sdgi Holdings, Inc. Modular interbody fusion implant
US6972019B2 (en) 2001-01-23 2005-12-06 Michelson Gary K Interbody spinal implant with trailing end adapted to receive bone screws
AU2001226616B2 (en) 2001-01-30 2005-03-17 Synthes Gmbh Bone implant, in particular, an inter-vertebral implant
US6558387B2 (en) 2001-01-30 2003-05-06 Fastemetix, Llc Porous interbody fusion device having integrated polyaxial locking interference screws
US6562073B2 (en) 2001-02-06 2003-05-13 Sdgi Holding, Inc. Spinal bone implant
CA2438033A1 (en) 2001-02-14 2002-08-22 Osteotech, Inc. Implant derived from bone
JP4790917B2 (en) 2001-02-23 2011-10-12 独立行政法人科学技術振興機構 Artificial vertebral body
US6776800B2 (en) 2001-02-28 2004-08-17 Synthes (U.S.A.) Implants formed with demineralized bone
US6849093B2 (en) 2001-03-09 2005-02-01 Gary K. Michelson Expansion constraining member adapted for use with an expandable interbody spinal fusion implant and method for use thereof
DE10116412C1 (en) 2001-04-02 2003-01-16 Ulrich Gmbh & Co Kg Implant to be inserted between the vertebral body of the spine
US6749636B2 (en) 2001-04-02 2004-06-15 Gary K. Michelson Contoured spinal fusion implants made of bone or a bone composite material
FR2822674B1 (en) 2001-04-03 2003-06-27 Scient X STABILIZED INTERSOMATIC MELTING SYSTEM FOR VERTEBERS
FR2823096B1 (en) 2001-04-06 2004-03-19 Materiel Orthopedique En Abreg PLATE FOR LTE AND LTE VERTEBRATE OSTEOSYNTHESIS DEVICE, OSTEOSYNTHESIS DEVICE INCLUDING SUCH A PLATE, AND INSTRUMENT FOR LAYING SUCH A PLATE
US6719794B2 (en) 2001-05-03 2004-04-13 Synthes (U.S.A.) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US6974480B2 (en) 2001-05-03 2005-12-13 Synthes (Usa) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US6558424B2 (en) 2001-06-28 2003-05-06 Depuy Acromed Modular anatomic fusion device
FR2827156B1 (en) 2001-07-13 2003-11-14 Ldr Medical VERTEBRAL CAGE DEVICE WITH MODULAR FASTENING
US7018412B2 (en) 2001-08-20 2006-03-28 Ebi, L.P. Allograft spinal implant
EP1287795B1 (en) 2001-08-24 2008-06-18 Zimmer GmbH Artificial spinal disc
DE10152567A1 (en) 2001-10-24 2003-05-08 Tutogen Medical Gmbh implant
US20030139812A1 (en) 2001-11-09 2003-07-24 Javier Garcia Spinal implant
US7025787B2 (en) 2001-11-26 2006-04-11 Sdgi Holdings, Inc. Implantable joint prosthesis and associated instrumentation
US6855167B2 (en) 2001-12-05 2005-02-15 Osteotech, Inc. Spinal intervertebral implant, interconnections for such implant and processes for making
US7238203B2 (en) 2001-12-12 2007-07-03 Vita Special Purpose Corporation Bioactive spinal implants and method of manufacture thereof
US6740118B2 (en) 2002-01-09 2004-05-25 Sdgi Holdings, Inc. Intervertebral prosthetic joint
US6923830B2 (en) 2002-02-02 2005-08-02 Gary K. Michelson Spinal fusion implant having deployable bone engaging projections
AR038680A1 (en) 2002-02-19 2005-01-26 Synthes Ag INTERVERTEBRAL IMPLANT
FR2836373B1 (en) 2002-02-26 2005-03-25 Materiel Orthopedique En Abreg CONNECTING INTERSOMATIC IMPLANTS FOR INSERTING BONE GRAFT FOR REALIZING INTERVERTEBRAL FUSION, INSTRUMENTS FOR CONNECTING THESE IMPLANTS
US6682563B2 (en) 2002-03-04 2004-01-27 Michael S. Scharf Spinal fixation device
RU2303422C2 (en) 2002-03-12 2007-07-27 Сервитек Инк. Intervertebral prosthesis and system of intervertebral prostheses, in peculiar case, for cervical department of vertebral column
US7309359B2 (en) 2003-08-21 2007-12-18 Warsaw Orthopedic, Inc. Allogenic/xenogenic implants and methods for augmenting or repairing intervertebral discs
US6899735B2 (en) 2002-10-02 2005-05-31 Sdgi Holdings, Inc. Modular intervertebral prosthesis system
US7323011B2 (en) 2002-10-18 2008-01-29 Musculoskeletal Transplant Foundation Cortical and cancellous allograft cervical fusion block
US7497859B2 (en) 2002-10-29 2009-03-03 Kyphon Sarl Tools for implanting an artificial vertebral disk
AU2003287370B2 (en) 2002-10-31 2009-05-07 Zimmer Spine, Inc. Movable disc implant
US7320708B1 (en) 2002-11-13 2008-01-22 Sdgi Holdings, Inc. Cervical interbody device
US6761739B2 (en) 2002-11-25 2004-07-13 Musculoskeletal Transplant Foundation Cortical and cancellous allograft spacer
US7192447B2 (en) 2002-12-19 2007-03-20 Synthes (Usa) Intervertebral implant
ES2358586T3 (en) 2003-02-06 2011-05-12 Synthes Gmbh INTERVERTEBRAL IMPLANT.
US20040176853A1 (en) 2003-03-05 2004-09-09 Sennett Andrew R. Apparatus and method for spinal fusion using posteriorly implanted devices
US6908484B2 (en) 2003-03-06 2005-06-21 Spinecore, Inc. Cervical disc replacement
US7112222B2 (en) 2003-03-31 2006-09-26 Depuy Spine, Inc. Anterior lumbar interbody fusion cage with locking plate
US8613772B2 (en) 2003-04-21 2013-12-24 Rsb Spine Llc Lateral mount implant device
US9278009B2 (en) 2003-04-21 2016-03-08 Rsb Spine Llc Spine implants
US8100976B2 (en) 2003-04-21 2012-01-24 Rsb Spine Llc Implant subsidence control
NZ544724A (en) 2003-07-22 2010-03-26 Synthes Gmbh Intervertebral implant comprising dome-shaped joint surfaces
US7153325B2 (en) 2003-08-01 2006-12-26 Ultra-Kinetics, Inc. Prosthetic intervertebral disc and methods for using the same
US7226482B2 (en) 2003-09-02 2007-06-05 Synthes (U.S.A.) Multipiece allograft implant
US7766914B2 (en) 2003-09-10 2010-08-03 Warsaw Orthopedic, Inc. Adjustable drill guide
US7794465B2 (en) 2003-09-10 2010-09-14 Warsaw Orthopedic, Inc. Artificial spinal discs and associated implantation instruments and methods
US7235105B2 (en) 2003-09-18 2007-06-26 Jackson Roger P Threaded center line cage with winged end gap
US20050065607A1 (en) 2003-09-24 2005-03-24 Gross Jeffrey M. Assembled fusion implant
WO2005041816A2 (en) 2003-10-20 2005-05-12 Blackstone Medical, Inc. Vertebral body replacement apparatus and method
GB0325421D0 (en) 2003-10-30 2003-12-03 Gill Steven S An intervertebral prosthesis
US7837732B2 (en) 2003-11-20 2010-11-23 Warsaw Orthopedic, Inc. Intervertebral body fusion cage with keels and implantation methods
US20050149192A1 (en) 2003-11-20 2005-07-07 St. Francis Medical Technologies, Inc. Intervertebral body fusion cage with keels and implantation method
US7137997B2 (en) 2003-12-29 2006-11-21 Globus Medical, Inc. Spinal fusion implant
US20050171550A1 (en) 2004-01-30 2005-08-04 Sdgi Holdings, Inc. Anatomic implants designed to minimize instruments and surgical techniques
ATE543462T1 (en) 2004-03-26 2012-02-15 Synthes Usa ALLO-IMPLANT
US7833271B2 (en) 2004-05-04 2010-11-16 Zimmer Spine, Inc. Spinal implants with body and insert
CA2570192C (en) 2004-06-30 2011-08-16 Synergy Disc Replacement, Inc. Artificial spinal disc
US8172904B2 (en) 2004-06-30 2012-05-08 Synergy Disc Replacement, Inc. Artificial spinal disc
US20060129240A1 (en) 2004-12-10 2006-06-15 Joe Lessar Implants based on engineered composite materials having enhanced imaging and wear resistance
US7763061B2 (en) 2004-12-23 2010-07-27 Kimberly-Clark Worldwide, Inc. Thermal coverings
US7309357B2 (en) 2004-12-30 2007-12-18 Infinesse, Corporation Prosthetic spinal discs
WO2006104722A2 (en) 2005-03-24 2006-10-05 Accelerated Innovation, Llc Intervertebral disc replacement device
AU2006236548A1 (en) 2005-04-15 2006-10-26 Musculoskeletal Transplant Foundation Vertebral disc repair
US20060241760A1 (en) 2005-04-26 2006-10-26 Brandon Randall Spinal implant
GB0508678D0 (en) 2005-04-28 2005-06-08 Cope Aiden Motion segment intervertebral disc prosthesis
US7473354B2 (en) 2005-09-16 2009-01-06 Dionex Corporation Recycled suppressor regenerants
US7815682B1 (en) 2005-09-24 2010-10-19 Nuvasive, Inc. Spinal fusion implant and related methods
US20070123987A1 (en) 2005-11-02 2007-05-31 Bernstein Avi J Curvilinear cervical interbody device
FR2893838B1 (en) 2005-11-30 2008-08-08 Ldr Medical Soc Par Actions Si PROSTHESIS OF INTERVERTEBRAL DISC AND INSTRUMENTATION OF INSERTION OF THE PROSTHESIS BETWEEN VERTEBRATES
US20070135923A1 (en) 2005-12-14 2007-06-14 Sdgi Holdings, Inc. Ceramic and polymer prosthetic device
US7815680B2 (en) 2006-01-13 2010-10-19 Nabil L. Muhanna Flexible vertebral implant
WO2007098288A2 (en) 2006-02-27 2007-08-30 Synthes (U.S.A.) Intervertebral implant with fixation geometry
US20070225806A1 (en) 2006-03-24 2007-09-27 Sdgi Holdings, Inc. Arthroplasty device
US8366776B2 (en) 2006-04-13 2013-02-05 Warsaw Orthopedic, Inc. Vertebral implants having predetermined angular correction and method of use
US20070270961A1 (en) 2006-04-25 2007-11-22 Sdgi Holdings, Inc. Spinal implant with deployable and retractable barbs
US20070255414A1 (en) 2006-05-01 2007-11-01 Sdgi Holdings, Inc. Intervertebral implants with one or more covers and methods of use
US8998990B2 (en) 2006-07-24 2015-04-07 DePuy Synthes Products, LLC Intervertebral implant with keel
US8114162B1 (en) 2006-08-09 2012-02-14 Nuvasive, Inc. Spinal fusion implant and related methods
US8100975B2 (en) 2006-08-11 2012-01-24 Warsaw Orthopedic, Inc. Intervertebral implants with attachable flanges and methods of use
US8025697B2 (en) 2006-09-21 2011-09-27 Custom Spine, Inc. Articulating interbody spacer, vertebral body replacement
US7850731B2 (en) 2006-10-04 2010-12-14 Seaspine, Inc. Articulating spinal implant
US20080154379A1 (en) 2006-12-22 2008-06-26 Musculoskeletal Transplant Foundation Interbody fusion hybrid graft
USD580551S1 (en) 2007-02-01 2008-11-11 Zimmer Spine, Inc. Spinal implant
US20080249569A1 (en) 2007-04-03 2008-10-09 Warsaw Orthopedic, Inc. Implant Face Plates
US7967867B2 (en) 2007-05-31 2011-06-28 Spine Wave, Inc. Expandable interbody fusion device
US8273127B2 (en) 2007-06-06 2012-09-25 Spinesmith Partners, L.P. Interbody fusion device and associated methods
US8500811B2 (en) 2007-07-02 2013-08-06 Spinal Elements, Inc. Device and method for delivery of multiple heterogenous orthopedic implants
US8172854B2 (en) 2007-07-19 2012-05-08 Spinal Elements, Inc. Attachable instrument guide with detachable handle
US8685099B2 (en) 2007-08-14 2014-04-01 Warsaw Orthopedic, Inc. Multiple component osteoimplant
US20090076608A1 (en) 2007-09-17 2009-03-19 Vermillion Technologies, Llc Intervertebral disc replacement prosthesis
EP2217179A1 (en) 2007-11-16 2010-08-18 Synthes GmbH Low profile intervertebral implant
US20090210062A1 (en) 2008-02-20 2009-08-20 John Thalgott Orthopaedic Implants and Prostheses
US8328872B2 (en) 2008-09-02 2012-12-11 Globus Medical, Inc. Intervertebral fusion implant
US9192419B2 (en) 2008-11-07 2015-11-24 DePuy Synthes Products, Inc. Zero-profile interbody spacer and coupled plate assembly
FR2944692B1 (en) 2009-04-27 2011-04-15 Medicrea International MATERIAL OF VERTEBRAL OSTEOSYNTHESIS
US9700434B2 (en) 2009-08-10 2017-07-11 Howmedica Osteonics Corp. Intervertebral implant with integrated fixation
US9155631B2 (en) 2010-04-08 2015-10-13 Globus Medical Inc. Intervertbral implant
US20120078373A1 (en) 2010-09-23 2012-03-29 Thomas Gamache Stand alone intervertebral fusion device
US8840667B1 (en) 2011-06-16 2014-09-23 Luis M Tumialán Spinal plate system and related methods
US8961606B2 (en) 2011-09-16 2015-02-24 Globus Medical, Inc. Multi-piece intervertebral implants
WO2013075091A1 (en) 2011-11-17 2013-05-23 Allosource Multi-piece machine graft systems and methods
WO2014188280A2 (en) 2013-01-16 2014-11-27 Retrospine Pty Ltd Spinal plate selection and positioning system
US9572680B2 (en) * 2013-01-25 2017-02-21 K2M, Inc. Spinal implants, spinal implant kits, and surgical methods
US9180022B2 (en) * 2013-06-28 2015-11-10 DePuy Synthes Products, Inc. Spinal alignment clip
US10603187B2 (en) 2013-07-17 2020-03-31 Aesculap Implant Systems, Llc Spinal interbody device, system and method
US20160058564A1 (en) 2014-09-03 2016-03-03 Globus Medical Inc. Intervertebral Implants and Related Methods of Use
US10258479B2 (en) 2015-08-15 2019-04-16 Ldr Medical Devices, methods, and systems to implant and secure a fusion cage or intervertebral prosthesis for spinal treatment
US11452608B2 (en) 2017-04-05 2022-09-27 Globus Medical, Inc. Decoupled spacer and plate and method of installing the same

Also Published As

Publication number Publication date
US20190321199A1 (en) 2019-10-24
US11369489B2 (en) 2022-06-28
US10376385B2 (en) 2019-08-13
US20180289495A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
US11285015B2 (en) Decoupled spacer and plate and method of installing the same
US11331201B2 (en) Standalone interbody implants
US20200253748A1 (en) Bone fusion device, apparatus and method
US20220346971A1 (en) Decoupled spacer and plate and method of installing the same
US11471284B2 (en) Spinal implant system
US20120041559A1 (en) Interbody spinal implants with extravertebral support plates
EP2667826A2 (en) Interbody spinal implants with modular add-on devices
US9358048B2 (en) Fusion implant for facet joints
US11596447B2 (en) Bone anchor with deployable purchase element
US9839449B2 (en) Translational plate and compressor instrument

Legal Events

Date Code Title Description
AS Assignment

Owner name: GLOBUS MEDICAL, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRAY, JASON;FROMHOLD, MARK;HANSEN, BRITTANY;AND OTHERS;SIGNING DATES FROM 20170329 TO 20170330;REEL/FRAME:059913/0284

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED