US20220306663A1 - Metal Tricarbonyl Complexes Comprising Substituted Iminodiactic Acid Ligands and Uses as Radioisotope Tracers - Google Patents
Metal Tricarbonyl Complexes Comprising Substituted Iminodiactic Acid Ligands and Uses as Radioisotope Tracers Download PDFInfo
- Publication number
- US20220306663A1 US20220306663A1 US17/836,994 US202217836994A US2022306663A1 US 20220306663 A1 US20220306663 A1 US 20220306663A1 US 202217836994 A US202217836994 A US 202217836994A US 2022306663 A1 US2022306663 A1 US 2022306663A1
- Authority
- US
- United States
- Prior art keywords
- imaging
- certain embodiments
- renal
- tracer
- metal tricarbonyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title abstract description 56
- 239000002184 metal Substances 0.000 title abstract description 56
- 239000003446 ligand Substances 0.000 title abstract description 22
- 239000002253 acid Substances 0.000 title description 4
- 238000003384 imaging method Methods 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 47
- HXOKARLQOREWIZ-UHFFFAOYSA-N 2-[carboxymethyl(2-fluoroethyl)amino]acetic acid Chemical compound OC(=O)CN(CCF)CC(O)=O HXOKARLQOREWIZ-UHFFFAOYSA-N 0.000 claims description 13
- NBZBKCUXIYYUSX-UHFFFAOYSA-M ammoniodiacetate Chemical compound [O-]C(=O)C[NH2+]CC([O-])=O NBZBKCUXIYYUSX-UHFFFAOYSA-M 0.000 claims 2
- 239000000203 mixture Substances 0.000 abstract description 25
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical class OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 abstract description 15
- 229910052731 fluorine Inorganic materials 0.000 abstract description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 abstract description 2
- 239000011737 fluorine Substances 0.000 abstract description 2
- YCKRFDGAMUMZLT-BJUDXGSMSA-N fluorine-18 atom Chemical compound [18F] YCKRFDGAMUMZLT-BJUDXGSMSA-N 0.000 abstract 1
- 239000000700 radioactive tracer Substances 0.000 description 51
- 241001465754 Metazoa Species 0.000 description 34
- 210000003734 kidney Anatomy 0.000 description 30
- 125000000217 alkyl group Chemical group 0.000 description 20
- KRHYYFGTRYWZRS-BJUDXGSMSA-N ac1l2y5h Chemical compound [18FH] KRHYYFGTRYWZRS-BJUDXGSMSA-N 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 18
- -1 n-septyl Chemical group 0.000 description 18
- 230000002285 radioactive effect Effects 0.000 description 15
- 238000002600 positron emission tomography Methods 0.000 description 14
- 239000002243 precursor Substances 0.000 description 14
- 238000002603 single-photon emission computed tomography Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 12
- 230000003907 kidney function Effects 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- 229910052736 halogen Inorganic materials 0.000 description 10
- 150000002367 halogens Chemical class 0.000 description 10
- 238000004128 high performance liquid chromatography Methods 0.000 description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 10
- 239000012216 imaging agent Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 229920000858 Cyclodextrin Polymers 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000008194 pharmaceutical composition Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 101100208721 Mus musculus Usp5 gene Proteins 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 8
- 210000004369 blood Anatomy 0.000 description 8
- 239000008280 blood Substances 0.000 description 8
- 239000002738 chelating agent Substances 0.000 description 8
- 239000012217 radiopharmaceutical Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 7
- 125000003545 alkoxy group Chemical group 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000002372 labelling Methods 0.000 description 7
- YYYFRRSYTVJIOE-WWAIPBPMSA-N (2S,4R)-4-[[2-[(1R,3R)-1-acetyloxy-3-[[(2S,3S)-2-[[(2R)-1,2-dimethylpyrrolidine-2-carbonyl]amino]-3-methylpentanoyl]-methylamino]-4-methylpentyl]-1,3-thiazole-4-carbonyl]amino]-5-(4-aminophenyl)-2-methylpentanoic acid Chemical compound CC[C@H](C)[C@H](NC(=O)[C@@]1(C)CCCN1C)C(=O)N(C)[C@H](C[C@@H](OC(C)=O)c1nc(cs1)C(=O)N[C@H](C[C@H](C)C(O)=O)Cc1ccc(N)cc1)C(C)C YYYFRRSYTVJIOE-WWAIPBPMSA-N 0.000 description 6
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- ZCYVEMRRCGMTRW-AHCXROLUSA-N Iodine-123 Chemical compound [123I] ZCYVEMRRCGMTRW-AHCXROLUSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 239000002739 cryptand Substances 0.000 description 6
- 229940121896 radiopharmaceutical Drugs 0.000 description 6
- 230000002799 radiopharmaceutical effect Effects 0.000 description 6
- 210000002700 urine Anatomy 0.000 description 6
- CORFWQGVBFFZHF-AKGSDVBQSA-N 2-[(2-iodanylbenzoyl)amino]acetic acid Chemical compound OC(=O)CNC(=O)C1=CC=CC=C1[131I] CORFWQGVBFFZHF-AKGSDVBQSA-N 0.000 description 5
- 239000001116 FEMA 4028 Substances 0.000 description 5
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 5
- 229960004853 betadex Drugs 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 125000005647 linker group Chemical group 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- KHZTXXYBGJCHHU-UHFFFAOYSA-N 2-[carboxymethyl-[2-(4-methylphenyl)sulfonyloxyethyl]amino]acetic acid Chemical compound S(=O)(=O)(C1=CC=C(C)C=C1)OCCN(CC(=O)O)CC(=O)O KHZTXXYBGJCHHU-UHFFFAOYSA-N 0.000 description 4
- AUFVJZSDSXXFOI-UHFFFAOYSA-N 2.2.2-cryptand Chemical compound C1COCCOCCN2CCOCCOCCN1CCOCCOCC2 AUFVJZSDSXXFOI-UHFFFAOYSA-N 0.000 description 4
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 4
- 229920001450 Alpha-Cyclodextrin Polymers 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 229940043377 alpha-cyclodextrin Drugs 0.000 description 4
- 239000012472 biological sample Substances 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- OKTJSMMVPCPJKN-BJUDXGSMSA-N carbon-11 Chemical compound [11C] OKTJSMMVPCPJKN-BJUDXGSMSA-N 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- KRHYYFGTRYWZRS-BJUDXGSMSA-M fluorine-18(1-) Chemical compound [18F-] KRHYYFGTRYWZRS-BJUDXGSMSA-M 0.000 description 4
- 125000001153 fluoro group Chemical group F* 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000005258 radioactive decay Effects 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- PUMYFTJOWAJIKF-UHFFFAOYSA-N ro5-4864 Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=C(Cl)C=C1 PUMYFTJOWAJIKF-UHFFFAOYSA-N 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 230000036962 time dependent Effects 0.000 description 4
- NLMDJJTUQPXZFG-UHFFFAOYSA-N 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane Chemical compound C1COCCOCCNCCOCCOCCN1 NLMDJJTUQPXZFG-UHFFFAOYSA-N 0.000 description 3
- 238000004293 19F NMR spectroscopy Methods 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- QZTKDVCDBIDYMD-UHFFFAOYSA-N 2,2'-[(2-amino-2-oxoethyl)imino]diacetic acid Chemical compound NC(=O)CN(CC(O)=O)CC(O)=O QZTKDVCDBIDYMD-UHFFFAOYSA-N 0.000 description 3
- CQNGAZMLFIMLQN-UHFFFAOYSA-N 2,5,8,11,14-pentaoxabicyclo[13.4.0]nonadeca-1(15),16,18-trien-17-amine Chemical compound O1CCOCCOCCOCCOC2=CC(N)=CC=C21 CQNGAZMLFIMLQN-UHFFFAOYSA-N 0.000 description 3
- NVKLTRSBZLYZHK-UHFFFAOYSA-N 4-tert-butylcalix[4]arene Chemical compound C1C(C=2O)=CC(C(C)(C)C)=CC=2CC(C=2O)=CC(C(C)(C)C)=CC=2CC(C=2O)=CC(C(C)(C)C)=CC=2CC2=CC(C(C)(C)C)=CC1=C2O NVKLTRSBZLYZHK-UHFFFAOYSA-N 0.000 description 3
- UOEYZAXKBKAKRO-UHFFFAOYSA-N 5,11,17,23,29,35-hexa-tert-butylcalix[6]arene-37,38,39,40,41,42-hexol Chemical compound C1C(C=2O)=CC(C(C)(C)C)=CC=2CC(C=2O)=CC(C(C)(C)C)=CC=2CC(C=2O)=CC(C(C)(C)C)=CC=2CC(C=2O)=CC(C(C)(C)C)=CC=2CC(C=2O)=CC(C(C)(C)C)=CC=2CC2=CC(C(C)(C)C)=CC1=C2O UOEYZAXKBKAKRO-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229910003827 NRaRb Inorganic materials 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 229960005070 ascorbic acid Drugs 0.000 description 3
- 235000010323 ascorbic acid Nutrition 0.000 description 3
- 239000011668 ascorbic acid Substances 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 150000003983 crown ethers Chemical class 0.000 description 3
- 238000007405 data analysis Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 230000029142 excretion Effects 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 229910052713 technetium Inorganic materials 0.000 description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- NBXKUSNBCPPKRA-UHFFFAOYSA-N 1,4,7,10,13-pentaoxa-16-azacyclooctadecane Chemical compound C1COCCOCCOCCOCCOCCN1 NBXKUSNBCPPKRA-UHFFFAOYSA-N 0.000 description 2
- AGNCFNQAIMILOU-UHFFFAOYSA-N 1,4,7,10,13-pentaoxacyclopentadec-2-ylmethanamine Chemical compound NCC1COCCOCCOCCOCCO1 AGNCFNQAIMILOU-UHFFFAOYSA-N 0.000 description 2
- BJUOQSZSDIHZNP-UHFFFAOYSA-N 1,4,7,10-tetraoxa-13-azacyclopentadecane Chemical compound C1COCCOCCOCCOCCN1 BJUOQSZSDIHZNP-UHFFFAOYSA-N 0.000 description 2
- JTLAIKFGRHDNQM-UHFFFAOYSA-N 1-bromo-2-fluoroethane Chemical compound FCCBr JTLAIKFGRHDNQM-UHFFFAOYSA-N 0.000 description 2
- PSFJQUGCUJJHIS-UHFFFAOYSA-N 17-nitro-2,5,8,11,14-pentaoxabicyclo[13.4.0]nonadeca-1(15),16,18-trien-18-amine Chemical compound O1CCOCCOCCOCCOC2=C1C=C(N)C([N+]([O-])=O)=C2 PSFJQUGCUJJHIS-UHFFFAOYSA-N 0.000 description 2
- SVUOLADPCWQTTE-UHFFFAOYSA-N 1h-1,2-benzodiazepine Chemical compound N1N=CC=CC2=CC=CC=C12 SVUOLADPCWQTTE-UHFFFAOYSA-N 0.000 description 2
- WXTMDXOMEHJXQO-UHFFFAOYSA-N 2,5-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC(O)=CC=C1O WXTMDXOMEHJXQO-UHFFFAOYSA-N 0.000 description 2
- JKLZYDGPENNXSJ-UHFFFAOYSA-N 2,8,14,20-tetra(undecyl)pentacyclo[19.3.1.13,7.19,13.115,19]octacosa-1(25),3(28),4,6,9(27),10,12,15,17,19(26),21,23-dodecaene-4,6,10,12,16,18,22,24-octol hydrate Chemical compound O.CCCCCCCCCCCC1C(C(=CC=2O)O)=CC=2C(CCCCCCCCCCC)C(C(=CC=2O)O)=CC=2C(CCCCCCCCCCC)C(C(=CC=2O)O)=CC=2C(CCCCCCCCCCC)C2=CC1=C(O)C=C2O JKLZYDGPENNXSJ-UHFFFAOYSA-N 0.000 description 2
- VASZYFIKPKYGNC-DHTOPLTISA-N 2-[[(1r,2r)-2-[bis(carboxymethyl)amino]cyclohexyl]-(carboxymethyl)amino]acetic acid;hydrate Chemical compound O.OC(=O)CN(CC(O)=O)[C@@H]1CCCC[C@H]1N(CC(O)=O)CC(O)=O VASZYFIKPKYGNC-DHTOPLTISA-N 0.000 description 2
- RXACEEPNTRHYBQ-UHFFFAOYSA-N 2-[[2-[[2-[(2-sulfanylacetyl)amino]acetyl]amino]acetyl]amino]acetic acid Chemical compound OC(=O)CNC(=O)CNC(=O)CNC(=O)CS RXACEEPNTRHYBQ-UHFFFAOYSA-N 0.000 description 2
- WYMDDFRYORANCC-UHFFFAOYSA-N 2-[[3-[bis(carboxymethyl)amino]-2-hydroxypropyl]-(carboxymethyl)amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)CN(CC(O)=O)CC(O)=O WYMDDFRYORANCC-UHFFFAOYSA-N 0.000 description 2
- UGXRFLXVVYNTTQ-UHFFFAOYSA-N 2-chloro-2,3,3,3-tetrafluoropropanoyl fluoride Chemical compound FC(=O)C(F)(Cl)C(F)(F)F UGXRFLXVVYNTTQ-UHFFFAOYSA-N 0.000 description 2
- OLZFZIXORGGLLS-UHFFFAOYSA-N 4-tert-butylcalix[8]arene Chemical compound C1C(C=2O)=CC(C(C)(C)C)=CC=2CC(C=2O)=CC(C(C)(C)C)=CC=2CC(C=2O)=CC(C(C)(C)C)=CC=2CC(C=2O)=CC(C(C)(C)C)=CC=2CC(C=2O)=CC(C(C)(C)C)=CC=2CC(C=2O)=CC(C(C)(C)C)=CC=2CC(C=2O)=CC(C(C)(C)C)=CC=2CC2=CC(C(C)(C)C)=CC1=C2O OLZFZIXORGGLLS-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- DGGKXQQCVPAUEA-UHFFFAOYSA-N 8-azabicyclo[3.2.1]octane Chemical compound C1CCC2CCC1N2 DGGKXQQCVPAUEA-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 241000557626 Corvus corax Species 0.000 description 2
- 102000006441 Dopamine Plasma Membrane Transport Proteins Human genes 0.000 description 2
- 108010044266 Dopamine Plasma Membrane Transport Proteins Proteins 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- JYXGIOKAKDAARW-UHFFFAOYSA-N N-(2-hydroxyethyl)iminodiacetic acid Chemical compound OCCN(CC(O)=O)CC(O)=O JYXGIOKAKDAARW-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 102000004108 Neurotransmitter Receptors Human genes 0.000 description 2
- 108090000590 Neurotransmitter Receptors Proteins 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 229920005654 Sephadex Polymers 0.000 description 2
- 239000012507 Sephadex™ Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- VEJXYBLYLRPHPK-UHFFFAOYSA-N [Mo].[Tc] Chemical compound [Mo].[Tc] VEJXYBLYLRPHPK-UHFFFAOYSA-N 0.000 description 2
- WGDNYTQTRISCMM-UHFFFAOYSA-N ac1mzuia Chemical compound CC1C(C(=CC=2O)O)=CC=2C(C)C(C(=CC=2O)O)=CC=2C(C)C(C(=CC=2O)O)=CC=2C(C)C2=CC1=C(O)C=C2O WGDNYTQTRISCMM-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 229940049706 benzodiazepine Drugs 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- GQPLZGRPYWLBPW-UHFFFAOYSA-N calix[4]arene Chemical compound C1C(C=2)=CC=CC=2CC(C=2)=CC=CC=2CC(C=2)=CC=CC=2CC2=CC=CC1=C2 GQPLZGRPYWLBPW-UHFFFAOYSA-N 0.000 description 2
- 125000004452 carbocyclyl group Chemical group 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000012539 chromatography resin Substances 0.000 description 2
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical class O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- HOXINJBQVZWYGZ-UHFFFAOYSA-N fenbutatin oxide Chemical compound C=1C=CC=CC=1C(C)(C)C[Sn](O[Sn](CC(C)(C)C=1C=CC=CC=1)(CC(C)(C)C=1C=CC=CC=1)CC(C)(C)C=1C=CC=CC=1)(CC(C)(C)C=1C=CC=CC=1)CC(C)(C)C1=CC=CC=C1 HOXINJBQVZWYGZ-UHFFFAOYSA-N 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 125000001072 heteroaryl group Chemical group 0.000 description 2
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- INQOMBQAUSQDDS-BJUDXGSMSA-N iodomethane Chemical compound I[11CH3] INQOMBQAUSQDDS-BJUDXGSMSA-N 0.000 description 2
- QXLUTPDNMOEWGG-UHFFFAOYSA-N kryptand 222b Chemical compound C1COCCOCCN2CCOCCOCCN1CCOC1=CC=CC=C1OCC2 QXLUTPDNMOEWGG-UHFFFAOYSA-N 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- NIPJYSDFZOYTPG-UHFFFAOYSA-N methyl 2-[2-fluoroethyl-(2-methoxy-2-oxoethyl)amino]acetate Chemical compound COC(=O)CN(CCF)CC(=O)OC NIPJYSDFZOYTPG-UHFFFAOYSA-N 0.000 description 2
- OIRDBPQYVWXNSJ-BJUDXGSMSA-N methyl trifluoromethanesulfonate Chemical compound [11CH3]OS(=O)(=O)C(F)(F)F OIRDBPQYVWXNSJ-BJUDXGSMSA-N 0.000 description 2
- 230000011987 methylation Effects 0.000 description 2
- 238000007069 methylation reaction Methods 0.000 description 2
- PNLUGRYDUHRLOF-UHFFFAOYSA-N n-ethenyl-n-methylacetamide Chemical compound C=CN(C)C(C)=O PNLUGRYDUHRLOF-UHFFFAOYSA-N 0.000 description 2
- 239000002858 neurotransmitter agent Substances 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Substances [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000002414 normal-phase solid-phase extraction Methods 0.000 description 2
- 238000009206 nuclear medicine Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000275 quality assurance Methods 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 210000005084 renal tissue Anatomy 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 150000003334 secondary amides Chemical class 0.000 description 2
- 210000002265 sensory receptor cell Anatomy 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 150000003573 thiols Chemical group 0.000 description 2
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- YZOUYRAONFXZSI-SBHWVFSVSA-N (1S,3R,5R,6R,8R,10R,11R,13R,15R,16R,18R,20R,21R,23R,25R,26R,28R,30R,31S,33R,35R,36R,37S,38R,39S,40R,41S,42R,43S,44R,45S,46R,47S,48R,49S)-5,10,15,20,25,30,35-heptakis(hydroxymethyl)-37,39,40,41,42,43,44,45,46,47,48,49-dodecamethoxy-2,4,7,9,12,14,17,19,22,24,27,29,32,34-tetradecaoxaoctacyclo[31.2.2.23,6.28,11.213,16.218,21.223,26.228,31]nonatetracontane-36,38-diol Chemical compound O([C@@H]([C@H]([C@@H]1OC)OC)O[C@H]2[C@@H](O)[C@@H]([C@@H](O[C@@H]3[C@@H](CO)O[C@@H]([C@H]([C@@H]3O)OC)O[C@@H]3[C@@H](CO)O[C@@H]([C@H]([C@@H]3OC)OC)O[C@@H]3[C@@H](CO)O[C@@H]([C@H]([C@@H]3OC)OC)O[C@@H]3[C@@H](CO)O[C@@H]([C@H]([C@@H]3OC)OC)O3)O[C@@H]2CO)OC)[C@H](CO)[C@H]1O[C@@H]1[C@@H](OC)[C@H](OC)[C@H]3[C@@H](CO)O1 YZOUYRAONFXZSI-SBHWVFSVSA-N 0.000 description 1
- PCWPQSDFNIFUPO-VDQKLNDWSA-N (1S,3R,5R,6S,8R,10R,11S,13R,15R,16S,18R,20R,21S,23R,25R,26S,28R,30R,31S,33R,35R,36R,37S,38R,39S,40R,41S,42R,43S,44R,45S,46R,47S,48R,49S)-37,39,41,43,45,47,49-heptakis(2-hydroxyethoxy)-5,10,15,20,25,30,35-heptakis(hydroxymethyl)-2,4,7,9,12,14,17,19,22,24,27,29,32,34-tetradecaoxaoctacyclo[31.2.2.23,6.28,11.213,16.218,21.223,26.228,31]nonatetracontane-36,38,40,42,44,46,48-heptol Chemical compound OCCO[C@H]1[C@H](O)[C@@H]2O[C@H]3O[C@H](CO)[C@@H](O[C@H]4O[C@H](CO)[C@@H](O[C@H]5O[C@H](CO)[C@@H](O[C@H]6O[C@H](CO)[C@@H](O[C@H]7O[C@H](CO)[C@@H](O[C@H]8O[C@H](CO)[C@@H](O[C@H]1O[C@@H]2CO)[C@@H](O)[C@@H]8OCCO)[C@@H](O)[C@@H]7OCCO)[C@@H](O)[C@@H]6OCCO)[C@@H](O)[C@@H]5OCCO)[C@@H](O)[C@@H]4OCCO)[C@@H](O)[C@@H]3OCCO PCWPQSDFNIFUPO-VDQKLNDWSA-N 0.000 description 1
- YXTDAZMTQFUZHK-ZVGUSBNCSA-L (2r,3r)-2,3-dihydroxybutanedioate;tin(2+) Chemical compound [Sn+2].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O YXTDAZMTQFUZHK-ZVGUSBNCSA-L 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- STHIZMRUXPMSCW-UHFFFAOYSA-N 1,4,10-trioxa-7,13-diazacyclopentadecane Chemical compound C1COCCNCCOCCOCCN1 STHIZMRUXPMSCW-UHFFFAOYSA-N 0.000 description 1
- BJUGHLWDFGGTGJ-UHFFFAOYSA-N 1,4,7,10,13,16-hexaoxacyclooctadec-2-ylmethanamine Chemical compound NCC1COCCOCCOCCOCCOCCO1 BJUGHLWDFGGTGJ-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000004972 1-butynyl group Chemical group [H]C([H])([H])C([H])([H])C#C* 0.000 description 1
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 1
- 125000006023 1-pentenyl group Chemical group 0.000 description 1
- JPSAXKRUQAICFV-UHFFFAOYSA-N 10-benzyl-1,4,7-trioxa-10-azacyclododecane Chemical compound C=1C=CC=CC=1CN1CCOCCOCCOCC1 JPSAXKRUQAICFV-UHFFFAOYSA-N 0.000 description 1
- QFSFPJHBIGWPMD-PBVGKYIBSA-N 104723-60-6 Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)O[C@H](OC[C@@H]2[C@H]3O[C@@H]4[C@H](O)[C@@H](O)[C@@H]([C@H](O4)CO)O[C@@H]4[C@H](O)[C@@H](O)[C@@H]([C@H](O4)CO)O[C@@H]4[C@H](O)[C@@H](O)[C@@H]([C@H](O4)CO)OC4[C@H](O)[C@@H](O)[C@@H]([C@H](O4)CO)O[C@@H]4[C@H](O)[C@@H](O)[C@@H]([C@H](O4)CO)O[C@@H]4[C@H](O)[C@@H](O)[C@@H]([C@H](O4)CO)O[C@H]([C@@H]([C@H]3O)O)O2)[C@H](O)[C@H]1O QFSFPJHBIGWPMD-PBVGKYIBSA-N 0.000 description 1
- GPKJNSIFVWMEEI-UHFFFAOYSA-N 17-bromo-2,5,8,11,14-pentaoxabicyclo[13.4.0]nonadeca-1(15),16,18-triene Chemical compound O1CCOCCOCCOCCOC2=CC(Br)=CC=C21 GPKJNSIFVWMEEI-UHFFFAOYSA-N 0.000 description 1
- LNNVNAOXLAULPK-UHFFFAOYSA-N 17-tert-butyl-2,5,8,11,14-pentaoxabicyclo[13.4.0]nonadeca-1(15),16,18-triene Chemical compound O1CCOCCOCCOCCOC2=CC(C(C)(C)C)=CC=C21 LNNVNAOXLAULPK-UHFFFAOYSA-N 0.000 description 1
- KEDVODGFVKTPLB-UHFFFAOYSA-N 17-tert-butyl-2,5,8,11,14-pentaoxabicyclo[13.4.0]nonadecane Chemical compound O1CCOCCOCCOCCOC2CC(C(C)(C)C)CCC21 KEDVODGFVKTPLB-UHFFFAOYSA-N 0.000 description 1
- DXDMKLZVAJPSSQ-UHFFFAOYSA-N 2,2-bis(methylamino)ethyl 2-methylprop-2-enoate Chemical compound CNC(NC)COC(=O)C(C)=C DXDMKLZVAJPSSQ-UHFFFAOYSA-N 0.000 description 1
- 125000006069 2,3-dimethyl-2-butenyl group Chemical group 0.000 description 1
- PZXYILUXRGTFGD-UHFFFAOYSA-N 2,5,8,11,14,17-hexaoxabicyclo[16.4.0]docosa-1(18),19,21-trien-20-amine Chemical compound O1CCOCCOCCOCCOCCOC2=CC(N)=CC=C21 PZXYILUXRGTFGD-UHFFFAOYSA-N 0.000 description 1
- FBNLTQGIRRAGRY-UHFFFAOYSA-N 2,5,8,11,14-pentaoxabicyclo[13.4.0]nonadeca-1(15),16,18-triene-17-carboxylic acid Chemical compound O1CCOCCOCCOCCOC2=CC(C(=O)O)=CC=C21 FBNLTQGIRRAGRY-UHFFFAOYSA-N 0.000 description 1
- OAJNZFCPJVBYHB-UHFFFAOYSA-N 2,5,8,11-tetraoxabicyclo[10.4.0]hexadeca-1(16),12,14-triene Chemical compound O1CCOCCOCCOC2=CC=CC=C21 OAJNZFCPJVBYHB-UHFFFAOYSA-N 0.000 description 1
- PLHMLIDUVYHXHF-ZQSHRCRISA-N 2,6-di-o-ethyl-β-cyclodextrin Chemical compound CCOC[C@H]([C@H]([C@@H]([C@H]1OCC)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COCC)[C@H]([C@@H]([C@H]3OCC)O)O[C@H]3O[C@H](COCC)[C@H]([C@@H]([C@H]3OCC)O)O[C@H]3O[C@H](COCC)[C@H]([C@@H]([C@H]3OCC)O)O[C@H]3O[C@H](COCC)[C@H]([C@@H]([C@H]3OCC)O)O3)[C@H](O)[C@H]2OCC)COCC)O[C@@H]1O[C@H]1[C@H](O)[C@@H](OCC)[C@@H]3O[C@@H]1COCC PLHMLIDUVYHXHF-ZQSHRCRISA-N 0.000 description 1
- QGKBSGBYSPTPKJ-UZMKXNTCSA-N 2,6-di-o-methyl-β-cyclodextrin Chemical compound COC[C@H]([C@H]([C@@H]([C@H]1OC)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COC)[C@H]([C@@H]([C@H]3OC)O)O[C@H]3O[C@H](COC)[C@H]([C@@H]([C@H]3OC)O)O[C@H]3O[C@H](COC)[C@H]([C@@H]([C@H]3OC)O)O[C@H]3O[C@H](COC)[C@H]([C@@H]([C@H]3OC)O)O3)[C@H](O)[C@H]2OC)COC)O[C@@H]1O[C@H]1[C@H](O)[C@@H](OC)[C@@H]3O[C@@H]1COC QGKBSGBYSPTPKJ-UZMKXNTCSA-N 0.000 description 1
- XLJGIXLDEYIALO-UHFFFAOYSA-N 2-(carboxymethylamino)-4-hydroxybutanoic acid Chemical compound OCCC(C(O)=O)NCC(O)=O XLJGIXLDEYIALO-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 description 1
- XNCSCQSQSGDGES-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]propyl-(carboxymethyl)amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)C(C)CN(CC(O)=O)CC(O)=O XNCSCQSQSGDGES-UHFFFAOYSA-N 0.000 description 1
- DMQQXDPCRUGSQB-UHFFFAOYSA-N 2-[3-[bis(carboxymethyl)amino]propyl-(carboxymethyl)amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)CCCN(CC(O)=O)CC(O)=O DMQQXDPCRUGSQB-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- CVOFKRWYWCSDMA-UHFFFAOYSA-N 2-chloro-n-(2,6-diethylphenyl)-n-(methoxymethyl)acetamide;2,6-dinitro-n,n-dipropyl-4-(trifluoromethyl)aniline Chemical compound CCC1=CC=CC(CC)=C1N(COC)C(=O)CCl.CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O CVOFKRWYWCSDMA-UHFFFAOYSA-N 0.000 description 1
- 125000006029 2-methyl-2-butenyl group Chemical group 0.000 description 1
- 125000006024 2-pentenyl group Chemical group 0.000 description 1
- UWRZIZXBOLBCON-UHFFFAOYSA-N 2-phenylethenamine Chemical compound NC=CC1=CC=CC=C1 UWRZIZXBOLBCON-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- NOPKOJDDVCBPTP-DJSZNTTKSA-N 23739-88-0 Chemical compound CC(=O)OC[C@H]([C@H]([C@H]([C@@H]1OC(C)=O)OC(C)=O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COC(C)=O)[C@H]([C@H]([C@@H]3OC(C)=O)OC(C)=O)O[C@H]3O[C@H](COC(C)=O)[C@H]([C@H]([C@@H]3OC(C)=O)OC(C)=O)O[C@H]3O[C@H](COC(C)=O)[C@H]([C@H]([C@@H]3OC(C)=O)OC(C)=O)O[C@H]3O[C@H](COC(C)=O)[C@H]([C@H]([C@@H]3OC(C)=O)OC(C)=O)O3)[C@@H](OC(C)=O)[C@@H]2OC(C)=O)COC(=O)C)O[C@@H]1O[C@H]1[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H]3O[C@@H]1COC(C)=O NOPKOJDDVCBPTP-DJSZNTTKSA-N 0.000 description 1
- USYAMXSCYLGBPT-UHFFFAOYSA-L 3-carboxy-3-hydroxypentanedioate;tin(2+) Chemical compound [Sn+2].OC(=O)CC(O)(C([O-])=O)CC([O-])=O USYAMXSCYLGBPT-UHFFFAOYSA-L 0.000 description 1
- 125000006027 3-methyl-1-butenyl group Chemical group 0.000 description 1
- FFYZYAKXQMHVQE-UHFFFAOYSA-N 4'-aminodibenzo-18-crown-6 Chemical compound O1CCOCCOC2=CC=CC=C2OCCOCCOC2=CC(N)=CC=C21 FFYZYAKXQMHVQE-UHFFFAOYSA-N 0.000 description 1
- NYYSPVRERVXMLJ-UHFFFAOYSA-N 4,4-difluorocyclohexan-1-one Chemical compound FC1(F)CCC(=O)CC1 NYYSPVRERVXMLJ-UHFFFAOYSA-N 0.000 description 1
- HDLXPNDSLDLJHF-UHFFFAOYSA-N 4,7,13,16,21-pentaoxa-1,10-diazabicyclo[8.8.5]tricosane Chemical compound C1COCCOCCN2CCOCCOCCN1CCOCC2 HDLXPNDSLDLJHF-UHFFFAOYSA-N 0.000 description 1
- LVNQVIZBPSRXAN-UHFFFAOYSA-N 4,7,13,18-tetraoxa-1,10-diazabicyclo[8.5.5]icosane Chemical compound C1COCCOCCN2CCOCCN1CCOCC2 LVNQVIZBPSRXAN-UHFFFAOYSA-N 0.000 description 1
- KMMHZIBWCXYAAH-UHFFFAOYSA-N 4-bromobenzenesulfonyl chloride Chemical compound ClS(=O)(=O)C1=CC=C(Br)C=C1 KMMHZIBWCXYAAH-UHFFFAOYSA-N 0.000 description 1
- UHLRPXXFPYMCAE-UHFFFAOYSA-N 4-isopropylcalix[4]arene Chemical compound C1C(C=2O)=CC(C(C)C)=CC=2CC(C=2O)=CC(C(C)C)=CC=2CC(C=2O)=CC(C(C)C)=CC=2CC2=CC(C(C)C)=CC1=C2O UHLRPXXFPYMCAE-UHFFFAOYSA-N 0.000 description 1
- JFYBCAFLVNKHHG-UHFFFAOYSA-N 4-sulfocalix[4]arene Chemical compound OC1=C(CC=2C(=C(CC=3C(=C(C4)C=C(C=3)S(O)(=O)=O)O)C=C(C=2)S(O)(=O)=O)O)C=C(S(O)(=O)=O)C=C1CC1=C(O)C4=CC(S(O)(=O)=O)=C1 JFYBCAFLVNKHHG-UHFFFAOYSA-N 0.000 description 1
- GZPNIEYNWYONCE-UHFFFAOYSA-M 4-sulfocalix[4]arene sodium salt Chemical compound [Na+].OC1=C(CC=2C(=C(CC=3C(=C(C4)C=C(C=3)S([O-])(=O)=O)O)C=C(C=2)S(O)(=O)=O)O)C=C(S(O)(=O)=O)C=C1CC1=C(O)C4=CC(S(O)(=O)=O)=C1 GZPNIEYNWYONCE-UHFFFAOYSA-M 0.000 description 1
- HTJNUHSOASZVHV-UHFFFAOYSA-N 4-tert-butylcalix[5]arene Chemical compound C1C(C=2O)=CC(C(C)(C)C)=CC=2CC(C=2O)=CC(C(C)(C)C)=CC=2CC(C=2O)=CC(C(C)(C)C)=CC=2CC(C=2O)=CC(C(C)(C)C)=CC=2CC2=CC(C(C)(C)C)=CC1=C2O HTJNUHSOASZVHV-UHFFFAOYSA-N 0.000 description 1
- XXFANTYPKDIONG-UHFFFAOYSA-N 6-O-alpha-D-glucosyl-beta-cyclodextrin Natural products OC1C(O)C(O)C(CO)OC1OCC1C(C(O)C2O)OC(OC3CO)C(O)C(O)C3OC(OC3CO)C(O)C(O)C3OC(OC3CO)C(O)C(O)C3OC(OC3CO)C(O)C(O)C3OC(OC3CO)C(O)C(O)C3OC(OC3CO)C(O)C(O)C3OC2O1 XXFANTYPKDIONG-UHFFFAOYSA-N 0.000 description 1
- XXFANTYPKDIONG-WJMYNTJYSA-N 6-o-α-d-glucosyl-β-cyclodextrin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@H]([C@H](O)[C@H]2O)O[C@@H](O[C@@H]3CO)[C@H](O)[C@@H](O)[C@@H]3O[C@@H](O[C@@H]3CO)[C@H](O)[C@@H](O)[C@@H]3O[C@@H](O[C@@H]3CO)[C@H](O)[C@@H](O)[C@@H]3O[C@@H](O[C@@H]3CO)[C@H](O)[C@@H](O)[C@@H]3O[C@@H](O[C@@H]3CO)[C@H](O)[C@@H](O)[C@@H]3O[C@@H](O[C@@H]3CO)[C@H](O)[C@@H](O)[C@@H]3O[C@H]2O1 XXFANTYPKDIONG-WJMYNTJYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- GMLKBUBKWKOKTH-UHFFFAOYSA-N C(C1CO1)OC(C(=C)C)=O.C(CC=C(C(=O)O)C)C=C(C(=O)O)C Chemical compound C(C1CO1)OC(C(=C)C)=O.C(CC=C(C(=O)O)C)C=C(C(=O)O)C GMLKBUBKWKOKTH-UHFFFAOYSA-N 0.000 description 1
- JCHFSMHPPLZMJV-UHFFFAOYSA-N CCC(=C=O)CCCN(CCCCCF)CCCC(=C=O)COC Chemical compound CCC(=C=O)CCCN(CCCCCF)CCCC(=C=O)COC JCHFSMHPPLZMJV-UHFFFAOYSA-N 0.000 description 1
- YEAQKJGWTCLKJJ-PIGKAOJQSA-N COC[C@H]([C@H]([C@@H]([C@H]1OC)OC)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COC)[C@H]([C@@H]([C@H]3OC)OC)O[C@H]3O[C@H](COC)[C@H]([C@@H]([C@H]3OC)OC)O[C@H]3O[C@H](COC)[C@H]([C@@H]([C@H]3OC)OC)O3)[C@H](OC)[C@H]2OC)COC)O[C@@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@@H]3O[C@@H]1COC Chemical compound COC[C@H]([C@H]([C@@H]([C@H]1OC)OC)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COC)[C@H]([C@@H]([C@H]3OC)OC)O[C@H]3O[C@H](COC)[C@H]([C@@H]([C@H]3OC)OC)O[C@H]3O[C@H](COC)[C@H]([C@@H]([C@H]3OC)OC)O3)[C@H](OC)[C@H]2OC)COC)O[C@@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@@H]3O[C@@H]1COC YEAQKJGWTCLKJJ-PIGKAOJQSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- XPDXVDYUQZHFPV-UHFFFAOYSA-N Dansyl Chloride Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(Cl)(=O)=O XPDXVDYUQZHFPV-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- PNKUSGQVOMIXLU-UHFFFAOYSA-N Formamidine Chemical compound NC=N PNKUSGQVOMIXLU-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 1
- VNYJDSJLCWDYJK-UHFFFAOYSA-N Methyl 2-[(2-methoxy-2-oxoethyl)amino]acetate Chemical compound COC(=O)CNCC(=O)OC VNYJDSJLCWDYJK-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-BJUDXGSMSA-N Nitrogen-13 Chemical compound [13N] QJGQUHMNIGDVPM-BJUDXGSMSA-N 0.000 description 1
- OXDRCWRXZHTRGS-UHFFFAOYSA-N O=C(O)CN(C[Y])CC(=O)O Chemical compound O=C(O)CN(C[Y])CC(=O)O OXDRCWRXZHTRGS-UHFFFAOYSA-N 0.000 description 1
- KSQQJRIPENAKPU-UHFFFAOYSA-N O=C=C(CO)CCCN(CCCCCF)CCCC(=C=O)CO Chemical compound O=C=C(CO)CCCN(CCCCCF)CCCC(=C=O)CO KSQQJRIPENAKPU-UHFFFAOYSA-N 0.000 description 1
- OZBFLQITCMCIOY-FOUAGVGXSA-N OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO OZBFLQITCMCIOY-FOUAGVGXSA-N 0.000 description 1
- 238000012879 PET imaging Methods 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 206010062237 Renal impairment Diseases 0.000 description 1
- 102000019208 Serotonin Plasma Membrane Transport Proteins Human genes 0.000 description 1
- 108010012996 Serotonin Plasma Membrane Transport Proteins Proteins 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- GKLVYJBZJHMRIY-OUBTZVSYSA-N Technetium-99 Chemical compound [99Tc] GKLVYJBZJHMRIY-OUBTZVSYSA-N 0.000 description 1
- 206010046555 Urinary retention Diseases 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- ZETVCUDJYLSJEM-UHFFFAOYSA-N ac1mbzdr Chemical compound C1C(C=2OCC(O)=O)=CC(C(C)(C)C)=CC=2CC(C=2OCC(O)=O)=CC(C(C)(C)C)=CC=2CC(C=2OCC(O)=O)=CC(C(C)(C)C)=CC=2CC2=CC(C(C)(C)C)=CC1=C2OCC(O)=O ZETVCUDJYLSJEM-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- HFHDHCJBZVLPGP-RWMJIURBSA-N alpha-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO HFHDHCJBZVLPGP-RWMJIURBSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- RYXHOMYVWAEKHL-UHFFFAOYSA-N astatine atom Chemical compound [At] RYXHOMYVWAEKHL-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 210000001099 axilla Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 1
- 238000012925 biological evaluation Methods 0.000 description 1
- LTZRCLYZVSXCTC-UHFFFAOYSA-N bis(2,5,8,11,14-pentaoxabicyclo[13.4.0]nonadeca-1(15),16,18-trien-17-ylmethyl) heptanedioate Chemical compound O1CCOCCOCCOCCOC2=CC(COC(CCCCCC(=O)OCC=3C=C4OCCOCCOCCOCCOC4=CC=3)=O)=CC=C21 LTZRCLYZVSXCTC-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- GQKVINJBYYRJRF-UHFFFAOYSA-N bromo-tris(dimethylamino)phosphanium Chemical compound CN(C)[P+](Br)(N(C)C)N(C)C GQKVINJBYYRJRF-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- AYFCVLSUPGCQKD-UHFFFAOYSA-I calcium;trisodium;2-[bis[2-[bis(carboxylatomethyl)amino]ethyl]amino]acetate Chemical compound [Na+].[Na+].[Na+].[Ca+2].[O-]C(=O)CN(CC([O-])=O)CCN(CC(=O)[O-])CCN(CC([O-])=O)CC([O-])=O AYFCVLSUPGCQKD-UHFFFAOYSA-I 0.000 description 1
- MMYYTPYDNCIFJU-UHFFFAOYSA-N calix[6]arene Chemical compound C1C(C=2)=CC=CC=2CC(C=2)=CC=CC=2CC(C=2)=CC=CC=2CC(C=2)=CC=CC=2CC(C=2)=CC=CC=2CC2=CC=CC1=C2 MMYYTPYDNCIFJU-UHFFFAOYSA-N 0.000 description 1
- HDPRHRZFFPXZIL-UHFFFAOYSA-N calix[8]arene Chemical compound OC1=C(CC=2C(=C(CC=3C(=C(CC=4C(=C(CC=5C(=C(CC=6C(=C(CC=7C(=C(C8)C=CC=7)O)C=CC=6)O)C=CC=5)O)C=CC=4)O)C=CC=3)O)C=CC=2)O)C=CC=C1CC1=C(O)C8=CC=C1 HDPRHRZFFPXZIL-UHFFFAOYSA-N 0.000 description 1
- VTJUKNSKBAOEHE-UHFFFAOYSA-N calixarene Chemical class COC(=O)COC1=C(CC=2C(=C(CC=3C(=C(C4)C=C(C=3)C(C)(C)C)OCC(=O)OC)C=C(C=2)C(C)(C)C)OCC(=O)OC)C=C(C(C)(C)C)C=C1CC1=C(OCC(=O)OC)C4=CC(C(C)(C)C)=C1 VTJUKNSKBAOEHE-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000010523 cascade reaction Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000012230 colorless oil Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- PNOXNTGLSKTMQO-UHFFFAOYSA-L diacetyloxytin Chemical compound CC(=O)O[Sn]OC(C)=O PNOXNTGLSKTMQO-UHFFFAOYSA-L 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- GRWZHXKQBITJKP-UHFFFAOYSA-L dithionite(2-) Chemical compound [O-]S(=O)S([O-])=O GRWZHXKQBITJKP-UHFFFAOYSA-L 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 230000001882 diuretic effect Effects 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 238000004980 dosimetry Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 235000019439 ethyl acetate Nutrition 0.000 description 1
- IFQUWYZCAGRUJN-UHFFFAOYSA-N ethylenediaminediacetic acid Chemical compound OC(=O)CNCCNCC(O)=O IFQUWYZCAGRUJN-UHFFFAOYSA-N 0.000 description 1
- 125000005469 ethylenyl group Chemical group 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 125000003784 fluoroethyl group Chemical group [H]C([H])(F)C([H])([H])* 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 229960003883 furosemide Drugs 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- GDSRMADSINPKSL-HSEONFRVSA-N gamma-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO GDSRMADSINPKSL-HSEONFRVSA-N 0.000 description 1
- 229940080345 gamma-cyclodextrin Drugs 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229960005219 gentisic acid Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 210000004013 groin Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- IIWYYIACSUPJCN-UHFFFAOYSA-N hydron;methyl 2-[(2-methoxy-2-oxoethyl)amino]acetate;chloride Chemical compound Cl.COC(=O)CNCC(=O)OC IIWYYIACSUPJCN-UHFFFAOYSA-N 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000005468 isobutylenyl group Chemical group 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 238000001948 isotopic labelling Methods 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- XZCHDFOYWDLFEY-UHFFFAOYSA-N meso-octamethylporphyrinogen Chemical compound CC1(C)C(N2)=CC=C2C(C)(C)C(N2)=CC=C2C(C)(C)C(N2)=CC=C2C(C)(C)C2=CC=C1N2 XZCHDFOYWDLFEY-UHFFFAOYSA-N 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- UBLQIESZTDNNAO-UHFFFAOYSA-N n,n-diethylethanamine;phosphoric acid Chemical compound [O-]P([O-])([O-])=O.CC[NH+](CC)CC.CC[NH+](CC)CC.CC[NH+](CC)CC UBLQIESZTDNNAO-UHFFFAOYSA-N 0.000 description 1
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 230000003982 neuronal uptake Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- QVGXLLKOCUKJST-BJUDXGSMSA-N oxygen-15 atom Chemical compound [15O] QVGXLLKOCUKJST-BJUDXGSMSA-N 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 210000004197 pelvis Anatomy 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 239000003444 phase transfer catalyst Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 231100000857 poor renal function Toxicity 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- WSHYKIAQCMIPTB-UHFFFAOYSA-M potassium;2-oxo-3-(3-oxo-1-phenylbutyl)chromen-4-olate Chemical compound [K+].[O-]C=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 WSHYKIAQCMIPTB-UHFFFAOYSA-M 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 125000005470 propylenyl group Chemical group 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- ANOBYBYXJXCGBS-UHFFFAOYSA-L stannous fluoride Chemical compound F[Sn]F ANOBYBYXJXCGBS-UHFFFAOYSA-L 0.000 description 1
- 229960002799 stannous fluoride Drugs 0.000 description 1
- RCIVOBGSMSSVTR-UHFFFAOYSA-L stannous sulfate Chemical compound [SnH2+2].[O-]S([O-])(=O)=O RCIVOBGSMSSVTR-UHFFFAOYSA-L 0.000 description 1
- 229940007163 stannous tartrate Drugs 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000011410 subtraction method Methods 0.000 description 1
- NVBFHJWHLNUMCV-UHFFFAOYSA-N sulfamide Chemical compound NS(N)(=O)=O NVBFHJWHLNUMCV-UHFFFAOYSA-N 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical class OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229940056501 technetium 99m Drugs 0.000 description 1
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical class CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- UVVFKNZCYIIHGM-UHFFFAOYSA-L tetrabutylazanium;carbonate Chemical compound [O-]C([O-])=O.CCCC[N+](CCCC)(CCCC)CCCC.CCCC[N+](CCCC)(CCCC)CCCC UVVFKNZCYIIHGM-UHFFFAOYSA-L 0.000 description 1
- APBDREXAUGXCCV-UHFFFAOYSA-L tetraethylazanium;carbonate Chemical compound [O-]C([O-])=O.CC[N+](CC)(CC)CC.CC[N+](CC)(CC)CC APBDREXAUGXCCV-UHFFFAOYSA-L 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229910000375 tin(II) sulfate Inorganic materials 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- 125000005490 tosylate group Chemical group 0.000 description 1
- 238000006257 total synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- PIILXFBHQILWPS-UHFFFAOYSA-N tributyltin Chemical class CCCC[Sn](CCCC)CCCC PIILXFBHQILWPS-UHFFFAOYSA-N 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- FHGJYTNPLCNRLG-UHFFFAOYSA-K trisodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(2-hydroxyethyl)amino]acetate;hydrate Chemical compound O.[Na+].[Na+].[Na+].OCCN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O FHGJYTNPLCNRLG-UHFFFAOYSA-K 0.000 description 1
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- 229940117958 vinyl acetate Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F13/00—Compounds containing elements of Groups 7 or 17 of the Periodic Table
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/40—Arrangements for generating radiation specially adapted for radiation diagnosis
- A61B6/4057—Arrangements for generating radiation specially adapted for radiation diagnosis by using radiation sources located in the interior of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/0402—Organic compounds carboxylic acid carriers, fatty acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/0474—Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
- A61K51/0478—Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group complexes from non-cyclic ligands, e.g. EDTA, MAG3
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B59/00—Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
- C07B59/004—Acyclic, carbocyclic or heterocyclic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen, sulfur, selenium or tellurium
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5082—Supracellular entities, e.g. tissue, organisms
- G01N33/5088—Supracellular entities, e.g. tissue, organisms of vertebrates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/60—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances involving radioactive labelled substances
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/34—Genitourinary disorders
- G01N2800/347—Renal failures; Glomerular diseases; Tubulointerstitial diseases, e.g. nephritic syndrome, glomerulonephritis; Renovascular diseases, e.g. renal artery occlusion, nephropathy
Definitions
- Radiopharmaceuticals are widely employed in nuclear medicine for imaging and for assessing physiological function and disease.
- Radioisotope renography is a form of kidney imaging involving radioisotopes used to image the kidney, evaluate suspected renal disease, and monitor renal function.
- the most common radiolabelled pharmaceutical agent used is Tc 99m -MAG 3 (mercaptoacetyltriglycine).
- Image quality is dependent on rapid removal of the radiotracer from the circulating plasma by the kidney as the rate of removal provides an important measurement of renal function. Renal plasma flow can be measured indirectly with radioiodinated o-iodohippuran ( 131 I-OIH) that is generally accepted as a benchmark.
- the 99m Tc-MAG 3 tracer is eliminated via the hepatobiliary tract which is exacerbated in patients with impaired renal function.
- the clearance of 99m Tc-mercaptoacetyltriglycine ( 99m Tc-MAG 3 ) is 50-65% when compared to 131 I-OIH making the tracer suboptimal for the estimation of renal plasma flow.
- improved renal tracers are need.
- compositions comprising substituted iminodiacetic acid ligands and metal tricarbonyl complexes containing the ligands and derivatives thereof.
- the metal tricarbonyl complexes are used as radioisotope tracers such as renal tracers.
- the metal complexes comprise 99m Tc and/or Re.
- the ligands are substituted with a fluorine, a fluorine-18(F 18 ) radioisotope, or other radionuclide.
- a metal tricarbonyl complex comprises N-(2-fluoroethyl) iminodiacetic acid as a ligand, e.g., a metal tricarbonyl complex having the formula Re(CO) 3 (N-(2-fluoroethyl)iminodiacetate), Re(CO) 3 (N-(2- 18 fluoroethyl)iminodiacetate), 99m Tc(CO) 3 (N-(2-fluoroethyl)iminodiacetate), mixtures or salts thereof.
- a fluoro is F 18 .
- the disclosure relates to tracer composition
- tracer composition comprising a mixture of Re(CO) 3 (N-(2- 18 fluoroethyl)iminodiacetate) and 99m Tc(CO) 3 (N-(2-fluoroethyl)iminodiacetate).
- kits and pharmaceutical composition comprising ligands or metal tricarbonyl complexes disclosed herein.
- the disclosure relates to kits comprising an amount of a tracer comprising a metal tricarbonyl complex disclosed herein or precursor thereof optionally in a sealed container, wherein the amount of the tracer is suitable for imaging a kidney of subject.
- the ligand is N-(2-fluoroethyl)iminodiacetic acid or N-(2-((tosyl)oxy)ethyl)iminodiacetic acid, or Re(CO) 3 (N-(2-((tosyl)oxy)ethyl)iminodiacetate.
- the kit further comprise a chelator such as a cryptand.
- the disclosure relates to the precursor metal tricarbonyl complex Re(CO) 3 (N-(2-((tosyl)oxy)ethyl)iminodiacetate or derivatives.
- the precursor is N-(2-fluoroethyl)iminodiacetic acid, N-(2-hydroxyethyl)iminodiacetic acid, or N-(2-((tosyl)oxy)ethyl)iminodiacetic acid.
- the disclosure relates to imaging methods comprising a) administering a pharmaceutical composition comprising a metal tricarbonyl complex disclosed herein containing a radionuclide to a subject; b) scanning the subject for emissions; and c) creating an image indicating a location of the metal tricarbonyl complex containing radionuclide in the body, organ, kidney, blood, or other area of the subject.
- the imaging method comprises single photon emission computed tomography (SPECT) and/or PET imaging
- FIG. 1 shows the HPLC chromatograms of 99m Tc(CO) 3 (FEDA) in urine at 10 min after injection.
- FIG. 2 illustrates the preparation of embodiments of the disclosure, e.g., wherein M is Re or 99m Tc.
- FIG. 3 illustrates embodiments of a renal tracer having a mixture of metal tricarbonyl complexes.
- Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of medicine, organic chemistry, biochemistry, molecular biology, pharmacology, and the like, which are within the skill of the art. Such techniques are explained fully in the literature.
- the term “renal scintigraphy” as used herein refers to an imaging system including, but not limited to, a gamma camera able to detect and form an image localizing a source of gamma radiation.
- the imaging system may be for an image corresponding to the form of the labeled organ, and in particular of a kidney underlying skin and other tissues.
- the imaging system may further comprise computer-based apparatus and software intended to produce an image in a form apparent to the observer, and to analyze the image for information such as, but not only, the intensity of the emitted gamma radiation as well as its locality in the subject body.
- dose amount refers to a bolus dose of a renal tracer, and in particular of the tracer.
- the dose is preferred to be of an amount that, when delivered to the kidney of an animal or human subject, will have a gamma intensity useful for forming an image of the gamma source by a gamma camera.
- the dose amount being adjusted according to the size, weight, and shape of the recipient subject and the purpose of the study.
- alkyl means a noncyclic straight chain or branched, unsaturated or saturated hydrocarbon such as those containing from 1 to 10 carbon atoms, typically 1 to 4 otherwise designated C 1-4 alkyl.
- Representative saturated straight chain alkyls include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-septyl, n-octyl, n-nonyl, and the like; while saturated branched alkyls include isopropyl, sec-butyl, isobutyl, tert-butyl, isopentyl, and the like.
- Unsaturated alkyls contain at least one double or triple bond between adjacent carbon atoms (referred to as an “alkenyl” or “alkynyl”, respectively).
- Representative straight chain and branched alkenyls include ethylenyl, propylenyl, 1-butenyl, 2-butenyl, isobutylenyl, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, and the like; while representative straight chain and branched alkynyls include acetylenyl, propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl, 3-methyl-1-butynyl, and the like.
- Alkoxy refers to an alkyl group as defined above with the indicated number of carbon atoms attached through an oxygen bridge. Examples of alkoxy include, but are not limited to, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy, n-pentoxy, and s-pentoxy. Preferred alkoxy groups are methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy.
- Alkoxyalkyl refers an alkyl group as defined above with the indicated number of carbon atoms attached through an alkyl bridge (i.e., —CH 2 —O—CH 2 CH 3 ).
- a chelator is a molecule that contains multiple multivalent atoms, e.g, divalent, with a lone pair of elections (multidentate).
- the multivalent atoms are typically N, O, S, and mixtures thereof.
- Examples of chelators include crown ethers (monocyclic) and cryptands (bi- or polycyclic) which contain polyalkoxy or polyethylene glycol groups.
- 1,10-Diaza-4,7,13,16,21,24-hexaoxabicyclo[8.8.8]hexacosane is the [2.2.2]cryptand where the numbers [2.2.2] indicate the number of ether oxygen atoms in each of the three bridges between the amine nitrogen caps.
- Cryptands and crown ethers typically bind cations to form salts.
- Chelators may be anionic if they contain a quaternary ammonium cation.
- a “linking group” refers to any variety of molecular arrangements that can be used to bridge two molecular moieties together.
- An example formula may be —R m — wherein R is selected individually and independently at each occurrence as: —CR m R m —, —CHR m —, —CH—, —C—, —CH 2 —, —C(OH)R n , —C(OH)(OH)—, —C(OH)H, —C(Hal)R m —, —C(Hal)(Hal)-, —C(Hal)H—, —C(N 3 )R m —, —C(CN)R n —, —C(CN)(CN)—, —C(CN)H—, —C(N 3 )(N 3 )—, —C(N 3 )H—, —O—, —S—, —N—, —NH—,
- an R is branched with an R m it may be terminated with a group such as —CH 3 , —H, —CH ⁇ CH 2 , —CCH, —OH, —SH, —NH 2 , —N 3 , —CN, or -Hal, or two branched Rs may form a cyclic structure. It is contemplated that in certain instances, the total Rs or “m” may be less than 100 or 50 or 25 or 10.
- linking groups in include bridging alkyl groups and alkoxyalkyl groups.
- Example substituents within this context may include halogen, hydroxy, alkyl, alkoxy, nitro, cyano, oxo, carbocyclyl, carbocycloalkyl, heterocarbocyclyl, heterocarbocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —NR a R b , —NR a C( ⁇ O)R b , —NR a C( ⁇ O)NR a NR b , —NR a C( ⁇ O)OR b , —NR a SO 2 R b , —C( ⁇ O)R a , —C( ⁇ O)OR a , —C( ⁇ O)NR a R b , —OC( ⁇ O)NR a R b , —OR a , —SR a , —SOR a , —S( ⁇ O) 2 R a , —OS( ⁇
- R a and R b in this context may be the same or different and independently hydrogen, halogen hydroxyl, alkyl, alkoxy, alkyl, amino, alkylamino, dialkylamino, carbocyclyl, carbocycloalkyl, heterocarbocyclyl, heterocarbocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl.
- Subject refers any animal, preferably a human patient, livestock, or domestic pet.
- the term “derivative” refers to a structurally similar compound that retains sufficient functional attributes of the identified analogue.
- the derivative may be structurally similar because it is lacking one or more atoms, substituted, a salt, in different hydration/oxidation states, or because one or more atoms within the molecule are switched, such as, but not limited to, replacing an oxygen atom with a sulfur or nitrogen atom or replacing an amino group with a hydroxyl group or vice versa.
- Derivatives may be prepare by any variety of synthetic methods or appropriate adaptations presented in synthetic or organic chemistry text books, such as those provide in March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Wiley, 6th Edition (2007) Michael B. Smith or Domino Reactions in Organic Synthesis, Wiley (2006) Lutz F. Tietze hereby incorporated by reference.
- the renal excretion exhibited by 99m Tc (CO) 3 (FEDA) was unexpected due to the fluoroethyl pendant group being less polar and unable to form hydrogen bonds, as the complexes that were previously evaluated such as 99m Tc(CO) 3 complexes with N-(2-hydroxyethyl)iminodiacetic acid (HDA) and N-(2-acetamido)iminodiacetic acid (ADA), ( 99m Tc(CO) 3 (ADA) and 99m Tc (CO) 3 (HDA)).
- the disclosure relates to substituted iminodiacetate metal tricarbonyl complexes disclosed herein, mixtures, and derivatives thereof.
- the metal tricarbonyl complexes disclosed herein are substituted with one or more substituents.
- the metal tricarbonyl complexes have the following formula:
- metal tricarbonyl complexes of this disclosure comprise N-(fluoroalkyl)iminodiacetate wherein the fluoroalkyl is alkyl terminally substituted with fluoro, e.g., N-(2-fluoroethyl)iminodiacetic acid.
- metal tricarbonyl complexes of this disclosure have the formula M(CO) 3 (N-(fluoroalkyl)iminodiacetate), Re(CO) 3 (N-(fluoroalkyl)iminodiacetate) or 99m Tc(CO) 3 (N-(fluoroalkyl)iminodiacetate).
- radionuclide or “radioactive isotope” refers to molecules of enriched isotopes that exhibit radioactive decay (e.g., emitting one or more gamma rays or positrons). Such isotopes are also referred to in the art as radioisotopes.
- a radionuclide tracer does not include radioactive primordial nuclides, but does include a naturally occurring isotopes that exhibit radioactive decay with an isotope distribution that is enriched, e.g., is several fold greater than natural abundance. In certain embodiments, is contemplated that the radionuclides are limited to those with a half live of less than 1 hour and those with a half-life of more than 1 hour but less than 24 hours.
- Radioactive isotopes are named herein using various commonly used combinations of the name or symbol of the element and its mass number (e.g., 18 F, F-18, or fluorine-18).
- Elements that can be used in the compounds of the present disclosure include: F-18; C-11; 1-125, 1-124, 1-131 and 1-123; Cl-32, Cl-33, Cl-34; Br-74, Br-75, Br-76, Br-77, Br-78; Re-186, Re-188; Y-90, Y-86; Lu-177 and Sm-153.
- Typical radioactive isotopes include I-124, F-18 fluoride, C-11, N-13, and 0-15, which have half-lives of 4.2 days, 110 minutes, 20 minutes, 10 minutes and 2 minutes, respectively.
- the radioactive isotopes used in the present method include F-18, C-11, I-123, I-124, I-127, 1-131, Br-76, Cu-64, Tc-99m, Y-90, Ga-67, Cr-51, Ir-192, Mo-99, Sm-153 and Tl-201.
- radioactive isotopes that may be employed include: As-72, As-74, Br-75, Co-55, Cu-61, Cu-67, Ga-68, Ge-68, I-125, I-132, In-111, Mn-52, Pb-203 and Ru-97.
- [ 18 F] fluoride is typically produced by irradiation of water (containing H 2 18 O) with protons resulting in the reaction 18 O(p,n) 18 F. For production efficiency and radiochemical purity, it is desirable to use water that is as highly enriched as possible. The [ 18 F] isotope is then separated from water and processed for production of a radiopharmaceutical agent. Typically fluoride recovery is based on ion exchange resins.
- the recovery is carried out in two steps (extraction and elution): first the anions (not only fluoride) are separated from the enriched [ 18 O] water and trapped on a resin and then, said anions, including [ 18 F] fluoride, are eluted into a mixture containing water, organic solvents, a base, also called activating agent or phase transfer agent or phase transfer catalyst, such as for example the complex comprising a cryptand, potassium carbonate-Kryptofix 222 (K 2 CO 3 —K 222 ), or a tetrabutylammonium salt.
- Typical labeling method uses low water content solutions.
- An evaporation step follows the recovery of the [ 18 F]fluoride, e.g., azeotropic evaporation of acetonitrile or other low boiling temperature organic solvent.
- the extraction process is performed by passing the [ 18 F] aqueous solution on a solid support as reported in U.S. Pat. No. 8,641,903.
- This solid support is typically loaded with a trapping agent, e.g., compound comprising a quaternary amine, which is adsorbed on the solid support and allows the [ 18 F] activity to be trapped because of its positive charge.
- the solid support is then flushed with a gas or a neutral solvent to remove or push out most of the residual water.
- the [ 18 F] is at last eluted in an organic solvent or in a mixture of organic solvents and is immediately usable for the labelling of precursor compounds.
- the compounds described herein could also be labeled by bromine or iodine radionuclides through traditional labeling procedures such as tributyltin derivatives.
- bromine or iodine radionuclides through traditional labeling procedures such as tributyltin derivatives.
- tributyltin derivatives See, for example, Plisson et al, Synthesis and in vivo evaluation of fluorine-18 and iodine-123 labeled 2beta-carbo(2-fluoroethoxy)-3beta-(4′-((Z)-2 iodoethenyl)phenyl)nortropane as a candidate serotonin transporter imaging agent.
- metal tricarbonyl complexes disclosed herein containing radionuclides may be prepared immediately prior to conducting a kidney function diagnostic procedure.
- kits that contain components and the chemical reagents necessary for the preparation of a metal tricarbonyl complex disclosed herein or mixture thereof, immediately prior to use as a radiopharmaceutical.
- the labeling reaction of a ligand with a radionuclide may be carried out just prior to use in a clinical laboratory setting. For example, it is typical that one will have access to a molybdenum-technetium generator, from which a desired quantity of 99m Tc can be obtained as a pertechnetate solution.
- F-18 derivatives are typically prepared from precursor compounds by radiohalogenation reactions. Radiohalogenations reactions are typically nucleophilic substitutions. Aliphatic nucleophilic substitutions typically utilize leaving group (usually another halogen or a sulphonic acid derivative such as mesylate, tosylate, or triflate).
- kits for formation of a radiopharmaceutical metal tricarbonyl complex suitable for renal examination that comprises a precursor metal tricarbonyl complex, e.g., 99m Tc(CO) 3 (H 2 O) 3 salts and a ligand having a structure according to the formula:
- the kit further optionally comprises a metal tricarbonyl complex, a reducing agent, a stabilizing agent and/or a chelating agent, as well as instructions for use of the reagents in the kit.
- the ligand is N-(LGalkyl)iminodiacetic acid wherein the LGalkyl is alkyl terminally substituted with a halogen, fluroro, hydroxyl, leaving group, or salt thereof.
- the leaving group is Cl, Br, I, a sulfonate, tosylate, mesylate, trifluoromethanesulfonate, or sulfurate.
- a 99m Tc-metal tricarbonyl complex may be prepared from a kit by interacting under reducing conditions the reactants of the kit, i.e., a ligand and a freshly prepared.
- 99m Tc solution eluted from a molybdenum-technetium generator just prior to use.
- the 99m Tc may be present in the form of a salt or as technetium bound to a relatively weak chelator, in which case the desired 99m Tc chelate is formed by ligand exchange.
- Examples of relatively weak chelating agents known to be particularly suitable to easily obtain a desired ligand exchange are, for example, carboxylic acids such as citric acid, tartaric acid, ascorbic acid, glucoheptonic acid, and derivatives thereof, although polycarboxylic acids, hydroxycarboxylic acids and phosphorus compounds can also be used.
- carboxylic acids such as citric acid, tartaric acid, ascorbic acid, glucoheptonic acid, and derivatives thereof, although polycarboxylic acids, hydroxycarboxylic acids and phosphorus compounds can also be used.
- Suitable reducing conditions to keep the 99m Tc pertechnetate reduced can be provided by, for example, dithionite, formamidine sulfinic acid or metallic reducing agents such as Fe(II), Cu(I), Ti(III) or Sb(III) and, preferably, Sn(II).
- the reactants of the kit may be present in liquid form, for example, as a saline or buffer solution. However, it is preferred that the reactants be in a dry form, e.g., a lyophilized condition.
- the reactants may be stabilized by the presence of a suitable stabilizing agent such as ascorbic acid, gentisic acid, sugar, e.g., glucose, lactose, mannitol, inositol, and the like.
- kits comprising an amount of a tracer comprising a metal tricarbonyl complex disclosed herein, or precursor, or mixtures thereof optionally in a sealed container, wherein the amount of the tracer is suitable for imaging a kidney of subject.
- the kit further comprises a cryptand or other anionic chelator.
- kits comprise metal tricarbonyl complexes or mixtures having the following formula:
- the kit further comprises a reagent for generating a leaving group, e.g., Y is hydroxyl and the reagent is capable of reacting with the hydroxyl to form a leaving group such as a tosylate or mesylate group.
- a reagent for generating a leaving group e.g., Y is hydroxyl and the reagent is capable of reacting with the hydroxyl to form a leaving group such as a tosylate or mesylate group.
- the kit further comprises a precursor compound of the formula M(CO) 3 (N-(LGalkyl)iminodiacetate), Re(CO) 3 (N-(LGalkyl)iminodiacetate) or 99m Tc(CO) 3 (N-(LGalkyl)iminodiacetate) wherein LGalkyl is an alkyl terminal substituted with a leaving group or salt thereof.
- precursor metal tricarbonyl complexes are labeled with radionuclides using methods reported herein to provide the tracers. These tracers may be prepared at the location of the subject near the time the subject is exposed to an imaging device.
- the disclosure contemplates kits comprising metal tricarbonyl complexes disclosed herein or precursors (e.g., metal tricarbonyl complexes disclosed herein that react with recently generated 18 F ⁇ ), e.g., metal tricarbonyl complexes disclosed herein comprising alkyl or alkoxy groups that are terminally substituted with tosylate and mesylate groups.
- the disclosure contemplates a kit comprising metal tricarbonyl complexes disclosed herein or precursors comprising alkyl or alkoxy groups terminally substituted with halogen, hydroxyl, thiol, —O-p-toluenesulfonyl, —O-p-bromobenzenesulfonyl, —O— (2- or 4)-nitrobenzene sulfonyl, —O-methanesulfonyl, —O-trifluoromethanesulfonyl, —O-5(dimethylamino)naphthalene-1-sulfonyl, —S-p-toluenesulfonyl, —S-p-bromobenzenesulfonyl, —S-(2- or 4)-nitrobenzene sulfonyl, —S-methanesulfonyl, —S-trifluoromethan
- the kit may further comprise a metal tricarbonyl complex disclosed herein having a terminal hydroxy or thiol and an activating agent such as p-toluenesulfonyl chloride, p-bromobenzenesulfonyl chloride, (2- or 4)-nitrobenzene sulfonyl chloride, methanesulfonyl chloride, trifluoromethanesulfonyl chloroide, 5(dimethylamino)naphthalene-1-sulfonyl chloride, dicyclohexylcarbodiimide, bromo-tripyrrolidino-phosphonium hexafluorophosphate, bromotris(dimethylamino) phosphonium hexafluorophosphate, 2-(6-Chloro-1H-benzotriazol-1-yl)-N,N,N′,N′-tetramethylaminium hexafluoro
- the kit comprise a solid support comprising 18 F salts.
- the solid support is selected from the group of solid phase extraction resins or liquid chromatography resins, e.g., silica (oxide) based or non-silica (metal oxide or polymers) based particles optionally functionalized (e.g., by organosilanization) with alkyl chains for example C4, C8, C18, C18, C30 or other functional groups, e.g., polar groups (amide, carbamate, sulfamide, and ureas) embedded within alkyl chains or branched alkyl groups or polymeric packings.
- Polymeric column packing refers to particles made by the process of reacting silica surface silanol groups with halogenated di or trifunctional silanes.
- the solid support is selected from the group consisting of solid phase extraction resins and liquid chromatography resins resulting from the copolymerization of divinylbenzene and/or styrene, or by the copolymerization with vinylpyrrolidone, vinylacetate, (methacryloyloxymethyl)naphtalene, 4,4′-bis(maleimido)diphenylmethane, p,p′-dihydroxydiphenylmethane diglycidylmethacrylic ester, p,p′-dihydroxydiphenylpropane diglycidylmethacrylic ester, 2-hydroxyethylmethacrylate (HEMA), 2,2-dimethylaminoethylmethacrylate (DMAEMA), ethylenedimethacrylate glycidylmethacrylate, N-vinylcarbazole, acrylonitrile, vinylpyridine, N-methyl-N-vinylacetamide, aminost
- the solid support comprises or is functionalized with or preconditioned with quaternary ammonium salts, e.g., tetraethylammonium carbonate, tetrabutylammonium carbonate or potassium carbonate cryptands such as 1,4,10-Trioxa-7,13-diaza-cyclopentadecane, 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane, 4,7,13,16,21-Pentaoxa-1,10-diazabicyclo[8.8.5]tricosane, 4,7,13,18-Tetraoxa-1,10-diazabicyclo[8.5.5]eicosane, 5,6-Benzo-4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacos-5-ene
- kits comprising: an amount of a ligand or metal tricarbonyl complex disclosed herein in a sealed container, wherein the amount is suitable for imaging a kidney of an animal or human subject, and instructions for the use thereof in imaging said kidney and optionally for determining renal function in the animal or human subject.
- the instructions comprise the steps of: administering to an animal or human subject an amount of a renal tracer, where the renal tracer comprises a metal tricarbonyl complex disclosed herein or mixtures; detecting the tracer in the kidney of the animal or human subject with a gamma camera; and obtaining at least one image of the kidney of the animal or human subject, wherein the image is obtained as a data output from a gamma camera.
- the instructions comprise steps for the use of the tracer in measuring renal function, the instructions comprising the steps of: administering to an animal or human subject an amount of a renal tracer; obtaining at least one image of a kidney of the animal or human subject, wherein the image is obtained as a data output from a gamma camera; and analyzing the data output from the gamma camera, wherein the data analysis provides a measurement of the effective renal plasma flow of the animal or human subject.
- the instructions for the use of the tracer in measuring renal function comprise the steps of: administering to an animal or human subject an amount of a renal tracer or mixtures; isolating a plurality of biological samples from the animal or human subject after administering the renal tracer; quantitatively measuring the amount of the renal tracer in the isolated biological samples; and determining the effective renal plasma flow of the animal or human subject.
- compositions for use in the present disclosure typically comprise an effective amount of a metal tricarbonyl complex or mixtures and a suitable pharmaceutical acceptable carrier.
- the preparations may be prepared in a manner known per se, which usually involves mixing the at least one compound according to the disclosure with the one or more pharmaceutically acceptable carriers, and, if desired, in combination with other pharmaceutical active compounds, when necessary under aseptic conditions.
- the disclosure relates to pharmaceutical composition
- a metal tricarbonyl complex disclosed herein or mixture thereof comprising a metal tricarbonyl complex disclosed herein or mixture thereof.
- the radioactive diagnostic composition of the invention may be formulated in any appropriate preparation form such as powder, lyophilized powder or solution. Further, it may comprise, in addition to said essential components, any auxiliary agent such as a pH regulating agent (e.g. acid, base), an isotonic agent (e.g. sodium chloride), a preservative (e.g. benzyl alcohol) or the like.
- a pH regulating agent e.g. acid, base
- an isotonic agent e.g. sodium chloride
- a preservative e.g. benzyl alcohol
- the disclosure contemplates pharmaceutical compositions comprising a pharmaceutically acceptable excipient and a compound disclosed herein.
- the pharmaceutical composition is in the form of a tablet, capsule, pill, aerosol, or aqueous buffer, such as a saline or phosphate buffer.
- the pharmaceutical composition may contain a water-soluble stabilizer, water-soluble reducing agent such as chloride, stannous fluoride, stannous sulfate, stannous nitrate, stannous acetate, stannous citrate, stannous tartrate, ascorbic acid or erythrobic acid, or any pharmaceutically acceptable salt or ester thereof.
- a water-soluble stabilizer water-soluble reducing agent such as chloride, stannous fluoride, stannous sulfate, stannous nitrate, stannous acetate, stannous citrate, stannous tartrate, ascorbic acid or erythrobic acid, or any pharmaceutically acceptable salt or ester thereof.
- Instruments for detecting and monitoring by radionuclide imaging the location of a tracer in the body of a subject include positron emission tomography (PET) and single photon emission computed tomography (SPECT) scanners. These may be combined with other methods such as computerized tomography (CT) scans and MRI.
- CT scan combines a series of X-ray images taken from different angles and uses computer processing to create cross-sectional images, or slices, of the bones, blood vessels and soft tissues inside your body. These scans or associated data can be used to create computerized images that take place in tissue or the blood stream.
- a scanner records data that a computer constructs into two- or three-dimensional images.
- radioactive drug is injected into the subject, e.g., a vein, and a scanner is used to make detailed images of areas inside the body where the radioactive material is taken up by the cells, tissue, fluids, or organs.
- Single photon emission computed tomography is a nuclear medicine imaging technique using gamma rays. It may be used with any gamma-emitting isotope, including Tc-99m ( 99m Tc).
- the radioisotope is administered to the patient and the escaping gamma rays are incident upon a moving gamma camera which computes and processes the image.
- the gamma camera is typically rotated around the patient. Projections are acquired at defined points during the rotation, typically every three to six degrees. In most cases, a full 360° rotation is used to obtain an optimal reconstruction.
- SPECT is widely used to obtain clinically significant information about analog binding, localization and clearance rates.
- Positron Emission Tomography involves detection of pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule. Images of tracer concentration in the body are then reconstructed by computer analysis. Two or three-dimensional images of tracer concentration within the area are then constructed by computer analysis. A radioactive tracer is administered to a subject e.g., into blood circulation. Typically there is a waiting period while tracer becomes concentrated in areas of interest; then the subject is placed in the imaging scanner.
- PET Positron Emission Tomography
- the radionuclide undergoes positron emission decay, it emits a positron, an antiparticle of the electron with opposite charge, until it decelerates to a point where it can interact with an electron, producing a pair of (gamma) photons moving in approximately opposite directions. These are detected in the scanning device.
- the technique typically utilizes simultaneous or coincident detection of the pair of photons moving in approximately opposite direction (the scanner typically has a built-in slight direction-error tolerance). Photons that do not arrive in pairs (i.e. within a timing-window) are typically ignored.
- radionuclide or “radioactive isotope” refers to molecules of enriched isotopes that exhibit radioactive decay (e.g., emitting positrons). Such isotopes are also referred to in the art as radioisotopes.
- a radionuclide tracer does not include radioactive primordial nuclides, but does include a naturally occurring isotopes that exhibit radioactive decay with an isotope distribution that is enriched, e.g., is several fold greater than natural abundance. In certain embodiments, is contemplated that the radionuclides are limited to those with a half live of less than 1 hour and those with a half-life of more than 1 hour but less than 24 hours.
- Radioactive isotopes are named herein using various commonly used combinations of the name or symbol of the element and its mass number (e.g., 18 F, F-18, or fluorine-18).
- Elements that can be used in the compounds of the present disclosure include: F-18; C-11; 1-125, 1-124, 1-131 and 1-123; Cl-32, Cl-33, Cl-34; Br-74, Br-75, Br-76, Br-77, Br-78; Re-186, Re-188; Y-90, Y-86; Lu-177 and Sm-153.
- Typical radioactive isotopes include I-124, F-18 fluoride, C-11, N-13, and 0-15, which have half-lives of 4.2 days, 110 minutes, 20 minutes, 10 minutes and 2 minutes, respectively.
- the radioactive isotopes used in the present method include F-18, C-11, I-123, I-124, I-127, 1-131, Br-76, Cu-64, Tc-99m, Y-90, Ga-67, Cr-51, Ir-192, Mo-99, Sm-153 and Tl-201.
- radioactive isotopes that may be employed include: As-72, As-74, Br-75, Co-55, Cu-61, Cu-67, Ga-68, Ge-68, I-125, I-132, In-111, Mn-52, Pb-203 and Ru-97.
- static images may also be taken of the pre-injection dose syringe, post-imaging empty dose syringe, the pre-voided bladder, the post-void-bladder, the post-void kidneys, and the injection site.
- the syringe images are necessary for calculation of renal clearance by the camera-based method.
- Bladder images are necessary in order to obtain urine flow rate and residual urine volume.
- the post-void kidney image is a visual indicator of the emptying of urine from the renal collecting systems (since the patient will usually have gotten up from the scan table in order to void). This image also provides kidney counts, from whole kidney regions of interest, which allow calculation of important ratios relevant to the excretory function of the kidneys.
- the injection site image is a quality control element for the radiopharmaceutical injection, since a significant quantity of the dose outside the vein will invalidate the study.
- the baseline study may be analyzed quantitatively and the results reviewed by a physician. If the patient was referred for evaluation of possible obstruction, adequate clearance of the radiopharmaceutical should be seen and, if it is not, an intravenous dose of furosemide, a diuretic, can be administered. An additional dynamic image set is then acquired.
- a kidney in an animal or human subject provides methods of imaging a kidney in an animal or human subject, the method comprising: (a) administering to an animal or human subject an amount of a renal tracer, where the renal tracer comprises a metal tricarbonyl complex disclosed herein in the kidney of the animal or human subject with a gamma camera; and (c) obtaining at least one image of the kidney of the animal or human subject, where the image is obtained as a data output from a gamma camera.
- the present disclosure encompasses methods of measuring renal function in an animal or human subject using renal scintigraphy, comprising: (a) administering to an animal or human subject an amount of a renal tracer, where the renal tracer comprises a metal tricarbonyl complex disclosed herein or mixtures; (b) obtaining at least one image of a kidney of the animal or human subject, wherein the image is obtained as a data output from a gamma camera; and (c) analyzing the data output from the gamma camera, wherein the data analysis provides a measurement of the effective renal plasma flow of the animal or human subject.
- the methods may further comprise repeating the steps (a)-(c), thereby providing a time-dependent analysis of the urinary tract function of an animal or human subject, wherein the analysis is selected from the group consisting of: the EPRF of a kidney, the ability of a kidney to extract the tracer from the blood, the ability of subject human or animal to excrete the tracer into the collecting system of a kidney, monitoring of drainage of the tracer from the collecting system (calyces and pelvis) to the bladder, and to quantify the ability of the bladder to empty.
- the analysis is selected from the group consisting of: the EPRF of a kidney, the ability of a kidney to extract the tracer from the blood, the ability of subject human or animal to excrete the tracer into the collecting system of a kidney, monitoring of drainage of the tracer from the collecting system (calyces and pelvis) to the bladder, and to quantify the ability of the bladder to empty.
- the methods may further comprise repeating the steps (a)-(c) at least once, thereby providing a series of images and a time-dependent analysis of renal efficiency of the animal or human subject.
- the methods may further comprise repeating the steps (b) and (c) after a single amount of the renal tracer obtaining a series of images of the kidney or kidneys of the animal or human subject, and analyzing the data output from the gamma camera, wherein the data analysis provides a measurement of the effective renal plasma flow of the animal or human subject.
- the steps (a)-(c) may be repeated at time intervals over a period of about 2 mins to 60 mins, thereby providing a time-dependent series of images.
- the steps (a)-(c) are repeated at time intervals over a period of about 3 mins to 30 mins, thereby providing a time-dependent series of images.
- the disclosure contemplates method of measuring effective renal plasma flow in an animal or human subject, comprising administering to an animal or human subject an amount of a renal tracer, wherein the renal tracer comprises a metal tricarbonyl complex disclosed herein or mixtures, isolating a series of biological samples from the animal or human subject after administering the renal tracer, quantitatively detecting the amount of the renal tracer in the biological samples, and determining the effective renal plasma flow of the animal or human subject.
- the disclosure relates to imaging methods comprising a) administering a metal tricarbonyl complex comprising a radionuclide or positron-emitting radionuclide disclosed herein or mixtures to a subject; and b) scanning the subject for the emission, positron-emissions or other gamma-emissions.
- the methods typically further comprise the steps of detecting the emissions and creating an image of an area of the subject indicating or highlighting the location of the metal tricarbonyl complex containing radionuclide or mixtures in the subject.
- the area of the subject is the lymph nodes, groin, axilla, neck, lungs, liver, kidney, pancreas, stomach, balder, intestines, circulatory system, breast, prostate, gallbladder, or brain.
- the metal tricarbonyl complexes of the present disclosure may be labeled with one or more radionuclides, such as 11 C, 18 F, 76 Br, 123 I, 124 I, 131 J 13 N, or 15 O. Radionuclides used in PET scanning are typically positron-emitting isotopes with short half-lives such as carbon-11 (approximately 20 min), nitrogen-13 (approximately 10 min), oxygen-15 (approximately 2 min), and fluorine-18 (approximately 110 min).
- the metal tricarbonyl complex may be administered by any suitable technique known in the art, such as direct injection. Injection may be intravenous (IV). Administration may be general or local to the site of interest.
- the compound may be used in conjunction with another probe. The two (or more) probes may be administered together, separately or sequentially.
- the metal tricarbonyl complexes of the present disclosure may be used to diagnose, assess or monitor the progression or treatment of a disease or condition.
- the metal complexes of the disclosure are useful as tracer compounds for kidney functioning and blood circulating imaging techniques, including PET and SPECT imaging.
- Particularly useful as an imaging agent are those compounds labeled with F-18 since F-18 has a half-life of 110 minutes, which allows sufficient time for incorporation into a radio-labeled tracer, for purification and for administration into a human or animal subject.
- facilities more remote from a cyclotron, up to about a 200 mile, radius can make use of F-18 labeled compounds.
- halogen isotopes can serve for PET or SPECT imaging, or for conventional tracer labeling. These include 75 Br, 76 Br, 77 Br and 82 Br as having usable half-lives and emission characteristics.
- the chemical means exist to substitute any halogen moiety for the described isotopes. Astatine can be substituted for other halogen isotopes, [ 210 At] emits alpha particles with a half-life of 8.3 h. At-substituted compounds are therefore useful for tumor therapy where binding is sufficiently tumor-specific.
- the disclosure provides methods for kidney imaging using PET and SPECT.
- the methods entail administering to a subject (which can be human or animal, for experimental and/or diagnostic purposes) an image-generating amount of a metal tricarbonyl complex of the disclosure or mixtures, labeled with the appropriate isotope and then measuring the distribution of the metal tricarbonyl complex by PET if [ 18 F] or other positron emitter is employed, or SPECT if [ 99m Tc] or other gamma emitter is employed.
- An image-generating amount is that amount which is at least able to provide an image in a PET or SPECT scanner, taking into account the detection sensitivity and noise level of the scanner, the age of the isotope, the body size of the subject and route of administration.
- Methods of use of the imaging agents provided herein include, but are not limited to: methods of imaging kidney tissue; methods of imaging kidney function; methods of diagnosing kidney function; methods of monitoring the progress of kidney issue degeneration; methods of imaging abnormal kidney tissue, and the like.
- the methods can be used to detect, study, monitor, evaluate, and/or screen, biological events in vivo or in vitro.
- compositions comprising the metal tricarbonyl complexes disclosed herein or mixtures are administered to the subject in an amount effective to result in uptake of the complex into the blood stream.
- the complexes are detected using PET or SPECT imaging.
- Embodiments of the present disclosure can non-invasively image the presence of the complexes in the blood and tissue throughout an animal or patient.
- the metal tricarbonyl complexes of the present disclosure are excreted from tissues of the body quickly to prevent prolonged exposure to the radiation of the radiolabeled complexes administered to the patient.
- the radionuclide labeled complexes provided herein can be used on an outpatient basis.
- metal complexes of the present disclosure are eliminated from the body in less than about 24 hours. More preferably, complexes of the present disclosure are eliminated from the body in less than about 16 hours, 12 hours, 8 hours, 6 hours, 4 hours, 2 hours, 90 minutes, or 60 minutes.
- the spatial distribution of the complexed disclosed herein may be measured using any imaging apparatus suitable for the particular label, for example, a gamma camera, a PET apparatus, a SPECT apparatus, MRS, MRI or optical imaging apparatus, and the like.
- the extent of accumulation of the imaging agent may be quantified using known methods for quantifying radioactive emissions.
- a particularly useful imaging approach employs more than one imaging agent to perform simultaneous studies.
- the imaging method may be carried out a plurality of times with increasing administered dose of the pharmaceutically acceptable imaging composition of the present disclosure to perform successive studies using the split-dose image subtraction method, as are known to those of skill in the art.
- an amount of the imaging agent effective for imaging kidney function is administered to a subject.
- An effective amount of the imaging agent may be administered in more than one injection.
- the effective amount of the imaging agent can vary according to factors such as the degree of susceptibility of the individual, the age, sex, and weight of the individual, idiosyncratic responses of the individual, the dosimetry, and the like. Effective amounts of the imaging agent can also vary according to instrument and film-related factors.
- FEDA N-(2-fluoroethyl)iminodiacetic acid
- 99m Tc(CO) 3 was evaluated in rats using 131 I-OIH as an internal control; urine was analyzed for metabolites. Plasma protein binding (PPB) and erythrocyte uptake (RCB) were determined from the 10 min blood samples. The Re(CO) 3 analog was prepared for structural characterization.
- 99m Tc(CO) 3 was efficiently prepared as a single species with high radiochemical purity (>99%), and was stable through 24 h at physiological pH. It showed rapid blood clearance, high specificity for renal excretion and lack of significant uptake in other organs.
- the % injected dose in the urine was 100% and 99% that of 131 I-OIH at 10 and 60 min, respectively.
- the tracer was secreted intact in the urine; PPB was 61% and RCB was 20%.
- Re(CO) 3 (HDA), prepared from 2-hydroxyethyl iminodiacetic acid and Re(CO) 3 (H 2 O) 3 [OTf], was dissolved in THE and stirred in an oil bath at room temperature with p-toluenesulfonyl chloride (29 mg, 0.15 mmol), triethylamine (21 ⁇ L, 0.15 mmol) and a catalytic amount of dimethylaminopyridine (3 mg) overnight. The starting material was consumed, giving rise to a single product peak with a retention time of 23 min. The crude product was purified over silica using a water:isopropanol:ethylacetate (7:2:1) mobile phase. UV active fractions were combined and concentrated to yield the product 4 as a white powder (10 mg, 0.02 mmol, 20%).
- CPCU chemical processing control unit
- TEAP triethylammonium phosphate
- the solution of the 18 F radiotracer (pH 7) was analyzed by HPLC for stability for up to 23 h.
- Re(CO) 3 ( 18 FFEDA) was obtained by the nucleophilic substitution fluorination in the decay corrected radiochemical yield of 18% in a total synthesis time of 120 min from end of bombardment.
- the purified filtered final radiotracer was formulated in a 0.05 M TEAP solution containing 10% ethanol. Quality control showed radiochemical and chemical purities above 99%.
- Coinjection with the standard Re(CO) 3 (FEDA) confirmed the identity of the radiolabeled product.
- the HPLC analysis of an aliquot of Re(CO) 3 ( 18 FFEDA) incubated for 23 hours revealed only intact 18 F radiotracer confirming its stability.
- the ligand 2 was heated with the labeling precursor [ 99m Tc(CO) 3 (H 2 O) 3 ]OTf for 30 min before purifying by HPLC. Coinjection with the cold standard showed the product 5 was isolated in high purity.
- the tracer 5 was stable under physiological conditions for at least 1 d and used in animal studies.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Cell Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medical Informatics (AREA)
- Biotechnology (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Toxicology (AREA)
- High Energy & Nuclear Physics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
This disclosure relates to compositions comprising substituted iminodiacetic acid ligands and metal tricarbonyl complexes containing the ligands and derivatives thereof. In certain embodiments, the metal tricarbonyl complexes are used as radioisotope tracers such as renal tracers. In certain embodiments, the metal complexes comprise 99mTc or Re. In certain embodiments, the ligands are substituted with a fluorine, a fluorine-18(F18) radioisotope, or other radionuclide.
Description
- This application is a continuation of U.S. application Ser. No. 16/822,571 filed Mar. 18, 2020, which is a continuation of U.S. application Ser. No. 15/557,453 filed Sep. 11, 2017 that granted as U.S. Pat. No. 10,633,404 on Apr. 28, 2020, which is the National Stage of International Application No. PCT/US2016/021719 filed Mar. 10, 2016, which claims the benefit of U.S. Provisional Application No. 62/130,953 filed Mar. 10, 2015. The entirety of each of these applications is hereby incorporated by reference for all purposes.
- This invention was made with government support under DK038842 awarded by the National Institutes of Health. The government has certain rights in the invention.
- Radiopharmaceuticals are widely employed in nuclear medicine for imaging and for assessing physiological function and disease. Radioisotope renography is a form of kidney imaging involving radioisotopes used to image the kidney, evaluate suspected renal disease, and monitor renal function. The most common radiolabelled pharmaceutical agent used is Tc99m-MAG3 (mercaptoacetyltriglycine). Image quality is dependent on rapid removal of the radiotracer from the circulating plasma by the kidney as the rate of removal provides an important measurement of renal function. Renal plasma flow can be measured indirectly with radioiodinated o-iodohippuran (131I-OIH) that is generally accepted as a benchmark.
- The 99mTc-MAG3 tracer is eliminated via the hepatobiliary tract which is exacerbated in patients with impaired renal function. The clearance of 99mTc-mercaptoacetyltriglycine (99mTc-MAG3) is 50-65% when compared to 131I-OIH making the tracer suboptimal for the estimation of renal plasma flow. Thus, improved renal tracers are need.
- Klenc et al. report fac-[ReI(CO)3(NTA)]2− and fac-[ReI(CO)3(L)]n− analogues as useful for assessing the renal clearance. Inorg. Chem., 2015, 54 (13), pp 6281-6290. See also Klenc et al. JNM 2015, 56, (Suppl. 3):654; Lipowska et al. J Nucl Med. 2014; 55 (Suppl. 1):1206, and U.S. Pat. Nos. 9,061,077 and 6,926,883.
- References cited herein are not an admission of prior art.
- This disclosure relates to compositions comprising substituted iminodiacetic acid ligands and metal tricarbonyl complexes containing the ligands and derivatives thereof. In certain embodiments, the metal tricarbonyl complexes are used as radioisotope tracers such as renal tracers. In certain embodiments, the metal complexes comprise 99mTc and/or Re. In certain embodiments, the ligands are substituted with a fluorine, a fluorine-18(F18) radioisotope, or other radionuclide.
- In certain embodiments, a metal tricarbonyl complex comprises N-(2-fluoroethyl) iminodiacetic acid as a ligand, e.g., a metal tricarbonyl complex having the formula Re(CO)3(N-(2-fluoroethyl)iminodiacetate), Re(CO)3(N-(2-18fluoroethyl)iminodiacetate), 99mTc(CO)3(N-(2-fluoroethyl)iminodiacetate), mixtures or salts thereof. In certain embodiments, a fluoro is F18.
- In certain embodiments, the disclosure relates to tracer composition comprising a mixture of Re(CO)3(N-(2-18fluoroethyl)iminodiacetate) and 99mTc(CO)3(N-(2-fluoroethyl)iminodiacetate).
- In certain embodiments, the disclosure relates to kits and pharmaceutical composition comprising ligands or metal tricarbonyl complexes disclosed herein. In certain embodiments, the disclosure relates to kits comprising an amount of a tracer comprising a metal tricarbonyl complex disclosed herein or precursor thereof optionally in a sealed container, wherein the amount of the tracer is suitable for imaging a kidney of subject. In certain embodiments, the ligand is N-(2-fluoroethyl)iminodiacetic acid or N-(2-((tosyl)oxy)ethyl)iminodiacetic acid, or Re(CO)3(N-(2-((tosyl)oxy)ethyl)iminodiacetate. In certain embodiments, the kit further comprise a chelator such as a cryptand.
- In certain embodiments, the disclosure relates to the precursor metal tricarbonyl complex Re(CO)3(N-(2-((tosyl)oxy)ethyl)iminodiacetate or derivatives. In certain embodiments, the precursor is N-(2-fluoroethyl)iminodiacetic acid, N-(2-hydroxyethyl)iminodiacetic acid, or N-(2-((tosyl)oxy)ethyl)iminodiacetic acid.
- In certain embodiments, the disclosure relates to imaging methods comprising a) administering a pharmaceutical composition comprising a metal tricarbonyl complex disclosed herein containing a radionuclide to a subject; b) scanning the subject for emissions; and c) creating an image indicating a location of the metal tricarbonyl complex containing radionuclide in the body, organ, kidney, blood, or other area of the subject. In certain embodiments, the imaging method comprises single photon emission computed tomography (SPECT) and/or PET imaging
-
FIG. 1 shows the HPLC chromatograms of 99mTc(CO)3(FEDA) in urine at 10 min after injection. -
FIG. 2 illustrates the preparation of embodiments of the disclosure, e.g., wherein M is Re or 99mTc. -
FIG. 3 illustrates embodiments of a renal tracer having a mixture of metal tricarbonyl complexes. - Before the present disclosure is described in greater detail, it is to be understood that this disclosure is not limited to particular embodiments described, and as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, the preferred methods and materials are now described.
- All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided could be different from the actual publication dates that may need to be independently confirmed.
- As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure. Any recited method can be carried out in the order of events recited or in any other order that is logically possible.
- Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of medicine, organic chemistry, biochemistry, molecular biology, pharmacology, and the like, which are within the skill of the art. Such techniques are explained fully in the literature.
- It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. In this specification and in the claims that follow, reference will be made to a number of terms that shall be defined to have the following meanings unless a contrary intention is apparent. Prior to describing the various embodiments, the following definitions are provided and should be used unless otherwise indicated.
- The term “renal scintigraphy” as used herein refers to an imaging system including, but not limited to, a gamma camera able to detect and form an image localizing a source of gamma radiation. In the context of the present disclosure, the imaging system may be for an image corresponding to the form of the labeled organ, and in particular of a kidney underlying skin and other tissues. The imaging system may further comprise computer-based apparatus and software intended to produce an image in a form apparent to the observer, and to analyze the image for information such as, but not only, the intensity of the emitted gamma radiation as well as its locality in the subject body. The term “dose amount” as used herein refers to a bolus dose of a renal tracer, and in particular of the tracer. The dose is preferred to be of an amount that, when delivered to the kidney of an animal or human subject, will have a gamma intensity useful for forming an image of the gamma source by a gamma camera. The dose amount being adjusted according to the size, weight, and shape of the recipient subject and the purpose of the study.
- As used herein, “alkyl” means a noncyclic straight chain or branched, unsaturated or saturated hydrocarbon such as those containing from 1 to 10 carbon atoms, typically 1 to 4 otherwise designated C1-4alkyl. Representative saturated straight chain alkyls include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-septyl, n-octyl, n-nonyl, and the like; while saturated branched alkyls include isopropyl, sec-butyl, isobutyl, tert-butyl, isopentyl, and the like. Unsaturated alkyls contain at least one double or triple bond between adjacent carbon atoms (referred to as an “alkenyl” or “alkynyl”, respectively). Representative straight chain and branched alkenyls include ethylenyl, propylenyl, 1-butenyl, 2-butenyl, isobutylenyl, 1-pentenyl, 2-pentenyl, 3-methyl-1-butenyl, 2-methyl-2-butenyl, 2,3-dimethyl-2-butenyl, and the like; while representative straight chain and branched alkynyls include acetylenyl, propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, 2-pentynyl, 3-methyl-1-butynyl, and the like.
- “Alkoxy” refers to an alkyl group as defined above with the indicated number of carbon atoms attached through an oxygen bridge. Examples of alkoxy include, but are not limited to, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy, n-pentoxy, and s-pentoxy. Preferred alkoxy groups are methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy. “Alkoxyalkyl” refers an alkyl group as defined above with the indicated number of carbon atoms attached through an alkyl bridge (i.e., —CH2—O—CH2CH3).
- A chelator is a molecule that contains multiple multivalent atoms, e.g, divalent, with a lone pair of elections (multidentate). The multivalent atoms are typically N, O, S, and mixtures thereof. Examples of chelators include crown ethers (monocyclic) and cryptands (bi- or polycyclic) which contain polyalkoxy or polyethylene glycol groups. 1,10-Diaza-4,7,13,16,21,24-hexaoxabicyclo[8.8.8]hexacosane is the [2.2.2]cryptand where the numbers [2.2.2] indicate the number of ether oxygen atoms in each of the three bridges between the amine nitrogen caps. Cryptands and crown ethers typically bind cations to form salts. Chelators may be anionic if they contain a quaternary ammonium cation.
- A “linking group” refers to any variety of molecular arrangements that can be used to bridge two molecular moieties together. An example formula may be —Rm— wherein R is selected individually and independently at each occurrence as: —CRmRm—, —CHRm—, —CH—, —C—, —CH2—, —C(OH)Rn, —C(OH)(OH)—, —C(OH)H, —C(Hal)Rm—, —C(Hal)(Hal)-, —C(Hal)H—, —C(N3)Rm—, —C(CN)Rn—, —C(CN)(CN)—, —C(CN)H—, —C(N3)(N3)—, —C(N3)H—, —O—, —S—, —N—, —NH—, —NRm—, —(C═O)—, —(C═NH)—, —(C═S)—, —(C═CH2)—, which may contain single, double, or triple bonds individually and independently between the R groups. If an R is branched with an Rm it may be terminated with a group such as —CH3, —H, —CH═CH2, —CCH, —OH, —SH, —NH2, —N3, —CN, or -Hal, or two branched Rs may form a cyclic structure. It is contemplated that in certain instances, the total Rs or “m” may be less than 100 or 50 or 25 or 10. Examples of linking groups in include bridging alkyl groups and alkoxyalkyl groups.
- The term “substituted” refers to a molecule wherein at least one hydrogen atom is replaced with a substituent. When substituted, one or more of the groups are “substituents.” The molecule may be multiply substituted. In the case of an oxo substituent (“═O”), two hydrogen atoms are replaced. Example substituents within this context may include halogen, hydroxy, alkyl, alkoxy, nitro, cyano, oxo, carbocyclyl, carbocycloalkyl, heterocarbocyclyl, heterocarbocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, —NRaRb, —NRaC(═O)Rb, —NRaC(═O)NRaNRb, —NRaC(═O)ORb, —NRaSO2Rb, —C(═O)Ra, —C(═O)ORa, —C(═O)NRaRb, —OC(═O)NRaRb, —ORa, —SRa, —SORa, —S(═O)2Ra, —OS(═O)2Ra and —S(═O)2ORa. Ra and Rb in this context may be the same or different and independently hydrogen, halogen hydroxyl, alkyl, alkoxy, alkyl, amino, alkylamino, dialkylamino, carbocyclyl, carbocycloalkyl, heterocarbocyclyl, heterocarbocycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl.
- “Subject” refers any animal, preferably a human patient, livestock, or domestic pet.
- As used herein, the term “derivative” refers to a structurally similar compound that retains sufficient functional attributes of the identified analogue. The derivative may be structurally similar because it is lacking one or more atoms, substituted, a salt, in different hydration/oxidation states, or because one or more atoms within the molecule are switched, such as, but not limited to, replacing an oxygen atom with a sulfur or nitrogen atom or replacing an amino group with a hydroxyl group or vice versa. Derivatives may be prepare by any variety of synthetic methods or appropriate adaptations presented in synthetic or organic chemistry text books, such as those provide in March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Wiley, 6th Edition (2007) Michael B. Smith or Domino Reactions in Organic Synthesis, Wiley (2006) Lutz F. Tietze hereby incorporated by reference.
- The tracer 99mTc(CO)3(2-fluoroethyliminodiacetate) (FEDA), i.e., 99mTc(CO)3 complexed with N-(fluoroethyl)iminodiacetic acid (FEDA), showed a rapid renal excretion in rat studies that was in significant excess of the current clinical standard for the same purpose, 99mTc-MAG3. 99mTc(CO)3(FEDA) may prepared with 18F. The clearance of the 99mTc-FEDA analog is comparable to the gold standard, 131I-OIH. The renal excretion exhibited by 99mTc (CO)3(FEDA) was unexpected due to the fluoroethyl pendant group being less polar and unable to form hydrogen bonds, as the complexes that were previously evaluated such as 99mTc(CO)3 complexes with N-(2-hydroxyethyl)iminodiacetic acid (HDA) and N-(2-acetamido)iminodiacetic acid (ADA), (99mTc(CO)3(ADA) and 99mTc (CO)3(HDA)).
- In certain embodiments, the disclosure relates to substituted iminodiacetate metal tricarbonyl complexes disclosed herein, mixtures, and derivatives thereof. In certain embodiments the metal tricarbonyl complexes disclosed herein are substituted with one or more substituents. In certain embodiments, the metal tricarbonyl complexes have the following formula:
- or salts thereof wherein
-
- M is 99mTc, Re, or other metal capable of octahedral coordination;
- X is alkyl, alkoxyalkyl, or other linking group; and
- Y is hydroxyl, fluoro, halogen, a leaving group, F18, or other radionuclide.
- In certain embodiments, metal tricarbonyl complexes of this disclosure comprise N-(fluoroalkyl)iminodiacetate wherein the fluoroalkyl is alkyl terminally substituted with fluoro, e.g., N-(2-fluoroethyl)iminodiacetic acid.
- In certain embodiments, metal tricarbonyl complexes of this disclosure have the formula M(CO)3(N-(fluoroalkyl)iminodiacetate), Re(CO)3(N-(fluoroalkyl)iminodiacetate) or 99mTc(CO)3(N-(fluoroalkyl)iminodiacetate).
- The term “radionuclide” or “radioactive isotope” refers to molecules of enriched isotopes that exhibit radioactive decay (e.g., emitting one or more gamma rays or positrons). Such isotopes are also referred to in the art as radioisotopes. A radionuclide tracer does not include radioactive primordial nuclides, but does include a naturally occurring isotopes that exhibit radioactive decay with an isotope distribution that is enriched, e.g., is several fold greater than natural abundance. In certain embodiments, is contemplated that the radionuclides are limited to those with a half live of less than 1 hour and those with a half-life of more than 1 hour but less than 24 hours. Radioactive isotopes are named herein using various commonly used combinations of the name or symbol of the element and its mass number (e.g., 18F, F-18, or fluorine-18). Elements that can be used in the compounds of the present disclosure include: F-18; C-11; 1-125, 1-124, 1-131 and 1-123; Cl-32, Cl-33, Cl-34; Br-74, Br-75, Br-76, Br-77, Br-78; Re-186, Re-188; Y-90, Y-86; Lu-177 and Sm-153. Typical radioactive isotopes include I-124, F-18 fluoride, C-11, N-13, and 0-15, which have half-lives of 4.2 days, 110 minutes, 20 minutes, 10 minutes and 2 minutes, respectively. Preferably, the radioactive isotopes used in the present method include F-18, C-11, I-123, I-124, I-127, 1-131, Br-76, Cu-64, Tc-99m, Y-90, Ga-67, Cr-51, Ir-192, Mo-99, Sm-153 and Tl-201. Other radioactive isotopes that may be employed include: As-72, As-74, Br-75, Co-55, Cu-61, Cu-67, Ga-68, Ge-68, I-125, I-132, In-111, Mn-52, Pb-203 and Ru-97.
- Methods of preparing radiolabeled ligands are well known in the art. Example of such methods are disclosed in, for example: 1) Jewett, D. M. (1992) A Simple Synthesis of [11C]Methyl Triflate Appl. Radiat. Isot. 43, 1383-1385; 2) Crouzel, C. Langstrom, B., Pike, V. W., and Coenen, H. H. (1987) Recommendations for a practical production of [11C]methyl iodide Appl. Radiat. Isot. Int. J. Appl. Instrum. Part A 38, 601-603; Dannals, R. F., Ravert, H. T.; 3) Wilson, A. A. (1990) Radiochemistry of Tracers for Neurotransmitter Receptor Studies. In: Quantitative Imaging: Neuroreceptors, Neurotransmitters, and Enzymes. (Edited by Frost), J. J. Wagner Jr., H. N. pp. 19-35, Raven Press, New York; 4) Jewett, D. M., Manger, T. J., and Watkins, G. L. (1991) Captive Solvent Methods for Fast Simple Carbon-11 Radioalkylations. In: New Trends in Radiopharmaceutical Synthesis, Quality Assurance and Regulatory Control (Edited by Emran, A. M.) pp. 387-391. Plenum Press, New York; 5) Marazano, C., Maziere, M., Berger, G., and Comar, D. (1977) Synthesis of methyl iodide-11C and formaldehyde-11C Appl. Radiat. Isot. 28, 49-52; 6) Watkins, G., Jewett, D., Mulholland, G., Kitbourn, M., and Toorongian, S. (1988) A Captive Solvent Method for Rapid N-[11C]Methylation of Secondary Amides Application to the Benzodiazepine, 4′-Chlorodiazepam (RO5-4864) Appl. Radiat. Isot. 39, 441-444; and 7) Wilson, A. A., DaSilva, J. N., and Houle, S. (1996) In vivo evaluation of [11C] and [15F]-labeled cocaine analogues as potential dopamine transporter ligands for positron emission tomography Nucl. Med. Biol. 23, 141-146.
- [18F] fluoride is typically produced by irradiation of water (containing H2 18O) with protons resulting in the reaction 18O(p,n)18F. For production efficiency and radiochemical purity, it is desirable to use water that is as highly enriched as possible. The [18F] isotope is then separated from water and processed for production of a radiopharmaceutical agent. Typically fluoride recovery is based on ion exchange resins. The recovery is carried out in two steps (extraction and elution): first the anions (not only fluoride) are separated from the enriched [18O] water and trapped on a resin and then, said anions, including [18F] fluoride, are eluted into a mixture containing water, organic solvents, a base, also called activating agent or phase transfer agent or phase transfer catalyst, such as for example the complex comprising a cryptand, potassium carbonate-Kryptofix 222 (K2CO3—K222), or a tetrabutylammonium salt. Typical labeling method uses low water content solutions. An evaporation step follows the recovery of the [18F]fluoride, e.g., azeotropic evaporation of acetonitrile or other low boiling temperature organic solvent.
- Alternatively the extraction process is performed by passing the [18F] aqueous solution on a solid support as reported in U.S. Pat. No. 8,641,903. This solid support is typically loaded with a trapping agent, e.g., compound comprising a quaternary amine, which is adsorbed on the solid support and allows the [18F] activity to be trapped because of its positive charge. The solid support is then flushed with a gas or a neutral solvent to remove or push out most of the residual water. The [18F] is at last eluted in an organic solvent or in a mixture of organic solvents and is immediately usable for the labelling of precursor compounds.
- The compounds described herein could also be labeled by bromine or iodine radionuclides through traditional labeling procedures such as tributyltin derivatives. (See, for example, Plisson et al, Synthesis and in vivo evaluation of fluorine-18 and iodine-123 labeled 2beta-carbo(2-fluoroethoxy)-3beta-(4′-((Z)-2 iodoethenyl)phenyl)nortropane as a candidate serotonin transporter imaging agent. J Med Chem, 2007, 50(19):4553-60; Plisson et al, Synthesis, radiosynthesis, and biological evaluation of carbon-11 and iodine-123 labeled 2beta-carbomethoxy-3beta-[4′-((Z)-2-haloethenyl)phenyl]tropanes. J Med Chem, 2004, 47(5):1122-35; Li et al, Synthesis of structurally identical fluorine-18 and iodine isotope labeling compounds for comparative imaging. Bioconjug Chem, 2003, 14(2):287-94; Goodman et al., Synthesis and characterization of iodine-123 labeled 2beta-carbomethoxy-3beta-(4′-((Z)-2-iodoethenyl)phenyl) nortropane. J Med Chem, 2003, 46(6):925-35; Maziere et al, 76Br-beta-CBT, a PET tracer for investigating dopamine neuronal uptake. Nucl Med Biol, 1995, 22(8):993-7).
- It is appreciated that the stability of metal tricarbonyl complexes disclosed herein containing radionuclides is important to allow for sufficient time, e.g., to complete a renal examination minimizing the possibility of contamination due to formation of disintegration products. Thus, in certain embodiments, metal tricarbonyl complexes containing radionuclides may be prepared immediately prior to conducting a kidney function diagnostic procedure.
- Thus in certain embodiments, the disclosure contemplates kits that contain components and the chemical reagents necessary for the preparation of a metal tricarbonyl complex disclosed herein or mixture thereof, immediately prior to use as a radiopharmaceutical. By means of a kit, the labeling reaction of a ligand with a radionuclide may be carried out just prior to use in a clinical laboratory setting. For example, it is typical that one will have access to a molybdenum-technetium generator, from which a desired quantity of 99mTc can be obtained as a pertechnetate solution.
- F-18 derivatives are typically prepared from precursor compounds by radiohalogenation reactions. Radiohalogenations reactions are typically nucleophilic substitutions. Aliphatic nucleophilic substitutions typically utilize leaving group (usually another halogen or a sulphonic acid derivative such as mesylate, tosylate, or triflate).
- In certain embodiments, the disclosure contemplates kits for formation of a radiopharmaceutical metal tricarbonyl complex suitable for renal examination that comprises a precursor metal tricarbonyl complex, e.g., 99mTc(CO)3(H2O)3 salts and a ligand having a structure according to the formula:
- or salts thereof wherein
-
- X is alkyl, alkoxyalkyl, or other linking group; and
- Y is hydroxyl, halogen, a leaving group, fluoro, F18, or other radionuclide.
- In certain embodiments, the kit further optionally comprises a metal tricarbonyl complex, a reducing agent, a stabilizing agent and/or a chelating agent, as well as instructions for use of the reagents in the kit.
- In certain embodiments, the ligand is N-(LGalkyl)iminodiacetic acid wherein the LGalkyl is alkyl terminally substituted with a halogen, fluroro, hydroxyl, leaving group, or salt thereof.
- In certain embodiments, the leaving group is Cl, Br, I, a sulfonate, tosylate, mesylate, trifluoromethanesulfonate, or sulfurate.
- A 99mTc-metal tricarbonyl complex may be prepared from a kit by interacting under reducing conditions the reactants of the kit, i.e., a ligand and a freshly prepared. 99mTc solution eluted from a molybdenum-technetium generator just prior to use. The 99mTc may be present in the form of a salt or as technetium bound to a relatively weak chelator, in which case the desired 99mTc chelate is formed by ligand exchange. Examples of relatively weak chelating agents known to be particularly suitable to easily obtain a desired ligand exchange are, for example, carboxylic acids such as citric acid, tartaric acid, ascorbic acid, glucoheptonic acid, and derivatives thereof, although polycarboxylic acids, hydroxycarboxylic acids and phosphorus compounds can also be used.
- Suitable reducing conditions to keep the 99mTc pertechnetate reduced can be provided by, for example, dithionite, formamidine sulfinic acid or metallic reducing agents such as Fe(II), Cu(I), Ti(III) or Sb(III) and, preferably, Sn(II).
- The reactants of the kit may be present in liquid form, for example, as a saline or buffer solution. However, it is preferred that the reactants be in a dry form, e.g., a lyophilized condition. The reactants may be stabilized by the presence of a suitable stabilizing agent such as ascorbic acid, gentisic acid, sugar, e.g., glucose, lactose, mannitol, inositol, and the like.
- In certain embodiments, the disclosure also contemplates kits comprising an amount of a tracer comprising a metal tricarbonyl complex disclosed herein, or precursor, or mixtures thereof optionally in a sealed container, wherein the amount of the tracer is suitable for imaging a kidney of subject.
- In certain embodiments, the kit further comprises a cryptand or other anionic chelator.
- In certain embodiments, the kits comprise metal tricarbonyl complexes or mixtures having the following formula:
- or salts thereof wherein
-
- M is 99mTc, Re, or other metal capable of octahedral coordination;
- X is alkyl, alkoxyalkyl, or other linking group; and
- Y is hydroxyl, halogen, I, Br, or a leaving group.
- In certain embodiment, the kit further comprises a reagent for generating a leaving group, e.g., Y is hydroxyl and the reagent is capable of reacting with the hydroxyl to form a leaving group such as a tosylate or mesylate group.
- In certain embodiment, the kit further comprises a precursor compound of the formula M(CO)3(N-(LGalkyl)iminodiacetate), Re(CO)3(N-(LGalkyl)iminodiacetate) or 99mTc(CO)3(N-(LGalkyl)iminodiacetate) wherein LGalkyl is an alkyl terminal substituted with a leaving group or salt thereof.
- It is contemplated that precursor metal tricarbonyl complexes are labeled with radionuclides using methods reported herein to provide the tracers. These tracers may be prepared at the location of the subject near the time the subject is exposed to an imaging device. Thus, in certain embodiments, the disclosure contemplates kits comprising metal tricarbonyl complexes disclosed herein or precursors (e.g., metal tricarbonyl complexes disclosed herein that react with recently generated 18F−), e.g., metal tricarbonyl complexes disclosed herein comprising alkyl or alkoxy groups that are terminally substituted with tosylate and mesylate groups.
- In certain embodiments, the disclosure contemplates a kit comprising metal tricarbonyl complexes disclosed herein or precursors comprising alkyl or alkoxy groups terminally substituted with halogen, hydroxyl, thiol, —O-p-toluenesulfonyl, —O-p-bromobenzenesulfonyl, —O— (2- or 4)-nitrobenzene sulfonyl, —O-methanesulfonyl, —O-trifluoromethanesulfonyl, —O-5(dimethylamino)naphthalene-1-sulfonyl, —S-p-toluenesulfonyl, —S-p-bromobenzenesulfonyl, —S-(2- or 4)-nitrobenzene sulfonyl, —S-methanesulfonyl, —S-trifluoromethanesulfonyl, —S-5(dimethylamino)naphthalene-1-sulfonyl. In certain embodiments, the kit may further comprise a metal tricarbonyl complex disclosed herein having a terminal hydroxy or thiol and an activating agent such as p-toluenesulfonyl chloride, p-bromobenzenesulfonyl chloride, (2- or 4)-nitrobenzene sulfonyl chloride, methanesulfonyl chloride, trifluoromethanesulfonyl chloroide, 5(dimethylamino)naphthalene-1-sulfonyl chloride, dicyclohexylcarbodiimide, bromo-tripyrrolidino-phosphonium hexafluorophosphate, bromotris(dimethylamino) phosphonium hexafluorophosphate, 2-(6-Chloro-1H-benzotriazol-1-yl)-N,N,N′,N′-tetramethylaminium hexafluorophosphate, N-[(5-Chloro-1H-benzotriazol-1-yl)-dimethylamino-morpholino]-uronium hexafluorophosphate N-oxide, tetramethylfluoro formamidinium hexa-fluorophosphate, 1-[1-(Cyano-2-ethoxy-2-oxoethylidene-aminooxy)-dimethylamino-morpholino]-uronium hexafluorophosphate, 2-(1-oxy-pyridin-2-yl)-1,1,3,3-tetramethyl-isothiouronium tetrafluoroborate].
- In certain embodiments, the kit comprise a solid support comprising 18F salts.
- In some embodiments, the solid support is selected from the group of solid phase extraction resins or liquid chromatography resins, e.g., silica (oxide) based or non-silica (metal oxide or polymers) based particles optionally functionalized (e.g., by organosilanization) with alkyl chains for example C4, C8, C18, C18, C30 or other functional groups, e.g., polar groups (amide, carbamate, sulfamide, and ureas) embedded within alkyl chains or branched alkyl groups or polymeric packings. Polymeric column packing refers to particles made by the process of reacting silica surface silanol groups with halogenated di or trifunctional silanes.
- In some embodiments, the solid support is selected from the group consisting of solid phase extraction resins and liquid chromatography resins resulting from the copolymerization of divinylbenzene and/or styrene, or by the copolymerization with vinylpyrrolidone, vinylacetate, (methacryloyloxymethyl)naphtalene, 4,4′-bis(maleimido)diphenylmethane, p,p′-dihydroxydiphenylmethane diglycidylmethacrylic ester, p,p′-dihydroxydiphenylpropane diglycidylmethacrylic ester, 2-hydroxyethylmethacrylate (HEMA), 2,2-dimethylaminoethylmethacrylate (DMAEMA), ethylenedimethacrylate glycidylmethacrylate, N-vinylcarbazole, acrylonitrile, vinylpyridine, N-methyl-N-vinylacetamide, aminostyrene, methylacrylate, ethylacrylate, methylmethacrylate, N-vinylcaprolactam, N-methyl-N-vinylacetamide.
- In some embodiments, the solid support comprises or is functionalized with or preconditioned with quaternary ammonium salts, e.g., tetraethylammonium carbonate, tetrabutylammonium carbonate or potassium carbonate cryptands such as 1,4,10-Trioxa-7,13-diaza-cyclopentadecane, 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane, 4,7,13,16,21-Pentaoxa-1,10-diazabicyclo[8.8.5]tricosane, 4,7,13,18-Tetraoxa-1,10-diazabicyclo[8.5.5]eicosane, 5,6-Benzo-4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacos-5-ene; the group of glymes including crown ethers such as for example 4′-Aminobenzo-15-crown-5, 4′-Aminobenzo-15-crown-5, 4′-Aminobenzo-15-crown-5 hydrochloride, 4′-Aminobenzo-18-crown-6, 4′-Aminodibenzo-18-crown-6, 2-Aminomethyl-15-crown-5, 2-Aminomethyl-15-crown-5, 2-Aminomethyl-18-crown-6, 4′-Amino-5′-nitrobenzo-15-crown-5, 4′-Amino-5′-nitrobenzo-15-crown-5, 1-Aza-12-crown-4, 1-Aza-15-crown-5, 1-Aza-15-crown-5, 1-Aza-18-crown-6, 1-Aza-18-crown-6, Benzo-12-crown-4, 5,6-Benzo-4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacos-5-ene, 1-Benzyl-1-aza-12-crown-4, Bis[(benzo-15-crown-5)-15-ylmethyl]pimelate, 4′-Bromobenzo-15-crown-5, 4-tert-Butylbenzo-15-crown-5, 4-tert-Butylcyclohexano-15-crown-5, 4′-Carboxybenzo-15-crown-5, polyethylene glycols (PEG), polyethylene oxides (PEO); the group of calixarenes such as for example 4-tert-Butylcalix[4]arene, 4-tert-Butylcalix[4]arene, 4-tert-Butylcalix[4]arene, 4-tert-Butylcalix[5]arene, 4-tert-Butylcalix[6]arene, 4-tert-Butylcalix[6]arene, 4-tert-Butylcalix[6]arene, 4-tert-Butylcalix[8]arene, 4-tert-Butylcalix[8]arene, 4-tert-Butylcalix[4]arene-tetraacetic acid tetraethyl ester, 4-tert-Butylcalix[4]arenetetraacetic acid tetraethyl ester, 4-tert-Butylcalix[4]arene-tetraacetic acid triethyl ester, Calix[4]arene, Calix[6]arene, Calix[8]arene, 4-(Chloromethyl)calix[4]arene, 4-Isopropylcalix[4]arene, C-Methylcalix[4]resorcinarene, C-Methylcalix[4]resorcinarene, meso-Octamethylcalix(4)pyrrole, 4-Sulfocalix[4]arene, 4-Sulfocalix[4]arene sodium salt, C-Undecylcalix[4]resorcinarene monohydrate, C-Undecylcalix[4]resorcinarene monohydrate, the group of cyclodextrines such as α-Cyclodextrin, β-Cyclodextrin, γ-Cyclodextrin, (2,6-Di-O-)ethyl-β-cyclodextrin, 6-O-α-D-Glucosyl-β-cyclodextrin, Heptakis(6-O-t-butyldimethylsilyl-2,3-di-O-acetyl)-β-cyclodextrin, Heptakis(2,6-di-O-methyl)-β-cyclodextrin, Heptakis(2,3,6-tri-O-acetyl)-β-cyclodextrin, Heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin, Hexakis (6-O-tertbutyl-dimethylsilyl)-α-cyclodextrin, Hexakis (2,3,6-tri-O-acetyl)-α-cyclodextrin, Hexakis (2,3,6-tri-O-methyl)-α-cyclodextrin, (2-Hydroxyethyl)-β-cyclodextrin, 6-O-α-Maltosyl-β-cyclodextrin hydrate, Methyl-β-cyclodextrin, 6-Monodeoxy-6-monoamino-β-cyclodextrin, Octakis (6-O-t-butyldimethylsilyl)-T-cyclodextrin, Sulfopropyl-β-cyclodextrin, Triacetyl-α-cyclodextrin, Triacetyl-β-cyclodextrin; and the group of EDTA and derivatives such as for example Ethylenediamine-N,N′-diacetic acid, 2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, trans-1,2-Diaminocyclohexane-N,N,N′,N′-tetraacetic acid monohydrate, trans-1,2-Diaminocyclohexane-N,N,N′,N′-tetraacetic acid monohydrate, 1,3-Diamino-2-hydroxypropane-N,N,N′,N′-tetraacetic acid, 1,2-Diaminopropane-N,N,N′,N′-tetraacetic acid, 1,3-Diaminopropane-N,N,N′,N′-tetraacetic acid, 1,3-Diamino-2-propanol-N,N,N′,N′-tetraacetic acid, Diethylenetriamine-pentaacetic acid calcium trisodium salt hydrate, N-(2-Hydroxyethyl)ethylenediaminetriacetic acid trisodium salt hydrate, N-(2-Hydroxyethyl)ethylenediamine-N,N′,N′-triacetic acid.
- Another aspect of the present disclosure provides kits comprising: an amount of a ligand or metal tricarbonyl complex disclosed herein in a sealed container, wherein the amount is suitable for imaging a kidney of an animal or human subject, and instructions for the use thereof in imaging said kidney and optionally for determining renal function in the animal or human subject.
- In certain embodiments, the instructions comprise the steps of: administering to an animal or human subject an amount of a renal tracer, where the renal tracer comprises a metal tricarbonyl complex disclosed herein or mixtures; detecting the tracer in the kidney of the animal or human subject with a gamma camera; and obtaining at least one image of the kidney of the animal or human subject, wherein the image is obtained as a data output from a gamma camera. In another embodiment of this aspect of the disclosure, the instructions comprise steps for the use of the tracer in measuring renal function, the instructions comprising the steps of: administering to an animal or human subject an amount of a renal tracer; obtaining at least one image of a kidney of the animal or human subject, wherein the image is obtained as a data output from a gamma camera; and analyzing the data output from the gamma camera, wherein the data analysis provides a measurement of the effective renal plasma flow of the animal or human subject.
- In certain embodiments, the instructions for the use of the tracer in measuring renal function comprise the steps of: administering to an animal or human subject an amount of a renal tracer or mixtures; isolating a plurality of biological samples from the animal or human subject after administering the renal tracer; quantitatively measuring the amount of the renal tracer in the isolated biological samples; and determining the effective renal plasma flow of the animal or human subject.
- Pharmaceutical compositions for use in the present disclosure typically comprise an effective amount of a metal tricarbonyl complex or mixtures and a suitable pharmaceutical acceptable carrier. The preparations may be prepared in a manner known per se, which usually involves mixing the at least one compound according to the disclosure with the one or more pharmaceutically acceptable carriers, and, if desired, in combination with other pharmaceutical active compounds, when necessary under aseptic conditions. Reference is again made to U.S. Pat. Nos. 6,372,778, 6,369,086, 6,369,087 and 6,372,733 and the further references mentioned above, as well as to the standard handbooks, such as the latest edition of Remington's Pharmaceutical Sciences.
- In certain embodiments, the disclosure relates to pharmaceutical composition comprising a metal tricarbonyl complex disclosed herein or mixture thereof. The radioactive diagnostic composition of the invention may be formulated in any appropriate preparation form such as powder, lyophilized powder or solution. Further, it may comprise, in addition to said essential components, any auxiliary agent such as a pH regulating agent (e.g. acid, base), an isotonic agent (e.g. sodium chloride), a preservative (e.g. benzyl alcohol) or the like.
- In certain embodiments, the disclosure contemplates pharmaceutical compositions comprising a pharmaceutically acceptable excipient and a compound disclosed herein. In certain embodiments, the pharmaceutical composition is in the form of a tablet, capsule, pill, aerosol, or aqueous buffer, such as a saline or phosphate buffer.
- The pharmaceutical composition may contain a water-soluble stabilizer, water-soluble reducing agent such as chloride, stannous fluoride, stannous sulfate, stannous nitrate, stannous acetate, stannous citrate, stannous tartrate, ascorbic acid or erythrobic acid, or any pharmaceutically acceptable salt or ester thereof.
- Instruments for detecting and monitoring by radionuclide imaging the location of a tracer in the body of a subject include positron emission tomography (PET) and single photon emission computed tomography (SPECT) scanners. These may be combined with other methods such as computerized tomography (CT) scans and MRI. A CT scan combines a series of X-ray images taken from different angles and uses computer processing to create cross-sectional images, or slices, of the bones, blood vessels and soft tissues inside your body. These scans or associated data can be used to create computerized images that take place in tissue or the blood stream. A scanner records data that a computer constructs into two- or three-dimensional images. In a typical method, radioactive drug is injected into the subject, e.g., a vein, and a scanner is used to make detailed images of areas inside the body where the radioactive material is taken up by the cells, tissue, fluids, or organs.
- Single photon emission computed tomography (SPECT) is a nuclear medicine imaging technique using gamma rays. It may be used with any gamma-emitting isotope, including Tc-99m (99mTc). In the use of technetium-99m, the radioisotope is administered to the patient and the escaping gamma rays are incident upon a moving gamma camera which computes and processes the image. To acquire SPECT images, the gamma camera is typically rotated around the patient. Projections are acquired at defined points during the rotation, typically every three to six degrees. In most cases, a full 360° rotation is used to obtain an optimal reconstruction. SPECT is widely used to obtain clinically significant information about analog binding, localization and clearance rates.
- Positron Emission Tomography (PET) involves detection of pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule. Images of tracer concentration in the body are then reconstructed by computer analysis. Two or three-dimensional images of tracer concentration within the area are then constructed by computer analysis. A radioactive tracer is administered to a subject e.g., into blood circulation. Typically there is a waiting period while tracer becomes concentrated in areas of interest; then the subject is placed in the imaging scanner. As the radionuclide undergoes positron emission decay, it emits a positron, an antiparticle of the electron with opposite charge, until it decelerates to a point where it can interact with an electron, producing a pair of (gamma) photons moving in approximately opposite directions. These are detected in the scanning device. The technique typically utilizes simultaneous or coincident detection of the pair of photons moving in approximately opposite direction (the scanner typically has a built-in slight direction-error tolerance). Photons that do not arrive in pairs (i.e. within a timing-window) are typically ignored. One typically localizes the source of the photons along a straight line of coincidence (also called the line of response, or LOR). This data is used to generate an image.
- The term “radionuclide” or “radioactive isotope” refers to molecules of enriched isotopes that exhibit radioactive decay (e.g., emitting positrons). Such isotopes are also referred to in the art as radioisotopes. A radionuclide tracer does not include radioactive primordial nuclides, but does include a naturally occurring isotopes that exhibit radioactive decay with an isotope distribution that is enriched, e.g., is several fold greater than natural abundance. In certain embodiments, is contemplated that the radionuclides are limited to those with a half live of less than 1 hour and those with a half-life of more than 1 hour but less than 24 hours. Radioactive isotopes are named herein using various commonly used combinations of the name or symbol of the element and its mass number (e.g., 18F, F-18, or fluorine-18). Elements that can be used in the compounds of the present disclosure include: F-18; C-11; 1-125, 1-124, 1-131 and 1-123; Cl-32, Cl-33, Cl-34; Br-74, Br-75, Br-76, Br-77, Br-78; Re-186, Re-188; Y-90, Y-86; Lu-177 and Sm-153. Typical radioactive isotopes include I-124, F-18 fluoride, C-11, N-13, and 0-15, which have half-lives of 4.2 days, 110 minutes, 20 minutes, 10 minutes and 2 minutes, respectively. Preferably, the radioactive isotopes used in the present method include F-18, C-11, I-123, I-124, I-127, 1-131, Br-76, Cu-64, Tc-99m, Y-90, Ga-67, Cr-51, Ir-192, Mo-99, Sm-153 and Tl-201. Other radioactive isotopes that may be employed include: As-72, As-74, Br-75, Co-55, Cu-61, Cu-67, Ga-68, Ge-68, I-125, I-132, In-111, Mn-52, Pb-203 and Ru-97.
- Methods of preparing radiolabeled ligands are well known in the art. Example of such methods are disclosed in, for example: 1) Jewett, D. M. (1992) A Simple Synthesis of [11C]Methyl Triflate Appl. Radiat. Isot. 43, 1383-1385; 2) Crouzel, C. Langstrom, B., Pike, V. W., and Coenen, H. H. (1987) Recommendations for a practical production of [11C]methyl iodide Appl. Radiat. Isot. Int. J. Appl. Instrum. Part A 38, 601-603; Dannals, R. F., Ravert, H. T.; 3) Wilson, A. A. (1990) Radiochemistry of Tracers for Neurotransmitter Receptor Studies. In: Quantitative Imaging: Neuroreceptors, Neurotransmitters, and Enzymes. (Edited by Frost), J. J. Wagner Jr., H. N. pp. 19-35, Raven Press, New York; 4) Jewett, D. M., Manger, T. J., and Watkins, G. L. (1991) Captive Solvent Methods for Fast Simple Carbon-11 Radioalkylations. In: New Trends in Radiopharmaceutical Synthesis, Quality Assurance and Regulatory Control (Edited by Emran, A. M.) pp. 387-391. Plenum Press, New York; 5) Marazano, C., Maziere, M., Berger, G., and Comar, D. (1977) Synthesis of methyl iodide-11C and formaldehyde-11C Appl. Radiat. Isot. 28, 49-52; 6) Watkins, G., Jewett, D., Mulholland, G., Kitbourn, M., and Toorongian, S. (1988) A Captive Solvent Method for Rapid N-[11C]Methylation of Secondary Amides Application to the Benzodiazepine, 4′-Chlorodiazepam (RO5-4864) Appl. Radiat. Isot. 39, 441-444; and 7) Wilson, A. A., DaSilva, J. N., and Houle, S. (1996) In vivo evaluation of [11C] and [1F]-labeled cocaine analogues as potential dopamine transporter ligands for positron emission tomography Nucl. Med. Biol. 23, 141-146.
- It is also contemplated that, besides images over the renal area, static images may also be taken of the pre-injection dose syringe, post-imaging empty dose syringe, the pre-voided bladder, the post-void-bladder, the post-void kidneys, and the injection site. The syringe images are necessary for calculation of renal clearance by the camera-based method. Bladder images are necessary in order to obtain urine flow rate and residual urine volume. The post-void kidney image is a visual indicator of the emptying of urine from the renal collecting systems (since the patient will usually have gotten up from the scan table in order to void). This image also provides kidney counts, from whole kidney regions of interest, which allow calculation of important ratios relevant to the excretory function of the kidneys. The injection site image is a quality control element for the radiopharmaceutical injection, since a significant quantity of the dose outside the vein will invalidate the study.
- The baseline study may be analyzed quantitatively and the results reviewed by a physician. If the patient was referred for evaluation of possible obstruction, adequate clearance of the radiopharmaceutical should be seen and, if it is not, an intravenous dose of furosemide, a diuretic, can be administered. An additional dynamic image set is then acquired. In certain embodiments or the present disclosure, therefore provides methods of imaging a kidney in an animal or human subject, the method comprising: (a) administering to an animal or human subject an amount of a renal tracer, where the renal tracer comprises a metal tricarbonyl complex disclosed herein in the kidney of the animal or human subject with a gamma camera; and (c) obtaining at least one image of the kidney of the animal or human subject, where the image is obtained as a data output from a gamma camera.
- In certain embodiments the present disclosure encompasses methods of measuring renal function in an animal or human subject using renal scintigraphy, comprising: (a) administering to an animal or human subject an amount of a renal tracer, where the renal tracer comprises a metal tricarbonyl complex disclosed herein or mixtures; (b) obtaining at least one image of a kidney of the animal or human subject, wherein the image is obtained as a data output from a gamma camera; and (c) analyzing the data output from the gamma camera, wherein the data analysis provides a measurement of the effective renal plasma flow of the animal or human subject.
- In certain embodiments of the disclosure, the methods may further comprise repeating the steps (a)-(c), thereby providing a time-dependent analysis of the urinary tract function of an animal or human subject, wherein the analysis is selected from the group consisting of: the EPRF of a kidney, the ability of a kidney to extract the tracer from the blood, the ability of subject human or animal to excrete the tracer into the collecting system of a kidney, monitoring of drainage of the tracer from the collecting system (calyces and pelvis) to the bladder, and to quantify the ability of the bladder to empty.
- In other embodiments of the disclosure, the methods may further comprise repeating the steps (a)-(c) at least once, thereby providing a series of images and a time-dependent analysis of renal efficiency of the animal or human subject.
- In another embodiment of the disclosure, the methods may further comprise repeating the steps (b) and (c) after a single amount of the renal tracer obtaining a series of images of the kidney or kidneys of the animal or human subject, and analyzing the data output from the gamma camera, wherein the data analysis provides a measurement of the effective renal plasma flow of the animal or human subject.
- In one embodiment of this aspect of the disclosure, the steps (a)-(c) may be repeated at time intervals over a period of about 2 mins to 60 mins, thereby providing a time-dependent series of images.
- In another embodiment, the steps (a)-(c) are repeated at time intervals over a period of about 3 mins to 30 mins, thereby providing a time-dependent series of images.
- In certain embodiments, the disclosure contemplates method of measuring effective renal plasma flow in an animal or human subject, comprising administering to an animal or human subject an amount of a renal tracer, wherein the renal tracer comprises a metal tricarbonyl complex disclosed herein or mixtures, isolating a series of biological samples from the animal or human subject after administering the renal tracer, quantitatively detecting the amount of the renal tracer in the biological samples, and determining the effective renal plasma flow of the animal or human subject.
- In certain embodiments, the disclosure relates to imaging methods comprising a) administering a metal tricarbonyl complex comprising a radionuclide or positron-emitting radionuclide disclosed herein or mixtures to a subject; and b) scanning the subject for the emission, positron-emissions or other gamma-emissions.
- The methods typically further comprise the steps of detecting the emissions and creating an image of an area of the subject indicating or highlighting the location of the metal tricarbonyl complex containing radionuclide or mixtures in the subject. In certain embodiments, the area of the subject is the lymph nodes, groin, axilla, neck, lungs, liver, kidney, pancreas, stomach, balder, intestines, circulatory system, breast, prostate, gallbladder, or brain.
- The metal tricarbonyl complexes of the present disclosure may be labeled with one or more radionuclides, such as 11C, 18F, 76Br, 123I, 124I, 131J 13N, or 15O. Radionuclides used in PET scanning are typically positron-emitting isotopes with short half-lives such as carbon-11 (approximately 20 min), nitrogen-13 (approximately 10 min), oxygen-15 (approximately 2 min), and fluorine-18 (approximately 110 min). The metal tricarbonyl complex may be administered by any suitable technique known in the art, such as direct injection. Injection may be intravenous (IV). Administration may be general or local to the site of interest. The compound may be used in conjunction with another probe. The two (or more) probes may be administered together, separately or sequentially. The metal tricarbonyl complexes of the present disclosure may be used to diagnose, assess or monitor the progression or treatment of a disease or condition.
- The metal complexes of the disclosure are useful as tracer compounds for kidney functioning and blood circulating imaging techniques, including PET and SPECT imaging. Particularly useful as an imaging agent are those compounds labeled with F-18 since F-18 has a half-life of 110 minutes, which allows sufficient time for incorporation into a radio-labeled tracer, for purification and for administration into a human or animal subject. In addition, facilities more remote from a cyclotron, up to about a 200 mile, radius can make use of F-18 labeled compounds.
- Other halogen isotopes can serve for PET or SPECT imaging, or for conventional tracer labeling. These include 75Br, 76Br, 77Br and 82Br as having usable half-lives and emission characteristics. In general, the chemical means exist to substitute any halogen moiety for the described isotopes. Astatine can be substituted for other halogen isotopes, [210At] emits alpha particles with a half-life of 8.3 h. At-substituted compounds are therefore useful for tumor therapy where binding is sufficiently tumor-specific.
- In certain embodiments, the disclosure provides methods for kidney imaging using PET and SPECT. The methods entail administering to a subject (which can be human or animal, for experimental and/or diagnostic purposes) an image-generating amount of a metal tricarbonyl complex of the disclosure or mixtures, labeled with the appropriate isotope and then measuring the distribution of the metal tricarbonyl complex by PET if [18F] or other positron emitter is employed, or SPECT if [99mTc] or other gamma emitter is employed. An image-generating amount is that amount which is at least able to provide an image in a PET or SPECT scanner, taking into account the detection sensitivity and noise level of the scanner, the age of the isotope, the body size of the subject and route of administration.
- It will be understood that compounds of the disclosure can be labeled with an isotope of any atom or combination of atoms in the structure. While [18F], [99mTc] and have been emphasized herein as being particularly useful for PET, SPECT and tracer analysis, other uses are contemplated including those flowing from physiological or pharmacological properties of stable isotope homologs and will be apparent to those skilled in the art.
- Methods of use of the imaging agents provided herein include, but are not limited to: methods of imaging kidney tissue; methods of imaging kidney function; methods of diagnosing kidney function; methods of monitoring the progress of kidney issue degeneration; methods of imaging abnormal kidney tissue, and the like. The methods can be used to detect, study, monitor, evaluate, and/or screen, biological events in vivo or in vitro.
- In diagnosing and/or monitoring pharmaceutical compositions comprising the metal tricarbonyl complexes disclosed herein or mixtures are administered to the subject in an amount effective to result in uptake of the complex into the blood stream. After administration of the complexes, the complexes are detected using PET or SPECT imaging. Embodiments of the present disclosure can non-invasively image the presence of the complexes in the blood and tissue throughout an animal or patient.
- In preferred methods of the present disclosure, the metal tricarbonyl complexes of the present disclosure are excreted from tissues of the body quickly to prevent prolonged exposure to the radiation of the radiolabeled complexes administered to the patient. In particular embodiment, the radionuclide labeled complexes provided herein can be used on an outpatient basis. Typically metal complexes of the present disclosure are eliminated from the body in less than about 24 hours. More preferably, complexes of the present disclosure are eliminated from the body in less than about 16 hours, 12 hours, 8 hours, 6 hours, 4 hours, 2 hours, 90 minutes, or 60 minutes.
- The spatial distribution of the complexed disclosed herein may be measured using any imaging apparatus suitable for the particular label, for example, a gamma camera, a PET apparatus, a SPECT apparatus, MRS, MRI or optical imaging apparatus, and the like. The extent of accumulation of the imaging agent may be quantified using known methods for quantifying radioactive emissions. A particularly useful imaging approach employs more than one imaging agent to perform simultaneous studies. Alternatively, the imaging method may be carried out a plurality of times with increasing administered dose of the pharmaceutically acceptable imaging composition of the present disclosure to perform successive studies using the split-dose image subtraction method, as are known to those of skill in the art.
- Preferably, an amount of the imaging agent effective for imaging kidney function is administered to a subject. An effective amount of the imaging agent may be administered in more than one injection. The effective amount of the imaging agent can vary according to factors such as the degree of susceptibility of the individual, the age, sex, and weight of the individual, idiosyncratic responses of the individual, the dosimetry, and the like. Effective amounts of the imaging agent can also vary according to instrument and film-related factors.
- Evaluation of 99mTc(CO)3(FEDA): A Dual-Purpose 99mTc/18F Renal Imaging Agent
- N-(2-fluoroethyl)iminodiacetic acid (FEDA) was prepared by the reaction of 1-bromo-2-fluoroethane with
dimethyl - 99mTc(CO)3(FEDA) was evaluated in rats using 131I-OIH as an internal control; urine was analyzed for metabolites. Plasma protein binding (PPB) and erythrocyte uptake (RCB) were determined from the 10 min blood samples. The Re(CO)3 analog was prepared for structural characterization.
- 99mTc(CO)3(FEDA) was efficiently prepared as a single species with high radiochemical purity (>99%), and was stable through 24 h at physiological pH. It showed rapid blood clearance, high specificity for renal excretion and lack of significant uptake in other organs. The % injected dose in the urine was 100% and 99% that of 131I-OIH at 10 and 60 min, respectively. The tracer was secreted intact in the urine; PPB was 61% and RCB was 20%.
- Dimethyl N-(2-fluoroethyl)iminodiacetate (1):
- Dimethyl iminodiacetate hydrochloride (1 g, 5.0 mmol) and 1-bromo-2-fluoroethane (0.63 g, 5.0 mmol) were combined with 5 mL MeCN and diisopropylamine (1.2 mL, 11 mmol) in an oven-dried 10 mL sealed tube. The tube was heated in an oil bath at 90° C. for 3 d. The reaction mixture was concentrated, and the crude yellow solid was purified by flash chromatography (97% CHCl3, 3% MeOH; 10 mL fractions). Fractions 6-20 yielded the product as a slightly yellow oil (0.77 g, 3.7 mmol, 74%), sufficiently pure for subsequent reactions. 1H NMR (400 MHz, CDCl3) δ: 4.58 (doublet of triplets, 2H, JFH=48 Hz, JHH=5.6 Hz), 3.71 (s, 6H), 3.64 (s, 4H), 3.10 (doublet of triplets, 2H, JF-H=28 Hz, JH-H=5.6 Hz). 19F NMR (400 MHz, CDCl3, TFA reference) δ: 222.41 ppm. HRMS (M+, ESI) Calc'd for C8H14O4NFNa: 230.07991, found: 230.07986 (Δ=−0.05 mmu, −0.21 ppm).
- N-(2-fluoroethyl)iminodiacetic acid (2, FEDA):
- Compound 1 (0.12 g, 0.5 mmol) was dissolved in 4 mL methanol before the addition of 2M NaOH (2 mL). The solution was stirred at room temperature for 24 h, neutralized with 1M HCl. The reaction mixture was evaporated and the crude product was desalted on a Sephadex G-15 column, into 3 min fractions. A TLC plate was spotted with each fraction and those containing the product were identified by a basic permanganate stain. Appropriate fractions were concentrated to yield 2 as a colorless oil (76 mg, 0.42 mmol, 84%). 1H NMR (400 MHz, D2O, pH9) δ: 4.58 (doublet of triplets, 2H, JFH=48 Hz, JHH=4.8 Hz), 3.33 (s, 4H), 3.01 (doublet of triplets, 2H, JF-H=28 Hz, JH-H=4.8 Hz). 19F NMR (400 MHz, CDCl3, TFA reference) δ: 221.2 ppm. HRMS (M+, ESI) Calc'd for C6H10O4NFNa: 202.04970, found: 202.04906 (Δ=−0.64 mmu, −3.19 ppm).
-
- An aqueous solution of 2 (25 mg, 0.12 mmol) was combined with a stirred solution of 0.1 M [Re(CO)3(H2O)3]OTf (0.12 mL, 0.12 mmol). The pH of the reaction mixture was immediately adjusted to 6 using 1 M NaOH and monitored by HPLC. A small aliquot was heated at 70° C. for 5 min and examined by HPLC; the reaction was complete. The remainder of the reaction proceeded to completion within 90 min at room temperature. HPLC analysis revealed the major product peak with a retention time of 16.5 min. The reaction mixture was concentrated to 1 mL and purified over Sephadex G-15 gel. UV active fractions were analyzed by HPLC and combined to yield the product in >90% purity by HPLC. %). 1H NMR (400 MHz, D2O, pH 7) δ: 4.75 (doublet of triplets, 2H, JFH=48 Hz, JHH=4.8 Hz), 3.94 (d, 2H, J=16.4 Hz), 3.79 (doublet of triplets, 2H, JF-H=28 Hz, JH-H=4.8 Hz), 3.73 (d, 2H, J=16.4 Hz). 19F NMR (400 MHz, CDCl3, TFA reference) δ: 217.61 ppm. HRMS (M−, ESI) Calc'd for C9H8O7NF187Re: 447.98478, found: 447.98438 (Δ=−0.40 mmu, −0.89 ppm).
- Re(CO)3(HDA), prepared from 2-hydroxyethyl iminodiacetic acid and Re(CO)3(H2O)3[OTf], was dissolved in THE and stirred in an oil bath at room temperature with p-toluenesulfonyl chloride (29 mg, 0.15 mmol), triethylamine (21 μL, 0.15 mmol) and a catalytic amount of dimethylaminopyridine (3 mg) overnight. The starting material was consumed, giving rise to a single product peak with a retention time of 23 min. The crude product was purified over silica using a water:isopropanol:ethylacetate (7:2:1) mobile phase. UV active fractions were combined and concentrated to yield the
product 4 as a white powder (10 mg, 0.02 mmol, 20%). - 18F-Re(CO)3(FEDA) (3) from 18F-labeling precursor, (4) Re(CO)3(18FFEDA) (3) was prepared by reacting the corresponding tosyl precursor, rheniumtricarbonyl-N-ethyltosylate iminodiacetate, Re(CO)3(TsDA), with [18F]fluoride ion (18F) in anhydrous acetonitrile in the presence of K2CO3 and
Kryptofix 222 at 110° C. for 20 min in a chemical processing control unit (CPCU). The resulting radiolabeled product was purified by semi-preparative high performance liquid chromatography (HPLC) using a WatersXTerra Prep RP 18 column (5 m, 19×100 mm) and eluted with a mobile phase of 0.05 M triethylammonium phosphate (TEAP) buffer (pH=7)/ethanol (80:20 v/v) at a flow rate of 6 mL/min. The solution of the 18F radiotracer (pH 7) was analyzed by HPLC for stability for up to 23 h. - Re(CO)3(18FFEDA) was obtained by the nucleophilic substitution fluorination in the decay corrected radiochemical yield of 18% in a total synthesis time of 120 min from end of bombardment. The purified filtered final radiotracer was formulated in a 0.05 M TEAP solution containing 10% ethanol. Quality control showed radiochemical and chemical purities above 99%. Coinjection with the standard Re(CO)3(FEDA) confirmed the identity of the radiolabeled product. The HPLC analysis of an aliquot of Re(CO)3(18FFEDA) incubated for 23 hours revealed only intact 18F radiotracer confirming its stability.
- 99mTc(CO)3(FEDA) (5):
- The
ligand 2 was heated with the labeling precursor [99mTc(CO)3(H2O)3]OTf for 30 min before purifying by HPLC. Coinjection with the cold standard showed the product 5 was isolated in high purity. The tracer 5 was stable under physiological conditions for at least 1 d and used in animal studies.
Claims (6)
1. An imaging method comprising injecting into a human a tricarbonyl complex having the formula Re(CO)3(N-(2-18fluoroethyl)iminodiacetate and imaging the 18F analog.
2. The method of claim 1 , wherein the imaging is renal imaging.
3. An imaging method comprising injecting into a human a tricarbonyl complex having formula 99mTc(CO)3(N-(2-fluoroethyl)iminodiacetate) and imaging the 99mTc analog.
4. The method of claim 3 , wherein the imaging is renal imaging.
5. An imaging method comprising injecting into a human a tricarbonyl complex having the formula Re(CO)3(N-(2-18fluoroethyl)iminodiacetate and the formula 99mTc(CO)3(N-(2-fluoroethyl)iminodiacetate) and imaging the 18F analog and 99mTc analog.
6. The method of claim 5 , wherein the imaging is renal imaging.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/836,994 US20220306663A1 (en) | 2015-03-10 | 2022-06-09 | Metal Tricarbonyl Complexes Comprising Substituted Iminodiactic Acid Ligands and Uses as Radioisotope Tracers |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562130953P | 2015-03-10 | 2015-03-10 | |
PCT/US2016/021719 WO2016145156A1 (en) | 2015-03-10 | 2016-03-10 | Metal tricarbonyl complexes comprising substituted iminodiactic acid ligands and uses as radioisotope tracers |
US201715557453A | 2017-09-11 | 2017-09-11 | |
US16/822,571 US11384106B2 (en) | 2015-03-10 | 2020-03-18 | Metal tricarbonyl complexes comprising substituted iminodiactic acid ligands and uses as radioisotope tracers |
US17/836,994 US20220306663A1 (en) | 2015-03-10 | 2022-06-09 | Metal Tricarbonyl Complexes Comprising Substituted Iminodiactic Acid Ligands and Uses as Radioisotope Tracers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/822,571 Continuation US11384106B2 (en) | 2015-03-10 | 2020-03-18 | Metal tricarbonyl complexes comprising substituted iminodiactic acid ligands and uses as radioisotope tracers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220306663A1 true US20220306663A1 (en) | 2022-09-29 |
Family
ID=56879724
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/557,453 Active 2036-06-14 US10633404B2 (en) | 2015-03-10 | 2016-03-10 | Metal tricarbonyl complexes comprising substituted iminodiactic acid ligands and uses as radioisotope tracers |
US16/822,571 Active US11384106B2 (en) | 2015-03-10 | 2020-03-18 | Metal tricarbonyl complexes comprising substituted iminodiactic acid ligands and uses as radioisotope tracers |
US17/836,994 Pending US20220306663A1 (en) | 2015-03-10 | 2022-06-09 | Metal Tricarbonyl Complexes Comprising Substituted Iminodiactic Acid Ligands and Uses as Radioisotope Tracers |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/557,453 Active 2036-06-14 US10633404B2 (en) | 2015-03-10 | 2016-03-10 | Metal tricarbonyl complexes comprising substituted iminodiactic acid ligands and uses as radioisotope tracers |
US16/822,571 Active US11384106B2 (en) | 2015-03-10 | 2020-03-18 | Metal tricarbonyl complexes comprising substituted iminodiactic acid ligands and uses as radioisotope tracers |
Country Status (3)
Country | Link |
---|---|
US (3) | US10633404B2 (en) |
CN (1) | CN107847617B (en) |
WO (1) | WO2016145156A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016145156A1 (en) | 2015-03-10 | 2016-09-15 | Emory University | Metal tricarbonyl complexes comprising substituted iminodiactic acid ligands and uses as radioisotope tracers |
CN112724193B (en) * | 2021-02-05 | 2021-11-19 | 华南理工大学 | Solid-phase synthesis method and application of polypeptide-manganese-carbonyl compound-based CO release molecule |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2614020B1 (en) * | 1987-04-14 | 1989-07-28 | Guerbet Sa | NOVEL NITROGEN CYCLIC LIGANDS, METAL COMPLEXES FORMED BY SUCH LIGANDS, DIAGNOSTIC COMPOSITIONS CONTAINING THESE COMPLEXES AND PROCESS FOR PREPARING LIGANDS. |
US6926883B1 (en) | 1999-06-29 | 2005-08-09 | Mallinckrodt Inc | Group (VII) transition-metal complexes with multidentate aminopolycarboxylate ligands and a kit for producing them |
WO2006100562A2 (en) * | 2005-03-21 | 2006-09-28 | Ge Healthcare Limited | Method of screening pet tracers for early cancer thereapy monitoring |
WO2009137428A2 (en) * | 2008-05-05 | 2009-11-12 | Emory University | Methods of determining renal function using technetium-99m tricarbonyl-nitrilotriacetic acid |
WO2016145156A1 (en) | 2015-03-10 | 2016-09-15 | Emory University | Metal tricarbonyl complexes comprising substituted iminodiactic acid ligands and uses as radioisotope tracers |
-
2016
- 2016-03-10 WO PCT/US2016/021719 patent/WO2016145156A1/en active Application Filing
- 2016-03-10 CN CN201680025387.3A patent/CN107847617B/en active Active
- 2016-03-10 US US15/557,453 patent/US10633404B2/en active Active
-
2020
- 2020-03-18 US US16/822,571 patent/US11384106B2/en active Active
-
2022
- 2022-06-09 US US17/836,994 patent/US20220306663A1/en active Pending
Non-Patent Citations (1)
Title |
---|
Chapman et al. Am J Nucl Med Mol Imaging 2012 2(4), 405-414. (Year: 2012) * |
Also Published As
Publication number | Publication date |
---|---|
US20200231615A1 (en) | 2020-07-23 |
CN107847617B (en) | 2021-08-31 |
US20180057517A1 (en) | 2018-03-01 |
WO2016145156A1 (en) | 2016-09-15 |
US11384106B2 (en) | 2022-07-12 |
CN107847617A (en) | 2018-03-27 |
US10633404B2 (en) | 2020-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu | Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides | |
US20220306663A1 (en) | Metal Tricarbonyl Complexes Comprising Substituted Iminodiactic Acid Ligands and Uses as Radioisotope Tracers | |
Chen et al. | Synthesis and evaluation of a technetium-99m-labeled diethylenetriaminepentaacetate–deoxyglucose complex ([99mTc]–DTPA–DG) as a potential imaging modality for tumors | |
ES2749640T3 (en) | Radiolabeled octreota analogs as PET tracers | |
Marques et al. | 13-and 14-membered macrocyclic ligands containing methylcarboxylate or methylphosphonate pendant arms: chemical and biological evaluation of their 153Sm and 166Ho complexes as potential agents for therapy or bone pain palliation | |
EP1539250A1 (en) | Radioactively labelled amino acid analogues, their preparation and use | |
US20170190658A1 (en) | Imaging agents | |
Jalilian et al. | Production and clinical applications of radiopharmaceuticals and medical radioisotopes in Iran | |
US9789211B2 (en) | Methods and compositions for positron emission tomography myocardial perfusion imaging | |
Lipowska et al. | 99mTc (CO) 3-nitrilotriacetic acid: a new renal radiopharmaceutical showing pharmacokinetic properties in rats comparable to those of 131I-OIH | |
Lipowska et al. | Re (CO) 3 ([18F] FEDA), a novel 18F PET renal tracer: radiosynthesis and preclinical evaluation | |
Wharton et al. | H4picoopa─ Robust Chelate for 225Ac/111In Theranostics | |
Lipowska et al. | Al18F-NODA-butyric acid: biological evaluation of a new PET renal radiotracer | |
Zhang et al. | Synthesis and biological evaluation of a novel 99mTc nitrido radiopharmaceutical with deoxyglucose dithiocarbamate, showing tumor uptake | |
Kong et al. | Development of 99mTc-EC-tyrosine for early detection of breast cancer tumor response to the anticancer drug melphalan | |
KR100430061B1 (en) | Radioisotope labeled complex of glucose derivatives and kit for preparation thereof | |
ES2223559T3 (en) | GROUP TRANSITION METAL COMPLEXES (VII) WITH MULTIDENTED AMYNOPOLICARBOXYLATE LIGANDS AND PRODUCTS KIT. | |
US4925651A (en) | Radiofluoro-tyrosine derivatives, the preparation and use thereof | |
Pulagam et al. | Radiochemistry: A Useful Tool in the Ophthalmic Drug Discovery | |
RU2655965C2 (en) | Method of obtaining set of technetium-99m complex with the modified specific mini-antibodies for diagnostics of oncological diseases with her2/neu overexpression | |
Bhadwal et al. | Preparation of 99mTc (CO) 3-carboxymethylthioethyl iminodiacetic acid and evaluation as a potential renal imaging agent | |
Jalilian et al. | Preparation and quality control of radiometal-DOTA-Rituximab | |
WO2009137428A2 (en) | Methods of determining renal function using technetium-99m tricarbonyl-nitrilotriacetic acid | |
Vallabhajosula | Metal Radionuclides for Molecular Imaging | |
Lipowska et al. | Initial evaluation of 99m Tc (CO) 3 (ASMA) as a renal tracer in healthy human volunteers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |