US20220239370A1 - Proactive isolation of telecommunication faults based on alarm indicators - Google Patents
Proactive isolation of telecommunication faults based on alarm indicators Download PDFInfo
- Publication number
- US20220239370A1 US20220239370A1 US17/717,407 US202217717407A US2022239370A1 US 20220239370 A1 US20220239370 A1 US 20220239370A1 US 202217717407 A US202217717407 A US 202217717407A US 2022239370 A1 US2022239370 A1 US 2022239370A1
- Authority
- US
- United States
- Prior art keywords
- network
- layer
- alarm data
- alarm
- network element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000002955 isolation Methods 0.000 title description 4
- 238000000034 method Methods 0.000 claims abstract description 94
- 230000003287 optical effect Effects 0.000 claims abstract description 64
- 238000013024 troubleshooting Methods 0.000 claims abstract description 28
- 230000009471 action Effects 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims description 25
- 239000000835 fiber Substances 0.000 claims description 10
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 238000003860 storage Methods 0.000 description 25
- 238000004891 communication Methods 0.000 description 16
- 238000007726 management method Methods 0.000 description 10
- 230000001960 triggered effect Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/03—Arrangements for fault recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0201—Add-and-drop multiplexing
- H04J14/0202—Arrangements therefor
- H04J14/021—Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0631—Management of faults, events, alarms or notifications using root cause analysis; using analysis of correlation between notifications, alarms or events based on decision criteria, e.g. hierarchy, tree or time analysis
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/06—Management of faults, events, alarms or notifications
- H04L41/0677—Localisation of faults
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/40—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using virtualisation of network functions or resources, e.g. SDN or NFV entities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0079—Operation or maintenance aspects
- H04Q2011/0081—Fault tolerance; Redundancy; Recovery; Reconfigurability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0079—Operation or maintenance aspects
- H04Q2011/0083—Testing; Monitoring
Definitions
- This disclosure relates generally to automatic fault and performance monitoring, and more particularly, to a system and method for implementing logic to integrate alarms reported by routers and Ethernet switches with those reported by reconfigurable optical add-drop multiplexer (ROADM) and optical transport network (OTN) network elements (ONEs) and use alarms and performance management (PM) data to precisely isolate root cause of failures.
- ROADM reconfigurable optical add-drop multiplexer
- OTN optical transport network
- PM performance management
- Long-distance telecommunication networks have evolved from, first, time-division multiplexing (TDM) switched networks into, second, networks with Layers 2 and 3 routers and Ethernet switches over a transport network of ROADM/OTN transport network backbone.
- TDM time-division multiplexing
- Layer 2 Ethernet switches and Layer 3 routers respectively report alarms that only provide an indication of failure at Layer 2/Layer 3 without providing any details regarding an underlying root cause of failure. Therefore, in order to isolate root causes of trouble more precisely (e.g., reducing operational expenditure costs for the network maintenance and service providers), it has become critical to integrate failures reported via more granular and more detailed alarms by Layer 2 Ethernet switches and Layer 3 routers with alarms reported by ROADM/OTN transport network elements.
- the present disclosure discloses a method for integrating one or more first alarms reported by routers and Ethernet switches with one or more second alarms reported by reconfigurable optical add/drop multiplexers (ROADMs) or optical transport network (OTN) network elements.
- ROADMs reconfigurable optical add/drop multiplexers
- OTN optical transport network
- first alarm data (e.g., including signal failures, remote faults, local faults, etc.) may be acquired from a broadcast media access control (MAC) level network (e.g., Layer 2 network) at a first location and a segmented routing over internet protocol (IP) network (e.g., Layer 3 network) at the first location.
- MAC media access control
- IP internet protocol
- first alarm data may include alarms such as SignalFail-Set, SignalFail-Clear, LocalFault-Set, LocalFault-Clear, RemoteFault-Set, or RemoteFault-Clear.
- second alarm data (e.g., including upstream or downstream hard alarms) may be acquired from a first OTN network element (NE) in an OTN (e.g., Layer 1 network). Based on the first alarm data (e.g., remote, local, signal failure, etc.) and the second alarm data (e.g., a direction of a hard alarm), one or more troubleshooting actions may be performed.
- first alarm data e.g., remote, local, signal failure, etc.
- second alarm data e.g., a direction of a hard alarm
- a laser optical parameter at the first OTN network element in the Layer 1 (L1) network may be analyzed based on the first alarm data including a signal failure. Moreover, it may be determined that the laser optical parameter fails to satisfy a performance criterion and, based on the determination, the one or more troubleshooting actions may include issuing a dispatch to replace a laser transmitter associated with the laser optical parameter.
- laser optical parameters may include optical network element information for optical network elements and analysis of laser optical parameters may include comparisons of the laser optical parameters with vendor information.
- vendor information may include a high-water mark and a low water mark defining a specified power level range for an optical network element.
- multiple specified power level ranges may be provided by a vendor, for example, a client-side range and a network side range.
- a specified power level may define multiple high and low marks.
- OPR optical power received
- OPT optical power transmitted
- analysis of optical parameters may include determination of whether the OPT or OPR associated with an optical network element falls within vendor-specified OPR or OPT ranges.
- analysis of optical parameters may consider a number of different signals associated with an optical network element, including average, mean, maximum, minimum, high, low, etc.
- a laser optical parameter at the first OTN network element in the L1 network may be analyzed based on the first alarm data including a signal failure. Moreover, it may be determined that the laser optical parameter satisfies a performance criteria and the first OTN network element in the L1 network may be analyzed based on the satisfaction of the performance criteria, Furthermore, it may be determined the second alarm data does not include an L1 network alarm and the first alarm data may be analyzed based on the determination that the second alarm data does not include the L1 network alarm. Additionally, the one or more troubleshooting actions may include issuing a dispatch to clean an optical line associated with the signal failure if it is determined that the first alarm data does not include a Layer 2 network alarm or a Layer 3 network alarm.
- the disclosure sets forth an improvement in computer technology by implementing new and more precise alarms (e.g., as opposed to conventional alarms) from Layer 2/Layer 3 NEs in conjunction with Layer 1 ROADM/OTN NE alarms.
- transient problems may be identified, such as problems caused by dirty fiber or laser power below threshold watermarks.
- hard problems may be identified, such as problems due to fiber cut or a hard down of the card on a NE.
- these automated methodologies may greatly reduce or eliminate inspection times required to isolate root cause of trouble, thus reducing operational expenditure costs for network maintenance and service providers, while contributing towards an improved network and customer experience.
- FIG. 1 is an exemplary representation of a backbone network with Layer 3 routers and Ethernet switches over a transport network of ROADM/OTN transport network backbone.
- FIG. 2 is an exemplary flowchart of a method to monitor for alarms reported by Layer 2 Ethernet switches and Layer 3 routers and alarms reported by ROADM/OTN transport network elements in accordance with the present disclosure.
- FIG. 3 is an exemplary flowchart of a fault isolation process to isolate faults and identify the root causes of hard alarms and failures on a backbone network with Layer 3 routers and Ethernet switches over a transport network of ROADM/OTN transport network backbone in accordance with the present disclosure.
- FIG. 4 is an exemplary flowchart of a fault isolation process to isolate faults and identify the root causes of hard alarms and failures on a backbone network with Layer 3 routers and Ethernet switches over a transport network of ROADM/OTN transport network backbone in accordance with the present disclosure.
- FIG. 5 is an exemplary flowchart of a fault isolation process to isolate faults and identify the root causes of hard alarms and failures on a backbone network with Layer 3 routers and Ethernet switches over a transport network of ROADM/OTN transport network backbone in accordance with the present disclosure.
- FIG. 6 illustrates a schematic of an exemplary network device.
- FIG. 7 illustrates an exemplary communication system that provides wireless telecommunication services over wireless communication networks.
- the disclosed subject matter may integrate alarms (e.g., trap messages) reported by routers and Ethernet switches with alarms (e.g., trap messages) reported by reconfigurable optical add/drop multiplexers (ROADMs) and optical transport network (OTN) network elements and use alarms and performance management (PM) data to precisely isolate root cause of failures.
- alarms e.g., trap messages
- ROADMs reconfigurable optical add/drop multiplexers
- OTN optical transport network
- Typical Layer 2 (L2) Ethernet switches and Layer 3 (L3) routers respectively report an L2/L3 alarm “LinkDown” when they fail to synch up with a Layer 1 (L1) transport network element (NE) (e.g., ROADM and OTN network elements) and “LinkUp” when they synch up with an L1 NE.
- L1 Layer 1
- NE transport network element
- LinkDown alarms provide an indication of failure at L2 or L3 without providing any details regarding an underlying root cause of failure.
- the disclosed L2 or L3 network elements e.g., ethernet switches or routers
- NEs e.g., ethernet switches or routers
- the enhanced alarms provide additional details with respect to an underlying failure associated with an alarm.
- the systems and methods of the automated system comprise a practical application that advances the state of telecommunications technology.
- an alarm SignalFail-Set may be generated when the L2/L3 detects that an error threshold has been crossed.
- the detection may be performed by an application configured to integrate alarms and retrieve PM data, including performing surveillance of alarms being published by the network elements via a management system (e.g., an SDN Controller, EMS, or any other surveillance system).
- a management system e.g., an SDN Controller, EMS, or any other surveillance system.
- an alarm SignalFail-Clear may be generated when errors are reduced below an error threshold.
- LocalFault-Set may be generated for a loss of received signal, the port may transmit a fault code, and the remote end will then issue a RemoteFault-Set.
- the L2/L3 alarms may be used in conjunction with alarms reported by L1 transport ROADM/OTN NEs.
- hard to isolate transient failures may be identified and isolated using SignalFail-Set and SignalFail-Clear and the direction of hard failures may be identified using LocalFault-Set and RemoteFault-Set.
- SignalFail-Set may be generated when the Layer 2/Layer 3 detects that an error threshold has been crossed.
- SignalFail-Clear may be generated when errors are reduced below an error threshold.
- LocalFault-Set may be generated for a loss of received signal.
- the port may transmit a fault code and the remote end may then issue a RemoteFault-Set.
- examples provide technological advancements to isolating root causes of trouble and may reduce operating expenditure costs for the network maintenance and service providers.
- the L1 network may include a set of ONEs connected by optical fiber links and may provide functionality of transport, multiplexing, switching, management, supervision and survivability of optical channels carrying client signals.
- the L2 network may control hardware responsible for interaction with wired, optical or wireless transmission medium.
- the L3 network may use segmented routing to forward data packets based on service routes.
- FIG. 1 illustrates an exemplary network architecture 100 for integrating alarms reported by routers and Ethernet switches with alarms reported by ROADMs and OTN NEs, among other things.
- Exemplary network architecture 100 may include OTN/ROADM network 110 .
- network architecture 100 includes one L2/L3 NE at each end of Layer 1 ROADM/OTN Network transporting L2/L3 traffic over transport network.
- each L2/L3 NE may report one or more alarms.
- L2L3NE1 120 at location 1 may report one or more alarms 122 and L2L3NE2 130 at location 2 may report one or more alarms 132 .
- network architecture 100 may further include one or more L1 transport network elements which may report one or more alarms.
- L1NE1 140 may report one or more alarms 142 and L1NE2 150 may report one or more alarms 152 .
- One or more of the alarms (e.g., alarms 122 , 132 , 142 , or 152 ) may be received by server 160 , e.g., via the OTN/ROADM network.
- typical alarm data may include alarms 122 , 132 , 142 and 152 , as well as alarms from OTN/ROADM Network which may be surveilled and gathered in an application.
- alarm data may include signal failures, remote faults, local faults, and may be acquired from a broadcast MAC level network (e.g., L2 network) at location 1 and a segmented routing over IP network (e.g., L3 network) at location 1.
- second alarm data e.g., including upstream or downstream hard alarms
- NE OTN network element
- OTN e.g., Layer 1 network
- FIG. 2 illustrates an exemplary flowchart of a method 200 to monitor for or be triggered by alarms reported by L2 Ethernet switches and L3 routers on location 1 (e.g., alarms 122 and alarms 132 respectively reported by L2L3NE1 120 and L2L3NE2 130 ) and alarms reported by ROADM & OTN transport network elements (e.g., alarms 142 and alarms 152 respectively reported by L1NE1 140 and L1NE2 150 ).
- the method 200 is performed by a device or machine (e.g., server 160 or network device 600 ).
- the presence of alarms of location 2 may also be used as needed for the logic triggered by alarms in location 1.
- the method 200 may be performed at a network device, UE, desktop, laptop, mobile device, server device, or by multiple devices in communication with one another.
- the method 200 is performed by processing logic, including hardware, firmware, software, or a combination thereof.
- the method 200 is performed by a processor executing code stored in a computer-readable medium (e.g., a memory).
- the method 200 checks L2/L3 Alarms at Location 1. For example, method 200 may check alarms 122 reported by L2L3NE1 120 .
- the method 200 checks alarms being reported by an L2/L3 NE at a first location (e.g., L2L3NE1 120 ). If the alarms reported by L2L3NE1 include a signal failure (e.g., SignalFail-Set), method 200 proceeds to block 310 (e.g., see FIG. 3 ). If the alarms reported by L2L3NE1 include a remote fault (e.g., RemoteFault-Set), method 200 proceeds to block 410 (e.g., see FIG. 4 ). If the alarms reported by L2L3NE1 include a local fault (e.g., LocalFault-Set), method 200 proceeds to block 510 (e.g., see FIG. 5 ).
- a signal failure e.g., SignalFail-Set
- method 200 proceeds to block 310 (e.g., see FIG. 3 ). If the alarms reported by L2L3NE1 include a remote fault (e.g., RemoteFault-Set), method 200 proceeds to block
- FIG. 3 illustrates an exemplary flowchart of a method 300 to isolate faults and identify the root causes of hard alarms (e.g., resulting from persistent failures) on a backbone network with L3 routers and Ethernet switches over a transport network of ROADM/OTN transport network backbone in accordance with the present disclosure.
- root causes may include a dirty fiber, a laser transmitter or laser receiver issue in Layer 1, a Layer 2/Layer 3 NE, or a Layer 1 NE failure.
- the hard alarms may be exhibited as a SignalFail-Set alarm from a Layer 2/Layer 3 switch, laser optical power levels of a Layer 1 NE facing Layer 2/Layer 3 NEs, or alarms from Layer 1 NEs part of ROADM/OTN backbone transport network.
- the present disclosure includes additional exemplary flowcharts (e.g., flowcharts 200 , 300 , 400 and 500 ) that may be triggered by alarms reported by Layer 2/Layer 3 and Layer 1 NEs in location 2.
- the presence of alarms of location 2 may also be used as needed for the logic triggered by alarms in location 1.
- the method 300 is performed by a device or machine (e.g., server 160 or network device 600 ). Moreover, the method 300 may be performed at a network device, UE, desktop, laptop, mobile device, server device, or by multiple devices in communication with one another. In some examples, the method 300 is performed by processing logic, including hardware, firmware, software, or a combination thereof. In some examples, the method 300 is performed by a processor executing code stored in a computer-readable medium (e.g., a memory).
- a computer-readable medium e.g., a memory
- the method 300 analyzes laser optical parameters (e.g., an optical power parameter), for example, laser power levels and alarms at an L1 transport NE1.
- the method 300 may compare received laser optical values against standard laser optical values.
- a manufacturer of an NE may provide optical power static water marks (e.g., maximum or minimum Tx LWT, Tx HWT, Rx LWT, or Rx HWT dBm) for each card or interface associated with the network element.
- analysis of the laser optical parameters may lead to root cause determination (e.g., dirty fiber or possible laser/transmitter/receiver issues) in Layer 1 NE, Layer 2/3 NE or possible Layer 1 Transport NE as exhibited by a SignalFail-Set alarm from Layer 2/Layer 3 switch, laser optical power levels of Layer 1 NE facing Layer 2/Layer 3 NEs, or alarms from Layer 1 NEs part of ROADM/OTN backbone transport by network.
- root cause determination e.g., dirty fiber or possible laser/transmitter/receiver issues
- the method 300 determines whether the laser power level (e.g., of a laser associated with an optical line or fiber) is below a threshold. If the laser power level is below the threshold, it is determined at block 330 that the laser may be failing. Accordingly, a troubleshooting action may include replacing the laser or issuing a dispatch to replace the laser. If the laser power level is not below the threshold, the method 300 may proceed to block 340 .
- the laser power level e.g., of a laser associated with an optical line or fiber
- the method 300 may determine whether an L1 alarm is present on the L1NE1 140 transport at the first location. For example, the method 300 may check alarms 142 at L1NE1 140 transport at the first location. If there is an alarm present on L1NE1 140 transport at the first location, a troubleshooting action at block 350 may include fixing the trouble causing the L1 Alarm. If there are no alarms present on L1NE1 140 transport at the first location, the method 300 may proceed to block 360 .
- the method 300 may determine whether an alarm is present on the L2L3NE2 130 NE at the second location. For example, the method 300 may check alarms 132 at L2L3NE2 130 . If there is an alarm present on L2L3NE2 130 NE at the second location, it may be determined at block 370 that there is an issue with a transmitter of L2L3NE2 130 NE at the second location or a receiver of L2L3NE1 120 NE at the first location. If there are no alarms present on L2L3NE2 130 NE at the second location, the method 300 may proceed to block 380 .
- the method 300 may determine that the optical fiber is dirty and a troubleshooting action may include cleaning the optical fiber or issuing a dispatch to clean the optical fiber.
- FIG. 4 illustrates an exemplary flowchart of a method 400 to identify the root causes of hard alarms or failures on a backbone network with L3 routers and Ethernet switches over a transport network of ROADM/OTN transport network backbone in accordance with the present disclosure.
- the root causes of failure of a Layer 1 transport NE, failure of ROADM/OTN Layer 1 backbone network or failure of Layer 2/Layer 3 switch on other end of circuit, as exhibited by a RemoteFault-Set alarm from Layer 2/Layer 3 switch, RDI alarm Layer 2/Layer 3 NEs and alarms from Layer 1 NEs part of ROADM/OTN backbone transport network, may be identified and troubleshooted in accordance with the present disclosure.
- the method 400 is performed by a device or machine (e.g., server 160 or network device 600 ). Moreover, the method 400 may be performed at a network device, UE, desktop, laptop, mobile device, server device, or by multiple devices in communication with one another. In some examples, the method 400 is performed by processing logic, including hardware, firmware, software, or a combination thereof. In some examples, the method 400 is performed by a processor executing code stored in a computer-readable medium (e.g., a memory).
- the present disclosure includes additional exemplary flowcharts (e.g., flowcharts 200 , 300 , 400 and 500 ) that may be triggered by alarms reported by Layer 2/Layer 3 and Layer 1 NEs in location 2. As understood by one of ordinary skill in the art, the presence of alarms of location 2 may also be used as needed for the logic triggered by alarms in location 1.
- the method 400 may analyze alarms at L1NE1 140 transport at the first location. Moreover, the method 400 may lead to root cause determination of a failure of a Layer 1 transport NE, a failure of OTN/ROADM Layer 1 backbone network or a failure of L2/L3 switch on other end of circuit, as exhibited RemoteFault-Set alarm from Layer 2/Layer 3 switch, RDI alarm Layer 2/Layer 3 NEs and alarms from Layer 1 NEs part of ROADM/OTN backbone transport network.
- the method 400 determines whether the alarms at L1NE1 140 transport at the first location include any hard alarms. If the alarms at L1NE1 140 transport at the first location do not include any hard alarms, the method 400 may proceed to block 430 .
- the method 400 may analyze the alarms being reported by L2L3NE2 130 NE at the second location. For example, the method 400 may analyze alarms 132 reported by L2L3NE2 130 NE at the second location to identify the issue associated with the alarms. A troubleshooting action at block 440 may involve including this troubleshooting logic for L2L3NE2 130 NE at the second location.
- the method 400 may proceed to block 450 .
- the method 400 may determine the direction (e.g., upstream or downstream) of the hard alarm.
- the method 400 may proceed to block 460 .
- the method 400 may identify that there is a remote defect indicator (RDI) from L2L3NE1 120 NE at the first location or a failure of L1NE1 140 transport at the first location.
- RTI remote defect indicator
- the method 400 may proceed to block 470 .
- the method 400 may isolate trouble in the ROADM/OTN network.
- FIG. 5 illustrates an exemplary flowchart of a method 500 to identify the root causes of hard alarms and failures on a backbone network with L3 routers and Ethernet switches over a transport network of ROADM/OTN transport network backbone in accordance with the present disclosure.
- the method 500 may identify the root causes of either fiber cut or Layer 1 transport ROADM/OTN Network failure, as exhibited by a LocalFault-Set alarm from Layer 2/Layer 3 switch, failure of Layer 1 NE ROADM/OTN backbone transport network facing Layer 2/Layer 3 NEs and alarms from Layer 1 NEs part of ROADM/OTN backbone transport network, or failure of L2/L3 switch on other end of circuit.
- the method 500 is performed by a device or machine (e.g., server 160 or network device 600 ). Moreover, the method 500 may be performed at a network device, UE, desktop, laptop, mobile device, server device, or by multiple devices in communication with one another. In some examples, the method 500 is performed by processing logic, including hardware, firmware, software, or a combination thereof. In some examples, the method 500 is performed by a processor executing code stored in a computer-readable medium (e.g., a memory).
- the present disclosure includes additional exemplary flowcharts (e.g., flowcharts 200 , 300 , 400 and 500 ) that may be triggered by alarms reported by Layer 2/Layer 3 and Layer 1 NEs in location 2. As understood by one of ordinary skill in the art, the presence of alarms of location 2 may also be used as needed for the logic triggered by alarms in location 1.
- the method 500 analyzes alarms at L1NE1 140 transport at the first location.
- the method 500 may lead to root cause determination of failures (e.g., fiber cut or Layer 1 transport ROADM/OTN Network failures) as exhibited by alarms such as LocalFault-Set alarm from Layer 2/Layer 3 switch, failure of Layer 1 NE ROADM/OTN backbone transport network facing Layer 2/Layer 3 NEs, and alarms from Layer 1 NEs part of ROADM/OTN backbone transport network or failure of L2/L3 switch on other end of circuit.
- failures e.g., fiber cut or Layer 1 transport ROADM/OTN Network failures
- alarms such as LocalFault-Set alarm from Layer 2/Layer 3 switch, failure of Layer 1 NE ROADM/OTN backbone transport network facing Layer 2/Layer 3 NEs, and alarms from Layer 1 NEs part of ROADM/OTN backbone transport network or failure of L2/L3 switch on other end of circuit.
- the method 500 determines whether the alarms at L1NE1 140 transport at the first location include any hard alarms. If the alarms at L1NE1 140 transport at the first location do not include any hard alarms, the method 500 may proceed to block 530 .
- the method 500 may analyze the alarms being reported by the L2L3NE2 130 NE at the second location. For example, the method 500 may analyze alarms 132 reported by L2L3NE2 130 NE at the second location to identify the issue associated with the alarms. A troubleshooting action at block 540 may involve including this troubleshooting logic for L2L3NE2 130 NE at the second location.
- the method 500 may proceed to block 550 .
- the method 500 may determine the direction (e.g., upstream or downstream) of the hard alarm.
- the method 500 may proceed to block 560 .
- the method 500 may identify that there is a loss of signal (LOS) from L2L3NE1 120 NE at the first location.
- LOS loss of signal
- the method 500 may proceed to block 570 .
- the method 500 may isolate trouble in the ROADM/OTN network.
- FIG. 6 is a block diagram of network device 600 that may be connected to or comprise a component of communication system 100 .
- network device 600 may comprise hardware or a combination of hardware and software.
- the functionality to facilitate telecommunications via a telecommunications network may reside in one or a combination of network devices 600 .
- network 6 may represent or perform functionality of an appropriate network device 600 , or a combination of network devices 600 , such as, for example, a component or various components of a cellular broadcast system wireless network, a processor, a server, a gateway, an LTE or 5G anchor node or eNB, a mobile switching center (MSC), a short message service center (SMSC), an automatic location function server (ALFS), a gateway mobile location center (GMLC), a serving gateway (S-GW) 430 , a packet data network (PDN) gateway, an RAN, a serving mobile location center (SMLC), or the like, or any appropriate combination thereof.
- a component or various components of a cellular broadcast system wireless network such as, for example, a component or various components of a cellular broadcast system wireless network, a processor, a server, a gateway, an LTE or 5G anchor node or eNB, a mobile switching center (MSC), a short message service center (SMSC), an automatic location function server (ALFS), a
- network device 600 may be implemented in a single device or multiple devices (e.g., single server or multiple servers, single gateway or multiple gateways, single controller or multiple controllers). Multiple network entities may be distributed or centrally located. Multiple network entities may communicate wirelessly, via hard wire, or any appropriate combination thereof.
- Network device 600 may comprise a processor 602 and a memory 604 coupled to processor 602 .
- Memory 604 may contain executable instructions that, when executed by processor 602 , cause processor 602 to effectuate operations associated with fault and performance monitoring.
- network device 600 is not to be construed as software per se.
- network device 600 may include an input/output system 606 .
- Processor 602 , memory 604 , and input/output system 606 may be coupled together to allow communications between them.
- Each portion of network device 600 may comprise circuitry for performing functions associated with each respective portion. Thus, each portion may comprise hardware, or a combination of hardware and software. Accordingly, each portion of network device 600 is not to be construed as software per se.
- Input/output system 606 may be capable of receiving or providing information from or to a communications device or other network entities configured for telecommunications.
- input/output system 606 may include a wireless communications (e.g., 3G/4G/5G/GPS) card.
- Input/output system 606 may be capable of receiving or sending video information, audio information, control information, image information, data, or any combination thereof. Input/output system 606 may be capable of transferring information with network device 600 . In various configurations, input/output system 606 may receive or provide information via any appropriate means, such as, for example, optical means (e.g., infrared), electromagnetic means (e.g., RF, Wi-Fi, Bluetooth®, ZigBee®), acoustic means (e.g., speaker, microphone, ultrasonic receiver, ultrasonic transmitter), or a combination thereof. In an example configuration, input/output system 606 may comprise a Wi-Fi finder, a two-way GPS chipset or equivalent, or the like, or a combination thereof.
- optical means e.g., infrared
- electromagnetic means e.g., RF, Wi-Fi, Bluetooth®, ZigBee®
- acoustic means e.g., speaker, microphone, ultra
- Input/output system 606 of network device 600 also may contain a communication connection 608 that allows network device 600 to communicate with other devices, network entities, or the like.
- Communication connection 608 may include wired media such as a wired network or direct-wired connection, or wireless media such as acoustic, RF, infrared, or other wireless media.
- Input/output system 606 also may include an input device 610 such as keyboard, mouse, pen, voice input device, or touch input device.
- Input/output system 606 may also include an output device 612 , such as a display, speakers, or a printer.
- Processor 602 may be capable of performing functions associated with telecommunications, such as functions for fault and performance monitoring, as described herein.
- processor 602 may be capable of, in conjunction with any other portion of network device 600 , determining a type or root cause of a fault and acting according to the fault type or root cause, as described herein.
- Memory 604 of network device 600 may comprise a storage medium having a concrete, tangible, physical structure. As is known, a signal does not have a concrete, tangible, physical structure. Memory 604 , as well as any computer-readable storage medium described herein, is not to be construed as a signal. Memory 604 , as well as any computer-readable storage medium described herein, is not to be construed as a transient signal. Memory 604 , as well as any computer-readable storage medium described herein, is not to be construed as a propagating signal. Memory 604 , as well as any computer-readable storage medium described herein, is to be construed as an article of manufacture.
- Memory 604 may store any information utilized in conjunction with telecommunications. Depending upon the exact configuration or type of processor, memory 604 may include a volatile storage 614 (such as some types of RAM), a nonvolatile storage 616 (such as ROM, flash memory), or a combination thereof. Memory 604 may include additional storage (e.g., a removable storage 618 or a non-removable storage 620 ) including, for example, tape, flash memory, smart cards, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, USB-compatible memory, or any other medium that can be used to store information and that can be accessed by network device 600 . Memory 604 may comprise executable instructions that, when executed by processor 602 , cause processor 602 to effectuate operations to map signal strengths in an area of interest.
- a volatile storage 614 such as some types of RAM
- nonvolatile storage 616 such as ROM, flash memory
- Memory 604 may include additional storage (e.g., a
- FIG. 7 depicts an exemplary diagrammatic representation of a machine in the form of a computer system 700 within which a set of instructions, when executed, may cause the machine to perform any one or more of the methods described above.
- One or more instances of the machine can operate, for example, as processor 602 and other devices of FIG. 1 , FIG. 2 , FIG. 3 , FIG. 4 , FIG. 5 , and FIG. 6 .
- the machine may be connected (e.g., using a network 702 ) to other machines.
- the machine may operate in the capacity of a server or a client user machine in a server-client user network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.
- the machine may comprise a server computer, a client user computer, a personal computer (PC), a tablet, a smart phone, a laptop computer, a desktop computer, a control system, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.
- a communication device of the subject disclosure includes broadly any electronic device that provides voice, video or data communication.
- the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methods discussed herein.
- Computer system 700 may include a processor (or controller) 704 (e.g., a central processing unit (CPU)), a graphics processing unit (GPU, or both), a main memory 706 and a static memory 708 , which communicate with each other via a bus 710 .
- the computer system 700 may further include a display unit 712 (e.g., a liquid crystal display (LCD), a flat panel, or a solid-state display).
- Computer system 700 may include an input device 714 (e.g., a keyboard), a cursor control device 716 (e.g., a mouse), a disk drive unit 718 , a signal generation device 720 (e.g., a speaker or remote control) and a network interface device 722 .
- the examples described in the subject disclosure can be adapted to utilize multiple display units 712 controlled by two or more computer systems 700 .
- presentations described by the subject disclosure may in part be shown in a first of display units 712 , while the remaining portion is presented in a second of display units 712 .
- the disk drive unit 718 may include a tangible computer-readable storage medium on which is stored one or more sets of instructions (e.g., instructions 726 ) embodying any one or more of the methods or functions described herein, including those methods illustrated above. Instructions 726 may also reside, completely or at least partially, within main memory 706 , static memory 708 , or within processor 704 during execution thereof by the computer system 700 . Main memory 706 and processor 704 also may constitute tangible computer-readable storage media.
- a telecommunications system wherein management and control utilizing a software designed network (SDN) and a simple IP are based, at least in part, on user equipment, may provide a wireless management and control framework that enables common wireless management and control, such as mobility management, radio resource management, QoS, load balancing, etc., across many wireless technologies, e.g.
- SDN software designed network
- a simple IP may provide a wireless management and control framework that enables common wireless management and control, such as mobility management, radio resource management, QoS, load balancing, etc., across many wireless technologies, e.g.
- LTE, Wi-Fi, and future 5G access technologies decoupling the mobility control from data planes to let them evolve and scale independently; reducing network state maintained in the network based on user equipment types to reduce network cost and allow massive scale; shortening cycle time and improving network upgradability; flexibility in creating end-to-end services based on types of user equipment and applications, thus improve customer experience; or improving user equipment power efficiency and battery life—especially for simple M2M devices—through enhanced wireless management.
- While examples of a telecommunications system in which call processing continuity can be processed and managed have been described in connection with various computing devices/processors, the underlying concepts may be applied to any computing device, processor, or system capable of facilitating a telecommunications system.
- the various techniques described herein may be implemented in connection with hardware or software or, where appropriate, with a combination of both.
- the methods and devices may take the form of program code (i.e., instructions) embodied in concrete, tangible, storage media having a concrete, tangible, physical structure. Examples of tangible storage media include floppy diskettes, CD-ROMs, DVDs, hard drives, or any other tangible machine-readable storage medium (computer-readable storage medium).
- a computer-readable storage medium is not a signal.
- a computer-readable storage medium is not a transient signal. Further, a computer-readable storage medium is not a propagating signal.
- a computer-readable storage medium as described herein is an article of manufacture.
- the program code When the program code is loaded into and executed by a machine, such as a computer, the machine becomes a device for telecommunications.
- the computing device In the case of program code execution on programmable computers, the computing device will generally include a processor, a storage medium readable by the processor (including volatile or nonvolatile memory or storage elements), at least one input device, and at least one output device.
- the program(s) can be implemented in assembly or machine language, if desired.
- the language can be a compiled or interpreted language and may be combined with hardware implementations.
- the methods and devices associated with a telecommunications system as described herein also may be practiced via communications embodied in the form of program code that is transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via any other form of transmission, wherein, when the program code is received and loaded into and executed by a machine, such as an EPROM, a gate array, a programmable logic device (PLD), a client computer, or the like, the machine becomes a device for implementing telecommunications as described herein.
- a machine such as an EPROM, a gate array, a programmable logic device (PLD), a client computer, or the like
- PLD programmable logic device
- client computer or the like
- the program code When implemented on a general-purpose processor, the program code combines with the processor to provide a unique device that operates to invoke the functionality of a telecommunications system.
- a telecommunications system has been described in connection with the various examples of the various figures, it is to be understood that other similar implementations may be used, or modifications and additions may be made to the described examples of a telecommunications system without deviating therefrom.
- a telecommunications system as described in the instant application may apply to any environment, whether wired or wireless, and may be applied to any number of such devices connected via a communications network and interacting across the network. Therefore, a telecommunications system as described herein should not be limited to any single example, but rather should be construed in breadth and scope in accordance with the appended claims.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Methods, systems, and apparatuses, among other things, may integrate one or more first alarms reported by routers and Ethernet switches with one or more second alarms reported by reconfigurable optical add/drop multiplexers (ROADMs) and optical transport network (OTN) network elements. Moreover, one or more troubleshooting actions may be performed based on the integrated first alarms and second alarms.
Description
- This application is a continuation of U.S. application Ser. No. 16/931,896, filed Jul. 17, 2020, which is incorporated herein by reference in its entirety.
- This disclosure relates generally to automatic fault and performance monitoring, and more particularly, to a system and method for implementing logic to integrate alarms reported by routers and Ethernet switches with those reported by reconfigurable optical add-drop multiplexer (ROADM) and optical transport network (OTN) network elements (ONEs) and use alarms and performance management (PM) data to precisely isolate root cause of failures.
- Long-distance telecommunication networks have evolved from, first, time-division multiplexing (TDM) switched networks into, second, networks with
Layers Layer 2 Ethernet switches andLayer 3 routers respectively report alarms that only provide an indication of failure atLayer 2/Layer 3 without providing any details regarding an underlying root cause of failure. Therefore, in order to isolate root causes of trouble more precisely (e.g., reducing operational expenditure costs for the network maintenance and service providers), it has become critical to integrate failures reported via more granular and more detailed alarms byLayer 2 Ethernet switches andLayer 3 routers with alarms reported by ROADM/OTN transport network elements. - The present disclosure discloses a method for integrating one or more first alarms reported by routers and Ethernet switches with one or more second alarms reported by reconfigurable optical add/drop multiplexers (ROADMs) or optical transport network (OTN) network elements.
- For example, first alarm data (e.g., including signal failures, remote faults, local faults, etc.) may be acquired from a broadcast media access control (MAC) level network (e.g.,
Layer 2 network) at a first location and a segmented routing over internet protocol (IP) network (e.g.,Layer 3 network) at the first location. For example, first alarm data may include alarms such as SignalFail-Set, SignalFail-Clear, LocalFault-Set, LocalFault-Clear, RemoteFault-Set, or RemoteFault-Clear. Moreover, second alarm data (e.g., including upstream or downstream hard alarms) may be acquired from a first OTN network element (NE) in an OTN (e.g.,Layer 1 network). Based on the first alarm data (e.g., remote, local, signal failure, etc.) and the second alarm data (e.g., a direction of a hard alarm), one or more troubleshooting actions may be performed. - In some examples, a laser optical parameter at the first OTN network element in the Layer 1 (L1) network may be analyzed based on the first alarm data including a signal failure. Moreover, it may be determined that the laser optical parameter fails to satisfy a performance criterion and, based on the determination, the one or more troubleshooting actions may include issuing a dispatch to replace a laser transmitter associated with the laser optical parameter.
- For example, laser optical parameters (e.g., an optical power parameter) may include optical network element information for optical network elements and analysis of laser optical parameters may include comparisons of the laser optical parameters with vendor information. For example, vendor information may include a high-water mark and a low water mark defining a specified power level range for an optical network element. Moreover, multiple specified power level ranges may be provided by a vendor, for example, a client-side range and a network side range. Likewise, a specified power level may define multiple high and low marks. For example, an optical power received (OPR) high and low mark and an optical power transmitted (OPT) high and low mark may be provided, e.g., where the OPR range is broader than the OPT range. Thus, analysis of optical parameters may include determination of whether the OPT or OPR associated with an optical network element falls within vendor-specified OPR or OPT ranges. Along the same lines, analysis of optical parameters may consider a number of different signals associated with an optical network element, including average, mean, maximum, minimum, high, low, etc.
- In another example, a laser optical parameter at the first OTN network element in the L1 network may be analyzed based on the first alarm data including a signal failure. Moreover, it may be determined that the laser optical parameter satisfies a performance criteria and the first OTN network element in the L1 network may be analyzed based on the satisfaction of the performance criteria, Furthermore, it may be determined the second alarm data does not include an L1 network alarm and the first alarm data may be analyzed based on the determination that the second alarm data does not include the L1 network alarm. Additionally, the one or more troubleshooting actions may include issuing a dispatch to clean an optical line associated with the signal failure if it is determined that the first alarm data does not include a
Layer 2 network alarm or aLayer 3 network alarm. - In some examples, the disclosure sets forth an improvement in computer technology by implementing new and more precise alarms (e.g., as opposed to conventional alarms) from
Layer 2/Layer 3 NEs in conjunction withLayer 1 ROADM/OTN NE alarms. In some examples, transient problems may be identified, such as problems caused by dirty fiber or laser power below threshold watermarks. In some other examples, hard problems may be identified, such as problems due to fiber cut or a hard down of the card on a NE. Moreover, these automated methodologies may greatly reduce or eliminate inspection times required to isolate root cause of trouble, thus reducing operational expenditure costs for network maintenance and service providers, while contributing towards an improved network and customer experience. -
FIG. 1 is an exemplary representation of a backbone network withLayer 3 routers and Ethernet switches over a transport network of ROADM/OTN transport network backbone. -
FIG. 2 is an exemplary flowchart of a method to monitor for alarms reported byLayer 2 Ethernet switches andLayer 3 routers and alarms reported by ROADM/OTN transport network elements in accordance with the present disclosure. -
FIG. 3 is an exemplary flowchart of a fault isolation process to isolate faults and identify the root causes of hard alarms and failures on a backbone network withLayer 3 routers and Ethernet switches over a transport network of ROADM/OTN transport network backbone in accordance with the present disclosure. -
FIG. 4 is an exemplary flowchart of a fault isolation process to isolate faults and identify the root causes of hard alarms and failures on a backbone network withLayer 3 routers and Ethernet switches over a transport network of ROADM/OTN transport network backbone in accordance with the present disclosure. -
FIG. 5 is an exemplary flowchart of a fault isolation process to isolate faults and identify the root causes of hard alarms and failures on a backbone network withLayer 3 routers and Ethernet switches over a transport network of ROADM/OTN transport network backbone in accordance with the present disclosure. -
FIG. 6 illustrates a schematic of an exemplary network device. -
FIG. 7 illustrates an exemplary communication system that provides wireless telecommunication services over wireless communication networks. - In accordance with common practice, the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method, or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures.
- The disclosed subject matter may integrate alarms (e.g., trap messages) reported by routers and Ethernet switches with alarms (e.g., trap messages) reported by reconfigurable optical add/drop multiplexers (ROADMs) and optical transport network (OTN) network elements and use alarms and performance management (PM) data to precisely isolate root cause of failures.
- Typical Layer 2 (L2) Ethernet switches and Layer 3 (L3) routers respectively report an L2/L3 alarm “LinkDown” when they fail to synch up with a Layer 1 (L1) transport network element (NE) (e.g., ROADM and OTN network elements) and “LinkUp” when they synch up with an L1 NE. Problematically, the LinkDown alarms provide an indication of failure at L2 or L3 without providing any details regarding an underlying root cause of failure.
- In some examples, the disclosed L2 or L3 network elements (NEs) (e.g., ethernet switches or routers) have been enhanced to also provide more granular alarms, e.g., SignalFail-Set and SignalFail-Clear, LocalFault-Set and LocalFault-Clear, and RemoteFault-Set and RemoteFault-Clear. The enhanced alarms provide additional details with respect to an underlying failure associated with an alarm. Moreover, the systems and methods of the automated system comprise a practical application that advances the state of telecommunications technology.
- For example, in the case of the alarm LinkDown, an alarm SignalFail-Set may be generated when the L2/L3 detects that an error threshold has been crossed. For example, the detection may be performed by an application configured to integrate alarms and retrieve PM data, including performing surveillance of alarms being published by the network elements via a management system (e.g., an SDN Controller, EMS, or any other surveillance system). Moreover, an alarm SignalFail-Clear may be generated when errors are reduced below an error threshold. LocalFault-Set may be generated for a loss of received signal, the port may transmit a fault code, and the remote end will then issue a RemoteFault-Set.
- Accordingly, the L2/L3 alarms may be used in conjunction with alarms reported by L1 transport ROADM/OTN NEs. Furthermore, hard to isolate transient failures may be identified and isolated using SignalFail-Set and SignalFail-Clear and the direction of hard failures may be identified using LocalFault-Set and RemoteFault-Set. In some examples, SignalFail-Set may be generated when the
Layer 2/Layer 3 detects that an error threshold has been crossed. SignalFail-Clear may be generated when errors are reduced below an error threshold. LocalFault-Set may be generated for a loss of received signal. The port may transmit a fault code and the remote end may then issue a RemoteFault-Set. - Thus, examples provide technological advancements to isolating root causes of trouble and may reduce operating expenditure costs for the network maintenance and service providers.
- In some examples, the L1 network may include a set of ONEs connected by optical fiber links and may provide functionality of transport, multiplexing, switching, management, supervision and survivability of optical channels carrying client signals. The L2 network may control hardware responsible for interaction with wired, optical or wireless transmission medium. The L3 network may use segmented routing to forward data packets based on service routes.
-
FIG. 1 illustrates anexemplary network architecture 100 for integrating alarms reported by routers and Ethernet switches with alarms reported by ROADMs and OTN NEs, among other things.Exemplary network architecture 100 may include OTN/ROADM network 110. In an example,network architecture 100 includes one L2/L3 NE at each end ofLayer 1 ROADM/OTN Network transporting L2/L3 traffic over transport network. Moreover, each L2/L3 NE may report one or more alarms. For example,L2L3NE1 120 atlocation 1 may report one ormore alarms 122 andL2L3NE2 130 atlocation 2 may report one ormore alarms 132. Moreover,network architecture 100 may further include one or more L1 transport network elements which may report one or more alarms. For example,L1NE1 140 may report one ormore alarms 142 andL1NE2 150 may report one ormore alarms 152. One or more of the alarms (e.g., alarms 122, 132, 142, or 152) may be received byserver 160, e.g., via the OTN/ROADM network. For example, typical alarm data may includealarms - For example, alarm data (e.g., alarms 122, 132, 142, or 152) may include signal failures, remote faults, local faults, and may be acquired from a broadcast MAC level network (e.g., L2 network) at
location 1 and a segmented routing over IP network (e.g., L3 network) atlocation 1. Moreover, second alarm data (e.g., including upstream or downstream hard alarms) may be acquired from a first OTN network element (NE) in an OTN (e.g.,Layer 1 network). Based on the first alarm data (e.g., remote, local, signal failure, etc.) and the second alarm data (e.g., a direction of a hard alarm), one or more troubleshooting actions may be performed. -
FIG. 2 illustrates an exemplary flowchart of amethod 200 to monitor for or be triggered by alarms reported by L2 Ethernet switches and L3 routers on location 1 (e.g., alarms 122 andalarms 132 respectively reported byL2L3NE1 120 and L2L3NE2 130) and alarms reported by ROADM & OTN transport network elements (e.g., alarms 142 andalarms 152 respectively reported byL1NE1 140 and L1NE2 150). In some examples, themethod 200 is performed by a device or machine (e.g.,server 160 or network device 600). As understood by one of ordinary skill in the art, the presence of alarms oflocation 2 may also be used as needed for the logic triggered by alarms inlocation 1. - Moreover, the
method 200 may be performed at a network device, UE, desktop, laptop, mobile device, server device, or by multiple devices in communication with one another. In some examples, themethod 200 is performed by processing logic, including hardware, firmware, software, or a combination thereof. In some examples, themethod 200 is performed by a processor executing code stored in a computer-readable medium (e.g., a memory). - At
block 210, themethod 200 checks L2/L3 Alarms atLocation 1. For example,method 200 may checkalarms 122 reported byL2L3NE1 120. - At
block 220, themethod 200 checks alarms being reported by an L2/L3 NE at a first location (e.g., L2L3NE1 120). If the alarms reported by L2L3NE1 include a signal failure (e.g., SignalFail-Set),method 200 proceeds to block 310 (e.g., seeFIG. 3 ). If the alarms reported by L2L3NE1 include a remote fault (e.g., RemoteFault-Set),method 200 proceeds to block 410 (e.g., seeFIG. 4 ). If the alarms reported by L2L3NE1 include a local fault (e.g., LocalFault-Set),method 200 proceeds to block 510 (e.g., seeFIG. 5 ). -
FIG. 3 illustrates an exemplary flowchart of amethod 300 to isolate faults and identify the root causes of hard alarms (e.g., resulting from persistent failures) on a backbone network with L3 routers and Ethernet switches over a transport network of ROADM/OTN transport network backbone in accordance with the present disclosure. For example, root causes may include a dirty fiber, a laser transmitter or laser receiver issue inLayer 1, aLayer 2/Layer 3 NE, or aLayer 1 NE failure. In some examples, the hard alarms may be exhibited as a SignalFail-Set alarm from aLayer 2/Layer 3 switch, laser optical power levels of aLayer 1NE facing Layer 2/Layer 3 NEs, or alarms fromLayer 1 NEs part of ROADM/OTN backbone transport network. The present disclosure includes additional exemplary flowcharts (e.g.,flowcharts Layer 2/Layer 3 andLayer 1 NEs inlocation 2. As understood by one of ordinary skill in the art, the presence of alarms oflocation 2 may also be used as needed for the logic triggered by alarms inlocation 1. - In some examples, the
method 300 is performed by a device or machine (e.g.,server 160 or network device 600). Moreover, themethod 300 may be performed at a network device, UE, desktop, laptop, mobile device, server device, or by multiple devices in communication with one another. In some examples, themethod 300 is performed by processing logic, including hardware, firmware, software, or a combination thereof. In some examples, themethod 300 is performed by a processor executing code stored in a computer-readable medium (e.g., a memory). - At
block 310, themethod 300 analyzes laser optical parameters (e.g., an optical power parameter), for example, laser power levels and alarms at an L1 transport NE1. In some examples, themethod 300 may compare received laser optical values against standard laser optical values. For example, a manufacturer of an NE may provide optical power static water marks (e.g., maximum or minimum Tx LWT, Tx HWT, Rx LWT, or Rx HWT dBm) for each card or interface associated with the network element. Moreover, analysis of the laser optical parameters may lead to root cause determination (e.g., dirty fiber or possible laser/transmitter/receiver issues) inLayer 1 NE,Layer 2/3 NE orpossible Layer 1 Transport NE as exhibited by a SignalFail-Set alarm fromLayer 2/Layer 3 switch, laser optical power levels ofLayer 1NE facing Layer 2/Layer 3 NEs, or alarms fromLayer 1 NEs part of ROADM/OTN backbone transport by network. - At
block 320, themethod 300 determines whether the laser power level (e.g., of a laser associated with an optical line or fiber) is below a threshold. If the laser power level is below the threshold, it is determined atblock 330 that the laser may be failing. Accordingly, a troubleshooting action may include replacing the laser or issuing a dispatch to replace the laser. If the laser power level is not below the threshold, themethod 300 may proceed to block 340. - At
block 340, themethod 300 may determine whether an L1 alarm is present on theL1NE1 140 transport at the first location. For example, themethod 300 may checkalarms 142 at L1NE1 140 transport at the first location. If there is an alarm present onL1NE1 140 transport at the first location, a troubleshooting action atblock 350 may include fixing the trouble causing the L1 Alarm. If there are no alarms present onL1NE1 140 transport at the first location, themethod 300 may proceed to block 360. - At
block 360, themethod 300 may determine whether an alarm is present on theL2L3NE2 130 NE at the second location. For example, themethod 300 may checkalarms 132 atL2L3NE2 130. If there is an alarm present onL2L3NE2 130 NE at the second location, it may be determined atblock 370 that there is an issue with a transmitter ofL2L3NE2 130 NE at the second location or a receiver ofL2L3NE1 120 NE at the first location. If there are no alarms present onL2L3NE2 130 NE at the second location, themethod 300 may proceed to block 380. - At
block 370, themethod 300 may determine that the optical fiber is dirty and a troubleshooting action may include cleaning the optical fiber or issuing a dispatch to clean the optical fiber. -
FIG. 4 illustrates an exemplary flowchart of amethod 400 to identify the root causes of hard alarms or failures on a backbone network with L3 routers and Ethernet switches over a transport network of ROADM/OTN transport network backbone in accordance with the present disclosure. For example, the root causes of failure of aLayer 1 transport NE, failure of ROADM/OTN Layer 1 backbone network or failure ofLayer 2/Layer 3 switch on other end of circuit, as exhibited by a RemoteFault-Set alarm fromLayer 2/Layer 3 switch,RDI alarm Layer 2/Layer 3 NEs and alarms fromLayer 1 NEs part of ROADM/OTN backbone transport network, may be identified and troubleshooted in accordance with the present disclosure. - In some examples, the
method 400 is performed by a device or machine (e.g.,server 160 or network device 600). Moreover, themethod 400 may be performed at a network device, UE, desktop, laptop, mobile device, server device, or by multiple devices in communication with one another. In some examples, themethod 400 is performed by processing logic, including hardware, firmware, software, or a combination thereof. In some examples, themethod 400 is performed by a processor executing code stored in a computer-readable medium (e.g., a memory). The present disclosure includes additional exemplary flowcharts (e.g.,flowcharts Layer 2/Layer 3 andLayer 1 NEs inlocation 2. As understood by one of ordinary skill in the art, the presence of alarms oflocation 2 may also be used as needed for the logic triggered by alarms inlocation 1. - At
block 410, themethod 400 may analyze alarms atL1NE1 140 transport at the first location. Moreover, themethod 400 may lead to root cause determination of a failure of aLayer 1 transport NE, a failure of OTN/ROADM Layer 1 backbone network or a failure of L2/L3 switch on other end of circuit, as exhibited RemoteFault-Set alarm fromLayer 2/Layer 3 switch,RDI alarm Layer 2/Layer 3 NEs and alarms fromLayer 1 NEs part of ROADM/OTN backbone transport network. - At
block 420, themethod 400 determines whether the alarms atL1NE1 140 transport at the first location include any hard alarms. If the alarms atL1NE1 140 transport at the first location do not include any hard alarms, themethod 400 may proceed to block 430. - At
block 430, themethod 400 may analyze the alarms being reported byL2L3NE2 130 NE at the second location. For example, themethod 400 may analyzealarms 132 reported byL2L3NE2 130 NE at the second location to identify the issue associated with the alarms. A troubleshooting action atblock 440 may involve including this troubleshooting logic forL2L3NE2 130 NE at the second location. - If, at
block 420, themethod 400 determines the alarms atL1NE1 140 transport at the first location do include hard alarms, themethod 400 may proceed to block 450. Atblock 450, themethod 400 may determine the direction (e.g., upstream or downstream) of the hard alarm. - If the
method 400 determines the direction of the hard alarm is downstream, themethod 400 may proceed to block 460. Atblock 460, themethod 400 may identify that there is a remote defect indicator (RDI) fromL2L3NE1 120 NE at the first location or a failure ofL1NE1 140 transport at the first location. - If the
method 400 determines the direction of the hard alarm is upstream, themethod 400 may proceed to block 470. Atblock 470, themethod 400 may isolate trouble in the ROADM/OTN network. -
FIG. 5 illustrates an exemplary flowchart of amethod 500 to identify the root causes of hard alarms and failures on a backbone network with L3 routers and Ethernet switches over a transport network of ROADM/OTN transport network backbone in accordance with the present disclosure. In some examples, themethod 500 may identify the root causes of either fiber cut orLayer 1 transport ROADM/OTN Network failure, as exhibited by a LocalFault-Set alarm fromLayer 2/Layer 3 switch, failure ofLayer 1 NE ROADM/OTN backbone transportnetwork facing Layer 2/Layer 3 NEs and alarms fromLayer 1 NEs part of ROADM/OTN backbone transport network, or failure of L2/L3 switch on other end of circuit. - In some examples, the
method 500 is performed by a device or machine (e.g.,server 160 or network device 600). Moreover, themethod 500 may be performed at a network device, UE, desktop, laptop, mobile device, server device, or by multiple devices in communication with one another. In some examples, themethod 500 is performed by processing logic, including hardware, firmware, software, or a combination thereof. In some examples, themethod 500 is performed by a processor executing code stored in a computer-readable medium (e.g., a memory). The present disclosure includes additional exemplary flowcharts (e.g.,flowcharts Layer 2/Layer 3 andLayer 1 NEs inlocation 2. As understood by one of ordinary skill in the art, the presence of alarms oflocation 2 may also be used as needed for the logic triggered by alarms inlocation 1. - At
block 510, themethod 500 analyzes alarms atL1NE1 140 transport at the first location. For example, themethod 500 may lead to root cause determination of failures (e.g., fiber cut orLayer 1 transport ROADM/OTN Network failures) as exhibited by alarms such as LocalFault-Set alarm fromLayer 2/Layer 3 switch, failure ofLayer 1 NE ROADM/OTN backbone transportnetwork facing Layer 2/Layer 3 NEs, and alarms fromLayer 1 NEs part of ROADM/OTN backbone transport network or failure of L2/L3 switch on other end of circuit. - At
block 520, themethod 500 determines whether the alarms atL1NE1 140 transport at the first location include any hard alarms. If the alarms atL1NE1 140 transport at the first location do not include any hard alarms, themethod 500 may proceed to block 530. - At
block 530, themethod 500 may analyze the alarms being reported by theL2L3NE2 130 NE at the second location. For example, themethod 500 may analyzealarms 132 reported byL2L3NE2 130 NE at the second location to identify the issue associated with the alarms. A troubleshooting action atblock 540 may involve including this troubleshooting logic forL2L3NE2 130 NE at the second location. - If, at
block 520, themethod 500 determines the alarms at theL1NE1 140 transport at the first location includes hard alarms, themethod 500 may proceed to block 550. Atblock 550, themethod 500 may determine the direction (e.g., upstream or downstream) of the hard alarm. - If the
method 500 determines the direction of the hard alarm is downstream, themethod 500 may proceed to block 560. Atblock 560, themethod 500 may identify that there is a loss of signal (LOS) fromL2L3NE1 120 NE at the first location. - If the
method 500 determines the direction of the hard alarm is upstream, themethod 500 may proceed to block 570. Atblock 570, themethod 500 may isolate trouble in the ROADM/OTN network. -
FIG. 6 is a block diagram ofnetwork device 600 that may be connected to or comprise a component ofcommunication system 100.network device 600 may comprise hardware or a combination of hardware and software. The functionality to facilitate telecommunications via a telecommunications network may reside in one or a combination ofnetwork devices 600.network device 600 depicted inFIG. 6 may represent or perform functionality of anappropriate network device 600, or a combination ofnetwork devices 600, such as, for example, a component or various components of a cellular broadcast system wireless network, a processor, a server, a gateway, an LTE or 5G anchor node or eNB, a mobile switching center (MSC), a short message service center (SMSC), an automatic location function server (ALFS), a gateway mobile location center (GMLC), a serving gateway (S-GW) 430, a packet data network (PDN) gateway, an RAN, a serving mobile location center (SMLC), or the like, or any appropriate combination thereof. It is emphasized that the block diagram depicted inFIG. 6 is exemplary and not intended to imply a limitation to a specific example or configuration. Thus,network device 600 may be implemented in a single device or multiple devices (e.g., single server or multiple servers, single gateway or multiple gateways, single controller or multiple controllers). Multiple network entities may be distributed or centrally located. Multiple network entities may communicate wirelessly, via hard wire, or any appropriate combination thereof. -
Network device 600 may comprise aprocessor 602 and amemory 604 coupled toprocessor 602.Memory 604 may contain executable instructions that, when executed byprocessor 602,cause processor 602 to effectuate operations associated with fault and performance monitoring. As evident from the description herein,network device 600 is not to be construed as software per se. - In addition to
processor 602 andmemory 604,network device 600 may include an input/output system 606.Processor 602,memory 604, and input/output system 606 may be coupled together to allow communications between them. Each portion ofnetwork device 600 may comprise circuitry for performing functions associated with each respective portion. Thus, each portion may comprise hardware, or a combination of hardware and software. Accordingly, each portion ofnetwork device 600 is not to be construed as software per se. Input/output system 606 may be capable of receiving or providing information from or to a communications device or other network entities configured for telecommunications. For example, input/output system 606 may include a wireless communications (e.g., 3G/4G/5G/GPS) card. Input/output system 606 may be capable of receiving or sending video information, audio information, control information, image information, data, or any combination thereof. Input/output system 606 may be capable of transferring information withnetwork device 600. In various configurations, input/output system 606 may receive or provide information via any appropriate means, such as, for example, optical means (e.g., infrared), electromagnetic means (e.g., RF, Wi-Fi, Bluetooth®, ZigBee®), acoustic means (e.g., speaker, microphone, ultrasonic receiver, ultrasonic transmitter), or a combination thereof. In an example configuration, input/output system 606 may comprise a Wi-Fi finder, a two-way GPS chipset or equivalent, or the like, or a combination thereof. - Input/
output system 606 ofnetwork device 600 also may contain acommunication connection 608 that allowsnetwork device 600 to communicate with other devices, network entities, or the like.Communication connection 608 may include wired media such as a wired network or direct-wired connection, or wireless media such as acoustic, RF, infrared, or other wireless media. Input/output system 606 also may include aninput device 610 such as keyboard, mouse, pen, voice input device, or touch input device. Input/output system 606 may also include anoutput device 612, such as a display, speakers, or a printer. -
Processor 602 may be capable of performing functions associated with telecommunications, such as functions for fault and performance monitoring, as described herein. For example,processor 602 may be capable of, in conjunction with any other portion ofnetwork device 600, determining a type or root cause of a fault and acting according to the fault type or root cause, as described herein. -
Memory 604 ofnetwork device 600 may comprise a storage medium having a concrete, tangible, physical structure. As is known, a signal does not have a concrete, tangible, physical structure.Memory 604, as well as any computer-readable storage medium described herein, is not to be construed as a signal.Memory 604, as well as any computer-readable storage medium described herein, is not to be construed as a transient signal.Memory 604, as well as any computer-readable storage medium described herein, is not to be construed as a propagating signal.Memory 604, as well as any computer-readable storage medium described herein, is to be construed as an article of manufacture. -
Memory 604 may store any information utilized in conjunction with telecommunications. Depending upon the exact configuration or type of processor,memory 604 may include a volatile storage 614 (such as some types of RAM), a nonvolatile storage 616 (such as ROM, flash memory), or a combination thereof.Memory 604 may include additional storage (e.g., aremovable storage 618 or a non-removable storage 620) including, for example, tape, flash memory, smart cards, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, USB-compatible memory, or any other medium that can be used to store information and that can be accessed bynetwork device 600.Memory 604 may comprise executable instructions that, when executed byprocessor 602,cause processor 602 to effectuate operations to map signal strengths in an area of interest. -
FIG. 7 depicts an exemplary diagrammatic representation of a machine in the form of acomputer system 700 within which a set of instructions, when executed, may cause the machine to perform any one or more of the methods described above. One or more instances of the machine can operate, for example, asprocessor 602 and other devices ofFIG. 1 ,FIG. 2 ,FIG. 3 ,FIG. 4 ,FIG. 5 , andFIG. 6 . In some examples, the machine may be connected (e.g., using a network 702) to other machines. In a networked deployment, the machine may operate in the capacity of a server or a client user machine in a server-client user network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. - The machine may comprise a server computer, a client user computer, a personal computer (PC), a tablet, a smart phone, a laptop computer, a desktop computer, a control system, a network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. It will be understood that a communication device of the subject disclosure includes broadly any electronic device that provides voice, video or data communication. Further, while a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methods discussed herein.
-
Computer system 700 may include a processor (or controller) 704 (e.g., a central processing unit (CPU)), a graphics processing unit (GPU, or both), amain memory 706 and astatic memory 708, which communicate with each other via abus 710. Thecomputer system 700 may further include a display unit 712 (e.g., a liquid crystal display (LCD), a flat panel, or a solid-state display).Computer system 700 may include an input device 714 (e.g., a keyboard), a cursor control device 716 (e.g., a mouse), adisk drive unit 718, a signal generation device 720 (e.g., a speaker or remote control) and a network interface device 722. In distributed environments, the examples described in the subject disclosure can be adapted to utilize multiple display units 712 controlled by two ormore computer systems 700. In this configuration, presentations described by the subject disclosure may in part be shown in a first of display units 712, while the remaining portion is presented in a second of display units 712. - The
disk drive unit 718 may include a tangible computer-readable storage medium on which is stored one or more sets of instructions (e.g., instructions 726) embodying any one or more of the methods or functions described herein, including those methods illustrated above.Instructions 726 may also reside, completely or at least partially, withinmain memory 706,static memory 708, or withinprocessor 704 during execution thereof by thecomputer system 700.Main memory 706 andprocessor 704 also may constitute tangible computer-readable storage media. - As described herein, a telecommunications system wherein management and control utilizing a software designed network (SDN) and a simple IP are based, at least in part, on user equipment, may provide a wireless management and control framework that enables common wireless management and control, such as mobility management, radio resource management, QoS, load balancing, etc., across many wireless technologies, e.g. LTE, Wi-Fi, and future 5G access technologies; decoupling the mobility control from data planes to let them evolve and scale independently; reducing network state maintained in the network based on user equipment types to reduce network cost and allow massive scale; shortening cycle time and improving network upgradability; flexibility in creating end-to-end services based on types of user equipment and applications, thus improve customer experience; or improving user equipment power efficiency and battery life—especially for simple M2M devices—through enhanced wireless management.
- While examples of a telecommunications system in which call processing continuity can be processed and managed have been described in connection with various computing devices/processors, the underlying concepts may be applied to any computing device, processor, or system capable of facilitating a telecommunications system. The various techniques described herein may be implemented in connection with hardware or software or, where appropriate, with a combination of both. Thus, the methods and devices may take the form of program code (i.e., instructions) embodied in concrete, tangible, storage media having a concrete, tangible, physical structure. Examples of tangible storage media include floppy diskettes, CD-ROMs, DVDs, hard drives, or any other tangible machine-readable storage medium (computer-readable storage medium). Thus, a computer-readable storage medium is not a signal. A computer-readable storage medium is not a transient signal. Further, a computer-readable storage medium is not a propagating signal. A computer-readable storage medium as described herein is an article of manufacture. When the program code is loaded into and executed by a machine, such as a computer, the machine becomes a device for telecommunications. In the case of program code execution on programmable computers, the computing device will generally include a processor, a storage medium readable by the processor (including volatile or nonvolatile memory or storage elements), at least one input device, and at least one output device. The program(s) can be implemented in assembly or machine language, if desired. The language can be a compiled or interpreted language and may be combined with hardware implementations.
- The methods and devices associated with a telecommunications system as described herein also may be practiced via communications embodied in the form of program code that is transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via any other form of transmission, wherein, when the program code is received and loaded into and executed by a machine, such as an EPROM, a gate array, a programmable logic device (PLD), a client computer, or the like, the machine becomes a device for implementing telecommunications as described herein. When implemented on a general-purpose processor, the program code combines with the processor to provide a unique device that operates to invoke the functionality of a telecommunications system.
- While a telecommunications system has been described in connection with the various examples of the various figures, it is to be understood that other similar implementations may be used, or modifications and additions may be made to the described examples of a telecommunications system without deviating therefrom. For example, one skilled in the art will recognize that a telecommunications system as described in the instant application may apply to any environment, whether wired or wireless, and may be applied to any number of such devices connected via a communications network and interacting across the network. Therefore, a telecommunications system as described herein should not be limited to any single example, but rather should be construed in breadth and scope in accordance with the appended claims.
- In describing preferred methods, systems, or apparatuses of the subject matter of the present disclosure—call processing continuity—as illustrated in the Figures, specific terminology is employed for the sake of clarity. The claimed subject matter, however, is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner to accomplish a similar purpose. In addition, the use of the word “or” is generally used inclusively unless otherwise provided herein.
- This written description uses examples to enable any person skilled in the art to practice the claimed subject matter, including making and using any devices or systems and performing any incorporated methods.
Claims (20)
1. A device comprising:
a processing system including a processor; and
a memory that stores executable instructions that, when executed by the processing system, facilitate performance of operations, the operations comprising:
acquiring first alarm data from a first network element of a first set of network elements, the first network element being at a first location;
acquiring second alarm data from a second network element of a second set of network elements, the second network element being at the first location, the second set of network elements being different from the first set of network elements and comprising an optical transport network;
integrating the first alarm data and the second alarm data to identify one or more troubleshooting actions, wherein the first alarm data includes a fault and the second alarm data includes a hard alarm;
determining a direction of the hard alarm, the direction being one of upstream or downstream relative to the first location; and
performing the one or more troubleshooting actions based on the first alarm data, the second alarm data, and the direction.
2. The device of claim 1 , wherein the second set of network elements comprises a Layer 1 network element.
3. The device of claim 2 , wherein the operations further comprise:
analyzing, based on the first alarm data including a signal failure, a laser optical parameter at the Layer 1 network element; and
determining that the laser optical parameter fails to satisfy a performance criterion, wherein the one or more troubleshooting actions include issuing a dispatch to replace a laser transmitter associated with the laser optical parameter.
4. The device of claim 2 , wherein the operations further comprise:
analyzing, based on the first alarm data including a signal failure, a laser optical parameter at the Layer 1 network element;
determining that the laser optical parameter satisfies a performance criterion;
analyzing, based on the determining that the laser optical parameter satisfies the performance criterion, the Layer 1 network element;
determining that the second alarm data does not include a Layer 1 network alarm;
analyzing, based on the determining that the second alarm data does not include the Layer 1 network alarm, the first alarm data; and
determining that the first alarm data does not include a Layer 2 network alarm or a Layer 3 network alarm, wherein the one or more troubleshooting actions include issuing a dispatch to clean an optical line associated with the signal failure.
5. The device of claim 1 , wherein the first set of network elements comprises a Layer 2 network element or a Layer 3 network element.
6. The device of claim 1 , wherein the operations further comprise acquiring third alarm data from a second Layer 2 network element or a second Layer 3 network element at a second location, wherein the one or more troubleshooting actions are based on the third alarm data.
7. The device of claim 1 , wherein the direction of the hard alarm is downstream and the one or more troubleshooting actions include issuing a dispatch to replace a severed fiber optic.
8. A method comprising:
acquiring, by a processing system including a processor, first alarm data from a first network element of a first set of network elements, the first network element being at a first location;
acquiring, by the processing system, second alarm data from a second network element of a second set of network elements, the second network element being at the first location, the second set of network elements being different from the first set of network elements and comprising an optical transport network;
integrating, by the processing system, the first alarm data and the second alarm data, resulting in integrated alarm data to identify one or more troubleshooting actions, the first alarm data including a fault and second alarm data including a hard alarm;
determining, by the processing system, a direction of the hard alarm, the direction being one of upstream or downstream relative to the first location; and
performing, by the processing system, the one or more troubleshooting actions based on the first alarm data, the second alarm data, and the direction.
9. The method of claim 8 , wherein the second set of network elements comprises a Layer 1 network element.
10. The method of claim 9 , further comprising:
analyzing, by the processing system based on the first alarm data including a signal failure, a laser optical parameter at the Layer 1 network element; and
determining, by the processing system, that the laser optical parameter fails to satisfy a performance criterion, wherein the one or more troubleshooting actions include issuing a dispatch to replace a laser transmitter associated with the laser optical parameter.
11. The method of claim 9 , further comprising:
analyzing, by the processing system based on the first alarm data including a signal failure, a laser optical parameter at the Layer 1 network element;
determining, by the processing system, that the laser optical parameter satisfies a performance criterion;
analyzing, by the processing system based on the determining that the laser optical parameter satisfies the performance criterion, the Layer 1 network element;
determining, by the processing system, that the second alarm data does not include a Layer 1 network alarm;
analyzing, by the processing system based on the determining that the second alarm data does not include the Layer 1 network alarm, the first alarm data; and
determining, by the processing system, that the first alarm data does not include a Layer 2 network alarm or a Layer 3 network alarm, wherein the one or more troubleshooting actions include issuing a dispatch to clean an optical line associated with the signal failure.
12. The method of claim 8 , wherein the first set of network elements comprises a Layer 2 network element or a Layer 3 network element.
13. The method of claim 8 , further comprising acquiring, by the processing system, third alarm data from a second Layer 2 network element or a second Layer 3 network element at a second location, wherein the one or more troubleshooting actions are based on the third alarm data.
14. The method of claim 8 , wherein the direction of the hard alarm is downstream and the one or more troubleshooting actions include issuing a dispatch to replace a severed fiber optic.
15. A non-transitory machine-readable medium comprising executable instructions that, when executed by a processing system including a processor, facilitate performance of operations, the operations comprising:
acquiring first alarm data from a first network element of a first set of network elements, the first network element being at a first location;
acquiring second alarm data from a second network element of a second set of network elements, the second network element being at the first location, the second set of network elements being different from the first set of network elements and comprising an optical transport network;
integrating the first alarm data and the second alarm data to identify one or more troubleshooting actions, wherein the first alarm data includes a fault and the second alarm data includes a hard alarm;
determining a direction of the hard alarm relative to the first location; and
performing the one or more troubleshooting actions based on the first alarm data, the second alarm data, and the direction.
16. The non-transitory machine-readable medium of claim 15 , the direction being one of upstream or downstream relative to the first location.
17. The non-transitory machine-readable medium of claim 15 , wherein the second set of network elements comprises a Layer 1 network element.
18. The non-transitory machine-readable medium of claim 17 , wherein the operations further comprise:
analyzing, based on the first alarm data including a signal failure, a laser optical parameter at the Layer 1 network element; and
determining that the laser optical parameter fails to satisfy a performance criterion, wherein the one or more troubleshooting actions include issuing a dispatch to replace a laser transmitter associated with the laser optical parameter.
19. The non-transitory machine-readable medium of claim 17 , wherein the operations further comprise:
analyzing, based on the first alarm data including a signal failure, a laser optical parameter at the Layer 1 network element;
determining that the laser optical parameter satisfies a performance criterion;
analyzing, based on the determining that the laser optical parameter satisfies the performance criterion, the Layer 1 network element;
determining that the second alarm data does not include a Layer 1 network alarm;
analyzing, based on the determining that the second alarm data does not include the Layer 1 network alarm, the first alarm data; and
determining that the first alarm data does not include a Layer 2 network alarm or a Layer 3 network alarm, wherein the one or more troubleshooting actions include issuing a dispatch to clean an optical line associated with the signal failure.
20. The non-transitory machine-readable medium of claim 15 , wherein the first set of network elements comprises a Layer 2 network element or a Layer 3 network element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/717,407 US20220239370A1 (en) | 2020-07-17 | 2022-04-11 | Proactive isolation of telecommunication faults based on alarm indicators |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/931,896 US11329719B2 (en) | 2020-07-17 | 2020-07-17 | Proactive isolation of layer 1 faults based on layer 2 alarm indicators |
US17/717,407 US20220239370A1 (en) | 2020-07-17 | 2022-04-11 | Proactive isolation of telecommunication faults based on alarm indicators |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/931,896 Continuation US11329719B2 (en) | 2020-07-17 | 2020-07-17 | Proactive isolation of layer 1 faults based on layer 2 alarm indicators |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220239370A1 true US20220239370A1 (en) | 2022-07-28 |
Family
ID=79292950
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/931,896 Active US11329719B2 (en) | 2020-07-17 | 2020-07-17 | Proactive isolation of layer 1 faults based on layer 2 alarm indicators |
US17/717,407 Abandoned US20220239370A1 (en) | 2020-07-17 | 2022-04-11 | Proactive isolation of telecommunication faults based on alarm indicators |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/931,896 Active US11329719B2 (en) | 2020-07-17 | 2020-07-17 | Proactive isolation of layer 1 faults based on layer 2 alarm indicators |
Country Status (1)
Country | Link |
---|---|
US (2) | US11329719B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11329719B2 (en) * | 2020-07-17 | 2022-05-10 | At&T Intellectual Property I, L.P. | Proactive isolation of layer 1 faults based on layer 2 alarm indicators |
CN115086148B (en) * | 2022-07-15 | 2024-01-30 | 中国电信股份有限公司 | Optical network alarm processing method, system, equipment and storage medium |
CN115941442A (en) * | 2022-12-01 | 2023-04-07 | 中国联合网络通信集团有限公司 | Business fault analysis method and device, electronic equipment and medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060244585A1 (en) * | 2005-04-14 | 2006-11-02 | Bishop Reid J | Method and system for providing alarm reporting in a managed network services environment |
WO2014107836A1 (en) * | 2013-01-08 | 2014-07-17 | 华为技术有限公司 | Network alarm method and device |
US11329719B2 (en) * | 2020-07-17 | 2022-05-10 | At&T Intellectual Property I, L.P. | Proactive isolation of layer 1 faults based on layer 2 alarm indicators |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7933209B2 (en) * | 2008-05-15 | 2011-04-26 | At&T Intellectual Property Ii, L.P. | Method for isolating layer 1 problems for digital signal circuits embedded in SONET |
US7865593B2 (en) * | 2008-08-07 | 2011-01-04 | At&T Intellectual Property I, L.P. | Apparatus and method for managing a network |
-
2020
- 2020-07-17 US US16/931,896 patent/US11329719B2/en active Active
-
2022
- 2022-04-11 US US17/717,407 patent/US20220239370A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060244585A1 (en) * | 2005-04-14 | 2006-11-02 | Bishop Reid J | Method and system for providing alarm reporting in a managed network services environment |
WO2014107836A1 (en) * | 2013-01-08 | 2014-07-17 | 华为技术有限公司 | Network alarm method and device |
US11329719B2 (en) * | 2020-07-17 | 2022-05-10 | At&T Intellectual Property I, L.P. | Proactive isolation of layer 1 faults based on layer 2 alarm indicators |
Also Published As
Publication number | Publication date |
---|---|
US11329719B2 (en) | 2022-05-10 |
US20220021447A1 (en) | 2022-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220239370A1 (en) | Proactive isolation of telecommunication faults based on alarm indicators | |
CN113395108B (en) | Fault processing method, device and system | |
US10484265B2 (en) | Dynamic update of virtual network topology | |
US9729949B2 (en) | Dynamic local decision control in software defined networking-based environment | |
US8576698B2 (en) | Connectivity fault management timeout period control | |
US11003516B2 (en) | Geographical redundancy and dynamic scaling for virtual network functions | |
US10887019B2 (en) | Multi-layer system optimization | |
US20100128611A1 (en) | Transmitting apparatus, alarm control method, and computer product | |
US20130315579A1 (en) | Method and system for providing a shared demarcation point to monitor network performance | |
CN108683568B (en) | Method and system for sectional detection of VPN service channel quality | |
EP3403378B1 (en) | Fault propagation in segmented protection | |
CN107948000B (en) | Method, device and system for switching main channel and standby channel | |
US10666359B2 (en) | Multi-layer system self-optimization | |
US7958386B2 (en) | Method and apparatus for providing a reliable fault management for a network | |
KR20170073691A (en) | Information sending method, managed system, and managing system | |
CN109743112B (en) | OTN networking method, device, equipment and computer readable storage medium | |
JP2012124736A (en) | Communication interface device, transmission control method, and disconnection processing control method | |
CN101656621B (en) | Alarm performance configuration method, system and network element equipment | |
EP2958270A1 (en) | Direct-link quality monitoring method, communications device, and system | |
US8571182B2 (en) | Systems and methods of masking non-service affecting alarms in a communication system | |
US9608719B2 (en) | Optical network connection termination on client facility failure | |
US11470510B2 (en) | Packet transmission system, transmission apparatus, transmission-path switching method, and transmission-path switching program | |
KR20070061273A (en) | Apparatus and method of oam fault notification in ethernet networks | |
CN117221095A (en) | Analysis method, device and system for time synchronization fault | |
CN118714596A (en) | Isolation attribute detection method, device, electronic equipment, storage medium and program product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AT&T INTELLECTUAL PROPERTY I, L.P., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABIDI, MOHAMMAD;REEL/FRAME:059571/0141 Effective date: 20200715 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |