US20220233724A1 - Method for diagnostically imaging lesions in the peripheral nervous system - Google Patents

Method for diagnostically imaging lesions in the peripheral nervous system Download PDF

Info

Publication number
US20220233724A1
US20220233724A1 US17/722,707 US202217722707A US2022233724A1 US 20220233724 A1 US20220233724 A1 US 20220233724A1 US 202217722707 A US202217722707 A US 202217722707A US 2022233724 A1 US2022233724 A1 US 2022233724A1
Authority
US
United States
Prior art keywords
nerve
blood
chemical agent
injury
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/722,707
Inventor
Sam Popinchalk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US17/722,707 priority Critical patent/US20220233724A1/en
Publication of US20220233724A1 publication Critical patent/US20220233724A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0002General or multifunctional contrast agents, e.g. chelated agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/14Peptides, e.g. proteins
    • A61K49/16Antibodies; Immunoglobulins; Fragments thereof

Definitions

  • Embodiments of the present invention relate to diagnostic imaging. More particularly, embodiments of the present invention relate to a method to diagnose and characterize lesions in a peripheral nervous system.
  • the present inventive concept provides, in its simplest form, an improved method for diagnosing and characterizing peripheral nerve lesions to permit early identification and characterization of peripheral nerve injuries that will require surgical intervention.
  • the method provided by the present general inventive concept is advantageous over conventional methods for at least the reason that the method enables the accurate analysis of peripheral nerve lesions and the ability to distinguish lesions where the blood-nerve barrier (“BNB”) remains intact, and therefore has greater self-regeneration potential from lesions where the connective tissue layers comprising the BNB are disrupted, and therefore require surgical intervention to obtain any meaningful neurological recovery.
  • the present method represents an advance in the art of diagnosis of peripheral nerve lesions.
  • the aforementioned may be achieved in one aspect of the present invention by providing a method to diagnose and/or characterize peripheral nerve lesions.
  • the method may include the step of introducing a chemical agent operable to bind directly to peripheral nerve lesions in which the blood-nerve barrier is compromised such that a target molecule is immune privileged and unavailable for interaction with the chemical agent unless the blood-nerve barrier is compromised.
  • the target molecule is such that it is (i) not shielded in injured nerves or abnormal tissue via the blood-nerve barrier and/or (ii) shielded in uninjured nerves or normal tissue via the blood-nerve barrier.
  • the target molecule is immune privileged and/or unavailable for interaction with the chemical agent unless the blood-nerve barrier is compromised.
  • the method may also include the step of attaching a label to the chemical agent.
  • the chemical agent with the label may be operable to localize in regions where a peripheral of the nerve-blood barrier is disrupted.
  • the method may also include the step of quantitatively analyzing the peripheral nerve or nerves to determine the amount of labeling agent present.
  • the analyzing may be performed using magnetic resonance imaging techniques or the like.
  • the chemical agent may be a monoclonal antibody.
  • the chemical agent may also be operable to bind specifically and exclusively to the peripheral nerve lesions in which the blood-nerve barrier is compromised.
  • the chemical agent that will localize at peripheral nerve lesions in which the blood-nerve barrier is compromised may be an antibody against an axonal protein.
  • the blood-nerve barrier may be compromised by neurotmesis.
  • the label attached to the chemical may be gadolinium-DTPA or superparamagnetic iron oxide nanoparticles.
  • the method may enable the accurate analysis of peripheral nerve lesions and the ability to distinguish axonotmetic lesions with greater self-regeneration potential from neurotmetic lesions that may require intervention.
  • FIG. 1 is a magnified perspective view illustrating a peripheral nerve
  • FIG. 2 is a magnified perspective view illustrating a peripheral nerve.
  • references to “one embodiment”, “an embodiment”, or “embodiments” mean that the feature or features being referred to are included in at least one embodiment of the technology.
  • references to “one embodiment”, “an embodiment”, or “embodiments” in this description do not necessarily refer to the same embodiment and are also not mutually exclusive unless so stated and/or except as will be readily apparent to those skilled in the art from the description.
  • a feature, structure, act, etc. described in one embodiment may also be included in other embodiments, but is not necessarily included.
  • the present technology can include a variety of combinations and/or integrations of the embodiments described herein.
  • the present general inventive concept relates to blood-nerve barrier permeability, which correlates with suboptimal neurological recovery via spontaneous regeneration alone, and can be demonstrated in an acute peripheral nerve injury. Detection of blood-nerve barrier permeability permits identification of traumatic peripheral nerve lesions indicated for surgical repair.
  • FIGS. 1 and 2 illustrate a peripheral nerve 10 having three layers of connective tissue, i.e., the endoneurium 12 , the perineurium 14 , and the epineurium 16 , surrounding axons 18 , which, in combination, form the peripheral nerve 10 .
  • the axons 18 are long extensions operable to transmit action potentials from a cell body to its target organ.
  • the axons 18 each, individually, travel through a collagenous matrix known as the endoneurium 12 . Bundles of the axons 18 form fascicles, each surrounded by the perineurium 14 .
  • the epineurium 16 encircles the perineurium 14 and also forms an outermost sheath of the peripheral nerve 10 .
  • the endoneurium 12 , the perineurium 14 , and the epineurium 16 serve varied functions, and the patterns of any injury to these layers of connective tissue 12 , 14 , 16 correlate with the severity of the peripheral nerve injury.
  • the perineurium 14 along with the capillaries of the endoneurium 12 provide a blood-nerve interface, or blood-nerve barrier (“BNB”) 18 .
  • BNB 18 is a diffusion barrier that functions as an immunologically and biochemically privileged territory. This BNB 18 has properties similar to the blood-brain barrier in the central nervous system. Endothelial cells within the capillaries of the endoneurium are interconnected with tight junctions that create a system impermeable to a wide range of macromolecules, e.g., proteins.
  • the method includes the initial step of introducing a chemical agent, e.g., monoclonal antibody, which binds directly, specifically and exclusively to peripheral nerve lesions in which the BNB 18 is compromised or relatively more permeable, e.g., antibody with binding affinity to an axonal protein.
  • a chemical agent e.g., monoclonal antibody
  • the target molecule with which this chemical agent interacts e.g., epitope, is found within the BNB 18 in normal tissue. In normal tissue, the target molecule is unavailable for interactions with the chemical agent, e.g., antibody, because the chemical agent does not readily cross the BNB 18 . Wherever the BNB 18 is compromised, the chemical agent will interact with the target molecule, thereby localizing to the specific site of the BNB 18 permeability.
  • the chemical agent must be detectable by either its inherent properties or via a labeling agent.
  • monoclonal antibodies are not readily detectable, but become so once a label is attached thereto, e.g., gadolinium-DTPA, or superparamagnetic iron oxide nanoparticles.
  • the chemical agent and label localize and accumulate at sites where the BNB 18 is disrupted or permeable.
  • the chemical agent utilized is one that does not readily cross the intact BNB 18 , yet interacts specifically with a target that lies behind the BNB 18 in normal tissue and will localize to sites of BNB 18 permeability.
  • the chemical agent is preferably a monoclonal antibody, and it is foreseen may be any binding protein or any such macromolecule that is operable to bind to a specific target, yet does not readily cross the BNB 18 in normal tissue without deviating from the scope of the present inventive concept.
  • the peripheral nerve or nerves are analyzed to determine the presence and/or amount of chemical agent by detection of its labeling agent.
  • Detection methods may include, but are not limited to various imaging modalities, preferably, though not limited to magnetic resonance imaging techniques.
  • a monoclonal antibody will not readily cross the BNB 18 , though it can be designed to target and interact exclusively with a protein that is normally behind the BNB 18 .
  • This antibody may be labeled with a magnetic resonance imaging contrast agent that will be detected at sites of peripheral nerve injuries that demonstrate blood-nerve barrier permeability.
  • the chemical agent could act as a therapeutic as well as diagnostic agent by targeting and inhibiting the action of a molecule that normally hinders nerve regeneration.
  • the method of the present inventive concept may be utilized in various clinical applications including, but not limited to, the following.
  • the regeneration potential of peripheral nerve injuries in some way depends on the integrity of the endoneurium 12 and/or BNB 18 .
  • the current method of differentiating injuries that will regenerate e.g., axonotmetic injuries, with those that require surgical intervention to repair, e.g., neurotmetic injury, is an observation period that might last several months, e.g., a three to six month observation period.
  • GTI Gunshot injuries
  • a considerable number of post-GSI nerve injuries will spontaneously resolve, so a period of observation is often instituted to determine which patients are indicated for surgical intervention. This may equate to loss of critical nerve regeneration time.
  • the method of the present general inventive concept is able to identify those patients in whom surgical exploration and intervention is indicated, thereby avoiding any loss of critical nerve regeneration time.
  • nerve injuries sustained in surgery or due to injections are also often observed for a period of time to differentiate which patients have a transient neuropraxia or axonometic injury versus those who have a neurotmetic injury and therfore require surgical intervention.
  • the method of the present inventive concept may be used to diagnose nerve injury related to closed injuries, such as fractures, that will require surgical repair.
  • the present general inventive concept provides a method for diagnostically imaging of lesions in a peripheral nervous system that is superior to conventional methods for at least the reasons described herein.

Abstract

An improved method for diagnosing and characterizing peripheral nerve lesions to permit early identification and characterization of peripheral nerve injuries that will require surgical intervention.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. application Ser. No. 13/675,306, filed Nov. 13, 2012, which claims priority to U.S. Application No. 61/558,805, filed Nov. 11, 2011; each of the disclosures of which is hereby expressly incorporated herein by reference in its entirety.
  • BACKGROUND 1. Field
  • Embodiments of the present invention relate to diagnostic imaging. More particularly, embodiments of the present invention relate to a method to diagnose and characterize lesions in a peripheral nervous system.
  • 2. Discussion of Related Art
  • Currently, in the setting of acute injury, there exists no method to reliably distinguish peripheral nerve injuries that will spontaneously resolve from those that will require surgical intervention to restore function. U.S. Pat. No. 5,059,415 to Neuwelt titled Method Of Diagnostically Imaging Lesions In The Brain Inside A Blood-Brain Barrier is incorporated by reference in its entirety. In some cases, the decision for surgery is made only after an observation period that can last several months. Early intervention translates to better functional outcomes.
  • Additionally, functional outcomes hinge on the ability of the regenerating nerve to reach its muscular target before motor end-plate demise. This irreversible denervation of the muscle occurs at approximately eighteen months. If diagnosis could be made immediately, surgical intervention could take place sooner; thereby increasing the likelihood the regenerating nerve will reach its target sooner, e.g., before eighteen months elapse. The length of time that elapses from time of injury to surgery is inversely proportional to the degree of functional recovery.
  • Accordingly, there is a need to provide a method for early identification and characterization of peripheral nerve injuries that will require surgical intervention to revolutionize the surgical management of peripheral nerve injuries.
  • (The following references are incorporated by reference in their entireties: Sunderland S. The anatomy and physiology of nerve injury. Muscle Nerve 1990; 13:771-84.) (Lee D K, Wolfe S W. Peripheral nerve injury and repair. J Am Acad Orthop Surg. 2000; 8(4):24352.) (Johns R, Boppart S A. Magnetomotive molecular nanoprobes. Curr Med Chem. 2011; 18(14):2103-14.) (Luchetti A, Milani D, Ruffini F, Galli R, Falini A, Quattrini A, Scotti G, Comi G, Martino G, Furlan R, Politi L S. Monoclonal Antibodies Conjugated with Superparamagnetic Iron Oxide Particles Allow Magnetic Resonance Imaging Detection of Lymphocytes in the Mouse Brain. Mole Imagaing. 2011 Sep. 28.) (Birch R. Chapter 32—Nerve Repair. In, Wolfe S W, Hotchkiss R N, Pedereson W C, Kozin S H. Green's Operative Hand Surgery 6th Ed., Elsevier, 2011.) (Spinner R J, Shin A Y, Hert-Blouin M N, Elhassan B T, Bishop A T. Chapter 38—Traumatic Brachial Plexus Injury. In, Wolfe S W, Hotchkiss R N, Pedereson W C, Kozin S H. Green's Operative Hand Surgery 6th Ed., Elsevier, 2011.) (Waters, P M. Chapter 44—Pediatric Brachial Plexus Palsy. In, Wolfe S W, Hotchkiss R N, Pedereson W C, Kozin S H. Green's Operative Hand Surgery 6th Ed., Elsevier, 2011.) (Neumaier C E, Baio G, Ferrini S, Corte G, Daga A. M R and iron magnetic nanoparticles. Imaging opportunites in preclinical and translational research. Tumori. 2008; 94:226-233.) (Mohler L R, Hanel D P. Closed Fractures Complicated by Peripheral Nerve Injury. J Am Acad Orthop Surg 2006; 14:32-37.) (Weerasuriya A, Mizisin A P. Chapter 6—The Blood-Nerve Barrier: Structure and Functional Significance. In, Sukriti N (ed.), The Blood-Brain and Other Neural Barriers: Reviews and Protocols, Methods in Molecular Biology, vol 686, Springer Science 2011.) (Wessig C. Chapter 12—Detection of Blood-Nerve Barrier Permeability by Magnetic Resonance Imaging. In, Sukriti N (ed.), The Blood-Brain and Other Neural Barriers: Reviews and Protocols, Methods in Molecular Biology, vol 686, Springer Science 2011.) (Grant G A, Goodkin R, Maravilla K R, Kliot M. M R Neurography: diagnostic utility in the surgical treatment of peripheral nerve disorders. Neuroimg Clin N Am 2004; 14:115-133.) Ecklund J M, Ling G S. From the battlefront: peripheral nerve surgery in modern day warfare. NeruosurgClin N Am. 2009 January; 20(1):107-110.vii. Review, and Kretschemer T, Heinen C W, Antonaiadis G, Richter H P, Konig R W. Iatrogenic nerve injuries. NeurosurgClin N Am. 2009 Jan. 20(1):73-90, vii. Review, and Kozin S H. The evaluation and treatment of children with brachial plexus birth palsy. J Hand Surg Am. 2011 August; 36(8):1360-1369.)
  • SUMMARY
  • The following brief description is provided to indicate the nature of the subject matter disclosed herein. While certain aspects of the present inventive concept are described below, the summary is not intended to limit the scope of the present inventive concept. Embodiments of the present inventive concept provide a diagnostic imaging method. The present inventive concept does not suffer from and remedies the deficiencies of conventional methods such as those previously set forth herein.
  • The present inventive concept provides, in its simplest form, an improved method for diagnosing and characterizing peripheral nerve lesions to permit early identification and characterization of peripheral nerve injuries that will require surgical intervention.
  • The method provided by the present general inventive concept is advantageous over conventional methods for at least the reason that the method enables the accurate analysis of peripheral nerve lesions and the ability to distinguish lesions where the blood-nerve barrier (“BNB”) remains intact, and therefore has greater self-regeneration potential from lesions where the connective tissue layers comprising the BNB are disrupted, and therefore require surgical intervention to obtain any meaningful neurological recovery. The present method represents an advance in the art of diagnosis of peripheral nerve lesions.
  • The aforementioned may be achieved in one aspect of the present invention by providing a method to diagnose and/or characterize peripheral nerve lesions. The method may include the step of introducing a chemical agent operable to bind directly to peripheral nerve lesions in which the blood-nerve barrier is compromised such that a target molecule is immune privileged and unavailable for interaction with the chemical agent unless the blood-nerve barrier is compromised. The target molecule is such that it is (i) not shielded in injured nerves or abnormal tissue via the blood-nerve barrier and/or (ii) shielded in uninjured nerves or normal tissue via the blood-nerve barrier. The target molecule is immune privileged and/or unavailable for interaction with the chemical agent unless the blood-nerve barrier is compromised. The method may also include the step of attaching a label to the chemical agent. The chemical agent with the label may be operable to localize in regions where a peripheral of the nerve-blood barrier is disrupted.
  • The method may also include the step of quantitatively analyzing the peripheral nerve or nerves to determine the amount of labeling agent present. The analyzing may be performed using magnetic resonance imaging techniques or the like. The chemical agent may be a monoclonal antibody. The chemical agent may also be operable to bind specifically and exclusively to the peripheral nerve lesions in which the blood-nerve barrier is compromised. The chemical agent that will localize at peripheral nerve lesions in which the blood-nerve barrier is compromised may be an antibody against an axonal protein.
  • The blood-nerve barrier may be compromised by neurotmesis. The label attached to the chemical may be gadolinium-DTPA or superparamagnetic iron oxide nanoparticles. The method may enable the accurate analysis of peripheral nerve lesions and the ability to distinguish axonotmetic lesions with greater self-regeneration potential from neurotmetic lesions that may require intervention.
  • Additional aspects, advantages, and utilities of the present inventive concept will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the present inventive concept.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the present inventive concept are described in detail below with reference to the attached drawing figures, wherein:
  • FIG. 1 is a magnified perspective view illustrating a peripheral nerve; and
  • FIG. 2 is a magnified perspective view illustrating a peripheral nerve.
  • The drawing figures do not limit the present invention to the specific embodiments disclosed and described herein. The drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the invention.
  • DETAILED DESCRIPTION
  • The following detailed description of the invention references the accompanying drawings that illustrate specific embodiments in which the invention can be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments can be utilized and changes can be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense. The scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
  • In this description, references to “one embodiment”, “an embodiment”, or “embodiments” mean that the feature or features being referred to are included in at least one embodiment of the technology. Separate references to “one embodiment”, “an embodiment”, or “embodiments” in this description do not necessarily refer to the same embodiment and are also not mutually exclusive unless so stated and/or except as will be readily apparent to those skilled in the art from the description. For example, a feature, structure, act, etc. described in one embodiment may also be included in other embodiments, but is not necessarily included. Thus, the present technology can include a variety of combinations and/or integrations of the embodiments described herein.
  • The present general inventive concept relates to blood-nerve barrier permeability, which correlates with suboptimal neurological recovery via spontaneous regeneration alone, and can be demonstrated in an acute peripheral nerve injury. Detection of blood-nerve barrier permeability permits identification of traumatic peripheral nerve lesions indicated for surgical repair.
  • Understanding the cross-sectional anatomy of a peripheral nerve is critical to understanding the classification of nerve injuries, and what differentiates those injuries that will spontaneously regenerate to those that require surgical intervention. FIGS. 1 and 2 illustrate a peripheral nerve 10 having three layers of connective tissue, i.e., the endoneurium 12, the perineurium 14, and the epineurium 16, surrounding axons 18, which, in combination, form the peripheral nerve 10.
  • The axons 18 are long extensions operable to transmit action potentials from a cell body to its target organ. The axons 18 each, individually, travel through a collagenous matrix known as the endoneurium 12. Bundles of the axons 18 form fascicles, each surrounded by the perineurium 14. The epineurium 16 encircles the perineurium 14 and also forms an outermost sheath of the peripheral nerve 10. The endoneurium 12, the perineurium 14, and the epineurium 16 serve varied functions, and the patterns of any injury to these layers of connective tissue 12, 14, 16 correlate with the severity of the peripheral nerve injury.
  • The perineurium 14 along with the capillaries of the endoneurium 12 provide a blood-nerve interface, or blood-nerve barrier (“BNB”) 18. The BNB 18 is a diffusion barrier that functions as an immunologically and biochemically privileged territory. This BNB 18 has properties similar to the blood-brain barrier in the central nervous system. Endothelial cells within the capillaries of the endoneurium are interconnected with tight junctions that create a system impermeable to a wide range of macromolecules, e.g., proteins.
  • Classification systems for injuries to the peripheral nerve 10 have been described in anatomic terms, and describe structures that are disrupted. As illustrated in Table 1, i.e., Sunderland's classification, the endoneurium 12 remains intact in Type 1 & 2 injuries. Thus, even if the axon is transected as in Type 2 lesions, the regenerating axon will reach its target end organ, guided by an intact endoneurial tube. Surgery is required for Type 4 and 5 lesions, where the endoneurium 12 and perineurium 14 are disrupted, and the BNB 18 is compromised.
  • TABLE 1
    Injury Classification
    Seddon2 Sunderland1 Pathophysiologic Features
    Neurapraxia Type 1 Local myelin damage usually
    secondary to compression
    Axonotmesis Type 2 Loss of continuity of axons; endoneurium,
    perineurium, and epineurium intact
    Type 3 Loss of continuity of axons and
    endoneurium; perineurium and
    epineurium intact
    Type 4 Loss of continuity of axons, endoneurium,
    and perineurium; epineurium intact
    Neurotmesis Type 5 Complete physiologic disruption
    of entire nerve trunk
  • The method includes the initial step of introducing a chemical agent, e.g., monoclonal antibody, which binds directly, specifically and exclusively to peripheral nerve lesions in which the BNB 18 is compromised or relatively more permeable, e.g., antibody with binding affinity to an axonal protein. The target molecule with which this chemical agent interacts, e.g., epitope, is found within the BNB 18 in normal tissue. In normal tissue, the target molecule is unavailable for interactions with the chemical agent, e.g., antibody, because the chemical agent does not readily cross the BNB 18. Wherever the BNB 18 is compromised, the chemical agent will interact with the target molecule, thereby localizing to the specific site of the BNB 18 permeability.
  • The chemical agent must be detectable by either its inherent properties or via a labeling agent. For example, monoclonal antibodies are not readily detectable, but become so once a label is attached thereto, e.g., gadolinium-DTPA, or superparamagnetic iron oxide nanoparticles. The chemical agent and label localize and accumulate at sites where the BNB 18 is disrupted or permeable.
  • The chemical agent utilized is one that does not readily cross the intact BNB 18, yet interacts specifically with a target that lies behind the BNB 18 in normal tissue and will localize to sites of BNB 18 permeability. The chemical agent is preferably a monoclonal antibody, and it is foreseen may be any binding protein or any such macromolecule that is operable to bind to a specific target, yet does not readily cross the BNB 18 in normal tissue without deviating from the scope of the present inventive concept.
  • Upon localization of the chemical agent at sites of the BNB 18, it is necessary to attempt to detect the chemical agent. Thus, the peripheral nerve or nerves are analyzed to determine the presence and/or amount of chemical agent by detection of its labeling agent. Detection methods may include, but are not limited to various imaging modalities, preferably, though not limited to magnetic resonance imaging techniques. For example, a monoclonal antibody will not readily cross the BNB 18, though it can be designed to target and interact exclusively with a protein that is normally behind the BNB 18. This antibody may be labeled with a magnetic resonance imaging contrast agent that will be detected at sites of peripheral nerve injuries that demonstrate blood-nerve barrier permeability.
  • It is foreseen that the chemical agent could act as a therapeutic as well as diagnostic agent by targeting and inhibiting the action of a molecule that normally hinders nerve regeneration.
  • The method of the present inventive concept may be utilized in various clinical applications including, but not limited to, the following.
  • In brachial plexus birth palsy, the regeneration potential of peripheral nerve injuries in some way depends on the integrity of the endoneurium 12 and/or BNB 18. The current method of differentiating injuries that will regenerate, e.g., axonotmetic injuries, with those that require surgical intervention to repair, e.g., neurotmetic injury, is an observation period that might last several months, e.g., a three to six month observation period. Functional outcome hinges on the ability of the regenerating nerve to reach its muscular target before motor end-plate demise occurs. Irreversible dennervation of the muscle occurs at approximately eighteen months. Because the method of the present inventive concept facilitates an immediate or at least expedited diagnose, surgical intervention can take place sooner, thereby increasing the likelihood the regenerating nerve will reach its target before eighteen months elapse.
  • Gunshot injuries (“GSI”) present another dilemma in management. A considerable number of post-GSI nerve injuries will spontaneously resolve, so a period of observation is often instituted to determine which patients are indicated for surgical intervention. This may equate to loss of critical nerve regeneration time. The method of the present general inventive concept is able to identify those patients in whom surgical exploration and intervention is indicated, thereby avoiding any loss of critical nerve regeneration time.
  • In Iatrogenic nerve injuries, nerve injuries sustained in surgery or due to injections are also often observed for a period of time to differentiate which patients have a transient neuropraxia or axonometic injury versus those who have a neurotmetic injury and therfore require surgical intervention.
  • Lastly, the method of the present inventive concept may be used to diagnose nerve injury related to closed injuries, such as fractures, that will require surgical repair.
  • Accordingly, the present general inventive concept provides a method for diagnostically imaging of lesions in a peripheral nervous system that is superior to conventional methods for at least the reasons described herein.
  • Having now described the features, discoveries and principles of the general inventive concept, the manner in which the general inventive concept is constructed and used, the characteristics of the construction, and advantageous, new and useful results obtained; the new and useful structures, devices, tools, elements, arrangements, parts and combinations, are set forth in the appended claims.
  • It is also to be understood that the following claims are intended to cover all of the generic and specific features of the general inventive concept herein described, and all statements of the scope of the general inventive concept, which, as a matter of language, might be said to fall therebetween.

Claims (19)

What is claimed is:
1. A method to characterize peripheral nerve lesions for surgical intervention by detecting blood-nerve barrier permeability, the method including the steps of:
introducing a chemical agent to a peripheral nerve having a blood-nerve barrier, the chemical agent operable to interact with an epitope within the blood-nerve barrier;
detecting blood-nerve barrier permeability by analyzing the peripheral nerve to detect an amount of the chemical agent at a site of the blood-nerve barrier permeability, the blood-nerve barrier permeability caused by a lesion; and
characterizing the peripheral nerve lesion as one for surgical intervention if the chemical agent interacts with the epitope,
wherein the chemical agent (i) does not interact with the epitope unless the blood-nerve barrier is permeable and allows the epitope to be exposed to the chemical agent, and (ii) is operable to localize at the site of the blood-nerve barrier permeability, and the method does not include modification of the blood-nerve barrier permeability.
2. The method of claim 1, further comprising the step of attaching a label to the chemical agent, wherein the chemical agent is operable to localize in regions where the blood-nerve barrier is disrupted.
3. The method of claim 2, wherein the analyzing of the peripheral nerve includes determining the amount of the chemical agent present in the peripheral nerve.
4. The method of claim 1, wherein the chemical agent is a monoclonal antibody.
5. The method of claim 1, wherein the chemical agent is operable to bind exclusively to the peripheral nerve lesions.
6. The method of claim 1, wherein the chemical agent is an antibody against an axonal protein.
7. The method of claim 1, wherein the blood-nerve barrier is permeable due to neurotmesis.
8. The method of claim 1, wherein, the lesion features (i) a loss of axons, and (ii) disruption of endoneurium and perineurium.
9. The method of claim 1, wherein the lesion is a neurotmetic lesion or related to birth palsy.
10. The method of claim 1, wherein the lesion is the result of a gunshot injury.
11. The method of claim 1, wherein the lesion is a related to a closed injury.
12. The method of claim 11, wherein the closed injury is a bone fracture.
13. A method to diagnose surgical intervention of a nerve injury using a chemical agent having a label by detecting permeability of a blood-nerve barrier of a peripheral nerve, the method including the steps of:
introducing the chemical agent having the label to the blood-nerve barrier, the chemical agent operable to bind to an epitope exposed at a permeable site of the blood-nerve barrier; and
detecting blood-nerve barrier permeability by imaging the peripheral nerve using magnetic resonance imaging to determine a presence of the chemical agent at the permeable site of the blood-nerve barrier, wherein the blood-nerve barrier permeability is caused by an injury, the permeable site of the blood-nerve barrier is a disruption in the blood-nerve barrier, and the chemical agent is operable to localize in regions where the blood-nerve barrier is disrupted; and
diagnosing the nerve injury for surgical intervention if the chemical agent localizes at the peripheral nerve,
wherein the label is (i) attached to the chemical agent, (ii) a contrast agent, and (iii) operable to localize and be detected at peripheral nerve injury sites that demonstrate blood-nerve barrier permeability via the magnetic resonance imaging.
14. The method of claim 13, wherein the permeable site of the blood-nerve barrier is caused by a lesion.
15. The method of claim 14, wherein the lesion features (i) a loss of axons, and (ii) disruption of endoneurium and perineurium.
16. The method of claim 13, wherein the injury is a neurotmetic injury, an injury related to birth palsy, a gunshot injury, or a closed injury.
17. The method of claim 16, wherein the injury is a closed injury, and the closed injury is a bone fracture.
18. The method of claim 13, wherein, the method does not include modification of permeability of the blood-nerve barrier.
19. The method of claim 13, wherein the label is gadolinium-DTPA or superparamagnetic iron oxide nanoparticles.
US17/722,707 2011-11-11 2022-04-18 Method for diagnostically imaging lesions in the peripheral nervous system Pending US20220233724A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/722,707 US20220233724A1 (en) 2011-11-11 2022-04-18 Method for diagnostically imaging lesions in the peripheral nervous system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161558805P 2011-11-11 2011-11-11
US13/675,306 US11305023B2 (en) 2011-11-11 2012-11-13 Method for diagnostically imaging lesions in the peripheral nervous system
US17/722,707 US20220233724A1 (en) 2011-11-11 2022-04-18 Method for diagnostically imaging lesions in the peripheral nervous system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/675,306 Continuation US11305023B2 (en) 2011-11-11 2012-11-13 Method for diagnostically imaging lesions in the peripheral nervous system

Publications (1)

Publication Number Publication Date
US20220233724A1 true US20220233724A1 (en) 2022-07-28

Family

ID=48280839

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/675,306 Active 2035-10-12 US11305023B2 (en) 2011-11-11 2012-11-13 Method for diagnostically imaging lesions in the peripheral nervous system
US17/722,707 Pending US20220233724A1 (en) 2011-11-11 2022-04-18 Method for diagnostically imaging lesions in the peripheral nervous system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/675,306 Active 2035-10-12 US11305023B2 (en) 2011-11-11 2012-11-13 Method for diagnostically imaging lesions in the peripheral nervous system

Country Status (3)

Country Link
US (2) US11305023B2 (en)
EP (2) EP3918988A1 (en)
WO (1) WO2013071300A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059415A (en) 1989-02-21 1991-10-22 The State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon Health Method for diagnostically imaging lesions in the brain inside a blood-brain barrier
ES2083152T3 (en) * 1990-11-30 1996-04-01 Monoclonetics Int METHODS FOR THE DIAGNOSIS OF CHRONIC LUMBAR AND CERVICAL PAIN.
US6589746B1 (en) * 1999-10-21 2003-07-08 University Of Cincinnati Method of detecting axonally-derived protein tau in patients with traumatic CNS injury
US20030040660A1 (en) 2001-08-27 2003-02-27 George Jackowski Method for diagnosing and distinguishing traumatic brain injury and diagnostic devices for use therein
WO2004106375A1 (en) * 2003-05-30 2004-12-09 Merus Biopharmaceuticals B.V. I.O. Fab library for the preparation of anti vegf and anti rabies virus fabs
WO2004110270A1 (en) * 2003-06-12 2004-12-23 Regents Of The University Of Minnesota Directing cells to target tissues or organs
CA2556161A1 (en) 2004-01-30 2005-08-18 Emory University Heparan-sulfate proteoglycan degrading enzymes for promotion of nerve regeneration
US8759297B2 (en) * 2006-08-18 2014-06-24 Armagen Technologies, Inc. Genetically encoded multifunctional compositions bidirectionally transported between peripheral blood and the cns
US20090155223A1 (en) * 2007-08-14 2009-06-18 The Johns Hopkins University Cell-based compositions and methods for treating conditions of the nervous system

Also Published As

Publication number Publication date
EP2775910A4 (en) 2015-07-15
EP2775910A1 (en) 2014-09-17
EP3918988A1 (en) 2021-12-08
US20130121928A1 (en) 2013-05-16
US11305023B2 (en) 2022-04-19
WO2013071300A1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
Alosco et al. Repetitive head impact exposure and later-life plasma total tau in former National Football League players
Vilas et al. Assessment of α-synuclein in submandibular glands of patients with idiopathic rapid-eye-movement sleep behaviour disorder: a case-control study
Wessendorf et al. Diagnosis of sarcoidosis
Welch et al. Ability of serum glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1, and S100B to differentiate normal and abnormal head computed tomography findings in patients with suspected mild or moderate traumatic brain injury
US20170023591A1 (en) Traumatic Brain Injury and Neurodegenerative Biomarkers, Methods, and Systems
Vucic et al. Utility of magnetic resonance imaging in diagnosing ulnarneuropathy at the elbow
Ishiguchi et al. Safety of gadoterate meglumine (Gd-DOTA) as a contrast agent for magnetic resonance imaging: results of a post-marketing surveillance study in Japan
Stoll et al. Imaging of the peripheral nervous system
JP2020521951A5 (en)
Kress et al. MRI volumetry for the preoperative diagnosis of trigeminal neuralgia
Schuette et al. Open biopsy in patients with acute progressive neurologic decline and absence of mass lesion
Andrikopoulou et al. Nuclear imaging of cardiac amyloidosis
US9034582B2 (en) Method for detecting the risk of alzheimer's disease by detecting immunomagnetic reduction signals of biological markers
Miller et al. Advances in imaging to support the development of novel therapies for multiple sclerosis
JP2015500464A (en) Biomarker-based methods and biochips to assist in the diagnosis of stroke
Cousins et al. The blood–CSF–brain route of neurological disease: The indirect pathway into the brain
EP1899726B1 (en) Methods for diagnosing and treating cerebrovascular events based on nr2 peptides
US20220233724A1 (en) Method for diagnostically imaging lesions in the peripheral nervous system
Hashimoto et al. Usefulness of [11C] methionine PET in the differentiation of tumefactive multiple sclerosis from high grade astrocytoma
Pawar et al. The study of diagnostic efficacy of nerve conduction study parameters in cervical radiculopathy
Huh et al. Clinical insights for early detection of acute transverse myelitis in the emergency department
Leocani et al. Neurophysiological markers
Alonso-Canovas et al. Does normal substantia nigra echogenicity make a difference in Parkinson’s disease diagnosis? A real clinical practice follow-up study
Emery Magnetic resonance imaging: opportunities for rheumatoid arthritis disease assessment and monitoring long-term treatment outcomes
Rodríguez et al. Neuronal and glial biomarkers research for traumatic brain injury

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION