US20220229257A1 - High-density optical module system - Google Patents

High-density optical module system Download PDF

Info

Publication number
US20220229257A1
US20220229257A1 US17/710,849 US202217710849A US2022229257A1 US 20220229257 A1 US20220229257 A1 US 20220229257A1 US 202217710849 A US202217710849 A US 202217710849A US 2022229257 A1 US2022229257 A1 US 2022229257A1
Authority
US
United States
Prior art keywords
optical module
chassis
sliding tray
tier
housing assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/710,849
Inventor
Yanyan Ma
Tao Han
Chuanxing Zhu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optiworks Inc
Original Assignee
Optiworks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optiworks Inc filed Critical Optiworks Inc
Priority to US17/710,849 priority Critical patent/US20220229257A1/en
Publication of US20220229257A1 publication Critical patent/US20220229257A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/4453Cassettes
    • G02B6/4455Cassettes characterised by the way of extraction or insertion of the cassette in the distribution frame, e.g. pivoting, sliding, rotating or gliding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/4452Distribution frames
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/4452Distribution frames
    • G02B6/44526Panels or rackmounts covering a whole width of the frame or rack
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/44528Patch-cords; Connector arrangements in the system or in the box

Definitions

  • the present invention generally relates to a device and a system to fiber-optic communications. More specifically, the present invention relates to optical module device and system communications, which facilitates access to manage fiber optic connectors, adapters, and ports, and maximize the space utilization thereof.
  • a plurality of fiber-optic cables are interconnected through connectors or adaptors.
  • the front side of the optical module provides for the use of connecting and routing circuits for energy transmission adaptors, such as the adaptors or the fiber optic cable adaptors.
  • the rear side of the optical module provides for connections to the long wires or cables.
  • Optical modules are commonly used with high demands in computer networking, cloud data and storage, audio and video equipment and fiber optical telecommunications.
  • Optical module provides the feature of cabling management in a convenient and flexible manner.
  • the good cabling management provides customers with the ability to dynamically scale and adapt to change their IT infrastructure while minimizing required service time.
  • Traditional fiber optic optical modules generally include fiber optic shelves having only a single optical module or multiple modular panels on the front patching sides of the shelves.
  • the numbers of the connector ports are usually low due to the limited spacing of the front sides of the optical modules.
  • the technology rises especially in the cloud data storage, telecommunication and computer networking fields the demand for high density solutions are increasing as the needs for the improved port solutions, energy efficiency, and storage consolidation and virtualization. Therefore, it is desirable in the market to provide optical modules having increased connector ports density per unit volume of area for providing the maximum connections and efficiencies.
  • the solutions for high density optical modules focus on high utilized racks to minimize the footprint, increase the adaptors per rack to maximize space utilization.
  • the design of high density optical modules is required to allow the maximum quantity of adaptors in a very limited rack space, usually in a 1U standard size (19′).
  • the conventional optical modules have limitations on providing the maximum numbers of connector ports.
  • the connector ports are arranged in multiple rows or columns spaced with a 1U unit. The arrangement of ports further creates difficult tasks for the technicians to access or remove the connectors within the crowded rows or columns of ports.
  • An object of the present invention is to provide a high-density optical module system with the maximum numbers of pre-loading or pre-connection of the fiber optic adaptors to the connector terminals of the optical module to facilitate the connections of the adaptors.
  • a further object of the present invention is to provide a high-density optical module system that optimizes the use of the space of the plurality of connector ports.
  • Still another object of the present invention is to provide a high-density optical module system with easy access to the plugs for making and breaking connector connections without applying specific tools.
  • Still another object of the present invention is to provide a high-density optical module system to facilitate the positioning and coupling between the adaptors to the connector terminals of the optical module to facilitate the connections of the adaptors.
  • Still another object of the present invention is to provide a high-density optical module system to be used
  • the high-density optical nodule system of the present invention comprises: (a) a multi-tier housing assembly, (b) multiple sliding tray assemblies engaged inside each of the multi-tier housing assembly and moveable inwardly and outwardly within the multi-tier housing assembly; and (c) a plurality of multi-port modules fastened with the sliding tray assembly and operably connected to the adaptors.
  • the high-density optical module system further comprises: (a) the multi-tier housing assembly comprises: a tray, a pair of opposing first sides extending perpendicularly from ttle tray, a second back side extending perpendicular from the tray and is perpendicular to the pair of the first sides, a dividing plate containing the horizontal plate and the vertical plates, the front top plate, and a pair of the L-shaped brackets securely fastened to the multi-tier housing assembly; and (b) the sliding tray assembly comprises: a tray, a pair of opposing first sides extending perpendicularly from the tray, a optical module frame, a plurality of vertical dividing frames substantially perpendicular to the optical module frame, a second back side extending perpendicularly from the tray and parallel to the vertical dividing frames, a top cover containing an elongated raised frame and in contact with the optical module, a plurality of the window openings positioned on the elongated raised frame for fastening into the corresponding multi-port
  • the high-density optical module system of the present invention comprises: (a) a multi-tier housing assembly, comprising a tray, a pair of opposing first sides extending perpendicularly from the tray, a second back side extending perpendicular from the tray and is perpendicular to the pair of the first sides, a dividing plate containing the horizontal plate and the vertical plates, the front top plate, and a pair of the L-shaped brackets securely fastened to the multi-tier housing assembly; (b) a sliding tray assembly engaged inside the multi-tier housing assembly and moveable inwardly and outwardly within therein; the sliding tray assemblies comprising: a tray, a pair of opposing first sides extending perpendicularly from the tray, a optical module frame, a plurality of vertical dividing frames substantially perpendicular to the optical module “frame, a second back side extending perpendicularly from the tray and parallel to the vertical dividing frames, a top cover containing an elongated raised frame and in contact with the optical
  • FIG. 1 is a generally front perspective view of a high-density optical module system according to the present invention containing 3 units of the assembly set.
  • FIG. 2 is a generally front perspective view containing one single unit of the optical module system of the present invention.
  • FIG. 3 is a partial, enlarged view of a high-density optical module system of FIG. 2 illustrating 1 unit of the rack, i.e. “one rack unit” or 1U also known as 1RU (a standard 1.75 inches in height) and a plurality of multi-port modules engaged with the plurality of the adaptors mounted therein.
  • 1 unit of the rack i.e. “one rack unit” or 1U also known as 1RU (a standard 1.75 inches in height) and a plurality of multi-port modules engaged with the plurality of the adaptors mounted therein.
  • FIG. 4 is a generally front perspective view of the multi-tier housing assembly of high-density optical module system of FIG. 1 .
  • FIG. 5 is a generally front perspective view of the sliding tray assembly of the high-density optical module system.
  • FIG. 6 is the side view of the high-density optical module system containing a two-tier housing assembly containing two sliding tray assemblies.
  • FIG. 7 is partial, enlarged view of the high-density optical module system of FIG. 6 containing the magnet system.
  • FIG. 8 is a partial, enlarged view of the high-density optical module system of FIG. 7 .
  • FIG. 9 is a partial, enlarged view of the high-density optical module system of FIG. 2 .
  • FIG. 10 is a partial, enlarged view of the high-density optical module system of FIG. 7 .
  • FIG. 11 is a partial, enlarged view of the high-density optical module system of FIG. 3 .
  • the optical module system 100 is used for centralizing and supporting the connections of a plurality of adaptors at a single rack mounted panel.
  • the optical module system 100 can also be used in wall mounting applications and outside plant closure applications.
  • the high-density optical module system 100 comprises a multi-tier housing assembly 210 , the sliding tray assembly 310 , and a plurality of multi-port modules 410 .
  • the single sliding tray assembly 310 is engaged inside the housing assembly 210 and can be fully extracted outwardly or extended inwardly from the housing assembly 210 by the user's hand operation.
  • the plurality of multi-port modules 410 are coupled with the adaptors for connections.
  • the high-density optical module system 100 contains a 2-tier housing assembly 210 , which accommodates two sliding tray assemblies 310 engaged therein. Further as shown in FIG. 1 , the optical module system 100 contain three units of the multi-tier housing assembly-sliding tray assembly-multipart modules sets 210 , 310 , and 410 respectively (the “assembly set”).
  • the present invention of the optical module system 100 contains two half-U (about 0.875 inches in height) single assembly sets.
  • the single assembly set contains a sliding tray assembly 310 located within one of the two-tier housing assembly 210 , wherein the sliding tray assembly is securely coupled with the multi-port modules 410 .
  • FIG. 2 shows the high-density optical module system 100 of the present invention.
  • the optical module system 100 contains a two-tier housing assembly 210 , and two sliding tray assemblies 310 . Each of the sliding tray assembly 310 is engaged within the corresponding housing assembly 210 and coupled with two rows of the multi-port modules 410 .
  • the height of the optical module system is in approximately 1RU (1.75 inches in height for a standard 19 inch wide rack).
  • the optical module system 100 contains 2 separate half-U assembly set.
  • Each of the half-U assembly set has a height in approximately half-RU (which is 0.875 inches).
  • the present invention of the half-U assembly set provides ease and conveniences to the users in cable management and operation.
  • FIG. 3 is a partial, enlarged view of an optical module system 100 of FIG. 2 illustrating one unit of the assembly set, showing a plurality of multi-port modules 410 engaged with the plurality of the adaptors mounted therein.
  • Each unit of the assembly set fits the standard 1RU (1.75 inches in height in a 19 inch wide rack) size, containing 216 LC or 108 SC multiple connector ports.
  • the high-density optical module 100 contains three units of the assembly set.
  • the high-density optical module 100 contains a single unit of the assembly set.
  • the optical module 100 contains multiple units of the assembly sets.
  • the high-density optical module system 100 contains the first row of a plurality of multi-port modules 410 and the second row of a plurality of multi-port modules 410 .
  • Each of the multi-port modules 410 contains two ports for receiving two adaptors.
  • these 2 multi-port modules 410 could be horizontal multi-port modules.
  • the high-density optical module system 100 contains multiple rows of the multi-port modules 410 within a 1U standard size.
  • the optical module system 100 can be vertically mounted to the wall. In this embodiment, each of the multi-port modules 410 are positioned side-by-side for the connection purposes.
  • FIG. 4 shows the multi-tier housing assembly 210 of the optical module system 100 .
  • the multi tier housing assembly 210 contains a tray 220 , a pair of opposing first sides 230 extending perpendicularly from the tray 220 , a second back side 240 extending perpendicular from the tray 220 and is perpendicular to the pair of the first sides 230 , a dividing plate 270 containing the horizontal plate 277 and the vertical plates 275 , the front top plate 280 , and a pair of the L-shaped brackets 260 that are securely fastened into the parts of the multi-tier housing assembly 210 all together as shown in FIGS. 1-4 .
  • the high-density optical module system 100 is a two-tier optical module, i.e., the housing assembly 210 is a 2-tier housing that is able to accommodate two rows of the corresponding sliding tray assemblies 310 .
  • the total height of the housing assembly 210 of the optical module system 100 is 1U standard size (in a 19′ wide rack).
  • the height of each assembly set ie, each of the two-tier housing assembly-sliding tray assembly-multiport modules set
  • the optical module system 100 could be a one-tier optical module frame (i.e., only one row of the assembly set) to accommodate less modules in a 0.875 inch height.
  • the high-density optical module system 100 of the present invention could have more than two rows of the assembly sets to accommodate and connect more adaptors in order to fit industry needs.
  • the frame may have room for two or more rows of the assembly set, that only one row may be populated. One or more rows may be left empty and accommodate further expansion when additional multi-ports are required.
  • FIG. 5 shows the sliding tray assembly 310 of the present optical module system 100 .
  • the sliding tray assembly contains a tray 320 for the storage and management of the cables, a pair of opposing first sides 325 extending perpendicularly from the tray 320 , a optical module frame 350 , a plurality of vertical dividing frames 360 that is substantially perpendicular to the optical module frame 350 , a second back side 230 extending perpendicularly from the tray 320 and is parallel to the vertical dividing frames 360 , and a top cover 340 mounted on the tray assembly 310 with screws.
  • the optical module frame 350 and the vertical dividing frames 360 form several blocks to facilitate the insertion and connection of the multi-ports modules 410 .
  • FIG. 6 is the side view of the optical module system 100 with a 2-tier design. As shown in FIG. 6 , there is a two-tier housing assembly 210 and two sliding tray assemblies 310 . The upper row of FIG. 6 shows the sliding tray assembly 310 extended outwardly from the multi-tier housing assembly 210 by pulling the handle bar 395 .
  • the sliding tray assembly 310 contains an elongated raised frame 510 extended from the top cover 340 .
  • the elongated raise frame 510 contains an upper part 510 a and a lower part 510 b.
  • the upper part 510 a is substantially in the same height as the front top plate 280 in the horizontal plane.
  • the lower part 510 b is substantially in the same height in horizontal positions as the tray 220 .
  • the height of each of the sliding tray assembly 310 is about half-U (0.875 inches).
  • the design of the elongated raise frame 510 can facilitate the insertion and extraction of the plurality of the adaptors from the multi-port modules.
  • FIGS. 6 & 10 show the two sliding tray assemblies 310 stacked in the upper 1st and lower 2 nd rows positions. As shown in FIG. 10 , there is a space between the raised lower part 510 b of the 1st row and the upper part 510 a of the 2nd row.
  • the space between two sliding tray assemblies 310 leaves certain space to accommodate the thickness of the horizontal dividing plate 270 of the multi-tier housing assembly 210 . Therefore the total height of the multi-tier housing assembly 210 —sliding tray assembly 310 set is about 1 U standard size.
  • the purposes of the design of the elongated raised frame 510 are to apply the maximum space usage of the high-density optical module 100 to accommodate the maximum numbers of multi-port modules 410 in a limited half-U (0.875 inches) industry height.
  • the high-density optical module system 100 provides a fastened engagement between the multi-port modules 410 and the housing-sliding tray assemblies 210 , 310 .
  • the snap or fastened design facilitates the optical connections for the adaptors.
  • the elongated raised frame 510 of the sliding tray assembly 310 contains a plurality of window openings 550 positioned thereof.
  • Each of the multi-port modules contains multiple elastic snaps 650 on the upper side thereof.
  • FIGS. 9 & 10 are the enlarged, partial portion of FIG. 6 showing the snap mechanism between sliding tray assembly 310 and the multi-port module assembly 410 .
  • FIG. 10 shows an enlarged, partial cross-sectional portion of FIG. 6 with two sliding tray assemblies 310 stacked in the upper and lower rows.
  • the upper portion of the multi-port module assembly 410 contains an elastic snap 650 .
  • the elastic snap 650 When the multiport module assembly 410 is fully inserted into the sliding tray assembly 310 , the elastic snap 650 will click and pop out from the window opening 550 of the elongated raise frame 510 of the sliding tray assembly 310 . If the multi-port module assembly is not fully engaged with the sliding tray assembly 310 , the user can see from the eyeball because the elastic snap 650 is not popping out from the window opening of the sliding tray assembly 310 .
  • This fastening mechanism provides the secured connections between the adaptors and corresponding ports.
  • the high-density optical module system 100 contains a pair of the handle walls 390 elongated from the first sides 325 of the sliding tray assembly 310 .
  • the handle bar 395 is mounted on the handle walls 390 with screws.
  • the design of the handle bar 395 can facilitate the users to pull out or insert the adaptors or cables with ease. The general users do not need to carry extra tools such as extractors during cable operations.
  • the handle bar coupled with the housing-sliding tray-multiport modules assembly in the limited half-U height space design provide great ease and conveniences for the high-tech companies in the cable management.
  • the handle bar 395 can be used as a wiring hub to manage and tie all the cable wiring together.
  • the adaptors lines or wires are allocated above the handle bar 395 . so the wires are not messy around the optical module system 100 .
  • the handle bar 395 contains a snap mechanism to tie and collect these adaptors wires or lines in one location.
  • the present invention further provides a magnet mechanism to assure the close engagement between the sliding assembly 310 with the multi-tier housing assembly 210 for connection purposes.
  • the adaptors-assembly set are heavy loaded to a crowded 1U space side.
  • the user finishes the operation of the cable management and push back the adaptor sets into the optical module system due to heavy weight, it usually makes the user difficult to ascertain if the sliding tray assembly is completed engaged into the multi-tier housing assembly of the optical module system.
  • the present invention is presented to solve this issue.
  • the second back side 240 of the multi-tier housing assembly 210 contains a magnet system 710 mounted therein.
  • Each of the sliding tray assembly 310 is moveable between the multi-tier housing assembly 210 .
  • the magnet system 710 on the multi-tier housing assembly 210 creates a magnetic force in certain degrees to pull the sliding tray assembly 310 toward it.
  • the sliding tray assembly 310 will be easily engaged with the multi-tier housing assembly 210 by the magnet system 710 .
  • FIG. 7 shows the second embodiment of the magnet system of the optical module system 100 .
  • the optical module system 100 contains a magnet system 720 attached to the second back side 230 of the sliding tray assembly 310 .
  • the sliding tray assembly 310 is firmly engaged with the multi-tier housing assembly 210 through the magnetic force, thereby provide the maximum optical connections for the high-density panel system 100 .
  • the design of the magnet 710 can facilitate the users to pull back the heavy-loaded adaptor optical module system with ease and conveniences.
  • the high-density optical module system 100 can be applied for the passive optical tap in a 1RU chassis, which enables services providers, data centers, enterprises and technicians to save valuable rack space while monitoring more fibers.
  • the high-density optical module system 100 can be applied for the wavelength-division multiplexing (WDM) technology which enables bidirectional communications over the strand of fiber optic communications and multiplication of capacity.
  • WDM wavelength-division multiplexing

Abstract

A high-density optical module system of the present invention comprises: a multi-tier housing assembly, multiple sliding tray assemblies engaged inside each of the multi-tier housing assembly and is moveable inwardly and outwardly within the multi-tier housing assembly with the handle bar; and a multiple rows of the multi-port modules arranged in horizontal arrays containing plural ports connected to the cable adaptors, wherein the multi-port modules are fastened into the sliding tray assembly. The height of the high-density optical module system is approximately 1RU (19 inches) containing at least 216 LC or 108 SC multiple connector ports.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 14/659,564, filed on Mar. 16, 2015 and entitled “HIGH-DENSITY OPTICAL MODULE SYSTEM,” which is related to U.S. Design patent application Ser. No. D/520,627 entitled “High-Density Optical module System.” The disclosures of the above-referenced applications are incorporated herein by reference in their entireties.
  • FIELD OF THE INVENTION
  • The present invention generally relates to a device and a system to fiber-optic communications. More specifically, the present invention relates to optical module device and system communications, which facilitates access to manage fiber optic connectors, adapters, and ports, and maximize the space utilization thereof.
  • BACKGROUND OF THE INVENTION
  • In the management of fiber-optic connector communications, a plurality of fiber-optic cables are interconnected through connectors or adaptors. The front side of the optical module provides for the use of connecting and routing circuits for energy transmission adaptors, such as the adaptors or the fiber optic cable adaptors. The rear side of the optical module provides for connections to the long wires or cables. Optical modules are commonly used with high demands in computer networking, cloud data and storage, audio and video equipment and fiber optical telecommunications.
  • Optical module provides the feature of cabling management in a convenient and flexible manner. The good cabling management provides customers with the ability to dynamically scale and adapt to change their IT infrastructure while minimizing required service time. Traditional fiber optic optical modules generally include fiber optic shelves having only a single optical module or multiple modular panels on the front patching sides of the shelves. However, the numbers of the connector ports are usually low due to the limited spacing of the front sides of the optical modules. As the technology rises especially in the cloud data storage, telecommunication and computer networking fields, the demand for high density solutions are increasing as the needs for the improved port solutions, energy efficiency, and storage consolidation and virtualization. Therefore, it is desirable in the market to provide optical modules having increased connector ports density per unit volume of area for providing the maximum connections and efficiencies.
  • The solutions for high density optical modules focus on high utilized racks to minimize the footprint, increase the adaptors per rack to maximize space utilization. The design of high density optical modules is required to allow the maximum quantity of adaptors in a very limited rack space, usually in a 1U standard size (19′). However, it is quite challenging to couple all the individual adaptors in a crowded 1U space. The conventional optical modules have limitations on providing the maximum numbers of connector ports.
  • Further, users need special tools such as extractors in order to access to plug and pull out the adaptors from the connector terminals within the limited 1U space. As more connector ports are paced within the limited 1U space, it creates problems for technicians to access and remove the connectors by using their hands. Moreover, in the traditional high-density optical modules, the connector ports are arranged in multiple rows or columns spaced with a 1U unit. The arrangement of ports further creates difficult tasks for the technicians to access or remove the connectors within the crowded rows or columns of ports.
  • There is a need for a new device and system of the optical module to facilitate access the communication connectors and adapters.
  • There is a need for a high-density optical module system for passive optical tap in a 1RU chassis, which enables services providers, data centers, enterprises and technicians to save valuable rack space while monitoring more fibers.
  • There is a need for a high-density optical module system for the wavelength-division multiplexing (WDM) technology which enables bidirectional communications over the strand of fiber optic communications and multiplication of capacity.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a high-density optical module system with the maximum numbers of pre-loading or pre-connection of the fiber optic adaptors to the connector terminals of the optical module to facilitate the connections of the adaptors.
  • A further object of the present invention is to provide a high-density optical module system that optimizes the use of the space of the plurality of connector ports.
  • Still another object of the present invention is to provide a high-density optical module system with easy access to the plugs for making and breaking connector connections without applying specific tools.
  • Still another object of the present invention is to provide a high-density optical module system to facilitate the positioning and coupling between the adaptors to the connector terminals of the optical module to facilitate the connections of the adaptors.
  • Still another object of the present invention is to provide a high-density optical module system to be used
  • In one embodiment, the high-density optical nodule system of the present invention comprises: (a) a multi-tier housing assembly, (b) multiple sliding tray assemblies engaged inside each of the multi-tier housing assembly and moveable inwardly and outwardly within the multi-tier housing assembly; and (c) a plurality of multi-port modules fastened with the sliding tray assembly and operably connected to the adaptors.
  • In another embodiment, the high-density optical module system further comprises: (a) the multi-tier housing assembly comprises: a tray, a pair of opposing first sides extending perpendicularly from ttle tray, a second back side extending perpendicular from the tray and is perpendicular to the pair of the first sides, a dividing plate containing the horizontal plate and the vertical plates, the front top plate, and a pair of the L-shaped brackets securely fastened to the multi-tier housing assembly; and (b) the sliding tray assembly comprises: a tray, a pair of opposing first sides extending perpendicularly from the tray, a optical module frame, a plurality of vertical dividing frames substantially perpendicular to the optical module frame, a second back side extending perpendicularly from the tray and parallel to the vertical dividing frames, a top cover containing an elongated raised frame and in contact with the optical module, a plurality of the window openings positioned on the elongated raised frame for fastening into the corresponding multi-port modules, a pair of the handle walls elongated from the first sides, and a handle bar mounted to the handle walls of the sliding tray assembly with screws.
  • In another embodiment, the high-density optical module system of the present invention comprises: (a) a multi-tier housing assembly, comprising a tray, a pair of opposing first sides extending perpendicularly from the tray, a second back side extending perpendicular from the tray and is perpendicular to the pair of the first sides, a dividing plate containing the horizontal plate and the vertical plates, the front top plate, and a pair of the L-shaped brackets securely fastened to the multi-tier housing assembly; (b) a sliding tray assembly engaged inside the multi-tier housing assembly and moveable inwardly and outwardly within therein; the sliding tray assemblies comprising: a tray, a pair of opposing first sides extending perpendicularly from the tray, a optical module frame, a plurality of vertical dividing frames substantially perpendicular to the optical module “frame, a second back side extending perpendicularly from the tray and parallel to the vertical dividing frames, a top cover containing an elongated raised frame and in contact with the optical module, a plurality of the window openings positioned on the elongated raised frame for fastening into the corresponding multi-port modules, a pair of the handle walls elongated from the first sides, and a handle bar mounted to the handle walls of the sliding tray assembly with screws; and (c) a plurality of multi-port modules fastened with the sliding tray assembly and operably connected to the cable adaptors.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a generally front perspective view of a high-density optical module system according to the present invention containing 3 units of the assembly set.
  • FIG. 2 is a generally front perspective view containing one single unit of the optical module system of the present invention.
  • FIG. 3 is a partial, enlarged view of a high-density optical module system of FIG. 2 illustrating 1 unit of the rack, i.e. “one rack unit” or 1U also known as 1RU (a standard 1.75 inches in height) and a plurality of multi-port modules engaged with the plurality of the adaptors mounted therein.
  • FIG. 4 is a generally front perspective view of the multi-tier housing assembly of high-density optical module system of FIG. 1.
  • FIG. 5 is a generally front perspective view of the sliding tray assembly of the high-density optical module system.
  • FIG. 6 is the side view of the high-density optical module system containing a two-tier housing assembly containing two sliding tray assemblies.
  • FIG. 7 is partial, enlarged view of the high-density optical module system of FIG. 6 containing the magnet system.
  • FIG. 8 is a partial, enlarged view of the high-density optical module system of FIG. 7.
  • FIG. 9 is a partial, enlarged view of the high-density optical module system of FIG. 2.
  • FIG. 10 is a partial, enlarged view of the high-density optical module system of FIG. 7.
  • FIG. 11 is a partial, enlarged view of the high-density optical module system of FIG. 3.
  • DETAILED DESCRIPTION
  • Disclosed herein is a high density optical module system 200 illustrated in FIGS. 1-11. The optical module system 100 is used for centralizing and supporting the connections of a plurality of adaptors at a single rack mounted panel. The optical module system 100 can also be used in wall mounting applications and outside plant closure applications.
  • The high-density optical module system 100 comprises a multi-tier housing assembly 210, the sliding tray assembly 310, and a plurality of multi-port modules 410. The single sliding tray assembly 310 is engaged inside the housing assembly 210 and can be fully extracted outwardly or extended inwardly from the housing assembly 210 by the user's hand operation. The plurality of multi-port modules 410 are coupled with the adaptors for connections. As shown in FIG. 1, the high-density optical module system 100 contains a 2-tier housing assembly 210, which accommodates two sliding tray assemblies 310 engaged therein. Further as shown in FIG. 1, the optical module system 100 contain three units of the multi-tier housing assembly-sliding tray assembly- multipart modules sets 210, 310, and 410 respectively (the “assembly set”).
  • The present invention of the optical module system 100 contains two half-U (about 0.875 inches in height) single assembly sets. The single assembly set contains a sliding tray assembly 310 located within one of the two-tier housing assembly 210, wherein the sliding tray assembly is securely coupled with the multi-port modules 410. FIG. 2 shows the high-density optical module system 100 of the present invention. The optical module system 100 contains a two-tier housing assembly 210, and two sliding tray assemblies 310. Each of the sliding tray assembly 310 is engaged within the corresponding housing assembly 210 and coupled with two rows of the multi-port modules 410. As shown in FIG. 2, the height of the optical module system is in approximately 1RU (1.75 inches in height for a standard 19 inch wide rack). In the present invention, the optical module system 100 contains 2 separate half-U assembly set. Each of the half-U assembly set has a height in approximately half-RU (which is 0.875 inches). When the user pulls out or insert the adaptors onto the corresponding ports from the multi-port modules, he or she can pull out or push back the handle bar 395 from the half-U single assembly set. The present invention of the half-U assembly set provides ease and conveniences to the users in cable management and operation.
  • FIG. 3 is a partial, enlarged view of an optical module system 100 of FIG. 2 illustrating one unit of the assembly set, showing a plurality of multi-port modules 410 engaged with the plurality of the adaptors mounted therein. Each unit of the assembly set fits the standard 1RU (1.75 inches in height in a 19 inch wide rack) size, containing 216 LC or 108 SC multiple connector ports. In the embodiment shown in FIG. 1, the high-density optical module 100 contains three units of the assembly set. In another embodiment, the high-density optical module 100 contains a single unit of the assembly set. Still in another embodiment, the optical module 100 contains multiple units of the assembly sets.
  • As shown in FIGS. 1 & 2, the high-density optical module system 100 contains the first row of a plurality of multi-port modules 410 and the second row of a plurality of multi-port modules 410. Each of the multi-port modules 410 contains two ports for receiving two adaptors. However, it should be noted that these 2 multi-port modules 410 could be horizontal multi-port modules. Still in another embodiment, the high-density optical module system 100 contains multiple rows of the multi-port modules 410 within a 1U standard size. Still in another embodiment, the optical module system 100 can be vertically mounted to the wall. In this embodiment, each of the multi-port modules 410 are positioned side-by-side for the connection purposes.
  • FIG. 4 shows the multi-tier housing assembly 210 of the optical module system 100. The multi tier housing assembly 210 contains a tray 220, a pair of opposing first sides 230 extending perpendicularly from the tray 220, a second back side 240 extending perpendicular from the tray 220 and is perpendicular to the pair of the first sides 230, a dividing plate 270 containing the horizontal plate 277 and the vertical plates 275, the front top plate 280, and a pair of the L-shaped brackets 260 that are securely fastened into the parts of the multi-tier housing assembly 210 all together as shown in FIGS. 1-4.
  • In the embodiment shown in FIG. 4, the high-density optical module system 100 is a two-tier optical module, i.e., the housing assembly 210 is a 2-tier housing that is able to accommodate two rows of the corresponding sliding tray assemblies 310. In one embodiment, the total height of the housing assembly 210 of the optical module system 100 is 1U standard size (in a 19′ wide rack). In this two-tier housing 210, the height of each assembly set (ie, each of the two-tier housing assembly-sliding tray assembly-multiport modules set) is about only one-half U size, which is less than 0.875 inch in height. However, it should be noted that the optical module system 100 could be a one-tier optical module frame (i.e., only one row of the assembly set) to accommodate less modules in a 0.875 inch height. Alternatively, for connecting the nano-sized connectors, the high-density optical module system 100 of the present invention could have more than two rows of the assembly sets to accommodate and connect more adaptors in order to fit industry needs. Moreover, it should be noted that although the frame may have room for two or more rows of the assembly set, that only one row may be populated. One or more rows may be left empty and accommodate further expansion when additional multi-ports are required.
  • FIG. 5 shows the sliding tray assembly 310 of the present optical module system 100. The sliding tray assembly contains a tray 320 for the storage and management of the cables, a pair of opposing first sides 325 extending perpendicularly from the tray 320, a optical module frame 350, a plurality of vertical dividing frames 360 that is substantially perpendicular to the optical module frame 350, a second back side 230 extending perpendicularly from the tray 320 and is parallel to the vertical dividing frames 360, and a top cover 340 mounted on the tray assembly 310 with screws. The optical module frame 350 and the vertical dividing frames 360 form several blocks to facilitate the insertion and connection of the multi-ports modules 410.
  • FIG. 6 is the side view of the optical module system 100 with a 2-tier design. As shown in FIG. 6, there is a two-tier housing assembly 210 and two sliding tray assemblies 310. The upper row of FIG. 6 shows the sliding tray assembly 310 extended outwardly from the multi-tier housing assembly 210 by pulling the handle bar 395. In FIGS. 5 & 6, the sliding tray assembly 310 contains an elongated raised frame 510 extended from the top cover 340. As shown in FIG. 8, the elongated raise frame 510 contains an upper part 510 a and a lower part 510 b. The upper part 510 a is substantially in the same height as the front top plate 280 in the horizontal plane. The lower part 510 b is substantially in the same height in horizontal positions as the tray 220. In other words, as shown in FIG. 10, the height of each of the sliding tray assembly 310 is about half-U (0.875 inches). The design of the elongated raise frame 510 can facilitate the insertion and extraction of the plurality of the adaptors from the multi-port modules. FIGS. 6 & 10 show the two sliding tray assemblies 310 stacked in the upper 1st and lower 2nd rows positions. As shown in FIG. 10, there is a space between the raised lower part 510 b of the 1st row and the upper part 510 a of the 2nd row. The space between two sliding tray assemblies 310 leaves certain space to accommodate the thickness of the horizontal dividing plate 270 of the multi-tier housing assembly 210. Therefore the total height of the multi-tier housing assembly 210—sliding tray assembly 310 set is about 1 U standard size. The purposes of the design of the elongated raised frame 510 are to apply the maximum space usage of the high-density optical module 100 to accommodate the maximum numbers of multi-port modules 410 in a limited half-U (0.875 inches) industry height.
  • The high-density optical module system 100 provides a fastened engagement between the multi-port modules 410 and the housing-sliding tray assemblies 210, 310. The snap or fastened design facilitates the optical connections for the adaptors. As shown in FIG. 5, the elongated raised frame 510 of the sliding tray assembly 310 contains a plurality of window openings 550 positioned thereof. Each of the multi-port modules contains multiple elastic snaps 650 on the upper side thereof. FIGS. 9 & 10 are the enlarged, partial portion of FIG. 6 showing the snap mechanism between sliding tray assembly 310 and the multi-port module assembly 410. When the multi-port module 410 is inserted onto the corresponding port of the high-density optical module system 100 from the other side (i.e., inside) of sliding tray assembly 310, the upper elastic snap 650 of the module 410 will slide, snap and couple with the corresponding window opening 550 and is securely fastened within the optical module system 100. The fastened engagement provides a click snap mechanism so the operators can aware if the multi-port modules are securely fastened onto the optical module system 100. FIG. 10 shows an enlarged, partial cross-sectional portion of FIG. 6 with two sliding tray assemblies 310 stacked in the upper and lower rows. The upper portion of the multi-port module assembly 410 contains an elastic snap 650. When the multiport module assembly 410 is fully inserted into the sliding tray assembly 310, the elastic snap 650 will click and pop out from the window opening 550 of the elongated raise frame 510 of the sliding tray assembly 310. If the multi-port module assembly is not fully engaged with the sliding tray assembly 310, the user can see from the eyeball because the elastic snap 650 is not popping out from the window opening of the sliding tray assembly 310. This fastening mechanism provides the secured connections between the adaptors and corresponding ports.
  • As shown in FIG. 5, the high-density optical module system 100 contains a pair of the handle walls 390 elongated from the first sides 325 of the sliding tray assembly 310. The handle bar 395 is mounted on the handle walls 390 with screws. In one embodiment, the design of the handle bar 395 can facilitate the users to pull out or insert the adaptors or cables with ease. The general users do not need to carry extra tools such as extractors during cable operations. Moreover, the handle bar coupled with the housing-sliding tray-multiport modules assembly in the limited half-U height space design provide great ease and conveniences for the high-tech companies in the cable management. In another embodiment of the present invention, the handle bar 395 can be used as a wiring hub to manage and tie all the cable wiring together. As shown in FIG. 3, the adaptors lines or wires are allocated above the handle bar 395. so the wires are not messy around the optical module system 100. still in another embodiment as shown in FIG. 11, the handle bar 395 contains a snap mechanism to tie and collect these adaptors wires or lines in one location.
  • The present invention further provides a magnet mechanism to assure the close engagement between the sliding assembly 310 with the multi-tier housing assembly 210 for connection purposes. In the high-density optical module, the adaptors-assembly set are heavy loaded to a crowded 1U space side. When the user finishes the operation of the cable management and push back the adaptor sets into the optical module system, due to heavy weight, it usually makes the user difficult to ascertain if the sliding tray assembly is completed engaged into the multi-tier housing assembly of the optical module system. The present invention is presented to solve this issue. In one embodiment, as shown in FIG. 6 the second back side 240 of the multi-tier housing assembly 210 contains a magnet system 710 mounted therein. Each of the sliding tray assembly 310 is moveable between the multi-tier housing assembly 210. The magnet system 710 on the multi-tier housing assembly 210 creates a magnetic force in certain degrees to pull the sliding tray assembly 310 toward it. When the user push the handle bar 395 back, the sliding tray assembly 310 will be easily engaged with the multi-tier housing assembly 210 by the magnet system 710.
  • In another embodiment, FIG. 7 shows the second embodiment of the magnet system of the optical module system 100. As shown in FIGS. 7 & 8, the optical module system 100 contains a magnet system 720 attached to the second back side 230 of the sliding tray assembly 310. When the user finishes the cable operation and pushes the handle bar 395 of the sliding tray 310 back into the multi-tier housing assembly 210, the sliding tray assembly 310 is firmly engaged with the multi-tier housing assembly 210 through the magnetic force, thereby provide the maximum optical connections for the high-density panel system 100. Further, the design of the magnet 710 can facilitate the users to pull back the heavy-loaded adaptor optical module system with ease and conveniences.
  • Still in another embodiment, the high-density optical module system 100 can be applied for the passive optical tap in a 1RU chassis, which enables services providers, data centers, enterprises and technicians to save valuable rack space while monitoring more fibers.
  • Still in another embodiment, the high-density optical module system 100 can be applied for the wavelength-division multiplexing (WDM) technology which enables bidirectional communications over the strand of fiber optic communications and multiplication of capacity.
  • Although the present invention has been described with reference to preferred embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is to be understood unless otherwise indicated herein that the figures are not intended to be to scale. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims (20)

What is claimed is:
1. A housing assembly configured to receive at least four optical module sliding tray assemblies, the housing assembly comprising:
a bottom plane;
two side walls near two opposing lateral sides of the housing assembly, the two side walls being coupled with the bottom plane;
a rear wall coupled with the bottom plane;
a top plane coupled to the two side walls;
front openings configured to accommodate at least two of the optical module sliding tray assemblies arranged horizontally and to accommodate two of the optical module sliding tray assemblies arranged vertically, wherein each of the sliding tray assemblies is movable inwardly and outwardly within the housing assembly; and
a dividing member separating a top tier front opening and a bottom tier front opening.
2. The housing assembly of claim 1, further comprising:
a pair of L-shaped brackets securely fastened to the two side walls.
3. The housing assembly of claim 1, wherein the dividing member comprises a horizontal plate and at least one vertical plate, wherein at least one vertical plate is coupled between the bottom plane and the top plane.
4. The housing assembly of claim 1, further comprising a magnet system mounted on the rear wall for securing the sliding tray assemblies.
5. The housing assembly of claim 4, wherein the magnet system comprises one of a magnet or a magnetic material attached to the rear wall, creating a magnetic force to secure one or more of the at least four optical module sliding tray assemblies within the housing assembly.
6. The housing assembly of claim 1, wherein a height of the housing assembly is approximately 1U of a standard rack.
7. The housing assembly of claim 6, wherein a height of each tier is approximately one-half U size.
8. A chassis for accommodating a plurality of optical module sliding trays, the chassis comprising:
a bottom plate;
a pair of side walls near two opposing lateral sides of the chassis, the pair of side walls being coupled with the bottom plate:
a rear wall coupled with the bottom plate;
a top plate coupled to the pair of side walls and the rear wall; and
an intermediate horizontal plate, wherein the bottom plate, the intermediate horizontal plate, and the top plate defining a top tier and a bottom tier configured to respectively accommodate two of the optical module sliding trays arranged vertically, wherein each of the two optical module sliding trays in a corresponding tier is movable inwardly and outwardly within the chassis.
9. The chassis of claim 8, further comprising a pair of brackets respectively fastened to the pair of side walls.
10. The chassis of claim 8, further comprising a plurality of vertical parts, wherein edges of the vertical parts are respectively mounted to the bottom plate and the top plate.
11. The chassis of claim 10, wherein the intermediate horizontal plate and the plurality of vertical parts provide a plurality of tray receiving spaces in each tier to respectively accommodate the plurality of optical module sliding trays.
12. The chassis of claim 8, further comprising a magnet system mounted on the rear wall and configured to provide a magnetic force to engage the plurality of optical module sliding trays with the chassis.
13. The chassis of claim 8, wherein a height of the chassis is approximately 1U of a standard rack.
14. The chassis of claim 13, wherein a height of the top tier or the bottom tier is approximately one-half U size.
15. An optical module system, comprising:
a chassis comprising a bottom plate, a pair of side walls near two opposing lateral sides of the chassis and coupled with the bottom plate, a rear wall extending perpendicularly from the bottom plate, and a top plate coupled to the pair of side walls and the rear wall, and an intermediate horizontal plate providing a top tier and a bottom tier of the chassis;
one or more first sliding tray assemblies engaged in the top tier;
one or more second sliding tray assemblies engaged in the bottom tier, wherein the first and second sliding tray assemblies are movable inwardly and outwardly within the chassis; and
a magnet system mounted on the rear wall and configured to provide a magnetic force to engage the one or more first sliding tray assemblies and the one or more second sliding tray assemblies with the chassis.
16. The optical module system of claim 15, wherein at least one of the first sliding tray assemblies and second sliding tray assemblies comprises:
a tray housing with two tray side walls and a tray bottom surface; and
a tray top cover comprising a top surface portion covering at least a portion of the tray housing, and a raised edge portion near a front end of the tray housing, the raised edge portion comprising a first plurality of window openings enabling an insertion of a first plurality of optical fiber connectors having protrusions, wherein the protrusions are configured to be respectively fitted into the first plurality of window openings when the first plurality of optical fiber connectors are inserted to secure the first plurality of optical fiber connectors in a locking position relative to the tray top cover.
17. The optical module system of claim 16, wherein a height of the one of the first sliding tray assemblies or second sliding tray assemblies is approximately half rack unit of a standard rack.
18. The optical module system of claim 16, wherein the tray housing further comprises a tray rear wall near a rear end of the tray housing, the tray rear wall extending perpendicularly from the tray bottom surface and configured to be magnetically coupled into the rear wall of the chassis.
19. The optical module system of claim 16, wherein one of the first sliding tray assemblies or second sliding tray assemblies further comprises a pair of handle walls respectively elongated from the two tray side walls, for mounting a handlebar.
20. The optical module system of claim 15, wherein a height of the chassis is approximately 1U of a standard rack.
US17/710,849 2015-03-16 2022-03-31 High-density optical module system Abandoned US20220229257A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/710,849 US20220229257A1 (en) 2015-03-16 2022-03-31 High-density optical module system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/659,564 US11333842B2 (en) 2015-03-16 2015-03-16 High-density optical module system
US17/710,849 US20220229257A1 (en) 2015-03-16 2022-03-31 High-density optical module system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/659,564 Continuation US11333842B2 (en) 2015-03-16 2015-03-16 High-density optical module system

Publications (1)

Publication Number Publication Date
US20220229257A1 true US20220229257A1 (en) 2022-07-21

Family

ID=78006319

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/659,564 Active US11333842B2 (en) 2015-03-16 2015-03-16 High-density optical module system
US17/657,593 Active US11754797B2 (en) 2015-03-16 2022-03-31 High-density optical module system
US17/710,849 Abandoned US20220229257A1 (en) 2015-03-16 2022-03-31 High-density optical module system

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/659,564 Active US11333842B2 (en) 2015-03-16 2015-03-16 High-density optical module system
US17/657,593 Active US11754797B2 (en) 2015-03-16 2022-03-31 High-density optical module system

Country Status (1)

Country Link
US (3) US11333842B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220229256A1 (en) * 2015-03-16 2022-07-21 Optiworks, Inc. High-density optical module system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018053179A1 (en) * 2016-09-14 2018-03-22 Fiber Mountain, Inc. Intelligent fiber port management
CA3221718A1 (en) * 2017-10-03 2019-04-03 Belden Canada Ulc Modular fiber optic cassette, system and method
JP2022050209A (en) * 2020-09-17 2022-03-30 住友電気工業株式会社 Optical module and optical connector cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792203A (en) * 1985-09-17 1988-12-20 Adc Telecommunications, Inc. Optical fiber distribution apparatus
US5142606A (en) * 1990-01-22 1992-08-25 Porta Systems Corp. Optical fiber cable distribution frame and support
US20100322579A1 (en) * 2009-06-19 2010-12-23 Cooke Terry L High-density fiber optic modules and module housings and related equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8326107B2 (en) * 2008-08-29 2012-12-04 Corning Cable Systems Llc Rear-slidable extension in a fiber optic equipment tray
US9116324B2 (en) * 2010-10-29 2015-08-25 Corning Cable Systems Llc Stacked fiber optic modules and fiber optic equipment configured to support stacked fiber optic modules
US9069150B2 (en) * 2011-10-07 2015-06-30 Adc Telecommunications, Inc. Slidable fiber optic connection module with cable slack management
US11333842B2 (en) * 2015-03-16 2022-05-17 Optiworks, Inc. High-density optical module system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792203A (en) * 1985-09-17 1988-12-20 Adc Telecommunications, Inc. Optical fiber distribution apparatus
US5142606A (en) * 1990-01-22 1992-08-25 Porta Systems Corp. Optical fiber cable distribution frame and support
US20100322579A1 (en) * 2009-06-19 2010-12-23 Cooke Terry L High-density fiber optic modules and module housings and related equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220229256A1 (en) * 2015-03-16 2022-07-21 Optiworks, Inc. High-density optical module system
US11754797B2 (en) * 2015-03-16 2023-09-12 Optiworks, Inc. High-density optical module system

Also Published As

Publication number Publication date
US11333842B2 (en) 2022-05-17
US20220229256A1 (en) 2022-07-21
US11754797B2 (en) 2023-09-12
US20210318506A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
US20220229257A1 (en) High-density optical module system
US10429602B2 (en) Low profile fiber distribution hub
US8472774B2 (en) Datacommunications/telecommunications patching systems with integrated connectivity module
US20170192191A1 (en) Fiber optic solutions for migration between duplex and parallel multi-fiber solutions allowing for full fiber utilization
US9703062B2 (en) Aggregator for a switch rack system
US9599785B2 (en) Fiber module rack system
GB2463986A (en) Telecommunications patching system with patching modules stacked for increased cable connection density
AU2011262498B2 (en) Distribution frame with patch cables

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION