US20220221257A1 - Geometrically paired live instrumentation training hand grenade - Google Patents

Geometrically paired live instrumentation training hand grenade Download PDF

Info

Publication number
US20220221257A1
US20220221257A1 US17/508,702 US202117508702A US2022221257A1 US 20220221257 A1 US20220221257 A1 US 20220221257A1 US 202117508702 A US202117508702 A US 202117508702A US 2022221257 A1 US2022221257 A1 US 2022221257A1
Authority
US
United States
Prior art keywords
hand grenade
simulated
location
simulated hand
explosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/508,702
Other languages
English (en)
Inventor
Paul G. Handley
Craig J. Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cubic Defence Uk Ltd
Original Assignee
Cubic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cubic Corp filed Critical Cubic Corp
Priority to US17/508,702 priority Critical patent/US20220221257A1/en
Assigned to CUBIC CORPORATION reassignment CUBIC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SMITH, CRAIG J, HANDLEY, PAUL G
Publication of US20220221257A1 publication Critical patent/US20220221257A1/en
Assigned to ALTER DOMUS (US) LLC reassignment ALTER DOMUS (US) LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CUBIC CORPORATION, PIXIA CORP.
Assigned to BARCLAYS BANK PLC reassignment BARCLAYS BANK PLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CUBIC CORPORATION, PIXIA CORP.
Assigned to CUBIC DEFENCE UK LTD. reassignment CUBIC DEFENCE UK LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CUBIC CORPORATION
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/003Simulators for teaching or training purposes for military purposes and tactics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B8/00Practice or training ammunition
    • F42B8/12Projectiles or missiles
    • F42B8/26Hand grenades
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/006Simulators for teaching or training purposes for locating or ranging of objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks

Definitions

  • This disclosure relates in general to battlefield simulation systems and, but not by way of limitation, to training munitions.
  • Short-range radio operates in a non-line of sight manner, which mitigates some disadvantages associated with the use of lasers.
  • the radio media has the unrealistic effect of diffracting (bending) around a surface and/or reflecting off adjacent surfaces resulting in a simulated effect onto an entity where an operational grenade would have had no effect.
  • one or more soldiers in a concrete-walled corridor can throw grenade(s) around the door into a room. While an operational grenade blast would not affect those soldiers, an RF simulated threat effect is likely to, as the RF signal can bend and/or reflect off a surface to reach an RF detector worn by the soldier.
  • existing training grenades can be difficult to find after deployment.
  • the present disclosure provides method and apparatus for simulating a hand grenade in a training environment.
  • the hand grenade includes dead reckoning to determine location after leaving a thrower. By knowing a location of the thrower and subsequent path after leaving the thrower, the explosion location and simulated damage to targets can be determined. The simulation can determine the effect of obstructions between the explosion location and nearby targets.
  • a method of operating a simulated hand grenade is disclosed.
  • a first location of deployment of the simulated hand grenade is determined.
  • a second location of a simulated explosion of the simulated hand grenade is determined using dead reckoning.
  • An explosion effect of the simulated explosion for a target within an explosion area of the simulated hand grenade is determined. The explosion effect is communicated to the target.
  • a method of operating a simulated hand grenade is disclosed.
  • a location of deployment of the simulated hand grenade is determined.
  • a flight path of the simulated hand grenade is determined upon deployment. It is determined that a fuse duration of the simulated hand grenade has expired.
  • An explosion location of the simulated hand grenade is identified after the fuse duration has expired. The explosion location being identified based at least in part on the location of deployment and the flight path. The explosion location is sent away from the simulated hand grenade for subsequent determination of an explosion result of the simulated hand grenade.
  • a simulated hand grenade in another embodiment, includes a trigger mechanism, an arming mechanism, a dead reckoning function, a communication interface, and a processing unit.
  • the trigger mechanism that, when engaged, configures to activate a fuse timing mechanism.
  • the arming mechanism that, when engaged, configures to maintain the trigger mechanism in a safety state in which the trigger mechanism cannot be engaged and, when disengaged, configures to place the trigger mechanism into a live state in which the trigger mechanism is engageable.
  • the processing unit that is configured to:
  • FIG. 1 depicts a block diagram of an embodiment of operation of a simulated hand grenade
  • FIG. 2 depicts a block diagram of an embodiment of a simulated hand grenade
  • FIG. 3 depicts a block diagram of an embodiment of a wireless module
  • FIG. 4 illustrates a flowchart of an embodiment of a process for an association process for establishing a connection between a wireless module and other wireless modules and/or a grenade based on authorization
  • FIG. 5 illustrates a flowchart of an embodiment of a process for operating simulated hand grenade
  • FIG. 6 illustrates a flowchart of an embodiment of a process for simulated hand grenade deployment.
  • Embodiments described herein are generally related to a system and method to improve fidelity of live ground simulation of hand grenade effect or other similar training munitions.
  • some embodiments of the disclosure incorporate dead reckoning systems into simulated hand grenades, permitting the simulated hand grenade to determine the location at which a simulated detonation occurs. This location can be provided to another computing device, such as a host computer that is running a combat simulation remotely, in real-time, permitting the computing device to evaluate a result of the detonation based on knowledge of entities and their surroundings that are proximate to the simulated explosion (e.g., whether the detonation has an impact on one or more people or objects within an explosion radius of the simulated hand grenade).
  • embodiments of the disclosure use a known starting location and a determined travel path after release by a user to calculate a final location of the simulated grenade at the time of the simulated explosion.
  • embodiments utilize the grenade thrower's location at the time of the release of the simulated grenade and a travel path of the simulated grenade between the pin/spoon release and simulated fuse timeout to determine a location of the simulated explosion.
  • the travel path of the simulated grenade can be determined based on measurements from an inertial measurement unit (IMU) that is integrated into the simulated grenade.
  • IMU inertial measurement unit
  • Such solutions permit for an accurate real-time determination of the location of the explosion of a simulated grenade to be made, without the need to know anything about the thrower, other than the location at which the thrower released the simulated grenade.
  • This differs from other projectile weapon simulations, which typically also include a launch platform attitude (bearing, elevation), such as the direction and position at which a barrel of a mortar or gun is aimed at when fired.
  • Embodiments can geometrically pair (thrower, grenade, target(s), etc.) without using attitude of deployment method (i.e., bearing or elevation of thrower/deployment platform). Embodiments also permit a definition of grenade explosion location to be provided, even in the absence of an entity hit report. Embodiments further provide the ability to quickly recover grenade, as the grenade's actual location (in grass/corner/under equipment, etc.) is communicated to a remote computing device that can provide coordinates of the grenade, a display of where the grenade is, and/or output that can indicate an exact location of the grenade once deployed.
  • embodiments provide the ability to reuse the same training grenade that is used during combat simulation exercises to teach correct throw technique by analyzing the path. This is due to the ability to measure the path of an arcing throw, from release through to fly out, to determine a final location of the simulated grenade. The path and location can all be measured, enabling detailed feedback to be provided to the trainee.
  • a user 100 deploys a simulated hand grenade 102 , such as by throwing the hand grenade 102 .
  • the user 100 To throw the hand grenade 102 , the user 100 must first remove a pin that permits an arming mechanism, such as a spoon, to be maneuvered into an engaged state, such as by the user 100 releasing the arming mechanism.
  • the arming mechanism is engaged, which causes a communications interface of the hand grenade 102 to communicate with a wireless module 103 worn by the user 100 .
  • the wireless module 103 can communicate a location of the user 100 , allowing the hand grenade 102 to know a starting position of its flight path.
  • the hand grenade 102 can then track its flight path (which can involve bouncing and/or rolling against one or more surfaces).
  • the flight path tracking can be done using a dead reckoning system.
  • the dead reckoning system can include an IMU that is integrated into the electronics of the simulated hand grenade 102 .
  • the release of the hand grenade 102 (and engagement of the arming mechanism) also initiates a timer that simulates a fuse of the hand grenade 102 , which has a preset duration.
  • the hand grenade 102 can determine its present location, which is the location of a simulated explosion 120 , based on the starting location and the flight path 124 up until the expiration of the duration.
  • the hand grenade 102 has come to rest between several exposed users 104 . Also nearby are several protected users 106 , who are positioned behind an armored vehicle 112 or some other obstruction such as a rock or reinforced wall.
  • the hand grenade 102 can communicate the location of the simulated explosion to one or more remote devices.
  • the location of the explosion can be communicated (such as via an RF signal) to each of the wireless modules 103 on users 100 , 104 , 106 and/or equipment 112 (e.g., armored car) within a blast radius 128 of the simulated explosion 120 .
  • One or more individual wireless modules 103 are mounted on each of the users 100 , 104 , 106 and/or equipment 112 communicate individually using personal area networks (PAN), local area networks (LAN) and wide area networks (WAN).
  • PAN personal area networks
  • LAN local area networks
  • WAN wide area networks
  • the location of the explosion can be communicated to a host computer 114 , such as a computer or server farm that is controlling the combat exercise by way of a LAN or WAN.
  • the host computer 114 can evaluate a pairing of an explosion effect to the targets (e.g., users and/or objects proximate the blast radius). The evaluation can involve the host computer 114 utilizing knowledge about the effects of the particular type of hand grenade 102 (fragmentary, flash, stun, gas, etc.), along with location information associated with the individual target, and/or knowledge of the environment/terrain proximate the blast radius of the location of the explosion.
  • the host computer 114 can be programmed to determine that an exposed human target can be “killed” if within a five-meter unobstructed radius of the location of the explosion and can be injured in some manner if within about a ten-meter radius of the location of the explosion.
  • the host computer 114 can also factor in environment information, and thus can know that protected users 106 , while possibly within one of the damage radii outlined above, are protected by the armored vehicle 112 or other obstruction. This permits the host computer 114 to determine that protected users 106 are safe from harm and/or should be subject to reduced injuries based on their shielded state.
  • the host computer 114 knows that unshielded users 104 can be deemed to be killed or injured based on their respective positions relative to the location of the explosion.
  • the resulting explosion effects can then be communicated back to the wireless modules of the affected parties (e.g., users, vehicles, structures, etc.) to provide a realistic simulation experience.
  • Grenade 102 can include a housing 202 that is sized and shaped like a live grenade.
  • the hand grenade 102 can further include an arming mechanism 204 and an arming mechanism 206 that are provided on and/or otherwise affixed to the housing 202 .
  • the arming mechanism 204 is a sensor that detects the presence of a pin that is configured to be removed and/or otherwise disengaged from the housing 202 .
  • the arming mechanism 204 When engaged with the housing 202 , the arming mechanism 204 maintains the arming mechanism 206 in a safety state, in which the arming mechanism 206 cannot be engaged. Once the arming mechanism 204 is disengaged, the arming mechanism 206 can be switched from the safety state to a live state in which the arming mechanism 206 can be engaged.
  • the arming mechanism 206 can include a sensor to detect the presence, movement and/or absence of a spoon and/or other feature that can be actuated to engage a fuse timing mechanism 208 . For example, a user can release the spoon to activate the hand grenade 102 and start the fuse timing mechanism 208 that counts down for a predetermined duration.
  • This embodiment includes a battery 220 to power the hand grenade 102 .
  • the battery 220 be charged through a port, wirelessly, and/or energy harvesting (e.g., solar).
  • a hanging clip on the throwing user 100 could integrate the charging cable or wireless charger.
  • the pairing to the PAN, LAN and/or WAN can be performed to permit communication to and from the hand grenade 102 .
  • Embodiments can optionally include a tracking tag 224 associated with an indoor tracking system as location determination is commonly most accurate outdoors.
  • the tracking tags 224 can use ultra-wide band (UWB) technology to determine location of the hand grenade 102 and/or wireless modules 103 .
  • Indoor beacons can be used with the tracking tag to allow indoor trilateration of location for the wireless modules 103 and/or tracking tag 224 . In any event, the location of the hand grenade 102 prior to throwing is known throughout the training environment
  • the hand grenade 102 includes dead reckoning functionality in an inertial measurement unit (IMU) 212 . Additionally, the IMU 212 can determine the surroundings while in movement using LIDAR, radar, ultrasonic, and/or camera sensors to develop a point cloud or other simulated reconstruction of the blast radius 128 . Reconstruction information can be shared with wireless modules 103 to distribute the task of building an accurate simulation of the actual environment. Pattern recognition and machine learning can be used to estimate how the various obstructions would react to the simulated explosion 120 .
  • IMU inertial measurement unit
  • the throwing technique of the user 100 can also be evaluated by the IMU 212 .
  • Use of hand grenades 102 entails recording of training including the throwing style, accuracy and distance for later evaluation of how each grenade simulation was done.
  • the processing unit 214 stores this information for later analysis.
  • Automated suggestions can be provided in real-time during the simulation to provide the user 100 timely feedback, for example, “grenade missed target”, “at that distance throw underhanded”, “use more force to reach that distance”, etc.
  • the hand grenade 102 can also include a communications interface 210 , such as one or more RF antennae or laser/light communication sensors.
  • the communications interface 210 can be armed, such as upon engagement of the arming mechanism 204 , to communicate with the wireless modules 103 affixed to the person throwing the hand grenade 102 to retrieve position information of the user, and thereby the starting location of the hand grenade 102 .
  • the communications interface 210 can poll and/or otherwise request the location from the IMU 212 .
  • the hand grenade 102 can be passive without independent location determining functionality and can receive a location that is determined from an IMU 212 within the wireless modules 103 .
  • the hand grenade 102 is paired with the wireless modules 103 of a PAN for the thrower using BluetoothTM Low Energy, ZigbeeTM, LoWPANTM, WiFi, IrDATM NFC, and/or any other short-range communication medium.
  • the IMU 212 can also be triggered to start detecting movement (the flight path 124 ) of the hand grenade 102 , which can include a flight path 124 , as well as any bouncing and/or rolling against objects during the countdown of the fuse timing mechanism 208 .
  • the IMU 212 can include a dead reckoning device, which can include an accelerometer, magnetometer, digital compass, gyroscope, pressure sensor, and/or other sensors that enable the IMU 212 to track movement of the hand grenade 102 after deployment.
  • the hand grenade 102 can determine its absolute position. This can be done using a processing unit 214 , which can take the starting location from the communications interface 210 and the flight path as determined by the IMU 212 and use this information to calculate a position of the hand grenade 102 at the time of detonation. Once the detonation position is determined, the communications interface 210 can send the location to a remote computing system, such as a host computer 114 , for subsequent determination of a result of the explosion (such as whether any targets and/or friendlies were harmed by the simulated explosion).
  • a remote computing system such as a host computer 114
  • the communications interface 210 can communicate a signal of the detonation to one or more sensors (such as RF and/or laser detection sensors worn by users and/or positioned on vehicles) that are in a blast radius of the hand grenade 102 .
  • the hand grenade 102 can transmit a detonation location to the target(s), which can evaluate their proximity (line of sight along with any obstructions from terrain and/or infrastructure) and resulting pairing and casualty/damage assessment (explosion result).
  • the hand grenade 102 can also include a detonation emitter 216 that can include a visual and/or audio emitter.
  • a detonation emitter 216 can include a visual and/or audio emitter.
  • pyrotechnics, light elements, and/or speaker devices can be included in the detonation emitter 216 that allow for an audio and/or visual effect that can be triggered upon the expiration of the fuse timer.
  • a piezo emitter, speaker, LED strobe or light can be used for the detonation emitter 216 . This permits the hand grenade 102 to more realistically simulate a real live grenade, while still providing a safe, reliable, and reusable form factor.
  • the detonation location allows the hand grenade 102 to be easily retrieved after completion of the training exercise.
  • the detonation location along with any updates can be communicated with users 100 , 104 , 106 locally to allow one of them to easily retrieve the hand grenade 102 .
  • the hand grenade 102 communicates directly with wireless modules 103 for users 100 , 104 , 106 and/or equipment 112 within a blast radius 128 of the simulated explosion 120 , it allows localized calculation in any of these devices of the resulting casualty/damage outcome to distribute evaluation of the hand grenade 102 effect.
  • Some embodiments do not have a host computer 114 to distribute the simulation computing or as a backup when the host computer 114 is unavailable or excessively delayed.
  • the hand grenade 102 and/or the wireless modules 103 could have terrain and infrastructure information to simulate locally the resulting outcome without use of the remote host computer 114 .
  • Lidar, radar, sonic, camera, and/or other sensors in the hand grenade 102 and or wireless modules 103 could develop a point cloud of the environment along with an estimation of how the simulated explosion 120 would propagate in consideration of obstructions in the blast radius 128 .
  • a cinder block wall can provide better cover than a tent wall.
  • Pattern recognition could be used to tell the difference between various obstructions.
  • a camera or Lidar sensor on the hand grenade 102 could capture scene information in flight or as it rolled or bounced on the floor.
  • the communication interface receives a remote command to activate the detonation emitter 216 to permit easily finding it. Additionally, the location is known by either dead reckoning or through a location determining circuit in the IMU 212 .
  • the circuitry of the detonation emitter 216 could emit sounds and/or light to aid in quickly finding the hand grenade 102 . Some embodiments could include a vibration transducer in the detonation emitter 216 for activation with the simulated explosion 120 or during recovery efforts.
  • the wireless module 103 is attached to a part of a platform that can include other similar wireless modules 103 .
  • the platform can be a human body 100 , 104 , 106 , a vehicle 112 such as a truck, combat system, transit system, warship, etc.
  • the wireless module 103 is configured to identify movements of the wireless module 103 and correlate the movements with the movements of other wireless modules 103 and the platform on which it is attached.
  • the wireless module 103 includes a processing unit 214 , an inertial measurement unit (IMU) 212 a laser detector 328 , an Infrared radiation (IR) interface 338 , a communications interface 210 , a battery/power supply 220 , and a solar supply 342 .
  • IMU inertial measurement unit
  • IR Infrared radiation
  • the processing unit 214 controls poll initiation, profile detection, correlation, and authorization.
  • the processing unit 214 can include one or more processors, such as one or more special-purpose processors (such as digital signal processing chips, graphics acceleration processors, and/or the like), one or more input devices 330 , and one or more output devices 332 .
  • the processing unit 214 includes a data cache 334 that can include instructions and/or rules that are used by the processing unit 214 to establish PANs.
  • the data cache 334 can include gait information and/or other movement information such as vehicle acceleration, orientation, deceleration, and/or turning profiles that permit the processing unit 214 to properly determine whether a set of one or more other wireless modules 103 are attached to a same body or platform.
  • the processing unit 214 further includes a poll initiator 304 , a profile detector 306 , a correlator 308 , an authorizer 310 , a network organizer 312 , and a network interface 336 .
  • the poll initiator 304 performs a search for the wireless modules 103 .
  • the poll initiator 304 performs a network polling mode of the wireless modules 103 .
  • the network polling mode is initiated using the network interface 336 .
  • the network polling includes the wireless module 103 detecting a light source, such as a modulated laser.
  • the network interface 336 is a communication interface, which can include without limitation, a modem, a network card (wireless or wired), an infrared communication device, a wireless communication interface and/or chipset, and/or similar communication interfaces.
  • the network interface 336 can permit data (such as movement data) to be exchanged with a network, other computer systems, and/or any other devices.
  • the network interface 336 can also be used to establish and communicate via the PANs.
  • the network interface 336 in the field communicates using the communications interface 210 .
  • Wireless protocols include BluetoothTM, IEEE 802.15.4, Zigbee, IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), near-field communication (NFC), cellular, other short-range communications, etc.
  • the IR interface 338 is a communications interface, which includes an infrared communication using Infrared Data Association (IrDA) or other protocols.
  • IrDA Infrared Data Association
  • the IR interface 338 provides the infrared communication in the PAN or with devices seeking adoption.
  • the battery/power supply 220 provides power to the components of the wireless module 103 such as the processing unit 214 , the laser detector 328 , and the IMU 212 .
  • the battery/power supply 220 includes physical battery, and subsequent power supply.
  • the wireless modules 103 is hardwired to the platform to avoid need for a battery.
  • the solar supply 342 is the energy harvesting component of the wireless module 103 .
  • the solar supply 342 is used to provide solar energy or other renewable source of energy to the processing unit 214 , the laser detector 328 , and the IMU 212 as an alternative source of energy. Where solar is not currently available, the battery 220 can provide power perhaps charged earlier with solar.
  • the profile detector 306 determines the device profile of the wireless modules 103 .
  • the device profile includes two or more of an orientation of the wireless modules 103 , the movement, acceleration, and timing associated with the wireless modules 103 .
  • the profile detector 306 also determines profiles such as movement, orientation, acceleration, and timing profiles of the platform on which the wireless module 103 is attached to or associated with.
  • the profiles also include pressure profiles or gait information associated with the platform.
  • the IMU 212 determines movement of the detected wireless module 103 .
  • the IMU 212 provides the processing unit 214 with movement data associated with the wireless module 103 .
  • the IMU 212 can include a gyroscope 316 , accelerometer 318 , magnetometer 320 , pressure sensor 322 , GPS module 324 , a digital compass 326 , tracking tag 224 , and/or other sensors.
  • the IMU 212 can provide information from these sensors to the processing unit 214 such that the processing unit 214 can identify other wireless modules 103 having similar movement profiles.
  • the processing unit 214 can then determine that these wireless modules 103 are on a same platform and can establish a personal area network with the various wireless modules 103 .
  • the hand grenade 102 includes a IMU 212 that can not include a GPS module 324 as could a wireless module 103 . Where the GPS module 324 is missing, non-functional or powered down, the location of the hand grenade 102 or wireless module 103 can determine its location inferentially from another wireless module 103 on the same platform and PAN and nearby. The separation can be corrected for by the processing unit 214 . Between synchronizations or when separated, dead reckoning can be used, for example when the hand grenade 102 is thrown. Dead reckoning can be calculated by the processing unit 214 using readings from the gyroscope 316 , accelerometer 318 , magnetometer 320 , and/or digital compass 326 .
  • the correlator 308 receives the movement of the detected wireless modules 103 and other wireless modules 103 .
  • the correlator 308 compares the movement of the wireless modules 103 and other wireless modules 103 .
  • the correlator 308 further compares the device profile of the detected wireless module 103 with the profiles of the platform on which the wireless module 103 is attached to or associated with.
  • the profiles include movement over time profile, acceleration profile, pressure profile and/or gait information associated with the platform.
  • the correlation is provided to the authorizer 310 for processing.
  • the authorizer 310 validates the detected wireless module 103 for connecting with the other wireless modules 103 in a network based on the correlation. When it is determined that the detected wireless module 103 is placed on the same platform and is in correlation with the other wireless modules 103 , then the detected wireless module 103 is authorized for connection. The authorization is necessary for the wireless modules 103 to connect.
  • the network organizer 312 establishes a PAN based on the authorization.
  • the network organizer 312 establishes a network when the detected wireless module 103 correlates with the other wireless modules 103 and is bassociated with the same platform.
  • the wireless module 103 includes the laser detector 328 configured to detect a particular wavelength of light associated with an object such that the laser detector 328 can determine when the wireless module 103 has been hit by the object.
  • US MILESTM is one of several protocols that can be received.
  • Additional components of the wireless module 103 include a laser transmitter (not shown) with US MILES being one of several protocols that can be transmitted. Inclusion of the laser transmitter in the communication interface 210 gives bidirectional laser communication to the wireless module 103 .
  • the wireless module 103 can also include a precision orientation module (not shown) which senses weapon orientation, as next generation replacement for laser. Inclusion of the precision orientation module makes the wireless module-a weapon simulator.
  • FIG. 4 a flowchart of an association process 400 for establishing a connection between a wireless module 103 and other wireless modules 103 and/or a hand grenade 102 based on authorization is shown, according to an embodiment of the present disclosure.
  • an authorization of the wireless module 103 or hand grenade 102 based on the correlation is performed.
  • the depicted portion of the association process 400 starts at block 402 where a network polling for the wireless module 103 or hand grenade 102 is initiated.
  • Several wireless modules 103 within a predetermined distance from the unpaired wireless module 103 or hand grenade 102 are identified.
  • At block 404 based on the network polling, at least one additional wireless module 103 or hand grenade 102 is identified.
  • the at least one additional wireless module 103 or hand grenade 102 being other than the unpaired wireless module 103 .
  • the wireless modules 103 or hand grenade 102 are attached on a same platform which is identified based on the correlation of movements of the wireless modules 103 and/or hand grenades 102 all experience.
  • movements of the wireless modules 103 and/or hand grenades 102 are identified.
  • the movements are identified for correlation to identify association between the wireless modules 103 and/or hand grenades 102 .
  • the movements correspond with the location, orientation, heading, pressure, acceleration, and/or timing of the wireless modules 103 or hand grenades 102 on the platform.
  • the correlation between the unpaired wireless module 103 or hand grenade 102 , and the others is identified. If there is a correlation between the wireless module 103 or hand grenade 102 and the others, then the correlation with the platform is identified at block 410 . Else, at block 416 , the unpaired wireless modules 103 - 1 are unauthenticated at block 416 if there is no correlation between the unpaired wireless module 103 or hand grenade 102 and others on the same PAN.
  • the correlation of the wireless module 103 or hand grenade 102 with the profiles of the platform is identified.
  • the wireless module 103 or hand grenade 102 can be placed on a human body. Then the wireless module 103 or hand grenade 102 is correlated with a location of placement on the human body 100 along with the other wireless modules 103 or hand grenades 102 .
  • the unpaired wireless module 103 or hand grenade 102 is authorized for connection with the others, or else, at block 418 , the wireless module 103 or hand grenade 102 is unauthorized and the correlation is considered a false positive and pairing to the PAN is reversed.
  • the PAN is established between all the wireless modules 103 and hand grenades 102 .
  • the wireless modules 103 and/or hand grenades 102 all start communicating with each other and an association between the wireless modules 103 and hand grenades 102 is established.
  • the network polling continues to identify wireless modules 103 and hand grenades 102 .
  • the determination of whether the PAN includes nodes that are not on the platform enables the PAN to be reestablished to include the wireless modules 103 and hand grenades 102 that are determined to be on the same platform.
  • Each platform can develop its own PAN with multiple wireless modules 103 and/or hand grenades 102 in this way. Communication between different PANs can occur by way of a LAN or WAN connection by one or more wireless modules 103 in each PAN.
  • Process 500 can be performed by a computing device, such as host computer 114 , that is controlling a combat exercise.
  • Process 500 can begin at block 502 by determining a location of a simulated explosion 120 of a simulated hand grenade 102 . In some embodiments this can be done by receiving a position of the simulated hand grenade 102 (which can calculate this position as described above) at a time of expiration of a fuse duration of the simulated hand grenade 102 , possibly via an RF signal.
  • determining the location can include determining that a fuse duration of the simulated hand grenade 102 has expired and/or receiving a location of deployment and a flight path 124 from the simulated hand grenade 102 .
  • the computing device can then determine the location based on the starting location and the flight path 124 .
  • determining the location of the explosion can include receiving signals from a plurality of sensors that have detected the simulated hand grenade 102 at a time of expiration of a fuse duration of the simulated hand grenade 102 and calculating the location of the simulated explosion 120 based on the signals from the plurality of sensors.
  • an RF tracking tag 224 can be incorporated into the hand grenade 102 and can be in communication with one or more beacons.
  • the beacon signals can be used to triangulate and/or otherwise determine a location of the hand grenade 102 .
  • optical sensors such as cameras and/or IR sensors that can track a location of the hand grenade 102 and transmit a location to the host computer 114 . It will be appreciated that any combination of the above tracking techniques can be combined to track the location of a simulated hand grenade 102 .
  • the computing device can evaluate an explosion effect of the simulated explosion 120 for one or more users 100 , 104 , 106 within a blast radius 128 (an explosion area) of the simulated hand grenade 102 .
  • the computing device or host computer 114 can utilize positions of one or more targets 104 , 106 , 112 (which can be provided by the targets themselves) and/or knowledge about the environment (buildings, land, vehicles, trees, other structures, etc.) and the like.
  • the buildings and/or other structures can be effectively modeled by the host computer 114 , allowing for complex analysis of the explosion result based on how the structure would impact (e.g., at least partially protect) any of the targets.
  • This data can be used to determine whether a target 104 , 106 is hit, killed, injured, damaged, protected, etc.
  • the explosion effect can be based at least in part on a status of the user 100 who deployed the hand grenade 102 . For example, if the user 100 is marked as killed and/or has a simulated injury that would prevent the user 100 from deploying the hand grenade in real combat, the computing device 114 can disregard the deployment of the hand grenade 102 . In other instances, the user 100 can be injured and/or killed attempting to deploy the hand grenade 102 .
  • the computing device 114 can determine that the simulated explosion 120 is at the location of the user 100 , as if the user 100 had dropped the hand grenade 102 upon being shot, rather than at the actual location of the deployed hand grenade 102 or alternatively, not simulate the explosive effect. In instances in which the user 100 is deemed healthy and/or otherwise capable of deploying the hand grenade 102 , the explosion effect can be simulated normally.
  • the computing device 114 can communicate the explosion effect to the one or more entities (i.e., users/platforms). This can include sending a signal to a wireless modules 103 of a user 104 , 106 and/or vehicle 112 that indicates that the entity (such as a target and/or friendly or user that deployed the hand grenade) was harmed, killed, unscathed, and/or otherwise affected by the detonation.
  • the entity such as a target and/or friendly or user that deployed the hand grenade
  • wireless modules 103 can simulate explosive effect with a model that includes the detonation location and any obstructions. Data from the hand grenade 102 and/or wireless devices 103 can be shared among each other to distribute the computational load among the nearby wireless devices 103 in communication with each other without use of a computing device 114 .
  • a flowchart 600 for an embodiment of the hand grenade 102 deployment begins in block 604 where the training grenade 102 is paired to the platform, which is a user 100 in this case.
  • the hand grenade 102 joins the user's PAN with one or more wireless modules 103 in block 608 .
  • the user activates the hand grenade 102 by pulling the arming mechanism 204 (for example, pin) and triggering the timer by releasing the spoon 206 .
  • location can be determined implicitly by receiving location information from a wireless module 103 on the same platform/user.
  • a correction can be made by estimating range and direction of separation between the hand grenade and the location from the wireless module 103 .
  • dead reckoning within the hand grenade calculates the travel in block 616 before a detonation location is determined in block 620 .
  • Telemetry from the hand grenade 102 including the detonation location is reported over any wireless networks such as PANs or a LAN in block 624 .
  • the hand grenade 102 can include LIDAR scanning without any moving parts to develop a point cloud in flight. Some embodiments can use a camera in the hand grenade 102 to develop the point cloud.
  • the simulated effect can be modeled on a computing device 114 or in a distributed fashion using one or more wireless modules 103 in block 628 .
  • the effect determined in the simulation is communicated to nearby wireless modules 103 so that they can react accordingly to disable or impede the user in the training exercise and/or stimulate audio/visual effects (such as augmented or mixed reality overlay) at target and observer entities.
  • the embodiments can be described as a process which is depicted as a flowchart, a flow diagram, a swim diagram, a data flow diagram, a structure diagram, or a block diagram. Although a depiction can describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations can be re-arranged.
  • a process is terminated when its operations are completed, but could have additional steps not included in the figure.
  • a process can correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination corresponds to a return of the function to the calling function or the main function.
  • the methodologies can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • Any machine-readable medium tangibly embodying instructions can be used in implementing the methodologies described herein.
  • software codes can be stored in a memory.
  • Memory can be implemented within the processor or external to the processor.
  • the term “memory” refers to any type of long term, short term, volatile, nonvolatile, or other storage medium and is not to be limited to any particular type of memory or number of memories, or type of media upon which memory is stored.
  • the term “storage medium” can represent one or more memories for storing data, including read only memory (ROM), random access memory (RAM), magnetic RAM, core memory, magnetic disk storage mediums, optical storage mediums, flash memory devices and/or other machine readable mediums for storing information.
  • ROM read only memory
  • RAM random access memory
  • magnetic RAM magnetic RAM
  • core memory magnetic disk storage mediums
  • optical storage mediums flash memory devices and/or other machine readable mediums for storing information.
  • machine-readable medium includes, but is not limited to portable or fixed storage devices, optical storage devices, and/or various other storage mediums capable of storing that contain or carry instruction(s) and/or data.
  • machine-readable instructions can be stored on one or more machine-readable mediums, such as CD-ROMs or other type of optical disks, solid-state drives, tape cartridges, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, flash memory, or other types of machine-readable mediums suitable for storing electronic instructions.
  • machine-readable mediums such as CD-ROMs or other type of optical disks, solid-state drives, tape cartridges, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, flash memory, or other types of machine-readable mediums suitable for storing electronic instructions.
  • the methods can be performed by a combination of hardware and software.
  • Implementation of the techniques, blocks, steps and means described above can be done in various ways. For example, these techniques, blocks, steps and means can be implemented in hardware, software, or a combination thereof.
  • the processing units can be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described above, and/or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described above, and/or a combination thereof.
  • analog circuits they can be implemented with discreet components or using monolithic microwave integrated circuit (MMIC
  • embodiments can be implemented by hardware, software, scripting languages, firmware, middleware, microcode, hardware description languages, and/or any combination thereof.
  • the program code or code segments to perform the necessary tasks can be stored in a machine readable medium such as a storage medium.
  • a code segment or machine-executable instruction can represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a script, a class, or any combination of instructions, data structures, and/or program statements.
  • a code segment can be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, and/or memory contents.
  • Information, arguments, parameters, data, etc. can be passed, forwarded, or transmitted via any suitable means including memory sharing, message passing, token passing, network transmission, etc.
  • a list of “at least one of A, B, and C” includes any of the combinations A or B or C or AB or AC or BC and/or ABC (i.e., A and B and C).
  • a list of “at least one of A, B, and C” can also include AA, AAB, AAA, BB, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
US17/508,702 2020-10-22 2021-10-22 Geometrically paired live instrumentation training hand grenade Pending US20220221257A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/508,702 US20220221257A1 (en) 2020-10-22 2021-10-22 Geometrically paired live instrumentation training hand grenade

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063104204P 2020-10-22 2020-10-22
US202063104206P 2020-10-22 2020-10-22
US17/508,702 US20220221257A1 (en) 2020-10-22 2021-10-22 Geometrically paired live instrumentation training hand grenade

Publications (1)

Publication Number Publication Date
US20220221257A1 true US20220221257A1 (en) 2022-07-14

Family

ID=78622106

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/508,702 Pending US20220221257A1 (en) 2020-10-22 2021-10-22 Geometrically paired live instrumentation training hand grenade
US17/508,631 Active 2042-04-22 US11800586B2 (en) 2020-10-22 2021-10-22 Automated equipment association system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/508,631 Active 2042-04-22 US11800586B2 (en) 2020-10-22 2021-10-22 Automated equipment association system

Country Status (3)

Country Link
US (2) US20220221257A1 (fr)
EP (2) EP4233034A1 (fr)
WO (2) WO2022087454A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2803331C1 (ru) * 2022-12-19 2023-09-12 Виталий Игоревич Баранюк Способ тренировки метания ручных гранат

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824942A (en) * 1996-01-22 1998-10-20 Raytheon Company Method and device for fire control of a high apogee trajectory weapon
WO2007084147A2 (fr) * 2005-02-02 2007-07-26 Raytheon Company Système et procédé de connaissance de la situation
KR100815501B1 (ko) * 2006-08-18 2008-03-20 주식회사 코리아일레콤 폭탄 모의 장치 및 상기 폭탄 모의 장치를 이용한 모의교전 시스템
US8312814B2 (en) * 2008-09-08 2012-11-20 Raytheon Company Simulated hand grenade having a multiple integrated laser engagement system
US8888491B2 (en) * 2009-02-27 2014-11-18 OPTO Ballistics Optical recognition system and method for simulated shooting
US11275482B2 (en) * 2010-02-28 2022-03-15 Microsoft Technology Licensing, Llc Ar glasses with predictive control of external device based on event input
US8842663B2 (en) 2010-04-22 2014-09-23 Bae Systems Information And Electronic Systems Integration Inc. Situational awareness integrated network and system for tactical information and communications
US11295542B2 (en) 2018-10-12 2022-04-05 Armaments Research Company, Inc. Remote support system and methods for firearm and asset monitoring including coalescing cones of fire
US10777058B2 (en) * 2018-09-22 2020-09-15 Fedex Corporate Services, Inc. Systems, apparatus, and methods for detecting an environmental anomaly and initiating an enhanced automatic response using elements of a wireless node network using ID nodes and environmental threshold conditions per ID node
CN110186336B (zh) * 2019-06-13 2021-07-09 中国人民解放军总参谋部第六十研究所 一种防作弊模拟手榴弹的防作弊方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2803331C1 (ru) * 2022-12-19 2023-09-12 Виталий Игоревич Баранюк Способ тренировки метания ручных гранат

Also Published As

Publication number Publication date
US20220132609A1 (en) 2022-04-28
WO2022087454A1 (fr) 2022-04-28
WO2022087459A1 (fr) 2022-04-28
EP4233034A1 (fr) 2023-08-30
EP4233035A1 (fr) 2023-08-30
US11800586B2 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
CN113939706B (zh) 计算射弹的弹道解的无人机辅助系统和方法
US11879705B2 (en) System and method for active shooter defense
US10922982B2 (en) Active shooter response drone
KR101211100B1 (ko) 선도 사격을 모사하는 화기 모사 시스템 및 레이저 발사 장치
AU2010300068C1 (en) Methods and systems for use in training armed personnel
US20120274922A1 (en) Lidar methods and apparatus
US20200334961A1 (en) Threat identification device and system with optional active countermeasures
US11015902B2 (en) System and method for marksmanship training
KR100695759B1 (ko) 알에프아이디 와 알에프 모듈을 이용한 모의지뢰 시스템 및그 제어 방법
KR20170020705A (ko) 총기 및/또는 로켓에 의한 타격 표시용 장치 및 시스템 및 이의 제조방법
KR20090010691A (ko) 유도탄 시뮬레이션 시스템, 유도탄 모의 사격 장치 및 감지장치
US20220221257A1 (en) Geometrically paired live instrumentation training hand grenade
CN210310320U (zh) 铁路客站用智能机器人
JP2004085033A (ja) 射撃シミュレーション装置
EP2604967B1 (fr) Système de simulation d'explosion aérienne et procédé de simulation d'explosion aérienne
US11359887B1 (en) System and method of marksmanship training utilizing an optical system
JPH11142098A (ja) 投下爆弾の着弾位置検出方法及び装置
KR101241283B1 (ko) 선도 사격을 모사하는 화기 모사 시스템 및 표적 감지 장치
KR200414169Y1 (ko) 알에프아이디 와 알에프 모듈을 이용한 모의지뢰 시스템
KR102505309B1 (ko) 레이더/원격사격 통제장치 일체형 드론
US11662178B1 (en) System and method of marksmanship training utilizing a drone and an optical system
KR101930857B1 (ko) 훈련용 모의 수류탄 및 이를 포함하는 모의 교전 시스템
CN201159769Y (zh) 一种警用探测装置
KR101229862B1 (ko) 대인탄 모의 화기에 의한 피해를 모의하는 레이저 감지 장치 및 그 제어 방법
WO2018223287A1 (fr) Procédé et système d'évaluation de performances de robot mobile et robot mobile

Legal Events

Date Code Title Description
AS Assignment

Owner name: CUBIC CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HANDLEY, PAUL G;SMITH, CRAIG J;SIGNING DATES FROM 20211009 TO 20211111;REEL/FRAME:058573/0530

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: ALTER DOMUS (US) LLC, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNORS:CUBIC CORPORATION;PIXIA CORP.;REEL/FRAME:066263/0128

Effective date: 20240126

Owner name: BARCLAYS BANK PLC, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:CUBIC CORPORATION;PIXIA CORP.;REEL/FRAME:066263/0121

Effective date: 20240126

AS Assignment

Owner name: CUBIC DEFENCE UK LTD., UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CUBIC CORPORATION;REEL/FRAME:066634/0031

Effective date: 20240130