US20220204472A1 - Heteroaromatic electrophiles and methods of using thereof - Google Patents
Heteroaromatic electrophiles and methods of using thereof Download PDFInfo
- Publication number
- US20220204472A1 US20220204472A1 US17/691,745 US202217691745A US2022204472A1 US 20220204472 A1 US20220204472 A1 US 20220204472A1 US 202217691745 A US202217691745 A US 202217691745A US 2022204472 A1 US2022204472 A1 US 2022204472A1
- Authority
- US
- United States
- Prior art keywords
- alkyl
- alkoxy
- compound
- amine
- alkylamine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 76
- 125000001072 heteroaryl group Chemical group 0.000 title claims description 23
- 239000012039 electrophile Substances 0.000 title description 2
- 108010022752 Acetylcholinesterase Proteins 0.000 claims abstract description 208
- 229940022698 acetylcholinesterase Drugs 0.000 claims abstract description 206
- 150000001875 compounds Chemical class 0.000 claims abstract description 167
- 239000000203 mixture Substances 0.000 claims abstract description 74
- 150000002903 organophosphorus compounds Chemical class 0.000 claims abstract description 26
- 210000005036 nerve Anatomy 0.000 claims abstract description 23
- 238000011282 treatment Methods 0.000 claims abstract description 16
- 231100000331 toxic Toxicity 0.000 claims abstract description 10
- 230000002588 toxic effect Effects 0.000 claims abstract description 10
- 230000003467 diminishing effect Effects 0.000 claims abstract description 8
- 230000001225 therapeutic effect Effects 0.000 claims abstract description 7
- 230000000069 prophylactic effect Effects 0.000 claims abstract description 6
- 102000012440 Acetylcholinesterase Human genes 0.000 claims abstract 14
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 177
- -1 cycloheteroalkyl Chemical group 0.000 claims description 108
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 79
- 150000001412 amines Chemical class 0.000 claims description 68
- 150000003973 alkyl amines Chemical class 0.000 claims description 63
- 229910052736 halogen Inorganic materials 0.000 claims description 63
- 150000002367 halogens Chemical class 0.000 claims description 63
- 125000005210 alkyl ammonium group Chemical group 0.000 claims description 58
- ADEBPBSSDYVVLD-UHFFFAOYSA-N donepezil Chemical group O=C1C=2C=C(OC)C(OC)=CC=2CC1CC(CC1)CCN1CC1=CC=CC=C1 ADEBPBSSDYVVLD-UHFFFAOYSA-N 0.000 claims description 40
- 125000000217 alkyl group Chemical group 0.000 claims description 35
- 125000001931 aliphatic group Chemical group 0.000 claims description 34
- 125000003118 aryl group Chemical group 0.000 claims description 30
- 239000001257 hydrogen Substances 0.000 claims description 28
- 229910052739 hydrogen Inorganic materials 0.000 claims description 28
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 25
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 24
- 150000002825 nitriles Chemical class 0.000 claims description 23
- 239000003795 chemical substances by application Substances 0.000 claims description 20
- 125000003545 alkoxy group Chemical group 0.000 claims description 19
- 125000004122 cyclic group Chemical group 0.000 claims description 19
- 229960003530 donepezil Drugs 0.000 claims description 19
- 230000005764 inhibitory process Effects 0.000 claims description 19
- 150000001350 alkyl halides Chemical group 0.000 claims description 16
- 125000004404 heteroalkyl group Chemical group 0.000 claims description 15
- 229910014033 C-OH Inorganic materials 0.000 claims description 14
- 229910014570 C—OH Inorganic materials 0.000 claims description 14
- 229940100578 Acetylcholinesterase inhibitor Drugs 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 13
- 239000000544 cholinesterase inhibitor Substances 0.000 claims description 13
- 239000008194 pharmaceutical composition Substances 0.000 claims description 12
- 238000009472 formulation Methods 0.000 claims description 10
- 230000008499 blood brain barrier function Effects 0.000 claims description 6
- 210000001218 blood-brain barrier Anatomy 0.000 claims description 6
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 6
- 230000002441 reversible effect Effects 0.000 claims description 5
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 3
- 210000003169 central nervous system Anatomy 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims 13
- 210000001428 peripheral nervous system Anatomy 0.000 abstract description 7
- 102100033639 Acetylcholinesterase Human genes 0.000 description 194
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 120
- 239000000243 solution Substances 0.000 description 58
- 230000000694 effects Effects 0.000 description 53
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 42
- JBKPUQTUERUYQE-UHFFFAOYSA-O pralidoxime Chemical compound C[N+]1=CC=CC=C1\C=N\O JBKPUQTUERUYQE-UHFFFAOYSA-O 0.000 description 40
- 0 *[C@@H](c1ccccc1)N([1*])[2*] Chemical compound *[C@@H](c1ccccc1)N([1*])[2*] 0.000 description 38
- RWRDLPDLKQPQOW-UHFFFAOYSA-N tetrahydropyrrole Natural products C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 33
- 102000004190 Enzymes Human genes 0.000 description 30
- 108090000790 Enzymes Proteins 0.000 description 30
- 229940088598 enzyme Drugs 0.000 description 30
- 238000006243 chemical reaction Methods 0.000 description 28
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 27
- 230000032683 aging Effects 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 26
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 26
- 238000005160 1H NMR spectroscopy Methods 0.000 description 24
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 23
- 239000007787 solid Substances 0.000 description 23
- 238000003786 synthesis reaction Methods 0.000 description 22
- MUCZHBLJLSDCSD-UHFFFAOYSA-N diisopropyl fluorophosphate Chemical compound CC(C)OP(F)(=O)OC(C)C MUCZHBLJLSDCSD-UHFFFAOYSA-N 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 229960005051 fluostigmine Drugs 0.000 description 20
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 19
- 229940098773 bovine serum albumin Drugs 0.000 description 19
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 18
- 238000003556 assay Methods 0.000 description 18
- 239000000872 buffer Substances 0.000 description 18
- 239000003814 drug Substances 0.000 description 17
- 239000013641 positive control Substances 0.000 description 17
- 229940079593 drug Drugs 0.000 description 16
- 230000007420 reactivation Effects 0.000 description 16
- 239000000523 sample Substances 0.000 description 16
- 238000012216 screening Methods 0.000 description 16
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 15
- 101000801359 Homo sapiens Acetylcholinesterase Proteins 0.000 description 15
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 15
- 125000003342 alkenyl group Chemical group 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 125000001424 substituent group Chemical group 0.000 description 15
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 14
- 125000005842 heteroatom Chemical group 0.000 description 14
- QNXSIUBBGPHDDE-UHFFFAOYSA-N indan-1-one Chemical group C1=CC=C2C(=O)CCC2=C1 QNXSIUBBGPHDDE-UHFFFAOYSA-N 0.000 description 14
- GRFNBEZIAWKNCO-UHFFFAOYSA-N 3-pyridinol Chemical compound OC1=CC=CN=C1 GRFNBEZIAWKNCO-UHFFFAOYSA-N 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 12
- 229960004373 acetylcholine Drugs 0.000 description 12
- 125000000623 heterocyclic group Chemical group 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 12
- 239000013642 negative control Substances 0.000 description 12
- 230000007935 neutral effect Effects 0.000 description 12
- 239000003921 oil Substances 0.000 description 12
- 235000019198 oils Nutrition 0.000 description 12
- 239000000725 suspension Substances 0.000 description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 11
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 11
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- AZQWKYJCGOJGHM-UHFFFAOYSA-N para-benzoquinone Natural products O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 11
- 230000002829 reductive effect Effects 0.000 description 11
- 238000006467 substitution reaction Methods 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 10
- 108090000765 processed proteins & peptides Proteins 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 9
- 150000001299 aldehydes Chemical class 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 125000001188 haloalkyl group Chemical group 0.000 description 9
- 230000003993 interaction Effects 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 8
- 229920005654 Sephadex Polymers 0.000 description 8
- 239000012507 Sephadex™ Substances 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 239000002168 alkylating agent Substances 0.000 description 8
- 230000029936 alkylation Effects 0.000 description 8
- 238000005804 alkylation reaction Methods 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 238000000329 molecular dynamics simulation Methods 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 239000008363 phosphate buffer Substances 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 7
- 125000000304 alkynyl group Chemical group 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 150000002923 oximes Chemical class 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 7
- NQRYJNQNLNOLGT-UHFFFAOYSA-N tetrahydropyridine hydrochloride Natural products C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 7
- JUNVYXJFFGIRNO-UHFFFAOYSA-N 2-(pyrrolidin-1-ylmethyl)pyridin-3-ol Chemical compound OC1=CC=CN=C1CN1CCCC1 JUNVYXJFFGIRNO-UHFFFAOYSA-N 0.000 description 6
- 241000277305 Electrophorus electricus Species 0.000 description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- 239000007832 Na2SO4 Substances 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- GRXKLBBBQUKJJZ-UHFFFAOYSA-N Soman Chemical compound CC(C)(C)C(C)OP(C)(F)=O GRXKLBBBQUKJJZ-UHFFFAOYSA-N 0.000 description 6
- 125000000129 anionic group Chemical group 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- 235000011187 glycerol Nutrition 0.000 description 6
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 230000005588 protonation Effects 0.000 description 6
- 125000004076 pyridyl group Chemical group 0.000 description 6
- 229910052938 sodium sulfate Inorganic materials 0.000 description 6
- 238000005556 structure-activity relationship Methods 0.000 description 6
- DYAHQFWOVKZOOW-UHFFFAOYSA-N Sarin Chemical compound CC(C)OP(C)(F)=O DYAHQFWOVKZOOW-UHFFFAOYSA-N 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 5
- 239000000729 antidote Substances 0.000 description 5
- 125000001743 benzylic group Chemical group 0.000 description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 5
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 5
- 229940126214 compound 3 Drugs 0.000 description 5
- GLUUGHFHXGJENI-UHFFFAOYSA-N diethylenediamine Natural products C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 238000005755 formation reaction Methods 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000000543 intermediate Substances 0.000 description 5
- 150000002611 lead compounds Chemical class 0.000 description 5
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 5
- 125000002911 monocyclic heterocycle group Chemical group 0.000 description 5
- 150000002894 organic compounds Chemical class 0.000 description 5
- 239000012044 organic layer Substances 0.000 description 5
- 235000006408 oxalic acid Nutrition 0.000 description 5
- 239000000575 pesticide Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 235000018102 proteins Nutrition 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 238000004885 tandem mass spectrometry Methods 0.000 description 5
- UBGCCLCUBAMUMA-UHFFFAOYSA-N 2-(bromomethyl)pyridin-3-ol Chemical compound OC1=CC=CN=C1CBr UBGCCLCUBAMUMA-UHFFFAOYSA-N 0.000 description 4
- HYVKRYYPFVVIMN-UHFFFAOYSA-N 2-(diethylaminomethyl)pyridin-3-ol Chemical compound CCN(CC)CC1=NC=CC=C1O HYVKRYYPFVVIMN-UHFFFAOYSA-N 0.000 description 4
- UBGJEALCWIKKGP-UHFFFAOYSA-N 2-(methylamino)pyridin-3-ol Chemical class CNC1=NC=CC=C1O UBGJEALCWIKKGP-UHFFFAOYSA-N 0.000 description 4
- FBTLLOGYEKBETB-UHFFFAOYSA-N 2-chloro-5-(pyrrolidin-1-ylmethyl)pyridine Chemical compound C1=NC(Cl)=CC=C1CN1CCCC1 FBTLLOGYEKBETB-UHFFFAOYSA-N 0.000 description 4
- PUJPYYVQYJQOGB-UHFFFAOYSA-N 4-chloro-3-(pyrrolidin-1-ylmethyl)pyridine Chemical compound ClC1=C(C=NC=C1)CN1CCCC1 PUJPYYVQYJQOGB-UHFFFAOYSA-N 0.000 description 4
- TVJADEQYQFTXRR-UHFFFAOYSA-N 5-(pyrrolidin-1-ylmethyl)-1H-pyridin-2-one Chemical compound N1(CCCC1)CC=1C=CC(=NC=1)O TVJADEQYQFTXRR-UHFFFAOYSA-N 0.000 description 4
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Natural products C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 4
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 125000003282 alkyl amino group Chemical group 0.000 description 4
- 229940075522 antidotes Drugs 0.000 description 4
- 125000002618 bicyclic heterocycle group Chemical group 0.000 description 4
- 238000006900 dealkylation reaction Methods 0.000 description 4
- 238000010511 deprotection reaction Methods 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 235000019439 ethyl acetate Nutrition 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 125000002541 furyl group Chemical group 0.000 description 4
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 4
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 4
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 4
- 238000000126 in silico method Methods 0.000 description 4
- 238000001802 infusion Methods 0.000 description 4
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 description 4
- LGRLWUINFJPLSH-UHFFFAOYSA-N methanide Chemical compound [CH3-] LGRLWUINFJPLSH-UHFFFAOYSA-N 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 238000003032 molecular docking Methods 0.000 description 4
- 150000002780 morpholines Chemical class 0.000 description 4
- 239000012038 nucleophile Substances 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 150000004885 piperazines Chemical class 0.000 description 4
- 150000003053 piperidines Chemical class 0.000 description 4
- 125000003386 piperidinyl group Chemical group 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 230000003389 potentiating effect Effects 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 4
- 150000003235 pyrrolidines Chemical class 0.000 description 4
- 238000006268 reductive amination reaction Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000007920 subcutaneous administration Methods 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 4
- HZYWHMJSXOXOMA-UHFFFAOYSA-N 1-(1,3-benzodioxol-5-ylmethyl)pyrrolidine Chemical compound C=1C=C2OCOC2=CC=1CN1CCCC1 HZYWHMJSXOXOMA-UHFFFAOYSA-N 0.000 description 3
- PEWUSTTWOZGBLR-UHFFFAOYSA-N 2-(morpholin-4-ylmethyl)pyridin-3-ol Chemical compound OC1=CC=CN=C1CN1CCOCC1 PEWUSTTWOZGBLR-UHFFFAOYSA-N 0.000 description 3
- YUAYEXSPYXHWJN-UHFFFAOYSA-N 2-(piperazin-1-ylmethyl)pyridin-3-ol Chemical compound OC1=CC=CN=C1CN1CCNCC1 YUAYEXSPYXHWJN-UHFFFAOYSA-N 0.000 description 3
- BMRGAJCUJCTATP-UHFFFAOYSA-N 2-(piperidin-1-ylmethyl)pyridin-3-ol Chemical compound OC1=CC=CN=C1CN1CCCCC1 BMRGAJCUJCTATP-UHFFFAOYSA-N 0.000 description 3
- XLXANWGTOZKKAZ-UHFFFAOYSA-N 2-(pyrrolidin-1-ylmethyl)pyridine Chemical compound C=1C=CC=NC=1CN1CCCC1 XLXANWGTOZKKAZ-UHFFFAOYSA-N 0.000 description 3
- NUMYETXZBQVFDX-UHFFFAOYSA-N 2-[(dimethylamino)methyl]pyridin-3-ol Chemical compound CN(C)CC1=NC=CC=C1O NUMYETXZBQVFDX-UHFFFAOYSA-N 0.000 description 3
- GTRIKVRGSOKKKJ-UHFFFAOYSA-N 2-[[butyl(methyl)amino]methyl]pyridin-3-ol Chemical compound CCCCN(C)CC1=NC=CC=C1O GTRIKVRGSOKKKJ-UHFFFAOYSA-N 0.000 description 3
- QFCLMRMVEVKWDL-UHFFFAOYSA-N 2-[[ethyl(methyl)amino]methyl]pyridin-3-ol Chemical compound C(C)N(C)CC1=NC=CC=C1O QFCLMRMVEVKWDL-UHFFFAOYSA-N 0.000 description 3
- QTCIONDCNYBUKB-UHFFFAOYSA-N 2-[[methyl(2-methylpropyl)amino]methyl]pyridin-3-ol Chemical compound C(C(C)C)N(C)CC1=NC=CC=C1O QTCIONDCNYBUKB-UHFFFAOYSA-N 0.000 description 3
- AFTAAJBBHAGFQE-UHFFFAOYSA-N 2-[[methyl(propan-2-yl)amino]methyl]pyridin-3-ol Chemical compound C(C)(C)N(C)CC1=NC=CC=C1O AFTAAJBBHAGFQE-UHFFFAOYSA-N 0.000 description 3
- LOUFFTSSGXOXOB-UHFFFAOYSA-N 2-methoxy-4-(pyrrolidin-1-ylmethyl)phenol Chemical compound C1=C(O)C(OC)=CC(CN2CCCC2)=C1 LOUFFTSSGXOXOB-UHFFFAOYSA-N 0.000 description 3
- KVTUSMPNLUCCQO-UHFFFAOYSA-N 3,3-difluoropyrrolidine Chemical compound FC1(F)CCNC1 KVTUSMPNLUCCQO-UHFFFAOYSA-N 0.000 description 3
- ALORYXISMMZVJG-UHFFFAOYSA-N 3-(pyrrolidin-1-ylmethyl)-1H-pyridin-2-one Chemical compound O=C1NC=CC=C1CN1CCCC1 ALORYXISMMZVJG-UHFFFAOYSA-N 0.000 description 3
- LIFLMEJTPSKKDT-UHFFFAOYSA-N 3-(pyrrolidin-1-ylmethyl)-1H-quinolin-2-one Chemical compound N1(CCCC1)CC=1C(=NC2=CC=CC=C2C=1)O LIFLMEJTPSKKDT-UHFFFAOYSA-N 0.000 description 3
- OWECBMRVJKRHBT-UHFFFAOYSA-N 4-(pyrrolidin-1-ylmethyl)-1h-quinolin-2-one Chemical compound C12=CC=CC=C2NC(=O)C=C1CN1CCCC1 OWECBMRVJKRHBT-UHFFFAOYSA-N 0.000 description 3
- RTUHNOXRMYKHCR-UHFFFAOYSA-N 4-(pyrrolidin-1-ylmethyl)quinolin-3-ol Chemical compound N1(CCCC1)CC1=C(C=NC2=CC=CC=C12)O RTUHNOXRMYKHCR-UHFFFAOYSA-N 0.000 description 3
- PVMNPAUTCMBOMO-UHFFFAOYSA-N 4-chloropyridine Chemical compound ClC1=CC=NC=C1 PVMNPAUTCMBOMO-UHFFFAOYSA-N 0.000 description 3
- 229940124596 AChE inhibitor Drugs 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- YXYRSAYJEHJFAF-UHFFFAOYSA-N C1=CN=C(CN(C)CCC)C(O)=C1 Chemical compound C1=CN=C(CN(C)CCC)C(O)=C1 YXYRSAYJEHJFAF-UHFFFAOYSA-N 0.000 description 3
- DANPDWRNHGJZRD-UHFFFAOYSA-N C1=NC(=C(C=C1)O)CN1CCN(CC2=C(O)C=CC=N2)CC1 Chemical compound C1=NC(=C(C=C1)O)CN1CCN(CC2=C(O)C=CC=N2)CC1 DANPDWRNHGJZRD-UHFFFAOYSA-N 0.000 description 3
- YXGUXUDGCRVLGX-XDMJSODGSA-N CC(C)N(Cc1nc2ccccc2cc1O)C(C)C.CC1CCCN1Cc1nc2ccccc2cc1O.CCCN(C)Cc1nc2ccccc2cc1O.CCCN(CCO)Cc1nc2ccccc2cc1O.CCN(C)Cc1nc2ccccc2cc1O.CCN(CC)Cc1nc2ccccc2cc1O.CCN(Cc1nc2ccccc2cc1O)C(C)C.CN(C)Cc1nc2ccccc2cc1O.C[C@@H]1CCCN1Cc1nc2ccccc2cc1O.C[C@H]1CCCN1Cc1nc2ccccc2cc1O.Oc1cc2ccccc2nc1CN1CCCC1.Oc1cc2ccccc2nc1CN1CCCCC1.Oc1cc2ccccc2nc1CN1CCOCC1 Chemical compound CC(C)N(Cc1nc2ccccc2cc1O)C(C)C.CC1CCCN1Cc1nc2ccccc2cc1O.CCCN(C)Cc1nc2ccccc2cc1O.CCCN(CCO)Cc1nc2ccccc2cc1O.CCN(C)Cc1nc2ccccc2cc1O.CCN(CC)Cc1nc2ccccc2cc1O.CCN(Cc1nc2ccccc2cc1O)C(C)C.CN(C)Cc1nc2ccccc2cc1O.C[C@@H]1CCCN1Cc1nc2ccccc2cc1O.C[C@H]1CCCN1Cc1nc2ccccc2cc1O.Oc1cc2ccccc2nc1CN1CCCC1.Oc1cc2ccccc2nc1CN1CCCCC1.Oc1cc2ccccc2nc1CN1CCOCC1 YXGUXUDGCRVLGX-XDMJSODGSA-N 0.000 description 3
- SIFMLNBBGLHNSF-UHFFFAOYSA-N CC1(C)CCCN1Cc1nc2ccccc2cc1O.CC1CCC(C)N1Cc1nc2ccccc2cc1O.CC1CCCCN1Cc1nc2ccccc2cc1O.CC1CCN(Cc2nc3ccccc3cc2O)C1.Oc1cc2ccccc2nc1CN1CC2CCCC2C1.Oc1cc2ccccc2nc1CN1CCC2CCCCC21 Chemical compound CC1(C)CCCN1Cc1nc2ccccc2cc1O.CC1CCC(C)N1Cc1nc2ccccc2cc1O.CC1CCCCN1Cc1nc2ccccc2cc1O.CC1CCN(Cc2nc3ccccc3cc2O)C1.Oc1cc2ccccc2nc1CN1CC2CCCC2C1.Oc1cc2ccccc2nc1CN1CCC2CCCCC21 SIFMLNBBGLHNSF-UHFFFAOYSA-N 0.000 description 3
- 206010010904 Convulsion Diseases 0.000 description 3
- 239000001856 Ethyl cellulose Substances 0.000 description 3
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 3
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 3
- 238000006130 Horner-Wadsworth-Emmons olefination reaction Methods 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- UKGMTZLKKBZHDN-UHFFFAOYSA-N N1(CC(CC1)(F)F)CC1=NC=CC=C1O Chemical compound N1(CC(CC1)(F)F)CC1=NC=CC=C1O UKGMTZLKKBZHDN-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 235000011054 acetic acid Nutrition 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 230000001476 alcoholic effect Effects 0.000 description 3
- 238000005882 aldol condensation reaction Methods 0.000 description 3
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000002575 chemical warfare agent Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- SNTRKUOVAPUGAY-UHFFFAOYSA-N cyclosarin Chemical compound CP(F)(=O)OC1CCCCC1 SNTRKUOVAPUGAY-UHFFFAOYSA-N 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000008121 dextrose Substances 0.000 description 3
- 125000004663 dialkyl amino group Chemical group 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000002702 enteric coating Substances 0.000 description 3
- 238000009505 enteric coating Methods 0.000 description 3
- 235000019325 ethyl cellulose Nutrition 0.000 description 3
- 229920001249 ethyl cellulose Polymers 0.000 description 3
- 230000007717 exclusion Effects 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 3
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 3
- 230000000269 nucleophilic effect Effects 0.000 description 3
- 239000002777 nucleoside Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 231100000572 poisoning Toxicity 0.000 description 3
- 230000000607 poisoning effect Effects 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000000168 pyrrolyl group Chemical group 0.000 description 3
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000829 suppository Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229960005486 vaccine Drugs 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- SUNMBRGCANLOEG-UHFFFAOYSA-N 1,3-dichloroacetone Chemical compound ClCC(=O)CCl SUNMBRGCANLOEG-UHFFFAOYSA-N 0.000 description 2
- NZVZVGPYTICZBZ-UHFFFAOYSA-N 1-benzylpiperidine Chemical compound C=1C=CC=CC=1CN1CCCCC1 NZVZVGPYTICZBZ-UHFFFAOYSA-N 0.000 description 2
- GFFIJCYHQYHUHB-UHFFFAOYSA-N 2-acetylsulfanylethyl(trimethyl)azanium Chemical compound CC(=O)SCC[N+](C)(C)C GFFIJCYHQYHUHB-UHFFFAOYSA-N 0.000 description 2
- KIUMMUBSPKGMOY-UHFFFAOYSA-N 3,3'-Dithiobis(6-nitrobenzoic acid) Chemical compound C1=C([N+]([O-])=O)C(C(=O)O)=CC(SSC=2C=C(C(=CC=2)[N+]([O-])=O)C(O)=O)=C1 KIUMMUBSPKGMOY-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- DYRMBQRXOMOMNW-UHFFFAOYSA-N 4-chloropyridine-3-carbaldehyde Chemical compound ClC1=CC=NC=C1C=O DYRMBQRXOMOMNW-UHFFFAOYSA-N 0.000 description 2
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 2
- 244000215068 Acacia senegal Species 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical group OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 125000006374 C2-C10 alkenyl group Chemical group 0.000 description 2
- 125000005865 C2-C10alkynyl group Chemical group 0.000 description 2
- FUDUTNXLFPEFET-OFYJEKLPSA-N CC(C)CN(C)Cc1ncccc1O.CC(C)N(C)Cc1ncccc1O.CC(c1ncccc1O)N1CCCC1.CC(c1ncccc1O)N1CCC[C@@H]1C.CC(c1ncccc1O)N1CCC[C@H]1C.CC1CCCN1Cc1ncccc1O.CC1CCCN1Cc1ncccc1O.CCC1CCCN1Cc1ncccc1O.CCCN(C)Cc1ncccc1O.CCN(C)Cc1ncccc1O.CCN(CC)C(C)c1ncccc1O.CCN(CC)Cc1ncccc1O.CN(C)Cc1ncccc1O.CN1CCN(Cc2ncccc2O)CC1.Oc1cccnc1CN1C2CCC1CC2.Oc1cccnc1CN1CC2CCCC2C1.Oc1cccnc1CN1CCC2CCCC21.Oc1cccnc1CN1CCCC1.Oc1cccnc1CN1CCCCC1.Oc1cccnc1CN1CCCCC1 Chemical compound CC(C)CN(C)Cc1ncccc1O.CC(C)N(C)Cc1ncccc1O.CC(c1ncccc1O)N1CCCC1.CC(c1ncccc1O)N1CCC[C@@H]1C.CC(c1ncccc1O)N1CCC[C@H]1C.CC1CCCN1Cc1ncccc1O.CC1CCCN1Cc1ncccc1O.CCC1CCCN1Cc1ncccc1O.CCCN(C)Cc1ncccc1O.CCN(C)Cc1ncccc1O.CCN(CC)C(C)c1ncccc1O.CCN(CC)Cc1ncccc1O.CN(C)Cc1ncccc1O.CN1CCN(Cc2ncccc2O)CC1.Oc1cccnc1CN1C2CCC1CC2.Oc1cccnc1CN1CC2CCCC2C1.Oc1cccnc1CN1CCC2CCCC21.Oc1cccnc1CN1CCCC1.Oc1cccnc1CN1CCCCC1.Oc1cccnc1CN1CCCCC1 FUDUTNXLFPEFET-OFYJEKLPSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102000003914 Cholinesterases Human genes 0.000 description 2
- 108090000322 Cholinesterases Proteins 0.000 description 2
- ZNLHIHFKTUMQEX-UHFFFAOYSA-N Clc1ccncc1.[H]C(=O)c1cnccc1Cl Chemical compound Clc1ccncc1.[H]C(=O)c1cnccc1Cl ZNLHIHFKTUMQEX-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 229920000896 Ethulose Polymers 0.000 description 2
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- PIJVFDBKTWXHHD-UHFFFAOYSA-N Physostigmine Natural products C12=CC(OC(=O)NC)=CC=C2N(C)C2C1(C)CCN2C PIJVFDBKTWXHHD-UHFFFAOYSA-N 0.000 description 2
- RVOLLAQWKVFTGE-UHFFFAOYSA-N Pyridostigmine Chemical compound CN(C)C(=O)OC1=CC=C[N+](C)=C1 RVOLLAQWKVFTGE-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 208000004756 Respiratory Insufficiency Diseases 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 239000000205 acacia gum Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000003302 alkenyloxy group Chemical group 0.000 description 2
- 125000005119 alkyl cycloalkyl group Chemical group 0.000 description 2
- 125000005133 alkynyloxy group Chemical group 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 125000002837 carbocyclic group Chemical group 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 229920003064 carboxyethyl cellulose Polymers 0.000 description 2
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 125000006165 cyclic alkyl group Chemical group 0.000 description 2
- 125000000392 cycloalkenyl group Chemical group 0.000 description 2
- 125000004465 cycloalkenyloxy group Chemical group 0.000 description 2
- 125000000000 cycloalkoxy group Chemical group 0.000 description 2
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 description 2
- 230000020335 dealkylation Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 125000004772 dichloromethyl group Chemical group [H]C(Cl)(Cl)* 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 2
- 238000013265 extended release Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- ASUTZQLVASHGKV-JDFRZJQESA-N galanthamine Chemical compound O1C(=C23)C(OC)=CC=C2CN(C)CC[C@]23[C@@H]1C[C@@H](O)C=C2 ASUTZQLVASHGKV-JDFRZJQESA-N 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 125000000262 haloalkenyl group Chemical group 0.000 description 2
- 125000005291 haloalkenyloxy group Chemical group 0.000 description 2
- 125000004438 haloalkoxy group Chemical group 0.000 description 2
- 125000000232 haloalkynyl group Chemical group 0.000 description 2
- 125000005292 haloalkynyloxy group Chemical group 0.000 description 2
- 125000006769 halocycloalkoxy group Chemical group 0.000 description 2
- 125000005347 halocycloalkyl group Chemical group 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 2
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 125000001041 indolyl group Chemical group 0.000 description 2
- 239000002917 insecticide Substances 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 2
- 125000001786 isothiazolyl group Chemical group 0.000 description 2
- 125000000842 isoxazolyl group Chemical group 0.000 description 2
- 229940090046 jet injector Drugs 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012280 lithium aluminium hydride Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 230000011987 methylation Effects 0.000 description 2
- 238000007069 methylation reaction Methods 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 239000002858 neurotransmitter agent Substances 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 150000003891 oxalate salts Chemical class 0.000 description 2
- 125000002971 oxazolyl group Chemical group 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- WYMSBXTXOHUIGT-UHFFFAOYSA-N paraoxon Chemical compound CCOP(=O)(OCC)OC1=CC=C([N+]([O-])=O)C=C1 WYMSBXTXOHUIGT-UHFFFAOYSA-N 0.000 description 2
- 229960004623 paraoxon Drugs 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 229940090048 pen injector Drugs 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- PIJVFDBKTWXHHD-HIFRSBDPSA-N physostigmine Chemical compound C12=CC(OC(=O)NC)=CC=C2N(C)[C@@H]2[C@@]1(C)CCN2C PIJVFDBKTWXHHD-HIFRSBDPSA-N 0.000 description 2
- 229960001697 physostigmine Drugs 0.000 description 2
- 125000004193 piperazinyl group Chemical group 0.000 description 2
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229960003370 pralidoxime Drugs 0.000 description 2
- HIGSLXSBYYMVKI-UHFFFAOYSA-N pralidoxime chloride Chemical compound [Cl-].C[N+]1=CC=CC=C1\C=N\O HIGSLXSBYYMVKI-UHFFFAOYSA-N 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- 125000003373 pyrazinyl group Chemical group 0.000 description 2
- 125000003226 pyrazolyl group Chemical group 0.000 description 2
- 125000002098 pyridazinyl group Chemical group 0.000 description 2
- 150000003222 pyridines Chemical class 0.000 description 2
- 229960002290 pyridostigmine Drugs 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 2
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 201000004193 respiratory failure Diseases 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 150000003355 serines Chemical class 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- LFKDJXLFVYVEFG-UHFFFAOYSA-N tert-butyl carbamate Chemical compound CC(C)(C)OC(N)=O LFKDJXLFVYVEFG-UHFFFAOYSA-N 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- CWXPZXBSDSIRCS-UHFFFAOYSA-N tert-butyl piperazine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCNCC1 CWXPZXBSDSIRCS-UHFFFAOYSA-N 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N thiocyanic acid Chemical compound SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000027 toxicology Toxicity 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 125000004306 triazinyl group Chemical group 0.000 description 2
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- 125000004765 (C1-C4) haloalkyl group Chemical group 0.000 description 1
- 125000006710 (C2-C12) alkenyl group Chemical group 0.000 description 1
- 125000006711 (C2-C12) alkynyl group Chemical group 0.000 description 1
- 125000006649 (C2-C20) alkynyl group Chemical group 0.000 description 1
- 125000006656 (C2-C4) alkenyl group Chemical group 0.000 description 1
- 125000006650 (C2-C4) alkynyl group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- JGGLAJGQAOEKPB-UHFFFAOYSA-Q *.B.C.C1CCNC1.CC(=O)OB[Na].CC(=O)OOC(C)=O.CC(=O)[O-].C[N+]1(Cc2cnccc2O)CCNC1.C[N+]1(Cc2cnccc2O)CC[Y]C1.Cl.FC1(F)CCCC1.O=C(O)C(=O)O.O=C([O-])C(=O)O.O=C(c1cnccc1O)N1CCC(F)(F)C1.[CH3-].[H]C(=O)c1cnccc1Cl.[H]C(=O)c1cnccc1O.[H]C(=O)c1cnccc1O.[H]C(=O)c1cnccc1O.[H][N+]1(C(=O)c2cnccc2O)CCC(F)(F)C1.[H][N+]1(Cc2cnccc2O)CCNC1.[I-] Chemical compound *.B.C.C1CCNC1.CC(=O)OB[Na].CC(=O)OOC(C)=O.CC(=O)[O-].C[N+]1(Cc2cnccc2O)CCNC1.C[N+]1(Cc2cnccc2O)CC[Y]C1.Cl.FC1(F)CCCC1.O=C(O)C(=O)O.O=C([O-])C(=O)O.O=C(c1cnccc1O)N1CCC(F)(F)C1.[CH3-].[H]C(=O)c1cnccc1Cl.[H]C(=O)c1cnccc1O.[H]C(=O)c1cnccc1O.[H]C(=O)c1cnccc1O.[H][N+]1(C(=O)c2cnccc2O)CCC(F)(F)C1.[H][N+]1(Cc2cnccc2O)CCNC1.[I-] JGGLAJGQAOEKPB-UHFFFAOYSA-Q 0.000 description 1
- 125000006079 1,1,2-trimethyl-2-propenyl group Chemical group 0.000 description 1
- 125000006059 1,1-dimethyl-2-butenyl group Chemical group 0.000 description 1
- 125000006033 1,1-dimethyl-2-propenyl group Chemical group 0.000 description 1
- 125000006060 1,1-dimethyl-3-butenyl group Chemical group 0.000 description 1
- 125000005919 1,2,2-trimethylpropyl group Chemical group 0.000 description 1
- 125000006061 1,2-dimethyl-1-butenyl group Chemical group 0.000 description 1
- 125000006034 1,2-dimethyl-1-propenyl group Chemical group 0.000 description 1
- 125000006062 1,2-dimethyl-2-butenyl group Chemical group 0.000 description 1
- 125000006035 1,2-dimethyl-2-propenyl group Chemical group 0.000 description 1
- 125000006063 1,2-dimethyl-3-butenyl group Chemical group 0.000 description 1
- 125000005918 1,2-dimethylbutyl group Chemical group 0.000 description 1
- 125000006064 1,3-dimethyl-1-butenyl group Chemical group 0.000 description 1
- 125000006065 1,3-dimethyl-2-butenyl group Chemical group 0.000 description 1
- 125000006066 1,3-dimethyl-3-butenyl group Chemical group 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- VPKKBWBYGRMALQ-UHFFFAOYSA-N 1-$l^{1}-azanylpyrrolidine Chemical compound [N]N1CCCC1 VPKKBWBYGRMALQ-UHFFFAOYSA-N 0.000 description 1
- 125000006083 1-bromoethyl group Chemical group 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000001478 1-chloroethyl group Chemical group [H]C([H])([H])C([H])(Cl)* 0.000 description 1
- 125000006073 1-ethyl-1-butenyl group Chemical group 0.000 description 1
- 125000006080 1-ethyl-1-methyl-2-propenyl group Chemical group 0.000 description 1
- 125000006036 1-ethyl-1-propenyl group Chemical group 0.000 description 1
- 125000006074 1-ethyl-2-butenyl group Chemical group 0.000 description 1
- 125000006081 1-ethyl-2-methyl-1-propenyl group Chemical group 0.000 description 1
- 125000006082 1-ethyl-2-methyl-2-propenyl group Chemical group 0.000 description 1
- 125000006037 1-ethyl-2-propenyl group Chemical group 0.000 description 1
- 125000006075 1-ethyl-3-butenyl group Chemical group 0.000 description 1
- 125000006218 1-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004776 1-fluoroethyl group Chemical group [H]C([H])([H])C([H])(F)* 0.000 description 1
- 125000006039 1-hexenyl group Chemical group 0.000 description 1
- 125000006025 1-methyl-1-butenyl group Chemical group 0.000 description 1
- 125000006044 1-methyl-1-pentenyl group Chemical group 0.000 description 1
- 125000006019 1-methyl-1-propenyl group Chemical group 0.000 description 1
- 125000006028 1-methyl-2-butenyl group Chemical group 0.000 description 1
- 125000006048 1-methyl-2-pentenyl group Chemical group 0.000 description 1
- 125000006021 1-methyl-2-propenyl group Chemical group 0.000 description 1
- 125000006030 1-methyl-3-butenyl group Chemical group 0.000 description 1
- 125000006052 1-methyl-3-pentenyl group Chemical group 0.000 description 1
- 125000006055 1-methyl-4-pentenyl group Chemical group 0.000 description 1
- 125000006018 1-methyl-ethenyl group Chemical group 0.000 description 1
- 125000006023 1-pentenyl group Chemical group 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- 238000004293 19F NMR spectroscopy Methods 0.000 description 1
- 125000000453 2,2,2-trichloroethyl group Chemical group [H]C([H])(*)C(Cl)(Cl)Cl 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- 125000004781 2,2-dichloro-2-fluoroethyl group Chemical group [H]C([H])(*)C(F)(Cl)Cl 0.000 description 1
- 125000004778 2,2-difluoroethyl group Chemical group [H]C([H])(*)C([H])(F)F 0.000 description 1
- 125000006067 2,2-dimethyl-3-butenyl group Chemical group 0.000 description 1
- 125000006068 2,3-dimethyl-1-butenyl group Chemical group 0.000 description 1
- 125000006069 2,3-dimethyl-2-butenyl group Chemical group 0.000 description 1
- 125000006070 2,3-dimethyl-3-butenyl group Chemical group 0.000 description 1
- DMFOVOSDFLKXRW-UHFFFAOYSA-N 2-(aminomethyl)pyridin-3-ol Chemical class NCC1=NC=CC=C1O DMFOVOSDFLKXRW-UHFFFAOYSA-N 0.000 description 1
- FEBUJFMRSBAMES-UHFFFAOYSA-N 2-[(2-{[3,5-dihydroxy-2-(hydroxymethyl)-6-phosphanyloxan-4-yl]oxy}-3,5-dihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-4-yl)oxy]-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl phosphinite Chemical compound OC1C(O)C(O)C(CO)OC1OCC1C(O)C(OC2C(C(OP)C(O)C(CO)O2)O)C(O)C(OC2C(C(CO)OC(P)C2O)O)O1 FEBUJFMRSBAMES-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- FXWFZIRWWNPPOV-UHFFFAOYSA-N 2-aminobenzaldehyde Chemical compound NC1=CC=CC=C1C=O FXWFZIRWWNPPOV-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000004780 2-chloro-2,2-difluoroethyl group Chemical group [H]C([H])(*)C(F)(F)Cl 0.000 description 1
- 125000004779 2-chloro-2-fluoroethyl group Chemical group [H]C([H])(*)C([H])(F)Cl 0.000 description 1
- SKCNYHLTRZIINA-UHFFFAOYSA-N 2-chloro-5-(chloromethyl)pyridine Chemical compound ClCC1=CC=C(Cl)N=C1 SKCNYHLTRZIINA-UHFFFAOYSA-N 0.000 description 1
- 125000006076 2-ethyl-1-butenyl group Chemical group 0.000 description 1
- 125000006077 2-ethyl-2-butenyl group Chemical group 0.000 description 1
- 125000006078 2-ethyl-3-butenyl group Chemical group 0.000 description 1
- 125000006176 2-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004777 2-fluoroethyl group Chemical group [H]C([H])(F)C([H])([H])* 0.000 description 1
- 125000006040 2-hexenyl group Chemical group 0.000 description 1
- 125000006026 2-methyl-1-butenyl group Chemical group 0.000 description 1
- 125000006045 2-methyl-1-pentenyl group Chemical group 0.000 description 1
- 125000006020 2-methyl-1-propenyl group Chemical group 0.000 description 1
- 125000006029 2-methyl-2-butenyl group Chemical group 0.000 description 1
- 125000006049 2-methyl-2-pentenyl group Chemical group 0.000 description 1
- 125000006022 2-methyl-2-propenyl group Chemical group 0.000 description 1
- 125000006031 2-methyl-3-butenyl group Chemical group 0.000 description 1
- 125000006053 2-methyl-3-pentenyl group Chemical group 0.000 description 1
- 125000006056 2-methyl-4-pentenyl group Chemical group 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- 125000006088 2-oxoazepinyl group Chemical group 0.000 description 1
- 125000004638 2-oxopiperazinyl group Chemical group O=C1N(CCNC1)* 0.000 description 1
- 125000004637 2-oxopiperidinyl group Chemical group O=C1N(CCCC1)* 0.000 description 1
- 125000006087 2-oxopyrrolodinyl group Chemical group 0.000 description 1
- 125000006024 2-pentenyl group Chemical group 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- 125000006072 3,3-dimethyl-2-butenyl group Chemical group 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- UENHQVFLUFIBIC-UHFFFAOYSA-N 3-chloro-2-(chloromethyl)quinoline Chemical compound ClCC1=NC2=CC=CC=C2C=C1Cl UENHQVFLUFIBIC-UHFFFAOYSA-N 0.000 description 1
- KPHAYCAIIQXSSW-UHFFFAOYSA-N 3-fluoro-2-methoxy-1-methylpyridin-1-ium Chemical compound COC1=C(F)C=CC=[N+]1C KPHAYCAIIQXSSW-UHFFFAOYSA-N 0.000 description 1
- 125000006041 3-hexenyl group Chemical group 0.000 description 1
- 125000006027 3-methyl-1-butenyl group Chemical group 0.000 description 1
- 125000006046 3-methyl-1-pentenyl group Chemical group 0.000 description 1
- 125000006050 3-methyl-2-pentenyl group Chemical group 0.000 description 1
- 125000006032 3-methyl-3-butenyl group Chemical group 0.000 description 1
- 125000006054 3-methyl-3-pentenyl group Chemical group 0.000 description 1
- 125000006057 3-methyl-4-pentenyl group Chemical group 0.000 description 1
- 125000003542 3-methylbutan-2-yl group Chemical group [H]C([H])([H])C([H])(*)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- JGQBNAFULRKENS-UHFFFAOYSA-N 3H-pyridin-3-ylium-6-ylideneazanide Chemical compound [N]C1=CC=CC=N1 JGQBNAFULRKENS-UHFFFAOYSA-N 0.000 description 1
- BWGRDBSNKQABCB-UHFFFAOYSA-N 4,4-difluoro-N-[3-[3-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl]-1-thiophen-2-ylpropyl]cyclohexane-1-carboxamide Chemical compound CC(C)C1=NN=C(C)N1C1CC2CCC(C1)N2CCC(NC(=O)C1CCC(F)(F)CC1)C1=CC=CS1 BWGRDBSNKQABCB-UHFFFAOYSA-N 0.000 description 1
- 150000005761 4-chloropyridine Chemical class 0.000 description 1
- XGAFCCUNHIMIRV-UHFFFAOYSA-N 4-chloropyridine;hydron;chloride Chemical compound Cl.ClC1=CC=NC=C1 XGAFCCUNHIMIRV-UHFFFAOYSA-N 0.000 description 1
- 125000006042 4-hexenyl group Chemical group 0.000 description 1
- GCNTZFIIOFTKIY-UHFFFAOYSA-N 4-hydroxypyridine Chemical compound OC1=CC=NC=C1 GCNTZFIIOFTKIY-UHFFFAOYSA-N 0.000 description 1
- 125000006047 4-methyl-1-pentenyl group Chemical group 0.000 description 1
- 125000006051 4-methyl-2-pentenyl group Chemical group 0.000 description 1
- 125000003119 4-methyl-3-pentenyl group Chemical group [H]\C(=C(/C([H])([H])[H])C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000006058 4-methyl-4-pentenyl group Chemical group 0.000 description 1
- 125000005986 4-piperidonyl group Chemical group 0.000 description 1
- IHMQOBPGHZFGLC-UHFFFAOYSA-N 5,6-dimethoxy-2,3-dihydroinden-1-one Chemical compound C1=C(OC)C(OC)=CC2=C1C(=O)CC2 IHMQOBPGHZFGLC-UHFFFAOYSA-N 0.000 description 1
- 125000006043 5-hexenyl group Chemical group 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 208000002874 Acne Vulgaris Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 244000106483 Anogeissus latifolia Species 0.000 description 1
- 235000011514 Anogeissus latifolia Nutrition 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 229930003347 Atropine Natural products 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 108010053652 Butyrylcholinesterase Proteins 0.000 description 1
- VCVYJOWGSRMBMY-UHFFFAOYSA-N C#C.CCCC.CCN(C)Cc1ncccc1O.Oc1cccnc1.[H]C([H])=O Chemical compound C#C.CCCC.CCN(C)Cc1ncccc1O.Oc1cccnc1.[H]C([H])=O VCVYJOWGSRMBMY-UHFFFAOYSA-N 0.000 description 1
- KRTLEJKKICKAJC-UHFFFAOYSA-N C.C1CCNC1.Clc1ccncc1CN1CCCC1.O=Cc1cnccc1Cl Chemical compound C.C1CCNC1.Clc1ccncc1CN1CCCC1.O=Cc1cnccc1Cl KRTLEJKKICKAJC-UHFFFAOYSA-N 0.000 description 1
- VPCWYMXCKCEPEZ-UHFFFAOYSA-N C.Cl.Clc1ccc(CN2CCCC2)cn1.Oc1ccc(CN2CCCC2)cc1 Chemical compound C.Cl.Clc1ccc(CN2CCCC2)cn1.Oc1ccc(CN2CCCC2)cc1 VPCWYMXCKCEPEZ-UHFFFAOYSA-N 0.000 description 1
- XWNKPTVWMIAVGP-UHFFFAOYSA-N C1CCNC1.ClCc1ccc(Cl)nc1.Clc1ccc(CN2CCCC2)cn1 Chemical compound C1CCNC1.ClCc1ccc(Cl)nc1.Clc1ccc(CN2CCCC2)cn1 XWNKPTVWMIAVGP-UHFFFAOYSA-N 0.000 description 1
- 125000003358 C2-C20 alkenyl group Chemical group 0.000 description 1
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 1
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 description 1
- 125000004648 C2-C8 alkenyl group Chemical group 0.000 description 1
- 125000004649 C2-C8 alkynyl group Chemical group 0.000 description 1
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 1
- LONUOWNSZPIJIP-BDDIDCGNSA-N CC(C)(C)OC(=O)N1CCC(=O)CC1.CC(C)(C)OC(=O)N1CCC(C/C=C2/Cc3ccccc3C2=O)CC1.CC(C)(C)OC(=O)N1CCC(CC=C2Cc3ccccc3C2)CC1.CCOC(=O)C=C1CCN(C(=O)OC(C)(C)C)CC1.CCOC(=O)CC1CCN(C(=O)OC(C)(C)C)CC1.CCOC(=O)CP(C)(=O)OCC.O=C1CCc2ccccc21.Oc1cccnc1CBr.Oc1cccnc1CN1CCC(CCC2Cc3ccccc3C2)CC1.[H]C(=O)CC1CCN(C(=O)OC(C)(C)C)CC1.c1ccc2c(c1)CC(CCC1CCNCC1)C2 Chemical compound CC(C)(C)OC(=O)N1CCC(=O)CC1.CC(C)(C)OC(=O)N1CCC(C/C=C2/Cc3ccccc3C2=O)CC1.CC(C)(C)OC(=O)N1CCC(CC=C2Cc3ccccc3C2)CC1.CCOC(=O)C=C1CCN(C(=O)OC(C)(C)C)CC1.CCOC(=O)CC1CCN(C(=O)OC(C)(C)C)CC1.CCOC(=O)CP(C)(=O)OCC.O=C1CCc2ccccc21.Oc1cccnc1CBr.Oc1cccnc1CN1CCC(CCC2Cc3ccccc3C2)CC1.[H]C(=O)CC1CCN(C(=O)OC(C)(C)C)CC1.c1ccc2c(c1)CC(CCC1CCNCC1)C2 LONUOWNSZPIJIP-BDDIDCGNSA-N 0.000 description 1
- GROHGCQCLBVQLI-UHFFFAOYSA-N CC(C)CN(C)Cc1ncccc1O.CC(C)N(C)Cc1ncccc1O.CC1CCCN1Cc1ncccc1O.CC1CCCN1Cc1ncccc1O.CC1CCN(Cc2ncccc2O)C1.CCC1CCCN1Cc1ncccc1O.CCCN(C)Cc1ncccc1O.CCN(C)Cc1ncccc1O.CCN(CC)Cc1ncccc1O.CN(C)Cc1ncccc1O.CN1CCN(Cc2ncccc2O)CC1.Oc1cccnc1CN1C2CCC1CC2.Oc1cccnc1CN1CC1.Oc1cccnc1CN1CC2CCC1C2.Oc1cccnc1CN1CC2CCCC2C1.Oc1cccnc1CN1CCC1.Oc1cccnc1CN1CCC2CCCC21.Oc1cccnc1CN1CCCC1.Oc1cccnc1CN1CCCCC1.Oc1cccnc1CN1CCCCC1.Oc1cccnc1CN1CCCCCC1 Chemical compound CC(C)CN(C)Cc1ncccc1O.CC(C)N(C)Cc1ncccc1O.CC1CCCN1Cc1ncccc1O.CC1CCCN1Cc1ncccc1O.CC1CCN(Cc2ncccc2O)C1.CCC1CCCN1Cc1ncccc1O.CCCN(C)Cc1ncccc1O.CCN(C)Cc1ncccc1O.CCN(CC)Cc1ncccc1O.CN(C)Cc1ncccc1O.CN1CCN(Cc2ncccc2O)CC1.Oc1cccnc1CN1C2CCC1CC2.Oc1cccnc1CN1CC1.Oc1cccnc1CN1CC2CCC1C2.Oc1cccnc1CN1CC2CCCC2C1.Oc1cccnc1CN1CCC1.Oc1cccnc1CN1CCC2CCCC21.Oc1cccnc1CN1CCCC1.Oc1cccnc1CN1CCCCC1.Oc1cccnc1CN1CCCCC1.Oc1cccnc1CN1CCCCCC1 GROHGCQCLBVQLI-UHFFFAOYSA-N 0.000 description 1
- LXAALZHMJFCRSL-UHFFFAOYSA-N CCCCN(C)Cc1ncccc1O.CCCN(C)Cc1ncccc1O.CCN(C)Cc1ncccc1O.CCN(CC)Cc1ncccc1O.CCOP(C)(=O)Oc1ccc2c(C)cc(=O)oc2c1.Oc1cccnc1CN1CCCC1 Chemical compound CCCCN(C)Cc1ncccc1O.CCCN(C)Cc1ncccc1O.CCN(C)Cc1ncccc1O.CCN(CC)Cc1ncccc1O.CCOP(C)(=O)Oc1ccc2c(C)cc(=O)oc2c1.Oc1cccnc1CN1CCCC1 LXAALZHMJFCRSL-UHFFFAOYSA-N 0.000 description 1
- SZGGJYXXJOQDAX-UHFFFAOYSA-N CN(CCC1CCN(Cc2ncccc2O)CC1)C(=O)c1ccccc1.CN(CCN1CCN(Cc2ncccc2O)CC1)C(=O)c1ccccc1.Oc1cccnc1CN1CCC(CCC2Cc3ccccc3C2)CC1.[H]c1cc2c(cc1[H])C(=O)C(CC1CCN(Cc3ncccc3O)CC1)C2.[H]c1cc2c(cc1[H])C(=O)C(CCC1CCN(Cc3ncccc3O)CC1)C2 Chemical compound CN(CCC1CCN(Cc2ncccc2O)CC1)C(=O)c1ccccc1.CN(CCN1CCN(Cc2ncccc2O)CC1)C(=O)c1ccccc1.Oc1cccnc1CN1CCC(CCC2Cc3ccccc3C2)CC1.[H]c1cc2c(cc1[H])C(=O)C(CC1CCN(Cc3ncccc3O)CC1)C2.[H]c1cc2c(cc1[H])C(=O)C(CCC1CCN(Cc3ncccc3O)CC1)C2 SZGGJYXXJOQDAX-UHFFFAOYSA-N 0.000 description 1
- QJCOXAHKLNBXMJ-UHFFFAOYSA-N CN(CCN1CCN(C(=O)OC(C)(C)C)CC1)C(=O)c1ccccc1.CN(CCN1CCN(Cc2ncccc2O)CC1)C(=O)c1ccccc1.CN(CCN1CCNCC1)C(=O)c1ccccc1.CN(CCO)C(=O)c1ccccc1.CNCCO.O=C(Cl)c1ccccc1.Oc1cccnc1CBr.Oc1cccnc1CBr Chemical compound CN(CCN1CCN(C(=O)OC(C)(C)C)CC1)C(=O)c1ccccc1.CN(CCN1CCN(Cc2ncccc2O)CC1)C(=O)c1ccccc1.CN(CCN1CCNCC1)C(=O)c1ccccc1.CN(CCO)C(=O)c1ccccc1.CNCCO.O=C(Cl)c1ccccc1.Oc1cccnc1CBr.Oc1cccnc1CBr QJCOXAHKLNBXMJ-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- SRMXLQAIATYTGU-UHFFFAOYSA-N Cc1ccc(S(=O)(=O)O)cc1.ClCc1nc2ccccc2cc1Cl.Nc1ccccc1C=O.O=C(CCl)CCl Chemical compound Cc1ccc(S(=O)(=O)O)cc1.ClCc1nc2ccccc2cc1Cl.Nc1ccccc1C=O.O=C(CCl)CCl SRMXLQAIATYTGU-UHFFFAOYSA-N 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000005944 Chlorpyrifos Substances 0.000 description 1
- 102100032404 Cholinesterase Human genes 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 238000004057 DFT-B3LYP calculation Methods 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- JYFHYPJRHGVZDY-UHFFFAOYSA-N Dibutyl phosphate Chemical compound CCCCOP(O)(=O)OCCCC JYFHYPJRHGVZDY-UHFFFAOYSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 239000001922 Gum ghatti Substances 0.000 description 1
- 229920000569 Gum karaya Polymers 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- ZRJBHWIHUMBLCN-SEQYCRGISA-N Huperzine A Natural products N1C(=O)C=CC2=C1C[C@H]1/C(=C/C)[C@]2(N)CC(C)=C1 ZRJBHWIHUMBLCN-SEQYCRGISA-N 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- RKUNBYITZUJHSG-UHFFFAOYSA-N Hyosciamin-hydrochlorid Natural products CN1C(C2)CCC1CC2OC(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 239000005949 Malathion Substances 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 238000006683 Mannich reaction Methods 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- OPKOKAMJFNKNAS-UHFFFAOYSA-N N-methylethanolamine Chemical compound CNCCO OPKOKAMJFNKNAS-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 239000005921 Phosmet Substances 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- XSVMFMHYUFZWBK-NSHDSACASA-N Rivastigmine Chemical compound CCN(C)C(=O)OC1=CC=CC([C@H](C)N(C)C)=C1 XSVMFMHYUFZWBK-NSHDSACASA-N 0.000 description 1
- 229920002305 Schizophyllan Polymers 0.000 description 1
- ZRJBHWIHUMBLCN-UHFFFAOYSA-N Shuangyiping Natural products N1C(=O)C=CC2=C1CC1C(=CC)C2(N)CC(C)=C1 ZRJBHWIHUMBLCN-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 240000004584 Tamarindus indica Species 0.000 description 1
- 235000004298 Tamarindus indica Nutrition 0.000 description 1
- 241001441724 Tetraodontidae Species 0.000 description 1
- 241000251733 Tetronarce californica Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 1
- 206010047513 Vision blurred Diseases 0.000 description 1
- RRGMXBQMCUKRLH-CTNGQTDRSA-N [(3ar,8bs)-3,4,8b-trimethyl-2,3a-dihydro-1h-pyrrolo[2,3-b]indol-7-yl] n-heptylcarbamate Chemical compound C12=CC(OC(=O)NCCCCCCC)=CC=C2N(C)[C@@H]2[C@@]1(C)CCN2C RRGMXBQMCUKRLH-CTNGQTDRSA-N 0.000 description 1
- PBHFNBQPZCRWQP-QUCCMNQESA-N [(3ar,8bs)-3,4,8b-trimethyl-2,3a-dihydro-1h-pyrrolo[2,3-b]indol-7-yl] n-phenylcarbamate Chemical compound CN([C@@H]1[C@@](C2=C3)(C)CCN1C)C2=CC=C3OC(=O)NC1=CC=CC=C1 PBHFNBQPZCRWQP-QUCCMNQESA-N 0.000 description 1
- PJVJTCIRVMBVIA-UHFFFAOYSA-N [dimethylamino(ethoxy)phosphoryl]formonitrile Chemical compound CCOP(=O)(C#N)N(C)C PJVJTCIRVMBVIA-UHFFFAOYSA-N 0.000 description 1
- PJVJTCIRVMBVIA-JTQLQIEISA-N [dimethylamino(ethoxy)phosphoryl]formonitrile Chemical compound CCO[P@@](=O)(C#N)N(C)C PJVJTCIRVMBVIA-JTQLQIEISA-N 0.000 description 1
- 229940124532 absorption promoter Drugs 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 206010000496 acne Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 238000005575 aldol reaction Methods 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 125000006323 alkenyl amino group Chemical group 0.000 description 1
- 125000005136 alkenylsulfinyl group Chemical group 0.000 description 1
- 125000005137 alkenylsulfonyl group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 150000001348 alkyl chlorides Chemical class 0.000 description 1
- 125000005213 alkyl heteroaryl group Chemical group 0.000 description 1
- 125000004644 alkyl sulfinyl group Chemical group 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- 125000006319 alkynyl amino group Chemical group 0.000 description 1
- 125000005134 alkynylsulfinyl group Chemical group 0.000 description 1
- 125000005139 alkynylsulfonyl group Chemical group 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000002082 anti-convulsion Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000001022 anti-muscarinic effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229940039856 aricept Drugs 0.000 description 1
- 150000008430 aromatic amides Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- RKUNBYITZUJHSG-SPUOUPEWSA-N atropine Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)N2C)C(=O)C(CO)C1=CC=CC=C1 RKUNBYITZUJHSG-SPUOUPEWSA-N 0.000 description 1
- 229960000396 atropine Drugs 0.000 description 1
- VNKBTWQZTQIWDV-UHFFFAOYSA-N azamethiphos Chemical compound C1=C(Cl)C=C2OC(=O)N(CSP(=O)(OC)OC)C2=N1 VNKBTWQZTQIWDV-UHFFFAOYSA-N 0.000 description 1
- DLGYNVMUCSTYDQ-UHFFFAOYSA-N azane;pyridine Chemical compound N.C1=CC=NC=C1 DLGYNVMUCSTYDQ-UHFFFAOYSA-N 0.000 description 1
- 125000002785 azepinyl group Chemical group 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- CJJOSEISRRTUQB-UHFFFAOYSA-N azinphos-methyl Chemical group C1=CC=C2C(=O)N(CSP(=S)(OC)OC)N=NC2=C1 CJJOSEISRRTUQB-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000012455 biphasic mixture Substances 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- SIPUZPBQZHNSDW-UHFFFAOYSA-N bis(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000005997 bromomethyl group Chemical group 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 238000007623 carbamidomethylation reaction Methods 0.000 description 1
- 229960001631 carbomer Drugs 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 229940096529 carboxypolymethylene Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- MTFJSAGADRTKCI-VMPITWQZSA-N chembl77510 Chemical compound O\N=C\C1=CC=CC=N1 MTFJSAGADRTKCI-VMPITWQZSA-N 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 125000004775 chlorodifluoromethyl group Chemical group FC(F)(Cl)* 0.000 description 1
- 125000004773 chlorofluoromethyl group Chemical group [H]C(F)(Cl)* 0.000 description 1
- SBPBAQFWLVIOKP-UHFFFAOYSA-N chlorpyrifos Chemical compound CCOP(=S)(OCC)OC1=NC(Cl)=C(Cl)C=C1Cl SBPBAQFWLVIOKP-UHFFFAOYSA-N 0.000 description 1
- 230000001713 cholinergic effect Effects 0.000 description 1
- 239000002779 cholinesterase reactivator Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000003026 cod liver oil Substances 0.000 description 1
- 235000012716 cod liver oil Nutrition 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000012059 conventional drug carrier Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000037029 cross reaction Effects 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000005366 cycloalkylthio group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000006240 deamidation Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- FHIVAFMUCKRCQO-UHFFFAOYSA-N diazinon Chemical compound CCOP(=S)(OCC)OC1=CC(C)=NC(C(C)C)=N1 FHIVAFMUCKRCQO-UHFFFAOYSA-N 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 125000004774 dichlorofluoromethyl group Chemical group FC(Cl)(Cl)* 0.000 description 1
- OEBRKCOSUFCWJD-UHFFFAOYSA-N dichlorvos Chemical compound COP(=O)(OC)OC=C(Cl)Cl OEBRKCOSUFCWJD-UHFFFAOYSA-N 0.000 description 1
- 229950001327 dichlorvos Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- JXSJBGJIGXNWCI-UHFFFAOYSA-N diethyl 2-[(dimethoxyphosphorothioyl)thio]succinate Chemical compound CCOC(=O)CC(SP(=S)(OC)OC)C(=O)OCC JXSJBGJIGXNWCI-UHFFFAOYSA-N 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 229960002017 echothiophate Drugs 0.000 description 1
- BJOLKYGKSZKIGU-UHFFFAOYSA-N ecothiopate Chemical compound CCOP(=O)(OCC)SCC[N+](C)(C)C BJOLKYGKSZKIGU-UHFFFAOYSA-N 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 229950010753 eptastigmine Drugs 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 150000002169 ethanolamines Chemical class 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- LIWAQLJGPBVORC-UHFFFAOYSA-N ethylmethylamine Chemical compound CCNC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- ZNOLGFHPUIJIMJ-UHFFFAOYSA-N fenitrothion Chemical compound COP(=S)(OC)OC1=CC=C([N+]([O-])=O)C(C)=C1 ZNOLGFHPUIJIMJ-UHFFFAOYSA-N 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 230000022244 formylation Effects 0.000 description 1
- 238000006170 formylation reaction Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229960003980 galantamine Drugs 0.000 description 1
- ASUTZQLVASHGKV-UHFFFAOYSA-N galanthamine hydrochloride Natural products O1C(=C23)C(OC)=CC=C2CN(C)CCC23C1CC(O)C=C2 ASUTZQLVASHGKV-UHFFFAOYSA-N 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000010492 gellan gum Nutrition 0.000 description 1
- 239000000216 gellan gum Substances 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 229920000591 gum Polymers 0.000 description 1
- 235000019314 gum ghatti Nutrition 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000004992 haloalkylamino group Chemical group 0.000 description 1
- 125000004440 haloalkylsulfinyl group Chemical group 0.000 description 1
- 125000004441 haloalkylsulfonyl group Chemical group 0.000 description 1
- 125000004995 haloalkylthio group Chemical group 0.000 description 1
- 125000005283 haloketone group Chemical group 0.000 description 1
- 239000007902 hard capsule Substances 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 125000004415 heterocyclylalkyl group Chemical group 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- ZRJBHWIHUMBLCN-YQEJDHNASA-N huperzine A Chemical compound N1C(=O)C=CC2=C1C[C@H]1\C(=C/C)[C@]2(N)CC(C)=C1 ZRJBHWIHUMBLCN-YQEJDHNASA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 125000002632 imidazolidinyl group Chemical group 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 239000012729 immediate-release (IR) formulation Substances 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 238000005040 ion trap Methods 0.000 description 1
- 238000000534 ion trap mass spectrometry Methods 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- SRJOCJYGOFTFLH-UHFFFAOYSA-N isonipecotic acid Chemical compound OC(=O)C1CCNCC1 SRJOCJYGOFTFLH-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 125000004628 isothiazolidinyl group Chemical group S1N(CCC1)* 0.000 description 1
- 125000003971 isoxazolinyl group Chemical group 0.000 description 1
- 235000010494 karaya gum Nutrition 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 229960001375 lactose Drugs 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- OVEHNNQXLPJPPL-UHFFFAOYSA-N lithium;n-propan-2-ylpropan-2-amine Chemical compound [Li].CC(C)NC(C)C OVEHNNQXLPJPPL-UHFFFAOYSA-N 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 235000012245 magnesium oxide Nutrition 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229940057948 magnesium stearate Drugs 0.000 description 1
- 229960000453 malathion Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- GHZKGHQGPXBWSN-UHFFFAOYSA-N methyl(propan-2-yloxy)phosphinic acid Chemical compound CC(C)OP(C)(O)=O GHZKGHQGPXBWSN-UHFFFAOYSA-N 0.000 description 1
- MGJXBDMLVWIYOQ-UHFFFAOYSA-N methylazanide Chemical compound [NH-]C MGJXBDMLVWIYOQ-UHFFFAOYSA-N 0.000 description 1
- SNVLJLYUUXKWOJ-UHFFFAOYSA-N methylidenecarbene Chemical compound C=[C] SNVLJLYUUXKWOJ-UHFFFAOYSA-N 0.000 description 1
- 229960001952 metrifonate Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 239000003149 muscarinic antagonist Substances 0.000 description 1
- YMZYXRXAOBGMQY-UHFFFAOYSA-N n-(4-acetyl-3,5-dimethylphenyl)acetamide Chemical compound CC(=O)NC1=CC(C)=C(C(C)=O)C(C)=C1 YMZYXRXAOBGMQY-UHFFFAOYSA-N 0.000 description 1
- 125000006606 n-butoxy group Chemical group 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 239000006225 natural substrate Substances 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229960002362 neostigmine Drugs 0.000 description 1
- LULNWZDBKTWDGK-UHFFFAOYSA-M neostigmine bromide Chemical compound [Br-].CN(C)C(=O)OC1=CC=CC([N+](C)(C)C)=C1 LULNWZDBKTWDGK-UHFFFAOYSA-M 0.000 description 1
- 239000003958 nerve gas Substances 0.000 description 1
- 210000000715 neuromuscular junction Anatomy 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000007339 nucleophilic aromatic substitution reaction Methods 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000012053 oil suspension Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 229940126701 oral medication Drugs 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 125000000160 oxazolidinyl group Chemical group 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- LCCNCVORNKJIRZ-UHFFFAOYSA-N parathion Chemical compound CCOP(=S)(OCC)OC1=CC=C([N+]([O-])=O)C=C1 LCCNCVORNKJIRZ-UHFFFAOYSA-N 0.000 description 1
- RLBIQVVOMOPOHC-UHFFFAOYSA-N parathion-methyl Chemical compound COP(=S)(OC)OC1=CC=C([N+]([O-])=O)C=C1 RLBIQVVOMOPOHC-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- LMNZTLDVJIUSHT-UHFFFAOYSA-N phosmet Chemical compound C1=CC=C2C(=O)N(CSP(=S)(OC)OC)C(=O)C2=C1 LMNZTLDVJIUSHT-UHFFFAOYSA-N 0.000 description 1
- 125000005328 phosphinyl group Chemical group [PH2](=O)* 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 125000005499 phosphonyl group Chemical group 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical group [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 229960003456 pralidoxime chloride Drugs 0.000 description 1
- 125000001844 prenyl group Chemical group [H]C([*])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229940109581 protopam Drugs 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000002755 pyrazolinyl group Chemical group 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- ZRJBHWIHUMBLCN-BMIGLBTASA-N rac-huperzine A Natural products N1C(=O)C=CC2=C1C[C@@H]1C(=CC)[C@@]2(N)CC(C)=C1 ZRJBHWIHUMBLCN-BMIGLBTASA-N 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000012048 reactive intermediate Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 229960004136 rivastigmine Drugs 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000012321 sodium triacetoxyborohydride Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 210000000225 synapse Anatomy 0.000 description 1
- 229960001685 tacrine Drugs 0.000 description 1
- YLJREFDVOIBQDA-UHFFFAOYSA-N tacrine Chemical compound C1=CC=C2C(N)=C(CCCC3)C3=NC2=C1 YLJREFDVOIBQDA-UHFFFAOYSA-N 0.000 description 1
- ROUYFJUVMYHXFJ-UHFFFAOYSA-N tert-butyl 4-oxopiperidine-1-carboxylate Chemical compound CC(C)(C)OC(=O)N1CCC(=O)CC1 ROUYFJUVMYHXFJ-UHFFFAOYSA-N 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- UBCKGWBNUIFUST-YHYXMXQVSA-N tetrachlorvinphos Chemical compound COP(=O)(OC)O\C(=C/Cl)C1=CC(Cl)=C(Cl)C=C1Cl UBCKGWBNUIFUST-YHYXMXQVSA-N 0.000 description 1
- 125000006092 tetrahydro-1,1-dioxothienyl group Chemical group 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000006090 thiamorpholinyl sulfone group Chemical group 0.000 description 1
- 125000006089 thiamorpholinyl sulfoxide group Chemical group 0.000 description 1
- 125000001984 thiazolidinyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 231100000133 toxic exposure Toxicity 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- 125000004665 trialkylsilyl group Chemical group 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- NFACJZMKEDPNKN-UHFFFAOYSA-N trichlorfon Chemical compound COP(=O)(OC)C(O)C(Cl)(Cl)Cl NFACJZMKEDPNKN-UHFFFAOYSA-N 0.000 description 1
- GGUBFICZYGKNTD-UHFFFAOYSA-N triethyl phosphonoacetate Chemical compound CCOC(=O)CP(=O)(OCC)OCC GGUBFICZYGKNTD-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/4439—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/4545—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4709—Non-condensed quinolines and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/496—Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/24—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D213/36—Radicals substituted by singly-bound nitrogen atoms
- C07D213/38—Radicals substituted by singly-bound nitrogen atoms having only hydrogen or hydrocarbon radicals attached to the substituent nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/61—Halogen atoms or nitro radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/62—Oxygen or sulfur atoms
- C07D213/63—One oxygen atom
- C07D213/64—One oxygen atom attached in position 2 or 6
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/62—Oxygen or sulfur atoms
- C07D213/63—One oxygen atom
- C07D213/65—One oxygen atom attached in position 3 or 5
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/16—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D215/20—Oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/16—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D215/20—Oxygen atoms
- C07D215/22—Oxygen atoms attached in position 2 or 4
- C07D215/227—Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/08—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
- C07D295/096—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D317/00—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D317/08—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
- C07D317/44—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D317/46—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
- C07D317/48—Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
- C07D317/50—Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring
- C07D317/58—Radicals substituted by nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/06—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/06—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
Definitions
- Acetylcholinesterase is a serine hydrolase that is responsible for the hydrolysis of the neurotransmitter acetylcholine (ACh).
- AChE Upon inhibition of AChE by an organophosphorus (OP) pesticide or chemical warfare agent, ACh begins to accumulate, triggering uncontrolled nerve impulses, which leads to the undesired effects of blurred vision, seizures, respiratory failure, and ultimately death.
- OP organophosphorus
- AChE inhibition of AChE by an OP begins in a fashion analogous to the hydrolysis of the enzyme's natural substrate, ACh.
- OP compounds readily enter the active site of AChE, where the nucleophilic serine residue of the catalytic triad forms a covalent bond with the electrophilic phosphorus, and in turn displaces a leaving group from the OP.
- this is where the similarities between ACh substrate turnover and OP inhibition end.
- a significant amount of research has been devoted to developing drug-like molecules that are capable of reversing this inhibition. It has been shown that charged oximes, such as 2-PAM, are capable of regenerating active AChE through a phosphyl transfer reaction between the nucleophilic oximate and the phosphylated serine in the active site of the aged enzyme.
- charged oximes such as 2-PAM
- the level of complexity of OP inhibition is taken a step further by a secondary process known as “aging”. Aging occurs by the spontaneous dealkylation of an O—R group bound to the phosphorus center of the OP-inhibited AChE. Aging is problematic, as after this process occurs, oximes are no longer an effective treatment method, and to date there have been no successful reports of resurrecting aged AChE to regain the desired and native catalytic function for AChE.
- Steinberg and co-workers developed a unique family of phenylacyl bromide alkylators that could react with a model phosphonate anion.
- G. M. Steinberg, et al., J Med Chem 13, 435-446 (1970) Following realkylation by Steinberg's compounds, hydrolysis leading to departure of the p-nitrophenol was explored. Steinberg hypothesized that intramolecular coordination of the carbonyl incorporated in their alkylators would enhance the rate of hydrolysis of the p-nitrophenol group.
- Steinberg and co-workers no in vitro alkylation of aged AChE was observed by Steinberg and co-workers.
- the Quinn group reported the methylation of a methyl methanephosphonate anion as an aqueous model for the aged AChE-OP adduct using N-methyl-2-methoxypyridinium methyl transfer reagents. While successful alkylation of a phosphonate model system was observed (40% alkylation in less than 10 min for 3-fluoro-N-methyl-2-methoxypyridinium), none of the alkylators tested showed any ability to resurrect in vitro aged AChE in preliminary studies.
- acetylcholinesterase can be in the central nerve system (CNS) and/or the peripheral nervous system (PNS). Accordingly, methods for ameliorating, diminishing, reversing, treating or preventing the toxic effects of an organophosphorus compound in a subject are provided herein. Methods for prophylactic or therapeutic treatment of exposure to an organophosphorus nerve agent are also provided.
- the methods disclosed herein can include administering a composition comprising a prophylactically or therapeutically effective amount of a compound having a structure represented below.
- the compound can be administered in combination with a second compound that reverses inhibition of acetylcholinesterase by the organophosphorus compound.
- the second compound does not cross the blood brain barrier.
- the compositions disclosed herein can be administered enterally or parenterally.
- the compound in other embodiments of Formula I, can be represented by a structure having the Formula II-H to II-Q:
- compositions or formulations comprising a compound represented by a structure described herein and a pharmaceutically acceptable excipient are also disclosed.
- FIG. 1A-1C shows general structures of quinone methides (QMs; top) and quinone methide precursors (QMPs; bottom).
- FIG. 1B shows a nucleophile can substitute the leaving group of QMP by either an S N 2 reaction or formation of the corresponding QM.
- FIG. 1C shows structures of PiMP, DFP, and their aged AChE adducts.
- FIG. 2 shows a snapshot obtained from a 1 ns MD simulation, demonstrating a protonated QMP (C8) near the active site of aged AChE (wall-eyed stereo).
- the electrophilic carbon is ⁇ 4.2 ⁇ from the phosphylated oxyanion, and the QMP. Hydrogen bonds with short contact distances are shown (dashed lines).
- FIGS. 3A-3C show screening of QMPs against aged electric eel AChE (eeAChE, pH 8, 1 day).
- FIG. 3A shows structures of QMPs.
- FIG. 3B shows screening of the C series QMPs against methylphosphonate-aged eeAChE and FIG. 3C against isopropyl phosphate-aged eeAChE.
- the horizontal dotted and the dashed lines mark the negative controls and 2-PAM controls, respectively.
- the error bars reflect standard deviations from four replicate efforts.
- FIGS. 4A-4B show kinetics of realkylation of aged eeAChE by C8 at pH 8 for isopropyl phosphate-aged eeAChE ( FIG. 4A ) and for methylphosphonate-aged eeAChE ( FIG. 4 b ).
- the dashed lines illustrate the result of linear regression.
- FIGS. 5A-5D shows influence of C8 protonation states on spectra and binding.
- FIG. 5A shows 1 H NMR spectra of the aromatic protons and
- FIG. 5B shows UV-vis spectra of C8 as pH is varied from 6 ⁇ 9.
- FIG. 5C shows the four most probable protonation states of C8 at pH 8-9.
- FIG. 5D shows a representative snapshot in the MD simulation of C8c (wall-eyed stereo). Hydrogen bonds with short contact distances are shown (dashed lines).
- FIG. 6 shows kinetics of resurrection of isopropyl phosphate-aged human AChE (huAChE) by C8 (pH 9). Inset shows the positive control over the same time frame.
- FIG. 7 shows structures of compounds disclosed herein.
- a “subject” is meant an individual.
- the “subject” can include domesticated animals (e.g., cats, dogs, etc.), livestock (e.g., cattle, horses, pigs, sheep, goats, etc.), laboratory animals (e.g., mouse, rabbit, rat, guinea pig, etc.), and birds.
- “Subject” can also include a mammal, such as a primate or a human.
- reducing or other forms of the word, such as “reducing” or “reduction,” is meant lowering of an event or characteristic. It is understood that this is typically in relation to some standard or expected value, in other words it is relative, but that it is not always necessary for the standard or relative value to be referred to.
- reducing the toxic effects of an organophosphorus compound can refer to reducing the rate of inhibition of the enzyme acetylcholinesterase relative to a standard or a control.
- prevent or other forms of the word, such as “preventing” or “prevention,” is meant to stop a particular event or characteristic, to stabilize or delay the development or progression of a particular event or characteristic, or to minimize the chances that a particular event or characteristic will occur. Prevent does not require comparison to a control as it is typically more absolute than, for example, reduce. As used herein, something could be reduced but not prevented, but something that is reduced could also be prevented. Likewise, something could be prevented but not reduced, but something that is prevented could also be reduced. It is understood that where reduce or prevent are used, unless specifically indicated otherwise, the use of the other word is also expressly disclosed.
- treat or other forms of the word, such as “treated” or “treatment,” is meant to administer a composition or to perform a method in order to reduce, prevent, inhibit, or eliminate a particular characteristic or event (e.g., a biofilm).
- control is used synonymously with the terms “treat” and “modulate.”
- an “effective amount” of a compound or composition disclosed herein is that amount which is necessary to carry out the compound's or composition's function of ameliorating, diminishing, reversing, treating or preventing the toxic effects of an organophosphorus compound in a subject.
- alkyl refers to saturated straight, branched, cyclic, primary, secondary or tertiary hydrocarbons, including those having 1 to 20 atoms.
- alkyl groups will include C 1 -C 12 , C 1 -C 10 , C 1 -C 8 , C 1 -C 6 , C 1 -C 5 , C 1 -C 4 , C 1 -C 3 , C 1 -C 2 , or C 1 alkyl groups.
- C 1 -C 10 alkyl groups include, but are not limited to, methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl,
- C 1 -C 4 -alkyl groups include, for example, methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl and 1,1-dimethylethyl groups.
- Cyclic alkyl groups or “cycloalkyl” groups which are encompassed alkyl, include cycloalkyl groups having from 3 to 10 carbon atoms. Cycloalkyl groups can include a single ring, or multiple condensed rings. In some embodiments, cycloalkyl groups include C 3 -C 4 , C 4 -C 7 , C 5 -C 7 , C 4 -C 6 , or C 5 -C 6 cyclic alkyl groups.
- Non-limiting examples of cycloalkyl groups include adamantyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like.
- Alkyl groups can be unsubstituted or substituted with one or more moieties selected from the group consisting of alkyl, halo, haloalkyl, hydroxyl, carboxyl, acyl, acyloxy, amino, alkyl- or dialkylamino, amido, arylamino, alkoxy, aryloxy, nitro, cyano, azido, thiol, imino, sulfonic acid, sulfate, sulfonyl, sulfanyl, sulfinyl, sulfamonyl, ester, phosphonyl, phosphinyl, phosphoryl, phosphine, thioester, thioether, acid halide, anhydride, oxime, hydrazine, carbamate, phosphoric acid, phosphate, phosphonate, or any other viable functional group that does not inhibit the biological activity of the compounds of the invention, either unprotecte
- alkyl such as “alkylcycloalkyl,” “cycloalkylalkyl,” “alkylamino,” or “dialkylamino,” will be understood to comprise an alkyl group as defined above linked to another functional group, where the group is linked to the compound through the last group listed, as understood by those of skill in the art.
- alkenyl refers to both straight and branched carbon chains which have at least one carbon-carbon double bond.
- alkenyl groups can include C 2 -C 20 alkenyl groups.
- alkenyl can include C 2 -C 12 , C 2 -C 10 , C 2 -C 8 , C 2 -C 6 or C 2 -C 4 alkenyl groups.
- the number of double bonds is 1-3, in another embodiment of alkenyl, the number of double bonds is one or two. Other ranges of carbon-carbon double bonds and carbon numbers are also contemplated depending on the location of the alkenyl moiety on the molecule.
- C 2 -C 10 -alkenyl groups may include more than one double bond in the chain.
- the one or more unsaturations within the alkenyl group may be located at any position(s) within the carbon chain as valence permits.
- the carbon atom(s) in the alkenyl group that are covalently bound to the one or more additional moieties are not part of a carbon-carbon double bond within the alkenyl group.
- alkenyl groups include, but are not limited to, ethenyl, 1-propenyl, 2-propenyl, 1-methyl-ethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl; 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,1-dimethyl-2-propenyl, 1,2-dimethyl-1-propenyl, 1,2-dimethyl-2-propenyl, 1-ethyl-1-propenyl, 1-ethyl
- alkynyl refers to both straight and branched carbon chains which have at least one carbon-carbon triple bond.
- the number of triple bonds is 1-3; in another embodiment of alkynyl, the number of triple bonds is one or two.
- alkynyl groups include from C 2 -C 20 alkynyl groups.
- alkynyl groups may include C 2 -C 12 , C 2 -C 10 , C 2 -C 8 , C 2 -C 6 or C 2 -C 4 alkynyl groups.
- Other ranges of carbon-carbon triple bonds and carbon numbers are also contemplated depending on the location of the alkenyl moiety on the molecule.
- C 2 -C 10 -alkynyl refers to a straight-chain or branched unsaturated hydrocarbon group having 2 to 10 carbon atoms and containing at least one triple bond, such as ethynyl, prop-1-yn-1-yl, prop-2-yn-1-yl, n-but-1-yn-1-yl, n-but-1-yn-3-yl, n-but-1-yn-4-yl, n-but-2-yn-1-yl, n-pent-1-yn-1-yl, n-pent-1-yn-3-yl, n-pent-1-yn-4-yl, n-pent-1-yn-5-yl, n-pent-2-yn-1-yl, n-pent-2-yn-4-yl, n-pent-2-yn-5-yl, 3-methylbut-1-yn-3-yl, 3-methylbut-1-yn-3-yl, 3-methyl
- haloalkyl or “alkylhalide,” as used herein refers to an alkyl group, as defined above, which is substituted by one or more halogen atoms.
- the haloalkyl group can be an alkyl group substituted by one or more fluorine atoms.
- the haloalkyl group can be a perfluorinated alkyl group.
- C 1 -C 4 -haloalkyl includes, but is not limited to, chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, and pentafluoroethyl.
- alkoxy refers to alkyl-O—, wherein alkyl refers to an alkyl group, as defined above.
- alkenyloxy refers to the groups alkenyl-O—, alkynyl-O—, haloalkyl-O—, haloalkenyl-O—, haloalkynyl-O—, cycloalkyl-O—, cycloalkenyl-O—, halocycloalkyl-O—, and halocycloalkenyl-O—, respectively, wherein alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkenyl, haloalkenyl, halocycloalkyl-O—, and halocycloalkenyl-O—, respectively, wherein alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkenyl, haloal
- C 1 -C 6 -alkoxy examples include, but are not limited to, methoxy, ethoxy, C 2 H 5 —CH 2 O—, (CH 3 ) 2 CHO—, n-butoxy, C 2 H 5 —CH(CH 3 )O—, (CH 3 ) 2 CH—CH 2 O—, (CH 3 ) 3 CO—, n-pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 2,2-dimethyl-propoxy, 1-ethylpropoxy, n-hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1,1,2-trimethylprop
- alkylamino and dialkylamino refer to alkyl-NH— and (alkyl) 2 N—groups, where alkyl is as defined above.
- haloalkylamino and halodialkylamino refer to haloalkyl-NH— and (haloalkyl) 2 -NH—, where haloalkyl is as defined above.
- aryl refers to a monovalent aromatic carbocyclic group of from 6 to 14 carbon atoms.
- Aryl groups can include a single ring or multiple condensed rings. In some embodiments, aryl groups include C 6 -C 10 aryl groups.
- Aryl groups include, but are not limited to, phenyl, biphenyl, naphthyl, tetrahydronaphtyl, phenylcyclopropyl and indanyl.
- Aryl groups may be unsubstituted or substituted by one or more moieties selected from halogen, cyano, nitro, hydroxy, mercapto, amino, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, haloalkyl, haloalkenyl, haloalkynyl, halocycloalkyl, halocycloalkenyl, alkoxy, alkenyloxy, alkynyloxy, haloalkoxy, haloalkenyloxy, haloalkynyloxy, cycloalkoxy, cycloalkenyloxy, halocycloalkoxy, halocycloalkenyloxy, alkylthio, haloalkylthio, cycloalkylthio, halocycloalkylthio, alkylsulfinyl, alkenylsulfinyl, alky
- alkylaryl refers to an aryl group that is bonded to a parent compound through a diradical alkylene bridge, (—CH 2 —) n , where n is 1-12 and where “aryl” is as defined above.
- alkylcycloalkyl refers to a cycloalkyl group that is bonded to a parent compound through a diradical alkylene bridge, (—CH 2 —) n , where n is 1-12 and where “cycloalkyl” is as defined above.
- cycloalkylalkyl refers to a cycloalkyl group, as defined above, which is substituted by an alkyl group, as defined above.
- heteroaryl refers to a monovalent aromatic group of from 1 to 15 carbon atoms (e.g., from 1 to 10 carbon atoms, from 2 to 8 carbon atoms, from 3 to 6 carbon atoms, or from 4 to 6 carbon atoms) having one or more heteroatoms within the ring.
- the heteroaryl group can include from 1 to 4 heteroatoms, from 1 to 3 heteroatoms, or from 1 to 2 heteroatoms.
- the heteroatom(s) incorporated into the ring are oxygen, nitrogen, sulfur, or combinations thereof. When present, the nitrogen and sulfur heteroatoms may optionally be oxidized.
- Heteroaryl groups can have a single ring (e.g., pyridyl or furyl) or multiple condensed rings provided that the point of attachment is through a heteroaryl ring atom.
- Preferred heteroaryls include pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, pyrrolyl, indolyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, furanyl, thiophenyl, furyl, pyrrolyl, imidazolyl, oxazolyl, isoxazolyl, isothiazolyl, pyrazolyl, benzofuranyl, and benzothiophenyl.
- Heteroaryl rings may be unsubstituted or substituted by one or more moieties as described for aryl above.
- alkylheteroaryl refers to a heteroaryl group that is bonded to a parent compound through a diradical alkylene bridge, (—CH 2 —) n , where n is 1-12 and where “heteroaryl” is as defined above.
- cycloheteroalkyl refers to fully saturated or unsaturated, cyclic groups, for example, 3 to 7 membered monocyclic or 4 to 7 membered monocyclic; 7 to 11 membered bicyclic, or 10 to 15 membered tricyclic ring systems, having one or more heteroatoms within the ring.
- the heterocyclyl group can include from 1 to 4 heteroatoms, from 1 to 3 heteroatoms, or from 1 to 2 heteroatoms.
- the heteroatom(s) incorporated into the ring are oxygen, nitrogen, sulfur, or combinations thereof.
- the nitrogen and sulfur heteroatoms may optionally be oxidized, and the nitrogen heteroatoms may optionally be quaternized.
- the heterocyclyl group may be attached at any heteroatom or carbon atom of the ring or ring system and may be unsubstituted or substituted by one or more moieties as described for aryl groups above.
- Exemplary monocyclic heterocyclic groups include, but are not limited to, pyrrolidinyl, pyrrolyl, pyrazolyl, oxetanyl, pyrazolinyl, imidazolyl, imidazolinyl, imidazolidinyl, oxazolyl, oxazolidinyl, isoxazolinyl, isoxazolyl, thiazolyl, thiadiazolyl, thiazolidinyl, isothiazolyl, isothiazolidinyl, furyl, tetrahydrofuryl, thienyl, oxadiazolyl, piperidinyl, piperazinyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolodinyl, 2-oxoazepinyl, azepinyl, 4-piperidonyl, pyridinyl, pyrazinyl, pyrimidin
- alkylheterocyclyl and “alkylcycloheteroalkyl” are used herein interchangeably, and refer to a heterocyclyl group that is bonded to a parent compound through a diradical alkylene bridge, (—CH 2 —) n , where n is 1-12 and where “heterocyclyl” is as defined above.
- heterocyclylalkyl refers to a heterocyclyl group, as defined above, which is substituted by an alkyl group, as defined above.
- halogen refers to the atoms fluorine, chlorine, bromine and iodine.
- halo- e.g., as illustrated by the term haloalkyl
- haloalkyl refers to all degrees of halogen substitution, from a single substitution to a perhalo substitution (e.g., as illustrated with methyl as chloromethyl (—CH 2 Cl), dichloromethyl (—CHCl 2 ), trichloromethyl (—CCl 3 )).
- the term “substituted” is contemplated to include all permissible substituents of organic compounds.
- the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, and aromatic and nonaromatic substituents of organic compounds.
- Illustrative substituents include, for example, those described below.
- the permissible substituents can be one or more and the same or different for appropriate organic compounds.
- the heteroatoms, such as nitrogen can have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms.
- substitution or “substituted with” include the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., a compound that does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc.
- pyridine and pyridinium electrophiles for reactivation and/or realkylating of acetylcholinesterase inhibited by or conjugated to an organophosphorus compound.
- the compound can have a structure represented by Formula I:
- R 2′ is present and represents a C 1 -C 4 alkyl group. In certain embodiments of Formula I, R 2′ is absent. In certain embodiments of Formula I, R 1 and R 2′ or R 2 and R 2′ combine to form a 5 to 7 membered aliphatic ring.
- the compounds disclosed herein can have a structure represented by Formula II:
- the compound can be represented by a structure having the Formula II-A to II-G:
- R 3 is absent. In other examples, R 3 is present. In some examples, R 4 is absent. In other examples, R 4 is present. In still other examples, more than one R 4 are present. When present, R 3 and R 4 can be independently selected from hydrogen, C 1 -C 6 alkyl, halogen, C 1 -C 6 alkyl halide, C 1 -C 6 alkoxy, nitrile, amine, alkylamine, alkylammonium, or an acetylcholinesterase inhibitor.
- the compounds disclosed herein can be represented by a structure having the Formula II-A-1:
- the compounds disclosed herein can be represented by a structure having the Formula II-A-1′:
- the compounds disclosed herein can be represented by a structure having the Formula II-A-2:
- the compound can be selected from:
- the compound can be selected from:
- the compound can be selected from:
- the compound is represented by a structure having the Formula II-H-1:
- the compound is represented by a structure having the Formula:
- the compound can have a structure represented by Formula III:
- R 1 and R 2 can combine to form a monocyclic heterocyclic group, a bicyclic heterocyclic group, or a tricyclic heterocyclic group.
- R 1 and R 2 can combine to form a substituted or unsubstituted pyrrolidine, substituted or unsubstituted piperidine, substituted or unsubstituted piperazine, substituted or unsubstituted morpholine, wherein the substituent can be selected from C 1 -C 6 alkyl, C 1 -C 6 alkyl halide, C 1 -C 6 alkoxy, hydroxyl, halogen, amine, alkylamine, and alkylammonium.
- the compound can be represented by a structure having the Formula III-A to III-G:
- the compound can have a structure represented by Formula IV:
- R 1 and R 2 can combine to form a monocyclic heterocyclic group, a bicyclic heterocyclic group, or a tricyclic heterocyclic group.
- R 1 and R 2 can combine to form a substituted or unsubstituted pyrrolidine, substituted or unsubstituted piperidine, substituted or unsubstituted piperazine, substituted or unsubstituted morpholine, wherein the substituent can be selected from C 1 -C 6 alkyl, C 1 -C 6 alkyl halide, C 1 -C 6 alkoxy, hydroxyl, halogen, amine, alkylamine, and alkylammonium.
- the compound can be represented by a structure having the Formula IV-A:
- the acetylcholinesterase inhibitor can be selected from (-)-phenserine, donepezil, rivastigmine, metrifonate, tacrine, physostigmine, (-) carbamates, eptastigmine, galantamine, huperzine A and pharmaceutically acceptable salts and esters thereof.
- the acetylcholinesterase inhibitor can be donepezil.
- the compounds disclosed herein can be represented by a structure having the Formula IV-B:
- the compounds described herein can realkylate aged acetylcholinesterase.
- progressive inhibition of cholinesterases by organophosphates results from phosphorylation of the active-site serine.
- Phosphorylated cholinesterases may undergo a dealkylation reaction of the organophosphorus moiety leading to “aged” enzyme, i.e. conversion of the inhibited enzyme into a non-reactivable form.
- the compounds described herein can realkylate the anionic aged acetylcholinesterase adduct, which produce a neutral phosphyl adduct or another charged adduct that can be reactivated by a compound as described herein or known medicinal agents for reactivating acetylcholinesterase.
- compositions comprising a realkylated phosphyl adduct, the realkylated phosphyl adduct produced by a method comprising contacting aged acetylcholinesterase with a composition comprising an effective amount of a compound provided herein, and allowing the compound to react with the aged acetylcholinesterase to produce the realkylated phosphyl adduct.
- compositions comprising a realkylated phosphyl adduct, the realkylated phosphyl adduct produced by a method comprising contacting a phosphonate anion with a composition comprising an effective amount of a compound provided herein, and allowing the compound to react with the phosphonate anion to produce the realkylated phosphyl adduct.
- a compound of Formula II-A-1 can react with the phosphonate anion as follows to produce one or more of Formulas A-Formula E:
- the disclosed compounds can be used therapeutically in combination with a pharmaceutically acceptable carrier.
- the carrier would naturally be selected to minimize any degradation of the active ingredient and to minimize any adverse side effects in the subject, as would be well known to one of skill in the art.
- the disclosed compounds may be in solution, suspension, incorporated into microparticles, liposomes, or cells, or formed into tablets, gels, or suppositories.
- Suitable carriers and their formulations are described in Remington: The Science and Practice of Pharmacy (22 nd ed.) eds. Loyd V. Allen, Jr., et al., Pharmaceutical Press, 2012.
- an appropriate amount of a pharmaceutically-acceptable salt is used in the formulation to render the formulation isotonic.
- the pharmaceutically-acceptable carrier include, but are not limited to, saline, Ringer's solution and dextrose solution.
- the pH of the solution is preferably from about 5 to about 8, and more preferably from about 7 to about 7.5.
- Further carriers include sustained release preparations such as semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, liposomes or microparticles. It will be apparent to those persons skilled in the art that certain carriers may be more preferable depending upon, for instance, the route of administration and concentration of composition being administered.
- Pharmaceutical carriers are known to those skilled in the art. These most typically would be standard carriers for administration of vaccines to humans, including solutions such as sterile water, saline, and buffered solutions at physiological pH.
- Pharmaceutical compositions may include carriers, thickeners, diluents, buffers, preservatives, surface active agents and the like in addition to the vaccine. Pharmaceutical compositions may also include one or more active ingredients such as antimicrobial agents, anti-inflammatory agents, anesthetics, and the like.
- the disclosed compounds are preferably formulated for delivery via intranasal, intramuscular, subcutaneous, parenteral, transdermal or sublingual administration.
- Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions.
- non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate.
- Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
- Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils.
- Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives may also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like.
- Parenteral administration of the disclosed compounds, if used, is generally characterized by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution of suspension in liquid prior to injection, or as emulsions.
- the disclosed compounds can be mixed with suitable additives, such as excipients, stabilizers or inert diluents, and brought by means of the customary methods into the suitable administration forms, such as tablets, coated tablets, hard capsules, aqueous, alcoholic, or oily solutions.
- suitable inert carriers are gum arabic, magnesia, magnesium carbonate, potassium phosphate, lactose, glucose, or starch, in particular, cornstarch.
- the preparation can be carried out both as dry and as moist granules.
- Suitable oily excipients or solvents are vegetable or animal oils, such as sunflower oil or cod liver oil.
- Suitable solvents for aqueous or alcoholic solutions are water, ethanol, sugar solutions, or mixtures thereof.
- Polyethylene glycols and polypropylene glycols are also useful as further auxiliaries for other administration forms.
- these compositions may contain microcrystalline cellulose, dicalcium phosphate, starch, magnesium stearate and lactose and/or other excipients, binders, extenders, disintegrants, diluents and lubricants known in the art.
- the disclosed compounds When administered by nasal aerosol or inhalation, the disclosed compounds may be prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.
- Suitable pharmaceutical formulations for administration in the form of aerosols or sprays are, for example, solutions, suspensions or emulsions of the compounds of the disclosure or their physiologically tolerable salts in a pharmaceutically acceptable solvent, such as ethanol or water, or a mixture of such solvents.
- the formulation may additionally contain other pharmaceutical auxiliaries such as surfactants, emulsifiers and stabilizers as well as a propellant.
- the disclosed compounds For subcutaneous or intravenous administration, the disclosed compounds, if desired with the substances customary therefore such as solubilizers, emulsifiers or further auxiliaries are brought into solution, suspension, or emulsion.
- the disclosed compounds may also be lyophilized and the lyophilizates obtained used, for example, for the production of injection or infusion preparations.
- Suitable solvents are, for example, water, physiological saline solution or alcohols, e.g. ethanol, propanol, glycerol, sugar solutions such as glucose or mannitol solutions, or mixtures of the various solvents mentioned.
- the injectable solutions or suspensions may be formulated according to known art, using suitable non-toxic, parenterally-acceptable diluents or solvents, such as mannitol, 1,3 butanediol, water, Ringer's solution or isotonic sodium chloride solution, or suitable dispersing or wetting and suspending agents, such as sterile, bland, fixed oils, including synthetic mono- or diglycerides, and fatty acids, including oleic acid.
- suitable non-toxic, parenterally-acceptable diluents or solvents such as mannitol, 1,3 butanediol, water, Ringer's solution or isotonic sodium chloride solution, or suitable dispersing or wetting and suspending agents, such as sterile, bland, fixed oils, including synthetic mono- or diglycerides, and fatty acids, including oleic acid.
- the formulations When rectally administered in the form of suppositories, the formulations may be prepared by mixing the compounds with a suitable non-irritating excipient, such as cocoa butter, synthetic glyceride esters or polyethylene glycols, which are solid at ordinary temperatures, but liquefy and/or dissolve in the rectal cavity to release the drug.
- a suitable non-irritating excipient such as cocoa butter, synthetic glyceride esters or polyethylene glycols, which are solid at ordinary temperatures, but liquefy and/or dissolve in the rectal cavity to release the drug.
- compositions comprising the disclosed compounds can be extended release formulations.
- Typical extended release formations utilize an enteric coating.
- a barrier is applied to oral medication that controls the location in the digestive system where it is absorbed. Enteric coatings prevent release of medication before it reaches the small intestine.
- Enteric coatings may contain polymers of polysaccharides, such as maltodextrin, xanthan, scleroglucan dextran, starch, alginates, pullulan, hyaloronic acid, chitin, chitosan and the like; other natural polymers, such as proteins (albumin, gelatin etc.), poly-L-lysine; sodium poly(acrylic acid); poly(hydroxyalkylmethacrylates) (for example poly(hydroxyethylmethacrylate)); carboxypolymethylene (for example CarbopolTM); carbomer; polyvinylpyrrolidone; gums, such as guar gum, gum arabic, gum karaya, gum ghatti, locust bean gum, tamarind gum, gellan gum, gum tragacanth, agar, pectin, gluten and the like; poly(vinyl alcohol); ethylene vinyl alcohol; polyethylene glycol (PEG); and cellulose ethers, such as hydroxy
- the choice of polymer will be determined by the nature of the active ingredient/drug that is employed in the composition of the disclosure as well as the desired rate of release.
- a higher molecular weight will, in general, provide a slower rate of release of drug from the composition.
- different degrees of substitution of methoxyl groups and hydroxypropoxyl groups will give rise to changes in the rate of release of drug from the composition.
- compositions of the disclosure in the form of coatings in which the polymer carrier is provided by way of a blend of two or more polymers of, for example, different molecular weights in order to produce a particular required or desired release profile.
- Microspheres of polylactide, polyglycolide, and their copolymers poly(lactide-co-glycolide) may be used to form sustained-release delivery systems.
- the disclosed compounds can be entrapped in the poly(lactide-co-glycolide) microsphere depot by a number of methods, including formation of a water-in-oil emulsion with water-borne compound and organic solvent-borne polymer (emulsion method), formation of a solid-in-oil suspension with solid compound dispersed in a solvent-based polymer solution (suspension method), or by dissolving the compound in a solvent-based polymer solution (dissolution method).
- emulsion method formation of a solid-in-oil suspension with solid compound dispersed in a solvent-based polymer solution
- dissolution method dissolving the compound in a solvent-based polymer solution
- Liposomal suspensions may also be prepared by conventional methods to produce pharmaceutically acceptable carriers. This may be appropriate for the delivery of free nucleosides, acyl nucleosides or phosphate ester prodrug forms of the nucleoside compounds according to the present disclosure.
- the exact amount of the compounds or compositions required will vary from subject to subject, depending on the species, age, weight and general condition of the subject, the severity of the allergic disorder being treated, the particular nucleic acid or vector used, its mode of administration and the like. Thus, it is not possible to specify an exact amount for every composition. However, an appropriate amount can be determined by one of ordinary skill in the art using only routine experimentation given the teachings herein. For example, effective dosages and schedules for administering the compositions may be determined empirically, and making such determinations is within the skill in the art. The dosage ranges for the administration of the compositions are those large enough to produce the desired effect in which the symptoms disorder are affected.
- the dosage should not be so large as to cause adverse side effects, such as unwanted cross-reactions, anaphylactic reactions, and the like.
- the dosage will vary with the age, condition, sex and extent of the disease in the patient, route of administration, or whether other drugs are included in the regimen, and can be determined by one of skill in the art.
- the dosage can be adjusted by the individual physician in the event of any counter indications. Dosage can vary, and can be administered in one or more dose administrations daily, for one or several days. Guidance can be found in the literature for appropriate dosages for given classes of pharmaceutical products.
- a typical dosage of the disclosed vaccine used alone might range from about 1 ⁇ g/kg to up to 100 mg/kg of body weight or more per vaccination, such as 10 ⁇ g/kg to 50 mg/kg, or 50 ⁇ g/kg to 10 mg/kg, depending on the factors mentioned above.
- Formulations for topical administration may include ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.
- Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
- Some of the disclosed compounds may potentially be administered as a pharmaceutically acceptable acid- or base-addition salt, formed by reaction with inorganic acids such as hydrochloric acid, hydrobromic acid, perchloric acid, nitric acid, thiocyanic acid, sulfuric acid, and phosphoric acid, and organic acids such as formic acid, acetic acid, propionic acid, glycolic acid, lactic acid, pyruvic acid, oxalic acid, malonic acid, succinic acid, maleic acid, and fumaric acid, or by reaction with an inorganic base such as sodium hydroxide, ammonium hydroxide, potassium hydroxide, and organic bases such as mono-, di-, trialkyl and aryl amines and substituted ethanolamines.
- inorganic acids such as hydrochloric acid, hydrobromic acid, perchloric acid, nitric acid, thiocyanic acid, sulfuric acid, and phosphoric acid
- organic acids such as formic acid, acetic acid, prop
- the pharmaceutical preparations of the disclosure are preferably in a unit dosage form, and may be suitably packaged, for example in a box, blister, vial, bottle, sachet, ampoule or in any other suitable single-dose or multi-dose holder or container (which may be properly labeled); optionally with one or more leaflets containing product information and/or instructions for use.
- unit dosages will contain between 1 and 1000 mg, and usually between 5 and 500 mg, of the at least one compound of the disclosure, e.g., about 10, 25, 50, 100, 200, 300 or 400 mg per unit dosage.
- the disclosed compositions can also be used to supplement existing treatments. Therefore, the disclosed compositions can further include (or be administered in combination with) a second compound that can ameliorate, diminishing, reversing, treating or preventing the toxic effects of an organophosphorus compound in a subject. For example, the disclosed compositions can further include (or be administered in combination with) one or more of antidotes for organophosphate exposure.
- the disclosed compounds can be administered with (in combination in the same composition, in combination but in separate compositions, or sequentially) carbamates (e.g., pyridostigmine), anti-muscarinics (e.g., atropine), cholinesterase reactivators (inhibited ChE-reactivators) such as pralidoxime chloride (2-PAM, Protopam), anti-convulsives, or organophosphorus bioscavengers.
- carbamates e.g., pyridostigmine
- anti-muscarinics e.g., atropine
- cholinesterase reactivators inhibitorted ChE-reactivators
- pralidoxime chloride 2-PAM, Protopam
- anti-convulsives or organophosphorus bioscavengers.
- compositions and formulations disclosed herein can be administered for prophylactic and/or therapeutic treatments.
- compositions are administered to a subject already exposed to a toxin, or exposed to any agent or chemical causing or resulting in excessive acetylcholine stimulation in the brain, e.g., exposure to an organophosphorus compound such as a nerve agent.
- the amount of pharmaceutical composition adequate to accomplish this is defined as a “therapeutically effective dose.”
- the dosage schedule and amounts effective for this use, i.e., the “dosing regimen,” will depend upon a variety of factors, including the stage of the condition, the severity of the condition, the general state of the patient's health, the patient's physical status, age and the like. In calculating the dosage regimen for a patient, the mode of administration also is taken into consideration.
- the dosage regimen also takes into consideration pharmacokinetics parameters well known in the art, i.e., the active agents' rate of absorption, bioavailability, metabolism, clearance, and the like (see, e.g., Hidalgo-Aragones (1996) J. Steroid Biochem. Mol. Biol. 58:611-617; Groning (1996) Pharmazie 51:337-341; Fotherby (1996) Contraception 54:59-69; Johnson (1995) J. Pharm. Sci. 84:1144-1146; Rohatagi (1995) Pharmazie 50:610-613; Brophy (1983) Eur. J. Clin. Pharmacol. 24:103-108; the latest Remington's, supra).
- pharmacokinetics parameters well known in the art, i.e., the active agents' rate of absorption, bioavailability, metabolism, clearance, and the like (see, e.g., Hidalgo-Aragones (1996) J. Steroid Biochem. Mol. Biol. 58:611-617
- the compounds and compositions disclosed herein provide antidotes which are able to “resurrect” the aged form of acetylcholinesterase (AChE) to an active, native state, realkylate the anionic aged form of AChE back to a neutral, phosphylated (inhibited) serine residue and then by reactivating the inhibited form to the native AChE.
- the compounds and compositions disclosed herein can reverse inhibition of acetylcholinesterase by an organophosphorus compound.
- the compounds and compositions disclosed herein can reactivate aged acetylcholinesterase inhibited by or conjugated to an organophosphorus compound.
- the compounds and compositions disclosed herein can realkylate aged acetylcholinesterase inhibited by or conjugated to an organophosphorus compound.
- the compounds and compositions disclosed herein provides methods for ameliorating, diminishing, reversing, treating or preventing the toxic effects of an organophosphorus compound in a subject. In certain embodiments, the compounds and compositions disclosed herein provides methods for ameliorating, diminishing, reversing, treating or preventing the toxic effects of an organophosphorus compound in the central nervous system of a subject. The method can include administering to the subject or an individual in need thereof, a compound or a composition disclosed herein.
- Also provided herein are methods for reactivating acetylcholinesterase inhibited by or conjugated to an organophosphorus compound comprising contacting the acetylcholinesterase with a composition comprising an effective amount of a compound having a structure described herein are provided.
- Methods for realkylating aged acetylcholinesterase inhibited by or conjugated to an organophosphorus compound comprising contacting the acetylcholinesterase with a composition comprising an effective amount of a compound having a structure described herein are provided.
- the organophosphorus compound can be a nerve agent.
- the compounds and compositions can be administered using any suitable device such as a pump, a subcutaneous infusion device, a continuous subcutaneous infusion device, an infusion pen, a needle, a reservoir, an ampoule, a vial, a syringe, a cartridge, a disposable pen or jet injector, a prefilled pen or a syringe or a cartridge, a cartridge or a disposable pen or jet injector, or a two chambered or multi-chambered pump.
- a pump a subcutaneous infusion device, a continuous subcutaneous infusion device, an infusion pen, a needle, a reservoir, an ampoule, a vial, a syringe, a cartridge, a disposable pen or jet injector, a prefilled pen or a syringe or a cartridge, a cartridge or a disposable pen or jet injector, or a two chambered or multi-chambered pump.
- the organophosphate toxicity, poisoning or toxic exposure may be caused by exposure of the subject or individual to an alkyl methylphosphonate or related nerve agent, or an alkylphosphorate insecticide, an herbicide, an insecticide, or a nerve gas or nerve agent, a parathion, a malathion, a methyl parathion, a chlorpyrifos, a diazinon, a dichlorvos, a phosmet, a fenitrothion, a tetrachlorvinphos, an azamethiphos or an azinphos methyl, a soman (O-pinacolyl methylphosphonofluoridate), a tabun (ethyl N,N-dimethyl-phosphoramido-cyanidate) or a sarin ((RS)-propan-2-yl methylphosphonofluoridate).
- an alkyl methylphosphonate or related nerve agent or an alkylphosphorate insecticide, an herb
- the compounds and compositions provide for treating, preventing or ameliorating excessive acetylcholine stimulation in the CNS, including the brain, or in the periphery, including the peripheral nervous system (PNS), comprising administering to a patient or an individual in need thereof, a compound or a composition disclosed herein.
- the compounds and compositions disclosed herein provides antidotes that cross the blood-brain barrier (BBB) to reactivate and/or realkylate organophosphate (OP)-inhibited human acetylcholinesterase (huAChE) in the central nerve system (CNS).
- these compounds are uncharged reactivators of phosphorylated human acetylcholinesterase (huAChE) intended to realkylate the aged form of AChE in the CNS.
- compounds and compositions disclosed herein are rapidly absorbed from the site of administration (e.g., oral, inhalation, or intramuscular), cross the blood-brain barrier as a neutral species, displace the covalently attached OPs, e.g., from a organophosphate toxicant such as a pesticide or a nerve agent, realklylate aged AChE, and restore AChE activity in the brain and periphery.
- OPs e.g., from a organophosphate toxicant such as a pesticide or a nerve agent
- compounds and compositions disclosed herein provide immediate protection from exposure, as well as prevention, of OP exposure, e.g., protection or prevention of immediate and recurring seizures that result from excessive acetylcholine stimulation in the brain.
- compounds and compositions disclosed herein can be an antidote for poisoning by organophosphate (e.g., diisopropylfluorophosphates and echothiophate) and carbamylating drugs (e.g., physostigmine, neostigmine and pyridostigmine).
- organophosphate e.g., diisopropylfluorophosphates and echothiophate
- carbamylating drugs e.g., physostigmine, neostigmine and pyridostigmine.
- compounds and compositions disclosed herein can not only cross the blood-brain barrier to reactivate acetylcholinesterase in the CNS and peripheral nervous system, but are also effective as antidotes and protective (prophylactic) agents.
- the compounds can be used in accidents or in poison gas (e.g., nerve agent) warfare, e.g., paraoxon, sarin, cyclosarin and VX attacks.
- poison gas e.g., nerve agent
- compounds and compositions disclosed herein can limit the toxicity and treat potential of organophosphate nerve agents by reactivating and/or realkylating butyrylcholinesterase in plasma and tissues.
- Example 1 Demonstration of In Vitro Resurrection of Aged Acetylcholinesterase after Exposure to Organophosphorus Chemical Nerve Agents
- acetylcholinesterase AChE
- organophosphorus OP
- aging a dealkylation reaction, referred to as aging, of the phosphylated serine can occur.
- known reactivators of OP-inhibited AChE are no longer effective.
- Realkylation of aged AChE may provide a route to reverse aging.
- a library of quinone methide precursors (QMPs) as realkylators of aged AChE were synthesized.
- Acetylcholinesterase is an enzyme found in brain synapses, neuromuscular junctions and erythrocytes. AChE selectively hydrolyzes the neurotransmitter acetylcholine. Organophosphorus (OP) compounds phosphylate the catalytic serine of AChE, and inhibition of AChE results in the accumulation of acetylcholine. OP exposure may lead to death due to seizures or respiratory failure.
- OP Organophosphorus
- OPs are toxic and have been used as pesticides and chemical warfare agents.
- OP-inhibited AChE can be reactivated by oximes. (B. Sanson, et al., J Med Chem 52, 7593-7603 (2009)).
- Quinone methides can be regarded as carbocations stabilized by resonance delocalization.
- Quinone methide precursors QMPs, FIG. 1A
- QMPs can be attacked by nucleophiles either directly via S N 2 substitution, or via the corresponding QMs as reactive intermediates ( FIG. 1B ).
- Protein and nucleic acid alkylation by QMPs has been reported (D. C. Thompson, et al., Chem-Biol Interact 126, 1-14 (2000); J. L. Bolton, et al., Chem-Biol Interact 107, 185-200 (1997); P. G.
- QMP screening assays with electric eel acetylcholinesterase were carried out, where eeAChE is first incubated with an OP to inhibit the enzyme, and allowed an appropriate amount of time for the enzyme to age. The re-inhibited OP AChE complex was then treated with 2-PAM, to effectively reactivate any inhibited, but un-aged enzyme. The sample was then screened by Ellman's assay for residual AChE activity. If activity was present, the inhibition and aging process is repeated. This procedure ensures complete aging of the enzyme prior to screening QMP realkylators.
- eeAChE was inhibited and aged with one of three OPs: CMP, PiMP, or diisopropyl fluorophosphate (DFP).
- CMP CMP
- PiMP PiMP
- DFP diisopropyl fluorophosphate
- the methylphosphonate-aged AChE product resulting from aging with CMP or PiMP was not only the aging product of the cyclosarin or soman-inhibited AChE respectively, but also the product of AChE inhibited and aged by any other methylphosphonate nerve agents (e.g. sarin, cyclosarin, VX, etc.).
- the aged AChE sample was obtained, it was then incubated with individual potential QMP realkylators in the presence of 2-PAM under near physiological conditions (37° C., phosphate buffer pH 7.4).
- the purpose of adding 2-PAM to the assay is to facilitate the reactivation of the realkylated enzyme after reaction with the alkylator, thereby generating the active, native enzyme.
- the enzyme activity was then evaluated by Eliman's assay.
- Aged AChE Some OPs (mainly the phosphonates, which are commonly seen in G- and V-type chemical warfare agents) are chiral, and the stereoisomers can inhibit and/or age at different rates. (J. H. Keijer, et al., Biochimica et Biophysica Acta 185, 465-468 (1969)). Inhibited AChE may remain un-aged even after reacting for longer than the apparent tin, if the enzyme is inhibited by the slower aging OP stereoisomer. Reactivation of the residual un-aged, but inhibited, AChE can interfere with the observation of the resurrection of aged AChE and may lead to artifacts.
- OPs mainly the phosphonates, which are commonly seen in G- and V-type chemical warfare agents
- AChE must be thoroughly aged and free of inhibited AChE.
- Two representative OPs FIG. 1C ) were exploited in this example.
- PiMP a pinacolyl methylphosphonate ester
- a soman analogue was synthesized as reported by Amitai et al.(G. Amitai, et al., Toxicology 233, 187-198 (2007)).
- the resulting methylphosphonate-aged AChE is the aging product of any methylphosphonate nerve agent (e.g. sarin, soman, VX, etc.).
- the pesticide DFP diisopropyl fluorophosphate was also used to evaluate a phosphate at the serine residue ( FIG. 1C ).
- eeAChE was chosen as the target enzyme of these studies, considering its commercial availability and affordable cost.
- the methylphosphonate-aged AChE (treated with PiMP) was prepared via two rounds of aging, considering the chirality of PiMP.
- AChE was treated with 2-PAM after the first round of aging, in order to reactivate any residual inhibited AChE.
- PiMP was added to inhibit and age the enzyme again.
- the amount of residual inhibited or native AChE in the sample was significantly minimized, often ⁇ 0.5% residual activity of a native AChE control.
- age AChE with achiral DFP only one round of aging was needed.
- FIGS. 3A and 7 A synthesis of QMPs utilized a reductive amination or Mannich phenol reaction and lead to the efficient development of a preliminary library of QMP compounds ( FIGS. 3A and 7 ).
- the compounds shown in FIG. 7 include both ortho and para QMPs, as well as quaternary ammonium and neutral amine leaving groups.
- Four of the 2-aminomethyl-3-hydroxypyridines screened in FIG. 3A showed resurrection of AChE activity above the baseline value, with one compound, C8, bearing a pyrrolidine leaving group, reaching ⁇ 2.5% or 1.25% reactivation against PiMP-aged AChE or DFP-aged AChE respectively, after 24 h of reaction time.
- the 4-hydroxypyridine 3.XV type alkylators synthesis begins with the nucleophilic aromatic substitution of the electron-deficient ring of the common aldehyde intermediate 3.XIX with an aqueous HCl solution to afford aldehyde 3.XXV (Scheme 4, A). From 3.XXV, similarly described reductive amination conditions with pyrrolidine followed by protonation/methylation afford 3.XXVI and 3.XXVII respectively (Scheme 4, B), or reductive amination with 3,3-difluoropyrrolidine and protonation with oxalic acid to give the oxalate salt 3.XXIX (Scheme 4, C).
- Donepezil trade named Aricept® is a benzylpiperidine with a propensity to inhibit AChE with a half maximal inhibitory concentration (IC50) of 5.7 nM.
- the drug was discovered by the Eisai company (and later bought and marketed by Pfizer), and has been FDA approved for the treatment of Alzheimer's disease since 1996. Interestingly, the drug was discovered prior to the solving of the crystal structure of AChE; therefore, there was no known information about the spatial conformation of the AChE active site residues or the mechanism of inhibitor binding to guide the design of donepezil at the time of the drug's discovery.
- Torpedo californica AChE TcAChE
- donepezil the crystal structure of Torpedo californica AChE (TcAChE) with donepezil bound in the active site was reported by Sussman et al.
- This report revealed the key interaction between donepezil and the active site of AChE that can be attributed to the high affinity of the drug for the enzyme.
- the flexibility of the piperidine backbone via rotatable methylene linkers is crucial to allowing for favorable interaction between active site residues and the drug.
- the indanone moiety which sits in the wide funnel-like entrance to the gorge, stacks against the indole ring of Trp279 by means of a ⁇ - ⁇ interaction, as well as forms a water-mediated hydrogen bond between one of the methoxy substituents and Glu185.
- ester 3.LIX proceeded cleanly in high yield.
- the ⁇ , ⁇ -unsaturated double bond was hydrogenated under 1 atm H 2 with palladium on carbon to give the saturated compound 3.LX.
- This ester was then reduced to aldehyde 3.LVIII by means of diisobutylaluminum hydride.
- a crossed aldol condensation between the resulting aldehyde and 1-indanone under basic conditions provided intermediate 2.LXI in 43% yield after purification.
- Indane 3.LXII was converted to the final QMP realkylator 3.XLVI by TFA deprotection of the Boc amine followed by nucleophilic substitution with 2-bromomethyl-3-hydroxypyridine.
- the alkylator 3.XLIX was proposed based on an open-chain benzyl piperidine AChE inhibitor discovered by the Eisai company prior to the discovery of the more potent indanone, donepezil. This compound has the benefits of increased rotational freedom due to the extended methylene chain between the piperidine and the aromatic amide, as well the increased flexibility imparted by opening the indanone ring.
- the synthesis of 3.XLIX would begin with the common intermediate 3.LX (Scheme 6).
- 3.LX was saponified to give carboxylic acid 3.LXV, which was then treated with thionyl chloride to generate an acid chloride intermediate, which was subsequently converted to methylamide 3.LXVI with an aqueous methylamine solution.
- This amide was reduced to amine 3.LXIV with lithium aluminum hydride, and then further converted to amide 3.LXVII with benzoyl chloride.
- the Boc-protected piperidine was then deprotected with TFA to liberate the free amine 3.LXV, which was converted to the final product 3.XLIX by a substitution reaction analogous to those previously described with 2-bromomethyl-3-hydroxypyridine.
- the final targeted donepezil inspired 2-methylamino-3-hydroxypyridine QMP realkylator, 3.XLVIII differs from the synthesized compound 3.XLIX in that the piperidine ring is replaced with a piperazine.
- This structural difference was designed to simplify the overall synthesis and allow for quick structural variation of the amide portion by the use of various acid chlorides and amino alcohols in the initial step. This would allow a rapid library synthesis for SAR purposes should the initial compound show any realkylation ability towards aged AChE.
- 3.XLVIII was envisioned to come from amine 3.LXVI, which would by synthesized form the activation and displacement of the alcohol functional group of 3.LXVII with 1-Boc-piperazine (Scheme 7).
- the forward synthesis include benzoyl chloride and 2-(methylamino)-1-ethanol were coupled to provide amide 3.LXVII. This alcohol was then converted to an alkylchloride via thionyl chloride. Following, the chloride was displaced with 1-boc-piperazine to afford 3.LXVI. Boc deprotection with TFA and substitution on 2-bromomethyl-3-hydroxy pyridine yielded the final compound 3.XLVIII.
- AChE methylphosphonate-aged AChE
- pH 7.0 containing 1 g/L BSA and 0.02% NaN 3 to stabilize the enzyme and prevent bacterial contamination
- AChE 7.5 ⁇ L, 4 g/L in 1:1 glycerin/water
- PiMP 2.5 ⁇ L, 0.2 mM in 2% acetonitrile
- the solution was treated with a Sephadex G-25 spin column (0.1 g of superfine dry beads; equilibrated with buffer at pH 8.0) in order to remove the unreacted PiMP.
- the column was stacked with 52.5 ⁇ L of buffer at pH 8.0 (containing 1 g/L bovine serum albumin and 0.02% NaN 3 ), and spun at 600 ⁇ g for 1 min, followed by another 1 min at 1000 ⁇ g.
- 2-PAM solution (4 ⁇ L, 0.1 M) and NaN 3 (1 ⁇ L, 2%) were added to the eluate in order to reactivate the residual inhibited AChE (unaged) and prevent bacterial contamination.
- the protein concentrate was diluted back to 100 ⁇ L.
- 2-PAM solution (4 ⁇ L, 0.1 M) and NaN 3 (1 ⁇ L, 2%) were added in order to reactivate the residual inhibited AChE (unaged) and prevent bacterial contamination.
- the column was stacked with 52.5 ⁇ L of buffer at pH 8.0 (containing 1 g/L bovine serum albumin and 0.02% NaN 3 ), and spun at 600 ⁇ g for 1 min, followed by another 1 min at 1000 ⁇ g. NaN 3 was added and the solution was stored at 4° C. for further use.
- a control of native AChE was prepared in parallel by replacing DFP solution with blank 2% DMSO.
- Ellman's assay(20) was carried out on clear flat-bottom 96-well microplates.
- the assay solution was 180 ⁇ L ⁇ 0.56 mM of acetylthiocholine in pH 8.0 buffer, containing 0.1 g/L of BSA and 1.1 mM of 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB).
- 20 ⁇ L of tested AChE sample was added to initiate the reaction.
- the absorption at 412 nm was monitored at 25° C. with Molecular Devices SpectraMax i3 microplate reader. The initial absorbance-time slope was measured.
- Each realkylator (hydrochloride, 4 ⁇ L ⁇ 5, 25 or 100 mM) was mixed with methylphosphonate-aged AChE (2 ⁇ L), phosphate buffer (pH 8.0 containing 1 g/L BSA and 0.02% NaN 3 ), and NH 4 F (4 ⁇ L ⁇ 100 mM). After reacting at 37° C. for 1 d, each sample was treated with 2-PAM for 1 h to reactivate the realkylated AChE. As aforementioned, three controls were prepared in parallel. In the positive and negative controls, the realkylator solution was replaced with blank buffer. In the 2-PAM control, it was replaced with 4 mM 2-PAM solution. In the positive control, the aged AChE was replaced with same amount of native AChE.
- the EC 50 against isopropyl phosphate-aged AChE was similarly measured.
- the range of final concentrations was 0-10 mM.
- concentration of C8 increased, the resurrected activity also approached a plateau.
- Nonlinear regression was performed to find the dissociation constant.
- the obtained K D was 1.18 mM, which is lower than that against methylphosphonate-aged AChE.
- the difference in K D values against enzymes aged by different OPs may be related to direct interactions between QMP and the different phosphyl groups, or the slight difference in enzyme conformation.
- Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of the digests was carried out on a Thermo Scientific Orbitrap Fusion mass spectrometer equipped with EASY-Spray Sources ion source in positive ion mode.
- the peptide solution (6.4 ⁇ L) was separated on a capillary column (C 18 stationary phase, 3 ⁇ m particles, 100 ⁇ pores, 75 ⁇ m ⁇ 150 mm capillary, Thermo Scientific). Each sample was first desalted with a ⁇ -Precolumn Cartridge (Thermo Scientific) then eluted onto the column.
- Mobile phases A and B were water and acetonitrile, respectively. Both contained 0.1% formic acid.
- Flow rate was 300 nL/min.
- the ionization spray voltage was 1.7 kV and the capillary temperature was 275° C.
- the preview mode data dependent TopSpeedTM method was used: the analysis was programmed for a full MS 1 scan of the precursor ions ranging from m/z 400 to 1600, followed by fragmentation and MS 2 scan to determine amino acid sequence and modifications from the most abundant peaks in MS 1 in the next 3 seconds. To achieve high mass accuracy MS determination, the full scan was performed at FT mode and the resolution was set at 120,000. The AGC Target ion number for FT full scan was set at 2 ⁇ 10 5 ions, maximum ion injection time was set at 50 ms and micro scan number was set at 1. MS 2 was performed using ion trap mode to ensure the highest signal intensity of MS 2 spectra using both CD (for 2+ and 3+ charges) and ETD (for 4+ ⁇ 6+ charges) methods.
- the AGC Target ion number for ion trap MS 2 scan was set at 1000 ions, maximum ion injection time was set at 100 ms and micro scan number was set at 1.
- the CID fragmentation energy was set to 35%. Dynamic exclusion was enabled with a repeat count of 1 within 60 s and a low mass width and high mass width of 10 ppm.
- Sequence information from the MS/MS data was processed by converting the *.raw files into a merged file (*.mgf) using an in-house program, RAW2MZXML_n_MGF_batch (merge.pl, a Perl script). Isotope distributions for the precursor ions of the MS/MS spectra were deconvoluted to obtain the charge states and monoisotopic m/z values of the precursor ions during the data conversion.
- the resulting *.mgf files were searched using Mascot Daemon by Matrix Science version 2.5.1 (Boston, Mass.) against SwissProt other Actinopterygii (ray-finned fishes except Japanese pufferfish and zebrafish) databases (SwissProt_ID 2016_09, 2085 sequences).
- the mass accuracy of the precursor ions was set to 10 ppm, and accidental pick of 13 C peaks was also included into the search.
- the fragment mass tolerance was set to 0.8 Da.
- Considered variable modifications were oxidation (Met), deamidation (Asn and Gln) and OP-related Ser modifications. They include the DFP-inhibited, the isopropyl phosphate-aged and the realkylated forms.
- the realkylated Ser residue might also be attacked by its own hydroxyl group to be reactivated or lose the isopropyl and form a lactone product.
- Another possible reaction was a re-aging route which released the isopropyl group rather than the QM group.
- the re-aged AChE could be further re-realkylated by a second C8 molecule.
- EMP was synthesized following a procedure adapted from that of PiMP. Electric eel AChE ( ⁇ 10 units in 2.5 ⁇ L ⁇ 50% glycerin) was mixed with BSA (95 ⁇ L ⁇ lg/L in 40 mM phosphate buffer, pH 7.0, containing 0.02% NaN 3 ) and EMP (2.5 ⁇ L ⁇ 0.2 mM in 2% DMSO). After reacted at 37° C. for 1 h, the solution was cleaned with a Sephadex spin column (0.1 g dry superfine G-25, equilibrated at pH 8.0). Controls with EMP replaced by blank solvents were also prepared.
- Each tested compound (neutral form, 6.4 ⁇ L ⁇ 50 mM) was mixed with 3.1 ⁇ L of the freshly prepared inhibited AChE solution and BSA (150.5 ⁇ L ⁇ lg/L in 40 mM phosphate buffer, pH 8.0, containing 0.02% NaN 3 ). Four replicates were made for each compound. Aliquots of 20 ⁇ L was taken and analyzed with Ellman's assay as aforementioned. For comparison, 2-PAM at the same concentration was tested in parallel. The negative and positive controls had the reagent solution replaced with blank buffer. The AChE in the positive control was native and not treated with EMP.
- the three lowest-energy docking poses of each flexible ligand across 13 rigid aged AChE structures were used as starting points for subsequent 1 ns MD simulations.
- the QMPs were evaluated based on the time throughout the MD simulations in which the reactive benzylic carbon was within close proximity to the anionic O—(P ⁇ O) of the aged serine.
- pyridyl compounds had a higher propensity to be bound in the active site and close to the phosphyl oxyanion as compared to their phenyl analogues.
- 3-hydroxypyridine-derived QMPs with the reactive benzylic carbon attached at the 2-position displayed promising interactions.
- six of the top-10 compounds were members of that specific 3-hydroxypyridine framework.
- the top compound had a pyrrolidine leaving group attached to the reactive benzylic carbon ( FIG. 2 ).
- 3-hydroxypyridine-derived QMPs (C series, FIG. 3A , protonated with HCl or oxalic acid) were synthesized via Mannich reactions, and then evaluated by screening against methylphosphonate-aged (treated with PiMP) AChE.
- the electrophilic benzylic methylene hypothesized to be the site of attack by nucleophiles ( FIG. 1B ), is attached to the 2-position of the pyridine ring, and the leaving groups were various secondary amines.
- the aged enzyme was reacted with various concentrations (0.2-4 mM) of each QMP at 37° C., pH 8 for 1 d.
- the screening results are shown in FIG. 3B .
- the percentage relative activity is based on the positive control.
- the negative and 2-PAM controls showed negligible background signals, confirming the completion of aging (dotted and dashed lines in FIG. 3B and FIG. 3C ).
- the only difference was the amino leaving group.
- Compound C 7 with a diethylamino leaving group showed the highest efficacy among C 1 to C 7 , with each of these compounds having a noncyclic amine. Efficacy was compromised when the ethyl group was shortened (C 1 ) or lengthened (C 2 to C 6 ).
- the pyrrolidinyl compound C8 was the most potent candidate in this screen.
- the other candidates with cyclic leaving groups showed minimal or no activity.
- the screening against isopropyl phosphate-aged AChE (DFP-treated) showed a similar result ( FIG. 3C ), except that the difference between C 7 and C8 was smaller than that against methylphosphonate-
- Bottom-up Proteomics Besides determining the resurrected AChE activity by Ellman's assay, confirmation of the reaction between realkylators and aged AChE can also be revealed by mass spectrometry.
- Bottom-up proteomics J. Sun, et al., Journal of Chromatography B 877, 3681-3685 (2009) and J. Marsillach, et al., Neurotoxicology 32, 656-660 (2011)
- Isopropyl phosphate-aged eeAChE was treated with C8 for 11 d, and digested it with trypsin.
- 2-PAM was not applied after the C 8 treatment. The digest was analyzed with LC-MS/MS. The positive, negative and 2-PAM controls were also prepared in parallel, and quantification was obtained from the LC peak areas (Table 2).
- pH Effect for C8 Activity There are three heteroatoms in C8, forming multiple possible protonation states. Each of them may interact with the aged AChE active site with different orientations, affinities and rates. 1 H NMR spectra of C8 displayed shifting signals as the pH changed ( FIG. 5A ). The UV-vis spectra also dramatically changed when pH was increased from 6 to 9 ( FIG. 5B ), indicating a pK a between 7 and 8. The resurrection of methylphosphonate-aged eeAChE by 4 mM C8 at four different pH values (6 ⁇ 9) at 37° C. for 1 d, with neither 2-PAM nor fluoride being used was performed. The relative activity of C8-resurrected AChE increased dramatically with pH (Table 4)—over 20% at pH 9. Similar effects were also observed with isopropyl phosphate-aged eeAChE.
- a new strategy using a structural features from a known reversible AChE inhibitor, donepezil, have been incorporated into the synthesis of a novel class of 2-methylamino-3-hydroxypyridine compounds in an attempt to increase the affinity of the potential realkylators for the targeted active site of the AChE enzyme.
- compositions and methods of the appended claims are not limited in scope by the specific compositions and methods described herein, which are intended as illustrations of a few aspects of the claims and any compositions and methods that are functionally equivalent are intended to fall within the scope of the claims.
- Various modifications of the compositions and methods in addition to those shown and described herein are intended to fall within the scope of the appended claims.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application claims benefit of U.S. Provisional Application No. 62/459,385, filed Feb. 15, 2017, which is hereby incorporated herein by reference in its entirety.
- This invention was made with government support under Grant No. 1U01-NS087983 awarded by the National Institutes of Health. The government has certain rights in the invention.
- Acetylcholinesterase (AChE) is a serine hydrolase that is responsible for the hydrolysis of the neurotransmitter acetylcholine (ACh). Upon inhibition of AChE by an organophosphorus (OP) pesticide or chemical warfare agent, ACh begins to accumulate, triggering uncontrolled nerve impulses, which leads to the undesired effects of blurred vision, seizures, respiratory failure, and ultimately death.
- Mechanistically, inhibition of AChE by an OP begins in a fashion analogous to the hydrolysis of the enzyme's natural substrate, ACh. OP compounds readily enter the active site of AChE, where the nucleophilic serine residue of the catalytic triad forms a covalent bond with the electrophilic phosphorus, and in turn displaces a leaving group from the OP. However, this is where the similarities between ACh substrate turnover and OP inhibition end. Unlike the enzymatic hydrolysis of ACh, for which the acylated serine is rapidly hydrolyzed by a water molecule to produce acetate, thereby regenerating the active enzyme, the spontaneous hydrolysis of the inhibited, OP-phosphylated enzyme occurs on a significantly slower time scale (with rates dependent on the specific OP), leading to the accumulation of ACh, and the undesired associated effects.
- A significant amount of research has been devoted to developing drug-like molecules that are capable of reversing this inhibition. It has been shown that charged oximes, such as 2-PAM, are capable of regenerating active AChE through a phosphyl transfer reaction between the nucleophilic oximate and the phosphylated serine in the active site of the aged enzyme. However, the level of complexity of OP inhibition is taken a step further by a secondary process known as “aging”. Aging occurs by the spontaneous dealkylation of an O—R group bound to the phosphorus center of the OP-inhibited AChE. Aging is problematic, as after this process occurs, oximes are no longer an effective treatment method, and to date there have been no successful reports of resurrecting aged AChE to regain the desired and native catalytic function for AChE.
- Some attempts towards realkylation of aged AChE have been reported with limited success. Early work in the area of developing realkylating reagents by Blumberg and co-workers in 1969 described the synthesis of a series of alkylsulfonate alkylators incorporating a quaternary nitrogen or pyridinium group to assist with aqueous solubility and affinity for the AChE active site. (P. Blumbergs, et al., J Org Chem 34, 4065-4070 (1969)). While alkylation of various nucleophiles proceeded in solution, alkylation of isopropyl methyl phosphonate as a model system for aged AChE was slow, and realkylation of authentic aged AChE (as an in vitro experiment) has not been reported.
- Shortly thereafter, Steinberg and co-workers developed a unique family of phenylacyl bromide alkylators that could react with a model phosphonate anion. (G. M. Steinberg, et al., J Med Chem 13, 435-446 (1970)). Following realkylation by Steinberg's compounds, hydrolysis leading to departure of the p-nitrophenol was explored. Steinberg hypothesized that intramolecular coordination of the carbonyl incorporated in their alkylators would enhance the rate of hydrolysis of the p-nitrophenol group. Unfortunately, with these realkylating compounds, no in vitro alkylation of aged AChE was observed by Steinberg and co-workers.
- More recently, the Quinn group reported the methylation of a methyl methanephosphonate anion as an aqueous model for the aged AChE-OP adduct using N-methyl-2-methoxypyridinium methyl transfer reagents. While successful alkylation of a phosphonate model system was observed (40% alkylation in less than 10 min for 3-fluoro-N-methyl-2-methoxypyridinium), none of the alkylators tested showed any ability to resurrect in vitro aged AChE in preliminary studies.
- There is a need for compounds and methods that are capable of reversing AChE inhibition as well as the aging process.
- Disclosed herein are compounds, compositions, and methods for reactivating and/or realkylating aged acetylcholinesterase. In some instances, the acetylcholinesterase can be in the central nerve system (CNS) and/or the peripheral nervous system (PNS). Accordingly, methods for ameliorating, diminishing, reversing, treating or preventing the toxic effects of an organophosphorus compound in a subject are provided herein. Methods for prophylactic or therapeutic treatment of exposure to an organophosphorus nerve agent are also provided.
- The methods disclosed herein can include administering a composition comprising a prophylactically or therapeutically effective amount of a compound having a structure represented below. The compound can be administered in combination with a second compound that reverses inhibition of acetylcholinesterase by the organophosphorus compound. In some embodiments, the second compound does not cross the blood brain barrier. The compositions disclosed herein can be administered enterally or parenterally.
- The compounds disclosed herein can have a structure represented by Formula I:
- wherein
-
- X1-X5 are independently selected from N, NR′, and CR′,
- R′ is, independently for each occurrence, selected from hydrogen, C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, hydroxyl, halogen, amine, alkylamine, alkylammonium, or where two R′ groups combine to form a substituted or unsubstituted fused C5-C7 cyclic moiety;
- R1 and R2 are independently selected from C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, or R1 and R2 combine to form a 3 to 7 membered aliphatic ring, and wherein R1 and R2 are optionally substituted with alkyl, heteroalkyl, cycloalkyl, cycloheteroalkyl, aryl, heteroaryl, alkyl halide, halogen, alkoxy, amine, alkylamine, and alkylammonium; and
- R2′ is optionally present and selected from C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, and C1-C6 alkyl amine, or R1 and R2′ or R2 and R2′ combine to form a 5 to 7 membered aliphatic ring; and
- wherein at least one of X1-X5 is N or NR′, and at least one of X1-X5 is C—OH.
- In some embodiments of Formula I, the compound can be represented by a structure having the Formula II-A to II-G:
-
- wherein
- R3 is selected from hydrogen, C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, alkylamine;
- R4 is selected from C1-C6 alkyl, halogen, C1-C6 alkyl halide, C1-C6 alkoxy, nitrile, amine, alkylamine, and alkylammonium; and
- wherein R2′, R3 and R4 are optionally present.
- In other embodiments of Formula I, the compound can be represented by a structure having the Formula II-H to II-Q:
-
- wherein R3, R4, and R4b are optionally present, and
- wherein R4b when present is selected from C1-C6 alkyl, halogen, C1-C6 alkyl halide, C1-C6 alkoxy, nitrile, amine, alkylamine, and alkylammonium.
- Pharmaceutical compositions or formulations comprising a compound represented by a structure described herein and a pharmaceutically acceptable excipient are also disclosed.
-
FIG. 1A-1C :FIG. 1A shows general structures of quinone methides (QMs; top) and quinone methide precursors (QMPs; bottom).FIG. 1B shows a nucleophile can substitute the leaving group of QMP by either anS N2 reaction or formation of the corresponding QM.FIG. 1C shows structures of PiMP, DFP, and their aged AChE adducts. -
FIG. 2 shows a snapshot obtained from a 1 ns MD simulation, demonstrating a protonated QMP (C8) near the active site of aged AChE (wall-eyed stereo). The electrophilic carbon is ˜4.2 Å from the phosphylated oxyanion, and the QMP. Hydrogen bonds with short contact distances are shown (dashed lines). -
FIGS. 3A-3C show screening of QMPs against aged electric eel AChE (eeAChE,pH FIG. 3A shows structures of QMPs.FIG. 3B shows screening of the C series QMPs against methylphosphonate-aged eeAChE andFIG. 3C against isopropyl phosphate-aged eeAChE. The horizontal dotted and the dashed lines mark the negative controls and 2-PAM controls, respectively. The error bars reflect standard deviations from four replicate efforts. -
FIGS. 4A-4B show kinetics of realkylation of aged eeAChE by C8 atpH 8 for isopropyl phosphate-aged eeAChE (FIG. 4A ) and for methylphosphonate-aged eeAChE (FIG. 4b ). The dashed lines illustrate the result of linear regression. -
FIGS. 5A-5D shows influence of C8 protonation states on spectra and binding.FIG. 5A shows 1H NMR spectra of the aromatic protons andFIG. 5B shows UV-vis spectra of C8 as pH is varied from 6˜9.FIG. 5C shows the four most probable protonation states of C8 at pH 8-9.FIG. 5D shows a representative snapshot in the MD simulation of C8c (wall-eyed stereo). Hydrogen bonds with short contact distances are shown (dashed lines). -
FIG. 6 shows kinetics of resurrection of isopropyl phosphate-aged human AChE (huAChE) by C8 (pH 9). Inset shows the positive control over the same time frame. -
FIG. 7 shows structures of compounds disclosed herein. - Terms used herein will have their customary meaning in the art unless specified otherwise. The organic moieties mentioned when defining variable positions within the general formulae described herein (e.g., the term “halogen”) are collective terms for the individual substituents encompassed by the organic moiety. The prefix Cn-Cm indicates in each case the possible number of carbon atoms in the group.
- As used herein, by a “subject” is meant an individual. Thus, the “subject” can include domesticated animals (e.g., cats, dogs, etc.), livestock (e.g., cattle, horses, pigs, sheep, goats, etc.), laboratory animals (e.g., mouse, rabbit, rat, guinea pig, etc.), and birds. “Subject” can also include a mammal, such as a primate or a human.
- By “reduce” or other forms of the word, such as “reducing” or “reduction,” is meant lowering of an event or characteristic. It is understood that this is typically in relation to some standard or expected value, in other words it is relative, but that it is not always necessary for the standard or relative value to be referred to. For example, “reducing the toxic effects of an organophosphorus compound” can refer to reducing the rate of inhibition of the enzyme acetylcholinesterase relative to a standard or a control.
- By “prevent” or other forms of the word, such as “preventing” or “prevention,” is meant to stop a particular event or characteristic, to stabilize or delay the development or progression of a particular event or characteristic, or to minimize the chances that a particular event or characteristic will occur. Prevent does not require comparison to a control as it is typically more absolute than, for example, reduce. As used herein, something could be reduced but not prevented, but something that is reduced could also be prevented. Likewise, something could be prevented but not reduced, but something that is prevented could also be reduced. It is understood that where reduce or prevent are used, unless specifically indicated otherwise, the use of the other word is also expressly disclosed.
- By “treat” or other forms of the word, such as “treated” or “treatment,” is meant to administer a composition or to perform a method in order to reduce, prevent, inhibit, or eliminate a particular characteristic or event (e.g., a biofilm). The term “control” is used synonymously with the terms “treat” and “modulate.”
- An “effective amount” of a compound or composition disclosed herein is that amount which is necessary to carry out the compound's or composition's function of ameliorating, diminishing, reversing, treating or preventing the toxic effects of an organophosphorus compound in a subject.
- The term “alkyl,” as used herein, refers to saturated straight, branched, cyclic, primary, secondary or tertiary hydrocarbons, including those having 1 to 20 atoms. In some embodiments, alkyl groups will include C1-C12, C1-C10, C1-C8, C1-C6, C1-C5, C1-C4, C1-C3, C1-C2, or C1 alkyl groups. Examples of C1-C10 alkyl groups include, but are not limited to, methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethyl-1-methylpropyl, 1-ethyl-2-methylpropyl, heptyl, octyl, 2-ethylhexyl, nonyl and decyl groups, as well as their isomers. Examples of C1-C4-alkyl groups include, for example, methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl and 1,1-dimethylethyl groups.
- Cyclic alkyl groups or “cycloalkyl” groups, which are encompassed alkyl, include cycloalkyl groups having from 3 to 10 carbon atoms. Cycloalkyl groups can include a single ring, or multiple condensed rings. In some embodiments, cycloalkyl groups include C3-C4, C4-C7, C5-C7, C4-C6, or C5-C6 cyclic alkyl groups. Non-limiting examples of cycloalkyl groups include adamantyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like.
- Alkyl groups can be unsubstituted or substituted with one or more moieties selected from the group consisting of alkyl, halo, haloalkyl, hydroxyl, carboxyl, acyl, acyloxy, amino, alkyl- or dialkylamino, amido, arylamino, alkoxy, aryloxy, nitro, cyano, azido, thiol, imino, sulfonic acid, sulfate, sulfonyl, sulfanyl, sulfinyl, sulfamonyl, ester, phosphonyl, phosphinyl, phosphoryl, phosphine, thioester, thioether, acid halide, anhydride, oxime, hydrazine, carbamate, phosphoric acid, phosphate, phosphonate, or any other viable functional group that does not inhibit the biological activity of the compounds of the invention, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as described in Greene, et al., Protective Groups in Organic Synthesis, John Wiley and Sons, Third Edition, 1999, hereby incorporated by reference.
- Terms including the term “alkyl,” such as “alkylcycloalkyl,” “cycloalkylalkyl,” “alkylamino,” or “dialkylamino,” will be understood to comprise an alkyl group as defined above linked to another functional group, where the group is linked to the compound through the last group listed, as understood by those of skill in the art.
- The term “alkenyl,” as used herein, refers to both straight and branched carbon chains which have at least one carbon-carbon double bond. In some embodiments, alkenyl groups can include C2-C20 alkenyl groups. In other embodiments, alkenyl can include C2-C12, C2-C10, C2-C8, C2-C6 or C2-C4 alkenyl groups. In one embodiment of alkenyl, the number of double bonds is 1-3, in another embodiment of alkenyl, the number of double bonds is one or two. Other ranges of carbon-carbon double bonds and carbon numbers are also contemplated depending on the location of the alkenyl moiety on the molecule. “C2-C10-alkenyl” groups may include more than one double bond in the chain. The one or more unsaturations within the alkenyl group may be located at any position(s) within the carbon chain as valence permits. In some embodiments, when the alkenyl group is covalently bound to one or more additional moieties, the carbon atom(s) in the alkenyl group that are covalently bound to the one or more additional moieties are not part of a carbon-carbon double bond within the alkenyl group. Examples of alkenyl groups include, but are not limited to, ethenyl, 1-propenyl, 2-propenyl, 1-methyl-ethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl; 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,1-dimethyl-2-propenyl, 1,2-dimethyl-1-propenyl, 1,2-dimethyl-2-propenyl, 1-ethyl-1-propenyl, 1-ethyl-2-propenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1-methyl-1-pentenyl, 2-methyl-1-pentenyl, 3-methyl-1-pentenyl, 4-methyl-1-pentenyl, 1-methyl-2-pentenyl, 2-methyl-2-pentenyl, 3-methyl-2-pentenyl, 4-methyl-2-pentenyl, 1-methyl-3-pentenyl, 2-methyl-3-pentenyl, 3-methyl-3-pentenyl, 4-methyl-3-pentenyl, 1-methyl-4-pentenyl, 2-methyl-4-pentenyl, 3-methyl-4-pentenyl, 4-methyl-4-pentenyl, 1,1-dimethyl-2-butenyl, 1,1-dimethyl-3-butenyl, 1,2-dimethyl-1-butenyl, 1,2-dimethyl-2-butenyl, 1,2-dimethyl-3-butenyl, 1,3-dimethyl-1-butenyl, 1,3-dimethyl-2-butenyl, 1,3-dimethyl-3-butenyl, 2,2-dimethyl-3-butenyl, 2,3-dimethyl-1-butenyl, 2,3-dimethyl-2-butenyl, 2,3-dimethyl-3-butenyl, 3,3 di methyl-1-butenyl, 3,3-dimethyl-2-butenyl, 1-ethyl-1-butenyl, 1-ethyl-2-butenyl, 1-ethyl-3-butenyl, 2-ethyl-1-butenyl, 2-ethyl-2-butenyl, 2-ethyl-3-butenyl, 1,1,2-trimethyl-2-propenyl, 1-ethyl-1-methyl-2-propenyl, 1-ethyl-2-methyl-1-propenyl and 1-ethyl-2-methyl-2-propenyl groups.
- The term “alkynyl,” as used herein, refers to both straight and branched carbon chains which have at least one carbon-carbon triple bond. In one embodiment of alkynyl, the number of triple bonds is 1-3; in another embodiment of alkynyl, the number of triple bonds is one or two. In some embodiments, alkynyl groups include from C2-C20 alkynyl groups. In other embodiments, alkynyl groups may include C2-C12, C2-C10, C2-C8, C2-C6 or C2-C4 alkynyl groups. Other ranges of carbon-carbon triple bonds and carbon numbers are also contemplated depending on the location of the alkenyl moiety on the molecule. For example, the term “C2-C10-alkynyl” as used herein refers to a straight-chain or branched unsaturated hydrocarbon group having 2 to 10 carbon atoms and containing at least one triple bond, such as ethynyl, prop-1-yn-1-yl, prop-2-yn-1-yl, n-but-1-yn-1-yl, n-but-1-yn-3-yl, n-but-1-yn-4-yl, n-but-2-yn-1-yl, n-pent-1-yn-1-yl, n-pent-1-yn-3-yl, n-pent-1-yn-4-yl, n-pent-1-yn-5-yl, n-pent-2-yn-1-yl, n-pent-2-yn-4-yl, n-pent-2-yn-5-yl, 3-methylbut-1-yn-3-yl, 3-methylbut-1-yn-4-yl, n-hex-1-yn-1-yl, n-hex-1-yn-3-yl, n-hex-1-yn-4-yl, n-hex-1-yn-5-yl, n-hex-1-yn-6-yl, n-hex-2-yn-1-yl, n-hex-2-yn-4-yl, n-hex-2-yn-5-yl, n-hex-2-yn-6-yl, n-hex-3-yn-1-yl, n-hex-3-yn-2-yl, 3-methylpent-1-yn-1-yl, 3-methylpent-1-yn-3-yl, 3-methylpent-1-yn-4-yl, 3-methylpent-1-yn-5-yl, 4-methylpent-1-yn-1-yl, 4-methylpent-2-yn-4-yl, and 4-methylpent-2-yn-5-yl groups.
- The term “haloalkyl” or “alkylhalide,” as used herein refers to an alkyl group, as defined above, which is substituted by one or more halogen atoms. In some instances, the haloalkyl group can be an alkyl group substituted by one or more fluorine atoms. In certain instances, the haloalkyl group can be a perfluorinated alkyl group. For example C1-C4-haloalkyl includes, but is not limited to, chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, and pentafluoroethyl.
- The term “alkoxy,” as used herein, refers to alkyl-O—, wherein alkyl refers to an alkyl group, as defined above. Similarly, the terms “alkenyloxy,” “alkynyloxy,” “haloalkoxy,” “haloalkenyloxy,” “haloalkynyloxy,” “cycloalkoxy,” “cycloalkenyloxy,” “halocycloalkoxy,” and “halocycloalkenyloxy” refer to the groups alkenyl-O—, alkynyl-O—, haloalkyl-O—, haloalkenyl-O—, haloalkynyl-O—, cycloalkyl-O—, cycloalkenyl-O—, halocycloalkyl-O—, and halocycloalkenyl-O—, respectively, wherein alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkenyl, halocycloalkyl, and halocycloalkenyl are as defined above. Examples of C1-C6-alkoxy include, but are not limited to, methoxy, ethoxy, C2H5—CH2O—, (CH3)2CHO—, n-butoxy, C2H5—CH(CH3)O—, (CH3)2CH—CH2O—, (CH3)3CO—, n-pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 2,2-dimethyl-propoxy, 1-ethylpropoxy, n-hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1,1,2-trimethylpropoxy, 1,2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy, and 1-ethyl-2-methylpropoxy.
- The terms “alkylamino” and “dialkylamino,” as used herein, refer to alkyl-NH— and (alkyl)2N—groups, where alkyl is as defined above. Similarly, the terms “haloalkylamino” and “halodialkylamino” refer to haloalkyl-NH— and (haloalkyl)2-NH—, where haloalkyl is as defined above.
- The term “aryl,” as used herein, refers to a monovalent aromatic carbocyclic group of from 6 to 14 carbon atoms. Aryl groups can include a single ring or multiple condensed rings. In some embodiments, aryl groups include C6-C10 aryl groups. Aryl groups include, but are not limited to, phenyl, biphenyl, naphthyl, tetrahydronaphtyl, phenylcyclopropyl and indanyl. Aryl groups may be unsubstituted or substituted by one or more moieties selected from halogen, cyano, nitro, hydroxy, mercapto, amino, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, haloalkyl, haloalkenyl, haloalkynyl, halocycloalkyl, halocycloalkenyl, alkoxy, alkenyloxy, alkynyloxy, haloalkoxy, haloalkenyloxy, haloalkynyloxy, cycloalkoxy, cycloalkenyloxy, halocycloalkoxy, halocycloalkenyloxy, alkylthio, haloalkylthio, cycloalkylthio, halocycloalkylthio, alkylsulfinyl, alkenylsulfinyl, alkynyl-sulfinyl, haloalkylsulfinyl, haloalkenylsulfinyl, haloalkynylsulfinyl, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, haloalkyl-sulfonyl, haloalkenylsulfonyl, haloalkynylsulfonyl, alkylamino, alkenylamino, alkynylamino, di(alkyl)amino, di(alkenyl)-amino, di(alkynyl)amino, or trialkylsilyl.
- The term “alkylaryl,” as used herein, refers to an aryl group that is bonded to a parent compound through a diradical alkylene bridge, (—CH2—)n, where n is 1-12 and where “aryl” is as defined above.
- The term “alkylcycloalkyl,” as used herein, refers to a cycloalkyl group that is bonded to a parent compound through a diradical alkylene bridge, (—CH2—)n, where n is 1-12 and where “cycloalkyl” is as defined above. The term “cycloalkylalkyl,” as used herein, refers to a cycloalkyl group, as defined above, which is substituted by an alkyl group, as defined above.
- The term “heteroaryl,” as used herein, refers to a monovalent aromatic group of from 1 to 15 carbon atoms (e.g., from 1 to 10 carbon atoms, from 2 to 8 carbon atoms, from 3 to 6 carbon atoms, or from 4 to 6 carbon atoms) having one or more heteroatoms within the ring. The heteroaryl group can include from 1 to 4 heteroatoms, from 1 to 3 heteroatoms, or from 1 to 2 heteroatoms. In some cases, the heteroatom(s) incorporated into the ring are oxygen, nitrogen, sulfur, or combinations thereof. When present, the nitrogen and sulfur heteroatoms may optionally be oxidized. Heteroaryl groups can have a single ring (e.g., pyridyl or furyl) or multiple condensed rings provided that the point of attachment is through a heteroaryl ring atom. Preferred heteroaryls include pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, pyrrolyl, indolyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, furanyl, thiophenyl, furyl, pyrrolyl, imidazolyl, oxazolyl, isoxazolyl, isothiazolyl, pyrazolyl, benzofuranyl, and benzothiophenyl. Heteroaryl rings may be unsubstituted or substituted by one or more moieties as described for aryl above.
- The term “alkylheteroaryl,” as used herein, refers to a heteroaryl group that is bonded to a parent compound through a diradical alkylene bridge, (—CH2—)n, where n is 1-12 and where “heteroaryl” is as defined above.
- The terms “cycloheteroalkyl,” “heterocyclyl,” “heterocyclic,” and “heterocyclo” are used herein interchangeably, and refer to fully saturated or unsaturated, cyclic groups, for example, 3 to 7 membered monocyclic or 4 to 7 membered monocyclic; 7 to 11 membered bicyclic, or 10 to 15 membered tricyclic ring systems, having one or more heteroatoms within the ring. The heterocyclyl group can include from 1 to 4 heteroatoms, from 1 to 3 heteroatoms, or from 1 to 2 heteroatoms. In some cases, the heteroatom(s) incorporated into the ring are oxygen, nitrogen, sulfur, or combinations thereof. When present, the nitrogen and sulfur heteroatoms may optionally be oxidized, and the nitrogen heteroatoms may optionally be quaternized. The heterocyclyl group may be attached at any heteroatom or carbon atom of the ring or ring system and may be unsubstituted or substituted by one or more moieties as described for aryl groups above.
- Exemplary monocyclic heterocyclic groups include, but are not limited to, pyrrolidinyl, pyrrolyl, pyrazolyl, oxetanyl, pyrazolinyl, imidazolyl, imidazolinyl, imidazolidinyl, oxazolyl, oxazolidinyl, isoxazolinyl, isoxazolyl, thiazolyl, thiadiazolyl, thiazolidinyl, isothiazolyl, isothiazolidinyl, furyl, tetrahydrofuryl, thienyl, oxadiazolyl, piperidinyl, piperazinyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolodinyl, 2-oxoazepinyl, azepinyl, 4-piperidonyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, tetrahydropyranyl, morpholinyl, thiamorpholinyl, thiamorpholinyl sulfoxide, thiamorpholinyl sulfone, 1,3-dioxolane and tetrahydro-1,1-dioxothienyl, triazolyl, triazinyl, and the like.
- The term “alkylheterocyclyl” and “alkylcycloheteroalkyl” are used herein interchangeably, and refer to a heterocyclyl group that is bonded to a parent compound through a diradical alkylene bridge, (—CH2—)n, where n is 1-12 and where “heterocyclyl” is as defined above. The term “heterocyclylalkyl,” as used herein, refers to a heterocyclyl group, as defined above, which is substituted by an alkyl group, as defined above.
- The term “halogen,” as used herein, refers to the atoms fluorine, chlorine, bromine and iodine. The prefix halo- (e.g., as illustrated by the term haloalkyl) refers to all degrees of halogen substitution, from a single substitution to a perhalo substitution (e.g., as illustrated with methyl as chloromethyl (—CH2Cl), dichloromethyl (—CHCl2), trichloromethyl (—CCl3)).
- As used herein, the term “substituted” is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, and aromatic and nonaromatic substituents of organic compounds. Illustrative substituents include, for example, those described below. The permissible substituents can be one or more and the same or different for appropriate organic compounds. For purposes of this disclosure, the heteroatoms, such as nitrogen, can have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms. This disclosure is not intended to be limited in any manner by the permissible substituents of organic compounds. Also, the terms “substitution” or “substituted with” include the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., a compound that does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc.
- Provided herein are pyridine and pyridinium electrophiles for reactivation and/or realkylating of acetylcholinesterase inhibited by or conjugated to an organophosphorus compound. In some aspects, the compound can have a structure represented by Formula I:
-
- wherein
- X1—X5 are independently selected from N, NR′, and CR′,
- R′ is, independently for each occurrence, selected from hydrogen, C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, hydroxyl, halogen, amine, alkylamine, alkylammonium, or where two R′ groups combine to form a substituted or unsubstituted fused C5-C7 cyclic moiety;
- R1 and R2 are independently selected from C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, or R1 and R2 combine to form a 3 to 7 membered aliphatic ring, and wherein R1 and R2 are optionally substituted with alkyl, heteroalkyl, cycloalkyl, cycloheteroalkyl, aryl, heteroaryl, alkyl halide, halogen, alkoxy, amine, alkylamine, and alkylammonium; and
- R2′ is optionally present and selected from C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, and C1-C6 alkyl amine, or R1 and R2′ or R2 and R2′ combine to form a 5 to 7 membered aliphatic ring; and
- wherein at least one of X1-X5 is N or NR′, and at least one of X1-X5 is C—OH
- For example, in certain embodiments of Formula I, R1 and R2 can be independently selected from methyl, ethyl, propyl, isopropyl, butyl, isobutyl. In other embodiments of Formula I, R1 and R2 can combine to form a monocyclic heterocyclic group, a bicyclic heterocyclic group, or a tricyclic heterocyclic group. In certain embodiments of Formula I, R1 and R2 can combine to form a substituted or unsubstituted pyrrolidine, substituted or unsubstituted piperidine, substituted or unsubstituted piperazine, substituted or unsubstituted morpholine, wherein the substituent can be selected from C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, hydroxyl, halogen, amine, alkylamine, and alkylammonium.
- In certain embodiments of Formula I, R2′ is present and represents a C1-C4 alkyl group. In certain embodiments of Formula I, R2′ is absent. In certain embodiments of Formula I, R1 and R2′ or R2 and R2′ combine to form a 5 to 7 membered aliphatic ring.
- In some aspects, the compounds disclosed herein can have a structure represented by Formula II:
-
- wherein
- X1-X5 are independently selected from N, NR′, and CR′,
- R′ is, independently for each occurrence, selected from hydrogen, C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, hydroxyl, halogen, amine, alkylamine, alkylammonium, or where two R′ groups combine to form a substituted or unsubstituted fused C5-C7 cyclic moiety;
- R1 and R2 are independently selected from C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, or R1 and R2 combine to form a 3 to 7 membered aliphatic ring, and wherein R1 and R2 are optionally substituted with alkyl, heteroalkyl, cycloalkyl, cycloheteroalkyl, aryl, heteroaryl, alkyl halide, halogen, alkoxy, amine, alkylamine, and alkylammonium; and
- R2′ is optionally present and selected from C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, and C1-C6 alkyl amine, or R1 and R2′ or R2 and R2′ combine to form a 5 to 7 membered aliphatic ring; and
- wherein at least one of X1—X5 is N or NR′, and at least one of X1-X5 is C—OH
- In certain embodiments of Formula II, R1 and R2 can combine to form a monocyclic heterocyclic group, a bicyclic heterocyclic group, or a tricyclic heterocyclic group. In certain embodiments of Formula II, R1 and R2 can combine to form a substituted or unsubstituted pyrrolidine, substituted or unsubstituted piperidine, substituted or unsubstituted piperazine, substituted or unsubstituted morpholine, wherein the substituent can be selected from C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, hydroxyl, halogen, amine, alkylamine, and alkylammonium.
- In certain embodiments of Formula II, the compound can be represented by a structure having the Formula II-A to II-G:
-
- wherein
- R3 is selected from hydrogen, C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, alkylamine;
- R4 is selected from C1-C6 alkyl, halogen, C1-C6 alkyl halide, C1-C6 alkoxy, nitrile, amine, alkylamine, and alkylammonium; and
- wherein R2′, R3 and R4 are optionally present.
- In some examples, R3 is absent. In other examples, R3 is present. In some examples, R4 is absent. In other examples, R4 is present. In still other examples, more than one R4 are present. When present, R3 and R4 can be independently selected from hydrogen, C1-C6 alkyl, halogen, C1-C6 alkyl halide, C1-C6 alkoxy, nitrile, amine, alkylamine, alkylammonium, or an acetylcholinesterase inhibitor.
- In certain embodiments of Formula II-A, the compounds disclosed herein can be represented by a structure having the Formula II-A-1:
-
- wherein
- R4′, R4″, R4″, and R5 are independently selected from C1-C6 alkyl, halogen, C1-C6 alkyl halide, C1-C6 alkoxy, nitrile, amine, alkylamine, and alkylammonium. Each of R4′, R4″, and R4′″ can be independently absent or present. In certain embodiments of Formula II-A-1, R4′, R4″, R4″, and R5 are independently selected from hydrogen, C1-C6 alkyl, halogen, C1-C6 alkyl halide, C1-C6 alkoxy, nitrile, amine, or an acetylcholinesterase inhibitor.
- In certain embodiments of Formula II-A-1, the compounds disclosed herein can be represented by a structure having the Formula II-A-1′:
- In certain embodiments of Formula II-A, the compounds disclosed herein can be represented by a structure having the Formula II-A-2:
-
- wherein
- R4″ and R5 are independently selected from C1-C6 alkyl, halogen, C1-C6 alkyl halide, C1-C6 alkoxy, nitrile, amine, alkylamine, and alkylammonium. For example, R5 can be selected from hydrogen, C1-C6 alkyl, halogen, C1-C6 alkyl halide, C1-C6 alkoxy, nitrile, amine, alkylamine, or alkylammonium and R4″ can be an acetylcholinesterase inhibitor.
- In certain examples of Formula I or II, the compound can be selected from:
-
- wherein R′ is C1-C6 alkyl, aryl, OH, OR′, NH2, NHR′, or NR′2 or an acetylcholinesterase inhibitor.
- In other examples of Formula I or II, the compound can be selected from:
-
- wherein R is C1-C6 alkyl and X is OH, OR, NH2, NHR, or NR2. In some embodiments, the aryl ring can include an acetylcholinesterase inhibitor.
- In further examples of Formula I or II, the compound can be selected from:
-
- wherein R is C1-C6 alkyl and X is OH, OR, NH2, NHR, OR NR2.
- In some aspects of Formula I, the compound can have a structure represented by Formula II-H to II-Q:
-
- wherein R3, R4, and R4b are optionally present, and
- wherein R4b when present is selected from C1-C6 alkyl, halogen, C1-C6 alkyl halide, C1-C6 alkoxy, nitrile, amine, alkylamine, and alkylammonium.
- In some embodiments of Formula II-H, the compound is represented by a structure having the Formula II-H-1:
-
- wherein R3, R4′, R4b′, R4b″, R4b″′ and R4b″″ are optionally present, and
- when present, R4′, R4b′, R4b″, R4b″′ are independently selected from C1-C6 alkyl, halogen, C1-C6 alkyl halide, C1-C6 alkoxy, nitrile, amine, alkylamine, and alkylammonium.
- In some examples of Formula II-H-II-Q, the compound is represented by a structure having the Formula:
- In some aspects, the compound can have a structure represented by Formula III:
-
- wherein
- X1-X5 are independently selected from N, NR′, and CR′,
- R′ is, independently for each occurrence, selected from hydrogen, C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, hydroxyl, halogen, amine, alkylamine, alkylammonium, or where two R′ groups combine to form a substituted or unsubstituted fused C5-C7 cyclic moiety;
- R1 and R2 are independently selected from C1-C6 alkyl, C1-C6 alkyl halide, or C1-C6 alkoxy, and wherein R1 and R2 are optionally substituted with alkyl, heteroalkyl, cycloalkyl, cycloheteroalkyl, aryl, heteroaryl, alkyl halide, halogen, alkoxy, amine, alkylamine, and alkylammonium; and
- wherein at least one of X1-X5 is N or NR′.
- In certain embodiments of Formula III, R1 and R2 can combine to form a monocyclic heterocyclic group, a bicyclic heterocyclic group, or a tricyclic heterocyclic group. In certain embodiments of Formula III, R1 and R2 can combine to form a substituted or unsubstituted pyrrolidine, substituted or unsubstituted piperidine, substituted or unsubstituted piperazine, substituted or unsubstituted morpholine, wherein the substituent can be selected from C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, hydroxyl, halogen, amine, alkylamine, and alkylammonium.
- In certain embodiments of Formula III, the compound can be represented by a structure having the Formula III-A to III-G:
-
- R3 and R4 can be absent or present in Formula III-A to Formula III-G. In some examples, R3 is absent. In other examples, R3 is present. In some examples, R4 is absent. In other examples, R4 is present. In still other examples, more than one R4 are present. When present, R3 and R4 can be independently selected from C1-C6 alkyl, halogen, C1-C6 alkyl halide, C1-C6 alkoxy, nitrile, amine, alkylamine, alkylammonium, or an acetylcholinesterase inhibitor.
- In some aspects, the compound can have a structure represented by Formula IV:
-
- wherein
- X1-X5 are independently selected from N, NR′, C, and CR′, wherein R′ is independently selected from hydrogen, C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, hydroxyl, halogen, amine, alkylamine, and alkylammonium;
- R1 and R2 combine to form a 3 to 7 membered aliphatic ring, wherein the 3 to 7 membered aliphatic ring is substituted with C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, hydroxyl, halogen, amine, alkylamine, and alkylammonium;
- R2′ is optionally present and selected from C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, and C1-C6 alkyl amine, or R1 and R2′ or R2 and R2′ combine to form a 5 to 7 membered aliphatic ring;
- L is a bond or a linker; and
- Z is an acetylcholinesterase inhibitor; and
- wherein at least one of X1-X5 is N or NR′, and at least one of X1-X5 is C—OH.
- In certain embodiments of Formula IV, R1 and R2 can combine to form a monocyclic heterocyclic group, a bicyclic heterocyclic group, or a tricyclic heterocyclic group. In certain embodiments of Formula IV, R1 and R2 can combine to form a substituted or unsubstituted pyrrolidine, substituted or unsubstituted piperidine, substituted or unsubstituted piperazine, substituted or unsubstituted morpholine, wherein the substituent can be selected from C1-C6 alkyl, C1-C6 alkyl halide, C1-C6 alkoxy, hydroxyl, halogen, amine, alkylamine, and alkylammonium.
- In certain embodiments of Formula IV, the compound can be represented by a structure having the Formula IV-A:
- In certain embodiments of Formula IV, the acetylcholinesterase inhibitor can be selected from (-)-phenserine, donepezil, rivastigmine, metrifonate, tacrine, physostigmine, (-) carbamates, eptastigmine, galantamine, huperzine A and pharmaceutically acceptable salts and esters thereof.
- In some examples of Formula IV, the acetylcholinesterase inhibitor can be donepezil. For example, the compounds disclosed herein can be represented by a structure having the Formula IV-B:
- wherein
-
- n is an integer from 1 to 6.
- As disclosed herein, the compounds described herein can realkylate aged acetylcholinesterase. In particular, progressive inhibition of cholinesterases by organophosphates results from phosphorylation of the active-site serine. Phosphorylated cholinesterases may undergo a dealkylation reaction of the organophosphorus moiety leading to “aged” enzyme, i.e. conversion of the inhibited enzyme into a non-reactivable form. The compounds described herein can realkylate the anionic aged acetylcholinesterase adduct, which produce a neutral phosphyl adduct or another charged adduct that can be reactivated by a compound as described herein or known medicinal agents for reactivating acetylcholinesterase.
- Provided herein are compositions comprising a realkylated phosphyl adduct, the realkylated phosphyl adduct produced by a method comprising contacting aged acetylcholinesterase with a composition comprising an effective amount of a compound provided herein, and allowing the compound to react with the aged acetylcholinesterase to produce the realkylated phosphyl adduct.
- Also provided herein are compositions comprising a realkylated phosphyl adduct, the realkylated phosphyl adduct produced by a method comprising contacting a phosphonate anion with a composition comprising an effective amount of a compound provided herein, and allowing the compound to react with the phosphonate anion to produce the realkylated phosphyl adduct.
- Without wishing to be bound by theory, as an example, a compound of Formula II-A-1 can react with the phosphonate anion as follows to produce one or more of Formulas A-Formula E:
-
- wherein R is an alkyl or alkoxy (O-alkyl) group.
- The disclosed compounds can be used therapeutically in combination with a pharmaceutically acceptable carrier. The carrier would naturally be selected to minimize any degradation of the active ingredient and to minimize any adverse side effects in the subject, as would be well known to one of skill in the art.
- The disclosed compounds may be in solution, suspension, incorporated into microparticles, liposomes, or cells, or formed into tablets, gels, or suppositories. Suitable carriers and their formulations are described in Remington: The Science and Practice of Pharmacy (22nd ed.) eds. Loyd V. Allen, Jr., et al., Pharmaceutical Press, 2012. Typically, an appropriate amount of a pharmaceutically-acceptable salt is used in the formulation to render the formulation isotonic. Examples of the pharmaceutically-acceptable carrier include, but are not limited to, saline, Ringer's solution and dextrose solution. The pH of the solution is preferably from about 5 to about 8, and more preferably from about 7 to about 7.5. Further carriers include sustained release preparations such as semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, liposomes or microparticles. It will be apparent to those persons skilled in the art that certain carriers may be more preferable depending upon, for instance, the route of administration and concentration of composition being administered. Pharmaceutical carriers are known to those skilled in the art. These most typically would be standard carriers for administration of vaccines to humans, including solutions such as sterile water, saline, and buffered solutions at physiological pH. Pharmaceutical compositions may include carriers, thickeners, diluents, buffers, preservatives, surface active agents and the like in addition to the vaccine. Pharmaceutical compositions may also include one or more active ingredients such as antimicrobial agents, anti-inflammatory agents, anesthetics, and the like.
- The disclosed compounds are preferably formulated for delivery via intranasal, intramuscular, subcutaneous, parenteral, transdermal or sublingual administration.
- Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives may also be present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like. Parenteral administration of the disclosed compounds, if used, is generally characterized by injection. Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution of suspension in liquid prior to injection, or as emulsions.
- For an oral administration form, the disclosed compounds can be mixed with suitable additives, such as excipients, stabilizers or inert diluents, and brought by means of the customary methods into the suitable administration forms, such as tablets, coated tablets, hard capsules, aqueous, alcoholic, or oily solutions. Examples of suitable inert carriers are gum arabic, magnesia, magnesium carbonate, potassium phosphate, lactose, glucose, or starch, in particular, cornstarch. In this case, the preparation can be carried out both as dry and as moist granules. Suitable oily excipients or solvents are vegetable or animal oils, such as sunflower oil or cod liver oil. Suitable solvents for aqueous or alcoholic solutions are water, ethanol, sugar solutions, or mixtures thereof. Polyethylene glycols and polypropylene glycols are also useful as further auxiliaries for other administration forms. As immediate release tablets, these compositions may contain microcrystalline cellulose, dicalcium phosphate, starch, magnesium stearate and lactose and/or other excipients, binders, extenders, disintegrants, diluents and lubricants known in the art.
- When administered by nasal aerosol or inhalation, the disclosed compounds may be prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art. Suitable pharmaceutical formulations for administration in the form of aerosols or sprays are, for example, solutions, suspensions or emulsions of the compounds of the disclosure or their physiologically tolerable salts in a pharmaceutically acceptable solvent, such as ethanol or water, or a mixture of such solvents. If required, the formulation may additionally contain other pharmaceutical auxiliaries such as surfactants, emulsifiers and stabilizers as well as a propellant.
- For subcutaneous or intravenous administration, the disclosed compounds, if desired with the substances customary therefore such as solubilizers, emulsifiers or further auxiliaries are brought into solution, suspension, or emulsion. The disclosed compounds may also be lyophilized and the lyophilizates obtained used, for example, for the production of injection or infusion preparations. Suitable solvents are, for example, water, physiological saline solution or alcohols, e.g. ethanol, propanol, glycerol, sugar solutions such as glucose or mannitol solutions, or mixtures of the various solvents mentioned. The injectable solutions or suspensions may be formulated according to known art, using suitable non-toxic, parenterally-acceptable diluents or solvents, such as mannitol, 1,3 butanediol, water, Ringer's solution or isotonic sodium chloride solution, or suitable dispersing or wetting and suspending agents, such as sterile, bland, fixed oils, including synthetic mono- or diglycerides, and fatty acids, including oleic acid.
- When rectally administered in the form of suppositories, the formulations may be prepared by mixing the compounds with a suitable non-irritating excipient, such as cocoa butter, synthetic glyceride esters or polyethylene glycols, which are solid at ordinary temperatures, but liquefy and/or dissolve in the rectal cavity to release the drug.
- In certain embodiments, it is contemplated that compositions comprising the disclosed compounds can be extended release formulations. Typical extended release formations utilize an enteric coating. Typically, a barrier is applied to oral medication that controls the location in the digestive system where it is absorbed. Enteric coatings prevent release of medication before it reaches the small intestine. Enteric coatings may contain polymers of polysaccharides, such as maltodextrin, xanthan, scleroglucan dextran, starch, alginates, pullulan, hyaloronic acid, chitin, chitosan and the like; other natural polymers, such as proteins (albumin, gelatin etc.), poly-L-lysine; sodium poly(acrylic acid); poly(hydroxyalkylmethacrylates) (for example poly(hydroxyethylmethacrylate)); carboxypolymethylene (for example Carbopol™); carbomer; polyvinylpyrrolidone; gums, such as guar gum, gum arabic, gum karaya, gum ghatti, locust bean gum, tamarind gum, gellan gum, gum tragacanth, agar, pectin, gluten and the like; poly(vinyl alcohol); ethylene vinyl alcohol; polyethylene glycol (PEG); and cellulose ethers, such as hydroxymethylcellulose (HMC), hydroxyethylcellulose (HEC), hydroxypropylcellulose (HPC), methylcellulose (MC), ethylcellulose (EC), carboxyethylcellulose (CEC), ethylhydroxyethylcellulose (EHEC), carboxymethylhydroxyethylcellulose (CMHEC), hydroxypropylmethyl-cellulose (HPMC), hydroxypropylethylcellulose (HPEC) and sodium carboxymethylcellulose (Na-CMC); as well as copolymers and/or (simple) mixtures of any of the above polymers. Certain of the above-mentioned polymers may further be crosslinked by way of standard techniques.
- The choice of polymer will be determined by the nature of the active ingredient/drug that is employed in the composition of the disclosure as well as the desired rate of release. In particular, it will be appreciated by the skilled person, for example in the case of HPMC, that a higher molecular weight will, in general, provide a slower rate of release of drug from the composition. Furthermore, in the case of HPMC, different degrees of substitution of methoxyl groups and hydroxypropoxyl groups will give rise to changes in the rate of release of drug from the composition. In this respect, and as stated above, it may be desirable to provide compositions of the disclosure in the form of coatings in which the polymer carrier is provided by way of a blend of two or more polymers of, for example, different molecular weights in order to produce a particular required or desired release profile.
- Microspheres of polylactide, polyglycolide, and their copolymers poly(lactide-co-glycolide) may be used to form sustained-release delivery systems. The disclosed compounds can be entrapped in the poly(lactide-co-glycolide) microsphere depot by a number of methods, including formation of a water-in-oil emulsion with water-borne compound and organic solvent-borne polymer (emulsion method), formation of a solid-in-oil suspension with solid compound dispersed in a solvent-based polymer solution (suspension method), or by dissolving the compound in a solvent-based polymer solution (dissolution method). One can attach poly(ethylene glycol) to compounds (PEGylation) to increase the in vivo half-life of circulating therapeutic proteins and decrease the chance of an immune response.
- Liposomal suspensions (including liposomes targeted to viral antigens) may also be prepared by conventional methods to produce pharmaceutically acceptable carriers. This may be appropriate for the delivery of free nucleosides, acyl nucleosides or phosphate ester prodrug forms of the nucleoside compounds according to the present disclosure.
- The exact amount of the compounds or compositions required will vary from subject to subject, depending on the species, age, weight and general condition of the subject, the severity of the allergic disorder being treated, the particular nucleic acid or vector used, its mode of administration and the like. Thus, it is not possible to specify an exact amount for every composition. However, an appropriate amount can be determined by one of ordinary skill in the art using only routine experimentation given the teachings herein. For example, effective dosages and schedules for administering the compositions may be determined empirically, and making such determinations is within the skill in the art. The dosage ranges for the administration of the compositions are those large enough to produce the desired effect in which the symptoms disorder are affected. The dosage should not be so large as to cause adverse side effects, such as unwanted cross-reactions, anaphylactic reactions, and the like. Generally, the dosage will vary with the age, condition, sex and extent of the disease in the patient, route of administration, or whether other drugs are included in the regimen, and can be determined by one of skill in the art. The dosage can be adjusted by the individual physician in the event of any counter indications. Dosage can vary, and can be administered in one or more dose administrations daily, for one or several days. Guidance can be found in the literature for appropriate dosages for given classes of pharmaceutical products. A typical dosage of the disclosed vaccine used alone might range from about 1 μg/kg to up to 100 mg/kg of body weight or more per vaccination, such as 10 μg/kg to 50 mg/kg, or 50 μg/kg to 10 mg/kg, depending on the factors mentioned above.
- Formulations for topical administration may include ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
- Some of the disclosed compounds may potentially be administered as a pharmaceutically acceptable acid- or base-addition salt, formed by reaction with inorganic acids such as hydrochloric acid, hydrobromic acid, perchloric acid, nitric acid, thiocyanic acid, sulfuric acid, and phosphoric acid, and organic acids such as formic acid, acetic acid, propionic acid, glycolic acid, lactic acid, pyruvic acid, oxalic acid, malonic acid, succinic acid, maleic acid, and fumaric acid, or by reaction with an inorganic base such as sodium hydroxide, ammonium hydroxide, potassium hydroxide, and organic bases such as mono-, di-, trialkyl and aryl amines and substituted ethanolamines.
- The pharmaceutical preparations of the disclosure are preferably in a unit dosage form, and may be suitably packaged, for example in a box, blister, vial, bottle, sachet, ampoule or in any other suitable single-dose or multi-dose holder or container (which may be properly labeled); optionally with one or more leaflets containing product information and/or instructions for use. Generally, such unit dosages will contain between 1 and 1000 mg, and usually between 5 and 500 mg, of the at least one compound of the disclosure, e.g., about 10, 25, 50, 100, 200, 300 or 400 mg per unit dosage.
- The disclosed compounds can also be used to supplement existing treatments. Therefore, the disclosed compositions can further include (or be administered in combination with) a second compound that can ameliorate, diminishing, reversing, treating or preventing the toxic effects of an organophosphorus compound in a subject. For example, the disclosed compositions can further include (or be administered in combination with) one or more of antidotes for organophosphate exposure. In a specific embodiment, the disclosed compounds can be administered with (in combination in the same composition, in combination but in separate compositions, or sequentially) carbamates (e.g., pyridostigmine), anti-muscarinics (e.g., atropine), cholinesterase reactivators (inhibited ChE-reactivators) such as pralidoxime chloride (2-PAM, Protopam), anti-convulsives, or organophosphorus bioscavengers.
- The pharmaceutical compositions and formulations disclosed herein can be administered for prophylactic and/or therapeutic treatments. In therapeutic applications, compositions are administered to a subject already exposed to a toxin, or exposed to any agent or chemical causing or resulting in excessive acetylcholine stimulation in the brain, e.g., exposure to an organophosphorus compound such as a nerve agent.
- The amount of pharmaceutical composition adequate to accomplish this is defined as a “therapeutically effective dose.” The dosage schedule and amounts effective for this use, i.e., the “dosing regimen,” will depend upon a variety of factors, including the stage of the condition, the severity of the condition, the general state of the patient's health, the patient's physical status, age and the like. In calculating the dosage regimen for a patient, the mode of administration also is taken into consideration.
- The dosage regimen also takes into consideration pharmacokinetics parameters well known in the art, i.e., the active agents' rate of absorption, bioavailability, metabolism, clearance, and the like (see, e.g., Hidalgo-Aragones (1996) J. Steroid Biochem. Mol. Biol. 58:611-617; Groning (1996) Pharmazie 51:337-341; Fotherby (1996) Contraception 54:59-69; Johnson (1995) J. Pharm. Sci. 84:1144-1146; Rohatagi (1995) Pharmazie 50:610-613; Brophy (1983) Eur. J. Clin. Pharmacol. 24:103-108; the latest Remington's, supra). The state of the art allows the clinician to determine the dosage regimen for each individual patient, active agent and disease or condition treated. Guidelines provided for similar compositions used as pharmaceuticals can be used as guidance to determine the dosage regiment, i.e., dose schedule and dosage levels, administered practicing the methods of the invention are correct and appropriate.
- The compounds and compositions disclosed herein provide antidotes which are able to “resurrect” the aged form of acetylcholinesterase (AChE) to an active, native state, realkylate the anionic aged form of AChE back to a neutral, phosphylated (inhibited) serine residue and then by reactivating the inhibited form to the native AChE. In some embodiments, the compounds and compositions disclosed herein can reverse inhibition of acetylcholinesterase by an organophosphorus compound. In some embodiments, the compounds and compositions disclosed herein can reactivate aged acetylcholinesterase inhibited by or conjugated to an organophosphorus compound. In some embodiments, the compounds and compositions disclosed herein can realkylate aged acetylcholinesterase inhibited by or conjugated to an organophosphorus compound.
- In certain embodiments, the compounds and compositions disclosed herein provides methods for ameliorating, diminishing, reversing, treating or preventing the toxic effects of an organophosphorus compound in a subject. In certain embodiments, the compounds and compositions disclosed herein provides methods for ameliorating, diminishing, reversing, treating or preventing the toxic effects of an organophosphorus compound in the central nervous system of a subject. The method can include administering to the subject or an individual in need thereof, a compound or a composition disclosed herein.
- Also provided herein are methods for reactivating acetylcholinesterase inhibited by or conjugated to an organophosphorus compound comprising contacting the acetylcholinesterase with a composition comprising an effective amount of a compound having a structure described herein are provided. Methods for realkylating aged acetylcholinesterase inhibited by or conjugated to an organophosphorus compound comprising contacting the acetylcholinesterase with a composition comprising an effective amount of a compound having a structure described herein are provided. The organophosphorus compound can be a nerve agent.
- The compounds and compositions can be administered using any suitable device such as a pump, a subcutaneous infusion device, a continuous subcutaneous infusion device, an infusion pen, a needle, a reservoir, an ampoule, a vial, a syringe, a cartridge, a disposable pen or jet injector, a prefilled pen or a syringe or a cartridge, a cartridge or a disposable pen or jet injector, or a two chambered or multi-chambered pump. The organophosphate toxicity, poisoning or toxic exposure may be caused by exposure of the subject or individual to an alkyl methylphosphonate or related nerve agent, or an alkylphosphorate insecticide, an herbicide, an insecticide, or a nerve gas or nerve agent, a parathion, a malathion, a methyl parathion, a chlorpyrifos, a diazinon, a dichlorvos, a phosmet, a fenitrothion, a tetrachlorvinphos, an azamethiphos or an azinphos methyl, a soman (O-pinacolyl methylphosphonofluoridate), a tabun (ethyl N,N-dimethyl-phosphoramido-cyanidate) or a sarin ((RS)-propan-2-yl methylphosphonofluoridate).
- In certain embodiments, the compounds and compositions provide for treating, preventing or ameliorating excessive acetylcholine stimulation in the CNS, including the brain, or in the periphery, including the peripheral nervous system (PNS), comprising administering to a patient or an individual in need thereof, a compound or a composition disclosed herein. Specifically, the compounds and compositions disclosed herein provides antidotes that cross the blood-brain barrier (BBB) to reactivate and/or realkylate organophosphate (OP)-inhibited human acetylcholinesterase (huAChE) in the central nerve system (CNS). In some embodiments, these compounds are uncharged reactivators of phosphorylated human acetylcholinesterase (huAChE) intended to realkylate the aged form of AChE in the CNS.
- In certain embodiments, compounds and compositions disclosed herein are rapidly absorbed from the site of administration (e.g., oral, inhalation, or intramuscular), cross the blood-brain barrier as a neutral species, displace the covalently attached OPs, e.g., from a organophosphate toxicant such as a pesticide or a nerve agent, realklylate aged AChE, and restore AChE activity in the brain and periphery. In certain embodiments, compounds and compositions disclosed herein provide immediate protection from exposure, as well as prevention, of OP exposure, e.g., protection or prevention of immediate and recurring seizures that result from excessive acetylcholine stimulation in the brain. In some examples, compounds and compositions disclosed herein can be an antidote for poisoning by organophosphate (e.g., diisopropylfluorophosphates and echothiophate) and carbamylating drugs (e.g., physostigmine, neostigmine and pyridostigmine).
- In certain embodiments, compounds and compositions disclosed herein can not only cross the blood-brain barrier to reactivate acetylcholinesterase in the CNS and peripheral nervous system, but are also effective as antidotes and protective (prophylactic) agents. For example, as a prophylactic agent, the compounds can be used in accidents or in poison gas (e.g., nerve agent) warfare, e.g., paraoxon, sarin, cyclosarin and VX attacks. In certain embodiments, compounds and compositions disclosed herein can limit the toxicity and treat potential of organophosphate nerve agents by reactivating and/or realkylating butyrylcholinesterase in plasma and tissues.
- The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compounds, compositions, articles, devices and/or methods claimed herein are made and evaluated, and are intended to be purely exemplary and are not intended to limit the scope of the disclosure. Unless indicated otherwise, parts are parts by weight, temperature is in ° C. or is at ambient temperature, and pressure is at or near atmospheric.
- Introduction: After inhibition of acetylcholinesterase (AChE) by organophosphorus (OP) nerve agents, a dealkylation reaction, referred to as aging, of the phosphylated serine can occur. When aged, known reactivators of OP-inhibited AChE are no longer effective. Realkylation of aged AChE may provide a route to reverse aging. In this example, a library of quinone methide precursors (QMPs) as realkylators of aged AChE were synthesized. The lead compound (C8) from an in vitro screening, combined with 2-pralidoxime (2-PAM), successfully resurrected 32.7% and 20.4% of the activity of methylphosphonate-aged and isopropyl phosphate-aged electric eel AChE, respectively, after 4 days of treatment at
pH 8. C8 displays both realkylator and reactivator activities. Resurrection of PiMP-aged AChE was significantly pH-dependent, recovering 21% of native activity atpH 9 after 1 day. C8 is also effective against DFP-aged human AChE. - Background: Acetylcholinesterase (AChE) is an enzyme found in brain synapses, neuromuscular junctions and erythrocytes. AChE selectively hydrolyzes the neurotransmitter acetylcholine. Organophosphorus (OP) compounds phosphylate the catalytic serine of AChE, and inhibition of AChE results in the accumulation of acetylcholine. OP exposure may lead to death due to seizures or respiratory failure. (M. Eddleston, et al., Lancet 371, 597-607 (2008); M. Lotti, in Handbook of Pesticide Toxicology, R. I. Krieger, W. C. Krieger, Ed. (Academic Press, ed. 2, 2001), vol. 2, chap. 51, pp. 1043-1085; and B. Holmstedt,
Pharmacol Rev 11, 567 (1959)). Thus, OPs are toxic and have been used as pesticides and chemical warfare agents. OP-inhibited AChE can be reactivated by oximes. (B. Sanson, et al., J Med Chem 52, 7593-7603 (2009)). - Exposure of AChE to OP compounds is complicated by an aging process in which loss of the alkyl side chain of the phosphylated serine produces an oxyanion of OP-poisoned AChE. (J. H. Fleisher, et al.,
Biochem Pharmacol 14, 641-650 (1965) and F. Berends, et al., Biochimicaet Biophysica Acta 34, 576-578 (1959)). Oximes, such as 2-pralidoxime (2-PAM), are ineffective against aged AChE. Some OP compounds, such as soman, with an aging half-time (t1/2) of only several minutes, provide only a minimal chance for medical treatment. (A. Shafferman, et al. Biochem J318, 833-840 (1996)). After decades of research, no clinical treatment has been developed to resurrect aged AChE. - To reverse aging, realkylation of the phosphylated oxyanion has been proposed as a strategy against this dealkylation process, (P. Blumbergs, et al.,
J Org Chem 34, 4065-4070 (1969)) including unsuccessful efforts from 1970 by Steinberg et al. (G. M. Steinberg, et al.,J Med Chem 13, 435-446 (1970)) as well as more recent efforts led by Quinn (J. J. Topczewski, et al.,Org Lett 15, 1084-1087 (2013)). With the negative charge on the phosphylated serine being neutralized by some sort of electrophilic realkylation process, oximes should reactivate AChE again. Several types of electrophilic alkylating agents including sulfonates (P. Blumbergs, et al.), haloketones (G. M. Steinberg, et al.), sulfoniums (N. B. Chandar, et al., Chem-Biol Interact 223, 58-68 (2014)), and methoxypyridiniums (J. J. Topczewski, et al.) were evaluated as potential AChE realkylators. Recently, from an in silico study, Khavrutskii and Wallgvist suggested the possibility to resurrect aged AChE by β-aminoalcohols, by a direct process without proceeding through a realkylation event (I. V. Khavrutskii, et al.,Chemistry Select 2, 1885-1890 (2017)). However, prior to this report, no experimental evidence has been reported for the efficacy of any drug to realkylate aged AChE (Q. Zhuang, et al., Ann Ny Acad Sci 1374, 94-104 (2016)). Herein is reported the first family of compounds that demonstrate in vitro efficacy. - Quinone methides (QMs,
FIG. 1A ) can be regarded as carbocations stabilized by resonance delocalization. Quinone methide precursors (QMPs,FIG. 1A ) are derivatives of QMs with a leaving group attached to the partially positively charged carbon. QMPs can be attacked by nucleophiles either directly viaS N2 substitution, or via the corresponding QMs as reactive intermediates (FIG. 1B ). Protein and nucleic acid alkylation by QMPs has been reported (D. C. Thompson, et al., Chem-Biol Interact 126, 1-14 (2000); J. L. Bolton, et al., Chem-Biol Interact 107, 185-200 (1997); P. G. McCracken, et al., J Org Chem 62, 1820-1825(1997); M. Reboud-Ravaux, et al., in Quinone Methides, S. E. Rokita, Ed. (John Wiley & Sons, Inc., ed.2009), chap. 11, pp. 357-383; Q. Zhou, et al.,Chem Res Toxicol 24, 402-411 (2011); and B. A. Bakke, et al., J Org Chem 70, 4338-4345 (2005)). Phosphodiesters and dibutyl phosphate, which structurally resemble the phosphyl group of aged AChE, have been alkylated by QMs. (A. Bakke, et al., J Org Chem 70, 4338-4345 (2005); Q. Zhou, et al.; J Org Chem 64, 2847-2851 (1999); and Q. Zhou, et al., J Org Chem 66, 7072-7077 (2001)). - Herein is reported a series of QMPs as realkylators of aged AChE, providing up to ˜33% in vitro resurrection of electric eel AChE (eeAChE) for a methylphosphonate or up to 20% for a phosphate, after 4 days. Guided by in silico studies, a library of candidate compounds was synthesized. Their activities were characterized by Ellman's assay, and resurrection of AChE was confirmed by bottom-up proteomics.
- QMP screening assays with electric eel acetylcholinesterase (eeAChE) were carried out, where eeAChE is first incubated with an OP to inhibit the enzyme, and allowed an appropriate amount of time for the enzyme to age. The re-inhibited OP AChE complex was then treated with 2-PAM, to effectively reactivate any inhibited, but un-aged enzyme. The sample was then screened by Ellman's assay for residual AChE activity. If activity was present, the inhibition and aging process is repeated. This procedure ensures complete aging of the enzyme prior to screening QMP realkylators. For the purpose of the screening results reported within this example, eeAChE was inhibited and aged with one of three OPs: CMP, PiMP, or diisopropyl fluorophosphate (DFP). Importantly, the methylphosphonate-aged AChE product resulting from aging with CMP or PiMP was not only the aging product of the cyclosarin or soman-inhibited AChE respectively, but also the product of AChE inhibited and aged by any other methylphosphonate nerve agents (e.g. sarin, cyclosarin, VX, etc.).
- Once the aged AChE sample was obtained, it was then incubated with individual potential QMP realkylators in the presence of 2-PAM under near physiological conditions (37° C., phosphate buffer pH 7.4). The purpose of adding 2-PAM to the assay is to facilitate the reactivation of the realkylated enzyme after reaction with the alkylator, thereby generating the active, native enzyme. The enzyme activity was then evaluated by Eliman's assay.
- Preparation of Aged AChE: Some OPs (mainly the phosphonates, which are commonly seen in G- and V-type chemical warfare agents) are chiral, and the stereoisomers can inhibit and/or age at different rates. (J. H. Keijer, et al., Biochimica et Biophysica Acta 185, 465-468 (1969)). Inhibited AChE may remain un-aged even after reacting for longer than the apparent tin, if the enzyme is inhibited by the slower aging OP stereoisomer. Reactivation of the residual un-aged, but inhibited, AChE can interfere with the observation of the resurrection of aged AChE and may lead to artifacts.
- Thus, AChE must be thoroughly aged and free of inhibited AChE. Two representative OPs (
FIG. 1C ) were exploited in this example. PiMP (a pinacolyl methylphosphonate ester), a soman analogue, was synthesized as reported by Amitai et al.(G. Amitai, et al., Toxicology 233, 187-198 (2007)). The resulting methylphosphonate-aged AChE is the aging product of any methylphosphonate nerve agent (e.g. sarin, soman, VX, etc.). The pesticide DFP (diisopropyl fluorophosphate) was also used to evaluate a phosphate at the serine residue (FIG. 1C ). eeAChE was chosen as the target enzyme of these studies, considering its commercial availability and affordable cost. - To ensure complete aging, the methylphosphonate-aged AChE (treated with PiMP) was prepared via two rounds of aging, considering the chirality of PiMP. AChE was treated with 2-PAM after the first round of aging, in order to reactivate any residual inhibited AChE. Then PiMP was added to inhibit and age the enzyme again. The amount of residual inhibited or native AChE in the sample was significantly minimized, often <0.5% residual activity of a native AChE control. By contrast, to age AChE with achiral DFP, only one round of aging was needed.
- Initial Libraries and Evaluation of QMPs for Realkylation of Aged AChE
- A synthesis of QMPs utilized a reductive amination or Mannich phenol reaction and lead to the efficient development of a preliminary library of QMP compounds (
FIGS. 3A and 7 ). The compounds shown inFIG. 7 include both ortho and para QMPs, as well as quaternary ammonium and neutral amine leaving groups. Four of the 2-aminomethyl-3-hydroxypyridines screened inFIG. 3A showed resurrection of AChE activity above the baseline value, with one compound, C8, bearing a pyrrolidine leaving group, reaching ˜2.5% or 1.25% reactivation against PiMP-aged AChE or DFP-aged AChE respectively, after 24 h of reaction time. - Synthesis of 3,4-substituted Pyridine Alkylators: In an effort to probe structure activity relationships of C8, regioisomers and structural analogs of C8 were explored. To better understand the importance of the relationship of the pyridine nitrogen and substituents on the ring, a series of 3,4-substituted pyridine QMP or “QMP like” analogs was proposed.
- It is believed that substituents other than hydroxy, with lone pair electrons in resonance with the pyridine ring could facilitate the substitution reaction at the methylene carbon. For this reason, compounds 3.XVI with a chlorine and 3.XVII with an electron-donating methoxy group in the 4-position were proposed (Scheme 1).
- From the analysis of the data in
Scheme 1, it appears that the 5-membered pyrrolidine ring is the optimal amine leaving group. However, it was postulated that perhaps including an electron-withdrawing group on the pyrrolidine ring could lead to an increase in QM formation, and thus increase the potential for realkylation. Therefore in addition to using pyrrolidine, a 3,3-difluoropyrrolidine leaving group (Scheme 1, Y=CF2) was also proposed. - The synthesis of the compounds proposed in
Scheme 1 were envisioned to come from the common aldehyde intermediate 3.XIX which was obtained by formylation of the commercially available 4-chloropyridine (3.XVIII) by treatment with lithium diisopropylamine and subsequent trapping of the resulting anion with N,N-dimethylformamide (Scheme 2). - The 4-chloropyridine derivatives 3.XVI were then easily obtained by reductive amination of 3.XIX with pyrrolidine or 3,3-difluoropyrrolidine, followed by alkylation of the amine using iodomethane to give 3.XXI (
Scheme 3, A), or protonation with oxalic acid to afford the oxalate salt 3.XXII (Scheme 3, A) or 3.XXIV (Scheme 3, B). - The 4-hydroxypyridine 3.XV type alkylators synthesis begins with the nucleophilic aromatic substitution of the electron-deficient ring of the common aldehyde intermediate 3.XIX with an aqueous HCl solution to afford aldehyde 3.XXV (
Scheme 4, A). From 3.XXV, similarly described reductive amination conditions with pyrrolidine followed by protonation/methylation afford 3.XXVI and 3.XXVII respectively (Scheme 4, B), or reductive amination with 3,3-difluoropyrrolidine and protonation with oxalic acid to give the oxalate salt 3.XXIX (Scheme 4, C). - Resurrecting aged-AChE with the aid of an AChE Inhibitor: Thus far, in investigating a realkylator for the resurrection of aged-AChE, a fairly broad variety of QMP scaffolds had been synthesized, including benzyl, pyridyl, naphthyl, quinolinyl, and isoquinolinyl QMPs. Of these families of compounds, pyridyl compounds, specifically 2-methylamino-3-hydroxypyridines showed greater ability to resurrect aged AChE activity. Based on this, attention was turned to modifying the compound C8, in a manner to increase its ability to realkylate the aged enzyme, while leaving the proven effective 2-methylamino-3-hydroxy framework intact. It was postulated that increasing the affinity of the alkylator for the active site of the enzyme could potentially lead to an increase in activity for the alkylating compounds. The drug donepezil was observed.
- Donepezil, trade named Aricept® is a benzylpiperidine with a propensity to inhibit AChE with a half maximal inhibitory concentration (IC50) of 5.7 nM. The drug was discovered by the Eisai company (and later bought and marketed by Pfizer), and has been FDA approved for the treatment of Alzheimer's disease since 1996. Interestingly, the drug was discovered prior to the solving of the crystal structure of AChE; therefore, there was no known information about the spatial conformation of the AChE active site residues or the mechanism of inhibitor binding to guide the design of donepezil at the time of the drug's discovery. Rather, a brute force structure-activity relationship (SAR) effort beginning with the discovery of a benzylpiperidine compound that was observed to inhibit AChE in 1990 is what ultimately lead to the identification and eventual approval of donepezil as a drug after more than a decade of research.
- In 1999, the crystal structure of Torpedo californica AChE (TcAChE) with donepezil bound in the active site was reported by Sussman et al. This report revealed the key interaction between donepezil and the active site of AChE that can be attributed to the high affinity of the drug for the enzyme. The flexibility of the piperidine backbone via rotatable methylene linkers is crucial to allowing for favorable interaction between active site residues and the drug. The indanone moiety, which sits in the wide funnel-like entrance to the gorge, stacks against the indole ring of Trp279 by means of a π-π interaction, as well as forms a water-mediated hydrogen bond between one of the methoxy substituents and Glu185. In the middle are of the gorge, there is a strong cation-π interaction observed between the protonated piperidine ring of donepezil and Phe330. At the bottom of the gorge, the benzyl group of donepezil displays π-π stacking interactions with Trp84.
- A generation of donepezil inspired 2-methylamino-3-hydroxypyridine QMPs that are anticipated to be less potent inhibitors of AChE was proposed in
Scheme 5. - The methoxy substituents of donepezil are known to make a favorable interaction with Glu185 of AChE via a water-mediated hydrogen bond. SAR studies show that the des-methoxy donepezil derivative is a 25-fold less potent inhibitor of AChE than donepezil. The synthesis for compound 3.XLIV used 1-indanone in place of 5,6-dimethoxyindanone.
- An alternative synthetic route was conceived wherein an aldol condensation between 1-indanone and piperidine aldehyde 3.XLXII would alleviate the need for the stubborn pyridine hydrogenation. The forward synthesis began with the Boc deprotection of isonipecotic acid to give a Boc-amine. This amine was converted to Weinreb amide 3.LIV via EDC coupling, which was sequentially reduced to an aldehyde with lithium aluminum hydride. The aldehyde was then subjected to an aldol condensation with 1-indanone to afford α,β-unsaturated ketone 3.LV, which was hydrogenated with palladium on carbon to afford 3.LVI. TFA Boc deprotection liberated the free amine 3.LVII, which was then reacted with 2-bromomethyl-3-hydroxypyridine to yield the desired final product 3.XLIV by means of nucleophilic substitution.
- The next effort was towards the synthesis of compound 3.XLV, which differs in structure from 3.XLIV by the addition of one methylene unit between the indanone moiety and the pyridine ring. This feature is designed to add conformational flexibility to the alkylator. The proposed synthesis of this compound would capitalize on the product of an aldol reaction between 1-indanone and aldehyde 3.LVIII. Aldehyde 3.LVIII was proposed to come from a Horner-Wadsworth-Emmons (HWE) reaction between commercially available N-Boc-4-piperidone and triethyl phosphonoacetate.
- The HWE reaction to afford ester 3.LIX proceeded cleanly in high yield. The α,β-unsaturated double bond was hydrogenated under 1 atm H2 with palladium on carbon to give the saturated compound 3.LX. This ester was then reduced to aldehyde 3.LVIII by means of diisobutylaluminum hydride. A crossed aldol condensation between the resulting aldehyde and 1-indanone under basic conditions provided intermediate 2.LXI in 43% yield after purification.
- Attempted hydrogenation of 3.LXI by means of palladium catalysts (Pd/C or Pd(OH)2) lead to the desired saturation of the double bond, but also the undesired reduction of the benzylic carbonyl to give indane 3.LXII. A similar result was observed by Renou and coworkers where they saw conversion of the indanone carbonyl of 3.LXIII to a methylene group affording indane compound 3.LXIV under the same conditions during their synthesis of donepezil-based 2-pyridine aldoximes. However, this observation ultimately lead these researchers to the discovery of 2-pyridine aldoxime 3.XLI, which was reported to be quite effective in the reactivation of both VX and paraoxon inhibited AChE (observed reactivation rates of inhibited AChE: kr2=1.8 and 1.5 mM-1 min-1 respectively).
- Indane 3.LXII was converted to the final QMP realkylator 3.XLVI by TFA deprotection of the Boc amine followed by nucleophilic substitution with 2-bromomethyl-3-hydroxypyridine.
- The alkylator 3.XLIX was proposed based on an open-chain benzyl piperidine AChE inhibitor discovered by the Eisai company prior to the discovery of the more potent indanone, donepezil. This compound has the benefits of increased rotational freedom due to the extended methylene chain between the piperidine and the aromatic amide, as well the increased flexibility imparted by opening the indanone ring. The synthesis of 3.XLIX would begin with the common intermediate 3.LX (Scheme 6).
- 3.LX was saponified to give carboxylic acid 3.LXV, which was then treated with thionyl chloride to generate an acid chloride intermediate, which was subsequently converted to methylamide 3.LXVI with an aqueous methylamine solution. This amide was reduced to amine 3.LXIV with lithium aluminum hydride, and then further converted to amide 3.LXVII with benzoyl chloride. The Boc-protected piperidine was then deprotected with TFA to liberate the free amine 3.LXV, which was converted to the final product 3.XLIX by a substitution reaction analogous to those previously described with 2-bromomethyl-3-hydroxypyridine.
- The final targeted donepezil inspired 2-methylamino-3-hydroxypyridine QMP realkylator, 3.XLVIII, differs from the synthesized compound 3.XLIX in that the piperidine ring is replaced with a piperazine. This structural difference was designed to simplify the overall synthesis and allow for quick structural variation of the amide portion by the use of various acid chlorides and amino alcohols in the initial step. This would allow a rapid library synthesis for SAR purposes should the initial compound show any realkylation ability towards aged AChE. 3.XLVIII was envisioned to come from amine 3.LXVI, which would by synthesized form the activation and displacement of the alcohol functional group of 3.LXVII with 1-Boc-piperazine (Scheme 7).
- The forward synthesis include benzoyl chloride and 2-(methylamino)-1-ethanol were coupled to provide amide 3.LXVII. This alcohol was then converted to an alkylchloride via thionyl chloride. Following, the chloride was displaced with 1-boc-piperazine to afford 3.LXVI. Boc deprotection with TFA and substitution on 2-bromomethyl-3-hydroxy pyridine yielded the final compound 3.XLVIII.
- Example procedure for synthesis of 3-hydroxypyridyl QMPs (C1-C13): 3-hydroxypyridine (500.2 mg, 5.32 mmol, 1.0 equiv.) was dissolved in water (10 mL). To this suspension was added a 37% wt formaldehyde solution (175.6 mg, 5.85 mmol, 1.1 equiv.) and N-methylethylamine (0.50 mL, 5.85 mmol, 1.1 equiv.).(/8) The resulting suspension was heated to reflux for 4 h. The solution was cooled to room temperature and extracted 3 times with dichloromethane (DCM). The organic layer was dried over anhydrous sodium sulfate (Na2SO4), and DCM was removed under reduced pressure. The isolated product was a brown oil* (666.3 mg, 75%). Products isolated as oils were further protonated with 1M oxalic acid in diethyl ether or HCl in methanol (1 equiv.) for Ellman's assay-based screening.
- Synthesis of 2-chloro-5-(pyrrolidin-1 ylmethyl)pyridine: Pyrrolidine (0.67 mL, 8.00 mmol, 2.0 equiv.), 2-chloro-5-(chloromethyl)pyridine (0.648 g, 4.00 mmol, 1.0 equiv.), potassium carbonate (0.553 g, 4.00 mmol, 1.0 equiv.), and acetonitrile (10 mL) were combined and heated to reflux for 3.5 h and then allowed to cool to room temperature. Water (20 mL) was added and the solution was extracted with chloroform (3×30 mL). The organic layers were collected and dried with Na2SO4, and the solvent was evaporated under reduced pressure at 50° C. to yield 2-chloro-5-(pyrrolidin-1-ylmethyl)pyridine as a red oil (0.830 g, 4.22 mmol, 100%). 2-Chloro-5-(pyrrolidin-1-ylmethyl)pyridine: 1H NMR (CDCl3, 400 MHz) δ=8.32 (m, 1H), 7.67 (m, 1H), 7.29 (m, 1H), 3.60 (s, 2H), 2.50 (m, 4H), 1.80 (m, 4H).
- Synthesis of 5-(pyrrolidin-1 ylmethyl)pyridine-2-ol (M1): 2-Chloro-5-(pyrrolidin-1-ylmethyl)pyridine (0.150 g, 0.763 mmol, 1 eq.) and 3 M HCl (0.763 mL, 2.29 mmol, 3.0 eq.) were combined and refluxed for 6 h and then allowed to cool to room temperature. The solution was neutralized with potassium carbonate and water was evaporated under reduced pressure at 65° C. The solution was then suspended in ethanol and a filtrate was collected. The solvent was evaporated under reduced pressure at 40° C. to yield 5-(pyrrolidin-1-ylmethyl)pyridine-2-ol as a brown oil (0.120 g, 0.671 mmol, 88%).
- Synthesis of 4-chloronicotinaldehyde: Saturated NaHCO3 was added to a suspension of 4-chloropyridinium hydrochloride (10 g, 67 mmol) in diethyl ether (100 mL). The biphasic mixture was stirred for 1 h, then separated. The aqueous layer was extracted with diethyl ether (3×50 mL). Combined organic layers were dried over Na2SO4 and concentrated. The resulting oil was purified by distillation to afford pure 4-chloropyridine. A −78° C. solution of 2 M lithium diisopropylamide (LDA) in heptane/tetrahydrofuran (THF) (19 mL, 38.04 mmol, 1.2 equiv.) was diluted in THF (60 mL) and treated with the dropwise addition of a solution of 4-chloropyridine (3.6 g, 31.7 mmol, 1 equiv.) in THF (10 mL). The mixture was slowly warmed to −40° C. and stirred 1 h before returning to −78° C. Dimethylformamide (DMF, 3.0 mL, 38.04 mmol, 1.2 equiv.) was added, and the reaction was stirred 2 h at −78° C., then warmed to RT as ice bath expired and stirred 16 h. The reaction was cooled to −10° C. and quenched with sat. NH4Cl (5 mL). The reaction was diluted with water and extracted with ethyl acetate. The organic layers were washed with brine, dried over Na2SO4 and concentrated. The crude red oil was purified by silica gel chromatography (30% EtOAc/hexanes) to afford the title compound as a yellow tinted oil which crystalized to clear needles under argon (1.6 g, 36% yield). Spectra matched the literature reports. 1H-NMR (400 MHz, CDCl3): δ=10.51 (s, 1H); 9.05 (s, 1H); 8.68 (d, J=5.76 Hz, 1H); 7.43 (d, J=5.4 Hz, 1H).
- Synthesis of 4-chloro-3-(pyrrolidin-1 ylmethyl)pyridine 013): A solution of 4-chloronicotinaldehyde (100 mg, 0.7 mmol, 1 equiv.) in 1,2-dichloroethane was treated with pyrrolidine (0.06 mL, 0.77 mmol, 1.1 equiv.) followed by sodium triacetoxyborohydride (NaBH(OAc)3, 207 mg, 0.98 mmol, 1.4 equiv.) and acetic acid (AcOH, 0.04 mL). The reaction mixture was stirred for 1.5 h, then quenched with excess saturated NaHCO3 solution and extracted with DCM. The organic layers were washed with brine, dried over Na2SO4 and concentrated to afford the title product (139 mg, 100%).
- Synthesis of 3-chloro-2-(chloromethyl)quinolone: 2-aminobenzaldehyde (0.250 g, 0.206 mmol, 1 equiv.), 1,3-dichloroacetone (0.262 g, 0.206 mmol, 1 equiv.), and p-tosylic acid monohydrate (0.393 g, 0.206 mmol, 1 equiv.) were mixed and heated at 110° C. for 1 h while monitored with TLC (hexane:ethyl acetate 10:1). The reaction was cooled, and water (5 mL) was added. The resulting mixture was neutralized to pH=10 with NaOH (10%, 0.8 mL). The reaction was extracted with DCM (3×10 mL). The organic extracts were combined and dried with Na2SO4. The residual solvent was evaporated to yield the crude solid that was purified by column chromatography (hexane:ethyl acetate 10:1) to give 3-chloro-2-(chloromethyl)quinoline as a white solid (0.17 g, 38%). 1H NMR (CDCl3, 400 MHz): δ=8.23 (s, 1H), 8.12 (dd, J1=8.1 Hz, J2=1.8 Hz, 1H), 7.76 (dd, J1=8.2 Hz, J2=1.6 Hz, 1H), 7.71 (td, J1=7.9 Hz, J2=1.5 Hz, 1H), 7.60 (td, J1=8.2 Hz, J2=1.6 Hz, 1H), 4.99 (s, 2H) ppm; 13C NMR (CDCl3, 400 MHz): δ=160.3, 146.1, 133.3, 130.1, 128.7, 128.3, 127.5, 127.2, 126.9, 39.1 ppm
-
- Pale orange solid, 80% yield. 1H NMR (DMSO, 400 MHz): δ=7.93-7.94 (dd, J1=1.52 Hz, J2=4.55 Hz, 1H), 7.12-7.15 (dd, J1=4.55 Hz, J2=8.16 Hz, 1H), 7.07-7.09 (dd, J3=1.52 Hz, J2=8.16 Hz, 1H), 3.76 (s, 2H), 2.28 (s, 6H); 13C NMR (DMSO, 100 MHz): δ=153.67, 143.42, 139.19, 123.38, 122.02, 63.26, 44.30; HRMS (ESI-orbitrap): m/z calcd for C8H12N2O+H+: 153.1022, found: 153.1021.
-
- Brown oil, 75% yield. 1H NMR (DMSO, 400 MHz): δ=8.11-8.13 (dd, J1=1.46 Hz, J2=4.46 Hz, 1H), 7.35-7.37 (dd, J1=1.42 Hz, J2=8.34 Hz, 1H), 7.29-7.33 (dd, J1=4.48 Hz, J2=8.16 Hz, 1H), 4.37 (s, 2H), 3.15-3.21 (q, J=7.27 Hz, 2H), 2.78 (s, 3H), 1.24-1.27 (t, J=7.26 Hz, 3H); 13C NMR (DMSO, 100 MHz): δ=152.34, 139.62, 138.28, 124.98, 122.99, 53.72, 50.80, 39.86, 9.08; FIRMS (ESI-orbitrap): m/z calcd for C9H14N2O+H+: 167.1179, found: 167.1182.
-
- Brown oil, 57% yield1H NMR (DMSO, 400 MHz): δ=8.07-.09 (m, J1=1.62 Hz, J2=4.34 Hz, 1H), 7.30-7.33 (dd, J1=1.64 Hz, J2=8.24 Hz, 1H), 7.26-7.29 (dd, J1=4.36 Hz, J2=8.28 Hz, 2H), 4.27 (s, 2H), 2.93-2.97 (t, J=8.04 Hz, 2H), 2.69 (s, 3H), 1.65-1.71 (m, J=7.68 Hz, 2H), 0.87-0.90 (t, J=7.34 Hz, 3H); 13C NMR (DMSO, 100 MHz): δ=152.67, 139.50, 124.67, 122.81, 57.36, 55.71, 40.62, 17.43, 10.89; FIRMS (ESI-orbitrap): m/z calcd for C10H16N2O+H+: 181.1335, found: 181.1335.
-
- Brown oil, 33% yield. 1H NMR (DMSO, 400 MHz): δ=8.12-8.13 (dd, J1=1.46 Hz, J2=4.48 Hz, 1H), 7.36-7.38 (dd, J1=1.48 Hz, J2=8.28 Hz, 1H), 7.30-7.33 (dd, J1=4.48 Hz, J2=8.28 Hz, 1H), 4.31 (s, 2H), 3.50-3.57 (m, J=6.64 Hz, 1H), 2.72 (s, 3H), 1.29-1.30 (d, J=6.64 Hz, 6H); 13C NMR (DMSO, 100 MHz): δ=152.41, 139.58, 138.37, 125.03, 123.04, 56.71, 51.13, 36.80, 16.15; HRMS (ESI-orbitrap): m/z calcd for C10H16N2O+H+: 181.1335, found: 181.1334.
-
- Yellow solid, 82% yield. 1H NMR (DMSO, 400 MHz): δ=8.10-8.11 (dd, J1=1.82 Hz, J2=4.14 Hz, 1H), 7.30-7.31 (m, 2H), 4.32 (2.06), 3.02-3.06, (t, J=8.03 Hz, 2H), 2.74 (s, 3H), 1.68-1.70 (m, J=7.83 Hz, 2H), 1.27-1.32 (m, J=7.43 Hz, 2H), 0.87-0.90 (t, J=7.36 Hz, 3H); 13C NMR (DMSO, 100 MHz): δ=153.06, 140.04, 139.20, 125.35, 123.42, 55.95, 55.4, 41.10, 26.14, 19.81, 13.95; HRMS (ESI-orbitrap): m/z calcd for C11H18N2O+H+: 195.1492, found: 194.1495.
-
- Yellow solid, 57% yield. 1H NMR (DMSO, 400 MHz): δ=8.06-8.08 (dd, J1=1.98 Hz, J2=4.02 Hz 1H), 7.27-7.28 (m, 2H), 4.22 (s, 2H), 2.76-2.78 (d, J=7.16 Hz, 211), 2.65 (s, 311), 2.03-2.12 (m, J=6.78 Hz, 1H), 0.92-0.94 (d, J=6.65 Hz, 6H); 13C NMR (DMSO, 100 MHz): δ=153.30, 140.02, 125.13, 123.25, 63.94, 57.53, 42.09, 24.60, 20.66; FIRMS (ESI-orbitrap): m/z calcd for C11H18N2O+H+: 195.1492, found: 194.1494.
-
- Orange solid, 75% yield. 1H NMR (DMSO, 400 MHz): δ=11.25 (bs, 1H), 9.92 (bs, 1H), 8.16-8.18 (dd, J1=1.30 Hz, J2=4.70 Hz, 1H), 7.57-7.59 (dd, J1=1.24 Hz, J2=8.32 Hz, 1H), 7.38-7.41 (dd, J1=4.70 Hz, J2=8.34 Hz 1H), 4.38 (s, 2H), 3.15-3.21 (q, J=7.23 Hz, 4H), 1.24-1.28 (t, J=7.24 Hz, 6H); 13C NMR (DMSO, 100 MHz): δ=153.07, 138.78, 137.30, 125.54, 124.43, 49.54, 47.65, 8.73; HRMS (ESI-orbitrap): m/z calcd for C10H16N2O+H+: 181.1335, found: 181.1334.
-
- Light brown solid, 88% yield.; 1H NMR (DMSO, 400 MHz): δ=11.01 (bs, 1H), 10.31 (bs, 1H), 8.12-8.14 (dd, J1=1.34 Hz, J2=4.66 Hz, 1H), 7.47-7.49 (dd, J1=1.32 Hz, J2=8.28 Hz, 1H), 7.33-7.36 (dd, J1=4.68 Hz, J2=8.32 Hz, 1H), 4.48 (s, 2H), 3.36 (bs, 4H), 1.94-1.97 (m, 4H); 13C NMR (DMSO, 100 MHz): δ=.152.85, 139.21, 138.79, 125.66, 124.35, 54.33, 53.23, 23.18; FIRMS (ESI-orbitrap): m/z calcd for C10H14N2O+H+: 179.1179, found: 179.1182.
-
- Tan solid, 27% yield. 1H NMR (CDCl3, 400 MHz): δ=7.99-8.00 (t, J=3.02 Hz, 1H), 7.09-7.10 (d, J=2.92 Hz, 2H), 4.01 (s, 2H), 3.00-3.06 (t, J=12.7 Hz, 2H), 2.87-2.91 (t, J=7.15 Hz, 2H), 2.31-2.38 (m, 2H); 13C NMR (DMSO, 100 MHz): δ=152.63, 144.54, 139.90, 123.93, 122.58, 61.38, 55.85, 35.63, 19.39; 19F NMR (CDCl3, 376 MHz): δ=−93.050-92.961 (m); FIRMS (ESI-orbitrap): m/z calcd for C10H12N2OF2+H+: 215.0990, found: 215.0985.
-
- Light brown solid, 95% yield. 1H NMR (DMSO, 400 MHz): δ=11.18 (bs, 1H), 10.01 (bs, 1H), 8.18-8.19 (dd, J1=1.26 Hz, J2=4.70 Hz, 1H), 7.55-7.57 (d, J=8.24 Hz, 1H), 7.39-7.42 (dd, J1=4.54 Hz, J2=8.14 Hz, 1H), 4.38 (s, 2H), 3.23 (bs, 4H), 1.77-1.81 (m, J=5.84 Hz, 4H), 1.53 (bs, 2H); 13C NMR (DMSO, 100 MHz): δ=.153.80, 137.80, 135.59, 126.04, 125.79, 53.49, 52.65, 22.27, 21.07; FIRMS (ESI-orbitrap): m/z calcd for C11H16N2O+H+: 193.1335, found: 193.1333.
-
- Yellow solid, 86% yield. 1H NMR (CD3OD, 400 MHz): δ=8.32-8.34 (dd, J1=1.22 Hz, J2=5.58 Hz, 1H), 7.90-7.92 (dd, J1=1.24 Hz, J2=8.52 Hz, 1H), 7.80-7.83 (dd, J1=5.58 Hz, J2=8.50 Hz, 1H), 4.13 (s, 2H), 3.42-3.45 (m, 4H), 3.01-3.03 (m, 4H); 13C NMR (CD3OD, 100 MHz): δ=154.73, 140.51, 132.48, 129.92, 126.34, 52.93, 49.41, 42.97, FIRMS (ESI-ToF): m/z calcd for C10H15N2O+H+: 194.1288, found: 194.1288
-
- Light brown solid, 78% yield. 1H NMR (DMSO, 400 MHz): δ=10.84-11.26 (m, 2H), 8.15-8.17 (m, 1H), 7.49-7.52 (m, 1H), 7.36-7.41 (m, 1H), 4.46 (s, 2H), 3.86-3.88 (t, 4H), 3.32-3.34 (t, 4H); 13C NMR (DMSO, 100 MHz): δ=152.87, 139.01, 136.91, 125.34, 123.97, 63.10, 54.44, 51.62; FIRMS (ESI-orbitrap): m/z calcd for C10H14N2O2+H+: 195.1128, found: 195.1126.
-
- White solid, 38% yield. 1H NMR (DMSO, 400 MHz): δ=11.29 (bs, 2H), 8.17-8.19 (dd, J1=1.26 Hz, J2=4.86 Hz, 2H), 7.62-7.64 (dd, J1=1.16 Hz, J2=8.36 Hz, 2H), 7.45-7.48 (dd, J1=4.88 Hz, J2=8.32 Hz, 2H), 4.33 (s, 4H), 3.39 (s, 8H); 13C NMR (DMSO, 100 MHz): δ=153.25, 138.04, 137.51, 125.56, 125.27, 53.50, 49.02; HRMS (ESI-orbitrap): m/z calcd for C16H20N4O2+H+: 301.1659, found: 301.1652.
-
- Brown oil, 88%. 1H NMR (DMSO, 400 MHz): δ=10.96 (bs, 1H), 7.25 (d, J=1.44 Hz, 1H), 7.04-7.06 (m, J=1.60 Hz, 7.96 Hz, 1H), 6.95-6.97 (d, J=7.92 Hz, 1H), 6.06 (s, 2H), 4.21 (s, 2H), 3.00 (bs, 3H), 1.89-1.96 (bs, 5H); 13C NMR (DMSO, 100 MHz): δ=148.35, 147.86, 124.99, 111.01, 108.80, 101.84, 56.85, 52.74, 22.98. HRMS (ESI-orbitrap): m/z calcd for C10H14N2O+H+: 179.1179, found: 179.1182.
-
- White solid, 55% yield. NMR (CDCl3, 400 MHz): δ=7.46-7.48 (m, 1H), 7.29-7.35 (m, 1H), 6.55-6.59 (dd, J1=4.32 Hz, J2=9.16 Hz, 1H), 6.14-6.19 (m, 1H), 4.86-4.87 (d, J=5.32 Hz, 2H), 2.72-2.74 (m, 4H), 1.78-1.80 (m, 4H); 13C NMR (DMSO, 100 MHz): δ=163.17, 139.45, 136.99, 121.25, 105.28, 66.35, 51.34, 51.14, 23.91, 23.71; HRMS (ESI-orbitrap): m/z calcd for C10H14N2O+H+: 179.1179, found: 179.1179.
-
- White solid, 36% yield. 1H-NMR (DMSO, 400 MHz), S: 8.77 (s, 1H), 8.55-8.56 (d, J=5.36 Hz, 1H); 7.64-7.65 (d, J=5.36 Hz, 1H); 4.32 (s, 2H); 3.10 (bs, 4H); 1.87-1.91 (m, 4H); 13C NMR (DMSO, 100 MHz): δ=163.05, 152.86, 143.72, 127.62, 124.69, 53.34, 51.89, 22.60; FIRMS (ESI-ToF): m/z calcd for C10H13N2Cl+H+: 197.0846, found: 197.0852.
-
- Orange solid. 1H NMR (DMSO, 400 MHz): δ=10.81 (bs, 1H), 9.29 (s, 1H), 7.28 (d, J=1.88 Hz, 1H), 6.91-6.93 (dd, J1=1.94 Hz, J2=8.02 Hz, 1H), 6.79-6.81 (d, J=8.00 Hz, 1H), 4.18 (s, 2H), 3.80 (s, 3H), 3.28 (bs, 2H), 3.00 (bs, 2H), 1.99 (bs, 2H), 1.88 (bs, 2H); 13C NMR (DMSO, 100 MHz): δ=148.01, 147.79, 123.64, 122.58, 115.73, 114.99, 57.22, 56.12, 52.67, 23.01; HRMS (ESI-orbitrap): m/z calcd for C12H17NO2+H+: 208.1332, found: 208.1328.
-
- Tan solid, 82% yield. 1H NMR (D2O, 400 MHz): δ=8.34 (s, 1H), 7.99-8.01 (d, J=8.48 Hz, 1H), 7.82-7.84 (d, J=8.28, 1H), 7.74-7.78 (m, 1H), 7.59-7.63 (t, J=7.62 Hz), 4.77 (s, 1H), 3.51 (bs, 2H), 2.07-2.11 (m, 4H); 13C NMR (DMSO, 100 MHz): δ=149.54, 144.53, 136.24, 136.08, 130.73, 128.36, 128.13, 127.80, 127.42, 125.68, 56.34, 54.58, 23.05. HRMS (ESI-orbitrap): m/z calcd for C14H16N2O+H+: 229.1335, found: 229.1334.
-
- Off-white solid, 65% yield. 1H NMR (D2O, 400 MHz): δ=7.76-7.78 (m, 1H), 7.58-7.62 (m, 1H), 7.32-7.37 (m, 2H), 6.72 (s, 1H), 4.47 (s, 2H), 3.23-3.26 (m, 4H), 195-1.99 (m, 4H). 13C NMR (DMSO, 100 MHz): δ=160.83, 141.20, 139.05, 130.97, 124.66, 123.88, 121.91, 117.42, 115.80, 53.89, 52.49, 22.64. FIRMS (ESI-orbitrap): m/z calcd for C14H16N2O+H+: 229.1335, found: 229.1340.
-
- Yellow solid, 79% yield. 1H NMR (DMSO, 400 MHz): δ=8.39-8.41 (ddd, J1=0.92 Hz, J2=1.76 Hz, J3=4.84 Hz, 1H), 7.65-7.70 (dd, J1=1.82 Hz, J2=7.65 Hz, 1H), 7.33-7.35 (d,J =7.80 Hz, 1H), 7.15-7.19 (ddd, J1=1.16 Hz, J2=4.88 Hz, J3=7.48 Hz, 1H), 3.63 (s, 2H), 3.29-3.32 (t, J=6.76 Hz, 1H), 3.16-3.19 (t, J=6.86 Hz, 1H), 2.40-2.43 (m, 4H, overlapped with solvent), 1.85 (s, 1H), 1.75-1.82 (m, 1H), 1.67-1.72 (m, 1H), 1.61-1.65 (m, J=3.35 Hz, 4H); 13C NMR (DMSO, 100 MHz): δ=.159.66, 149.11, 136.92, 122.95, 122.45, 61.81, 54.08, 23.68. HRMS (ESI-orbitrap): m/z calcd for C14H16N2O+H+: 229.1335, found: 229.1333.
-
- Brown oil, 82% yield. 1H NMR (CDCl3, 400 MHz): δ=8.43-8.45 (ddd, J1=0.91 Hz, J2=1.75 Hz, J3=4.89 Hz, 1H), 7.53-7.57 (td, J1=1.82 Hz, J2=7.67 Hz, 1H), 7.31-7.33 (d, J=7.8 Hz, 1H), 7.14-7.08 (ddd, J1=1.15 Hz, J2=4.89 Hz, J3=7.49 Hz, 1H), 3.71 (s, 2H), 2.52 (t, J=6.78 Hz, 4H), 1.70-1.73 (m, J=3.40 Hz, 4H). 13C NMR (CDCl3, 100 MHz): δ=158.82, 149.00, 136.45, 123.08, 121.97, 61.95, 54.13, 23.46; FIRMS (ESI-orbitrap): m/z calcd for C14H16N2O+H+: 229.1335, found: 229.1340.
-
- Off-white solid. 1H NMR (D2O, 400 MHz): δ=6.87-6.94 (m, 3H), 5.95 (s, 2H), 4.18 (s, 2H), 3.22 (bs, 4H), 1.97 (bs, 4H). 13C NMR (DMSO, 100 MHz): δ=162.32, 143.14, 124.78, 53.57, 53.08, 52.43, 23.10, 23.01; HRMS (ESI-orbitrap): m/z calcd for C12H15NO2+H+: 206.1176, found: 206.1171.
- Aging of AChE by PiMP for Screening and Kinetics: All reactions with AChE below were performed at 37° C., unless otherwise noted. Electric eel AChE, bovine serum albumin (BSA) and DFP were purchased from Sigma Aldrich, USA. The buffer was 200 mM sodium phosphate without NaCl added, either at pH 7.0 or 8.0.
- For preparation of methylphosphonate-aged AChE, to 37.5 μL of buffer at pH 7.0 (containing 1 g/L BSA and 0.02% NaN3 to stabilize the enzyme and prevent bacterial contamination), AChE (7.5 μL, 4 g/L in 1:1 glycerin/water) and PiMP (2.5 μL, 0.2 mM in 2% acetonitrile) were added. After reacting for 2 h, the solution was treated with a Sephadex G-25 spin column (0.1 g of superfine dry beads; equilibrated with buffer at pH 8.0) in order to remove the unreacted PiMP. The column was stacked with 52.5 μL of buffer at pH 8.0 (containing 1 g/L bovine serum albumin and 0.02% NaN3), and spun at 600×g for 1 min, followed by another 1 min at 1000×g. 2-PAM solution (4 μL, 0.1 M) and NaN3 (1 μL, 2%) were added to the eluate in order to reactivate the residual inhibited AChE (unaged) and prevent bacterial contamination.
- After reacting for 2 d, Sephadex treatment was repeated to remove 2-PAM. PiMP (1 μL, 0.2 mM in 2% acetonitrile) and NaN3 (1 μL×2%) were added again to age the residual active AChE by reacting for 2 h. After removing PiMP again with Sephadex, NaN3 was added again and the solution was stored at 4° C. for further use. A control of native AChE was prepared in parallel by replacing PiMP solution with blank 2% acetonitrile.
- Aging of AChE by PiMP for Bottom-up proteomics: To 89 μL of buffer at pH 7.0 (without BSA), 1 μL×2% NaN3, AChE (7.5 μL, 4 g/L in 1:1 glycerin/water) and PiMP (2.5 μL, 0.2 mM in 2% acetonitrile) were added. After reacting for 2 h, the solution was washed in an Amicon centrifugal ultrafilter (cut-off
molecular weight 30 kDa) with 3×400 μL of buffer at pH 8.0 (without BSA) in order to remove the unreacted PiMP. The filter was spun at 14,000×g for 4 min in each round of wash. The protein concentrate was diluted back to 100 μL. 2-PAM solution (4 μL, 0.1 M) and NaN3 (1 μL, 2%) were added in order to reactivate the residual inhibited AChE (unaged) and prevent bacterial contamination. - After reacting for 2 d, the sample was washed again to remove 2-PAM. PiMP (1 μL, 0.2 mM in 2% acetonitrile) and NaN3 (1 μL×2%) were added again to age the residual active AChE by reacting for 2 h. After removing PiMP again with ultrafiltration, NaN3 was added and the solution was stored at 4° C. for further use. A control of native AChE was prepared in parallel by replacing PiMP solution with blank 2% acetonitrile.
- Aging of AChE by DFP for Screening and Kinetics: To 37.5 μL of buffer at pH 7.0 (containing 1 g/L bovine serum albumin and 0.02% NaN3), AChE (7.5 μL, 4 g/L in 50% glycerol) and DFP (2.5 μL, 0.2 mM in 2% DMSO) were added. After reacting for 3 d, the solution was treated with a Sephadex G-25 spin column (0.1 g of superfine dry beads; equilibrated with buffer at pH 8.0) in order to remove the unreacted DFP. The column was stacked with 52.5 μL of buffer at pH 8.0 (containing 1 g/L bovine serum albumin and 0.02% NaN3), and spun at 600×g for 1 min, followed by another 1 min at 1000×g. NaN3 was added and the solution was stored at 4° C. for further use. A control of native AChE was prepared in parallel by replacing DFP solution with blank 2% DMSO.
- Aging of AChE by DFP for Bottom-up Proteomics: To 89 μL of buffer at pH 7.0 (without BSA), 1 μL×2% NaN3, AChE (7.5 μL, 4 g/L in 50% glycerol) and DFP (2.5 μL, 0.2 mM in 2% DMSO) were added. After reacting for 3 d, the solution was treated with a Sephadex G-25 spin column (0.1 g of superfine dry beads; equilibrated with buffer at pH 8.0) in order to remove the unreacted DFP. The column was spun at 600×g for 1 min, followed by another 1 min at 1000×g. NaN3 was added and the solution was stored at 4° C. for further use. A control of native AChE was prepared in parallel by replacing DFP solution with blank 2% DMSO.
- Ellman's Assay: Ellman's assay(20) was carried out on clear flat-bottom 96-well microplates. The assay solution was 180 μL×0.56 mM of acetylthiocholine in pH 8.0 buffer, containing 0.1 g/L of BSA and 1.1 mM of 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB). 20 μL of tested AChE sample was added to initiate the reaction. The absorption at 412 nm was monitored at 25° C. with Molecular Devices SpectraMax i3 microplate reader. The initial absorbance-time slope was measured.
- Screening of Alkylators: Each realkylator (hydrochloride, 4 μL×5, 25 or 100 mM) was mixed with methylphosphonate-aged AChE (2 μL), phosphate buffer (pH 8.0 containing 1 g/L BSA and 0.02% NaN3), and NH4F (4 μL×100 mM). After reacting at 37° C. for 1 d, each sample was treated with 2-PAM for 1 h to reactivate the realkylated AChE. As aforementioned, three controls were prepared in parallel. In the positive and negative controls, the realkylator solution was replaced with blank buffer. In the 2-PAM control, it was replaced with 4 mM 2-PAM solution. In the positive control, the aged AChE was replaced with same amount of native AChE.
- After the reactions, all reagents were removed with a Zeba desalting spin plate (purchased from Thermo Fisher, USA). The AChE activity of each sample was determined with Ellman's assay. Each sample was tested in four replicate wells. The average initial slope of the four absorbance-time plots of each sample and the standard deviation were divided by that of the control to obtain the relative activity and error.
- Measurement of EC50 of C8: Six concentrations of C8, ranging from 0 to 20 mM, were compared against methylphosphonate-aged, combined with 2-PAM as the reactivator. NH4F was not added in this test to see whether rapid reactivation is necessary to suppress re-aging. The specific procedures are as follows:
- To 94.5 μL of pH 8.0 phosphate buffer (containing 1 g/L BSA and 0.02% NaN3), 2 μL as obtained aged AChE (treated with PiMP) and 4 μL of C8 solution (neutral, 0, 100, 200, 300, 400 and 500 mM) were mixed, and allowed to react at 37° C. for 1 d. The final concentrations of C8 were hence 0, 4, 8, 12, 16 and 20 mM, respectively. The reaction was then chased with 4 mM of 2-PAM for 4 h to reactivate the realkylated AChE. The positive control and 2-PAM control were also prepared in parallel following a procedure similar to that aforementioned in Section 4.3. The reagents were removed in the end by size exclusion spin columns (filled with 0.1 g dry weight of superfine Sephadex G-25). Ellman's assay was carried out following the aforementioned procedure.
- The resurrected AChE activity increased with C8 concentration and showed a plateau. Concentrations higher than 12 mM did not show dramatic further increased activity, presumably due to saturated binding. 12 mM was hence chosen as the optimal concentration of neutral C8 in subsequent tests against methylphosphonate-aged AChE. The dissociation constant as defined by equation KD=[QMP]·[E]/[E-QMP] was used for a nonlinear regression with
GraphPad Prism 6, where [QMP] stands for C8 concentration, [E] for aged AChE concentration and [E-QMP] for the noncovalent complex of aged AChE and C8. The obtained KD was 5.87 mM. EC50 is equal to KD in this case. - Comparison of C8 concentrations against aged AChE (after 24 h). The red dashed line and black dotted line stand for the activities of 2-PAM controls of methylphosphonate-aged and isopropyl phosphate-aged AChE, respectively.
- The EC50 against isopropyl phosphate-aged AChE was similarly measured. The range of final concentrations was 0-10 mM. As the concentration of C8 increased, the resurrected activity also approached a plateau. Nonlinear regression was performed to find the dissociation constant. The obtained KD was 1.18 mM, which is lower than that against methylphosphonate-aged AChE. The difference in KD values against enzymes aged by different OPs may be related to direct interactions between QMP and the different phosphyl groups, or the slight difference in enzyme conformation.
- Kinetics of Alkylation Induced by C8: Aged AChE (25 μL) was mixed with 167 μL of pH 8.0 phosphate buffer (containing 1 g/L BSA and 0.02% NaN3) and C8 solution (neutral, 8 μL×100 mM) and incubated at 37° C. The negative control, positive control and 2-PAM control were also prepared in parallel as aforementioned. Aliquots of 10 μL were taken at various time intervals (1-5 d), and mixed with 86 μL buffer and 4 μL×100 mM 2-PAM. After reacting for another 4 h, all reagents were then removed by Sephadex size exclusion spin columns. AChE activity was then determined with Ellman's assay as aforementioned. 100% was set at the t=0 d point of the positive control.
- Bottom-up Proteomics: Isopropyl phosphate-aged AChE (60 μL, aged with DFP as described above without use of BSA) was mixed with pH 8.0 phosphate buffer (36 μL, no BSA or NaN3) and C8 solution (neutral, 4 μL×100 μL). BSA was not used to minimize complication in LC-MS/MS. The positive control, negative control and 2-PAM control were prepared in parallel as aforementioned. After reacted for 11 d at 37° C., 100 μL acetonitrile was added to denature the enzyme. 10 min later, the solution was washed through an Amicon Ultra centrifugal filter (3 kDa cut-off molecular weight, purchased from EMD Millipore) and with 3×400 μL ammonium acetate buffer (40 mM, pH7.5) to remove organic solvent and reagents. 40 μL×0.1 g/L modified porcine trypsin (Arg and Lys methylated, sequencing grade, purchased from Promega) was added. After reacted at 37° C. for digestion for 7 h, the reaction was terminated by the addition of 10 μL×1 M acetic acid.
- Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of the digests was carried out on a Thermo Scientific Orbitrap Fusion mass spectrometer equipped with EASY-Spray Sources ion source in positive ion mode. The peptide solution (6.4 μL) was separated on a capillary column (C18 stationary phase, 3 μm particles, 100 Å pores, 75 μm×150 mm capillary, Thermo Scientific). Each sample was first desalted with a μ-Precolumn Cartridge (Thermo Scientific) then eluted onto the column. Mobile phases A and B were water and acetonitrile, respectively. Both contained 0.1% formic acid. Flow rate was 300 nL/min. The ionization spray voltage was 1.7 kV and the capillary temperature was 275° C.
- The preview mode data dependent TopSpeed™ method was used: the analysis was programmed for a full MS1 scan of the precursor ions ranging from m/z 400 to 1600, followed by fragmentation and MS2 scan to determine amino acid sequence and modifications from the most abundant peaks in MS1 in the next 3 seconds. To achieve high mass accuracy MS determination, the full scan was performed at FT mode and the resolution was set at 120,000. The AGC Target ion number for FT full scan was set at 2×105 ions, maximum ion injection time was set at 50 ms and micro scan number was set at 1. MS2 was performed using ion trap mode to ensure the highest signal intensity of MS2 spectra using both CD (for 2+ and 3+ charges) and ETD (for 4+˜6+ charges) methods. The AGC Target ion number for ion trap MS2 scan was set at 1000 ions, maximum ion injection time was set at 100 ms and micro scan number was set at 1. The CID fragmentation energy was set to 35%. Dynamic exclusion was enabled with a repeat count of 1 within 60 s and a low mass width and high mass width of 10 ppm.
- Sequence information from the MS/MS data was processed by converting the *.raw files into a merged file (*.mgf) using an in-house program, RAW2MZXML_n_MGF_batch (merge.pl, a Perl script). Isotope distributions for the precursor ions of the MS/MS spectra were deconvoluted to obtain the charge states and monoisotopic m/z values of the precursor ions during the data conversion. The resulting *.mgf files were searched using Mascot Daemon by Matrix Science version 2.5.1 (Boston, Mass.) against SwissProt other Actinopterygii (ray-finned fishes except Japanese pufferfish and zebrafish) databases (SwissProt_ID 2016_09, 2085 sequences). The mass accuracy of the precursor ions was set to 10 ppm, and accidental pick of 13C peaks was also included into the search. The fragment mass tolerance was set to 0.8 Da. Considered variable modifications were oxidation (Met), deamidation (Asn and Gln) and OP-related Ser modifications. They include the DFP-inhibited, the isopropyl phosphate-aged and the realkylated forms. Also, the realkylated Ser residue might also be attacked by its own hydroxyl group to be reactivated or lose the isopropyl and form a lactone product. Another possible reaction was a re-aging route which released the isopropyl group rather than the QM group. In this case, the re-aged AChE could be further re-realkylated by a second C8 molecule.
- Fixed modification of carbamidomethylation (Cys) was also considered. Up to four missed cleavages for the enzyme were permitted. A decoy database was also searched to determine the false discovery rate (FDR), and peptides were filtered according to the FDR. The significance threshold was set at p<0.05. Modification peptides were manually validated.
- 21 sequences have been identified in the positive control, as shown in Table 1, including peptide QVTIFGESAGAASVGMHLLSPDSRPK. The charge state of the peptide was +4. The score of this protein was 2225. The catalytic Ser (underscored) was unmodified because the enzyme was native. The observed mass was 2654.3496˜2654.3510 Da while the theoretical value is 2654.3486 Da. The error was +0.35˜+0.9 ppm. The sequence coverage (42%) is shown below with the identified sequences in bold:
-
TABLE 1 Peptide sequences identified in the positive control. 1 MKILDALLFP VIFIMFFIHL SIAQTDPEL IMTRLGQVQG TRLPVPDRSH 51 VIAFLGIPFA EPPLGKMRFK PPEPKKPWND VFDARDYPSA CYQYVDTSYP 101 GFSGTEMWNP NRMMSEDCLY LNVWVPATPR PHNLTVMVWI YGGGFYSGSS 151 SLDVYDGRYL AHSEKVVVVS MNYR VSAFGF LALNGSAEAP GNVGLLDQRL 201 ALQWVQDNIH FFGGNPKQVT IFGESAGAAS VGMHLLSPDS RPKFTRAILQ 251 SGVPNGPWRT VSFDEARRRA IKLGRLVGCP DGNDTDLIDC LRSKQPQDLI 301 DQEWLVLPFS GLFRFSFVPV IDGVVFPDTP EAMLNSGNFK DTQILLGVNQ 351 NEGSYFLIYG APGFSKDNES LITREDFLQG VKMSVPHANE IGLEAVILQY 401 TDWMDEDNPI KNREAMDDIV GDHNVVCPLQ HFAKMYAQYS ILQGQTGTAS 451 QGNLGWGNSG SASNSGNSQV SVYLYMFDHR ASNLVWPEWM GVIHGYEIEF 501 VFGLPLEKRL NYTLEEEKLS RRMMKYWANF ARTGNPNINV DGSIDSRRRW 551 PVFTSTEQKH VGLNTDSLKV HKGLKSQFCA LWNRFLPRLL NVTENIDDAE 601 RQWKAEFHRW SSYMMHWKNQ FDHYSKQERC TNL - Reactivation of Inhibited AChE by Five QMPs: EMP was synthesized following a procedure adapted from that of PiMP. Electric eel AChE (˜10 units in 2.5 μL×50% glycerin) was mixed with BSA (95 μL×lg/L in 40 mM phosphate buffer, pH 7.0, containing 0.02% NaN3) and EMP (2.5 μL×0.2 mM in 2% DMSO). After reacted at 37° C. for 1 h, the solution was cleaned with a Sephadex spin column (0.1 g dry superfine G-25, equilibrated at pH 8.0). Controls with EMP replaced by blank solvents were also prepared.
- Each tested compound (neutral form, 6.4 μL×50 mM) was mixed with 3.1 μL of the freshly prepared inhibited AChE solution and BSA (150.5 μL× lg/L in 40 mM phosphate buffer, pH 8.0, containing 0.02% NaN3). Four replicates were made for each compound. Aliquots of 20 μL was taken and analyzed with Ellman's assay as aforementioned. For comparison, 2-PAM at the same concentration was tested in parallel. The negative and positive controls had the reagent solution replaced with blank buffer. The AChE in the positive control was native and not treated with EMP.
- pH Effect in Resurrection of Aged AChE: To 94 μL×1 g/L BSA solution (in 0.2 M phosphate buffer, containing 0.02% NaN3), 2 μL of methylphosphonate-aged AChE solution (treated with PiMP as described above) and 4 μL×100 mM C8 solution were added. A negative control was prepared with C8 solution replaced with blank water. A positive control was similarly prepared in parallel with the aged AChE replaced with native AChE. Buffers at four pH values were compared: 6, 7, 8 and 9. Samples were incubated at 37° C. for 1 d. AChE activity was then determined with Ellman's assay.
- Screening of Realkylator Library: Molecular docking and molecular dynamics (MD) simulations were previously conducted to evaluate the potential orientation of QMPs at the active site of methylphosphonate-aged human AChE (huAChE). (R. J. Yoder, et al., ACS Med Chem Lett (2017)). A larger library of QMPs was studied through this modeling approach using an in silico model of aged huAChE. Both phenyl and pyridyl-QMPs were evaluated for their fit in the aged active site. Optimizations, molecular docking, and MD simulations were all performed over this initial library of compounds. The three lowest-energy docking poses of each flexible ligand across 13 rigid aged AChE structures were used as starting points for subsequent 1 ns MD simulations. The QMPs were evaluated based on the time throughout the MD simulations in which the reactive benzylic carbon was within close proximity to the anionic O—(P═O) of the aged serine.
- It was determined that pyridyl compounds had a higher propensity to be bound in the active site and close to the phosphyl oxyanion as compared to their phenyl analogues. Moreover, 3-hydroxypyridine-derived QMPs with the reactive benzylic carbon attached at the 2-position displayed promising interactions. Of the 72 compounds modeled, six of the top-10 compounds were members of that specific 3-hydroxypyridine framework. The top compound had a pyrrolidine leaving group attached to the reactive benzylic carbon (
FIG. 2 ). - In this example, thirteen 3-hydroxypyridine-derived QMPs (C series,
FIG. 3A , protonated with HCl or oxalic acid) were synthesized via Mannich reactions, and then evaluated by screening against methylphosphonate-aged (treated with PiMP) AChE. The electrophilic benzylic methylene, hypothesized to be the site of attack by nucleophiles (FIG. 1B ), is attached to the 2-position of the pyridine ring, and the leaving groups were various secondary amines. The aged enzyme was reacted with various concentrations (0.2-4 mM) of each QMP at 37° C.,pH 8 for 1 d. Without knowing the re-aging t1/2 of the realkylated adducts, NH4F (4 mM) was added as a mild and nonselective reactivator to the screening. It was posited that once the aged AChE was realkylated, the newly formed “inhibited” AChE could be reactivated by fluoride to the native AChE. After realkylation, the samples were treated with 4 mM of 2-PAM for 1 h to ensure that the realkylated AChE was completely reactivated. Ellman's assay (G. L. Ellman, et al.,Biochem Pharmacol 7, 88-95 (1961)), with acetylthiocholine as a substrate, was carried out to determine AChE activity. Three controls were prepared and analyzed in parallel: a negative control without realkylator; a 2-PAM control with the realkylator replaced by 2-PAM; and a positive control with native AChE, rather than aged, and without realkylator. - The screening results are shown in
FIG. 3B . The percentage relative activity is based on the positive control. The negative and 2-PAM controls showed negligible background signals, confirming the completion of aging (dotted and dashed lines inFIG. 3B andFIG. 3C ). For this small library, the only difference was the amino leaving group. Compound C7 with a diethylamino leaving group showed the highest efficacy among C1 to C7, with each of these compounds having a noncyclic amine. Efficacy was compromised when the ethyl group was shortened (C1) or lengthened (C2 to C6). Overall, the pyrrolidinyl compound C8 was the most potent candidate in this screen. The other candidates with cyclic leaving groups showed minimal or no activity. The screening against isopropyl phosphate-aged AChE (DFP-treated) showed a similar result (FIG. 3C ), except that the difference between C7 and C8 was smaller than that against methylphosphonate-aged AChE. - These comparisons demonstrate that pyrrolidine is the optimum among all tested leaving groups. Hence a variety of realkylator candidates were compared with this leaving group (M series in
FIG. 3A ). The screenings were carried out following the same procedures as for the 3-hydroxypyridine derivatives. C8 is the only active compound in this comparison, indicating the superiority of the 3-hydroxypyridine framework over other tested scaffolds. C8 was therefore chosen as a lead compound for subsequent investigations. - Six concentrations of C8 (0-10 mM), were compared against methylphosphonate-aged and isopropyl phosphate-aged eeAChE, in order to determine the EC so (1.18 and 5.87 mM, respectively), illustrating that further optimization is needed for a more effective therapeutic. Interestingly, fluoride was not used in the reactions, implying that it is unnecessary to limit re-aging using this reactivator.
- Kinetics of Realkylation: Realkylation kinetics of isopropyl phosphate-aged eeAChE was monitored in the presence of 4 mM of C8. The negative control, positive control and 2-PAM control were also prepared and tested. Aliquots were withdrawn at various time intervals, and reacted with 4 mM of 2-PAM for 4 h. The resurrected AChE was quantified using Ellman's assay. As realkylation progressed, increasing activity was seen in the sample treated with C8 (
FIG. 4A ). After 4 days, the resurrected relative activity was as high as 20.4%. This value may be high enough to relieve victims from cholinergic symptoms, (G. B. Koelle, et al., JPharmacol Exp Ther 120, 488 (1957); G. B. Koellel, et al., J Pharmacol Exp Ther 87, 421 (1946); and A. Mazur, et al., J Biol Chem 163, 261-276 (1946)) though it was achieved in vitro with a high dosage and after weeks of reaction. The apparent reaction rate was 0.20% per hour (r2=0.9958). - Realkylation kinetics of methylphosphonate-aged AChE was monitored in the presence of 4 mM of neutral C8. The C8-treated sample displayed resurrected activity, which reached 32.7% after 4 days (
FIG. 4B ). The apparent reaction rate was 0.32% per hour (r2=0.9185) and faster than against isopropyl phosphate-aged AChE. - Bottom-up Proteomics: Besides determining the resurrected AChE activity by Ellman's assay, confirmation of the reaction between realkylators and aged AChE can also be revealed by mass spectrometry. Bottom-up proteomics (J. Sun, et al., Journal of Chromatography B 877, 3681-3685 (2009) and J. Marsillach, et al.,
Neurotoxicology 32, 656-660 (2011)) was used to sequence the peptides and differentiate enzyme species with variable modifications at the catalytic serine. Isopropyl phosphate-aged eeAChE was treated with C8 for 11 d, and digested it with trypsin. 2-PAM was not applied after the C8 treatment. The digest was analyzed with LC-MS/MS. The positive, negative and 2-PAM controls were also prepared in parallel, and quantification was obtained from the LC peak areas (Table 2). - Peptide QVTIFGESAGAASVGMHLLSPDSRPK (residues 195-220), was observed in all samples. The catalytic serine (underscored) in the positive control was completely unmodified because the enzyme was native. By contrast, the modification observed in the negative and 2-PAM controls indicated that they were completely aged. The wild-type serine or otherwise modified serine was not observed at this position. Compared to the unmodified peptide, there was a mass shift of 122.0133 Da (C3H7O3P added), which matches the added isopropyl phosphyl moiety. In the C8-treated sample, the unmodified catalytic serine was observed, indicating resurrection induced by the QMP. Realkylated AChE, however, was not directly observed. Similar results were obtained with methylphosphonate-aged AChE.
-
TABLE 2 Percentages of AChE species determined by LC-MS/MS Percentage (%) Isopropyl phosphate-aged Methylphosphonate-aged Sample Native Aged Realkylated Native Aged Realkylated Positive 100 0 0 100 0 0 Control Negative 0 100 0 0 100 0 Control 2- PAM 0 100 0 0 100 0 Control C8-treated 15.4 84.6 0 2.1 97.9 0 - Neither 2-PAM nor fluoride was added to the QMP-treated samples for reactivation of realkylated AChE, suggesting the reactivation activity of C8—reactivating the realkylated AChE. This is in agreement with reports of reactivation activity of Mannich phenols by Katz et al., (F. S. Katz, et al.,
Chembiochem 16, 2205-2215 (2015)) Cadieux et al., (C. L. Cadieux, et al., Chem-Biol Interact 259, 133-141 (2016)) and Bierwisch et al. (A. Bierwisch, et al., Toxicol Lett 246, 49-56 (2016)). The absence of realkylated AChE in the sample was unexpected. - Reactivation of Inhibited ACNE by Five QMPs: Five representative C series QMPs, namely C2, C3, C5, C7 and C8, were reacted with eeAChE inhibited with a VX analogue (EMP, an ethyl methylphosphonate compound) to determine whether they are reactivators. OP was chosen because the aging by VX is slow. (F. Worek, et al., Biochem Pharmacol 68, 2237-2248 (2004)). After inhibition by EMP, the inhibited AChE was incubated with the chosen QMPs (4 mM) at pH 8.0 and 37° C., then monitored by Ellman's assay. All tested QMPs except C7 exhibited obvious and similar reactivation activity, while C7 showed slower kinetics. This may explain why C8 can efficiently resurrect aged AChE in the absence of 2-PAM and fluoride. The apparent rate constants, as well as relative activity of reactivated AChE at three time points, are listed in Table 3, and all tested compounds reacted slower than 2-PAM, which reached its plateau before the first aliquot could be taken.
-
TABLE 3 After inhibition by EMP, relative activity of reactivated eeAChE at three time points, and apparent rate constants of first-order or pseudo-first-order reaction of AChE reactivation, spontaneous or by QMPs. Relative activity (%) QMP 4 h 8 h 22 h k (h−1) Negative Control 10.3 ± 0.3 17.4 ± 0.3 39.6 ± 0.4 0.032 ± 0.003 C2 30.3 ± 0.9 48 ± 2 82 ± 1 0.090 ± 0.003 C3 21.8 ± 0.2 36 ± 2 71 ± 1 0.063 ± 0.004 C5 26 ± 1 43 ± 2 76.7 ± 0.8 0.080 ± 0.003 C7 15.4 ± 0.7 27 ± 2 52.9 ± 0.5 0.056 ± 0.003 C8 30.8 ± 0.7 50 ± 2 85.0 ± 0.8 0.088 ± 0.003 - pH Effect for C8 Activity: There are three heteroatoms in C8, forming multiple possible protonation states. Each of them may interact with the aged AChE active site with different orientations, affinities and rates. 1H NMR spectra of C8 displayed shifting signals as the pH changed (
FIG. 5A ). The UV-vis spectra also dramatically changed when pH was increased from 6 to 9 (FIG. 5B ), indicating a pKa between 7 and 8. The resurrection of methylphosphonate-aged eeAChE by 4 mM C8 at four different pH values (6˜9) at 37° C. for 1 d, with neither 2-PAM nor fluoride being used was performed. The relative activity of C8-resurrected AChE increased dramatically with pH (Table 4)—over 20% atpH 9. Similar effects were also observed with isopropyl phosphate-aged eeAChE. - The pH dependence directed further study regarding the activity of the isomers. The four most probable isomeric states at
pH FIG. 5C ). For each structure, molecular docking into a number of geometries of the aged AChE yielded a few docked poses. Then, after resolvation, an MD trajectory was computed; the location of the exchangeable proton has a dramatic effect on the affinity of the ligand toward different zones in the AChE active site. The simulations suggest that both zwitterionic forms (C8b and C8c) have stable interactions and well-defined proximity to the anionic oxygen of the phosphylated serine. The neutral form (C8n) also stably binds to the active site, but the benzylic carbon is not oriented for realkylation. The anionic form (C8a) gradually moves away from the active site during the simulation. Calculations at the B3LYP/6-311+G** (SMD, water) level of theory suggest that C8c (pyrrolidinyl nitrogen protonated) has a free energy that is lower than C8b (pyridinyl nitrogen protonated) by 3.1 kcal/mol, hence is a more probable species. Ser203, Tyr337, Tyr341 residues, along with some hydrogen-bonded water molecules, contribute significantly to the binding of C8c by hydrogen bonding and electrostatic attractions (FIG. 5D ). -
TABLE 4 Relative activities of C8-treated samples and negative controls after incubation of aged eeAChE for 1 d at various pH values, as a percentage of the positive control at the corresponding pH. Relative activity (%) Methylphosphonate-aged Isopropyl phosphate-aged pH Negative control C8 Negative control C8 6 0.139 ± 0.003 0.273 ± 0.004 1.05 ± 0.10 0.68 ± 0.06 7 0.120 ± 0.006 1.24 ± 0.02 1.24 ± 0.06 1.04 ± 0.07 8 0.184 ± 0.010 8.47 ± 0.17 1.43 ± 0.09 3.58 ± 0.33 9 0.225 ± 0.008 21.1 ± 0.5 1.57 ± 0.11 5.27 ± 0.59 - Resurrection of Aged Human AChE after exposure to DFP: The efficacy of C8 was examined against aged huAChE. The activity of isopropyl phosphate-aged (DFP-treated) recombinant huAChE was monitored in the presence of 4 mM of C8 at
pH 9 for a week by Ellman's assay. After 7 d of reaction (FIG. 6 ), 18% of the aged enzyme was resurrected, and the relative activity of huAChE was still increasing. Neither 2-PAM nor fluoride were used in this test, again confirming that C8 alone can resurrect aged AChE to the native form. - Conclusions: The aging of OP-inhibited AChE poses a significant issue in the classical treatment of OP poisoning which hinges on the rapid administration of nucleophilic oximes as reactivators. The realkylation/reactivation of aged AChE remains an unsolved problem amongst the scientific community. This example attempts to address this significant problem by the design and synthesis of quinone methide precursors intended to realkylate the aged phosphoryl residue. A lead compound, C8 was identified as the first compound to our knowledge that is capable of reactivating aged AChE. A significant SAR effort to increase the reactivation potential for this lead compound has been undertaken and is a continuing effort.
- With in-silico guidance, 22 QMPs were synthesized with various scaffolds and leaving groups, and then evaluated them for their in vitro resurrection activity against methylphosphonate-aged and isopropyl phosphate-aged eeAChE. Multiple QMPs with a 3-hydroxypyridine scaffold, with the reactive “benzylic” carbon attached at the 2-position, proved efficacious. C8 was found to be the lead compound in the screening. Used at 4 mM along with 2-PAM, C8 successfully resurrected the relative activity of isopropyl phosphate-aged eeAChE to 30.4% after 4 days. C8 at 4 mM resurrected the relative activity of methylphosphonate-aged eeAChE to 32.7% after 4 days of observation. This activity for C8 is also reproduced for aged human AChE.
- The activities of C8 against isopropyl phosphate-aged and methylphosphonate-aged eeAChE were also confirmed with bottom-up proteomics. The peptide containing the catalytic serine was sequenced to reveal the modification. In the samples treated with C8, partial resurrection was observed as indicated by the presence of native AChE. Realkylated AChE was not observed, though no extra reactivator was added. These observations suggest that C8 acts as a bifunctional drug, realkylating the aged AChE first and then reactivating the realkylated AChE. This hypothesis was confirmed, with C8, and at least four other C series QMPs, can reactivate AChE after inhibition by a VX analogue.
- A new strategy using a structural features from a known reversible AChE inhibitor, donepezil, have been incorporated into the synthesis of a novel class of 2-methylamino-3-hydroxypyridine compounds in an attempt to increase the affinity of the potential realkylators for the targeted active site of the AChE enzyme.
- The compositions and methods of the appended claims are not limited in scope by the specific compositions and methods described herein, which are intended as illustrations of a few aspects of the claims and any compositions and methods that are functionally equivalent are intended to fall within the scope of the claims. Various modifications of the compositions and methods in addition to those shown and described herein are intended to fall within the scope of the appended claims. Further, while only certain representative materials and method steps disclosed herein are specifically described, other combinations of the materials and method steps also are intended to fall within the scope of the appended claims, even if not specifically recited. Thus, a combination of steps, elements, components, or constituents may be explicitly mentioned herein; however, other combinations of steps, elements, components, and constituents are included, even though not explicitly stated. The term “comprising” and variations thereof as used herein is used synonymously with the term “including” and variations thereof and are open, non-limiting terms. Although the terms “comprising” and “including” have been used herein to describe various embodiments, the terms “consisting essentially of” and “consisting of” can be used in place of “comprising” and “including” to provide for more specific embodiments and are also disclosed. As used in this disclosure and in the appended claims, the singular forms “a”, “an”, “the”, include plural referents unless the context clearly dictates otherwise.
Claims (41)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/691,745 US20220204472A1 (en) | 2017-02-15 | 2022-03-10 | Heteroaromatic electrophiles and methods of using thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762459385P | 2017-02-15 | 2017-02-15 | |
PCT/US2018/018374 WO2018152329A1 (en) | 2017-02-15 | 2018-02-15 | Heteroaromatic electrophiles and methods of using thereof |
US201916486448A | 2019-08-15 | 2019-08-15 | |
US17/691,745 US20220204472A1 (en) | 2017-02-15 | 2022-03-10 | Heteroaromatic electrophiles and methods of using thereof |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2018/018374 Continuation WO2018152329A1 (en) | 2017-02-15 | 2018-02-15 | Heteroaromatic electrophiles and methods of using thereof |
US16/486,448 Continuation US11492340B2 (en) | 2017-02-15 | 2018-02-15 | Heteroaromatic electrophiles and methods of using thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220204472A1 true US20220204472A1 (en) | 2022-06-30 |
Family
ID=63169629
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/486,448 Active US11492340B2 (en) | 2017-02-15 | 2018-02-15 | Heteroaromatic electrophiles and methods of using thereof |
US17/691,745 Pending US20220204472A1 (en) | 2017-02-15 | 2022-03-10 | Heteroaromatic electrophiles and methods of using thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/486,448 Active US11492340B2 (en) | 2017-02-15 | 2018-02-15 | Heteroaromatic electrophiles and methods of using thereof |
Country Status (2)
Country | Link |
---|---|
US (2) | US11492340B2 (en) |
WO (1) | WO2018152329A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109400524A (en) * | 2018-12-13 | 2019-03-01 | 河南师范大学 | A kind of environment-friendly preparation method thereof of 3- aldehyde radical -4- chloropyridine |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4295861A (en) | 1980-10-24 | 1981-10-20 | Phillips Petroleum Company | Motor fuel |
GB8804104D0 (en) | 1988-02-23 | 1988-03-23 | Glaxo Group Ltd | Chemical compounds |
CA2184195C (en) | 1995-10-25 | 2002-04-16 | Andrew Pakula | Screening method for identifying ligands for target proteins |
WO2014113495A1 (en) * | 2013-01-15 | 2014-07-24 | The Trustees Of Columbia University In The City Of New York | Activation or reactivation of ache |
US9249100B2 (en) * | 2013-01-24 | 2016-02-02 | University Of Iowa Research Foundation | Compounds and methods to treat organophosphorus poisoning |
US9162983B2 (en) * | 2013-05-22 | 2015-10-20 | Southwest Research Institute | Reactivators of organophosphorous inhibited acetylcholinesterase |
-
2018
- 2018-02-15 US US16/486,448 patent/US11492340B2/en active Active
- 2018-02-15 WO PCT/US2018/018374 patent/WO2018152329A1/en active Application Filing
-
2022
- 2022-03-10 US US17/691,745 patent/US20220204472A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2018152329A1 (en) | 2018-08-23 |
US11492340B2 (en) | 2022-11-08 |
US20200010448A1 (en) | 2020-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220313624A1 (en) | Sulfur (vi) fluoride compounds and methods for the preparation thereof | |
US7439374B2 (en) | Azabenzofuran substituted thioureas; inhibitors of viral replication | |
US9169220B2 (en) | Oximes for treatment of peripheral and central nervous system exposure to acetyl cholinesterase inhibitors | |
US20220204472A1 (en) | Heteroaromatic electrophiles and methods of using thereof | |
US20190119237A1 (en) | Centrally active and orally bioavailable antidotes for organophosphate exposure and methods for making and using them | |
Dola et al. | Synthesis and evaluation of chirally defined side chain variants of 7-chloro-4-aminoquinoline to overcome drug resistance in malaria chemotherapy | |
Monastyrskyi et al. | Aminoalkoxycarbonyloxymethyl ether prodrugs with a pH-triggered release mechanism: A case study improving the solubility, bioavailability, and efficacy of antimalarial 4 (1 H)-quinolones with single dose cures | |
Kung et al. | Design and characterization of a pyridone-containing EZH2 inhibitor phosphate prodrug | |
US9938240B2 (en) | Fluorinated derivatives of 3-hydroxypyridin-4-ones | |
US20210139492A1 (en) | Furoquinolinediones as inhibitors of tdp2 | |
US20170349538A1 (en) | Blood Brain Barrier-Penetrating Oximes for Cholinesterase Reactivation | |
US20230399307A1 (en) | Aldh-2 inhibitor compounds and methods of use | |
US10000452B1 (en) | Quinolone-based compounds, formulations, and uses thereof | |
US8653108B1 (en) | Oximes for treatment of peripheral and central nervous system exposure to acetyl cholinesterase inhibitors | |
US6664280B2 (en) | Antivesicant compounds and methods of making and using thereof | |
US10865186B2 (en) | Opioid agonists and uses thereof | |
US20220081442A1 (en) | 3,6-disubstituted-2-pyridinaldoxime scaffolds | |
US20240287016A1 (en) | Fluorinated Empathogens | |
US20230399299A1 (en) | Aldh-2 inhibitor compounds and methods of use | |
US20230203024A1 (en) | Thiazoloxime and oxazoloxime derivatives as reactivators of organophosphorous nerve agent (opna)-inhibited human acetylcholinesterase for the treatment of nervous and/or respiratory failure after intoxication with opna | |
CA2459774A1 (en) | Antivesicant compounds and methods of making and using thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING |
|
AS | Assignment |
Owner name: OHIO STATE INNOVATION FOUNDATION, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HADAD, CHRISTOPHER;CALLAM, CHRISTOPHER;BECK, JEREMY;AND OTHERS;SIGNING DATES FROM 20180309 TO 20180618;REEL/FRAME:060164/0444 |
|
AS | Assignment |
Owner name: OHIO STATE INNOVATION FOUNDATION, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HADAD, CHRISTOPHER;CALLAM, CHRISTOPHER;BECK, JEREMY;AND OTHERS;SIGNING DATES FROM 20180309 TO 20180618;REEL/FRAME:061073/0528 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION RETURNED BACK TO PREEXAM |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |