US20220196285A1 - Storage electric water heater - Google Patents

Storage electric water heater Download PDF

Info

Publication number
US20220196285A1
US20220196285A1 US17/129,033 US202017129033A US2022196285A1 US 20220196285 A1 US20220196285 A1 US 20220196285A1 US 202017129033 A US202017129033 A US 202017129033A US 2022196285 A1 US2022196285 A1 US 2022196285A1
Authority
US
United States
Prior art keywords
tube
chamber
water heater
tube body
storage electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/129,033
Inventor
Chung-Chin Huang
Chin-Ying Huang
Hsin-Ming Huang
Hsing-Hsiung Huang
Yen-Jen Yeh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grand Mate Co Ltd
Original Assignee
Grand Mate Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grand Mate Co Ltd filed Critical Grand Mate Co Ltd
Priority to US17/129,033 priority Critical patent/US20220196285A1/en
Assigned to GRAND MATE CO., LTD. reassignment GRAND MATE CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUANG, CHIN-YING, HUANG, CHUNG-CHIN, HUANG, HSING-HSIUNG, HUANG, HSIN-MING, YEH, YEN-JEN
Publication of US20220196285A1 publication Critical patent/US20220196285A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/20Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes
    • F24H1/201Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes using electric energy supply
    • F24H1/202Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes using electric energy supply with resistances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels
    • F24H9/0021Sleeves surrounding heating elements or heating pipes, e.g. pipes filled with heat transfer fluid, for guiding heated liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1818Arrangement or mounting of electric heating means

Definitions

  • the present invention relates generally to an electric water heater, and more particularly to a storage electric water heater.
  • a conventional storage electric water heater includes a storage tank and a heating pipe, wherein an interior of the storage tank has a storing space for containing water.
  • the storage tank is disposed with an inlet tube and an outlet tube which communicates with the storing space.
  • the heating pipe is disposed in the storage tank.
  • the heating pipe has a heating wire inside. When the heating wire is energized, thermal energy could be transferred to the water via a shell of the heating pipe to heat water.
  • the storage tank of the storage electric water heater stores hot water, so that a user could easily access the hot water at any time, thereby enhance a convenience of life.
  • the heating pipe of the conventional storage electric water heater is merely soaked in water, and water in the storing space of the storage tank stands still, so the thermal convection is not good during the heating process. Therefore, to heat water in the tank to a predetermined temperature needs more heating time, so that the heating efficiency of the storage electric water heater is reduced.
  • the primary objective of the present invention is to provide a storage electric water heater that is able to enhance thermal convection during a heating process.
  • the present invention provides a storage electric water heater including a tank an inlet tube, an outlet tube, an isolating member, and a heating device, wherein the tank has a storing space.
  • the inlet tube and the outlet tube are respectively disposed in the tank.
  • the isolating member is disposed in the tank and located in the storing space.
  • the isolating member divides the storing space into a first chamber and a second chamber.
  • the first chamber communicates with the inlet tube and the outlet tube and contains water.
  • the heating device is disposed in the second chamber and includes a tube body and a heating element.
  • the tube body has a first end and a second end which respectively communicate with the first chamber, so that water in the first chamber is able to flow into an interior of the tube body; the heating element is disposed on a tube wall of the tube body, wherein thermal energy generated by the heating element is transferred to the interior of the tube body via the tube wall of the tube body to heat the water in the interior of the tube body.
  • the thermal convection in the first chamber could be improved.
  • the second chamber is located in the tank, the thermal energy generated by the heating device could be fully utilized.
  • FIG. 1 is a schematic view of the storage electric water heater of a first embodiment according to the present invention, wherein the arrows represent the direction of the water flow;
  • FIG. 2 is a schematic view of the heating device of the storage electric water heater of the first embodiment according to the present invention
  • FIG. 3 is a schematic view of the storage electric water heater of a second embodiment according to the present invention, wherein the arrows represent the direction of the water flow;
  • FIG. 4 is a schematic view of the heating device of the storage electric water heater of a third embodiment according to the present invention.
  • a storage electric water heater 1 of a first embodiment according to the present invention includes a tank 10 , an isolating member 22 , and a heating device 30 .
  • the tank 10 has a storing space 12 inside, wherein a tank body of the tank 10 is disposed with an inlet tube 14 and an outlet tube 16 .
  • the inlet tube 14 and the outlet tube 16 communicate with the storing space 12 .
  • a shell 18 is disposed around the tank 10 , and an insulated material 20 is disposed between the shell 18 and the tank 10 .
  • a bottom portion of the shell 18 has a base 19 .
  • the inlet tube 14 and the outlet tube 16 extends out of the shell 18 .
  • a location of the outlet tube 16 is higher than a location of the inlet tube 14 . Namely, a distance between the inlet tube 14 and the base 19 is shorter than a distance between the outlet tube 16 and the base 19 .
  • the isolating member 22 is disposed in the tank 10 and is located in the storing space 12 to divide the storing space 12 into a first chamber 122 and a second chamber 124 , wherein the first chamber 122 communicates with the inlet tube 14 and the outlet tube 16 . Water inputted through the inlet tube 14 is stored in the first chamber 122 . A volume of the first chamber 122 is greater than a volume of the second chamber 124 , and the first chamber 122 surrounds the second chamber 124 .
  • the isolating member 22 has a top portion 24 and a body 26 , wherein a top end of the body 26 is connected to the top portion 24 ; a bottom end of the body 26 is an open-end, and a periphery of the bottom end of the body 26 is connected to a bottom portion of the tank 10 .
  • the isolating member 22 has a first surface 262 and a second surface 264 which face opposite directions, wherein the first surface 262 faces toward the first chamber 122 , and the second surface 264 faces toward the second chamber 124 . In the current embodiment, the first surface 262 and the second surface 264 are located on the body 26 .
  • the bottom end of the body 26 is disposed with an enclosing member 28 .
  • the heating device 30 is disposed in the second chamber 124 and includes a tube body 32 and a heating element 34 .
  • the tube body 32 has a first end 322 and a second end 324 which respectively communicate with the first chamber 122 , so that water in the first chamber 122 could flow into an interior of the tube body 32 , and water in the interior of the tube body 32 could flow into the first chamber 122 .
  • the heating element 34 is disposed on a tube wall of the tube body 32 , and an air space 38 is disposed between the heating element 34 and the second surface 264 . In other words, the heating element 34 does not directly contact with water.
  • a location of the second end 324 of the tube body 32 is higher than a location of the first end 322 of the tube body 32 .
  • a distance between the second end 324 of the tube body 32 and the base 19 is greater than a distance between the first end 322 of the tube body 32 and the base 19 .
  • the first end 322 of the tube body 32 communicates with the first chamber 122 via a connecting tube 40 , wherein the connecting tube 40 passes through the bottom portion of the tank 10 and the enclosing member 28 .
  • a location of an inlet end 402 of the connecting tube 40 is lower than the location of the inlet tube 14 .
  • the second end 324 of the tube body 32 passes through the top portion 24 of the isolating member 22 and communicates with the first chamber 122 .
  • the second end 324 is located between the outlet tube 16 and the inlet tube 14 .
  • Some of the water inputted through the inlet tube 14 flows into the tube body 32 of the heating device 30 via the connecting tube 40 and then overflows from the second end 324 of the tube body 32 .
  • a level of water in the first chamber 122 is above the second end 324 of the tube body 32 .
  • the first chamber 122 could be disposed with a minimum level sensor 42 and a maximum level sensor 44 , wherein the minimum level sensor 42 is located above the outlet tube 16 .
  • a water supplying device (not shown) is activated to supply water through the inlet tube 14 , until the maximum level sensor 44 detects that a level of water reaches a second predetermined level.
  • the maximum level sensor 44 stops the water supplying device supplying water.
  • the tube body 32 is made by an electrically insulating material, such as a quartz tube or a ceramic tube.
  • the heating element 34 includes a nano-carbon coating 342 which is coated on the tube wall of the tube body 32 to increase a heating area.
  • the nano-carbon coating 342 is disposed with two electrodes 344 which are respectively connected to two power wires 36 .
  • the two power wires 36 passes through the enclosing member 28 .
  • the tube body 32 separates the nano-carbon coating 342 from water in the tube body 32 to prevent the nano-carbon coating 342 from touching the water, thereby avoiding an electrical leakage.
  • the heating element 34 When an electric current is passed through the two power wires 36 , the heating element 34 generates thermal energy, wherein the thermal energy generated by the heating element 34 is transferred to the interior of the tube body 32 via the tube wall of the tube body 32 to heat the water in the interior of the tube body 32 .
  • water in the interior of the tube body 32 is heated, water flows upwardly, namely in a direction from the first end 322 to the second end 324 of the tube body 32 , so that a temperature of water above the second end 324 is higher than a temperature of water below the second end 324 .
  • the second end 324 of the tube body 32 is closer to the outlet tube 16 , and the location of the outlet tube 16 is higher than the location of the inlet tube 14 , water which is hotter above the second end 324 in the first chamber 122 flows downwardly, namely in a direction from the second end 324 to the first end 322 of the tube body 32 , due to thermal convection, thereby forming a circulation without an assistance of a convection device. Even if additional cool water flows into the first chamber 122 through the inlet tube 14 , cool water is brought into the tube body 32 and is heated to be hot water. In other words, during a heating process, the tube body 32 could facilitate the circulation due to thermal conduction in the first chamber 122 .
  • the thermal energy of the heating element 34 could be transferred to the first chamber 122 via the isolating member 22 .
  • the second surface 264 of the isolating member 22 could optionally be disposed with a thermally conductive layer 46 which faces the heating element 34 .
  • the thermally conductive layer 46 is a nano-carbon coating and could enhance an ability to conduct the thermal energy from the heating element 34 to the isolating member 22 , so that the thermal energy of the heating element 34 could be utilized effectively.
  • the enclosing member 28 could prevent thermal energy in the second chamber 124 from dissipating into the atmosphere through the bottom end of the body 26 .
  • a storage electric water heater 2 of a second embodiment according to the present invention is configured basically similar to that of the first embodiment, but in which a connecting tube 48 for connecting the first end 322 of the tube body 32 and the first chamber 122 passes through the body 26 of the isolating member 22 .
  • the connecting tube 48 could also achieve a function to supply water in the first chamber 122 to the tube body 32 .
  • a heating device 50 of a storage electric water heater of a third embodiment according to the present invention has almost the same structure as that of each of the embodiments, except that a heating element of the heating device 50 is a heating pipe 52 which is coiled around a tube body 54 to increase a heating area. After an electric current is passed through the heating pipe 52 , the thermal energy generated by the heating pipe 52 could also be transferred to an interior of the tube body 54 via a tube wall of the tube body 54 to heat the water in the interior of the tube body 54 .
  • the heating pipe 52 could be made of a metal material.
  • the heating pipe 52 could also include an induction coil to heat the tube body 54 of the metal material.
  • the thermal convection in the first chamber during the heating process could be enhanced by communicating the two ends of the tube body with the first chamber. Additionally, since the second chamber is located in the tank, the thermal energy generated by the heating device could be fully utilized. The heating element is separated from water by the tube body, so that the could be avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

A storage electric water heater includes a tank, an inlet tube, an outlet tube, an isolating member, and a heating device, wherein the tank has a storing space. The inlet tube and the outlet tube are disposed in the tank. The isolating member is disposed in the storing space to divide the storing space into a first chamber and a second chamber. The first chamber communicates with the inlet tube and the outlet tube. The heating device is disposed in the second chamber and includes a tube body and a heating element. Two ends of the tube body communicate with the first chamber, so that water in the first chamber could enter an interior of the tube body. The heating element is disposed on a tube wall of the tube body. Thermal energy generated by the heating element could be transferred to the interior of the tube body via the tube wall to heat up water in the tube body, thereby facilitating the thermal convection of water in the first chamber.

Description

    BACKGROUND OF THE INVENTION Technical Field
  • The present invention relates generally to an electric water heater, and more particularly to a storage electric water heater.
  • Description of Related Art
  • A conventional storage electric water heater includes a storage tank and a heating pipe, wherein an interior of the storage tank has a storing space for containing water. The storage tank is disposed with an inlet tube and an outlet tube which communicates with the storing space. The heating pipe is disposed in the storage tank. The heating pipe has a heating wire inside. When the heating wire is energized, thermal energy could be transferred to the water via a shell of the heating pipe to heat water.
  • Since the storage tank of the storage electric water heater stores hot water, so that a user could easily access the hot water at any time, thereby enhance a convenience of life. However, the heating pipe of the conventional storage electric water heater is merely soaked in water, and water in the storing space of the storage tank stands still, so the thermal convection is not good during the heating process. Therefore, to heat water in the tank to a predetermined temperature needs more heating time, so that the heating efficiency of the storage electric water heater is reduced.
  • BRIEF SUMMARY OF THE INVENTION
  • In view of the above, the primary objective of the present invention is to provide a storage electric water heater that is able to enhance thermal convection during a heating process.
  • The present invention provides a storage electric water heater including a tank an inlet tube, an outlet tube, an isolating member, and a heating device, wherein the tank has a storing space. The inlet tube and the outlet tube are respectively disposed in the tank. The isolating member is disposed in the tank and located in the storing space. The isolating member divides the storing space into a first chamber and a second chamber. The first chamber communicates with the inlet tube and the outlet tube and contains water. The heating device is disposed in the second chamber and includes a tube body and a heating element. The tube body has a first end and a second end which respectively communicate with the first chamber, so that water in the first chamber is able to flow into an interior of the tube body; the heating element is disposed on a tube wall of the tube body, wherein thermal energy generated by the heating element is transferred to the interior of the tube body via the tube wall of the tube body to heat the water in the interior of the tube body.
  • By communicating the two ends of the tube body with the first chamber and heating the tube body, the thermal convection in the first chamber could be improved. Besides, since the second chamber is located in the tank, the thermal energy generated by the heating device could be fully utilized.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • The present invention will be best understood by referring to the following detailed description of some illustrative embodiments in conjunction with the accompanying drawings, in which
  • FIG. 1 is a schematic view of the storage electric water heater of a first embodiment according to the present invention, wherein the arrows represent the direction of the water flow;
  • FIG. 2 is a schematic view of the heating device of the storage electric water heater of the first embodiment according to the present invention;
  • FIG. 3 is a schematic view of the storage electric water heater of a second embodiment according to the present invention, wherein the arrows represent the direction of the water flow; and
  • FIG. 4 is a schematic view of the heating device of the storage electric water heater of a third embodiment according to the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As illustrated in FIG. 1 and FIG. 2, a storage electric water heater 1 of a first embodiment according to the present invention includes a tank 10, an isolating member 22, and a heating device 30.
  • The tank 10 has a storing space 12 inside, wherein a tank body of the tank 10 is disposed with an inlet tube 14 and an outlet tube 16. The inlet tube 14 and the outlet tube 16 communicate with the storing space 12. A shell 18 is disposed around the tank 10, and an insulated material 20 is disposed between the shell 18 and the tank 10. A bottom portion of the shell 18 has a base 19. The inlet tube 14 and the outlet tube 16 extends out of the shell 18. In the current embodiment, a location of the outlet tube 16 is higher than a location of the inlet tube 14. Namely, a distance between the inlet tube 14 and the base 19 is shorter than a distance between the outlet tube 16 and the base 19.
  • The isolating member 22 is disposed in the tank 10 and is located in the storing space 12 to divide the storing space 12 into a first chamber 122 and a second chamber 124, wherein the first chamber 122 communicates with the inlet tube 14 and the outlet tube 16. Water inputted through the inlet tube 14 is stored in the first chamber 122. A volume of the first chamber 122 is greater than a volume of the second chamber 124, and the first chamber 122 surrounds the second chamber 124.
  • The isolating member 22 has a top portion 24 and a body 26, wherein a top end of the body 26 is connected to the top portion 24; a bottom end of the body 26 is an open-end, and a periphery of the bottom end of the body 26 is connected to a bottom portion of the tank 10. The isolating member 22 has a first surface 262 and a second surface 264 which face opposite directions, wherein the first surface 262 faces toward the first chamber 122, and the second surface 264 faces toward the second chamber 124. In the current embodiment, the first surface 262 and the second surface 264 are located on the body 26. The bottom end of the body 26 is disposed with an enclosing member 28.
  • The heating device 30 is disposed in the second chamber 124 and includes a tube body 32 and a heating element 34. The tube body 32 has a first end 322 and a second end 324 which respectively communicate with the first chamber 122, so that water in the first chamber 122 could flow into an interior of the tube body 32, and water in the interior of the tube body 32 could flow into the first chamber 122. The heating element 34 is disposed on a tube wall of the tube body 32, and an air space 38 is disposed between the heating element 34 and the second surface 264. In other words, the heating element 34 does not directly contact with water.
  • In the current embodiment, a location of the second end 324 of the tube body 32 is higher than a location of the first end 322 of the tube body 32. Namely, a distance between the second end 324 of the tube body 32 and the base 19 is greater than a distance between the first end 322 of the tube body 32 and the base 19. The first end 322 of the tube body 32 communicates with the first chamber 122 via a connecting tube 40, wherein the connecting tube 40 passes through the bottom portion of the tank 10 and the enclosing member 28. A location of an inlet end 402 of the connecting tube 40 is lower than the location of the inlet tube 14. The second end 324 of the tube body 32 passes through the top portion 24 of the isolating member 22 and communicates with the first chamber 122. The second end 324 is located between the outlet tube 16 and the inlet tube 14. Some of the water inputted through the inlet tube 14 flows into the tube body 32 of the heating device 30 via the connecting tube 40 and then overflows from the second end 324 of the tube body 32. Preferably, a level of water in the first chamber 122 is above the second end 324 of the tube body 32.
  • Practically, the first chamber 122 could be disposed with a minimum level sensor 42 and a maximum level sensor 44, wherein the minimum level sensor 42 is located above the outlet tube 16. When the minimum level sensor 42 detects that a level of water is lower than a first predetermined level, a water supplying device (not shown) is activated to supply water through the inlet tube 14, until the maximum level sensor 44 detects that a level of water reaches a second predetermined level. When a level of water reaches a second predetermined level, the maximum level sensor 44 stops the water supplying device supplying water.
  • In the current embodiment, the tube body 32 is made by an electrically insulating material, such as a quartz tube or a ceramic tube. The heating element 34 includes a nano-carbon coating 342 which is coated on the tube wall of the tube body 32 to increase a heating area. The nano-carbon coating 342 is disposed with two electrodes 344 which are respectively connected to two power wires 36. The two power wires 36 passes through the enclosing member 28. The tube body 32 separates the nano-carbon coating 342 from water in the tube body 32 to prevent the nano-carbon coating 342 from touching the water, thereby avoiding an electrical leakage.
  • When an electric current is passed through the two power wires 36, the heating element 34 generates thermal energy, wherein the thermal energy generated by the heating element 34 is transferred to the interior of the tube body 32 via the tube wall of the tube body 32 to heat the water in the interior of the tube body 32. When water in the interior of the tube body 32 is heated, water flows upwardly, namely in a direction from the first end 322 to the second end 324 of the tube body 32, so that a temperature of water above the second end 324 is higher than a temperature of water below the second end 324. Since the second end 324 of the tube body 32 is closer to the outlet tube 16, and the location of the outlet tube 16 is higher than the location of the inlet tube 14, water which is hotter above the second end 324 in the first chamber 122 flows downwardly, namely in a direction from the second end 324 to the first end 322 of the tube body 32, due to thermal convection, thereby forming a circulation without an assistance of a convection device. Even if additional cool water flows into the first chamber 122 through the inlet tube 14, cool water is brought into the tube body 32 and is heated to be hot water. In other words, during a heating process, the tube body 32 could facilitate the circulation due to thermal conduction in the first chamber 122.
  • The thermal energy of the heating element 34 could be transferred to the first chamber 122 via the isolating member 22. In the current embodiment, the second surface 264 of the isolating member 22 could optionally be disposed with a thermally conductive layer 46 which faces the heating element 34. Preferably, the thermally conductive layer 46 is a nano-carbon coating and could enhance an ability to conduct the thermal energy from the heating element 34 to the isolating member 22, so that the thermal energy of the heating element 34 could be utilized effectively. The enclosing member 28 could prevent thermal energy in the second chamber 124 from dissipating into the atmosphere through the bottom end of the body 26.
  • As illustrated in FIG. 3, a storage electric water heater 2 of a second embodiment according to the present invention is configured basically similar to that of the first embodiment, but in which a connecting tube 48 for connecting the first end 322 of the tube body 32 and the first chamber 122 passes through the body 26 of the isolating member 22. With such design, the connecting tube 48 could also achieve a function to supply water in the first chamber 122 to the tube body 32.
  • As illustrated in FIG. 4, a heating device 50 of a storage electric water heater of a third embodiment according to the present invention has almost the same structure as that of each of the embodiments, except that a heating element of the heating device 50 is a heating pipe 52 which is coiled around a tube body 54 to increase a heating area. After an electric current is passed through the heating pipe 52, the thermal energy generated by the heating pipe 52 could also be transferred to an interior of the tube body 54 via a tube wall of the tube body 54 to heat the water in the interior of the tube body 54. The heating pipe 52 could be made of a metal material.
  • In an embodiment, the heating pipe 52 could also include an induction coil to heat the tube body 54 of the metal material.
  • In view of the above, in the storage electric water heater of the current application, the thermal convection in the first chamber during the heating process could be enhanced by communicating the two ends of the tube body with the first chamber. Additionally, since the second chamber is located in the tank, the thermal energy generated by the heating device could be fully utilized. The heating element is separated from water by the tube body, so that the could be avoided.
  • It must be pointed out that the embodiment described above is only a preferred embodiment of the present invention. All equivalent structures which employ the concepts disclosed in this specification and the appended claims should fall within the scope of the present invention.

Claims (14)

What is claimed is:
1. A storage electric water heater, comprising:
a tank having a storing space;
an inlet tube and an outlet tube respectively disposed in the tank;
an isolating member disposed in the tank and located in the storing space to divide the storing space into a first chamber and a second chamber; the first chamber communicates with the inlet tube and the outlet tube and is adapted to store water; and
a heating device disposed in the second chamber and comprises a tube body and a heating element; the tube body has a first end and a second end which respectively communicate with the first chamber, so that water in the first chamber is able to flow into an interior of the tube body; the heating element is disposed on a tube wall of the tube body, wherein a thermal energy generated by the heating element is transferred to the interior of the tube body via the tube wall of the tube body to heat the water in the interior of the tube body.
2. The storage electric water heater of claim 1, wherein the tube body is made by an electrically insulating material, and the heating element comprises a nano-carbon coating which is coated on the tube wall of the tube body.
3. The storage electric water heater of claim 1, wherein a location of the second end of the tube body is higher than a location of the first end of the tube body, and the first end of the tube body is closer to the inlet tube than the second end of the tube body.
4. The storage electric water heater of claim 3, wherein a location of the outlet tube is higher than a location of the inlet tube, and the location of the second end of the tube body is between the location of the outlet tube and the location of the inlet tube.
5. The storage electric water heater of claim 3, wherein the first end of the tube body communicates with the first chamber via a connecting tube, and a location of an inlet end of the connecting tube is lower than a location of the inlet tube.
6. The storage electric water heater of claim 5, wherein the connecting tube passes through a bottom portion of the tank.
7. The storage electric water heater of claim 5, wherein the connecting tube passes through the isolating member.
8. The storage electric water heater of claim 1, wherein the isolating member has a first surface and a second surface which face opposite directions; the first surface faces toward the first chamber, and the second surface faces toward the second chamber; an air space is disposed between the heating element and the second surface.
9. The storage electric water heater of claim 8, wherein the thermal energy of the heating element is transferred to the first chamber via the isolating member.
10. The storage electric water heater of claim 9, wherein the second surface of the isolating member is disposed with a thermally conductive layer which faces the heating element.
11. The storage electric water heater of claim 10, wherein the thermally conductive layer is a nano-carbon coating.
12. The storage electric water heater of claim 1, wherein the isolating member has a top portion and a body; a top end of the body is connected to the top portion of the isolating member, so that the top portion and the body form the second chamber; a bottom end of the body is an open-end; the bottom end of the body is connected to a bottom portion of the tank.
13. The storage electric water heater of claim 12, wherein the bottom end of the body is disposed with an enclosing member.
14. The storage electric water heater of claim 1, wherein the first chamber surrounds the second chamber.
US17/129,033 2020-12-21 2020-12-21 Storage electric water heater Abandoned US20220196285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/129,033 US20220196285A1 (en) 2020-12-21 2020-12-21 Storage electric water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/129,033 US20220196285A1 (en) 2020-12-21 2020-12-21 Storage electric water heater

Publications (1)

Publication Number Publication Date
US20220196285A1 true US20220196285A1 (en) 2022-06-23

Family

ID=82023260

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/129,033 Abandoned US20220196285A1 (en) 2020-12-21 2020-12-21 Storage electric water heater

Country Status (1)

Country Link
US (1) US20220196285A1 (en)

Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US579611A (en) * 1897-03-30 Electric heater
US636091A (en) * 1899-05-11 1899-10-31 Percy S Regnart Fluid-heating apparatus.
US1034952A (en) * 1911-05-17 1912-08-06 Gen Electric Electric water-heater.
US1070734A (en) * 1912-01-04 1913-08-19 Adolph Rittershaussen Electric heat-accumulator.
US1124683A (en) * 1913-06-05 1915-01-12 Westinghouse Electric & Mfg Co Percolator.
US1202957A (en) * 1916-02-17 1916-10-31 Eck Baughn Electrical liquid-heating device.
US1356881A (en) * 1920-06-24 1920-10-26 Richard P Osgood Electric hot-water heater
US1406994A (en) * 1921-04-27 1922-02-21 Frederick W Moffat Electric water heater
US1451671A (en) * 1922-02-28 1923-04-10 William G Cartter Electric water heater
US1451863A (en) * 1921-04-02 1923-04-17 Automatic Electric Heater Comp Liquid heater
US1553491A (en) * 1922-08-21 1925-09-15 Werner Electric Heater Company Electrical water heater
US1561243A (en) * 1924-01-05 1925-11-10 Westinghouse Electric & Mfg Co Control for heating systems
US1630909A (en) * 1924-12-16 1927-05-31 Steere Ernest Charles Electric water heater
US1643673A (en) * 1926-06-02 1927-09-27 Warren C Merrill Electric-heating element
US1653672A (en) * 1926-03-06 1927-12-27 Hudson Heating Systems Inc Water heater
US1661693A (en) * 1926-01-12 1928-03-06 Ewart John Henry Electric water heater
US1674369A (en) * 1925-11-13 1928-06-19 Harry Morton Sargood Electric liquid heater
US1698596A (en) * 1927-07-27 1929-01-08 Hynes & Cox Electric Corp Electric water heating
US1718866A (en) * 1928-06-11 1929-06-25 Barnett W Macy Liquid heater
US1726789A (en) * 1926-07-06 1929-09-03 Kummler & Matter Ag Electrically-operated fluid heater
US1727881A (en) * 1927-06-22 1929-09-10 Robert C Hoyt Electric liquid heater
US1734075A (en) * 1927-09-16 1929-11-05 Herbert W Christian Water heater
US1779668A (en) * 1929-09-27 1930-10-28 Fazekas Anton Variable electric heater
US1779937A (en) * 1928-07-25 1930-10-28 Hudson Electrical Heating Corp Water heater
US1787450A (en) * 1927-05-19 1931-01-06 Bastian Morley Co Heating apparatus
US1837597A (en) * 1930-04-22 1931-12-22 Robert B Thomas Water heater
US1837992A (en) * 1930-07-30 1931-12-22 Palumbo Pete Electric water heater
US1849175A (en) * 1928-02-23 1932-03-15 Automatic Electric Heater Comp Water heater
US1886135A (en) * 1930-10-01 1932-11-01 Fort Wayne Engineering And Mfg Water heater
US1918414A (en) * 1932-09-12 1933-07-18 James A Mcney Steam and hot water generator
US1934958A (en) * 1932-07-30 1933-11-14 Gerald E White Electric fluid heater temperature control
US2276583A (en) * 1938-06-30 1942-03-17 Laubmeyer Gunther Electric heating element
US2437453A (en) * 1948-03-09 Electrical heating apparatus for
US2507902A (en) * 1948-08-02 1950-05-16 Graves Frederick Electric water heater
US2742560A (en) * 1954-10-29 1956-04-17 Gen Electric Water heater
US2784291A (en) * 1955-02-11 1957-03-05 William M Harney Water heating device
US3442118A (en) * 1965-08-06 1969-05-06 Atomic Power Dev Ass Inc Device for testing a body of fluid
US3502843A (en) * 1968-09-30 1970-03-24 Chester Lewis Stryer Electric water heating unit
US3546429A (en) * 1969-04-16 1970-12-08 Phydrex Ltd Water heating device
US3614386A (en) * 1970-01-09 1971-10-19 Gordon H Hepplewhite Electric water heater
US3666918A (en) * 1971-03-11 1972-05-30 Patterson Kelley Co Electric powered water heating system
US4242569A (en) * 1978-04-24 1980-12-30 Kayser William M Multiple tank electric water heater
US4282421A (en) * 1978-04-02 1981-08-04 Arieh Hadar Dual compartment electric water heater
US4514617A (en) * 1983-01-19 1985-04-30 Haim Amit Two-stage electric water heater
US4684786A (en) * 1984-08-01 1987-08-04 Navistar International Corporation Electrically heated fuel pick-up assembly for vehicle fuel tanks
US20030183618A1 (en) * 2000-07-27 2003-10-02 Benjamin Moreno Programmable domestic water heating system
US20140313750A1 (en) * 2011-12-14 2014-10-23 Osram Gmbh Heat radiation device and illuminating device having said heat radiation device

Patent Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2437453A (en) * 1948-03-09 Electrical heating apparatus for
US579611A (en) * 1897-03-30 Electric heater
US636091A (en) * 1899-05-11 1899-10-31 Percy S Regnart Fluid-heating apparatus.
US1034952A (en) * 1911-05-17 1912-08-06 Gen Electric Electric water-heater.
US1070734A (en) * 1912-01-04 1913-08-19 Adolph Rittershaussen Electric heat-accumulator.
US1124683A (en) * 1913-06-05 1915-01-12 Westinghouse Electric & Mfg Co Percolator.
US1202957A (en) * 1916-02-17 1916-10-31 Eck Baughn Electrical liquid-heating device.
US1356881A (en) * 1920-06-24 1920-10-26 Richard P Osgood Electric hot-water heater
US1451863A (en) * 1921-04-02 1923-04-17 Automatic Electric Heater Comp Liquid heater
US1406994A (en) * 1921-04-27 1922-02-21 Frederick W Moffat Electric water heater
US1451671A (en) * 1922-02-28 1923-04-10 William G Cartter Electric water heater
US1553491A (en) * 1922-08-21 1925-09-15 Werner Electric Heater Company Electrical water heater
US1561243A (en) * 1924-01-05 1925-11-10 Westinghouse Electric & Mfg Co Control for heating systems
US1630909A (en) * 1924-12-16 1927-05-31 Steere Ernest Charles Electric water heater
US1674369A (en) * 1925-11-13 1928-06-19 Harry Morton Sargood Electric liquid heater
US1661693A (en) * 1926-01-12 1928-03-06 Ewart John Henry Electric water heater
US1653672A (en) * 1926-03-06 1927-12-27 Hudson Heating Systems Inc Water heater
US1643673A (en) * 1926-06-02 1927-09-27 Warren C Merrill Electric-heating element
US1726789A (en) * 1926-07-06 1929-09-03 Kummler & Matter Ag Electrically-operated fluid heater
US1787450A (en) * 1927-05-19 1931-01-06 Bastian Morley Co Heating apparatus
US1727881A (en) * 1927-06-22 1929-09-10 Robert C Hoyt Electric liquid heater
US1698596A (en) * 1927-07-27 1929-01-08 Hynes & Cox Electric Corp Electric water heating
US1734075A (en) * 1927-09-16 1929-11-05 Herbert W Christian Water heater
US1849175A (en) * 1928-02-23 1932-03-15 Automatic Electric Heater Comp Water heater
US1718866A (en) * 1928-06-11 1929-06-25 Barnett W Macy Liquid heater
US1779937A (en) * 1928-07-25 1930-10-28 Hudson Electrical Heating Corp Water heater
US1779668A (en) * 1929-09-27 1930-10-28 Fazekas Anton Variable electric heater
US1837597A (en) * 1930-04-22 1931-12-22 Robert B Thomas Water heater
US1837992A (en) * 1930-07-30 1931-12-22 Palumbo Pete Electric water heater
US1886135A (en) * 1930-10-01 1932-11-01 Fort Wayne Engineering And Mfg Water heater
US1934958A (en) * 1932-07-30 1933-11-14 Gerald E White Electric fluid heater temperature control
US1918414A (en) * 1932-09-12 1933-07-18 James A Mcney Steam and hot water generator
US2276583A (en) * 1938-06-30 1942-03-17 Laubmeyer Gunther Electric heating element
US2507902A (en) * 1948-08-02 1950-05-16 Graves Frederick Electric water heater
US2742560A (en) * 1954-10-29 1956-04-17 Gen Electric Water heater
US2784291A (en) * 1955-02-11 1957-03-05 William M Harney Water heating device
US3442118A (en) * 1965-08-06 1969-05-06 Atomic Power Dev Ass Inc Device for testing a body of fluid
US3502843A (en) * 1968-09-30 1970-03-24 Chester Lewis Stryer Electric water heating unit
US3546429A (en) * 1969-04-16 1970-12-08 Phydrex Ltd Water heating device
US3614386A (en) * 1970-01-09 1971-10-19 Gordon H Hepplewhite Electric water heater
US3666918A (en) * 1971-03-11 1972-05-30 Patterson Kelley Co Electric powered water heating system
US4282421A (en) * 1978-04-02 1981-08-04 Arieh Hadar Dual compartment electric water heater
US4242569A (en) * 1978-04-24 1980-12-30 Kayser William M Multiple tank electric water heater
US4514617A (en) * 1983-01-19 1985-04-30 Haim Amit Two-stage electric water heater
US4684786A (en) * 1984-08-01 1987-08-04 Navistar International Corporation Electrically heated fuel pick-up assembly for vehicle fuel tanks
US20030183618A1 (en) * 2000-07-27 2003-10-02 Benjamin Moreno Programmable domestic water heating system
US20140313750A1 (en) * 2011-12-14 2014-10-23 Osram Gmbh Heat radiation device and illuminating device having said heat radiation device

Similar Documents

Publication Publication Date Title
JP3791694B1 (en) Induction heating steam generator
JP2023039406A (en) Heating module and aerosol-generating device
JP2022145806A (en) Aerosol generating device
US1464255A (en) Electrical heating device
JP3750189B2 (en) Liquid heating device
CN105972570B (en) Steam generator and steaming plant
US20220196285A1 (en) Storage electric water heater
JP2023039407A (en) Heating module and aerosol generating device
JP2021507536A (en) A system that uniformly controls the temperature of the electrodes in a form that is electrically separated using a heat transfer tube, and a processing room equipped with such a system.
TWI754447B (en) Thermal storage electric water heater
CN217065416U (en) Electronic atomization device and heating assembly and heating body thereof
CN114484856A (en) Heat storage type electric water heater
WO2023109399A1 (en) Electronic atomizing apparatus, and heating assembly and heating body thereof
CN108645012A (en) Instant heating type electromagnetic heating device
US11612019B2 (en) Air heater
JPH0224047Y2 (en)
JPS5947809B2 (en) Electric heating device for heating
KR101809169B1 (en) Apparatus for Heating Fluid
CN109392202A (en) A kind of heat delivery surface is electrically insulating material face scale inhibition electric heater
KR101515879B1 (en) Electric boiler heater
KR20140022268A (en) Electrical type of boiler for industrial use
JP5402446B2 (en) Electric water heater
WO2018000497A1 (en) Vapour generator and vapour device
CN216085152U (en) High-temperature-resistant battery
CN209229847U (en) A kind of vacuum and steam electric heater

Legal Events

Date Code Title Description
AS Assignment

Owner name: GRAND MATE CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUANG, CHUNG-CHIN;HUANG, CHIN-YING;HUANG, HSIN-MING;AND OTHERS;REEL/FRAME:054711/0698

Effective date: 20201218

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION