US20220195636A1 - Workstation of an air-spinning machine, and thread-guiding element - Google Patents

Workstation of an air-spinning machine, and thread-guiding element Download PDF

Info

Publication number
US20220195636A1
US20220195636A1 US17/554,001 US202117554001A US2022195636A1 US 20220195636 A1 US20220195636 A1 US 20220195636A1 US 202117554001 A US202117554001 A US 202117554001A US 2022195636 A1 US2022195636 A1 US 2022195636A1
Authority
US
United States
Prior art keywords
thread
air
spinning device
inlet opening
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/554,001
Inventor
Turgay YUEKSEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saurer Intelligent Technology AG
Original Assignee
Saurer Intelligent Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saurer Intelligent Technology AG filed Critical Saurer Intelligent Technology AG
Assigned to Saurer Intelligent Technology AG reassignment Saurer Intelligent Technology AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YUEKSEL, TURGAY
Publication of US20220195636A1 publication Critical patent/US20220195636A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H1/00Spinning or twisting machines in which the product is wound-up continuously
    • D01H1/11Spinning by false-twisting
    • D01H1/115Spinning by false-twisting using pneumatic means
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/04Guides for slivers, rovings, or yarns; Smoothing dies
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories
    • D01H13/04Guides for slivers, rovings, or yarns; Smoothing dies
    • D01H13/045Guide tube
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/02Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques imparting twist by a fluid, e.g. air vortex

Definitions

  • the present invention relates to a workstation of an air-spinning machine, comprising an air-spinning device for spinning a thread from a supplied sliver and a thread-guiding unit, which is downstream of the air-spinning device and has an inlet opening for receiving the thread exiting from the outlet opening of the air-spinning device and a thread guide channel for conducting at least the air-spun thread coming from the air-spinning device, and to a thread-guiding element for arranging between the outlet opening of a spinning device, such as the air-spinning device, and the inlet opening of the thread deflection unit.
  • an air-spinning machine having an air-spinning device which forms a thread from a sliver by means of an air flow around a hollow spinning cone
  • the sliver which has been previously drafted by means of a drafting system arranged upstream of the air-spinning device, is supplied to the air-spinning device via a sliver entrance of the air-spinning device and enters a vortex chamber, which surrounds a hollow spinning cone and to which a vortex air flow can be applied by means of a nozzle device.
  • the nozzle device produces an air flow around the spinning cone, whereby the free fibre ends of the sliver are laid around the spinning cone and are helically wound around core fibres in a known way, whereby a thread having suitable strength properties is produced, which thread is transported, via an outlet opening of the air-spinning device, to a winding device, by means of which the spun thread is wound onto a take-up package in a defined way.
  • the thread After exiting the air-spinning device, the thread passes through a thread deflection unit, which guides the thread, and through a thread guide channel, which adjoins the thread deflection unit.
  • the spinning process is interrupted in an air-spinning device, for example due to a break in the supplied sliver or because the spun thread has been otherwise severed by a controlled cut of a thread clearer, then, in the course of the subsequent piecing process for eliminating the spinning interruption, the thread end of the already spun thread, usually accumulated on an associated take-up package, must first be retrieved and be transported through the air-spinning device to the area of the drafting system or to the spinning cone within the vortex chamber in the thread take-up direction.
  • the transport medium for bringing the thread end close to an outlet opening of the air-spinning device is usually an air flow initiated by a blowing pulse.
  • the thread end is fed to the outlet opening, the thread end is sucked, by means of a suction air flow directed opposite the thread take-up direction which is normal during the spinning process, into the air-spinning device and is transported up to the vortex chamber.
  • the problem addressed by the invention is that of providing a workstation of an air-spinning machine and a thread-guiding element for use on a spinning machine, such as an air-spinning machine in particular, which workstation and thread-guiding element allow reliable piecing.
  • the invention solves the problem by means of a thread-guiding element and by means of a workstation of an air-spinning machine. Advantageous further developments of the thread-guiding element are presented herein.
  • the thread-guiding element comprises a channel body, which has through-channel and is provided for arrangement between the outlet opening of the spinning device, for example an air-spinning device, and the inlet opening of the thread-guiding unit, which thread-guiding unit has a thread guide channel for conducting a thread running between the spinning device and the winding device.
  • the channel body comprises, in turn, a connection section, which can be connected to the spinning device and by means of which the channel body can be positioned with its first open end of the through-channel in the area of the outlet opening of the spinning device.
  • the channel body has an end section, which can be arranged facing the inlet opening and which is matched to a contour of the thread-guiding unit surrounding the inlet opening in order to ensure that the thread from the inlet opening reliably enters the through-channel or in order to receive a thread exiting from the inlet opening.
  • the end section is designed in such a way that it can be ensured that a thread exiting from the inlet opening is reliably transferred into the through-channel of the channel body.
  • the distance between the end section of the through-channel or a second open end of the through-channel, which second open end is delimited by the end section, and the inlet opening is selected such that a thread end exiting from the inlet opening is not deflected toward the gap formed between the end section or the second open end and the inlet opening in such a way that the thread end is guided through the gap.
  • the end section is designed for the arrangement of the open second end facing the inlet opening without the formation of a gap between the end section and the contour surrounding the inlet opening such that the gap would allow the thread end to pass through.
  • the end section can have, for example, a shape or size deviating from the rest of the channel body.
  • the thread-guiding element according to the invention ensures that the thread end to be returned to the spinning device for piecing is reliably transferred; because the end section is matched to the inlet opening of the thread-guiding unit, the end section ensures that the thread end exiting from the inlet opening of the thread-guiding unit is reliably received.
  • the thread in the through-channel of the channel body of the thread-guiding element is reliably guided along the through-channel and through the first open end of the through-channel into the outlet opening of the spinning device, from where the thread end reaches the position required for piecing with the sliver.
  • the thread-guiding element according to the invention thus ensures that a thread end, which is generally picked up from a take-up package, is reliably returned to the spinning device in order to achieve reliable piecing with the supplied sliver.
  • the thread-guiding element thus bridges the normally thread-guidance-free intermediate section between the thread-guiding unit and the outlet opening of the spinning device, thus preventing malfunctions due to faulty returning of the thread.
  • the thread-guiding element according to the invention reliably ensures economical and simple returning of the thread to the spinning device and thus ensures the piecing reliability.
  • the thread-guiding element can be arranged on the spinning device in any way.
  • suitable fastening screws or clamping means can be provided for this purpose, by means of which the thread-guiding element can be releasably arranged in the area of the outlet opening of the spinning device.
  • the connection section of the channel body of the thread-guiding element is designed for bayonet-coupling-type connection to the spinning device.
  • connection section has, in the area of the first open end, or the spinning device has, in the area of the outlet opening, a longitudinal slot, the end of which is adjoined, at an angle, by a short transverse slot, which can be brought into operative connection with a corresponding engagement element on the other of the spinning device or the connection section.
  • the channel body can be made of any material, for example suitable metal materials.
  • the channel body is made of a plastic material, more particularly PVC.
  • the use of a plastic material allows the thread-guiding element to be particularly easily and economically produced.
  • the use of a plastic material allows easy shaping of the end section of the channel body, which end section can be arranged in the area of the inlet opening and by means of which end section the thread exiting from the inlet opening and to be returned to the spinning device is received into the thread-guiding element.
  • the thread-guiding unit has a thread deflection unit for deflecting the thread in a defined way, and the thread deflection unit forms the inlet opening.
  • the thread deflection unit has, at its end opposite the inlet opening, an exit, which is coupled to the inlet opening by means of a thread deflection section lying therebetween and by means of which the thread deflection unit can be connected to the thread guide channel for conducting the thread through the thread-guiding unit to the inlet opening.
  • Such a thread-guiding unit equipped with a thread deflection unit allows the thread to be deflected on a thread path between the spinning device and the winding device, whereby a workstation of the air-spinning machine can be made more compact along the thread path.
  • the thread deflection unit is preferably designed to the deflect the thread at an angle of less than 90° between the passage axes of the inlet opening and of the exit.
  • the thread deflection unit particularly preferably has, for this purpose, a thread deflection roller having a thread-guiding groove, along which the thread can be guided and deflected.
  • the cross-section of thread-guiding groove can have an appropriate shape, for example a U, V, C or W shape or a similar shape.
  • the end section is funnel-shaped. This design of the end section ensures that, when the end section is arranged facing the inlet opening, the thread to be returned is particularly reliably received in the thread-guiding element and thus the thread end is reliably fed into the spinning device so that the piecing process can be carried out.
  • the end section is matched to the contour of the thread deflection unit in the area of the inlet opening, more particularly to the contour of the thread deflection roller of the thread deflection unit.
  • the connection section of the thread-guiding element extends directly up to the thread deflection roller, which is provided for deflecting the thread. Matching the contour of the end section to the thread deflection roller allows the end section to be arranged particularly close to the inlet opening and thus ensures that the thread to be returned is particularly reliably received, and it additionally allows the thread-guiding element to be particularly easily and economically produced, the end section being, for example, shovel-shaped with a cross-section matched to the radius of the thread deflection roller.
  • the channel body also has a plurality of air passages along the through-channel, for causing a rotational flow within the through-channel as the thread is conducted.
  • the air passages are preferably arranged around the channel body, more particularly in a spiral arrangement.
  • the air passage can also preferably have an opening axis tangential to the through-channel, which opening axis is additionally preferably directed obliquely to the thread conduction axis running through the through-channel and to the thread running direction. This allows a less turbulent rotational flow to be produced within the through-channel.
  • Such a rotational flow within the through-channel advantageously has the effect that, during the conduction of the thread, in particular during the air-spinning process, edge fibres of the thread which are sticking out are laid around the thread and adhere to the thread or are accordingly integrated.
  • This allows the hairiness of the conducted thread to be influenced in such a way that the magnitude of this yarn parameter can be reduced, whereby the strength of the thread is increased.
  • applying the rotational flow to the conducted thread helps to reduce hairiness for long-staple fibres.
  • the rotational flow can be produced passively or actively.
  • passive production means a rotational flow that is produced purely by means of the conduction of the thread through the through-channel at high speed. The high speed causes the air to be entrained, and thus air is sucked from the air passages into the through-channel, resulting ultimately in a rotational flow.
  • the thread is conducted in the thread running direction, i.e. either toward the spinning device in the course of a piecing process or in an opposite direction during the regular spinning operation, preferably with the support of negative pressure or positive pressure.
  • the thread can be conducted through the through-channel with the accompaniment of compressed air or suction air.
  • the compressed air or suction air can preferably be produced outside of the thread deflection unit, for example in the spinning device, or internally, in particular by means of a compressed air connection on the thread deflection unit for the introduction of compressed air into the thread deflection unit toward the inlet opening.
  • the compressed air can be provided by means of a compressed air channel supplying the air passages with compressed air, which compressed air channel is connected to a compressed air source.
  • the compressed air channel can extend annularly around the channel body and be coupled to the air passages in question.
  • the invention also solves the problem by means of a workstation of an air-spinning machine, comprising an air-spinning device for spinning a thread from a supplied sliver and a thread deflection unit, which is downstream of the air-spinning device and has an inlet opening for receiving the thread exiting from the outlet opening of the air-spinning device and a thread guide channel for conducting the thread running between the air-spinning device and a winding device, which thread guide channel is connected to an exit of the thread deflection unit, wherein a thread-guiding element according to the invention, as described above, or a thread-guiding element developed further is arranged in the area between the outlet opening of the air-spinning device and the inlet opening of the thread deflection unit.
  • the workstation of an air-spinning machine ensures, by the use of a thread-guiding element according to the invention, as described above, or of a thread-guiding element developed further, that the thread end, which exits from the thread-guiding unit, more particularly from the thread deflection unit, and is to be returned to the air-spinning device, is reliably guided into the air-spinning device.
  • the thread exiting from the thread-guiding unit, more particularly from the thread deflection unit is reliably received into the through-channel of the thread-guiding element and supplied to the air-spinning device via the through-channel. Malfunctions of the workstation of the air-spinning machine as a result of the thread end being returned improperly can be reliably avoided by the use of the thread-guiding element so that the operational reliability of the workstation of the air-spinning machine is increased further.
  • FIG. 1 shows a thread-guiding unit having a thread deflection unit connected to a thread preparation device disposed on a thread guide channel and to an air-spinning device;
  • FIG. 2 shows a schematic illustration of a thread-guiding element disposed between the air-spinning device and the thread deflection unit;
  • FIG. 2 a shows a front view of the thread-guiding element of FIG. 2 ;
  • FIG. 3 shows an additional embodiment of a thread-guiding element.
  • FIG. 1 shows a schematic illustration of a thread-guiding unit, which is downstream of an air-spinning device 6 along a thread path and has a thread deflection unit 2 .
  • the thread deflection unit 2 is connected to a thread preparation device 5 by means of a thread guide channel 4 , which is connected to the exit 3 of the thread deflection unit 2 .
  • the air-spinning device 6 , the thread-guiding unit, having the thread deflection unit 2 and the thread guide channel 4 , and the thread preparation device 5 are parts of a workstation (not shown here) of an air-spinning machine, in which, during the spinning process, a thread 27 exiting from the air-spinning device 6 is wound on a take-up package (not shown).
  • a stored sliver on its way to the take-up package, first passes through a drafting system, which is upstream of the air-spinning device 6 in the sliver running direction R and where said sliver is drafted in a defined way.
  • the drafted sliver is then fed to the air-spinning device 6 , within which the sliver is transformed into a thread 27 in the area of a spinning cone (not shown here) under the influence of a rotational flow produced by an air flow exiting from a nozzle block, edge fibres of the sliver being helically wrapped around core fibres of the sliver.
  • the air-spun thread 27 thus produced is taken up from the air-spinning device 6 and is taken up via the thread-guiding unit, having the thread deflection unit 2 and the thread guide channel 4 , and through the thread preparation device 5 and is subsequently wound on a take-up package.
  • a piecing process must first be carried out before the spinning process is restarted.
  • the end of the thread ( 27 ) already produced which end is normally on the take-up package, must be provided in the area of the sliver of the air-spinning device 6 .
  • the thread end of the thread ( 27 ) already produced is usually retrieved from the take-up package or a defined thread end position by means of a thread-end carrying unit, such as a suction nozzle, and transferred into a thread preparation device 5 , which is shown in FIG. 1 , the thread preparation device 5 being equipped with a small holding and opening tube 7 and being downstream of the air-spinning device 6 in the sliver running direction R.
  • the thread end is largely freed of twists and loose fibres.
  • the thread preparation device 5 has a small holding and opening tube 7 arranged in an accommodating housing 8 .
  • the accommodating housing 8 has an annular space 9 , to which a compressed air source 11 is connected via a pneumatic line 10 .
  • a valve 12 is arranged in the pneumatic line 10 and is connected, via control line 13 , to a control device (not shown) of the spinning position.
  • the small holding and opening tube 7 is equipped with at least one blowing nozzle 14 , which is connected to the annular space 9 .
  • a thread 27 must first be inserted into the small holding and opening tube 7 in order to prepare the thread end of the thread 27 for a thread joining process in the air-spinning device 6 .
  • the retrieved thread end is provided at the thread preparation device 5 such that the thread can be pneumatically threaded into the small holding and opening tube 7 .
  • the thread preparation device 5 can, as shown in FIG. 1 , work together with at least one cutting device 15 , which cuts the retrieved thread 27 to the required length.
  • the valve 12 is actuated and compressed air is blown into the small holding and opening tube 7 via the blowing nozzle 14 in order to thread or suck the cut yarn end into the small holding and opening tube 7 .
  • the yarn end which is threaded in is freed from yarn twists and loose fibres in the small holding and opening tube 7 .
  • the thread preparation device 5 is coupled to a thread guide channel 4 for conducting the thread 27 , the thread guide channel 4 being arranged between the thread deflection unit 2 and the thread preparation device 5 in the sliver running direction R.
  • the sliver running direction R is identical to the running direction of the thread 27 in the spinning operation of the air-spinning machine, in which spinning operation the thread 27 is spun by means of the air-spinning device 6 .
  • the thread guide channel 4 is connected to an exit 3 of the thread deflection unit 2 .
  • the thread deflection unit 2 has a thread deflection roller 16 for the controlled deflection of the thread 27 , by means of which thread deflection roller 16 the thread 27 is deflected toward the air-spinning device 6 when the thread end is returned.
  • the thread deflection unit 2 also comprises a receptacle for a compressed air connection 17 , via which compressed air connection 17 compressed air can be supplied, via a junction point 18 , into the channel section 19 pointing toward the air-spinning device 6 , suction being simultaneously produced in the thread guide channel 4 .
  • An end section 21 of a thread-guiding element 1 adjoins the inlet opening 20 of the thread deflection unit 2 .
  • the end section 21 has a shovel-shaped contour matched to the contour of the thread deflection roller 16 .
  • a through-channel 22 extends from the end section 21 to a connection section 23 , up to an outlet opening 24 of the air-spinning device 6 .
  • a connecting plate 25 is provided on the channel body 26 , which connecting plate 25 can be connected to the air-spinning device 6 by means of a bayonet connection (not shown here).
  • the returned thread 27 is reliably led, via the through-channel 22 , into the air-spinning device 6 through the funnel-shaped outlet opening 24 as a result of the air flow which exists.
  • the thread-guiding element 1 thus bridges the area between the inlet opening 20 of the thread deflection unit 2 and the air-spinning device 6 and ensures reliable thread guidance there.
  • FIG. 3 An alternative embodiment to the thread-guiding element 1 shown in FIGS. 1, 2 and 2 a is shown in FIG. 3 .
  • the thread-guiding element 1 a shown there has, in contrast to the thread-guiding element 1 shown in FIGS. 1, 2 and 2 a , a funnel-shaped end section 21 a , which ensures that the returned thread end is reliably received.

Abstract

The invention relates to a thread-guiding element and to a workstation of an air-spinning machine, the workstation comprising an air-spinning device for spinning a thread from a supplied sliver, a thread-guiding unit, which is downstream of the air-spinning device and has an inlet opening for receiving the thread exiting from the outlet opening of the air-spinning device and a thread guide channel for conducting at least the air-spun thread coming from the air-spinning device, and a thread-guiding element for arranging between the outlet opening of the air-spinning device and the inlet opening of the thread-guiding unit. In order to provide a workstation of an air-spinning machine and a thread-guiding element for use at a workstation of a spinning machine, more particularly an air-spinning machine, which ensure that a thread end is reliably returned to the spinning device, it is provided that the thread-guiding element a channel body having a through-channel, which channel body has: a connection section, which is designed for connection to the spinning device and is provided for arranging a first open end of the through-channel in the area of the outlet opening of the spinning device; and an end section, which can be arranged facing the inlet opening, wherein the end section, in order to receive a thread exiting from the inlet opening, is matched to a contour of the thread-guiding unit surrounding the inlet opening.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims priority from EP 20215368.0, filed Dec. 18, 2020, entitled “Workstation of an air-spinning machine, and thread-guiding element”, the entire contents of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to a workstation of an air-spinning machine, comprising an air-spinning device for spinning a thread from a supplied sliver and a thread-guiding unit, which is downstream of the air-spinning device and has an inlet opening for receiving the thread exiting from the outlet opening of the air-spinning device and a thread guide channel for conducting at least the air-spun thread coming from the air-spinning device, and to a thread-guiding element for arranging between the outlet opening of a spinning device, such as the air-spinning device, and the inlet opening of the thread deflection unit.
  • BACKGROUND OF THE INVENTION
  • Various methods and spinning devices are known in the textile industry in connection with the production of textile threads. Ring spinning machines and/or open-end rotor spinning machines, for example, have long been widely used and have thoroughly proven themselves. Furthermore, so-called air-spinning machines are also known, especially in connection with the processing of synthetic yarn material.
  • For example, an air-spinning machine having an air-spinning device, which forms a thread from a sliver by means of an air flow around a hollow spinning cone, is known from WO 2019/012143. The sliver, which has been previously drafted by means of a drafting system arranged upstream of the air-spinning device, is supplied to the air-spinning device via a sliver entrance of the air-spinning device and enters a vortex chamber, which surrounds a hollow spinning cone and to which a vortex air flow can be applied by means of a nozzle device. The nozzle device produces an air flow around the spinning cone, whereby the free fibre ends of the sliver are laid around the spinning cone and are helically wound around core fibres in a known way, whereby a thread having suitable strength properties is produced, which thread is transported, via an outlet opening of the air-spinning device, to a winding device, by means of which the spun thread is wound onto a take-up package in a defined way. After exiting the air-spinning device, the thread passes through a thread deflection unit, which guides the thread, and through a thread guide channel, which adjoins the thread deflection unit.
  • If the spinning process is interrupted in an air-spinning device, for example due to a break in the supplied sliver or because the spun thread has been otherwise severed by a controlled cut of a thread clearer, then, in the course of the subsequent piecing process for eliminating the spinning interruption, the thread end of the already spun thread, usually accumulated on an associated take-up package, must first be retrieved and be transported through the air-spinning device to the area of the drafting system or to the spinning cone within the vortex chamber in the thread take-up direction. The transport medium for bringing the thread end close to an outlet opening of the air-spinning device is usually an air flow initiated by a blowing pulse. As soon as the thread end is fed to the outlet opening, the thread end is sucked, by means of a suction air flow directed opposite the thread take-up direction which is normal during the spinning process, into the air-spinning device and is transported up to the vortex chamber.
  • In the case of the known air-spinning machines having a thread-guiding unit which is arranged downstream of the air-spinning device in the thread take-up direction and which has a thread guide channel, unreliable returning of the thread picked up from the take-up package often occurs due to a region free of thread guidance between the inlet opening of the thread-guiding unit and the outlet opening of the spinning device, which outlet opening faces said inlet opening, as a result of which unreliable returning said thread cannot be reliably inserted into the air-spinning device in order for piecing to be carried out.
  • SUMMARY OF THE INVENTION
  • Proceeding therefrom, the problem addressed by the invention is that of providing a workstation of an air-spinning machine and a thread-guiding element for use on a spinning machine, such as an air-spinning machine in particular, which workstation and thread-guiding element allow reliable piecing.
  • The invention solves the problem by means of a thread-guiding element and by means of a workstation of an air-spinning machine. Advantageous further developments of the thread-guiding element are presented herein.
  • The thread-guiding element according to the invention comprises a channel body, which has through-channel and is provided for arrangement between the outlet opening of the spinning device, for example an air-spinning device, and the inlet opening of the thread-guiding unit, which thread-guiding unit has a thread guide channel for conducting a thread running between the spinning device and the winding device. The channel body comprises, in turn, a connection section, which can be connected to the spinning device and by means of which the channel body can be positioned with its first open end of the through-channel in the area of the outlet opening of the spinning device. Furthermore, the channel body has an end section, which can be arranged facing the inlet opening and which is matched to a contour of the thread-guiding unit surrounding the inlet opening in order to ensure that the thread from the inlet opening reliably enters the through-channel or in order to receive a thread exiting from the inlet opening. Accordingly, the end section is designed in such a way that it can be ensured that a thread exiting from the inlet opening is reliably transferred into the through-channel of the channel body. The distance between the end section of the through-channel or a second open end of the through-channel, which second open end is delimited by the end section, and the inlet opening is selected such that a thread end exiting from the inlet opening is not deflected toward the gap formed between the end section or the second open end and the inlet opening in such a way that the thread end is guided through the gap. More preferably, the end section is designed for the arrangement of the open second end facing the inlet opening without the formation of a gap between the end section and the contour surrounding the inlet opening such that the gap would allow the thread end to pass through. For this purpose, the end section can have, for example, a shape or size deviating from the rest of the channel body.
  • The thread-guiding element according to the invention ensures that the thread end to be returned to the spinning device for piecing is reliably transferred; because the end section is matched to the inlet opening of the thread-guiding unit, the end section ensures that the thread end exiting from the inlet opening of the thread-guiding unit is reliably received. The thread in the through-channel of the channel body of the thread-guiding element is reliably guided along the through-channel and through the first open end of the through-channel into the outlet opening of the spinning device, from where the thread end reaches the position required for piecing with the sliver.
  • The thread-guiding element according to the invention thus ensures that a thread end, which is generally picked up from a take-up package, is reliably returned to the spinning device in order to achieve reliable piecing with the supplied sliver. The thread-guiding element thus bridges the normally thread-guidance-free intermediate section between the thread-guiding unit and the outlet opening of the spinning device, thus preventing malfunctions due to faulty returning of the thread. The thread-guiding element according to the invention reliably ensures economical and simple returning of the thread to the spinning device and thus ensures the piecing reliability.
  • In principle, the thread-guiding element can be arranged on the spinning device in any way. For example, suitable fastening screws or clamping means can be provided for this purpose, by means of which the thread-guiding element can be releasably arranged in the area of the outlet opening of the spinning device. According to a particularly advantageous embodiment of the invention, however, the connection section of the channel body of the thread-guiding element is designed for bayonet-coupling-type connection to the spinning device.
  • According to this embodiment of the invention, the connection section has, in the area of the first open end, or the spinning device has, in the area of the outlet opening, a longitudinal slot, the end of which is adjoined, at an angle, by a short transverse slot, which can be brought into operative connection with a corresponding engagement element on the other of the spinning device or the connection section. The design of the connection between the connection section and the spinning device by means of a bayonet-coupling-type connection allows the thread-guiding element to be particularly easily and reliably arranged on the spinning device and allows the thread-guiding element to be removed from the spinning device when maintenance work is to be performed.
  • In principle, the channel body can be made of any material, for example suitable metal materials. According to a particularly advantageous embodiment of the invention, however, the channel body is made of a plastic material, more particularly PVC. The use of a plastic material allows the thread-guiding element to be particularly easily and economically produced. Furthermore, the use of a plastic material allows easy shaping of the end section of the channel body, which end section can be arranged in the area of the inlet opening and by means of which end section the thread exiting from the inlet opening and to be returned to the spinning device is received into the thread-guiding element.
  • In principle, there are many possibilities for matching the end section to the contour of the thread-guiding unit surrounding the inlet opening. According to a preferred embodiment, the thread-guiding unit has a thread deflection unit for deflecting the thread in a defined way, and the thread deflection unit forms the inlet opening. The thread deflection unit has, at its end opposite the inlet opening, an exit, which is coupled to the inlet opening by means of a thread deflection section lying therebetween and by means of which the thread deflection unit can be connected to the thread guide channel for conducting the thread through the thread-guiding unit to the inlet opening. Such a thread-guiding unit equipped with a thread deflection unit allows the thread to be deflected on a thread path between the spinning device and the winding device, whereby a workstation of the air-spinning machine can be made more compact along the thread path. The thread deflection unit is preferably designed to the deflect the thread at an angle of less than 90° between the passage axes of the inlet opening and of the exit. The thread deflection unit particularly preferably has, for this purpose, a thread deflection roller having a thread-guiding groove, along which the thread can be guided and deflected. The cross-section of thread-guiding groove can have an appropriate shape, for example a U, V, C or W shape or a similar shape.
  • According to an advantageous embodiment, the end section is funnel-shaped. This design of the end section ensures that, when the end section is arranged facing the inlet opening, the thread to be returned is particularly reliably received in the thread-guiding element and thus the thread end is reliably fed into the spinning device so that the piecing process can be carried out.
  • According to an additional embodiment of the invention, the end section is matched to the contour of the thread deflection unit in the area of the inlet opening, more particularly to the contour of the thread deflection roller of the thread deflection unit. According to this embodiment of the invention, the connection section of the thread-guiding element extends directly up to the thread deflection roller, which is provided for deflecting the thread. Matching the contour of the end section to the thread deflection roller allows the end section to be arranged particularly close to the inlet opening and thus ensures that the thread to be returned is particularly reliably received, and it additionally allows the thread-guiding element to be particularly easily and economically produced, the end section being, for example, shovel-shaped with a cross-section matched to the radius of the thread deflection roller.
  • According to a preferred embodiment, the channel body also has a plurality of air passages along the through-channel, for causing a rotational flow within the through-channel as the thread is conducted. The air passages are preferably arranged around the channel body, more particularly in a spiral arrangement. The air passage can also preferably have an opening axis tangential to the through-channel, which opening axis is additionally preferably directed obliquely to the thread conduction axis running through the through-channel and to the thread running direction. This allows a less turbulent rotational flow to be produced within the through-channel. Such a rotational flow within the through-channel advantageously has the effect that, during the conduction of the thread, in particular during the air-spinning process, edge fibres of the thread which are sticking out are laid around the thread and adhere to the thread or are accordingly integrated. This allows the hairiness of the conducted thread to be influenced in such a way that the magnitude of this yarn parameter can be reduced, whereby the strength of the thread is increased. In particular, applying the rotational flow to the conducted thread helps to reduce hairiness for long-staple fibres.
  • The rotational flow can be produced passively or actively. In the sense of the present invention, passive production means a rotational flow that is produced purely by means of the conduction of the thread through the through-channel at high speed. The high speed causes the air to be entrained, and thus air is sucked from the air passages into the through-channel, resulting ultimately in a rotational flow.
  • The thread is conducted in the thread running direction, i.e. either toward the spinning device in the course of a piecing process or in an opposite direction during the regular spinning operation, preferably with the support of negative pressure or positive pressure. For this purpose, the thread can be conducted through the through-channel with the accompaniment of compressed air or suction air. The compressed air or suction air can preferably be produced outside of the thread deflection unit, for example in the spinning device, or internally, in particular by means of a compressed air connection on the thread deflection unit for the introduction of compressed air into the thread deflection unit toward the inlet opening. Alternatively or additionally, the compressed air can be provided by means of a compressed air channel supplying the air passages with compressed air, which compressed air channel is connected to a compressed air source. For example, the compressed air channel can extend annularly around the channel body and be coupled to the air passages in question.
  • The invention also solves the problem by means of a workstation of an air-spinning machine, comprising an air-spinning device for spinning a thread from a supplied sliver and a thread deflection unit, which is downstream of the air-spinning device and has an inlet opening for receiving the thread exiting from the outlet opening of the air-spinning device and a thread guide channel for conducting the thread running between the air-spinning device and a winding device, which thread guide channel is connected to an exit of the thread deflection unit, wherein a thread-guiding element according to the invention, as described above, or a thread-guiding element developed further is arranged in the area between the outlet opening of the air-spinning device and the inlet opening of the thread deflection unit.
  • The workstation of an air-spinning machine, according to the invention, ensures, by the use of a thread-guiding element according to the invention, as described above, or of a thread-guiding element developed further, that the thread end, which exits from the thread-guiding unit, more particularly from the thread deflection unit, and is to be returned to the air-spinning device, is reliably guided into the air-spinning device. The thread exiting from the thread-guiding unit, more particularly from the thread deflection unit, is reliably received into the through-channel of the thread-guiding element and supplied to the air-spinning device via the through-channel. Malfunctions of the workstation of the air-spinning machine as a result of the thread end being returned improperly can be reliably avoided by the use of the thread-guiding element so that the operational reliability of the workstation of the air-spinning machine is increased further.
  • Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiments of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will become more fully understood from the detailed description and the accompanying drawings, which are not necessarily to scale.
  • An embodiment example of the invention is explained below with reference to the drawings. In the drawings:
  • FIG. 1 shows a thread-guiding unit having a thread deflection unit connected to a thread preparation device disposed on a thread guide channel and to an air-spinning device;
  • FIG. 2 shows a schematic illustration of a thread-guiding element disposed between the air-spinning device and the thread deflection unit;
  • FIG. 2a shows a front view of the thread-guiding element of FIG. 2; and
  • FIG. 3 shows an additional embodiment of a thread-guiding element.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The following description of the embodiments of the present invention is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. The following description is provided herein solely by way of example for purposes of providing an enabling disclosure of the invention, but does not limit the scope or substance of the invention.
  • FIG. 1 shows a schematic illustration of a thread-guiding unit, which is downstream of an air-spinning device 6 along a thread path and has a thread deflection unit 2. The thread deflection unit 2 is connected to a thread preparation device 5 by means of a thread guide channel 4, which is connected to the exit 3 of the thread deflection unit 2. The air-spinning device 6, the thread-guiding unit, having the thread deflection unit 2 and the thread guide channel 4, and the thread preparation device 5 are parts of a workstation (not shown here) of an air-spinning machine, in which, during the spinning process, a thread 27 exiting from the air-spinning device 6 is wound on a take-up package (not shown).
  • During the normal air-spinning process, a stored sliver, on its way to the take-up package, first passes through a drafting system, which is upstream of the air-spinning device 6 in the sliver running direction R and where said sliver is drafted in a defined way. By means of an output roller pair of the drafting system (not shown here), the drafted sliver is then fed to the air-spinning device 6, within which the sliver is transformed into a thread 27 in the area of a spinning cone (not shown here) under the influence of a rotational flow produced by an air flow exiting from a nozzle block, edge fibres of the sliver being helically wrapped around core fibres of the sliver.
  • The air-spun thread 27 thus produced is taken up from the air-spinning device 6 and is taken up via the thread-guiding unit, having the thread deflection unit 2 and the thread guide channel 4, and through the thread preparation device 5 and is subsequently wound on a take-up package.
  • If a spinning interruption occurs during the air-spinning process, for example due to a break in the thread (27) or due to a controlled cut or an uncontrolled severing of a thread which has already been spun, a piecing process must first be carried out before the spinning process is restarted. In order to carry out a piecing process, the end of the thread (27) already produced, which end is normally on the take-up package, must be provided in the area of the sliver of the air-spinning device 6.
  • For this purpose, the thread end of the thread (27) already produced is usually retrieved from the take-up package or a defined thread end position by means of a thread-end carrying unit, such as a suction nozzle, and transferred into a thread preparation device 5, which is shown in FIG. 1, the thread preparation device 5 being equipped with a small holding and opening tube 7 and being downstream of the air-spinning device 6 in the sliver running direction R. In the small holding and opening tube 7, the thread end is largely freed of twists and loose fibres.
  • For this purpose, the thread preparation device 5 has a small holding and opening tube 7 arranged in an accommodating housing 8. The accommodating housing 8 has an annular space 9, to which a compressed air source 11 is connected via a pneumatic line 10. A valve 12 is arranged in the pneumatic line 10 and is connected, via control line 13, to a control device (not shown) of the spinning position. The small holding and opening tube 7 is equipped with at least one blowing nozzle 14, which is connected to the annular space 9.
  • As is known per se, a thread 27 must first be inserted into the small holding and opening tube 7 in order to prepare the thread end of the thread 27 for a thread joining process in the air-spinning device 6. For this purpose, the retrieved thread end is provided at the thread preparation device 5 such that the thread can be pneumatically threaded into the small holding and opening tube 7. For this purpose, the thread preparation device 5 can, as shown in FIG. 1, work together with at least one cutting device 15, which cuts the retrieved thread 27 to the required length. During the cutting process, the valve 12 is actuated and compressed air is blown into the small holding and opening tube 7 via the blowing nozzle 14 in order to thread or suck the cut yarn end into the small holding and opening tube 7. The yarn end which is threaded in is freed from yarn twists and loose fibres in the small holding and opening tube 7.
  • As FIG. 1 also shows, the thread preparation device 5 is coupled to a thread guide channel 4 for conducting the thread 27, the thread guide channel 4 being arranged between the thread deflection unit 2 and the thread preparation device 5 in the sliver running direction R. The sliver running direction R is identical to the running direction of the thread 27 in the spinning operation of the air-spinning machine, in which spinning operation the thread 27 is spun by means of the air-spinning device 6.
  • The thread guide channel 4 is connected to an exit 3 of the thread deflection unit 2. The thread deflection unit 2 has a thread deflection roller 16 for the controlled deflection of the thread 27, by means of which thread deflection roller 16 the thread 27 is deflected toward the air-spinning device 6 when the thread end is returned. The thread deflection unit 2 also comprises a receptacle for a compressed air connection 17, via which compressed air connection 17 compressed air can be supplied, via a junction point 18, into the channel section 19 pointing toward the air-spinning device 6, suction being simultaneously produced in the thread guide channel 4.
  • An end section 21 of a thread-guiding element 1 adjoins the inlet opening 20 of the thread deflection unit 2. The end section 21 has a shovel-shaped contour matched to the contour of the thread deflection roller 16. In the thread-guiding element 1, a through-channel 22 extends from the end section 21 to a connection section 23, up to an outlet opening 24 of the air-spinning device 6. For the arranging of the thread-guiding element 1, a connecting plate 25 is provided on the channel body 26, which connecting plate 25 can be connected to the air-spinning device 6 by means of a bayonet connection (not shown here). The returned thread 27 is reliably led, via the through-channel 22, into the air-spinning device 6 through the funnel-shaped outlet opening 24 as a result of the air flow which exists. The thread-guiding element 1 thus bridges the area between the inlet opening 20 of the thread deflection unit 2 and the air-spinning device 6 and ensures reliable thread guidance there.
  • An alternative embodiment to the thread-guiding element 1 shown in FIGS. 1, 2 and 2 a is shown in FIG. 3. The thread-guiding element 1 a shown there has, in contrast to the thread-guiding element 1 shown in FIGS. 1, 2 and 2 a, a funnel-shaped end section 21 a, which ensures that the returned thread end is reliably received.
  • LIST OF REFERENCE SIGNS
      • 1, 1 a Thread-guiding element
      • 2 Thread deflection unit
      • 3 Exit
      • 4 Thread guide channel
      • 5 Thread preparation device
      • 6 Spinning device/air-spinning device
      • 7 Small holding and opening tube
      • 8 Accommodating housing
      • 9 Annular space
      • 10 Pneumatic line
      • 11 Compressed air source
      • 12 Valve
      • 13 Control line
      • 14 Blowing nozzle
      • 15 Cutting device
      • 16 Thread deflection roller
      • 17 Compressed air connection
      • 18 Junction point
      • 19 Channel section
      • 20 Inlet opening
      • 21, 21 a End section
      • 22 Through-channel
      • 23 Connection section
      • 24 Outlet opening
      • 25 Connecting plate
      • 26 Channel body
      • 27 Thread
      • R Sliver running direction
  • It will therefore be readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those herein described, as well as many variations, modifications and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and the foregoing description thereof, without departing from the substance or scope of the present invention. Accordingly, while the present invention has been described herein in detail in relation to its preferred embodiment, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for purposes of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended or to be construed to limit the present invention or otherwise to exclude any such other embodiments, adaptations, variations, modifications and equivalent arrangements.

Claims (10)

What is claimed is:
1. A thread-guiding element for arranging between an outlet opening of a spinning device and an inlet opening of a thread-guiding unit having a thread guide channel for conducting a thread through the thread-guiding unit,
characterised by
a channel body having a through-channel, which channel body has
a connection section, which is designed for connection to the spinning device and is provided for arranging a first open end of the through-channel in the area of the outlet opening of the spinning device, and
an end section, which can be arranged facing the inlet opening,
wherein the end section, in order to receive a thread exiting from the inlet opening, is matched to a contour of the thread-guiding unit surrounding the inlet opening.
2. The thread-guiding element according to claim 1, characterised in that the thread-guiding unit has a thread deflection unit for deflecting the thread in a defined way, which thread deflection unit forms the inlet opening and comprises, at its end opposite the inlet opening, an exit, which is coupled to the inlet opening by a thread deflection section lying therebetween and by which the thread deflection unit can be connected to the thread guide channel for conducting the thread through the thread-guiding unit to the inlet opening.
3. The thread-guiding element according to claim 2, characterised in that the end section is matched to the contour of the thread deflection unit in the area of the inlet opening.
4. The thread-guiding element according to claim 1, characterised in that the connection section is designed for bayonet-coupling-type connection to the spinning device.
5. The thread-guiding element according to claim 1, characterised in that the channel body is made of a plastic material.
6. The thread-guiding element according to claim 1, characterised in that the end section is funnel-shaped.
7. The thread-guiding element according to claim 1, characterised in that the channel body has a plurality of air passages along the through-channel, for causing a rotational flow within the through-channel.
8. The thread-guiding element according to claim 3, characterised in that the end section is matched to the contour of a deflection roller of the thread deflection unit.
9. The thread-guiding element according to claim 5, characterised in that the plastic material is PVC.
10. A workstation of an air-spinning machine, comprising
an air-spinning device for spinning a thread from a supplied sliver and a thread-guiding unit, which is downstream of the air-spinning device and has an inlet opening for receiving the thread exiting from the outlet opening of the air-spinning device and a thread guide channel for conducting at least the air-spun thread coming from the air-spinning device,
characterised in that
a thread-guiding element characterised by:
a channel body having a through-channel, which channel body has a connection section, which is designed for connection to the spinning device and is provided for arranging a first open end of the through-channel in the area of the outlet opening of the spinning device, and
an end section, which can be arranged facing the inlet opening,
wherein the end section, in order to receive a thread exiting from the inlet opening, is matched to a contour of the thread-guiding unit surrounding the inlet opening,
is arranged in the area between the outlet opening of the air-spinning device and the inlet opening of the thread-guiding unit.
US17/554,001 2020-12-18 2021-12-17 Workstation of an air-spinning machine, and thread-guiding element Pending US20220195636A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20215368.0 2020-12-18
EP20215368.0A EP4015682A1 (en) 2020-12-18 2020-12-18 Work station of an air spinning machine and yarn guide element

Publications (1)

Publication Number Publication Date
US20220195636A1 true US20220195636A1 (en) 2022-06-23

Family

ID=73855725

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/554,001 Pending US20220195636A1 (en) 2020-12-18 2021-12-17 Workstation of an air-spinning machine, and thread-guiding element

Country Status (4)

Country Link
US (1) US20220195636A1 (en)
EP (1) EP4015682A1 (en)
JP (1) JP2022097469A (en)
CN (1) CN114645340B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593521A (en) * 1982-10-29 1986-06-10 Rieter Machine Works Limited Jet spinning device
US4858809A (en) * 1986-02-15 1989-08-22 Bayer Aktiengesellschaft Conveying of filament bundles over long conveying sections
US5056728A (en) * 1987-10-12 1991-10-15 Enzo Scaglia Method and device to seize the end of a roving or sliver and move it to a predetermined position
US5608948A (en) * 1992-12-17 1997-03-11 Rieter Ingolstadt Spinnereimaschinenbau Ag Compression rod having rectangular shape
US5787699A (en) * 1995-07-11 1998-08-04 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Thread piecing method for rotor type open end spinning frame and apparatus therefor
US6094901A (en) * 1997-05-05 2000-08-01 Rieter Ingolstadt Spinnereimaschinenbu Ag Process and an apparatus for the pneumatic cleaning of a thread withdrawal tube
US6324826B1 (en) * 1999-04-09 2001-12-04 Rieter Ingolstadt Spinnereimaschinenbau Ag Guide tube for thread
US10689779B2 (en) * 2016-07-28 2020-06-23 Rieter Ingolstadt Gmbh Thread-guiding unit, open-end spinning machine and method for operating a spinning station
US20200224337A1 (en) * 2017-07-14 2020-07-16 Saurer Spinning Solutions Gmbh & Co. Kg Process for operating an air-jet spinning device, yarn guide channel and air-jet spinning machine comprising such a yarn guide channel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4443982A1 (en) * 1993-12-16 1995-06-22 Barmag Spinnzwirn Gmbh Central yarn guide for pot spinning of rayon
JP2016017254A (en) * 2014-07-10 2016-02-01 村田機械株式会社 Spinning machine and spinning method
DE102014112360A1 (en) * 2014-08-28 2016-03-03 Maschinenfabrik Rieter Ag Garnbildungselement for a spinneret of an air spinning machine, air-jet spinning machine and method for operating such
CH713503A2 (en) * 2017-02-28 2018-08-31 Rieter Ag Maschf Air-jet spinning machine for producing a yarn from a strand-shaped fiber structure.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593521A (en) * 1982-10-29 1986-06-10 Rieter Machine Works Limited Jet spinning device
US4858809A (en) * 1986-02-15 1989-08-22 Bayer Aktiengesellschaft Conveying of filament bundles over long conveying sections
US5056728A (en) * 1987-10-12 1991-10-15 Enzo Scaglia Method and device to seize the end of a roving or sliver and move it to a predetermined position
US5608948A (en) * 1992-12-17 1997-03-11 Rieter Ingolstadt Spinnereimaschinenbau Ag Compression rod having rectangular shape
US5787699A (en) * 1995-07-11 1998-08-04 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Thread piecing method for rotor type open end spinning frame and apparatus therefor
US6094901A (en) * 1997-05-05 2000-08-01 Rieter Ingolstadt Spinnereimaschinenbu Ag Process and an apparatus for the pneumatic cleaning of a thread withdrawal tube
US6324826B1 (en) * 1999-04-09 2001-12-04 Rieter Ingolstadt Spinnereimaschinenbau Ag Guide tube for thread
US10689779B2 (en) * 2016-07-28 2020-06-23 Rieter Ingolstadt Gmbh Thread-guiding unit, open-end spinning machine and method for operating a spinning station
US20200224337A1 (en) * 2017-07-14 2020-07-16 Saurer Spinning Solutions Gmbh & Co. Kg Process for operating an air-jet spinning device, yarn guide channel and air-jet spinning machine comprising such a yarn guide channel

Also Published As

Publication number Publication date
CN114645340B (en) 2023-12-22
JP2022097469A (en) 2022-06-30
EP4015682A1 (en) 2022-06-22
CN114645340A (en) 2022-06-21

Similar Documents

Publication Publication Date Title
US7594382B2 (en) Joining method on a jet spinning machine, spinning device and jet spinning machine
CN110892102B (en) Method for operating an open-end spinning device, yarn guide channel and open-end spinning machine comprising such a yarn guide channel
JP4062869B2 (en) Core yarn manufacturing apparatus and core yarn manufacturing method
US9238881B2 (en) Roving machine for producing a roving and method for piecing a fiber sliver
US20120192541A1 (en) Component For An Air Jet Spinning Device
US3445995A (en) Strand twisting apparatus
JP4310061B2 (en) Equipment for producing core yarn
JP2008510891A (en) Spindle with injector passage and method for yarn splicing in an air jet spinning machine
US3604194A (en) Fiber supply method and apparatus in an open-end spinning system utilizing airflow and centrifugal force
US5285624A (en) Arrangement for pneumatic false-twist spinning
US4550560A (en) Method for piecing fasciated yarn
US10689779B2 (en) Thread-guiding unit, open-end spinning machine and method for operating a spinning station
US20220195636A1 (en) Workstation of an air-spinning machine, and thread-guiding element
US20110023273A1 (en) Apparatus for transporting fibre material between a drafting device and a loop-forming machine and a circular knitting machine equipped with said apparatus
US4768336A (en) Arrangement for pneumatic false-twist spinning
EP3067306B1 (en) Yarn joining device, spinning machine, and automatic winder
JPH07126935A (en) Piecing method of spinning machine
JP3341726B2 (en) Spinning equipment
EP1384696B1 (en) Splicer
JPH03193941A (en) Device for passing yarn through opening of textile machine
JP4263177B2 (en) Equipment for producing spun yarn
US5566539A (en) Method and apparatus for repairing a yarn breakage in a pair of spinning units
JPH0650547Y2 (en) Core yarn spinning equipment
CN114207202A (en) Yarn joining method for jet spinning machine spinning nozzle and jet spinning machine
CN113493950A (en) Twisting element for a spinneret of an air jet spinning machine and workstation of an air jet spinning machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAURER INTELLIGENT TECHNOLOGY AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YUEKSEL, TURGAY;REEL/FRAME:058652/0014

Effective date: 20220103

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED