US20220179420A1 - Terrain Aware Step Planning System - Google Patents
Terrain Aware Step Planning System Download PDFInfo
- Publication number
- US20220179420A1 US20220179420A1 US17/652,318 US202217652318A US2022179420A1 US 20220179420 A1 US20220179420 A1 US 20220179420A1 US 202217652318 A US202217652318 A US 202217652318A US 2022179420 A1 US2022179420 A1 US 2022179420A1
- Authority
- US
- United States
- Prior art keywords
- robot
- path
- adjusted
- obstacle
- obstacle map
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims abstract description 53
- 238000012545 processing Methods 0.000 claims abstract description 47
- 230000005021 gait Effects 0.000 claims description 59
- 230000015654 memory Effects 0.000 claims description 33
- 238000004891 communication Methods 0.000 claims description 8
- 238000009826 distribution Methods 0.000 claims description 7
- 210000002414 leg Anatomy 0.000 description 43
- 230000008447 perception Effects 0.000 description 33
- 238000003860 storage Methods 0.000 description 13
- 238000001514 detection method Methods 0.000 description 10
- 238000004590 computer program Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000001914 filtration Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 238000007670 refining Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 210000001503 joint Anatomy 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 210000000746 body region Anatomy 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
- G05D1/0248—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means in combination with a laser
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0238—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
- G05D1/024—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
- B25J19/021—Optical sensing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D57/00—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
- B62D57/02—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
- B62D57/032—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
- G05D1/0251—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/0274—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/55—Depth or shape recovery from multiple images
- G06T7/593—Depth or shape recovery from multiple images from stereo images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- G05D2201/0217—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30241—Trajectory
Definitions
- This disclosure relates to planning a sequence of steps in the presence of constraints, especially those imposed by terrain.
- Robotic devices are increasingly being used in constrained or otherwise cluttered environments to perform a variety of tasks or functions. These robotic devices may need to navigate through these constrained environments without stepping on or bumping into obstacles. As these robotic devices become more prevalent, there is a need for real-time navigation and step planning that avoids contact with obstacles while maintaining balance and speed.
- One aspect of the disclosure provides a method for planning a sequence of steps in the presence of constraints.
- the method includes receiving, at data processing hardware of a robot, image data of an environment about the robot from at least one image sensor.
- the robot includes a body and legs.
- the method also includes generating, by the data processing hardware, a body-obstacle map, a ground height map, and a step-obstacle map based on the image data.
- the method further includes generating, by the data processing hardware, a body path for movement of the body of the robot while maneuvering in the environment based on the body-obstacle map, and generating, by the data processing hardware, a step path for the legs of the robot while maneuvering in the environment based on the body path, the body-obstacle map, the ground height map, and the step-obstacle map.
- the image data includes three-dimensional point cloud data captured by a three-dimensional volumetric image sensor.
- the at least one image sensor may include one or more of a stereo camera, a scanning light-detection and ranging (LIDAR) sensor, or a scanning laser-detection and ranging (LADAR) sensor.
- LIDAR scanning light-detection and ranging
- LADAR scanning laser-detection and ranging
- the method includes identifying, by the data processing hardware, occupancies of space in the environment based on the image data and generating, by the data processing hardware, a three-dimensional space occupancy map based on the identification of occupancies of space in the environment.
- Generating the body-obstacle map, the ground height map, and the step-obstacle map based on the image data may include generating the body-obstacle map based on the three-dimensional space occupancy map, generating the ground height map based on the three-dimensional space occupancy map, and generating the step-obstacle map based on the ground height map.
- the ground height map identifies a height of a ground surface at each location near the robot and the step-obstacle map identifies no-step regions in the environment where the robot should not step.
- generating the body-obstacle map includes generating a two-dimensional body-obstacle map based on the three-dimensional space occupancy map.
- the three-dimensional space occupancy map may include a voxel map having voxels, each voxel representing a three-dimensional space of the environment. Each voxel may be classified as either a ground surface, an obstacle, or other.
- the device may include filtering, by the data processing hardware, the three-dimensional space occupancy map to generate the body-obstacle map.
- generating the body path is based on no-body regions designated in the body-obstacle map.
- generating the step path is based on adjusting a nominal step pattern of a nominal gait for the robot and step constraints.
- the step constraints may include at least one of the following: a threshold range of a center of pressure offset for each leg in contact with a ground surface, the center of pressure offset indicating an acceptable amount of robot weight distribution for each leg at each step; whether the step path causes a leg to step into a no-step region of the step-obstacle map; whether the step path causes the body of the robot to enter a body obstacle; whether the step path causes a self-collision of the robot; or a margin of space about any no-step region of the step-obstacle map. Additionally, the step constraints may include soft constraints or hard constraints. Generating the step path for the legs of the robot, in some implementations, includes refining the generated body path.
- the robot includes a body, legs coupled to the body and configured to maneuver the robot about an environment, data processing hardware in communication with the legs, and memory hardware in communication with the data processing hardware.
- the memory hardware stores instructions that when executed on the data processing hardware cause the data processing hardware to perform operations.
- the operations include receiving image data of an environment about the robot from at least one image sensor.
- the operations also include generating a three-dimensional space occupancy map based on the identification of occupancies of space in the environment and a two-dimensional body-obstacle map based on the three-dimensional space occupancy map.
- the operations also include generating a body-obstacle map, a ground height map, and a step-obstacle map based on the image data.
- the operations also include generating a body path for movement of the body of the robot while maneuvering in the environment based on the body-obstacle map and generating a step path for the legs of the robot while maneuvering in the environment based on the body path, the body-obstacle map, the ground height map, and the step-obstacle map.
- the image data includes three-dimensional point cloud data captured by a three-dimensional volumetric image sensor.
- the at least one image sensor includes one or more of a stereo camera, a scanning light-detection and ranging (LIDAR) sensor, or a scanning laser-detection and ranging (LADAR) sensor.
- LIDAR scanning light-detection and ranging
- LADAR scanning laser-detection and ranging
- the operations include identifying occupancies of space in the environment based on the image data and generating a three-dimensional space occupancy map based on the identification of occupancies of space in the environment.
- Generating the body-obstacle map, the ground height map, and the step-obstacle map based on the image data may include generating the body-obstacle map based on the three-dimensional space occupancy map, generating the ground height map based on the three-dimensional space occupancy map, and generating the step-obstacle map based on the ground height map.
- the ground height map identifies a height of a ground surface at each location near the robot and the step-obstacle map identifies no-step regions in the environment where the robot should not step.
- generating the body-obstacle map includes generating a two-dimensional body-obstacle map based on the three-dimensional space occupancy map.
- the three-dimensional space occupancy map may include a voxel map having voxels, each voxel representing a three-dimensional space of the environment. Each voxel may be classified as either a ground surface, an obstacle, or other.
- the operations in some examples, further include filtering the three-dimensional space occupancy map to generate the body-obstacle map.
- the body path may be based on no-body regions designated in the body-obstacle map and the step path may be based on adjusting a nominal step pattern of a nominal gait for the robot and step constraints.
- the step constraints include at least one of a threshold range of: a center of pressure offset for each leg in contact with a ground surface, the center of pressure offset indicates an acceptable amount of robot weight distribution for each leg at each step; whether the step path causes a leg to step into a no-step region of the step-obstacle map; whether the step path causes the body of the robot to enter a body obstacle; whether the step path causes a self-collision of the robot; or a margin of space about any no-step region of the step-obstacle map.
- the step constraints may include soft constraints or hard constraints. Generating the step path for the legs of the robot, in some implementations, includes refining the generated body path.
- FIG. 1 is a schematic view of an example system for planning a sequence of steps in the presence of constraints.
- FIG. 2A is an isometric view of a volumetric three-dimensional map of voxels.
- FIG. 2B is a perspective view of an environment including a staircase.
- FIG. 2C is an example body-obstacle map of the environment of FIG. 2A .
- FIG. 2D is an example no-step map of the environment of FIG. 2A .
- FIG. 3 is a schematic view of example components of a control system of the system of FIG. 1 .
- FIG. 4 is a flowchart of an example method for generating a final step plan.
- FIG. 5 is schematic view of an example body path overlaid on an example body-obstacle map.
- FIG. 6 is a schematic view of step locations associated with a fast cadence for following a body path overlaid on an example no-step map.
- FIG. 7 is a schematic view of step locations associated with a slow cadence overlaid on an example no-step map.
- FIG. 8 is a schematic view of step locations associated with a medium cadence overlaid on an example no-step map.
- FIG. 9 is a final step plan for step locations associated with a selected gait overlaid on an example no-step map.
- FIG. 10 is a flowchart of an example method for terrain and constraint planning for a step plan.
- FIG. 11 is a flowchart of another example method for terrain and constraint planning for a step plan.
- FIG. 12 is a flowchart of another example method for terrain and constraint planning for a step plan.
- FIG. 13 is a schematic view of an example computing device that may be used to implement the systems and methods described herein.
- a robot may need to traverse a cluttered room with large and small objects littered around on the floor.
- a robot may need to negotiate a staircase.
- navigating these sort of environments has been a slow and arduous process that results in the legged robot frequently stopping, colliding with objects, and/or becoming unbalanced.
- Implementations herein are directed toward systems and methods for terrain and constraint planning for generating a step plan in real-time, thus allowing a legged robotic device to navigate a constrained environment quickly and efficiently while maintaining smoothness and balance.
- a robot or robotic device 10 includes a body 11 with two or more legs 12 and executes a step planning system 100 for enabling the robot 10 to navigate a constrained environment 8 .
- Each leg 12 is coupled to the body 11 and may have an upper portion 14 and a lower portion 16 separated by a leg joint 18 .
- the lower portion 16 of each leg 12 ends in a foot 19 .
- the foot 19 of each leg is optional and the terminal end of the lower portion of one or more of the leg 12 may be coupled to a wheel.
- the robot 10 has a vertical gravitational axis Vg along a direction of gravity, and a center of mass CM, which is a point where the weighted relative position of the distributed mass of the robot 10 sums to zero.
- the robot 10 further has a pose P based on the CM relative to the vertical gravitational axis Vg (i.e., the fixed reference frame with respect to gravity) to define a particular attitude or stance assumed by the robot 10 .
- the attitude of the robot 10 can be defined by an orientation or an angular position of the robot 10 in space. Movement by the legs 12 relative to the body 11 alters the pose P of the robot 10 (i.e., the combination of the position of the CM of the robot and the attitude or orientation of the robot 10 ).
- the robot 10 further includes one or more appendages, such as an articulated arm 20 disposed on the body 11 and configured to move relative to the body 11 .
- the articulated arm 20 may have five-degrees or more of freedom.
- the articulated arm 20 may be interchangeably referred to as a manipulator arm or simply an appendage.
- the articulated arm 20 includes two portions 22 , 24 rotatable relative to one another and also the body 11 ; however, the articulated arm 20 may include more or less portions without departing from the scope of the present disclosure.
- the first portion 22 may be separated from second portion 24 by an articulated arm joint 26 .
- An end effector 28 which may be interchangeably referred to as a manipulator head 28 , may be coupled to a distal end of the second portion 24 of the articulated arm 20 and may include one or more actuators 29 for gripping/grasping objects.
- the robot 10 also includes a vision system 30 with at least one imaging sensor or camera 31 , each sensor or camera 31 capturing image data or sensor data of the environment 8 surrounding the robot 10 with an angle of view 32 and within a field of view 34 .
- the vision system 30 may be configured to move the field of view 34 by adjusting the angle of view 32 or by panning and/or tilting (either independently or via the robot 10 ) the camera 31 to move the field of view 34 in any direction.
- the vision system 30 may include multiple sensors or cameras 31 such that the vision system 30 captures a generally 360-degree field of view around the robot 10 .
- the vision system 30 provides image data or sensor data 17 derived from image data captured by the cameras or sensors 31 to data processing hardware 36 of the robot 10 .
- the data processing hardware 36 is in digital communication with memory hardware 38 and, in some implementations, may be a remote system.
- the remote system may be a single computer, multiple computers, or a distributed system (e.g., a cloud environment) having scalable/elastic computing resources and/or storage resources.
- a step planning system 100 of the robot 10 executes on the data processing hardware 36 .
- the step planning system 100 includes a perception system 110 that receives the image or sensor data 17 from the vision system 30 and generates one or more maps 112 , 114 , 116 that indicate obstacles in the surrounding environment 8 .
- the step planning system 100 also includes a control system 300 that receives the maps 112 , 114 , 116 generated by the perception system 110 and generates a body path or trajectory 510 ( FIG. 5 ), and using the body path 510 , generates a step path or step plan 350 .
- the robot 10 maneuvers through the environment 8 by following the step plan 350 by placing the feet 19 or distal ends of the leg 12 at the locations indicated by the step plan 350 .
- at least a portion of the step planning system 100 executes on a remote device in communication with the robot 10 .
- the perception system 110 may execute on a remote device to generate one or more of the maps 112 , 114 , 116 and the control system 300 executing on the robot 10 may receive the maps 112 , 114 , 116 from the remote device.
- the control system 300 may generate the body path 510 and the step path 350 .
- the entire step planning system 100 may execute on a remote device and the remote device may control/instruct the robot 10 to maneuver the environment 8 based on the body path 410 and the step path 350 .
- the camera(s) 31 of the vision system 30 include one or more stereo cameras (e.g., one or more RGBD stereo cameras).
- the vision system 30 includes one or more radar sensors such as a scanning light-detection and ranging (LIDAR) sensor, or a scanning laser-detection and ranging (LADAR) sensor, a light scanner, a time-of-flight sensor, or any other three-dimensional (3D) volumetric image sensor (or any such combination of sensors).
- the vision system 30 identifies occupancies of space in the environment 8 based on the captured image or sensor data 17 .
- the perception system 110 may use image data 17 captured by the vision system 30 to generate a 3D point cloud.
- the point cloud is a set of data points representing surfaces of objects in the environment 8 surrounding the robot 10 .
- the perception system 110 may generate a 3D space occupancy map 200 ( FIG. 2A ) based on the previously identified occupancies of space in the environment 8 .
- the perception system 110 generates a 3D volumetric map 200 , 200 a of voxels 210 , 212 ( FIG. 2A ).
- Each voxel 210 , 212 (i.e., cube) represents a 3D space of the environment.
- the size of each voxel 210 , 212 is dependent upon the fidelity of the perception system 110 and the processing capabilities of the vision system 30 and data processing hardware 36 .
- the robot 10 may generate a voxel map 200 (i.e., a 3D occupancy map) of the environment 8 surrounding the robot 10 (e.g., several meters in each direction) where each voxel 210 , 212 is a 3 cm cube.
- the perception system 110 may store a variety of statistics.
- the perception system 110 classifies (using, for example, a classification algorithm, e.g., linear classifiers, decision trees, neural networks, special purpose logic, etc.) each voxel 210 , 212 that contains an object as either a ground surface 9 , an obstacle, or other.
- the perception system 110 classifies voxels 210 as a ground surface 9 when the perception system 110 determines that the robot 10 is capable of stepping on the point or space that the voxel 210 , 212 represents.
- the robot 10 may classify a sidewalk or the surface of a step as a ground surface 9 .
- the perception system 110 classifies voxels 212 as obstacles when the perception system 110 determines that the robot 10 is not capable of stepping on the point or space represented by the voxel 210 , 212 .
- the perception system 110 classifies an object that is too high for the leg of the robot to reach or an object that, if stepped on, would result in the robot 10 losing stability (i.e., balance) as an obstacle.
- the third classification, other, may be used for voxels 210 , 212 that the robot 10 can safely disregard or ignore.
- the perception system 110 classifies objects well above the robot 10 or objects that are far away from the robot 10 as other.
- FIG. 2A illustrates an example of a simple voxel map 200 , 200 a that includes a plane of ground surface voxels 210 , 210 a - n and a group of obstacle voxels 212 , 212 a - n (i.e., the chair).
- the body-obstacle map 112 represents a two-dimensional (2D) map that annotates or illustrates “keep-out areas” or “no-body regions” for the body 11 of the robot 10 . That is, the body-obstacle map 112 is a 2D map that marks each location (i.e., pixel of the map 112 , each pixel representative of a column of space in the environment 8 of the robot 10 ) as a location that is safe for the body 11 of the robot 10 to travel through or not safe for the body 11 of the robot 10 to travel through.
- the body-obstacle map 112 may include a grid of cells (e.g., pixels), where each cell of the grid contains a Boolean value (e.g., body may enter or body may not enter).
- view 201 shows an environment 8 that includes a staircase with railings. When the robot 10 is ascending or descending the stairs, the railings would serve as a barrier to the body 11 of the robot 10 (i.e., the railings are at a height that would come into contact with the body 11 ).
- FIG. 2C illustrates a body-obstacle map 112 that represents a 2D image of the staircase of FIG. 2B (i.e., a plan view of the staircase).
- FIG. 2D image of the staircase of FIG. 2B i.e., a plan view of the staircase.
- the illegal body regions (e.g., obstacle voxels) 212 i.e., keep-out areas
- the illegal body regions represent areas that the body of the robot 10 cannot or should not enter (e.g., the staircase railings, walls, large obstacles, etc.).
- the perception system 110 also uses the volumetric 3D map 200 (or the ground height map 116 , as discussed in more detail below) to generate a step-obstacle map 114 .
- the step-obstacle map 114 represents a 2D plan view map that illustrates keep-out or “no-step” regions 213 for steps by the legs 12 of the robot 10 . That is, the step-obstacle map 114 is similar to the body-obstacle map 112 , however, the keep-out areas 213 instead represent areas that steps (i.e., the feet 19 or distal ends of the legs 12 ) of the robot 10 should not “touch down” at.
- the step-obstacle map 114 may include a grid of cells (e.g., pixels), where each cell of the grid contains a Boolean value (e.g., step or no-step).
- the step-obstacle map 114 may be used to generate the step-obstacle map 114 versus the body-obstacle map 112 which may lead to some obstacles being classified as a body obstacle, a step obstacle, a body and step obstacle, or neither.
- the legs 12 of the robot 10 support the body 11 a distance above the ground surface 9 , and therefore the body 11 may safely avoid obstacles that are near the ground surface 9 .
- the step-obstacle map 114 may also take into consideration aspects such as how high the robot 10 is capable of stepping via the legs 12 .
- knees of the robot 10 may extend out in front or behind the feet 19 , thereby limiting where the feet 19 may be placed (e.g., the knees may bump into a sufficiently tall obstacle before a foot 19 can be raised and placed on the obstacle).
- a keep-out areas 213 could include an area upon the ground surface 9 that is otherwise devoid of obstacles, but due to the geometry and pose of the robot 10 , traversal of the robot 10 into the keep-out area 213 could cause the body 11 of the robot 10 to contact an obstacle above the ground surface 9 .
- step obstacles classified as body obstacles are also classified as step obstacles, but the reverse need not be true, as step obstacles may not be classified as body obstacles (e.g., an obstacle high enough to cause problems in stepping, but low enough that the body 11 of the robot 10 would not come in contact with the obstacle).
- body obstacles may not be classified as step obstacles.
- a table may be a body obstacle, but the robot 10 may step beneath the table.
- the perception system 110 may classify body obstacles as a larger step obstacle as it may be infeasible to place a foot directly next to a body obstacle (i.e., enlarge the size of the body obstacle).
- the perception system 110 classifies large areas of step obstacles as a body obstacle. For example, if an area of the environment 8 contains a particularly dense number of step obstacles such that traversing the area will be difficult, the perception system 110 may classify the entire area as a body obstacle despite the obstacles not being a height to impact the body of the robot 10 in order obtain a better final step plan 350 (as discussed in more detail below).
- the perception system 110 classifies areas as body obstacles to ensure the robot 10 does not enter a certain are for reasons other colliding with objects. For example, a user may desire to direct the robot 10 in a certain direction or along a certain path.
- the step-obstacle map 114 of FIG. 2D is representative of the staircase of FIG. 2B .
- the step-obstacle map 114 outlines the areas 213 the perception system 110 determines are not safe or valid for the robot 10 to step and areas 210 that are safe or valid.
- the ground surface 9 in front of the stair case and each individual step are marked as valid in the step-obstacle map 114 .
- the perception system 110 also generates a ground height map 116 from the 3D volumetric map 200 .
- the ground height map 116 identifies a height of a ground surface 9 at each location near the robot 10 . That is, the ground height map 116 , similar to a topographical map, is a 2D map that notes the height of the ground surface 9 at each location in a horizontal plane with respect to a reference point or height.
- the ground height map 116 in some examples, only illustrates the height of the ground surface 9 , and not any surface above the ground surface 9 . That is, the ground height map 116 may label the height of the ground surface 9 underneath a table, and not the height of the surface of the table.
- the ground height map 116 may be used to help generate the step-obstacle map 114 (e.g., determining when the ground surface is too high or too steep to safely traverse and therefore should be marked as a step obstacle).
- the perception system 110 generates the ground height map 116 , for example, by determining a height of the voxel 210 classified as ground surface 9 in each column of the 3D map.
- the step-obstacle map 114 may in turn be generated from the ground height map 116 .
- the perception system optionally, processes both the body-obstacle map 112 and the step-obstacle map 114 into signed distance fields (i.e., using signed distance functions).
- the control system 300 of the step planning system 100 receives the maps (the body-obstacle map 112 , the step-obstacle map 114 , and the ground height map 116 ) from the perception system 110 and generates the step plan 350 for use by the robot 10 to navigate the environment 8 (i.e., a map of locations for the robot 10 to place feet 19 ).
- the control system 300 includes a body path generator 310 and a constrained step planner 320 .
- the body path generator 310 receives the body-obstacle map 112 from the perception system 110 and a position 311 that the robot 10 is to navigate to (i.e., where the robot 10 intends to go). The body path generates 310 then generates a body trajectory 510 (i.e., a path for the body 11 of the robot 10 to follow) that avoids body obstacles 520 ( FIG. 5 ) annotated in the body-obstacle map 112 ( FIG. 5 ) while the robot 10 maneuvers in the environment 8 .
- the body path generator 310 generates the body trajectory or body path 510 with a method or algorithm that is not resource intensive (e.g., a potential field method, a rapidly-exploring random tree, and/or a trajectory optimizer).
- a simplified model of the body 11 is used (e.g., momentum is not accounted for, and plans velocity only accounting for positions) to quickly generate a planar trajectory that represents an approximate path 510 for the robot 10 to traverse.
- the planar trajectory may include horizontal motion of the CM and yaw of the robot 10 .
- the body trajectory 510 quickly provides a good approximation of a path that provides an ideal starting point for further path optimization.
- the control system 300 generates the body trajectory 510 without use of the step-obstacle map 114 , and therefore the body path 510 does not provide for where the robot 10 should step when following the body trajectory 510 .
- the constrained step planner 320 receives the body trajectory 510 from the body path generator 310 as a starting point for generating the final constrained step locations (e.g., step plan) 350 .
- the constrained step planner 320 includes a gait determiner 330 that first determines a gait timing 332 that provides nominal step locations for of the robot 10 . That is, the gait determiner 330 determines which gait (e.g., a slow walk, a fast walk, a trot, etc.) provides the most optimal step locations with respect to step obstacles 620 ( FIG. 6 ) presented in the step-obstacle map 114 ( FIG. 6 ).
- gait e.g., a slow walk, a fast walk, a trot, etc.
- the gait determiner 330 optionally, is separate from the constrained step planner 320 .
- the gait determiner 330 provides the determined gait timing 332 to a step solver 340 .
- the step solver 340 accepts the gait timing 332 and one or more constraints 342 , 342 a - n .
- the step solver 340 applies the constraints 342 to the nominal step locations of the determined gait timing 332 and solves for an optimized step plan 350 .
- the constraints 342 include a center of pressure (CoP) offset constraint 342 a , a body keep-out constraint 342 b , a step keep-out constraint 342 c , a self-collision constraint 342 d , a keep-out margin constraint 342 e , and a balance constraint 342 f .
- the constraints 342 may include one or more other constraints in addition to, or in lieu of, one or more of the constraints 342 a - 342 f.
- the constrained step planner 320 receives a variety of other information.
- the constrained step planner 320 may receive the current position and velocity of the CM of the robot 10 , feet touchdown and liftoff information (e.g., timing), and swing foot position and/or velocity.
- the constrained step planner 320 may also receive the body-obstacle map 112 .
- the constrained step planner 320 adjusts or refines the body path trajectory 510 .
- the adjustment may be minor.
- the constrained step planner 320 may account for swaying of the body 11 while stepping through the environment 8 (which is not accounted for in the simplified body path trajectory 510 ). In some cases, the adjustment may be major.
- the simplified body trajectory 510 might be physically impossible (e.g., include infinite accelerations) or might be difficult to solve for once the gait timing 332 is determined.
- the constrained step planner 320 in some implementations, only adjusts translation and not yaw trajectory of the body 11 of the robot 10 , and in other implementations, adjusts both the translation and the yaw of the body 11 .
- FIG. 4 illustrates an example flowchart 400 depicting a process flow for the step planning system 100 .
- the perception system 110 creates the body-obstacle map 112
- the control system 300 uses the body-obstacle map 112 to generate a body trajectory or body path 510 .
- the perception system 110 also creates a step-obstacle map 114 at step 406 , and at step 408 , the control system 300 , via the gait determiner 330 of the constrained step planner 320 , uses the planar body path 510 and the step-obstacle map 114 to select a gait timing 332 .
- the step solver 340 of the constrained step planner 320 uses the chosen gait timing 332 , the body-obstacle map 112 , and the step-obstacle map 114 to solve for the final step plan 350 (i.e., locations for the robot 10 to place its feet 19 ).
- FIG. 5 shows a schematic view 500 depicting a body path 510 for navigating around body obstacles 520 .
- flowchart 400 depicts the control system 300 using the body-obstacle map 112 generated at step 402 to generate the body path 510 at step 404 .
- the body path generator 310 of the control system 300 uses, for example, a potential field method, the body path generator 310 of the control system 300 plots a body path 510 from point A to point B to navigate around one or more body obstacles 520 .
- the body obstacles 520 may also be referred to as body-obstacle zones 520 in which the body 11 of the robot 10 would contact one or more obstacles if the body 11 crosses/enters into the body-obstacle zone 520 .
- the area defined by the body-obstacle zone 520 is not indicative of a body obstacle in and of itself, but rather, is indicative of an area the body 11 of the robot 10 is not permitted to enter, because the body 11 would come into contact with one or more obstacles.
- the body path generator 310 ensures the validity of the body path 510 by generating a simulated body 530 of the robot 10 travelling along the path 510 . A valid path results, for example, when the simulated body 530 does not contact any of the body-obstacle zones 520 .
- the gait determiner selects a gait to generate nominal step locations.
- the gait determiner 330 of the constrained step planner 320 analyzes a number of potential gaits to find optimal nominal step locations.
- FIG. 6 shows a schematic view 600 depicting step locations 630 associated with a fast cadence for following the body path 510 plotted on the step-obstacle map 114 .
- flowchart 400 depicts the control system 300 , via the gait determiner 330 of the constrained step planner 320 , using the planar body path 510 generated at step 404 and the step-obstacle map 114 generated at step 406 to select a gait timing 332 having a fast cadence for the step location 630 at step 408 .
- the terms “feet location(s)”, “foot location(s)”, and “step location(s)” are used interchangeably.
- the gait determiner 330 begins with the body path 510 plotted on step-obstacle map 114 and overlays the selected cadence (i.e., where the robot 10 would step if the body 11 were to follow the body path 510 and the legs 12 moved at the selected cadence).
- the body path 510 may intersect with one or more step obstacles 620 , but not with body obstacles 520 (which is ensured previously by the body path generator 310 ).
- Each step location 630 , 630 a - n is plotted and evaluated.
- the gait determiner 330 generates a score that reflects a quality of the step locations 630 of the currently simulated gait timing. The score for the fast cadence of FIG.
- step 6 may be relatively low due to the number of minor collisions between step locations 630 and step obstacles 620 (e.g., the locations where step locations 630 overlap step obstacles 620 ).
- the score may be affected by the number of collisions with step obstacles 620 and by the severity of the collisions.
- the gait determiner 330 may emphasize a distance the step locations 630 must be shifted to avoid obstacles 620 . For example, step locations 630 that slightly collide with three obstacles 620 may be preferable to step locations 630 that severely collide with a single obstacle 620 .
- FIG. 7 shows a schematic view 700 depicting step locations 630 associated with a slow cadence for following the body path 510 plotted on the step-obstacle map 114 .
- the slow cadence of FIG. 7 exhibits multiple step locations 630 within or contacting step obstacles 620 leading to a non-ideal score.
- the schematic view 800 of FIG. 8 depicts the step locations 630 now associated with a medium cadence (i.e., slower than the fast cadence of FIG. 6 but faster than the slow cadence of FIG. 7 ) for following the body path 510 plotted on the step-obstacle map 114 .
- the medium cadence has the lowest number of collisions between step locations 630 and step obstacles 620 , and therefore may receive the highest score out of the slow, medium, and fast cadences. While only three cadences are exemplified, it is understood that the gait determiner 330 may evaluate any number of gait timings before selecting a specific cadence.
- the score assigned to each analyzed gait timing may reflect the amount of optimization required to meet given constraints. The more constraints that the nominal step locations 630 violate (e.g., colliding with step obstacles 620 ), the more optimization may be required.
- the score may reflect other constraints (e.g., a speed constraint). For example, a slower cadence may be weighted more than a fast cadence for some tasks or environments.
- FIG. 9 shows a schematic view 900 depicting the final step locations 630 associated with the selected gait timing 332 (e.g., cadence) for following the body path 510 plotted on the obstacle map 114 .
- the step solver 340 accepts a number of constraints 342 (i.e., variables) that the step solver 340 considers while solving.
- each constraint 342 is a “hard” constraint or a “soft” constraint.
- a hard constraint is a constraint 342 that the step solver 340 cannot violate and still have a successful step plan 350 .
- avoiding a step obstacle 620 e.g., the edge of a drop off
- a soft constraint is a constraint 342 that the step solver 340 will attempt to meet, but may violate if necessary to achieve a successful step plan 350 .
- the step solver 340 may have a constraint 342 to not come within a threshold distance of a step obstacle 620 (i.e., a “margin” constraint 342 e ).
- the step solver 340 may, if necessary, intrude into the boundary (e.g., to ensure compliance with a hard constraint).
- Soft constraints may be weighted. That is, each constraint 342 may be given a specific weight or “softness” that allows the step solver 340 to determine which constraint to violate first if all constraints cannot be met.
- the balance constraint 342 f may be weighted more (e.g., be “harder”) than the margin constraint 342 e , as it may be more important to maintain balance than to maintain the margin from the step obstacle 620 .
- the step solver 340 may choose to violate the margin constraint 342 e first or to a greater degree than the balance constraint 342 f.
- the step solver 340 also strives to minimize costs while obeying (or attempting to obey) constraints 342 .
- a cost may be equivalent to a soft equality constraint. That is, in some instances, a soft constraint may be considered a cost to be minimized by the solver 340 .
- Some constraints (e.g., the balance constraint 342 f ) may be treated as a cost or a soft constraint.
- the step solver 340 uses costs and soft inequality constraints and does not use hard constraints or equality constraints.
- the step solver 340 may solve for any number of constraints 342 .
- the step solver 340 may have constraints 342 b , 342 c to keep out of step/body obstacle areas, a margin constraint 342 e to keep a threshold distance from step obstacles 620 , and a balance constraint 342 f to maintain balance and/or stability.
- the step solver 340 may receive a center of pressure offset constraint 342 a that includes a threshold range of a center of pressure offset for the leg(s) 12 in contact with the ground 9 .
- the center of pressure offset may indicate an acceptable amount of robot 10 weight distribution for each leg 12 at each step (i.e., the weight distribution between legs(s) 12 in contact with the ground 9 ).
- the center of pressure offset constraint 342 a ensures that the percentage of the weight of the robot 10 applied to a step of the robot is valid.
- the step solver 340 may be constrained to not apply a vertical force of 120% (e.g., 20% more than the entire weight of the robot 10 ) to a first foot and ⁇ 20% to a second foot, as such a feat is impossible.
- the step solver 340 may receive a self-collision constraint 342 d .
- a constraint 342 d to ensure that the step solver 340 attempts to not collide the robot 10 with itself (i.e., place a first foot 19 where a second foot 19 is already located).
- the constraints 342 may be predetermined prior to navigation.
- the constraints 342 may also be modified, added, or removed during navigation.
- the constraints 342 are received from a source external to the control system (e.g., a user or manufacturer of the robot 10 ), while in other examples, the step planning system 100 generates the constraints 342 autonomously based on data received from sensors of the robot 10 .
- the step solver 340 may adjust each step location 630 .
- the step obstacle avoidance constraint 342 c may “shove” or otherwise adjust step locations 630 away from the obstacle.
- the step location 630 a is moved, for example, to step location 630 b because of the keep out boundary 620 (which is generated in response to keep-out constraint 342 c ).
- the step solver 340 modifies the location of a step location 630 from the original nominal step location, the adjustment may cascade or ripple into changes for other step locations 630 . For example, as exemplified in FIG.
- step location 630 c may be moved to step location 630 d in response to the step solver 340 previously adjusting step location 630 a in order to maintain balance as the robot 10 moves along the body trajectory 510 .
- the robot 10 may then commence travel, placing its feet with respect to the determined step locations 630 .
- the robot 10 may continuously rerun or regenerate the step plan 350 based on the most recent maps 112 , 114 , 116 received from the perception system 110 (with the same or updated constraints 342 ) and in response adapt or alter the step plan 350 as appropriate.
- the step solver 340 uses quadratic programming so that the step solver 340 may solve the step plan 350 in real-time.
- a quadratic program uses linear constraints to quickly solve an optimization problem. That is, the step solver 340 , in some examples, minimizes or maximizes a quadratic function of several variables that are linearly constrained. Still referring to FIG. 9 , in order to linearly constrain obstacle regions of amorphous shapes, the step solver 340 may draw a series of straight lines 920 to closely approximate the shape of the obstacle. In some examples, the step solver 340 only applies the linear constraints to relevant portions of the obstacle. In other examples, the step solver 340 originally solves for a step plan 350 without any constraints 342 , and then iteratively adds constraints 342 and regenerates interim step plans until the step solver 340 achieves an optimized final step plan 350 .
- the step solver 340 may begin by solving convex constraints. The solver 340 may then use the solution from the convex constraints to iteratively determine the best linear approximation of non-convex constraints. For example, based on current position and velocity of a swinging foot 19 , a known time until the touchdown (i.e., between the foot 19 and the ground 9 ), and a maximum acceleration of the foot 19 , the solver 340 may determine a rectangular-shaped region where the foot 19 may touchdown. Similarly, other shapes may approximate other regions. For example, because each leg 12 has a maximum length, foot 19 touchdown may not occur too far from the hip. This area may be represented as an octagon. Foot 19 liftoff may be approximated similarly to foot 19 touchdown, but may instead use a rectangle (as opposed to the octagon). Stance legs 12 may have a trapezoidal boundary to protect against self-collision.
- the step planning system 100 of the robot 10 decouples approximating and determining a body path 510 from determining a precise step plan 350 .
- the control system 300 By first quickly approximating a body trajectory 510 , the control system 300 generates a reasonable first-pass solution that may be used to quickly optimize the precise final step plan 350 that would otherwise be computationally inefficient. Because of this, the step plan 350 may be regenerated at a high frequency (e.g., 300 Hz) to enable real-time navigation while the robot 10 maneuvers in the environment 8 .
- the perception system 110 may operate at a different frequency than the control system.
- new maps may be provided to the control system 300 at a rate that is different (e.g., slower) than the rate at which the control system 300 determines a step plan 350 .
- the high frequency of regeneration by the control system 300 allows the robot 10 to quickly adapt to new perception data (e.g., a new detected object), to quickly react to surprising dynamics (e.g., maintaining balance after getting pushed or bumped), or to respond to new requirements (e.g., increase or decrease speed).
- FIG. 10 is a flowchart of an example method 1000 for terrain and constraint planning a step plan.
- the flowchart starts at operation 1002 by receiving, at data processing hardware 36 of a robot 10 , image data 17 of an environment 8 about the robot 10 from at least one image sensor 31 .
- the image sensor 31 may include one or more of a stereo camera, a scanning light-detection and ranging (LIDAR) sensor, or a scanning laser-detection and ranging (LADAR) sensor.
- the image data 17 includes three-dimensional point cloud data captured by a three-dimensional volumetric image sensor.
- the robot 10 includes a body 11 and legs 12 .
- the method 1000 includes generating, by the data processing hardware 36 , a body-obstacle map 112 , a step-obstacle map 114 , and a ground height map 116 based on the image data 17 .
- the method 1000 includes generating, by the data processing hardware 36 , a body path 510 for movement of the body 11 of the robot 10 while maneuvering in the environment 8 based on the body-obstacle map 112 .
- the method 1000 includes generating, by the data processing hardware 36 , a step path 350 for the legs 12 of the robot 10 while maneuvering in the environment 8 based on the body path 510 , the body-obstacle map 112 , the step-obstacle map 114 , and the ground height map 116 .
- FIG. 11 is a flowchart of another example method 1100 for terrain and constraint planning a step plan.
- the flowchart starts at operation 1102 by receiving, at data processing hardware 36 of a robot 10 , image data 17 of an environment 8 about the robot 10 from at least one image sensor 31 .
- the image sensor 31 may include one or more of a stereo camera, a scanning light-detection and ranging (LIDAR) sensor, or a scanning laser-detection and ranging (LADAR) sensor.
- the image data 17 includes three-dimensional point cloud data captured by a three-dimensional volumetric image sensor.
- the robot 10 includes a body 11 and legs 12 .
- the method 1100 includes identifying, by the data processing hardware 36 , occupancies of space in the environment 8 based on the image data 17 .
- the method 1100 includes generating, by the data processing hardware 36 , a three-dimensional space occupancy map 200 based on the identification of occupancies of space in the environment 8 .
- the three-dimensional space occupancy map 200 includes a voxel map 200 , 200 a having voxels 212 , each voxel 212 representing a three-dimensional space of the environment 8 .
- Each voxel 212 may be classified as either a ground surface 9 , an obstacle, or other.
- the method 1100 includes generating, by the data processing hardware 36 , a two-dimensional body-obstacle map 112 based on the three-dimensional space occupancy map 200 .
- the method 1100 includes generating, by the data processing hardware 36 , a ground height map 116 based on the three-dimensional space occupancy map 200 .
- the ground height map 116 identifies a height of the ground surface 9 at each location near the robot 10 .
- the method 1100 includes generating, by the data processing hardware 36 , a step-obstacle map 114 based on the ground height map 116 , the step-obstacle map 114 identifying no-step regions 620 in the environment 8 where the robot 10 should not step.
- the method 1100 includes generating, by the data processing hardware 36 , a body path 510 for movement of the body 11 of the robot 10 when maneuvering the robot 10 in the environment based on the two-dimensional body-obstacle map 112 .
- the body path 510 is based on no-body regions designated in the two-dimensional body-obstacle map 112 .
- the method 1100 includes generating, by the data processing hardware 36 , a step path 350 for movement of the legs 12 of the robot 10 when maneuvering the robot 10 in the environment 8 based on the body path 510 , the body-obstacle map 112 , the step-obstacle map 114 , and the ground height map 116 .
- the step path 350 may be based on a nominal step pattern of a nominal gait for the robot 10 and step constraints 342 .
- Generating the step path 350 for the legs 12 of the robot 10 includes refining the generated body path 510 .
- the step constraints 342 include at least one of: a threshold range of a center of pressure offset for each leg 12 in contact with the ground surface, where the center of pressure offset indicates an acceptable amount of robot weight distribution for each leg 12 at each step; whether the step path 350 causes a leg 12 to step into a no-step region 213 f the step-obstacle map 114 ; whether the step path 350 causes the body 11 of the robot 10 to enter a body obstacle; whether the step path 350 causes a self-collision of the robot 10 ; or a margin of space about any no-step region 213 of the step-obstacle map 114 .
- the step constraints 342 include soft constraints or weighted constraints.
- the method 1100 includes filtering, by the data processing hardware 36 , the three-dimensional space occupancy map 200 to generate the two-dimensional body-obstacle map 112 .
- the filtering may fill in gaps around incompletely observed obstacles and/or remove spurious data from the map 112 .
- FIG. 12 is a flowchart of another example method 1200 for terrain and constraint planning a step plan.
- the flowchart starts at operation 1202 by receiving, at data processing hardware 36 of a robot 10 , a two-dimensional body-obstacle map 112 , a step-obstacle map 114 , and a ground height map 116 .
- the data processing hardware 36 of the robot 10 may obtain the maps 112 , 114 , 116 from a remote device in communication with the data processing hardware.
- the remote device may receive the image data 17 ( FIG. 1 ) from the vision system 30 ( FIG. 1 ) of the robot 10 and generate the maps 112 , 114 , 116 based on the image data 17 , as discussed above with reference to FIG. 1 .
- the ground height map 116 identifies a height of the ground surface 9 at each location near the robot 10 .
- the step-obstacle map 114 identifies where in the environment 8 the robot 10 should not step.
- the method 1200 includes generating, by the data processing hardware 36 , a body path 510 for movement of the body 11 of the robot 10 when maneuvering the robot 10 in the environment 8 based on the two-dimensional body-obstacle map 112 .
- the method 1200 includes generating, by the data processing hardware 36 , a step path 350 for movement of the legs 12 of the robot 10 when maneuvering the robot 10 in the environment 8 based on the body path 510 , the body-obstacle map 112 , the ground height map 116 , and the step-obstacle map 114 .
- FIG. 13 is schematic view of an example computing device 1300 that may be used to implement the systems and methods described in this document (e.g., data processing hardware 36 and memory hardware 20 ).
- the components shown here, their connections and relationships, and their functions, are meant to be exemplary only, and are not meant to limit implementations of the inventions described and/or claimed in this document.
- the computing device 1300 includes a processor 1310 (e.g., data processing hardware 36 ), memory 1320 (e.g., memory hardware 38 ), a storage device 1330 , a high-speed interface/controller 1340 connecting to the memory 1320 and high-speed expansion ports 1350 , and a low speed interface/controller 1360 connecting to a low speed bus 1370 and a storage device 1330 .
- a processor 1310 e.g., data processing hardware 36
- memory 1320 e.g., memory hardware 38
- storage device 1330 e.g., a high-speed interface/controller 1340 connecting to the memory 1320 and high-speed expansion ports 1350
- a low speed interface/controller 1360 connecting to a low speed bus 1370 and a storage device 1330 .
- Each of the components 1310 , 1320 , 1330 , 1340 , 1350 , and 1360 are interconnected using various busses, and may be mounted on a common motherboard or in other manners as appropriate.
- the processor 1310 can process instructions for execution within the computing device 1300 , including instructions stored in the memory 1320 or on the storage device 1330 to display graphical information for a graphical user interface (GUI) on an external input/output device, such as display 1380 coupled to high speed interface 1340 .
- GUI graphical user interface
- multiple processors and/or multiple buses may be used, as appropriate, along with multiple memories and types of memory.
- multiple computing devices 1300 may be connected, with each device providing portions of the necessary operations (e.g., as a server bank, a group of blade servers, or a multi-processor system).
- the memory 1320 stores information non-transitorily within the computing device 1300 .
- the memory 1320 may be a computer-readable medium, a volatile memory unit(s), or non-volatile memory unit(s).
- the non-transitory memory 1320 may be physical devices used to store programs (e.g., sequences of instructions) or data (e.g., program state information) on a temporary or permanent basis for use by the computing device 1300 .
- non-volatile memory examples include, but are not limited to, flash memory and read-only memory (ROM)/programmable read-only memory (PROM)/erasable programmable read-only memory (EPROM)/electronically erasable programmable read-only memory (EEPROM) (e.g., typically used for firmware, such as boot programs).
- volatile memory examples include, but are not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), phase change memory (PCM) as well as disks or tapes.
- the storage device 1330 is capable of providing mass storage for the computing device 1300 .
- the storage device 1330 is a computer-readable medium.
- the storage device 1330 may be a floppy disk device, a hard disk device, an optical disk device, or a tape device, a flash memory or other similar solid state memory device, or an array of devices, including devices in a storage area network or other configurations.
- a computer program product is tangibly embodied in an information carrier.
- the computer program product contains instructions that, when executed, perform one or more methods, such as those described above.
- the information carrier is a computer- or machine-readable medium, such as the memory 1320 , the storage device 1330 , or memory on processor 1310 .
- the high speed controller 1340 manages bandwidth-intensive operations for the computing device 1300 , while the low speed controller 1360 manages lower bandwidth-intensive operations. Such allocation of duties is exemplary only.
- the high-speed controller 1340 is coupled to the memory 1320 and to the high-speed expansion ports 1350 , which may accept various expansion cards (not shown).
- the low-speed controller 1360 is coupled to the storage device 1330 and a low-speed expansion port 1390 .
- the low-speed expansion port 1390 which may include various communication ports (e.g., USB, Bluetooth, Ethernet, wireless Ethernet), may be coupled to one or more input/output devices, such as a keyboard, a pointing device, a scanner, or a networking device such as a switch or router, e.g., through a network adapter.
- input/output devices such as a keyboard, a pointing device, a scanner, or a networking device such as a switch or router, e.g., through a network adapter.
- implementations of the systems and techniques described herein can be realized in digital electronic and/or optical circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof.
- ASICs application specific integrated circuits
- These various implementations can include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device.
- the processes and logic flows described in this specification can be performed by one or more programmable processors, also referred to as data processing hardware, executing one or more computer programs to perform functions by operating on input data and generating output.
- the processes and logic flows can also be performed by special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).
- processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer.
- a processor will receive instructions and data from a read only memory or a random access memory or both.
- the essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data.
- a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
- mass storage devices for storing data
- a computer need not have such devices.
- Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks.
- the processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Radar, Positioning & Navigation (AREA)
- Aviation & Aerospace Engineering (AREA)
- Automation & Control Theory (AREA)
- Remote Sensing (AREA)
- Theoretical Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electromagnetism (AREA)
- Robotics (AREA)
- Multimedia (AREA)
- Optics & Photonics (AREA)
- Transportation (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Manipulator (AREA)
Abstract
Description
- This U.S. patent application is a continuation of, and claims priority under 35 U.S.C. § 120 from U.S. patent application Ser. No. 16/288,205, filed on Feb. 28, 2019, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application 62/744,954, filed on Oct. 12, 2018. The disclosures of these prior applications are considered part of the disclosure of this application and are hereby incorporated by reference in their entireties.
- This disclosure relates to planning a sequence of steps in the presence of constraints, especially those imposed by terrain.
- Robotic devices are increasingly being used in constrained or otherwise cluttered environments to perform a variety of tasks or functions. These robotic devices may need to navigate through these constrained environments without stepping on or bumping into obstacles. As these robotic devices become more prevalent, there is a need for real-time navigation and step planning that avoids contact with obstacles while maintaining balance and speed.
- One aspect of the disclosure provides a method for planning a sequence of steps in the presence of constraints. The method includes receiving, at data processing hardware of a robot, image data of an environment about the robot from at least one image sensor. The robot includes a body and legs. The method also includes generating, by the data processing hardware, a body-obstacle map, a ground height map, and a step-obstacle map based on the image data. The method further includes generating, by the data processing hardware, a body path for movement of the body of the robot while maneuvering in the environment based on the body-obstacle map, and generating, by the data processing hardware, a step path for the legs of the robot while maneuvering in the environment based on the body path, the body-obstacle map, the ground height map, and the step-obstacle map.
- Implementations of the disclosure may include one or more of the following optional features. In some implementations, the image data includes three-dimensional point cloud data captured by a three-dimensional volumetric image sensor. The at least one image sensor may include one or more of a stereo camera, a scanning light-detection and ranging (LIDAR) sensor, or a scanning laser-detection and ranging (LADAR) sensor.
- In some examples, the method includes identifying, by the data processing hardware, occupancies of space in the environment based on the image data and generating, by the data processing hardware, a three-dimensional space occupancy map based on the identification of occupancies of space in the environment. Generating the body-obstacle map, the ground height map, and the step-obstacle map based on the image data may include generating the body-obstacle map based on the three-dimensional space occupancy map, generating the ground height map based on the three-dimensional space occupancy map, and generating the step-obstacle map based on the ground height map. The ground height map identifies a height of a ground surface at each location near the robot and the step-obstacle map identifies no-step regions in the environment where the robot should not step. Optionally, generating the body-obstacle map includes generating a two-dimensional body-obstacle map based on the three-dimensional space occupancy map.
- In some examples, the three-dimensional space occupancy map may include a voxel map having voxels, each voxel representing a three-dimensional space of the environment. Each voxel may be classified as either a ground surface, an obstacle, or other. Additionally, the device may include filtering, by the data processing hardware, the three-dimensional space occupancy map to generate the body-obstacle map. In some implementations, generating the body path is based on no-body regions designated in the body-obstacle map. In some examples, generating the step path is based on adjusting a nominal step pattern of a nominal gait for the robot and step constraints. The step constraints may include at least one of the following: a threshold range of a center of pressure offset for each leg in contact with a ground surface, the center of pressure offset indicating an acceptable amount of robot weight distribution for each leg at each step; whether the step path causes a leg to step into a no-step region of the step-obstacle map; whether the step path causes the body of the robot to enter a body obstacle; whether the step path causes a self-collision of the robot; or a margin of space about any no-step region of the step-obstacle map. Additionally, the step constraints may include soft constraints or hard constraints. Generating the step path for the legs of the robot, in some implementations, includes refining the generated body path.
- Another aspect of the disclosure provides a robot. The robot includes a body, legs coupled to the body and configured to maneuver the robot about an environment, data processing hardware in communication with the legs, and memory hardware in communication with the data processing hardware. The memory hardware stores instructions that when executed on the data processing hardware cause the data processing hardware to perform operations. The operations include receiving image data of an environment about the robot from at least one image sensor. The operations also include generating a three-dimensional space occupancy map based on the identification of occupancies of space in the environment and a two-dimensional body-obstacle map based on the three-dimensional space occupancy map. The operations also include generating a body-obstacle map, a ground height map, and a step-obstacle map based on the image data. The operations also include generating a body path for movement of the body of the robot while maneuvering in the environment based on the body-obstacle map and generating a step path for the legs of the robot while maneuvering in the environment based on the body path, the body-obstacle map, the ground height map, and the step-obstacle map.
- This aspect may include one or more of the following optional features. In some implementations, the image data includes three-dimensional point cloud data captured by a three-dimensional volumetric image sensor. In some examples, the at least one image sensor includes one or more of a stereo camera, a scanning light-detection and ranging (LIDAR) sensor, or a scanning laser-detection and ranging (LADAR) sensor.
- In some examples, the operations include identifying occupancies of space in the environment based on the image data and generating a three-dimensional space occupancy map based on the identification of occupancies of space in the environment. Generating the body-obstacle map, the ground height map, and the step-obstacle map based on the image data may include generating the body-obstacle map based on the three-dimensional space occupancy map, generating the ground height map based on the three-dimensional space occupancy map, and generating the step-obstacle map based on the ground height map. The ground height map identifies a height of a ground surface at each location near the robot and the step-obstacle map identifies no-step regions in the environment where the robot should not step. Optionally, generating the body-obstacle map includes generating a two-dimensional body-obstacle map based on the three-dimensional space occupancy map.
- The three-dimensional space occupancy map may include a voxel map having voxels, each voxel representing a three-dimensional space of the environment. Each voxel may be classified as either a ground surface, an obstacle, or other. The operations, in some examples, further include filtering the three-dimensional space occupancy map to generate the body-obstacle map. The body path may be based on no-body regions designated in the body-obstacle map and the step path may be based on adjusting a nominal step pattern of a nominal gait for the robot and step constraints. In some implementations, the step constraints include at least one of a threshold range of: a center of pressure offset for each leg in contact with a ground surface, the center of pressure offset indicates an acceptable amount of robot weight distribution for each leg at each step; whether the step path causes a leg to step into a no-step region of the step-obstacle map; whether the step path causes the body of the robot to enter a body obstacle; whether the step path causes a self-collision of the robot; or a margin of space about any no-step region of the step-obstacle map. The step constraints may include soft constraints or hard constraints. Generating the step path for the legs of the robot, in some implementations, includes refining the generated body path.
- The details of one or more implementations of the disclosure are set forth in the accompanying drawings and the description below. Other aspects, features, and advantages will be apparent from the description and drawings, and from the claims.
-
FIG. 1 is a schematic view of an example system for planning a sequence of steps in the presence of constraints. -
FIG. 2A is an isometric view of a volumetric three-dimensional map of voxels. -
FIG. 2B is a perspective view of an environment including a staircase. -
FIG. 2C is an example body-obstacle map of the environment ofFIG. 2A . -
FIG. 2D is an example no-step map of the environment ofFIG. 2A . -
FIG. 3 is a schematic view of example components of a control system of the system ofFIG. 1 . -
FIG. 4 is a flowchart of an example method for generating a final step plan. -
FIG. 5 is schematic view of an example body path overlaid on an example body-obstacle map. -
FIG. 6 is a schematic view of step locations associated with a fast cadence for following a body path overlaid on an example no-step map. -
FIG. 7 is a schematic view of step locations associated with a slow cadence overlaid on an example no-step map. -
FIG. 8 is a schematic view of step locations associated with a medium cadence overlaid on an example no-step map. -
FIG. 9 is a final step plan for step locations associated with a selected gait overlaid on an example no-step map. -
FIG. 10 is a flowchart of an example method for terrain and constraint planning for a step plan. -
FIG. 11 is a flowchart of another example method for terrain and constraint planning for a step plan. -
FIG. 12 is a flowchart of another example method for terrain and constraint planning for a step plan. -
FIG. 13 is a schematic view of an example computing device that may be used to implement the systems and methods described herein. - Like reference symbols in the various drawings indicate like elements.
- As legged robotic devices (also referred to as “robots”) become more prevalent, there is an increasing need for the robots to navigate environments that are constrained in a number of ways. For example, a robot may need to traverse a cluttered room with large and small objects littered around on the floor. Or, as another example, a robot may need to negotiate a staircase. Typically, navigating these sort of environments has been a slow and arduous process that results in the legged robot frequently stopping, colliding with objects, and/or becoming unbalanced. Implementations herein are directed toward systems and methods for terrain and constraint planning for generating a step plan in real-time, thus allowing a legged robotic device to navigate a constrained environment quickly and efficiently while maintaining smoothness and balance.
- Referring to
FIG. 1 , a robot orrobotic device 10 includes abody 11 with two ormore legs 12 and executes astep planning system 100 for enabling therobot 10 to navigate aconstrained environment 8. Eachleg 12 is coupled to thebody 11 and may have anupper portion 14 and alower portion 16 separated by a leg joint 18. Thelower portion 16 of eachleg 12 ends in afoot 19. Thefoot 19 of each leg is optional and the terminal end of the lower portion of one or more of theleg 12 may be coupled to a wheel. Therobot 10 has a vertical gravitational axis Vg along a direction of gravity, and a center of mass CM, which is a point where the weighted relative position of the distributed mass of therobot 10 sums to zero. Therobot 10 further has a pose P based on the CM relative to the vertical gravitational axis Vg (i.e., the fixed reference frame with respect to gravity) to define a particular attitude or stance assumed by therobot 10. The attitude of therobot 10 can be defined by an orientation or an angular position of therobot 10 in space. Movement by thelegs 12 relative to thebody 11 alters the pose P of the robot 10 (i.e., the combination of the position of the CM of the robot and the attitude or orientation of the robot 10). - In some implementations, the
robot 10 further includes one or more appendages, such as an articulatedarm 20 disposed on thebody 11 and configured to move relative to thebody 11. The articulatedarm 20 may have five-degrees or more of freedom. Moreover, the articulatedarm 20 may be interchangeably referred to as a manipulator arm or simply an appendage. In the example shown, the articulatedarm 20 includes twoportions body 11; however, the articulatedarm 20 may include more or less portions without departing from the scope of the present disclosure. Thefirst portion 22 may be separated fromsecond portion 24 by an articulated arm joint 26. Anend effector 28, which may be interchangeably referred to as amanipulator head 28, may be coupled to a distal end of thesecond portion 24 of the articulatedarm 20 and may include one ormore actuators 29 for gripping/grasping objects. - The
robot 10 also includes avision system 30 with at least one imaging sensor orcamera 31, each sensor orcamera 31 capturing image data or sensor data of theenvironment 8 surrounding therobot 10 with an angle ofview 32 and within a field ofview 34. Thevision system 30 may be configured to move the field ofview 34 by adjusting the angle ofview 32 or by panning and/or tilting (either independently or via the robot 10) thecamera 31 to move the field ofview 34 in any direction. Alternatively, thevision system 30 may include multiple sensors orcameras 31 such that thevision system 30 captures a generally 360-degree field of view around therobot 10. Thevision system 30 provides image data orsensor data 17 derived from image data captured by the cameras orsensors 31 todata processing hardware 36 of therobot 10. Thedata processing hardware 36 is in digital communication withmemory hardware 38 and, in some implementations, may be a remote system. The remote system may be a single computer, multiple computers, or a distributed system (e.g., a cloud environment) having scalable/elastic computing resources and/or storage resources. Astep planning system 100 of therobot 10 executes on thedata processing hardware 36. In the example shown, thestep planning system 100 includes aperception system 110 that receives the image orsensor data 17 from thevision system 30 and generates one ormore maps environment 8. Thestep planning system 100 also includes acontrol system 300 that receives themaps perception system 110 and generates a body path or trajectory 510 (FIG. 5 ), and using thebody path 510, generates a step path orstep plan 350. Using thestep plan 350, therobot 10 maneuvers through theenvironment 8 by following thestep plan 350 by placing thefeet 19 or distal ends of theleg 12 at the locations indicated by thestep plan 350. In some implementations, at least a portion of thestep planning system 100 executes on a remote device in communication with therobot 10. For instance, theperception system 110 may execute on a remote device to generate one or more of themaps control system 300 executing on therobot 10 may receive themaps control system 300 may generate thebody path 510 and thestep path 350. Optionally, the entirestep planning system 100 may execute on a remote device and the remote device may control/instruct therobot 10 to maneuver theenvironment 8 based on thebody path 410 and thestep path 350. - The camera(s) 31 of the
vision system 30, in some implementations, include one or more stereo cameras (e.g., one or more RGBD stereo cameras). In other examples, thevision system 30 includes one or more radar sensors such as a scanning light-detection and ranging (LIDAR) sensor, or a scanning laser-detection and ranging (LADAR) sensor, a light scanner, a time-of-flight sensor, or any other three-dimensional (3D) volumetric image sensor (or any such combination of sensors). In some implementations, thevision system 30 identifies occupancies of space in theenvironment 8 based on the captured image orsensor data 17. Theperception system 110 may useimage data 17 captured by thevision system 30 to generate a 3D point cloud. The point cloud is a set of data points representing surfaces of objects in theenvironment 8 surrounding therobot 10. From this point cloud, theperception system 110 may generate a 3D space occupancy map 200 (FIG. 2A ) based on the previously identified occupancies of space in theenvironment 8. In some examples, theperception system 110 generates a 3D volumetric map 200, 200 a ofvoxels 210, 212 (FIG. 2A ). Eachvoxel 210, 212 (i.e., cube) represents a 3D space of the environment. The size of eachvoxel perception system 110 and the processing capabilities of thevision system 30 anddata processing hardware 36. For example, therobot 10 may generate a voxel map 200 (i.e., a 3D occupancy map) of theenvironment 8 surrounding the robot 10 (e.g., several meters in each direction) where eachvoxel perception system 110 may store a variety of statistics. - The
perception system 110, in some implementations, classifies (using, for example, a classification algorithm, e.g., linear classifiers, decision trees, neural networks, special purpose logic, etc.) eachvoxel ground surface 9, an obstacle, or other. Theperception system 110 classifiesvoxels 210 as aground surface 9 when theperception system 110 determines that therobot 10 is capable of stepping on the point or space that thevoxel robot 10 may classify a sidewalk or the surface of a step as aground surface 9. Theperception system 110 classifiesvoxels 212 as obstacles when theperception system 110 determines that therobot 10 is not capable of stepping on the point or space represented by thevoxel perception system 110 classifies an object that is too high for the leg of the robot to reach or an object that, if stepped on, would result in therobot 10 losing stability (i.e., balance) as an obstacle. The third classification, other, may be used forvoxels robot 10 can safely disregard or ignore. For example, theperception system 110 classifies objects well above therobot 10 or objects that are far away from therobot 10 as other.FIG. 2A illustrates an example of a simple voxel map 200, 200 a that includes a plane ofground surface voxels obstacle voxels - Using the volumetric 3D map 200, which includes the
classified voxels perception system 110 generates a body-obstacle map 112. The body-obstacle map 112, in some implementations, represents a two-dimensional (2D) map that annotates or illustrates “keep-out areas” or “no-body regions” for thebody 11 of therobot 10. That is, the body-obstacle map 112 is a 2D map that marks each location (i.e., pixel of themap 112, each pixel representative of a column of space in theenvironment 8 of the robot 10) as a location that is safe for thebody 11 of therobot 10 to travel through or not safe for thebody 11 of therobot 10 to travel through. The body-obstacle map 112 may include a grid of cells (e.g., pixels), where each cell of the grid contains a Boolean value (e.g., body may enter or body may not enter). For example, referring toFIG. 2B ,view 201 shows anenvironment 8 that includes a staircase with railings. When therobot 10 is ascending or descending the stairs, the railings would serve as a barrier to thebody 11 of the robot 10 (i.e., the railings are at a height that would come into contact with the body 11).FIG. 2C illustrates a body-obstacle map 112 that represents a 2D image of the staircase ofFIG. 2B (i.e., a plan view of the staircase). InFIG. 2C , the illegal body regions (e.g., obstacle voxels) 212 (i.e., keep-out areas) represent areas that the body of therobot 10 cannot or should not enter (e.g., the staircase railings, walls, large obstacles, etc.). - Referring to
FIGS. 1 and 2D , theperception system 110 also uses the volumetric 3D map 200 (or theground height map 116, as discussed in more detail below) to generate a step-obstacle map 114. The step-obstacle map 114, in some examples, represents a 2D plan view map that illustrates keep-out or “no-step”regions 213 for steps by thelegs 12 of therobot 10. That is, the step-obstacle map 114 is similar to the body-obstacle map 112, however, the keep-outareas 213 instead represent areas that steps (i.e., thefeet 19 or distal ends of the legs 12) of therobot 10 should not “touch down” at. That is, while thefeet 19 or distal ends of thelegs 12 may pass over the keep-outregions 213, thefeet 19 may not complete a step within theregion 213. The step-obstacle map 114 may include a grid of cells (e.g., pixels), where each cell of the grid contains a Boolean value (e.g., step or no-step). - Different considerations may be used to generate the step-
obstacle map 114 versus the body-obstacle map 112 which may lead to some obstacles being classified as a body obstacle, a step obstacle, a body and step obstacle, or neither. For example, thelegs 12 of therobot 10 support the body 11 a distance above theground surface 9, and therefore thebody 11 may safely avoid obstacles that are near theground surface 9. The step-obstacle map 114 may also take into consideration aspects such as how high therobot 10 is capable of stepping via thelegs 12. Further, in some examples, knees of the robot 10 (i.e., leg joints 18), may extend out in front or behind thefeet 19, thereby limiting where thefeet 19 may be placed (e.g., the knees may bump into a sufficiently tall obstacle before afoot 19 can be raised and placed on the obstacle). Accordingly, a keep-outareas 213 could include an area upon theground surface 9 that is otherwise devoid of obstacles, but due to the geometry and pose of therobot 10, traversal of therobot 10 into the keep-outarea 213 could cause thebody 11 of therobot 10 to contact an obstacle above theground surface 9. - Generally, obstacles classified as body obstacles are also classified as step obstacles, but the reverse need not be true, as step obstacles may not be classified as body obstacles (e.g., an obstacle high enough to cause problems in stepping, but low enough that the
body 11 of therobot 10 would not come in contact with the obstacle). In some situations, body obstacles may not be classified as step obstacles. For example, a table may be a body obstacle, but therobot 10 may step beneath the table. Theperception system 110 may classify body obstacles as a larger step obstacle as it may be infeasible to place a foot directly next to a body obstacle (i.e., enlarge the size of the body obstacle). - In some implementations, the
perception system 110 classifies large areas of step obstacles as a body obstacle. For example, if an area of theenvironment 8 contains a particularly dense number of step obstacles such that traversing the area will be difficult, theperception system 110 may classify the entire area as a body obstacle despite the obstacles not being a height to impact the body of therobot 10 in order obtain a better final step plan 350 (as discussed in more detail below). Theperception system 110, in some implementations, classifies areas as body obstacles to ensure therobot 10 does not enter a certain are for reasons other colliding with objects. For example, a user may desire to direct therobot 10 in a certain direction or along a certain path. - The step-
obstacle map 114 ofFIG. 2D is representative of the staircase ofFIG. 2B . As with the body-obstacle map 112 ofFIG. 2C , the step-obstacle map 114 outlines theareas 213 theperception system 110 determines are not safe or valid for therobot 10 to step andareas 210 that are safe or valid. For example, theground surface 9 in front of the stair case and each individual step are marked as valid in the step-obstacle map 114. - Referring back to
FIG. 1 , in some implementations, theperception system 110 also generates aground height map 116 from the 3D volumetric map 200. Theground height map 116 identifies a height of aground surface 9 at each location near therobot 10. That is, theground height map 116, similar to a topographical map, is a 2D map that notes the height of theground surface 9 at each location in a horizontal plane with respect to a reference point or height. Theground height map 116, in some examples, only illustrates the height of theground surface 9, and not any surface above theground surface 9. That is, theground height map 116 may label the height of theground surface 9 underneath a table, and not the height of the surface of the table. Theground height map 116 may be used to help generate the step-obstacle map 114 (e.g., determining when the ground surface is too high or too steep to safely traverse and therefore should be marked as a step obstacle). Theperception system 110 generates theground height map 116, for example, by determining a height of thevoxel 210 classified asground surface 9 in each column of the 3D map. The step-obstacle map 114 may in turn be generated from theground height map 116. The perception system, optionally, processes both the body-obstacle map 112 and the step-obstacle map 114 into signed distance fields (i.e., using signed distance functions). - Referring now to
FIG. 3 , thecontrol system 300 of thestep planning system 100 receives the maps (the body-obstacle map 112, the step-obstacle map 114, and the ground height map 116) from theperception system 110 and generates thestep plan 350 for use by therobot 10 to navigate the environment 8 (i.e., a map of locations for therobot 10 to place feet 19). Thecontrol system 300, in some implementations, includes abody path generator 310 and aconstrained step planner 320. - The
body path generator 310 receives the body-obstacle map 112 from theperception system 110 and aposition 311 that therobot 10 is to navigate to (i.e., where therobot 10 intends to go). The body path generates 310 then generates a body trajectory 510 (i.e., a path for thebody 11 of therobot 10 to follow) that avoids body obstacles 520 (FIG. 5 ) annotated in the body-obstacle map 112 (FIG. 5 ) while therobot 10 maneuvers in theenvironment 8. Thebody path generator 310 generates the body trajectory orbody path 510 with a method or algorithm that is not resource intensive (e.g., a potential field method, a rapidly-exploring random tree, and/or a trajectory optimizer). For example, using the potential field method, a simplified model of thebody 11 is used (e.g., momentum is not accounted for, and plans velocity only accounting for positions) to quickly generate a planar trajectory that represents anapproximate path 510 for therobot 10 to traverse. The planar trajectory may include horizontal motion of the CM and yaw of therobot 10. While not necessarily optimal, thebody trajectory 510 quickly provides a good approximation of a path that provides an ideal starting point for further path optimization. Notably, thecontrol system 300 generates thebody trajectory 510 without use of the step-obstacle map 114, and therefore thebody path 510 does not provide for where therobot 10 should step when following thebody trajectory 510. - With continued reference to
FIG. 3 , theconstrained step planner 320 receives thebody trajectory 510 from thebody path generator 310 as a starting point for generating the final constrained step locations (e.g., step plan) 350. In some examples, theconstrained step planner 320 includes agait determiner 330 that first determines agait timing 332 that provides nominal step locations for of therobot 10. That is, thegait determiner 330 determines which gait (e.g., a slow walk, a fast walk, a trot, etc.) provides the most optimal step locations with respect to step obstacles 620 (FIG. 6 ) presented in the step-obstacle map 114 (FIG. 6 ). Thegait determiner 330, optionally, is separate from theconstrained step planner 320. Thegait determiner 330, in some implementations, provides thedetermined gait timing 332 to astep solver 340. As described in more detail below, thestep solver 340 accepts thegait timing 332 and one ormore constraints step solver 340 applies theconstraints 342 to the nominal step locations of thedetermined gait timing 332 and solves for an optimizedstep plan 350. As described in more detail below, theconstraints 342, in some implementations, 342 include a center of pressure (CoP) offsetconstraint 342 a, a body keep-outconstraint 342 b, a step keep-outconstraint 342 c, a self-collision constraint 342 d, a keep-outmargin constraint 342 e, and abalance constraint 342 f. Theconstraints 342 may include one or more other constraints in addition to, or in lieu of, one or more of theconstraints 342 a-342 f. - The
constrained step planner 320, in some implementations, receives a variety of other information. For example, theconstrained step planner 320 may receive the current position and velocity of the CM of therobot 10, feet touchdown and liftoff information (e.g., timing), and swing foot position and/or velocity. Theconstrained step planner 320 may also receive the body-obstacle map 112. Theconstrained step planner 320, in some implementations, adjusts or refines thebody path trajectory 510. The adjustment may be minor. For example, theconstrained step planner 320 may account for swaying of thebody 11 while stepping through the environment 8 (which is not accounted for in the simplified body path trajectory 510). In some cases, the adjustment may be major. For example, thesimplified body trajectory 510 might be physically impossible (e.g., include infinite accelerations) or might be difficult to solve for once thegait timing 332 is determined. Theconstrained step planner 320, in some implementations, only adjusts translation and not yaw trajectory of thebody 11 of therobot 10, and in other implementations, adjusts both the translation and the yaw of thebody 11. -
FIG. 4 illustrates anexample flowchart 400 depicting a process flow for thestep planning system 100. Atstep 402, theperception system 110 creates the body-obstacle map 112, and atstep 404, thecontrol system 300 uses the body-obstacle map 112 to generate a body trajectory orbody path 510. Theperception system 110 also creates a step-obstacle map 114 atstep 406, and atstep 408, thecontrol system 300, via thegait determiner 330 of theconstrained step planner 320, uses theplanar body path 510 and the step-obstacle map 114 to select agait timing 332. At 410, thestep solver 340 of theconstrained step planner 320 uses the chosengait timing 332, the body-obstacle map 112, and the step-obstacle map 114 to solve for the final step plan 350 (i.e., locations for therobot 10 to place its feet 19). -
FIG. 5 shows aschematic view 500 depicting abody path 510 for navigating aroundbody obstacles 520. For instance,flowchart 400 depicts thecontrol system 300 using the body-obstacle map 112 generated atstep 402 to generate thebody path 510 atstep 404. Using, for example, a potential field method, thebody path generator 310 of thecontrol system 300 plots abody path 510 from point A to point B to navigate around one ormore body obstacles 520. Thebody obstacles 520 may also be referred to as body-obstacle zones 520 in which thebody 11 of therobot 10 would contact one or more obstacles if thebody 11 crosses/enters into the body-obstacle zone 520. That is, the area defined by the body-obstacle zone 520 is not indicative of a body obstacle in and of itself, but rather, is indicative of an area thebody 11 of therobot 10 is not permitted to enter, because thebody 11 would come into contact with one or more obstacles. Thebody path generator 310 ensures the validity of thebody path 510 by generating asimulated body 530 of therobot 10 travelling along thepath 510. A valid path results, for example, when thesimulated body 530 does not contact any of the body-obstacle zones 520. - As previously discussed, after receiving the step-
obstacle map 114 from theperception system 110, the gait determiner selects a gait to generate nominal step locations. Referring now toFIGS. 6-8 , thegait determiner 330 of theconstrained step planner 320, in some implementations, analyzes a number of potential gaits to find optimal nominal step locations.FIG. 6 shows aschematic view 600 depictingstep locations 630 associated with a fast cadence for following thebody path 510 plotted on the step-obstacle map 114. For instance,flowchart 400 depicts thecontrol system 300, via thegait determiner 330 of theconstrained step planner 320, using theplanar body path 510 generated atstep 404 and the step-obstacle map 114 generated atstep 406 to select agait timing 332 having a fast cadence for thestep location 630 atstep 408. As used herein, the terms “feet location(s)”, “foot location(s)”, and “step location(s)” are used interchangeably. - The
gait determiner 330 begins with thebody path 510 plotted on step-obstacle map 114 and overlays the selected cadence (i.e., where therobot 10 would step if thebody 11 were to follow thebody path 510 and thelegs 12 moved at the selected cadence). In the example shown, thebody path 510 may intersect with one ormore step obstacles 620, but not with body obstacles 520 (which is ensured previously by the body path generator 310). Eachstep location gait determiner 330 generates a score that reflects a quality of thestep locations 630 of the currently simulated gait timing. The score for the fast cadence ofFIG. 6 may be relatively low due to the number of minor collisions betweenstep locations 630 and step obstacles 620 (e.g., the locations wherestep locations 630 overlap step obstacles 620). The score may be affected by the number of collisions withstep obstacles 620 and by the severity of the collisions. Thegait determiner 330 may emphasize a distance thestep locations 630 must be shifted to avoidobstacles 620. For example,step locations 630 that slightly collide with threeobstacles 620 may be preferable to steplocations 630 that severely collide with asingle obstacle 620. -
FIG. 7 shows aschematic view 700 depictingstep locations 630 associated with a slow cadence for following thebody path 510 plotted on the step-obstacle map 114. Similar to thestep locations 630 associated with the fast cadence ofFIG. 6 , the slow cadence ofFIG. 7 exhibitsmultiple step locations 630 within or contactingstep obstacles 620 leading to a non-ideal score. On the other hand, theschematic view 800 ofFIG. 8 depicts thestep locations 630 now associated with a medium cadence (i.e., slower than the fast cadence ofFIG. 6 but faster than the slow cadence ofFIG. 7 ) for following thebody path 510 plotted on the step-obstacle map 114. The medium cadence has the lowest number of collisions betweenstep locations 630 and stepobstacles 620, and therefore may receive the highest score out of the slow, medium, and fast cadences. While only three cadences are exemplified, it is understood that thegait determiner 330 may evaluate any number of gait timings before selecting a specific cadence. The score assigned to each analyzed gait timing may reflect the amount of optimization required to meet given constraints. The more constraints that thenominal step locations 630 violate (e.g., colliding with step obstacles 620), the more optimization may be required. In addition to the step obstacle and body obstacle constraints, the score may reflect other constraints (e.g., a speed constraint). For example, a slower cadence may be weighted more than a fast cadence for some tasks or environments. - Referring now to
FIG. 9 , once the gait determiner selects agait timing 332 andnominal step locations 630, thestep solver 340 of theconstrained step planner 320 solves for the final step plan 350 (e.g., step 410 of the flowchart 400).FIG. 9 shows aschematic view 900 depicting thefinal step locations 630 associated with the selected gait timing 332 (e.g., cadence) for following thebody path 510 plotted on theobstacle map 114. Thestep solver 340 accepts a number of constraints 342 (i.e., variables) that thestep solver 340 considers while solving. In some examples, eachconstraint 342 is a “hard” constraint or a “soft” constraint. A hard constraint is aconstraint 342 that thestep solver 340 cannot violate and still have asuccessful step plan 350. For example, avoiding a step obstacle 620 (e.g., the edge of a drop off) may be labeled as a hard constraint, as stepping on thespecific step obstacle 620 may lead to catastrophic results (e.g., falling off an edge). A soft constraint is aconstraint 342 that thestep solver 340 will attempt to meet, but may violate if necessary to achieve asuccessful step plan 350. For example, thestep solver 340 may have aconstraint 342 to not come within a threshold distance of a step obstacle 620 (i.e., a “margin”constraint 342 e). While maintaining the threshold distance is ideal, thestep solver 340 may, if necessary, intrude into the boundary (e.g., to ensure compliance with a hard constraint). Soft constraints may be weighted. That is, eachconstraint 342 may be given a specific weight or “softness” that allows thestep solver 340 to determine which constraint to violate first if all constraints cannot be met. For example, if thestep solver 340 has amargin constraint 342 e and abalance constraint 342 f (i.e., a requirement to maintain the balance of the robot 10), thebalance constraint 342 f may be weighted more (e.g., be “harder”) than themargin constraint 342 e, as it may be more important to maintain balance than to maintain the margin from thestep obstacle 620. Thus, thestep solver 340 may choose to violate themargin constraint 342 e first or to a greater degree than thebalance constraint 342 f. - A
constraint 342 may be a (hard or soft) equality constraint (e.g., x=5) or an inequality constraint (e.g., x<=5). Thestep solver 340, in some implementations, also strives to minimize costs while obeying (or attempting to obey)constraints 342. A cost may be equivalent to a soft equality constraint. That is, in some instances, a soft constraint may be considered a cost to be minimized by thesolver 340. Some constraints (e.g., thebalance constraint 342 f) may be treated as a cost or a soft constraint. For example, if in the absence of a constraint where x is greater than 5 , adding an example cost and an example inequality constraint will have the same effect (assuming equivalent weighting). However, if in the absence of the constraint, x is less than 5, adding the cost (or equality constraint) will cause x to become closer to 5, but the inequality constraint will have no effect. In some implementations, thestep solver 340 uses costs and soft inequality constraints and does not use hard constraints or equality constraints. - The
step solver 340 may solve for any number ofconstraints 342. As previously discussed (FIG. 3 ), thestep solver 340 may haveconstraints margin constraint 342 e to keep a threshold distance fromstep obstacles 620, and abalance constraint 342 f to maintain balance and/or stability. In other examples, thestep solver 340 may receive a center of pressure offsetconstraint 342 a that includes a threshold range of a center of pressure offset for the leg(s) 12 in contact with theground 9. The center of pressure offset may indicate an acceptable amount ofrobot 10 weight distribution for eachleg 12 at each step (i.e., the weight distribution between legs(s) 12 in contact with the ground 9). That is, the center of pressure offsetconstraint 342 a ensures that the percentage of the weight of therobot 10 applied to a step of the robot is valid. For example, when two feet are in contact with theground surface 9, thestep solver 340 may be constrained to not apply a vertical force of 120% (e.g., 20% more than the entire weight of the robot 10) to a first foot and −20% to a second foot, as such a feat is impossible. In another example, thestep solver 340 may receive a self-collision constraint 342 d. That is, aconstraint 342 d to ensure that thestep solver 340 attempts to not collide therobot 10 with itself (i.e., place afirst foot 19 where asecond foot 19 is already located). Theconstraints 342 may be predetermined prior to navigation. Theconstraints 342 may also be modified, added, or removed during navigation. In some examples, theconstraints 342 are received from a source external to the control system (e.g., a user or manufacturer of the robot 10), while in other examples, thestep planning system 100 generates theconstraints 342 autonomously based on data received from sensors of therobot 10. - In an attempt to meet the
constraints 342 assigned to thestep solver 340, thestep solver 340 may adjust eachstep location 630. With continued reference toFIG. 9 , the stepobstacle avoidance constraint 342 c may “shove” or otherwise adjuststep locations 630 away from the obstacle. For instance, thestep location 630 a is moved, for example, to steplocation 630 b because of the keep out boundary 620 (which is generated in response to keep-outconstraint 342 c). When thestep solver 340 modifies the location of astep location 630 from the original nominal step location, the adjustment may cascade or ripple into changes forother step locations 630. For example, as exemplified inFIG. 9 ,step location 630 c may be moved to steplocation 630 d in response to thestep solver 340 previously adjustingstep location 630 a in order to maintain balance as therobot 10 moves along thebody trajectory 510. When thestep solver 340 completes the final constrainedstep location plan 350, therobot 10 may then commence travel, placing its feet with respect to thedetermined step locations 630. During travel, therobot 10 may continuously rerun or regenerate thestep plan 350 based on the mostrecent maps step plan 350 as appropriate. - Ideally, the
step solver 340 uses quadratic programming so that thestep solver 340 may solve thestep plan 350 in real-time. A quadratic program uses linear constraints to quickly solve an optimization problem. That is, thestep solver 340, in some examples, minimizes or maximizes a quadratic function of several variables that are linearly constrained. Still referring toFIG. 9 , in order to linearly constrain obstacle regions of amorphous shapes, thestep solver 340 may draw a series ofstraight lines 920 to closely approximate the shape of the obstacle. In some examples, thestep solver 340 only applies the linear constraints to relevant portions of the obstacle. In other examples, thestep solver 340 originally solves for astep plan 350 without anyconstraints 342, and then iteratively addsconstraints 342 and regenerates interim step plans until thestep solver 340 achieves an optimizedfinal step plan 350. - The
step solver 340 may begin by solving convex constraints. Thesolver 340 may then use the solution from the convex constraints to iteratively determine the best linear approximation of non-convex constraints. For example, based on current position and velocity of a swingingfoot 19, a known time until the touchdown (i.e., between thefoot 19 and the ground 9), and a maximum acceleration of thefoot 19, thesolver 340 may determine a rectangular-shaped region where thefoot 19 may touchdown. Similarly, other shapes may approximate other regions. For example, because eachleg 12 has a maximum length,foot 19 touchdown may not occur too far from the hip. This area may be represented as an octagon.Foot 19 liftoff may be approximated similarly to foot 19 touchdown, but may instead use a rectangle (as opposed to the octagon).Stance legs 12 may have a trapezoidal boundary to protect against self-collision. - Thus, the
step planning system 100 of therobot 10 decouples approximating and determining abody path 510 from determining aprecise step plan 350. By first quickly approximating abody trajectory 510, thecontrol system 300 generates a reasonable first-pass solution that may be used to quickly optimize the precisefinal step plan 350 that would otherwise be computationally inefficient. Because of this, thestep plan 350 may be regenerated at a high frequency (e.g., 300 Hz) to enable real-time navigation while therobot 10 maneuvers in theenvironment 8. Theperception system 110 may operate at a different frequency than the control system. That is, new maps may be provided to thecontrol system 300 at a rate that is different (e.g., slower) than the rate at which thecontrol system 300 determines astep plan 350. The high frequency of regeneration by thecontrol system 300 allows therobot 10 to quickly adapt to new perception data (e.g., a new detected object), to quickly react to surprising dynamics (e.g., maintaining balance after getting pushed or bumped), or to respond to new requirements (e.g., increase or decrease speed). -
FIG. 10 is a flowchart of anexample method 1000 for terrain and constraint planning a step plan. The flowchart starts atoperation 1002 by receiving, atdata processing hardware 36 of arobot 10,image data 17 of anenvironment 8 about therobot 10 from at least oneimage sensor 31. Theimage sensor 31 may include one or more of a stereo camera, a scanning light-detection and ranging (LIDAR) sensor, or a scanning laser-detection and ranging (LADAR) sensor. In some implementations, theimage data 17 includes three-dimensional point cloud data captured by a three-dimensional volumetric image sensor. Therobot 10 includes abody 11 andlegs 12. Atstep 1004, themethod 1000 includes generating, by thedata processing hardware 36, a body-obstacle map 112, a step-obstacle map 114, and aground height map 116 based on theimage data 17. - At
step 1006, themethod 1000 includes generating, by thedata processing hardware 36, abody path 510 for movement of thebody 11 of therobot 10 while maneuvering in theenvironment 8 based on the body-obstacle map 112. Atstep 1008, themethod 1000 includes generating, by thedata processing hardware 36, astep path 350 for thelegs 12 of therobot 10 while maneuvering in theenvironment 8 based on thebody path 510, the body-obstacle map 112, the step-obstacle map 114, and theground height map 116. -
FIG. 11 is a flowchart of anotherexample method 1100 for terrain and constraint planning a step plan. The flowchart starts atoperation 1102 by receiving, atdata processing hardware 36 of arobot 10,image data 17 of anenvironment 8 about therobot 10 from at least oneimage sensor 31. Theimage sensor 31 may include one or more of a stereo camera, a scanning light-detection and ranging (LIDAR) sensor, or a scanning laser-detection and ranging (LADAR) sensor. In some implementations, theimage data 17 includes three-dimensional point cloud data captured by a three-dimensional volumetric image sensor. Therobot 10 includes abody 11 andlegs 12. Themethod 1100, atstep 1104, includes identifying, by thedata processing hardware 36, occupancies of space in theenvironment 8 based on theimage data 17. Atstep 1106, themethod 1100 includes generating, by thedata processing hardware 36, a three-dimensional space occupancy map 200 based on the identification of occupancies of space in theenvironment 8. In some examples, the three-dimensional space occupancy map 200 includes a voxel map 200, 200 a havingvoxels 212, eachvoxel 212 representing a three-dimensional space of theenvironment 8. Eachvoxel 212 may be classified as either aground surface 9, an obstacle, or other. Atstep 1108, themethod 1100 includes generating, by thedata processing hardware 36, a two-dimensional body-obstacle map 112 based on the three-dimensional space occupancy map 200. Atstep 1110, themethod 1100 includes generating, by thedata processing hardware 36, aground height map 116 based on the three-dimensional space occupancy map 200. Theground height map 116 identifies a height of theground surface 9 at each location near therobot 10. - The
method 1100, atstep 1112, includes generating, by thedata processing hardware 36, a step-obstacle map 114 based on theground height map 116, the step-obstacle map 114 identifying no-step regions 620 in theenvironment 8 where therobot 10 should not step. Atstep 1114, themethod 1100 includes generating, by thedata processing hardware 36, abody path 510 for movement of thebody 11 of therobot 10 when maneuvering therobot 10 in the environment based on the two-dimensional body-obstacle map 112. In some examples, thebody path 510 is based on no-body regions designated in the two-dimensional body-obstacle map 112. Atstep 1116, themethod 1100 includes generating, by thedata processing hardware 36, astep path 350 for movement of thelegs 12 of therobot 10 when maneuvering therobot 10 in theenvironment 8 based on thebody path 510, the body-obstacle map 112, the step-obstacle map 114, and theground height map 116. Thestep path 350 may be based on a nominal step pattern of a nominal gait for therobot 10 andstep constraints 342. Generating thestep path 350 for thelegs 12 of therobot 10, in some implementations, includes refining the generatedbody path 510. Thestep constraints 342, in some implementations, include at least one of: a threshold range of a center of pressure offset for eachleg 12 in contact with the ground surface, where the center of pressure offset indicates an acceptable amount of robot weight distribution for eachleg 12 at each step; whether thestep path 350 causes aleg 12 to step into a no-step region 213 f the step-obstacle map 114; whether thestep path 350 causes thebody 11 of therobot 10 to enter a body obstacle; whether thestep path 350 causes a self-collision of therobot 10; or a margin of space about any no-step region 213 of the step-obstacle map 114. Optionally, thestep constraints 342 include soft constraints or weighted constraints. - In some implementations, the
method 1100 includes filtering, by thedata processing hardware 36, the three-dimensional space occupancy map 200 to generate the two-dimensional body-obstacle map 112. The filtering may fill in gaps around incompletely observed obstacles and/or remove spurious data from themap 112. -
FIG. 12 is a flowchart of anotherexample method 1200 for terrain and constraint planning a step plan. The flowchart starts atoperation 1202 by receiving, atdata processing hardware 36 of arobot 10, a two-dimensional body-obstacle map 112, a step-obstacle map 114, and aground height map 116. Here, thedata processing hardware 36 of therobot 10 may obtain themaps FIG. 1 ) from the vision system 30 (FIG. 1 ) of therobot 10 and generate themaps image data 17, as discussed above with reference toFIG. 1 . Theground height map 116 identifies a height of theground surface 9 at each location near therobot 10. The step-obstacle map 114 identifies where in theenvironment 8 therobot 10 should not step. Themethod 1200, atstep 1204, includes generating, by thedata processing hardware 36, abody path 510 for movement of thebody 11 of therobot 10 when maneuvering therobot 10 in theenvironment 8 based on the two-dimensional body-obstacle map 112. Atstep 1206, themethod 1200 includes generating, by thedata processing hardware 36, astep path 350 for movement of thelegs 12 of therobot 10 when maneuvering therobot 10 in theenvironment 8 based on thebody path 510, the body-obstacle map 112, theground height map 116, and the step-obstacle map 114. -
FIG. 13 is schematic view of anexample computing device 1300 that may be used to implement the systems and methods described in this document (e.g.,data processing hardware 36 and memory hardware 20). The components shown here, their connections and relationships, and their functions, are meant to be exemplary only, and are not meant to limit implementations of the inventions described and/or claimed in this document. - The
computing device 1300 includes a processor 1310 (e.g., data processing hardware 36), memory 1320 (e.g., memory hardware 38), astorage device 1330, a high-speed interface/controller 1340 connecting to thememory 1320 and high-speed expansion ports 1350, and a low speed interface/controller 1360 connecting to alow speed bus 1370 and astorage device 1330. Each of thecomponents processor 1310 can process instructions for execution within thecomputing device 1300, including instructions stored in thememory 1320 or on thestorage device 1330 to display graphical information for a graphical user interface (GUI) on an external input/output device, such as display 1380 coupled tohigh speed interface 1340. In other implementations, multiple processors and/or multiple buses may be used, as appropriate, along with multiple memories and types of memory. Also,multiple computing devices 1300 may be connected, with each device providing portions of the necessary operations (e.g., as a server bank, a group of blade servers, or a multi-processor system). - The
memory 1320 stores information non-transitorily within thecomputing device 1300. Thememory 1320 may be a computer-readable medium, a volatile memory unit(s), or non-volatile memory unit(s). Thenon-transitory memory 1320 may be physical devices used to store programs (e.g., sequences of instructions) or data (e.g., program state information) on a temporary or permanent basis for use by thecomputing device 1300. Examples of non-volatile memory include, but are not limited to, flash memory and read-only memory (ROM)/programmable read-only memory (PROM)/erasable programmable read-only memory (EPROM)/electronically erasable programmable read-only memory (EEPROM) (e.g., typically used for firmware, such as boot programs). Examples of volatile memory include, but are not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), phase change memory (PCM) as well as disks or tapes. - The
storage device 1330 is capable of providing mass storage for thecomputing device 1300. In some implementations, thestorage device 1330 is a computer-readable medium. In various different implementations, thestorage device 1330 may be a floppy disk device, a hard disk device, an optical disk device, or a tape device, a flash memory or other similar solid state memory device, or an array of devices, including devices in a storage area network or other configurations. In additional implementations, a computer program product is tangibly embodied in an information carrier. The computer program product contains instructions that, when executed, perform one or more methods, such as those described above. The information carrier is a computer- or machine-readable medium, such as thememory 1320, thestorage device 1330, or memory onprocessor 1310. - The
high speed controller 1340 manages bandwidth-intensive operations for thecomputing device 1300, while thelow speed controller 1360 manages lower bandwidth-intensive operations. Such allocation of duties is exemplary only. In some implementations, the high-speed controller 1340 is coupled to thememory 1320 and to the high-speed expansion ports 1350, which may accept various expansion cards (not shown). In some implementations, the low-speed controller 1360 is coupled to thestorage device 1330 and a low-speed expansion port 1390. The low-speed expansion port 1390, which may include various communication ports (e.g., USB, Bluetooth, Ethernet, wireless Ethernet), may be coupled to one or more input/output devices, such as a keyboard, a pointing device, a scanner, or a networking device such as a switch or router, e.g., through a network adapter. - Various implementations of the systems and techniques described herein can be realized in digital electronic and/or optical circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various implementations can include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device.
- These computer programs (also known as programs, software, software applications or code) include machine instructions for a programmable processor, and can be implemented in a high-level procedural and/or object-oriented programming language, and/or in assembly/machine language. As used herein, the terms “machine-readable medium” and “computer-readable medium” refer to any computer program product, non-transitory computer readable medium, apparatus and/or device (e.g., magnetic discs, optical disks, memory, Programmable Logic Devices (PLDs)) used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term “machine-readable signal” refers to any signal used to provide machine instructions and/or data to a programmable processor.
- The processes and logic flows described in this specification can be performed by one or more programmable processors, also referred to as data processing hardware, executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit). Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random access memory or both. The essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such devices. Computer readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
- A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other implementations are within the scope of the following claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/652,318 US20220179420A1 (en) | 2018-10-12 | 2022-02-24 | Terrain Aware Step Planning System |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862744954P | 2018-10-12 | 2018-10-12 | |
US16/288,205 US11287826B2 (en) | 2018-10-12 | 2019-02-28 | Terrain aware step planning system |
US17/652,318 US20220179420A1 (en) | 2018-10-12 | 2022-02-24 | Terrain Aware Step Planning System |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/288,205 Continuation US11287826B2 (en) | 2018-10-12 | 2019-02-28 | Terrain aware step planning system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220179420A1 true US20220179420A1 (en) | 2022-06-09 |
Family
ID=70160091
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/288,205 Active 2039-10-02 US11287826B2 (en) | 2018-10-12 | 2019-02-28 | Terrain aware step planning system |
US17/652,318 Pending US20220179420A1 (en) | 2018-10-12 | 2022-02-24 | Terrain Aware Step Planning System |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/288,205 Active 2039-10-02 US11287826B2 (en) | 2018-10-12 | 2019-02-28 | Terrain aware step planning system |
Country Status (6)
Country | Link |
---|---|
US (2) | US11287826B2 (en) |
EP (1) | EP3864483B1 (en) |
JP (1) | JP7219812B2 (en) |
KR (2) | KR102492242B1 (en) |
CN (1) | CN113168184B (en) |
WO (1) | WO2020076418A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220057800A1 (en) * | 2015-05-12 | 2022-02-24 | Boston Dynamics, Inc. | Auto-Swing Height Adjustment |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020154764A (en) * | 2019-03-20 | 2020-09-24 | 東芝テック株式会社 | Information processing apparatus and reading system |
US11599128B2 (en) | 2020-04-22 | 2023-03-07 | Boston Dynamics, Inc. | Perception and fitting for a stair tracker |
US11548151B2 (en) * | 2019-04-12 | 2023-01-10 | Boston Dynamics, Inc. | Robotically negotiating stairs |
US11741336B2 (en) * | 2019-12-19 | 2023-08-29 | Google Llc | Generating and/or using training instances that include previously captured robot vision data and drivability labels |
US12094195B2 (en) | 2020-04-20 | 2024-09-17 | Boston Dynamics, Inc. | Identifying stairs from footfalls |
US12077229B2 (en) * | 2020-04-22 | 2024-09-03 | Boston Dynamics, Inc. | Stair tracking for modeled and perceived terrain |
CN112034847B (en) * | 2020-08-13 | 2021-04-13 | 广州仿真机器人有限公司 | Obstacle avoidance method and device of split type simulation robot with double walking modes |
CN112009591A (en) * | 2020-09-07 | 2020-12-01 | 德鲁动力科技(海南)有限公司 | Foot type robot |
CN112373596B (en) * | 2020-11-12 | 2024-04-19 | 腾讯科技(深圳)有限公司 | Bionic mechanical foot device and bionic machinery |
KR20220072146A (en) * | 2020-11-25 | 2022-06-02 | 삼성전자주식회사 | Electronic apparatus and controlling method thereof |
CN112561941B (en) * | 2020-12-07 | 2024-08-20 | 深圳银星智能集团股份有限公司 | Cliff detection method, cliff detection device and robot |
CN112587378B (en) * | 2020-12-11 | 2022-06-07 | 中国科学院深圳先进技术研究院 | Exoskeleton robot footprint planning system and method based on vision and storage medium |
CN112847356B (en) * | 2020-12-31 | 2022-05-20 | 国网智能科技股份有限公司 | Safety control method and system for foot type inspection robot of transformer substation |
CN114911221B (en) * | 2021-02-09 | 2023-11-28 | 北京小米机器人技术有限公司 | Robot control method and device and robot |
CN113253724B (en) * | 2021-04-30 | 2024-05-21 | 深圳市优必选科技股份有限公司 | Gait planning method and device, computer-readable storage medium and robot |
US20220390952A1 (en) * | 2021-06-04 | 2022-12-08 | Boston Dynamics, Inc. | Detecting negative obstacles |
CN113524190B (en) * | 2021-07-26 | 2022-07-29 | 深圳市优必选科技股份有限公司 | Robot foot end collision stability control method and device and foot type robot |
CN117940258A (en) * | 2021-09-15 | 2024-04-26 | 索尼集团公司 | Robot apparatus and robot control method |
CN113960566A (en) * | 2021-10-15 | 2022-01-21 | 杭州宇树科技有限公司 | 3D laser radar and sufficient robot |
DE102021131129A1 (en) | 2021-11-26 | 2023-06-01 | Navvis Gmbh | MOBILE DEVICE AND METHOD FOR DETECTING AN OBJECT SPACE |
CN116787450B (en) * | 2023-08-28 | 2023-10-31 | 南方电网电力科技股份有限公司 | Control method, device and equipment for walking of multi-legged robot stair |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090099689A1 (en) * | 2004-12-14 | 2009-04-16 | Honda Motor Co., Ltd. | Legged mobile robot and control program for the robot |
US7769491B2 (en) * | 2005-03-04 | 2010-08-03 | Sony Corporation | Obstacle avoiding apparatus, obstacle avoiding method, obstacle avoiding program, and mobile robot apparatus |
US7865267B2 (en) * | 2003-09-19 | 2011-01-04 | Sony Corporation | Environment recognizing device, environment recognizing method, route planning device, route planning method and robot |
US7912583B2 (en) * | 2004-06-25 | 2011-03-22 | Sony Corporation | Environment map building method, environment map building apparatus and mobile robot apparatus |
US20180173242A1 (en) * | 2016-12-21 | 2018-06-21 | X Development Llc | Pre-Computation of Kinematically Feasible Roadmaps |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3176701B2 (en) * | 1992-04-15 | 2001-06-18 | 本田技研工業株式会社 | Mobile object current position recognition processor |
JP4583098B2 (en) * | 2003-08-11 | 2010-11-17 | 学校法人早稲田大学 | Robot motion pattern creation program, motion pattern creation device, and robot using the same. |
JP5067215B2 (en) * | 2008-03-17 | 2012-11-07 | トヨタ自動車株式会社 | Mobile robot and environmental map generation method |
JP4998506B2 (en) * | 2009-04-22 | 2012-08-15 | トヨタ自動車株式会社 | Robot control device, robot control method, and legged robot |
KR101772977B1 (en) * | 2010-10-07 | 2017-08-31 | 삼성전자주식회사 | Moving robot and map-building method thereof |
JP6015474B2 (en) * | 2013-02-05 | 2016-10-26 | トヨタ自動車株式会社 | Control method for legged robot and legged robot |
CN103413313B (en) * | 2013-08-19 | 2016-08-10 | 国家电网公司 | The binocular vision navigation system of electrically-based robot and method |
US9594377B1 (en) * | 2015-05-12 | 2017-03-14 | Google Inc. | Auto-height swing adjustment |
US9561592B1 (en) | 2015-05-15 | 2017-02-07 | Google Inc. | Ground plane compensation for legged robots |
US9586316B1 (en) * | 2015-09-15 | 2017-03-07 | Google Inc. | Determination of robotic step path |
US9789607B1 (en) | 2015-11-03 | 2017-10-17 | Google Inc. | Achieving a target gait in a legged robot based on steering commands |
US9868210B1 (en) * | 2015-12-30 | 2018-01-16 | Google Inc. | Methods and systems for planning a body position of a robotic device |
CN108088445A (en) * | 2016-11-22 | 2018-05-29 | 广州映博智能科技有限公司 | 3 d grid map path planning system and method based on octree representation |
CN107167141B (en) * | 2017-06-15 | 2020-08-14 | 同济大学 | Robot autonomous navigation system based on double laser radars |
JP7156305B2 (en) * | 2017-11-20 | 2022-10-19 | ソニーグループ株式会社 | CONTROL DEVICE, CONTROL METHOD, PROGRAM, AND MOVING OBJECT |
-
2019
- 2019-02-28 US US16/288,205 patent/US11287826B2/en active Active
- 2019-08-15 WO PCT/US2019/046646 patent/WO2020076418A1/en unknown
- 2019-08-15 KR KR1020217010325A patent/KR102492242B1/en active IP Right Grant
- 2019-08-15 JP JP2021517959A patent/JP7219812B2/en active Active
- 2019-08-15 KR KR1020237002441A patent/KR102533690B1/en active IP Right Grant
- 2019-08-15 CN CN201980078255.0A patent/CN113168184B/en active Active
- 2019-08-15 EP EP19762018.0A patent/EP3864483B1/en active Active
-
2022
- 2022-02-24 US US17/652,318 patent/US20220179420A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7865267B2 (en) * | 2003-09-19 | 2011-01-04 | Sony Corporation | Environment recognizing device, environment recognizing method, route planning device, route planning method and robot |
US7912583B2 (en) * | 2004-06-25 | 2011-03-22 | Sony Corporation | Environment map building method, environment map building apparatus and mobile robot apparatus |
US20090099689A1 (en) * | 2004-12-14 | 2009-04-16 | Honda Motor Co., Ltd. | Legged mobile robot and control program for the robot |
US7769491B2 (en) * | 2005-03-04 | 2010-08-03 | Sony Corporation | Obstacle avoiding apparatus, obstacle avoiding method, obstacle avoiding program, and mobile robot apparatus |
US20180173242A1 (en) * | 2016-12-21 | 2018-06-21 | X Development Llc | Pre-Computation of Kinematically Feasible Roadmaps |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220057800A1 (en) * | 2015-05-12 | 2022-02-24 | Boston Dynamics, Inc. | Auto-Swing Height Adjustment |
US11726481B2 (en) * | 2015-05-12 | 2023-08-15 | Boston Dynamics, Inc. | Auto-swing height adjustment |
US20230333559A1 (en) * | 2015-05-12 | 2023-10-19 | Boston Dynamics, Inc. | Auto swing-height adjustment |
US12130625B2 (en) * | 2015-05-12 | 2024-10-29 | Boston Dynamics, Inc. | Auto swing-height adjustment |
Also Published As
Publication number | Publication date |
---|---|
EP3864483B1 (en) | 2024-04-03 |
JP7219812B2 (en) | 2023-02-08 |
CN113168184B (en) | 2024-08-02 |
WO2020076418A8 (en) | 2021-04-22 |
KR102533690B1 (en) | 2023-05-17 |
EP3864483A1 (en) | 2021-08-18 |
US20200117198A1 (en) | 2020-04-16 |
KR20230019497A (en) | 2023-02-08 |
JP2022504039A (en) | 2022-01-13 |
KR102492242B1 (en) | 2023-01-26 |
CN113168184A (en) | 2021-07-23 |
WO2020076418A1 (en) | 2020-04-16 |
KR20210068446A (en) | 2021-06-09 |
US11287826B2 (en) | 2022-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220179420A1 (en) | Terrain Aware Step Planning System | |
US11774247B2 (en) | Intermediate waypoint generator | |
KR102230144B1 (en) | Artificial intelligence deep learning target detection and velocity potential field algorithm based obstacle avoidance and autonomous navigation technique | |
JP7425854B2 (en) | Constrained mobility mapping | |
US11999423B2 (en) | Leg swing trajectories | |
WO2020209888A1 (en) | Robotically negotiating stairs | |
US11712802B2 (en) | Construction constrained motion primitives from robot maps | |
US11599128B2 (en) | Perception and fitting for a stair tracker | |
CN113432610B (en) | Robot passing planning method and device, robot and storage medium | |
JP6786922B2 (en) | Information processing equipment, information processing methods and information processing programs | |
CN118915800A (en) | Terrain-aware step planning system | |
US11927961B2 (en) | Constrained robot autonomy language | |
Shi et al. | Motion planning by adding geometric constraint of roadside to beam curvature method | |
Rosales | Obstacle avoidance for mobile robots using lidar sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BOSTON DYNAMICS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WHITMAN, ERIC;FAY, GINA CHRISTINE;REEL/FRAME:059089/0139 Effective date: 20190228 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |