US20220167909A1 - Systems and methods for measuring a quantity of breast milk consumed by a baby - Google Patents

Systems and methods for measuring a quantity of breast milk consumed by a baby Download PDF

Info

Publication number
US20220167909A1
US20220167909A1 US17/674,269 US202217674269A US2022167909A1 US 20220167909 A1 US20220167909 A1 US 20220167909A1 US 202217674269 A US202217674269 A US 202217674269A US 2022167909 A1 US2022167909 A1 US 2022167909A1
Authority
US
United States
Prior art keywords
infrared light
intensity
feeding
human stomach
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/674,269
Inventor
Brittany Molkenthin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US17/674,269 priority Critical patent/US20220167909A1/en
Publication of US20220167909A1 publication Critical patent/US20220167909A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4222Evaluating particular parts, e.g. particular organs
    • A61B5/4238Evaluating particular parts, e.g. particular organs stomach
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • A61B5/6805Vests
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/04Babies, e.g. for SIDS detection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency

Definitions

  • the number one barrier to breastfeeding is the question of, how does one know if the infant is receiving enough at feedings. According to the Surgeon General, nearly 50% of women stop breastfeeding within the first two weeks postpartum because of the apprehension of the amount of breast milk that the infant is receiving.
  • Breast pumps a large sector of the breastfeeding supplies market, also quantify the amount of breast milk that an infant can receive during feeding.
  • Some disadvantages of breastfeeding pumps include that they interfere with the actual breastfeeding experience, and there is increased risk of contamination, bacteria, unsafe milk practices, and decreased benefits from the milk due to the freezing and thawing.
  • the utilization of breast pumps does not decrease the risk of ovarian cancer, breast cancer, diabetes, and metabolic syndrome for the mother unlike the act of breastfeeding.
  • MilksenseTM is another device which claims, as it is placed on the mother's breast before, during and after feeding, to measure breast tissue resistance and correlate it to the amount of breast milk that is ingested during feedings.
  • the disadvantages to this device are that it does not actually directly measure breast milk intake, the “let down” reflex may cause a margin of error, and there is a large variance of breast tissue amongst women.
  • Breast milk scales are another technological invention that aim to solve calculating how much breast milk was ingested during feedings.
  • a baby is weighed before and after to correlate intake.
  • the disadvantages of this solution include not directly measuring intake and infant voiding, spitting up, etc. during feedings which leads to more room for error.
  • the system includes a substrate, and at least one infrared light source positioned and at least one infrared light intensity sensor positioned on said substrate.
  • the light sensor is configured to detect intensities of infrared light incident from the human stomach.
  • the system includes a light intensity calculation module configured to identify an initial intensity of infrared light incident from the human stomach at a first instance, at least one feeding intensity of infrared light incident from the human stomach at a second instance, and the ratio of the at least one feeding intensity to the initial intensity.
  • a volume calculation module then outputs a value for the volume ingested into the human stomach between the first instance and the second instance that corresponds to the ratio of the at least one feeding intensity to the initial intensity.
  • Some embodiments of the present disclosure include a method for quantifying a volume ingested by a human during a feeding providing at least one infrared light source and at least one infrared light intensity sensor.
  • infrared light is emitted from at least one infrared light source to a human stomach.
  • an initial intensity of infrared light incident from the human stomach at the beginning of a feeding and a feeding intensity of infrared light incident from the human stomach at the end of the feeding are measured.
  • a volume ingested into the human stomach corresponds to the ratio of the feeding intensity to the initial intensity is calculated and displayed to a user, e.g., a parent, doctor, etc.
  • FIG. 1A is a schematic drawing of a system for quantifying a volume ingested by a human during a feeding according to some embodiments of the present disclosure
  • FIG. 1B is a schematic drawing of a system for quantifying a volume ingested by a human during a feeding according to some embodiments of the present disclosure
  • FIG. 2 is a schematic drawing of a system for quantifying a volume ingested by a human during a feeding according to some embodiments of the present disclosure.
  • FIG. 3 is a chart of a method of quantifying a volume ingested by a human during a feeding according to some embodiments of the present disclosure
  • HIPAA Health Insurance Portability and Accountability Act
  • FIG. 1A some aspects of the disclosed subject matter are directed to a system 100 for quantifying a volume ingested by a human during a feeding. While the present disclosure shows and describes an exemplary embodiment of system 100 wherein the human is a baby and the volume ingested is breast milk, system 100 is not limited in this regard.
  • the term “feeding” is used to refer to the ingestion of milk or milk-like liquids and solids, e.g., breast milk.
  • system 100 includes at least one substrate 110 .
  • the substrate includes one or more surfaces configured to comfortably interface with human skin. In some embodiments, at least one of the surfaces interfaces substantially uninterruptedly with a surface of the human skin.
  • substrate 110 includes a disk, spheroid body, polyhedral body, bib, shirt, blouse, dress, frock, onesie, or a combination thereof.
  • the substrate and/or the one or more substrate surfaces are composed of a biocompatible material.
  • the substrate is about 1 inch to about 2 inches in diameter.
  • the contact patch of the at least one of the surface with the surface of the skin is about 1 inch to about 2 inches.
  • one or more infrared light sources 120 is positioned on substrate 110 and emit an amount of infrared light.
  • the infrared light source 120 is configured to provide infrared light to the skin proximate a human stomach so that at least a portion of the light permeates the stomach lining and interacts with the stomach contents.
  • the infrared light sources 120 can be of any number, layout, and/or orientation so long as light is delivered through the skin to the stomach in the manner described above.
  • one or more infrared light sources are arranged in a grid, a line, a circle, etc.
  • substrate 110 is applied to the surface of the skin proximate the stomach, such that the surface of the skin and one or more surfaces of substrate 110 upon which infrared light sources 120 are disposed are abutting.
  • the infrared light from infrared light source 120 is emitted substantially perpendicular to the surface of the skin.
  • the infrared light from infrared light source 120 is emitted at an angle to the surface of the skin.
  • the infrared light from infrared light source 120 is emitted substantially perpendicular to the surface of substrate 110 on which infrared light source 120 is disposed.
  • the infrared light from infrared light source 120 is oriented at an angle to the surface of substrate 110 on which infrared light source 120 is disposed.
  • infrared light source 120 is one or more infrared LEDs.
  • infrared light source 120 emits light at a wavelength of about 800 nm to about 2000 nm. In some embodiments, infrared light source 120 emits light at a wavelength of about 800 nm to about 1000 nm. In some embodiments, infrared light source 120 emits light at a wavelength of about 1000 nm to about 1200 nm.
  • infrared light source 120 emits light at a wavelength of about 1050 nm to about 1250 nm. In some embodiments, infrared light source 120 emits light at a wavelength of about 1600 nm to about 2000 nm. In some embodiments, infrared light source 120 emits light at a wavelength of about 850 nm to about 950 nm. In some embodiments, infrared light source 120 emits light at a wavelength of about 900 nm to about 1000 nm. In some embodiments, infrared light source 120 emits light at a wavelength of about 1200 nm to about 1700 nm.
  • infrared light source 120 emits light at a wavelength of about 850 nm, 880 nm, 940 nm, 1050 nm, 1250 nm, 1550 nm, 1650 nm, or combinations thereof. In some embodiments, infrared light source 120 emits light at a wavelength of about 940 nm and about 1250 nm. In some embodiments, the overall intensity of infrared light emitted by infrared light sources 120 is safe for prolonged use with humans, particularly babies. In some embodiments, the overall intensity of infrared light emitted by infrared light sources 120 is less than about 530 W/m 2 .
  • At least one infrared light intensity sensor 130 is positioned on substrate 110 and configured to detect intensities of infrared light incident from the human stomach. In some embodiments, infrared light intensity sensor 130 is configured to detect changes in infrared light intensity during the course of a feeding, as will be discussed in greater detail below. In some embodiments, infrared light intensity sensor 130 is a High Dynamic Range Digital light sensor. In some embodiments, infrared light intensity sensor 130 is an Adafruit® TSL light sensor. In some embodiments, infrared light intensity sensor 130 is a TSL2591 light sensor. In some embodiments, infrared light intensity sensor 130 is positioned on the same substrate 110 as infrared light source 120 .
  • infrared light intensity sensor 130 is positioned on another substrate 110 from infrared light source 120 . In some embodiments, infrared light intensity sensor 130 is positioned adjacent to infrared light source 120 . In some embodiments, infrared light source 120 and infrared light intensity sensor 130 are positioned on substrate 110 such that each interface with the skin proximate the human stomach.
  • system 100 includes a barrier 140 positioned to limit detection of infrared light directly from infrared light source 120 by infrared intensity sensor 130 .
  • barrier 140 includes a reflective layer 140 A.
  • system 100 includes one or more additional sensors including a heart rate sensor, a respiratory sensor, a temperature sensor, etc., or a combination thereof.
  • system 100 includes a non-transitory computer storage medium 200 in communication with infrared light intensity sensor 130 and encoded with one or more computer programs 210 for outputting a volume ingested by a human.
  • Non-transitory computer storage medium 200 includes one or more processing units and system memory.
  • the non-transitory computer storage medium 200 is any suitable type of computer for executing one or more computer programs 210 to facilitate acquisition and analysis of light intensity data and export of ingested volume data, as is known to those having skill in the art.
  • one or more computer programs 210 include a light intensity calculation module 220 configured to identify an initial intensity of infrared light incident from the human stomach.
  • the initial intensity establishes a baseline value of infrared light incident from the stomach, a value that will change as the baby ingests milk during the course of the feeding.
  • the initial light intensity is measured at a first instance.
  • the first instance occurs t ⁇ 0.
  • light intensity calculation module 220 is configured to identify at least one feeding intensity of infrared light incident from the human stomach.
  • the ratio of the feeding intensity to the initial intensity is the measure of how the ingestion of a volume, i.e., e.g., the breast milk, is affecting the quantity of infrared light incident from the human stomach.
  • light intensity calculation module 220 calculates a plurality of these ratios corresponding to a plurality of feeding intensity measurements taken during a feeding.
  • feeding intensity measurements are taken continuously, as will be discussed in greater detail below.
  • the ratio of the feeding intensity to the initial intensity is calculated continuously.
  • one or more computer programs 210 include a volume calculation module 230 configured to output a value for the volume ingested into the human stomach between the first instance and the second instance that corresponds to the ratio of the at least one feeding intensity to the initial intensity at the second instance, as will be discussed in greater detail below.
  • this volume value is calculated for each ratio of the feeding intensity to the initial intensity that is calculated.
  • the volume value is also calculated continuously.
  • the volume value is output to a computer device 240 for display to a user, e.g., a doctor, nurse, parent, etc.
  • computer device 240 is a smart phone, tablet computer, desktop computer, personal digital assistant (“PDA”), and the like.
  • system 100 includes a microcontroller system 250 providing power to and control over the infrared light intensity sensor 130 and infrared light source 120 .
  • microcontrollers system 250 includes a data communication module 260 configured to enable communication of calculated light intensities and calculated volumes to the one or more databases from the light intensity calculation module and the volume calculation module.
  • microcontroller system 250 controls the intensity of infrared light source 120 .
  • microcontroller 250 controls when infrared light source 120 is set to “ON,” e.g., so that the light source need not be on during the entire duration of a feeding.
  • system 100 includes one or more databases 270 including historical light intensity data from light intensity calculation module 220 and volume ingestion data from volume calculation module 230 .
  • the microcontroller system 250 can be any suitable controller setup suitable for powering and controlling infrared light intensity sensor 130 and infrared light source 120 .
  • microcontroller system 250 is a LilypadTM (Arduino, LLC, Somerville, Mass.).
  • microcontroller system 250 and non-transitory computer storage medium 200 are one and the same.
  • the volume ingested at a given instance during a feeding is correlated with the ratio of the feeding intensity to the initial intensity.
  • the correlation between the volume ingested and the light intensities measured by infrared light intensity sensor 130 is defined by the following Formula I:
  • system 100 is calibrated for each individual human, e.g., each baby that uses the system. In some embodiments, the calibration is based on age, weight, waist size, etc., or combinations thereof.
  • Formula I was determined experimentally as follows.
  • the light source used was an infrared LED at 940 nm and the light sensor was an Adafruit® High Dynamic Range Digital Light Sensor TSL2591 (Adafruit Industries, New York, N.Y.).
  • the source and receiver are placed adjacent to each other across the stomach of a phantom baby.
  • the receiver was connected to a LilyPadTM having a power source, which returned the volume of milk in the infant stomach to the computer.
  • the baby doll used was fitted with a clear plastic bag to represent the stomach of the phantom baby.
  • the plastic bag was filled with 150 mL of water to simplify the contents of the human stomach.
  • the plastic stomach region of the doll was covered by porcine skin to represent subcutaneous tissue.
  • Some aspects of the present disclosure are directed to a method 300 for quantifying a volume ingested by a human during a feeding.
  • at 302 at least one infrared light source and at least one infrared light intensity sensor are provided.
  • the at least one infrared light source is positioned proximate a human stomach.
  • the at least one infrared light intensity sensor is positioned to detect intensities of infrared light provided by the at least one infrared light source and incident from the human stomach.
  • infrared light is emitted from the at least one infrared light source to a human stomach.
  • infrared light is emitted from the at least one infrared light source to the skin proximate the human stomach.
  • the infrared light is emitted at a wavelength of about 940 nm.
  • an initial intensity of infrared light incident from the human stomach is measured with the at least one infrared light intensity sensor at a first instance.
  • measured amount of infrared light is the sum total of all infrared light measured by one or more infrared light sensors.
  • the first instance is prior to, at, or near the beginning of a feeding.
  • at least one feeding intensity of infrared light incident is measured from the human stomach with the at least one infrared light intensity sensor at a second instance.
  • the second instance is during, near the end, at the end, or after the end of feeding.
  • the feeding intensity of infrared light is calculated continuously.
  • a volume ingested into the human stomach between the first instance and the second instance that corresponds to the ratio of the at least one feeding intensity to the initial intensity is calculated.
  • the volume ingested is calculated continuously.
  • the volume ingested is defined by Formula I.
  • the volume ingested is displayed to a user, e.g., via a computer device.
  • Methods and systems of the present disclosure advantageously provide an accurate system for measuring the actual volume of milk ingested by a baby during a breastfeeding session.
  • the accuracy of the formula for converting measured infrared light intensities to volume provides the user with confidence in the data reported to the user. That the incident infrared light measured by the infrared light sensor is not affected by natural processes such as swallowing air, voiding during feedings, and spitting up that occur during feedings provides further confidence.
  • the systems and methods are also truly non-invasive. There are no wires placed directly on the baby and there is no interference with the physical breastfeeding process, increasing comfort for both mom and baby. Finally, the systems and methods visualize the feeding in real-time, allowing parent to confirm whether or not a feeding is progressing successfully.
  • Feeding data is also stored and tracked so that parents and other individuals, e.g., the baby's doctor, can view historical trends in the baby's feeding over time.
  • the systems and methods of the present disclosure are particularly advantageous for premature babies, those born with complications, or those living in third world countries with limited resources.

Abstract

The system includes at least one infrared light intensity sensor positioned on substrate to measure infrared light incident from a baby's stomach during a feeding. The infrared light is provided by an infrared light source. An initial intensity of infrared light incident from the human stomach is measured at the beginning of the feeding. A feeding intensity of infrared light incident from the human stomach is measured at the end of the feeding. The ratio of these infrared intensity measurements are used to calculate a value for the volume ingested into the human stomach during the feeding. The infrared light intensity measurements can be taken continuously to provide a real-time report of how the feeding is progressing, such as to a parent or doctor. The light source and sensor can be incorporated into an article of clothing to provide non-invasive measurements that do not physically obstruct the feeding.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation patent application of U.S. Utility patent application Ser. No. 16/174,792, filed Oct. 30, 2018, which claims the benefit of U.S. Provisional Application Ser. No. 62/579,499, filed Oct. 31, 2017, which are incorporated herein by reference in their entireties, including any figures, tables, and drawings.
  • BACKGROUND
  • The number one barrier to breastfeeding is the question of, how does one know if the infant is receiving enough at feedings. According to the Surgeon General, nearly 50% of women stop breastfeeding within the first two weeks postpartum because of the apprehension of the amount of breast milk that the infant is receiving.
  • Studies have shown that there is a correlation between breastfeeding and the preventive measure it poses for infectious diseases. There is a substantial increase in hospitalization for infant's formula-fed versus infants that were breast-fed for respiratory tract infections. Through meta-analysis, sudden infant death syndrome has also shown to have a higher risk for infants formula-fed than those breast-fed. Breastfeeding has also shown to provide short-term protection against childhood obesity. Not only are there many benefits for the infant to be breast-fed, but also many for the mother. These benefits include decreased risk for premenopausal breast cancer, possible postmenopausal breast cancer, suppression of maternal infertility, rebalancing of postpartum hormonal changes, and possible protection of ovarian cancer.
  • Current systems give an estimate of breast milk intake with a large margin of error. Breast pumps, a large sector of the breastfeeding supplies market, also quantify the amount of breast milk that an infant can receive during feeding. Some disadvantages of breastfeeding pumps include that they interfere with the actual breastfeeding experience, and there is increased risk of contamination, bacteria, unsafe milk practices, and decreased benefits from the milk due to the freezing and thawing. There is also an increased risk of mastitis, nipple wounds, and trauma. The utilization of breast pumps does not decrease the risk of ovarian cancer, breast cancer, diabetes, and metabolic syndrome for the mother unlike the act of breastfeeding.
  • Some attempts have been made to solve the problem of calculating breast milk intake. One of the newest technologies on the market is Momsense® (Momsense Ltd., Ramat Gan, Israel). Momsense® claims to calculate sips to correlate intake via audio sounds. A sensor device is placed on the infant's jawline during feedings. A drawback of this technology is that research shows swallows alone only account for 50.8% of the variation of intake. This device also places wires on the infant's face, which is uncomfortable and disruptive for the feeding child. Another disadvantage is that infants often spit up, swallow air, or suck without actually feeding, and void during feeds.
  • Milksense™ is another device which claims, as it is placed on the mother's breast before, during and after feeding, to measure breast tissue resistance and correlate it to the amount of breast milk that is ingested during feedings. The disadvantages to this device are that it does not actually directly measure breast milk intake, the “let down” reflex may cause a margin of error, and there is a large variance of breast tissue amongst women.
  • Breast milk scales are another technological invention that aim to solve calculating how much breast milk was ingested during feedings. A baby is weighed before and after to correlate intake. However, the disadvantages of this solution include not directly measuring intake and infant voiding, spitting up, etc. during feedings which leads to more room for error.
  • SUMMARY
  • Some embodiments of the disclosed subject matter are directed to a system for quantifying a volume ingested by a human during a feeding. In some embodiments, the system includes a substrate, and at least one infrared light source positioned and at least one infrared light intensity sensor positioned on said substrate. In some embodiments, the light sensor is configured to detect intensities of infrared light incident from the human stomach. In some embodiments, the system includes a light intensity calculation module configured to identify an initial intensity of infrared light incident from the human stomach at a first instance, at least one feeding intensity of infrared light incident from the human stomach at a second instance, and the ratio of the at least one feeding intensity to the initial intensity. In some embodiments, a volume calculation module then outputs a value for the volume ingested into the human stomach between the first instance and the second instance that corresponds to the ratio of the at least one feeding intensity to the initial intensity.
  • Some embodiments of the present disclosure include a method for quantifying a volume ingested by a human during a feeding providing at least one infrared light source and at least one infrared light intensity sensor. In some embodiments, infrared light is emitted from at least one infrared light source to a human stomach. In some embodiments, an initial intensity of infrared light incident from the human stomach at the beginning of a feeding and a feeding intensity of infrared light incident from the human stomach at the end of the feeding are measured. In some embodiments, a volume ingested into the human stomach corresponds to the ratio of the feeding intensity to the initial intensity is calculated and displayed to a user, e.g., a parent, doctor, etc.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The drawings show embodiments of the disclosed subject matter for the purpose of illustrating the invention. However, it should be understood that the present application is not limited to the precise arrangements and instrumentalities shown in the drawings, wherein:
  • FIG. 1A is a schematic drawing of a system for quantifying a volume ingested by a human during a feeding according to some embodiments of the present disclosure;
  • FIG. 1B is a schematic drawing of a system for quantifying a volume ingested by a human during a feeding according to some embodiments of the present disclosure;
  • FIG. 2 is a schematic drawing of a system for quantifying a volume ingested by a human during a feeding according to some embodiments of the present disclosure; and
  • FIG. 3 is a chart of a method of quantifying a volume ingested by a human during a feeding according to some embodiments of the present disclosure
  • DETAILED DESCRIPTION
  • It is recognized that certain limitations and features described in the present disclosure, such as light sources or light sensors, may need to be modified or removed in order to be in compliance with applicable local laws. By way of example, in the United States, certain limitations and features may need to be modified or removed in order to be in compliance with the Health Insurance Portability and Accountability Act (HIPAA).
  • Referring now to FIG. 1A, some aspects of the disclosed subject matter are directed to a system 100 for quantifying a volume ingested by a human during a feeding. While the present disclosure shows and describes an exemplary embodiment of system 100 wherein the human is a baby and the volume ingested is breast milk, system 100 is not limited in this regard. As used herein, the term “feeding” is used to refer to the ingestion of milk or milk-like liquids and solids, e.g., breast milk.
  • In some embodiments, system 100 includes at least one substrate 110. The substrate includes one or more surfaces configured to comfortably interface with human skin. In some embodiments, at least one of the surfaces interfaces substantially uninterruptedly with a surface of the human skin. In some embodiments, substrate 110 includes a disk, spheroid body, polyhedral body, bib, shirt, blouse, dress, frock, onesie, or a combination thereof. In some embodiments, the substrate and/or the one or more substrate surfaces are composed of a biocompatible material. In some embodiments, the substrate is about 1 inch to about 2 inches in diameter. In some embodiments, the contact patch of the at least one of the surface with the surface of the skin is about 1 inch to about 2 inches.
  • In some embodiments, one or more infrared light sources 120 is positioned on substrate 110 and emit an amount of infrared light. The infrared light source 120 is configured to provide infrared light to the skin proximate a human stomach so that at least a portion of the light permeates the stomach lining and interacts with the stomach contents. The infrared light sources 120 can be of any number, layout, and/or orientation so long as light is delivered through the skin to the stomach in the manner described above. In some embodiments, one or more infrared light sources are arranged in a grid, a line, a circle, etc.
  • When in use, in some embodiments, substrate 110 is applied to the surface of the skin proximate the stomach, such that the surface of the skin and one or more surfaces of substrate 110 upon which infrared light sources 120 are disposed are abutting. In some embodiments, the infrared light from infrared light source 120 is emitted substantially perpendicular to the surface of the skin. In some embodiments, the infrared light from infrared light source 120 is emitted at an angle to the surface of the skin. In some embodiments, the infrared light from infrared light source 120 is emitted substantially perpendicular to the surface of substrate 110 on which infrared light source 120 is disposed. In some embodiments, the infrared light from infrared light source 120 is oriented at an angle to the surface of substrate 110 on which infrared light source 120 is disposed. In some embodiments, infrared light source 120 is one or more infrared LEDs. In some embodiments, infrared light source 120 emits light at a wavelength of about 800 nm to about 2000 nm. In some embodiments, infrared light source 120 emits light at a wavelength of about 800 nm to about 1000 nm. In some embodiments, infrared light source 120 emits light at a wavelength of about 1000 nm to about 1200 nm. In some embodiments, infrared light source 120 emits light at a wavelength of about 1050 nm to about 1250 nm. In some embodiments, infrared light source 120 emits light at a wavelength of about 1600 nm to about 2000 nm. In some embodiments, infrared light source 120 emits light at a wavelength of about 850 nm to about 950 nm. In some embodiments, infrared light source 120 emits light at a wavelength of about 900 nm to about 1000 nm. In some embodiments, infrared light source 120 emits light at a wavelength of about 1200 nm to about 1700 nm. In some embodiments, infrared light source 120 emits light at a wavelength of about 850 nm, 880 nm, 940 nm, 1050 nm, 1250 nm, 1550 nm, 1650 nm, or combinations thereof. In some embodiments, infrared light source 120 emits light at a wavelength of about 940 nm and about 1250 nm. In some embodiments, the overall intensity of infrared light emitted by infrared light sources 120 is safe for prolonged use with humans, particularly babies. In some embodiments, the overall intensity of infrared light emitted by infrared light sources 120 is less than about 530 W/m2.
  • In some embodiments, at least one infrared light intensity sensor 130 is positioned on substrate 110 and configured to detect intensities of infrared light incident from the human stomach. In some embodiments, infrared light intensity sensor 130 is configured to detect changes in infrared light intensity during the course of a feeding, as will be discussed in greater detail below. In some embodiments, infrared light intensity sensor 130 is a High Dynamic Range Digital light sensor. In some embodiments, infrared light intensity sensor 130 is an Adafruit® TSL light sensor. In some embodiments, infrared light intensity sensor 130 is a TSL2591 light sensor. In some embodiments, infrared light intensity sensor 130 is positioned on the same substrate 110 as infrared light source 120. In some embodiments, infrared light intensity sensor 130 is positioned on another substrate 110 from infrared light source 120. In some embodiments, infrared light intensity sensor 130 is positioned adjacent to infrared light source 120. In some embodiments, infrared light source 120 and infrared light intensity sensor 130 are positioned on substrate 110 such that each interface with the skin proximate the human stomach.
  • Referring now to FIG. 1B, in some embodiments, system 100 includes a barrier 140 positioned to limit detection of infrared light directly from infrared light source 120 by infrared intensity sensor 130. In some embodiments, barrier 140 includes a reflective layer 140A. In some embodiments, system 100 includes one or more additional sensors including a heart rate sensor, a respiratory sensor, a temperature sensor, etc., or a combination thereof.
  • Referring now to FIG. 2, system 100 includes a non-transitory computer storage medium 200 in communication with infrared light intensity sensor 130 and encoded with one or more computer programs 210 for outputting a volume ingested by a human. Non-transitory computer storage medium 200 includes one or more processing units and system memory. The non-transitory computer storage medium 200 is any suitable type of computer for executing one or more computer programs 210 to facilitate acquisition and analysis of light intensity data and export of ingested volume data, as is known to those having skill in the art.
  • In some embodiments, one or more computer programs 210 include a light intensity calculation module 220 configured to identify an initial intensity of infrared light incident from the human stomach. The initial intensity establishes a baseline value of infrared light incident from the stomach, a value that will change as the baby ingests milk during the course of the feeding. In some embodiments, the initial light intensity is measured at a first instance. In some embodiments, the feeding begins at a time t=0. In some embodiments, the first instance occurs t<0. In some embodiments, the first instance occurs t=0. In some embodiments, the first instance occurs just after t=0. In some embodiments, light intensity calculation module 220 is configured to identify at least one feeding intensity of infrared light incident from the human stomach. In some embodiments, the feeding intensity is measured at a second instance. In some embodiments, a plurality of feeding intensities are measured during the course of a feeding. In some embodiments, the feeding stops at an endtime (t=E). In some embodiments, the second instance occurs at t≥0. In some embodiments, the second instance occurs at t≤E. In some embodiments, the second instance occurs just before t=E. In some embodiments, the second instance occurs at t=E. In some embodiments, light intensity calculation module 220 is configured to determine a ratio of the feeding intensity to the initial intensity. The ratio of the feeding intensity to the initial intensity is the measure of how the ingestion of a volume, i.e., e.g., the breast milk, is affecting the quantity of infrared light incident from the human stomach. In some embodiments, light intensity calculation module 220 calculates a plurality of these ratios corresponding to a plurality of feeding intensity measurements taken during a feeding. In some embodiments, feeding intensity measurements are taken continuously, as will be discussed in greater detail below. In some embodiments, the ratio of the feeding intensity to the initial intensity is calculated continuously.
  • In some embodiments, one or more computer programs 210 include a volume calculation module 230 configured to output a value for the volume ingested into the human stomach between the first instance and the second instance that corresponds to the ratio of the at least one feeding intensity to the initial intensity at the second instance, as will be discussed in greater detail below. In some embodiments, this volume value is calculated for each ratio of the feeding intensity to the initial intensity that is calculated. In some embodiments where the ratio of the feeding intensity to the initial intensity is calculated continuously, the volume value is also calculated continuously. In some embodiments, the volume value is output to a computer device 240 for display to a user, e.g., a doctor, nurse, parent, etc. In some embodiments, computer device 240 is a smart phone, tablet computer, desktop computer, personal digital assistant (“PDA”), and the like.
  • In some embodiments, system 100 includes a microcontroller system 250 providing power to and control over the infrared light intensity sensor 130 and infrared light source 120. In some embodiments, microcontrollers system 250 includes a data communication module 260 configured to enable communication of calculated light intensities and calculated volumes to the one or more databases from the light intensity calculation module and the volume calculation module. In some embodiments, microcontroller system 250 controls the intensity of infrared light source 120. In some embodiments, microcontroller 250 controls when infrared light source 120 is set to “ON,” e.g., so that the light source need not be on during the entire duration of a feeding.
  • In some embodiments, system 100 includes one or more databases 270 including historical light intensity data from light intensity calculation module 220 and volume ingestion data from volume calculation module 230. The microcontroller system 250 can be any suitable controller setup suitable for powering and controlling infrared light intensity sensor 130 and infrared light source 120. In some embodiments, microcontroller system 250 is a Lilypad™ (Arduino, LLC, Somerville, Mass.). In some embodiments, microcontroller system 250 and non-transitory computer storage medium 200 are one and the same.
  • The volume ingested at a given instance during a feeding is correlated with the ratio of the feeding intensity to the initial intensity. In some embodiments, the correlation between the volume ingested and the light intensities measured by infrared light intensity sensor 130 is defined by the following Formula I:

  • V=(log(I/I o)+0.0036)/0.0007  Formula I
  • wherein Io is the initial intensity of infrared light incident from the human stomach and I is the at least one feeding intensity of infrared light incident from the human stomach. In some embodiments, system 100 is calibrated for each individual human, e.g., each baby that uses the system. In some embodiments, the calibration is based on age, weight, waist size, etc., or combinations thereof. Formula I was determined experimentally as follows.
  • EXAMPLE
  • The light source used was an infrared LED at 940 nm and the light sensor was an Adafruit® High Dynamic Range Digital Light Sensor TSL2591 (Adafruit Industries, New York, N.Y.). The source and receiver are placed adjacent to each other across the stomach of a phantom baby. The receiver was connected to a LilyPad™ having a power source, which returned the volume of milk in the infant stomach to the computer. Experiments were conducted as follows: the baby doll used was fitted with a clear plastic bag to represent the stomach of the phantom baby. The plastic bag was filled with 150 mL of water to simplify the contents of the human stomach. The plastic stomach region of the doll was covered by porcine skin to represent subcutaneous tissue. The sensor and LED source were placed adjacent to each other on top of the porcine skin. Using a funnel and a graduated cylinder, milk was poured into the infant simulating a sip of milk in increments of 2.5 mL starting at 0 mL to 60 mL of milk. The changes in infrared light intensity (I) were measured and transferred into a table. From the table, a graph was constructed of log(I/Io) on the y-axis and volume on the x-axis, with (Io) representing the initial intensity of infrared light at 0 mL of milk. After multiple experiments, an average of intensity ratios was obtained for each volume of milk in mL (V). These values were used to construct a graph to obtain an equation relating volume and intensity correlation. Experimentation and collected results show a linear relationship between the ratio of infrared light intensity and volume of milk depicted in Formula I.
  • Some aspects of the present disclosure are directed to a method 300 for quantifying a volume ingested by a human during a feeding. At 302, at least one infrared light source and at least one infrared light intensity sensor are provided. At 304, the at least one infrared light source is positioned proximate a human stomach. At 306, the at least one infrared light intensity sensor is positioned to detect intensities of infrared light provided by the at least one infrared light source and incident from the human stomach. At 308, infrared light is emitted from the at least one infrared light source to a human stomach. In some embodiments, infrared light is emitted from the at least one infrared light source to the skin proximate the human stomach. In some embodiments, the infrared light is emitted at a wavelength of about 940 nm.
  • At 310, an initial intensity of infrared light incident from the human stomach is measured with the at least one infrared light intensity sensor at a first instance. In some embodiments, measured amount of infrared light is the sum total of all infrared light measured by one or more infrared light sensors. As discussed above, in some embodiments, the first instance is prior to, at, or near the beginning of a feeding. At 312, at least one feeding intensity of infrared light incident is measured from the human stomach with the at least one infrared light intensity sensor at a second instance. As discussed above, in some embodiments, the second instance is during, near the end, at the end, or after the end of feeding. In some embodiments, the feeding intensity of infrared light is calculated continuously. At 314, a volume ingested into the human stomach between the first instance and the second instance that corresponds to the ratio of the at least one feeding intensity to the initial intensity is calculated. In some embodiments, the volume ingested is calculated continuously. As discussed above, in some embodiments, the volume ingested is defined by Formula I. In some embodiments, at 316 the volume ingested is displayed to a user, e.g., via a computer device.
  • Methods and systems of the present disclosure advantageously provide an accurate system for measuring the actual volume of milk ingested by a baby during a breastfeeding session. The accuracy of the formula for converting measured infrared light intensities to volume provides the user with confidence in the data reported to the user. That the incident infrared light measured by the infrared light sensor is not affected by natural processes such as swallowing air, voiding during feedings, and spitting up that occur during feedings provides further confidence. The systems and methods are also truly non-invasive. There are no wires placed directly on the baby and there is no interference with the physical breastfeeding process, increasing comfort for both mom and baby. Finally, the systems and methods visualize the feeding in real-time, allowing parent to confirm whether or not a feeding is progressing successfully. Feeding data is also stored and tracked so that parents and other individuals, e.g., the baby's doctor, can view historical trends in the baby's feeding over time. The systems and methods of the present disclosure are particularly advantageous for premature babies, those born with complications, or those living in third world countries with limited resources.
  • Although the disclosed subject matter has been described and illustrated with respect to embodiments thereof, it should be understood by those skilled in the art that features of the disclosed embodiments can be combined, rearranged, etc., to produce additional embodiments within the scope of the invention, and that various other changes, omissions, and additions may be made therein and thereto, without parting from the spirit and scope of the present invention.

Claims (20)

What is claimed is:
1. A system for quantifying a volume ingested by a human during a feeding comprising:
at least one infrared light source positioned and configured to provide infrared light to the contents of a human stomach;
at least one infrared light intensity sensor positioned and configured to detect intensities of infrared light incident from the human stomach; and
a non-transitory computer storage medium in communication with said at least one infrared light intensity sensor and encoded with one or more computer programs for outputting a volume ingested by a human, the one or more computer programs including:
a light intensity calculation module configured to identify an initial intensity of infrared light incident from the human stomach at a first instance, at least one feeding intensity of infrared light incident from the human stomach at a second instance, and the ratio of the at least one feeding intensity to the initial intensity; and
a volume calculation module configured to output a value for the volume ingested into the human stomach between the first instance and the second instance, wherein the volume ingested is defined by a formula that correlates the ratio of the at least one feeding intensity to the initial intensity to the volume ingested.
2. The system according to claim 1, wherein the first instance is prior to a start of the feeding and the second instance is during the feeding.
3. The system according to claim 1, wherein the second instance is after the feeding is completed.
4. The system according to claim 1, further comprising a barrier positioned to limit detection of infrared light directly from the at least one infrared light source by the at least one infrared intensity sensor.
5. The system according to claim 4, wherein the barrier includes a reflective layer.
6. The system according to claim 1, wherein the at least one infrared light source is one or more infrared LEDs.
7. The system according to claim 1, wherein the at least one infrared light source is positioned adjacent to the at least one infrared light intensity sensor such that each interface with the skin proximate the human stomach.
8. The system according to claim 1, wherein the infrared light is emitted at a wavelength of about 1200 nm-1500 nm.
9. The system according to claim 1, wherein the volume ingested is defined by the following formula:

V=(log(I/I o)+0.0036)/0.0007
wherein Io is the initial intensity of infrared light incident from the human stomach and I is the at least one feeding intensity of infrared light incident from the human stomach.
10. The system according to claim 1, further comprising one or more additional sensors including a heart rate sensor, a respiratory sensor, a temperature sensor, or a combination thereof.
11. A method for quantifying a volume ingested by a human during a feeding comprising:
providing at least one infrared light source and at least one infrared light intensity sensor;
emitting infrared light from the at least one infrared light source to the contents of a human stomach;
measuring an initial intensity of infrared light incident from the human stomach with the at least one infrared light intensity sensor at a first instance;
measuring at least one feeding intensity of infrared light incident from the human stomach with the at least one infrared light intensity sensor at a second instance; and
calculating a volume ingested into the human stomach between the first instance and the second instance that corresponds to the ratio of the at least one feeding intensity to the initial intensity.
12. The method according to claim 11, further comprising:
positioning the at least one infrared light source to the skin proximate a human stomach;
emitting infrared light from the at least one infrared light source to the contents of the human stomach; and
positioning the at least one infrared light intensity sensor to detect intensities of infrared light provided by the at least one infrared light source and incident from the human stomach.
13. The method according to claim 11, wherein the infrared light is emitted at a wavelength of about 1200 nm-1500 nm.
14. The method according to claim 11, wherein the volume ingested is defined by to the following formula:

V=(log(I/I o)+0.0036)/0.0007
wherein Io is the initial intensity of infrared light incident from the human stomach and I is the at least one feeding intensity of infrared light incident from the human stomach.
15. The method according to claim 11, wherein calculating a volume ingested into the human stomach between the first instance and the second instance that corresponds to the ratio of the at least one feeding intensity to the initial intensity further comprises:
continuously calculating the volume ingested into the human stomach during a feeding.
16. A system for quantifying a volume ingested by a human during a feeding comprising:
at least one infrared light source positioned and configured to provide infrared light to the contents of a human stomach;
at least one infrared light intensity sensor positioned adjacent to the at least one infrared light source and positioned to detect intensities of infrared light incident from the human stomach; and
a non-transitory computer storage medium in communication with said at least one infrared light intensity sensor and encoded with one or more computer programs for outputting a volume ingested by a human, the one or more computer programs including:
a light intensity calculation module configured to identify an initial intensity of infrared light incident from the human stomach at a first instance prior to or at the beginning of a feeding, a plurality of feeding intensities of infrared light incident from the human stomach at a plurality of additional instances during or after the feeding, and the ratio of the each feeding intensity to the initial intensity;
a volume calculation module configured to continuously output a value for the volume ingested during the feeding, wherein the volume ingested is defined by a formula that correlates to the ratio of the latest feeding intensity of infrared light incident from the human stomach to the initial intensity to the volume ingested.
17. The system according to claim 16, wherein the volume calculation module outputs a volume ingested according to the following formula:

V=(log(I/I o)+0.0036)/0.0007
wherein Io is the initial intensity of infrared light incident from the human stomach, I is the feeding intensity of infrared light incident from the human stomach.
18. The system according to claim 16, further comprising:
one or more databases including historical light intensity data from the light intensity calculation module and volume ingestion data from the volume calculation module; and
a microcontroller system including a wireless data communication module configured to enable communication of calculated light intensities and calculated volumes to the one or more databases from the light intensity calculation module and the volume calculation module.
19. The system according to claim 16, wherein the infrared light is emitted at a wavelength of about 850 nm, 880 nm, 940 nm, 1050 nm, 1250 nm, 1550 nm, 1650 nm, or combinations thereof.
20. The system according to claim 19, wherein the infrared light is emitted at a wavelength of about 940 nm and about 1250 nm.
US17/674,269 2017-10-31 2022-02-17 Systems and methods for measuring a quantity of breast milk consumed by a baby Abandoned US20220167909A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/674,269 US20220167909A1 (en) 2017-10-31 2022-02-17 Systems and methods for measuring a quantity of breast milk consumed by a baby

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762579499P 2017-10-31 2017-10-31
US16/174,792 US11389105B2 (en) 2017-10-31 2018-10-30 Systems and methods for measuring a quantity of breast milk consumed by a baby
US17/674,269 US20220167909A1 (en) 2017-10-31 2022-02-17 Systems and methods for measuring a quantity of breast milk consumed by a baby

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/174,792 Continuation US11389105B2 (en) 2017-10-31 2018-10-30 Systems and methods for measuring a quantity of breast milk consumed by a baby

Publications (1)

Publication Number Publication Date
US20220167909A1 true US20220167909A1 (en) 2022-06-02

Family

ID=66245775

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/174,792 Active 2039-09-15 US11389105B2 (en) 2017-10-31 2018-10-30 Systems and methods for measuring a quantity of breast milk consumed by a baby
US17/674,269 Abandoned US20220167909A1 (en) 2017-10-31 2022-02-17 Systems and methods for measuring a quantity of breast milk consumed by a baby

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/174,792 Active 2039-09-15 US11389105B2 (en) 2017-10-31 2018-10-30 Systems and methods for measuring a quantity of breast milk consumed by a baby

Country Status (1)

Country Link
US (2) US11389105B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4029433B1 (en) * 2021-01-18 2024-03-06 Volkan Görkem Büyükyildiz Method of monitoring intake of breast milk by an infant
WO2023247028A1 (en) 2022-06-22 2023-12-28 CHRISTIANSEN, Britta Method of monitoring intake of breast milk by an infant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110190605A1 (en) * 2010-02-04 2011-08-04 Seiko Epson Corporation Biological information detector, biological information measuring device, and method for designing reflecting part in biological information detector
US20150223755A1 (en) * 2012-10-22 2015-08-13 Digisense Ltd. Breastfeeding quantity estimator
US20160242682A1 (en) * 2012-07-16 2016-08-25 Sandeep Gulati Noninvasive analyzer apparatus and method of use thereof for separating distributed probing photons emerging from a sample
US20160367155A1 (en) * 2015-06-22 2016-12-22 Fresenius Medical Care Holdings, Inc. Transcutaneous measurement of hemoglobin changes to calculate estimated blood volume change during peritoneal dialysis
US20190242816A1 (en) * 2016-09-01 2019-08-08 Exploramed Nc7, Inc. Apparatus and methods for measuring fluid attributes in a reservoir

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2245679C2 (en) 2003-01-31 2005-02-10 Сурнина Ольга Владимировна Method for diagnosing duodenogastric reflux in the cases of gastric peptic ulcer
US7801142B2 (en) 2003-08-18 2010-09-21 Innovative Sonic Limited Method to avoid potential deadlocks in a SDU discard function
JP4762915B2 (en) 2003-12-24 2011-08-31 ギブン イメージング リミテッド Device, system, and method for in vivo imaging of a body cavity
IL165289A (en) 2004-11-18 2014-03-31 Eliezer Kolberg Breast milk flow meter apparatus and method
US8999725B2 (en) * 2005-04-28 2015-04-07 Japan Science And Technology Agency Method of measuring external stimulus and volume change using stimulus-responsive gel comprising EDANS
US9907473B2 (en) * 2015-04-03 2018-03-06 Koninklijke Philips N.V. Personal monitoring system
US8114030B2 (en) 2006-08-29 2012-02-14 Kimberly-Clark Worldwide, Inc. Breastfeeding quantification
US7833177B2 (en) * 2006-08-29 2010-11-16 Kimberly-Clark Worldwide, Inc. Breast feeding quantification
DE102008035542A1 (en) 2008-07-30 2010-02-04 Siemens Aktiengesellschaft Method for determining measurement data from the stomach of a patient
WO2015120285A1 (en) 2014-02-06 2015-08-13 Theranova, Llc Devices and methods to measure gastric residual volume
CN106535763A (en) * 2014-02-28 2017-03-22 科技生活事业加拿大公司 Device and mechanism for facilitating non-invasive, non-piercing monitoring of blood glucose
SG11201702068WA (en) 2014-09-16 2017-04-27 Exploramed Nc7 Inc Systems, devices and methods for assessing milk volume expressed from a breast
NL2013884B1 (en) 2014-11-27 2016-10-11 Umc Utrecht Holding Bv Wearable ultrasound device for signalling changes in human or animal body.
US9968140B2 (en) 2014-12-27 2018-05-15 Intel Corporation Technologies for monitoring breastfeeding
US20200384171A1 (en) 2017-08-28 2020-12-10 Koninklijke Philips N.V. Amonitoring device for monitoring breast milk consumption
WO2019058280A1 (en) 2017-09-20 2019-03-28 Johnson & Johnson Consumer Inc. Healthcare caregiver behavior coaching system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110190605A1 (en) * 2010-02-04 2011-08-04 Seiko Epson Corporation Biological information detector, biological information measuring device, and method for designing reflecting part in biological information detector
US20160242682A1 (en) * 2012-07-16 2016-08-25 Sandeep Gulati Noninvasive analyzer apparatus and method of use thereof for separating distributed probing photons emerging from a sample
US20150223755A1 (en) * 2012-10-22 2015-08-13 Digisense Ltd. Breastfeeding quantity estimator
US20160367155A1 (en) * 2015-06-22 2016-12-22 Fresenius Medical Care Holdings, Inc. Transcutaneous measurement of hemoglobin changes to calculate estimated blood volume change during peritoneal dialysis
US20190242816A1 (en) * 2016-09-01 2019-08-08 Exploramed Nc7, Inc. Apparatus and methods for measuring fluid attributes in a reservoir

Also Published As

Publication number Publication date
US11389105B2 (en) 2022-07-19
US20190125244A1 (en) 2019-05-02

Similar Documents

Publication Publication Date Title
US20220167909A1 (en) Systems and methods for measuring a quantity of breast milk consumed by a baby
Geddes et al. 25 years of research in human lactation: from discovery to translation
Green Corkins et al. Pediatric nutrition assessment: anthropometrics to zinc
US20150272481A1 (en) Accelerometer and wireless notification system
CN105025857B (en) Breast-feeding amount estimator
Pados et al. Know the flow: Milk flow rates from bottle nipples used in the hospital and after discharge
EP3174599B1 (en) Phototherapy blanket temperature determination
Özdel et al. Effects of the prone position and kangaroo care on gastric residual volume, vital signs and comfort in preterm infants
Gardner et al. Milk ejection patterns: an intra-individual comparison of breastfeeding and pumping
Dowling Physiological responses of preterm infants to breast-feeding and bottle-feeding with the orthodontic nipple
Taki et al. Maturational changes in the feeding behaviour of infants–a comparison between breast‐feeding and bottle‐feeding
Segami et al. Perioral movements and sucking pattern during bottle feeding with a novel, experimental teat are similar to breastfeeding
Neifert The optimization of breast-feeding in the perinatal period
Group et al. Clinical guidelines for the diagnosis and treatment of feeding intolerance in preterm infants (2020)
Kim Development of a breast feeding adaptation scale (BFAS)
TW201528197A (en) System for optimizing guide values
Torabinia et al. A review of quantitative instruments for understanding breastfeeding dynamics
US20220022842A1 (en) System and method for measuring a quantity of breast milk consumed by a baby
CN210843942U (en) Infant groveling sleeping pillow
CN210631212U (en) Heart rate module and electronic equipment for collecting heart rate
Aizawa et al. Neonatal sucking behavior: Comparison of perioral movement during breast‐feeding and bottle feeding
CN208755794U (en) Diet nutritional control measuring spoon
CN201361031Y (en) Body temperature abnormality detector for babies
EP4138641B1 (en) Monitoring fluid balance
de Oliveira Breastfeeding

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION