US20220163828A1 - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
US20220163828A1
US20220163828A1 US17/104,587 US202017104587A US2022163828A1 US 20220163828 A1 US20220163828 A1 US 20220163828A1 US 202017104587 A US202017104587 A US 202017104587A US 2022163828 A1 US2022163828 A1 US 2022163828A1
Authority
US
United States
Prior art keywords
adjusting unit
light adjusting
backlight module
disposed
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/104,587
Inventor
Kazuto JITSUI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innolux Corp
Original Assignee
Innolux Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innolux Corp filed Critical Innolux Corp
Priority to US17/104,587 priority Critical patent/US20220163828A1/en
Assigned to Innolux Corporation reassignment Innolux Corporation ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JITSUI, KAZUTO
Priority to CN202111245990.1A priority patent/CN114545665A/en
Publication of US20220163828A1 publication Critical patent/US20220163828A1/en
Priority to US18/154,021 priority patent/US20230168529A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0041Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided in the bulk of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers

Definitions

  • the present disclosure relates to an electronic device. More specifically, the present disclosure relates to a privacy electronic device.
  • a privacy display device is developed for several usages, such as automotive displays, Notebook displays, PC monitors, ATM displays, etc. Requirement of the privacy display device depends on the product. In addition, some privacy display devices are required to have the function of switching between the wide mode (i.e. the public mode) and the narrow mode (i.e. the privacy mode).
  • the currently used privacy display devices have some disadvantages. For example, the brightness of the display devices at the wide viewing angle is not low enough, and other people near to the user may feel annoyed.
  • the present disclosure provides an electronic device, comprising: a display cell; a first light adjusting unit; and a second light adjusting unit, wherein the display cell, the first light adjusting unit and the second light adjusting unit are at least partially overlapped, and at least one of the first light adjusting unit and the second light adjusting unit is an ECB mode liquid crystal cell.
  • the present disclosure further provides another electronic device, comprising: a first light adjusting unit; and a second light adjusting unit comprising plural pixels, wherein at least one of the plural pixels comprises a display region and a viewing angle changing region, and an operation mode of the display region is different from an operation mode of the viewing angle changing region.
  • FIG. 1 is a schematic cross-sectional view of an electronic device according to one embodiment of the present disclosure.
  • FIG. 2A is a schematic cross-sectional view of a display cell and a second light adjusting unit of an electronic device shown in FIG. 1 in a wide mode.
  • FIG. 2B is a schematic cross-sectional view of a display cell and a second light adjusting unit of an electronic device shown in FIG. 1 in a narrow mode.
  • FIG. 3 is a schematic cross-sectional view of an electronic device according to another embodiment of the present disclosure.
  • FIG. 4A is a schematic top view of a pixel of an electronic device of FIG. 3 .
  • FIG. 4B is a schematic cross-sectional view of a second light adjusting unit of an electronic device shown in FIG. 3 in a wide mode.
  • FIG. 4C is a schematic cross-sectional view of a second light adjusting unit of an electronic device shown in FIG. 3 in a narrow mode.
  • FIG. 5 is a circuit diagram of pixels of a second light adjusting unit shown in FIG. 3 in one embodiment of the present disclosure.
  • FIG. 6 is a circuit diagram of a pixel of a second light adjusting unit shown in FIG. 3 in another embodiment of the present disclosure.
  • FIG. 7 is a circuit diagram of a pixel of a second light adjusting unit shown in FIG. 3 in further another embodiment of the present disclosure.
  • FIG. 8 is a schematic cross-sectional view of an electronic device according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic cross-sectional view of an electronic device according to further another embodiment of the present disclosure.
  • FIG. 10 is a schematic cross-sectional view of an electronic device according to further another embodiment of the present disclosure.
  • FIG. 11 is a schematic cross-sectional view of an electronic device according to further another embodiment of the present disclosure.
  • FIG. 12 is a schematic cross-sectional view of an electronic device according to further another embodiment of the present disclosure.
  • FIG. 13 is a schematic cross-sectional view of an electronic device according to further another embodiment of the present disclosure.
  • ком ⁇ онент when a component is described to comprise an element, it means that the component may comprise one or more of the elements, and it does not mean that the component has only one of the element, except otherwise specified.
  • ordinal numbers such as “first” or “second”, are used to distinguish a plurality of elements having the same name, and it does not means that there is essentially a level, a rank, an executing order, or an manufacturing order among the elements, except otherwise specified.
  • a “first” element and a “second” element may exist together in the same component, or alternatively, they may exist in different components, respectively.
  • the existence of an element described by a greater ordinal number does not essentially means the existence of another element described by a smaller ordinal number.
  • the feature A “or” or “and/or” the feature B means the existence of the feature A, the existence of the feature B, or the existence of both the features A and B.
  • the feature A “and” the feature B means the existence of both the features A and B.
  • the term “comprise(s)”, “comprising”, “include(s)”, “including”, “have”, “has” and “having” means “comprise(s)/comprising but is/are/being not limited to”.
  • the terms, such as “top”, “upper”, “bottom”, “front”, “back”, or “middle”, as well as the terms, such as “on”, “above”, “over”, “under”, “below”, or “between”, are used to describe the relative positions among a plurality of elements, and the described relative positions may be interpreted to include their translation, rotation, or reflection.
  • connect is intended not only directly connect with other element, but also intended indirectly connect and electrically connect with other element.
  • the value when a value is in a range from a first value to a second value, the value may be the first value, the second value, or another value between the first value and the second value.
  • a value may be interpreted to cover a range within ⁇ 20% of the value, and in particular, a range within ⁇ 10%, ⁇ 5%, ⁇ 3%, ⁇ 2%, ⁇ 1% or ⁇ 0.5% of the value, except otherwise specified.
  • the value provided in the present specification is an approximate value, which means the meaning “about” is also included in the present disclosure without specifically specifying “about”.
  • narrow mode refers to the privacy mode, and the images displayed on the electronic device may be seen within, for example, 25 degrees of the viewing angle, and the ranges within ⁇ 10 degrees or ⁇ 5 degrees of 25 degrees are also included in the scope of the present disclosure.
  • wide mode refers to the public mode, and the images displayed on the electronic device may be seen within, for example, near to 90 degrees (for example, 80 degrees) of the viewing angle.
  • low contrast ratio (CR) means a function that the contrast ratio is ranged from 0.2 to 5.
  • dark means a function that the brightness of the electronic device is 2% of the maximum brightness of grayscale.
  • viewing angle can be defined by the followings.
  • a direction perpendicular to a surface of a side of the electronic device near to the user i.e. the display side
  • a first virtual line is defined, which is substantially parallel to the direction and is a line connecting the eyes of the user and the center (or a point close to the center within a tolerable deviation; or a point which is on the central line of the display side, wherein the central line may be substantially parallel to one side edge of the display side) of the display side of the electronic device.
  • a second virtual line is defined, which is a line connecting the center (or a point close to the center within a tolerable deviation) of the display side of the electronic device and the position of the eyes of the user that the user still can see the images displayed by the electronic device.
  • the angle included between the first virtual line and the second virtual line is defined as the viewing angle.
  • the electronic device of the present disclosure may comprise a display device, an antenna device, a sensing device, a touch device, a curved electronic device or a free shape display device, but the present disclosure is not limited thereto.
  • the electronic device of the present disclosure may be a bendable or a flexible display device.
  • the display device may include, for example, a tiled display device, but the present disclosure is not limited thereto.
  • the electronic device of the present disclosure may be a combination of the aforesaid devices, but the present disclosure is not limited thereto.
  • the shapes of the electronic device of the present disclosure is not particularly limited, and may be rectangle, circular, polygon, a shape with curved edges or other suitable shapes, but the present disclosure is not limited thereto.
  • the electronic device of the present disclosure may comprise a driving system, a control system, a light source system, a shelving system or other peripheral system to support the display device or the tiled display device.
  • a display device is used as an example to illustrate the electronic device of the present disclosure, but the present disclosure is not limited thereto.
  • FIG. 1 is a schematic cross-sectional view of an electronic device according to one embodiment of the present disclosure.
  • the electronic device of the present embodiment comprises: a display cell 11 ; a first light adjusting unit 12 ; and a second light adjusting unit 13 , wherein the display cell 11 , the first light adjusting unit 12 and the second light adjusting unit 13 are at least partially overlapped.
  • the display cell 11 is for displaying images.
  • the display cell 11 may be a liquid crystal cell, but the present disclosure is not limited thereto.
  • the display cell 11 may include two substrates, liquid crystal, plural pixels and a color filter, wherein the liquid crystal, plural pixels and the color filter are disposed between the two substrates.
  • the driving mode of the liquid crystal of display cell 11 is not particularly limited.
  • the driving mode of the liquid crystal may be an in-plane switching (IPS) mode, a fringe field switching (FFS) mode, a vertical alignment (VA) mode, a twisted nematic (TN) mode, an electrically-controlled birefringence (ECB) mode or an optically compensated birefringence (OCB) mode; but the present disclosure is not limited thereto.
  • the display cell 11 may be a self-luminance display cell, including plural pixels which may produce different colors.
  • the plural pixels may include an organic light emitting diode (OLED), an inorganic light emitting diode (ILED), a mini-LED, a micro-LED, quantum dots (QDs), a quantum dot diode (QLED/QDLED), an electrophoresis, fluorescence, phosphor, other suitable materials or a combination of the above materials, but the disclosure is not limited thereto.
  • OLED organic light emitting diode
  • ILED inorganic light emitting diode
  • mini-LED mini-LED
  • micro-LED micro-LED
  • QDs quantum dots
  • QLED/QDLED quantum dot diode
  • electrophoresis electrophoresis
  • fluorescence phosphor
  • phosphor other suitable materials or a combination of the above materials, but the disclosure is not limited thereto.
  • the first light adjusting unit 12 and the second light adjusting unit 13 is an ECB mode liquid crystal cell.
  • the first light adjusting unit 12 may be an ECB mode liquid crystal cell, a TN mode liquid crystal cell, a VA mode liquid crystal cell, or a VA-ECB hybrid mode liquid crystal cell.
  • the second light adjusting unit 13 may be an ECB mode liquid crystal cell.
  • the electronic device of the present embodiment comprises: a first polarizer 15 and a second polarizer 16 , wherein the display cell 11 and the second light adjusting unit 13 are disposed between the first polarizer 15 and the second polarizer 16 , and the second light adjusting unit 13 is disposed on the display cell 11 .
  • the relative position of the first polarizer 15 , the second polarizer 16 , the second light adjusting unit 13 and the display cell 11 described above may have the a low CR (contrast ratio) function.
  • the amount and the positions of the polarizers may be adjusted according to the need.
  • other optical films such as prism sheets, diffusors or bright enhancement films may also be included in the electronic device of the present disclosure if it is needed.
  • the electronic device of the present embodiment further comprises: a third polarizer 17 , wherein the first light adjusting unit 12 is disposed between the second polarizer 16 and the third polarizer 17 .
  • the relative position of the first polarizer 15 , the second polarizer 16 , the third polarizer 17 , the display cell 11 , the first light adjusting unit 12 and the second light adjusting unit 13 is shown as FIG. 1 , thereby the electronic device may have the low contrast ratio function and dark function at the same time in the narrow mode.
  • two different polarizers may be used as the second polarizers, one is disposed on and adjacent to the second light adjusting unit 13 and the other one is disposed under and adjacent to the first light adjusting unit 12 .
  • relative position of the one polarizer mentioned above, the second light adjusting unit 13 , the display cell 11 and the first polarizer 15 may have the low contrast ratio function in the narrow mode.
  • the relative position of the other one polarizer mentioned above, the first light adjusting unit 12 and the third polarizer 17 may have dark function in the narrow mode, but the present disclosure is not limit thereto.
  • the image displayed by the display cell 11 can be seen from all viewing angle.
  • the narrow mode no or little liquid crystal retardation is occurred at the on-axis or at the user viewing angle (for example, within 25 degrees), but significant liquid crystal retardation is occurred at the off-axis or at the viewing angle outside the user viewing angle (for example, more than 25 degrees).
  • the image displayed by the display cell 11 can be seen from the user viewing angle but cannot be seen from the viewing angle outside the user viewing angle.
  • the first polarizer 15 , the second polarizer 16 and the third polarizer 17 may respectively be any retardation film, for example, an A-plate, a C-plate, an O-film a discotic LC film, or a combination thereof; but the present disclosure is not limited thereto.
  • the first polarizer 15 , the second polarizer 16 and the third polarizer 17 may be the same or different from each other.
  • the electronic device of the present embodiment of the present embodiment is a combination of the low CR function and the dark function.
  • the images displayed by the display cell 11 can be visible at user viewing angle (for example, within 25 degrees); but the images displayed by the display cell 11 is invisible at the narrow viewing angle (for example, in a range from 25 degrees to 40 degrees) due to the low CR and also invisible at the wide viewing angle (for example, in a range from 40 degrees to 80 degrees) due to the low CR and enough darkness.
  • the brightness of the electronic device at the wide viewing angle is low, so a person near to the user may not be disturbed when the electronic device is in the narrow mode.
  • the ranges within ⁇ 5 degrees or ⁇ 10 degrees of the viewing angles described herein are still included in the scope of the present disclosure due to the design or the process error of the electronic device.
  • the electronic device of the present embodiment has both the dark function and the low CR function, so the brightness at the viewing angle outside the user viewing angle is low enough when the electronic device is in the narrow mode. Thus, a person adjacent to the user cannot see the images displayed on the electronic device, or the person is not disturbed by the electronic device due to the insufficient darkness.
  • the second light adjusting unit 13 is disposed on the display cell 11
  • the first light adjusting unit 12 is disposed on the second light adjusting unit 13
  • the second light adjusting unit 13 and the display cell 11 is disposed between the first polarizer 15 and the second polarizer 16 and the first light adjusting unit 12 disposed between the second polarizer 16 and the third polarizer 17 .
  • the second light adjusting unit 13 and the display cell 11 may be disposed between the second polarizer 16 and the third polarizer 17 , and the second light adjusting unit 13 is disposed on the display cell 11 .
  • the first light adjusting unit 12 is disposed between the first polarizer 15 and the second polarizer 16 .
  • the second light adjusting unit 13 and the display cell 11 are disposed on the first light adjusting unit 12 .
  • the relative position of the second polarizer 16 , the display cell 11 , the second light adjusting unit 13 and the third polarizer 17 may have the low CR function.
  • the relative position of the first polarizer 15 , the second polarizer 16 , the third polarizer 17 , the display cell 11 , the first light adjusting unit 12 and the second light adjusting unit 13 described in this embodiment may have the low contrast ratio function and dark function at the same time in the narrow mode.
  • the present disclosure is not limited thereto.
  • the electronic device of the present embodiment may further selectively comprise a backlight module 14 , disposed under the display cell 11 , the first light adjusting unit 12 and the second light adjusting unit 13 .
  • the backlight module 14 may be a direct-lit backlight module or an edge-lit backlight module, but the present disclosure is not limited thereto.
  • FIG. 2A and FIG. 2B are respectively schematic cross-sectional views of the display cell and the second light adjusting unit shown in FIG. 1 in a wide mode and in a narrow mode.
  • the driving mode of the liquid crystal of the display cell 11 may be an IPS mode.
  • the present disclosure is not limited thereto, and any driving mode of the liquid crystal may be used in the present disclosure.
  • the second light adjusting unit 13 may be used an ECB mode.
  • the display cell 11 comprises: a first substrate 111 ; a second substrate 116 opposite to the first substrate 111 ; a common electrode 112 disposed on the first substrate 111 ; an insulating layer 113 disposed on the common electrode 112 ; a pixel electrode 114 disposed on the insulating layer 113 ; and a first display medium layer 115 disposed between the first substrate 111 and the second substrate 116 .
  • plural transistors (not shown in the figure) electrically connected to the pixel electrode 114 are disposed on the first substrate 111 .
  • the common electrode 112 may be a planer electrode, and the pixel electrode 114 may be a patterned electrode, but the present disclosure is not limited thereto.
  • the display cell 11 may selectively comprise a color filter layer and a black matrix layer respectively formed on the first substrate 111 or the second substrate 116 .
  • the first display medium layer 115 may be a liquid crystal layer, but the present disclosure is not limited thereto.
  • the second light adjusting unit 13 comprises: a third substrate 131 ; a fourth substrate 135 opposite to the third substrate 131 ; a first electrode 132 disposed on the third substrate 131 ; a second electrode 134 disposed on the fourth substrate 135 ; and a second display medium layer 133 disposed between the third substrate 131 and the fourth substrate 135 .
  • the first electrode 132 and the second electrode 134 may be respectively a planer electrode, but the present disclosure is not limited thereto.
  • the second display medium layer 133 may be a liquid crystal layer, but the present disclosure is not limited thereto.
  • an alignment layer may be disposed between the second display medium layer 133 and the second electrode 134 ; and another alignment layer may be disposed between the second display medium layer 133 and the first electrode 132 .
  • FIG. 2A when the electronic device is in a wide mode, there is no voltage difference between the first electrode 132 and the second electrode 134 .
  • no voltage is applied to the first electrode 132 and the second electrode 134 .
  • same voltage is applied to the first electrode 132 and the second electrode 134 .
  • the present disclosure is not limited thereto.
  • FIG. 2B when the electronic device is in a narrow mode, there is a voltage difference between the first electrode 132 and the second electrode 134 . In one embodiment, no voltage is applied to the first electrode 132 and a predetermined voltage is applied to the second electrode 134 .
  • a predetermined voltage is applied to the first electrode 132 and no voltage is applied to the second electrode 134 .
  • different voltage is applied to the first electrode 132 and the second electrode 134 .
  • the present disclosure is not limited thereto.
  • the voltage difference may cause the liquid crystal molecules in the display medium layer 133 rotates, the rotation of the liquid crystal molecules may not influence the brightness of the second light adjusting unit 13 at the user viewing angle (for example, within 25 degrees) but causes the brightness increased at the narrow viewing angle (for example, in a range from 25 degrees to 40 degrees) and wide viewing angle (for example, in a range from 40 degrees to 80 degrees).
  • the purpose of low CR at the narrow viewing angle and wide viewing angles can be achieved.
  • FIG. 3 is a schematic cross-sectional view of an electronic device according to another embodiment of the present disclosure
  • FIG. 4A is a schematic top view of a pixel of an electronic device of FIG. 3
  • the electronic device of the present embodiment comprises: a first light adjusting unit 12 ; and a second light adjusting unit 13 ′ comprising plural pixels P, wherein at least one of the plural pixels P comprises a display region R 1 and a viewing angle changing region R 2 , and an operation mode of the display region R 1 is different from an operation mode of the viewing angle changing region R 2 .
  • the difference between the electronic devices shown in FIG. 1 and FIG. 3 is that the electronic device of FIG. 1 comprises the display cell 11 and the second light adjusting unit 13 , but the electronic device of FIG. 3 comprises the second light adjusting unit 13 ′ with pixels P.
  • the second light adjusting unit 13 ′ of the present embodiment can be considered as a display cell with light adjusting function.
  • the electronic device of the present embodiment further comprises: a first polarizer 15 and a second polarizer 16 , wherein the second light adjusting unit 13 ′ is disposed between the first polarizer 15 and the second polarizer 16 .
  • the electronic device of the present embodiment further comprises: a third polarizer 17 , wherein the first light adjusting unit 12 is disposed between the second polarizer 16 and the third polarizer 17 .
  • the electronic device of the present embodiment may further selectively comprise a backlight module 14 , disposed under the first light adjusting unit 12 and the second light adjusting unit 13 ′.
  • the backlight module 14 may be a direct-lit backlight module or an edge-lit backlight module, but the present disclosure is not limited thereto.
  • the first polarizer 15 , the second polarizer 16 , the third polarizer 17 and the backlight module 14 are similar to those illustrated above, and are not repeated again.
  • FIG. 4A the liquid crystal molecules in the display region R 1 may be driven by an IPS mode, and liquid crystal molecules in the viewing angle changing region R 2 may be driven by an ECB mode.
  • self-luminance display medium may be used in the display region R 1 .
  • FIG. 4B and FIG. 4C are respectively cross-sectional views of the second light adjusting unit 13 ′ shown in FIG. 3 in a wide mode and in a narrow mode.
  • the second light adjusting unit 13 ′ comprises: a first substrate 111 ; a second substrate 116 opposite to the first substrate 111 ; a common electrode 112 disposed on the first substrate 111 ; an insulating layer 113 disposed on the common electrode 112 ; a pixel electrode 114 disposed on the insulating layer 113 ; and a first display medium layer 115 disposed between the first substrate 111 and the second substrate 116 .
  • the pixel electrode 114 is disposed in the display region R 1 of the pixel P, but is not disposed in the viewing angle changing region R 2 of the pixel P.
  • plural transistors electrically connected to the pixel electrode 114 are disposed on the first substrate 111 .
  • the common electrode 112 is a planer electrode, and the pixel electrode 114 is a patterned electrode.
  • the display cell 11 may selectively comprise a color filter layer and a black matrix layer respectively formed on the first substrate 111 or the second substrate 116 .
  • the first display medium layer 115 may be a liquid crystal layer, but the present disclosure is not limited thereto.
  • the shape or design of the pixel electrode 114 can be adjusted according to actual needs, not limited to FIG. 4A .
  • the second light adjusting unit 13 ′ further comprises: a first electrode 132 disposed on the insulating layer 113 , wherein the pixel electrode 114 and the first electrode 132 may be formed by the same layer; and a second electrode 134 disposed on the second substrate 116 , wherein the first display medium layer 115 is disposed between the first electrode 132 and the second electrode 134 .
  • the first electrode 132 and the second electrode 134 are disposed in the viewing angle changing region R 2 of the pixel P, but are not disposed in the display region R 1 of the pixel P.
  • the first electrode 132 and the second electrode 134 may be respectively a planer electrode, but the present disclosure is not limited thereto.
  • an alignment layer is disposed between the pixel electrode 114 and the first display medium layer 115 , and also between the first electrode 132 and the first display medium layer 115 .
  • Another alignment layer is disposed between the second electrode 134 and the first display medium layer 115 .
  • the rubbing direction of the alignment layer on the pixel electrode 114 and the first electrode 132 is homogeneous.
  • the rubbing direction of the alignment layer on the pixel electrode 114 and the first electrode 132 is different from (for example, opposite to) the rubbing direction of the alignment layer on the second electrode 134 .
  • the viewing angle changing region R 2 is dark at all viewing angle, and the image displayed by the display region R 1 can be observed by anyone at all viewing angle.
  • FIG. 4C when the electronic device is in the narrow mode, there is a voltage difference between the first electrode 132 and the second electrode 134 . For example, no voltage is applied to the second electrode 134 and a predetermined voltage is applied to the first electrode 132 , but the present disclosure is not limited thereto.
  • the voltage difference may cause the liquid crystal molecules in the first display medium layer 115 rotates, the rotation of the liquid crystal molecules may not influence the brightness of the viewing angle changing region R 2 of the second light adjusting unit 13 ′ at the user viewing angle (for example, within 25 degrees) but causes the brightness of the viewing angle changing region R 2 increased at the narrow viewing angle (for example, in a range from 25 degrees to 40 degrees) and wide viewing angle (for example, in a range from 40 degrees to 80 degrees).
  • the image displayed by the display region R 1 may be observed by the user at the user viewing angle but may not be observed by a person at the narrow and wide viewing angles due to low CR.
  • the electronic device may have the low contrast ratio function and dark function at the same time in the narrow mode.
  • FIG. 5 is a circuit diagram of pixels of a second light adjusting unit shown in FIG. 3 in one embodiment of the present disclosure.
  • a voltage source 18 is electrically connected to the first electrode 132 or the second electrode 134 in the viewing angle changing region R 2 .
  • the voltage source 18 does not provide a voltage to the first electrode 132 or the second electrode 134 .
  • the viewing angle changing region R 2 is dark at all viewing angle.
  • the voltage source 18 provides a predetermined voltage to the first electrode 132 or the second electrode 134 .
  • the viewing angle changing region R 2 is in a bright state and the purpose of low CR can be achieved.
  • the CR of the second light adjusting unit 13 ′ can be calculated by the following equation (I), wherein R 1 means the display region R 1 and R 2 means the viewing angle changing region R 2 :
  • CR (Brightness of R 1 in the bright state+Brightness of R 2 in the bright state)/(Brightness of R 1 in the dark state+Brightness of R 2 in the bright state) (I).
  • At least one TFT is disposed in the display region R 1 , wherein a control end of the TFT is electrically connected to a first scan line S 1 , a first end of the TFT is electrically connected to a first data line D 1 , and a second end of the TFT is electrically connected to the capacitor C L1 of the first display medium layer 115 which is in the display region R 1 .
  • a first end of a storage capacitor C S1 is electrically connected to a first end of the capacitor C L1 , and a second end of the storage capacitor C S1 and a second end of the capacitor C L2 are connected to the ground.
  • an end of the capacitor C L2 of the first display medium layer 115 (or the capacitor between first electrode 132 and the second electrode 134 ) is electrically connected to the voltage source 18 , and another end of the capacitor C L2 is connected to the ground.
  • FIG. 6 is a circuit diagram of pixels of a second light adjusting unit shown in FIG. 3 in one embodiment of the present disclosure.
  • an alignment of liquid crystal molecules in the display region R 1 are controlled by a first transistor TFT 1
  • an alignment of liquid crystal molecules in the viewing angle changing region R 2 are controlled by a second transistor TFT 2 .
  • the second light adjusting unit 13 ′ (as shown in FIG.
  • the third ) further comprises a first scan line S 1 , a first data line D 1 , a second scan line S 2 and a second data line D 2 , the first transistor TFT 1 is electrically connected to the first scan line S 1 and the first data line D 1 , and the second transistor TFT 2 is electrically connected to the second scan line S 2 and the second data line D 2 .
  • the brightness of the display region R 1 and the viewing angle changing region R 2 are respectively controlled by the first transistor TFT 1 and the second transistor TFT 2 .
  • the capacitor C L1 of the first display medium layer 115 is electrically connected to the first transistor TFT 1
  • the capacitor C L2 of the first display medium layer 115 (or the capacitor between first electrode 132 and the second electrode 134 ) is electrically connected to the second transistor TFT 2 .
  • the viewing angle changing region R 2 is dark at all viewing angle.
  • a predetermined voltage is provided to the first electrode 132 or the second electrode 134 , so a voltage difference may be formed between the first electrode 132 and the second electrode 134 and the viewing angle changing region R 2 is in the bright state.
  • the purpose of low CR in the narrow mode can be achieved, and the CR can be close to 0.2 to 5.
  • the CR of the second light adjusting unit 13 ′ can be calculated by the following equation (II), wherein R 1 means the display region R 1 and R 2 means the viewing angle changing region R 2 :
  • CR (Brightness of R 1 in the bright state+Brightness of R 2 in the dark state)/(Brightness of R 1 in the dark state+Brightness of R 2 in the bright state) (II).
  • FIG. 7 is a circuit diagram of pixels of a second light adjusting unit shown in FIG. 3 in one embodiment of the present disclosure.
  • the circuit diagram shown in FIG. 7 is similar to that shown in FIG. 6 , except for the following difference.
  • the second transistor TFT 2 is electrically connected to the second scan line S 2 and the second data line D 2 .
  • the second light adjusting unit 13 ′ (as shown in FIG.
  • the capacitor C L1 of the first display medium layer 115 is electrically connected to the first transistor TFT 1
  • the capacitor C L2 of the first display medium layer 115 (or the capacitor between first electrode 132 and the second electrode 134 ) is electrically connected to the second transistor TFT 2 .
  • a voltage source 18 is further electrically connected to an end of capacitor C L2 (for example, first electrode 132 or the second electrode 134 ) in the viewing angle changing region R 2 .
  • capacitor C L2 for example, first electrode 132 or the second electrode 134
  • the brightness of the viewing angle changing region R 2 is controlled by the second transistor TFT 2 and the voltage source 18 .
  • the viewing angle changing region R 2 is dark at all viewing angle.
  • the narrow mode when the display region R 1 is in the dark state, no voltage is provided to the first electrode 132 and/or the second electrode 134 and the voltage source 18 provides a predetermined voltage, so there is a voltage difference between the first electrode 132 and the second electrode 134 and the viewing angle changing region R 2 is in the bright state.
  • the voltage source 18 provides the predetermined voltage and the same predetermined voltage is provided to the first electrode 132 and/or the second electrode 134 , so there is no voltage difference between the first electrode 132 and the second electrode 134 and the viewing angle changing region R 2 is in the dark state.
  • the CR of the second light adjusting unit 13 ′ can be calculated by the following equation (III), wherein R 1 means the display region R 1 and R 2 means the viewing angle changing region R 2 :
  • CR (Brightness of R 1 in the bright state+Brightness of R 2 in the dark state)/(Brightness of R 1 in the dark state+Brightness of R 2 in the bright state) (II).
  • the voltage provided to the second transistor TFT 2 and/or the voltage provided by the voltage source 18 is not particularly limited, and can be adjusted according to the brightness of the display region R 1 .
  • the voltage provided to the second transistor TFT 2 and/or the voltage provided by the voltage source 18 can be adjusted to make the brightness of the display region R 1 in the bright state similar to or the same as the brightness of the viewing angle changing region R 2 in the bright state.
  • the purpose of low CR or CR close to 0.2 to 5 can be achieved.
  • the first light adjusting unit 12 is disposed on the second light adjusting unit 13 ′
  • the second light adjusting unit 13 ′ is disposed between the first polarizer 15 and the second polarizer 16
  • the first light adjusting unit 12 disposed between the second polarizer 16 and the third polarizer 17
  • the second light adjusting unit 13 ′ may be disposed between the second polarizer 16 and the third polarizer 17
  • the first light adjusting unit 12 may be disposed between the first polarizer 15 and the second polarizer 16 ; thus, the second light adjusting unit 13 ′ may be disposed on the first light adjusting unit 12 .
  • the present disclosure is not limited thereto.
  • the first substrate 111 , the second substrate 116 , the third substrate 131 and the fourth substrate 135 may respectively be a non-flexible substrate, a flexible substrate, a thin film or a combination thereof.
  • the material thereof may respectively include quartz, glass, silicon wafer, sapphire, polycarbonate (PC), polyimide (PI), polypropylene (PP), polyethylene terephthalate (PET) or other plastic or polymer material, or a combination thereof, but the present disclosure is not limited thereto.
  • the first substrate 111 , the second substrate 116 , the third substrate 131 or the fourth substrate 135 is a thin film, which may be a water barrier film or an encapsulating water barrier film formed by laminated inorganic-organic-inorganic (I-O-I) insulating layers.
  • the materials of the first substrate 111 , the second substrate 116 , the third substrate 131 and the fourth substrate 135 may be the same or different; but the present disclosure is not limited thereto.
  • the material of the common electrode 112 , the pixel electrode 114 , the first electrode 132 and the second electrode 134 may respectively include a transparent conductive metal oxide such as ITO (indium tin oxide), IZO (indium zinc oxide), ITZO (indium tin zinc oxide), IGZO (indium gallium zinc oxide), AZO (aluminum zinc oxide) or a combination thereof; but the present disclosure is not limited thereto.
  • a transparent conductive metal oxide such as ITO (indium tin oxide), IZO (indium zinc oxide), ITZO (indium tin zinc oxide), IGZO (indium gallium zinc oxide), AZO (aluminum zinc oxide) or a combination thereof; but the present disclosure is not limited thereto.
  • the insulating layer 113 may include organic material or inorganic material, for example, silicon oxide, silicon oxynitride, silicon nitride, aluminum oxide, resin, polymer, photoresist, or a combination thereof; but the present disclosure is not limited thereto.
  • FIG. 8 is a schematic cross-sectional view of an electronic device according to another embodiment of the present disclosure.
  • the electronic device of the present embodiment is similar to that shown in FIG. 1 , except for the following differences.
  • the second light adjusting unit 13 and the display cell 11 is disposed between the first polarizer 15 and the second polarizer 16 , the first light adjusting unit 12 disposed between the second polarizer 16 and the third polarizer 17 , the second light adjusting unit 13 is disposed on the display cell 11 , and the first light adjusting unit 12 can be disposed below the display cell 11 .
  • the first light adjusting unit 12 comprises a first viewing angle changing area 12 a and a first dummy area 12 b
  • the second light adjusting unit 13 comprises a second viewing angle changing area 13 a and a second dummy area 13 b.
  • the first viewing angle changing area 12 a corresponds to the second viewing angle changing area 13 a, and in particular, the second viewing angle changing area 13 a the first viewing angle changing area 12 a are overlapped.
  • the first dummy area 12 b corresponds to the second dummy area 13 b, and in particular, the second dummy area 13 b overlaps the first dummy area 12 b.
  • the region with the first dummy area 12 b and the second dummy area 13 b is in the wide mode, no matter the region with the first viewing angle changing area 12 a and the second viewing angle changing area 13 a is in the narrow mode or in the wide mode.
  • the first dummy area 12 b of the first light adjusting unit 12 or the second dummy area 13 b of the second light adjusting unit 13 may respectively disposed with or without electrodes.
  • the first dummy area 12 b of the first light adjusting unit 12 and the second dummy area 13 b of the second light adjusting unit 13 are disposed with the electrodes to maintain the transmittance of the region with the first dummy area 12 b and the second dummy area 13 b, but the present disclosure is not limited thereto.
  • first light adjusting unit 12 and the second light adjusting unit 13 may also comprise the first viewing angle changing area 12 a and the first dummy area 12 b, the second viewing angle changing area 13 a and the second dummy area 13 b mentioned above.
  • FIG. 9 is a schematic cross-sectional view of an electronic device according to further another embodiment of the present disclosure.
  • the electronic device of the present embodiment comprises: a display cell 11 ; a first light adjusting unit 12 ; and a second light adjusting unit 13 , wherein the display cell 11 , the first light adjusting unit 12 and the second light adjusting unit 13 are at least partially overlapped.
  • the electronic device of the present embodiment further comprises: a first polarizer 15 and a second polarizer 16 , wherein the display cell 11 and the second light adjusting unit 13 are disposed between the first polarizer 15 and the second polarizer 16 .
  • the first light adjusting unit 12 comprises a collimated backlight module 141 and an active diffuser 142 disposed on the collimated backlight module 141 , and the display cell 11 is disposed on the active diffuser 142 .
  • the collimated backlight module 141 may be a direct-lit backlight module or an edge-lit backlight module.
  • the collimated backlight module 141 may comprise a prism sheet or a louver film to make the light emitting from the collimated backlight module 141 have narrow light dispersion.
  • the beam angle of the collimate light may be, for example, within ⁇ 40 degrees, ⁇ 30 degrees or ⁇ 20 degrees from a normal direction of the display cell 11 , but the present disclosure is not limited thereto.
  • the active diffuser 142 used herein refers to a diffuser that the haze thereof can be adjusted.
  • Example of the active diffuser 142 may include a polymer dispersed liquid crystal (PDLC) film or a polymer network liquid crystal (PNLC) film.
  • PDLC polymer dispersed liquid crystal
  • PNLC polymer network liquid crystal
  • the active diffuser 142 is adjusted to have high haze, and the active diffuser 142 is in a diffusing state.
  • the active diffuser 142 is adjusted to have low haze (for example, close to 0%), and the active diffuser 142 is in a transparent state.
  • FIG. 10 is a cross-sectional view of an electronic device according to further another embodiment of the present disclosure.
  • the electronic device of the present embodiment is similar to that shown in FIG. 9 , except for the first light adjusting unit 12 .
  • the first light adjusting unit 12 comprises: a non-collimated backlight module 14 ; a louver film 143 disposed on the non-collimated backlight module 14 ; and an active diffuser 142 disposed on the louver film 143 , wherein the display cell 11 is disposed on the active diffuser 142 .
  • the active diffuser 142 used herein is similar to that illustrated above.
  • the non-collimated backlight module 14 may be a direct-lit backlight module or an edge-lit backlight module.
  • the difference between the non-collimated backlight module 14 and the collimated backlight module 141 is that, the collimated backlight module 141 has narrow light dispersion, but the non-collimated backlight module 14 has wide light dispersion.
  • the beam angle of the light emitting from the non-collimated backlight module 14 may be, for example, within ⁇ 90 degrees, ⁇ 80 degrees or ⁇ 70 degrees from a normal direction of the display cell 11 , but the present disclosure is not limited thereto.
  • the louver film 143 the light emitting from the non-collimated backlight module 14 can be converted into collimate light.
  • FIG. 11 is a cross-sectional view of an electronic device according to further another embodiment of the present disclosure.
  • the electronic device of the present embodiment is similar to that shown in FIG. 9 , except for the first light adjusting unit 12 .
  • the first light adjusting unit 12 comprises a collimated backlight module 141 and a transparent backlight module 144 disposed on the collimated backlight module 141 , and the display cell 11 is disposed on the transparent backlight module 144 .
  • the transparent backlight module 144 has wide light dispersion, and the beam angle of the light emitting from the transparent backlight module 144 may be, for example, within ⁇ 90 degrees, ⁇ 80 degrees or ⁇ 70 degrees from a normal direction of the display cell 11 .
  • the structure of the transparent backlight module 144 can be similar to the non-collimated backlight module.
  • the transparent backlight module 144 may comprise a light guide plate, and plural cavities or air bubbles are formed or embedded in the light guide plate. Because the refractive index of the cavities or the air bubbles is different from the refractive index of the material of the light guide plate, so the light incident into the light guide plate may be refracted, reflected or scattered. Thus the purpose of wide viewing angle can be achieved.
  • the shapes or the sizes of the cavities or the air bubbles are not particularly limited, and may be adjusted according to the need.
  • the collimated backlight module 141 in the wide mode, the collimated backlight module 141 is in the off-state and the transparent backlight module 144 is in the on-state.
  • the collimated backlight module 141 in the on-state and the transparent backlight module 144 is in the off-state.
  • FIG. 12 is a cross-sectional view of an electronic device according to further another embodiment of the present disclosure.
  • the electronic device of the present embodiment is similar to that shown in FIG. 11 , except for the first light adjusting unit 12 .
  • the first light adjusting unit 12 comprises: a non-collimated backlight module 14 ; a louver film 143 disposed on the non-collimated backlight module 14 ; and a transparent backlight module 144 disposed on the louver film 143 , wherein the display cell 11 is disposed on the transparent backlight module 144 .
  • the transparent backlight module 144 has wide light dispersion.
  • the non-collimated backlight module 14 , the louver film 143 and the transparent backlight module 144 with wide light dispersion are similar to those stated above, and the descriptions thereof are not repeated again.
  • the non-collimated backlight module 14 in the wide mode, the non-collimated backlight module 14 is in an off-state and the transparent backlight module 144 is in an on-state.
  • the narrow mode the non-collimated backlight module 14 is in an on-state and the transparent backlight module 144 is in an off-state.
  • FIG. 13 is a cross-sectional view of an electronic device according to further another embodiment of the present disclosure.
  • the electronic device of the present embodiment is similar to that shown in FIG. 11 , except for the first light adjusting unit 12 .
  • the first light adjusting unit 12 comprises: a non-collimated backlight module 14 ; and a transparent backlight module 144 ′ disposed on the non-collimated backlight module 14 , wherein the display cell 11 is disposed on the transparent backlight module 144 ′.
  • the transparent backlight module 144 ′ has narrow light dispersion, and the beam angle of the light emitting from the transparent backlight module 144 may be, for example, within ⁇ 40 degrees, ⁇ 30 degrees or ⁇ 20 degrees from a normal direction of the display cell 11 .
  • the non-collimated backlight module 14 in the wide mode, the non-collimated backlight module 14 is in the on-state, and the transparent backlight module 144 ′ is in the off-state.
  • the non-collimated backlight module 14 in the off-state, and the transparent backlight module 144 is in the on-state.
  • the display cell 11 , the second light adjusting unit 13 , the first polarizer 15 and the second polarizer 16 are similar to those stated above, and are not repeated again.
  • the display cell 11 and the second light adjusting unit 13 of the electronic devices shown in FIG. 9 to FIG. 13 together may be replaced by the second light adjusting unit 13 ′ illustrated above.
  • the first light adjusting unit 12 of the electronic devices shown in FIG. 9 to FIG. 13 may comprise a first viewing angle changing area and a first dummy area (not shown in the figure), and the second light adjusting unit 13 comprises a second viewing angle changing area 13 a and a second dummy area 13 b (similar to those shown in FIG. 8 ).
  • the first viewing angle changing area corresponds to the second viewing angle changing area 13 a, and in particular, the second viewing angle changing area 13 a overlaps the first viewing angle changing area.
  • the first dummy area corresponds to the second dummy area 13 b, and in particular, the second dummy area 13 b overlaps the first dummy area.
  • the region with the first dummy area and the second dummy area 13 b is in the wide mode, no matter the region with the first viewing angle changing area and the second viewing angle changing area 13 a is in the narrow mode or in the wide mode.

Abstract

An electronic device includes: a display cell; a first light adjusting unit; and a second light adjusting unit, wherein the display cell, the first light adjusting unit and the second light adjusting unit are at least partially overlapped, and at least one of the first light adjusting unit and the second light adjusting unit is an ECB mode liquid crystal cell.

Description

    BACKGROUND 1. Field
  • The present disclosure relates to an electronic device. More specifically, the present disclosure relates to a privacy electronic device.
  • 2. Description of Related Art
  • Recently, a privacy display device is developed for several usages, such as automotive displays, Notebook displays, PC monitors, ATM displays, etc. Requirement of the privacy display device depends on the product. In addition, some privacy display devices are required to have the function of switching between the wide mode (i.e. the public mode) and the narrow mode (i.e. the privacy mode).
  • However, the currently used privacy display devices have some disadvantages. For example, the brightness of the display devices at the wide viewing angle is not low enough, and other people near to the user may feel annoyed.
  • Therefore, it is desirable to provide a novel privacy electronic device to improve the disadvantages of the privacy display devices currently used.
  • SUMMARY
  • The present disclosure provides an electronic device, comprising: a display cell; a first light adjusting unit; and a second light adjusting unit, wherein the display cell, the first light adjusting unit and the second light adjusting unit are at least partially overlapped, and at least one of the first light adjusting unit and the second light adjusting unit is an ECB mode liquid crystal cell.
  • The present disclosure further provides another electronic device, comprising: a first light adjusting unit; and a second light adjusting unit comprising plural pixels, wherein at least one of the plural pixels comprises a display region and a viewing angle changing region, and an operation mode of the display region is different from an operation mode of the viewing angle changing region.
  • Other novel features of the disclosure will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic cross-sectional view of an electronic device according to one embodiment of the present disclosure.
  • FIG. 2A is a schematic cross-sectional view of a display cell and a second light adjusting unit of an electronic device shown in FIG. 1 in a wide mode.
  • FIG. 2B is a schematic cross-sectional view of a display cell and a second light adjusting unit of an electronic device shown in FIG. 1 in a narrow mode.
  • FIG. 3 is a schematic cross-sectional view of an electronic device according to another embodiment of the present disclosure.
  • FIG. 4A is a schematic top view of a pixel of an electronic device of FIG. 3.
  • FIG. 4B is a schematic cross-sectional view of a second light adjusting unit of an electronic device shown in FIG. 3 in a wide mode.
  • FIG. 4C is a schematic cross-sectional view of a second light adjusting unit of an electronic device shown in FIG. 3 in a narrow mode.
  • FIG. 5 is a circuit diagram of pixels of a second light adjusting unit shown in FIG. 3 in one embodiment of the present disclosure.
  • FIG. 6 is a circuit diagram of a pixel of a second light adjusting unit shown in FIG. 3 in another embodiment of the present disclosure.
  • FIG. 7 is a circuit diagram of a pixel of a second light adjusting unit shown in FIG. 3 in further another embodiment of the present disclosure.
  • FIG. 8 is a schematic cross-sectional view of an electronic device according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic cross-sectional view of an electronic device according to further another embodiment of the present disclosure.
  • FIG. 10 is a schematic cross-sectional view of an electronic device according to further another embodiment of the present disclosure.
  • FIG. 11 is a schematic cross-sectional view of an electronic device according to further another embodiment of the present disclosure.
  • FIG. 12 is a schematic cross-sectional view of an electronic device according to further another embodiment of the present disclosure.
  • FIG. 13 is a schematic cross-sectional view of an electronic device according to further another embodiment of the present disclosure.
  • DETAILED DESCRIPTION OF EMBODIMENT
  • Different embodiments of the present disclosure are provided in the following description. These embodiments are meant to explain the technical content of the present disclosure, but not meant to limit the scope of the present disclosure. A feature described in an embodiment may be applied to other embodiments by suitable modification, substitution, combination, or separation.
  • It should be noted that, in the present specification, when a component is described to comprise an element, it means that the component may comprise one or more of the elements, and it does not mean that the component has only one of the element, except otherwise specified.
  • Moreover, in the present specification, the ordinal numbers, such as “first” or “second”, are used to distinguish a plurality of elements having the same name, and it does not means that there is essentially a level, a rank, an executing order, or an manufacturing order among the elements, except otherwise specified. A “first” element and a “second” element may exist together in the same component, or alternatively, they may exist in different components, respectively. The existence of an element described by a greater ordinal number does not essentially means the existence of another element described by a smaller ordinal number.
  • In the present specification, except otherwise specified, the feature A “or” or “and/or” the feature B means the existence of the feature A, the existence of the feature B, or the existence of both the features A and B. The feature A “and” the feature B means the existence of both the features A and B. The term “comprise(s)”, “comprising”, “include(s)”, “including”, “have”, “has” and “having” means “comprise(s)/comprising but is/are/being not limited to”.
  • Moreover, in the present specification, the terms, such as “top”, “upper”, “bottom”, “front”, “back”, or “middle”, as well as the terms, such as “on”, “above”, “over”, “under”, “below”, or “between”, are used to describe the relative positions among a plurality of elements, and the described relative positions may be interpreted to include their translation, rotation, or reflection.
  • Furthermore, the terms recited in the specification and the claims such as “above”, “over”, or “on” are intended not only directly contact with the other element, but also intended indirectly contact with the other element. Similarly, the terms recited in the specification and the claims such as “below”, or “under” are intended not only directly contact with the other element but also intended indirectly contact with the other element.
  • Furthermore, the terms recited in the specification and the claims such as “connect” is intended not only directly connect with other element, but also intended indirectly connect and electrically connect with other element.
  • Furthermore, when a value is in a range from a first value to a second value, the value may be the first value, the second value, or another value between the first value and the second value.
  • Moreover, in the present specification, a value may be interpreted to cover a range within ±20% of the value, and in particular, a range within ±10%, ±5%, ±3%, ±2%, ±1% or ±0.5% of the value, except otherwise specified. The value provided in the present specification is an approximate value, which means the meaning “about” is also included in the present disclosure without specifically specifying “about”.
  • In the present specification, except otherwise specified, the terms (including technical and scientific terms) used herein have the meanings generally known by a person skilled in the art. It should be noted that, except otherwise specified in the embodiments of the present disclosure, these terms (for example, the terms defined in the generally used dictionary) should have the meanings identical to those known in the art, the background of the present disclosure or the context of the present specification, and should not be read by an ideal or over-formal way.
  • Hereinafter, the term “narrow mode” refers to the privacy mode, and the images displayed on the electronic device may be seen within, for example, 25 degrees of the viewing angle, and the ranges within ±10 degrees or ±5 degrees of 25 degrees are also included in the scope of the present disclosure. The term “wide mode” refers to the public mode, and the images displayed on the electronic device may be seen within, for example, near to 90 degrees (for example, 80 degrees) of the viewing angle. The term “low contrast ratio (CR)” means a function that the contrast ratio is ranged from 0.2 to 5. The term “dark” means a function that the brightness of the electronic device is 2% of the maximum brightness of grayscale.
  • The term “viewing angle” can be defined by the followings. A direction perpendicular to a surface of a side of the electronic device near to the user (i.e. the display side) is defined. A first virtual line is defined, which is substantially parallel to the direction and is a line connecting the eyes of the user and the center (or a point close to the center within a tolerable deviation; or a point which is on the central line of the display side, wherein the central line may be substantially parallel to one side edge of the display side) of the display side of the electronic device. When the user moves (for example, along a moving direction parallel to the display side), a second virtual line is defined, which is a line connecting the center (or a point close to the center within a tolerable deviation) of the display side of the electronic device and the position of the eyes of the user that the user still can see the images displayed by the electronic device. The angle included between the first virtual line and the second virtual line is defined as the viewing angle.
  • The electronic device of the present disclosure may comprise a display device, an antenna device, a sensing device, a touch device, a curved electronic device or a free shape display device, but the present disclosure is not limited thereto. The electronic device of the present disclosure may be a bendable or a flexible display device. The display device may include, for example, a tiled display device, but the present disclosure is not limited thereto. The electronic device of the present disclosure may be a combination of the aforesaid devices, but the present disclosure is not limited thereto. In addition, the shapes of the electronic device of the present disclosure is not particularly limited, and may be rectangle, circular, polygon, a shape with curved edges or other suitable shapes, but the present disclosure is not limited thereto. The electronic device of the present disclosure may comprise a driving system, a control system, a light source system, a shelving system or other peripheral system to support the display device or the tiled display device. Hereinafter, a display device is used as an example to illustrate the electronic device of the present disclosure, but the present disclosure is not limited thereto.
  • FIG. 1 is a schematic cross-sectional view of an electronic device according to one embodiment of the present disclosure. The electronic device of the present embodiment comprises: a display cell 11; a first light adjusting unit 12; and a second light adjusting unit 13, wherein the display cell 11, the first light adjusting unit 12 and the second light adjusting unit 13 are at least partially overlapped.
  • Herein, the display cell 11 is for displaying images. In an embodiment, the display cell 11 may be a liquid crystal cell, but the present disclosure is not limited thereto. In detail, the display cell 11 may include two substrates, liquid crystal, plural pixels and a color filter, wherein the liquid crystal, plural pixels and the color filter are disposed between the two substrates. The driving mode of the liquid crystal of display cell 11 is not particularly limited. For example, the driving mode of the liquid crystal may be an in-plane switching (IPS) mode, a fringe field switching (FFS) mode, a vertical alignment (VA) mode, a twisted nematic (TN) mode, an electrically-controlled birefringence (ECB) mode or an optically compensated birefringence (OCB) mode; but the present disclosure is not limited thereto. In some embodiments, the display cell 11 may be a self-luminance display cell, including plural pixels which may produce different colors. For example, the plural pixels may include an organic light emitting diode (OLED), an inorganic light emitting diode (ILED), a mini-LED, a micro-LED, quantum dots (QDs), a quantum dot diode (QLED/QDLED), an electrophoresis, fluorescence, phosphor, other suitable materials or a combination of the above materials, but the disclosure is not limited thereto.
  • In addition, at least one of the first light adjusting unit 12 and the second light adjusting unit 13 is an ECB mode liquid crystal cell. In some embodiments, the first light adjusting unit 12 may be an ECB mode liquid crystal cell, a TN mode liquid crystal cell, a VA mode liquid crystal cell, or a VA-ECB hybrid mode liquid crystal cell.
  • Furthermore, the second light adjusting unit 13 may be an ECB mode liquid crystal cell.
  • The electronic device of the present embodiment comprises: a first polarizer 15 and a second polarizer 16, wherein the display cell 11 and the second light adjusting unit 13 are disposed between the first polarizer 15 and the second polarizer 16, and the second light adjusting unit 13 is disposed on the display cell 11. Thereby, the relative position of the first polarizer 15, the second polarizer 16, the second light adjusting unit 13 and the display cell 11 described above may have the a low CR (contrast ratio) function. In some embodiments, the amount and the positions of the polarizers may be adjusted according to the need. In addition, other optical films such as prism sheets, diffusors or bright enhancement films may also be included in the electronic device of the present disclosure if it is needed.
  • The electronic device of the present embodiment further comprises: a third polarizer 17, wherein the first light adjusting unit 12 is disposed between the second polarizer 16 and the third polarizer 17. Herein, the relative position of the first polarizer 15, the second polarizer 16, the third polarizer 17, the display cell 11, the first light adjusting unit 12 and the second light adjusting unit 13 is shown as FIG. 1, thereby the electronic device may have the low contrast ratio function and dark function at the same time in the narrow mode. In another embodiment of the present disclosure, two different polarizers may be used as the second polarizers, one is disposed on and adjacent to the second light adjusting unit 13 and the other one is disposed under and adjacent to the first light adjusting unit 12. In this embodiment, relative position of the one polarizer mentioned above, the second light adjusting unit 13, the display cell 11 and the first polarizer 15 may have the low contrast ratio function in the narrow mode. The relative position of the other one polarizer mentioned above, the first light adjusting unit 12 and the third polarizer 17 may have dark function in the narrow mode, but the present disclosure is not limit thereto.
  • For the dark function, in the wide mode, no liquid crystal retardation is occurred at all viewing angle, so the image displayed by the display cell 11 can be seen from all viewing angle. In the narrow mode, no or little liquid crystal retardation is occurred at the on-axis or at the user viewing angle (for example, within 25 degrees), but significant liquid crystal retardation is occurred at the off-axis or at the viewing angle outside the user viewing angle (for example, more than 25 degrees). Thus, the image displayed by the display cell 11 can be seen from the user viewing angle but cannot be seen from the viewing angle outside the user viewing angle.
  • In the electronic device of the present embodiment, the first polarizer 15, the second polarizer 16 and the third polarizer 17 may respectively be any retardation film, for example, an A-plate, a C-plate, an O-film a discotic LC film, or a combination thereof; but the present disclosure is not limited thereto. In addition, the first polarizer 15, the second polarizer 16 and the third polarizer 17 may be the same or different from each other.
  • As mentioned above, the electronic device of the present embodiment of the present embodiment is a combination of the low CR function and the dark function. In the case that the electronic device is in the narrow mode, the images displayed by the display cell 11 can be visible at user viewing angle (for example, within 25 degrees); but the images displayed by the display cell 11 is invisible at the narrow viewing angle (for example, in a range from 25 degrees to 40 degrees) due to the low CR and also invisible at the wide viewing angle (for example, in a range from 40 degrees to 80 degrees) due to the low CR and enough darkness. In particular, the brightness of the electronic device at the wide viewing angle is low, so a person near to the user may not be disturbed when the electronic device is in the narrow mode. The ranges within ±5 degrees or ±10 degrees of the viewing angles described herein are still included in the scope of the present disclosure due to the design or the process error of the electronic device.
  • The electronic device of the present embodiment has both the dark function and the low CR function, so the brightness at the viewing angle outside the user viewing angle is low enough when the electronic device is in the narrow mode. Thus, a person adjacent to the user cannot see the images displayed on the electronic device, or the person is not disturbed by the electronic device due to the insufficient darkness.
  • As shown in FIG. 1, in the electronic device of the present embodiment, the second light adjusting unit 13 is disposed on the display cell 11, the first light adjusting unit 12 is disposed on the second light adjusting unit 13, the second light adjusting unit 13 and the display cell 11 is disposed between the first polarizer 15 and the second polarizer 16 and the first light adjusting unit 12 disposed between the second polarizer 16 and the third polarizer 17.
  • In another embodiment of the present disclosure, the second light adjusting unit 13 and the display cell 11 may be disposed between the second polarizer 16 and the third polarizer 17, and the second light adjusting unit 13 is disposed on the display cell 11. The first light adjusting unit 12 is disposed between the first polarizer 15 and the second polarizer 16. Hence, the second light adjusting unit 13 and the display cell 11 are disposed on the first light adjusting unit 12. Thereby, the relative position of the second polarizer 16, the display cell 11, the second light adjusting unit 13 and the third polarizer 17 may have the low CR function. The relative position of the first polarizer 15, the second polarizer 16, the third polarizer 17, the display cell 11, the first light adjusting unit 12 and the second light adjusting unit 13 described in this embodiment may have the low contrast ratio function and dark function at the same time in the narrow mode. However, the present disclosure is not limited thereto.
  • Furthermore, the electronic device of the present embodiment may further selectively comprise a backlight module 14, disposed under the display cell 11, the first light adjusting unit 12 and the second light adjusting unit 13. In some embodiments, the backlight module 14 may be a direct-lit backlight module or an edge-lit backlight module, but the present disclosure is not limited thereto.
  • FIG. 2A and FIG. 2B are respectively schematic cross-sectional views of the display cell and the second light adjusting unit shown in FIG. 1 in a wide mode and in a narrow mode. Herein, for example, the driving mode of the liquid crystal of the display cell 11 may be an IPS mode. However, the present disclosure is not limited thereto, and any driving mode of the liquid crystal may be used in the present disclosure. In addition, the second light adjusting unit 13 may be used an ECB mode.
  • As shown in FIG. 2A and FIG. 2B, the display cell 11 comprises: a first substrate 111; a second substrate 116 opposite to the first substrate 111; a common electrode 112 disposed on the first substrate 111; an insulating layer 113 disposed on the common electrode 112; a pixel electrode 114 disposed on the insulating layer 113; and a first display medium layer 115 disposed between the first substrate 111 and the second substrate 116. Herein, plural transistors (not shown in the figure) electrically connected to the pixel electrode 114 are disposed on the first substrate 111. The common electrode 112 may be a planer electrode, and the pixel electrode 114 may be a patterned electrode, but the present disclosure is not limited thereto. Even not shown in the figure, in some embodiments, the display cell 11 may selectively comprise a color filter layer and a black matrix layer respectively formed on the first substrate 111 or the second substrate 116. In addition, the first display medium layer 115 may be a liquid crystal layer, but the present disclosure is not limited thereto.
  • The second light adjusting unit 13 comprises: a third substrate 131; a fourth substrate 135 opposite to the third substrate 131; a first electrode 132 disposed on the third substrate 131; a second electrode 134 disposed on the fourth substrate 135; and a second display medium layer 133 disposed between the third substrate 131 and the fourth substrate 135. The first electrode 132 and the second electrode 134 may be respectively a planer electrode, but the present disclosure is not limited thereto. In some embodiment, the second display medium layer 133 may be a liquid crystal layer, but the present disclosure is not limited thereto. In addition, an alignment layer may be disposed between the second display medium layer 133 and the second electrode 134; and another alignment layer may be disposed between the second display medium layer 133 and the first electrode 132.
  • As shown in FIG. 2A, when the electronic device is in a wide mode, there is no voltage difference between the first electrode 132 and the second electrode 134. For example, in one embodiment, no voltage is applied to the first electrode 132 and the second electrode 134. In another embodiment, same voltage is applied to the first electrode 132 and the second electrode 134. However, the present disclosure is not limited thereto. As shown in FIG. 2B, when the electronic device is in a narrow mode, there is a voltage difference between the first electrode 132 and the second electrode 134. In one embodiment, no voltage is applied to the first electrode 132 and a predetermined voltage is applied to the second electrode 134. In another embodiment, a predetermined voltage is applied to the first electrode 132 and no voltage is applied to the second electrode 134. In further another embodiment, different voltage is applied to the first electrode 132 and the second electrode 134. However, the present disclosure is not limited thereto. Herein, the voltage difference may cause the liquid crystal molecules in the display medium layer 133 rotates, the rotation of the liquid crystal molecules may not influence the brightness of the second light adjusting unit 13 at the user viewing angle (for example, within 25 degrees) but causes the brightness increased at the narrow viewing angle (for example, in a range from 25 degrees to 40 degrees) and wide viewing angle (for example, in a range from 40 degrees to 80 degrees). Thus, the purpose of low CR at the narrow viewing angle and wide viewing angles can be achieved.
  • FIG. 3 is a schematic cross-sectional view of an electronic device according to another embodiment of the present disclosure, and FIG. 4A is a schematic top view of a pixel of an electronic device of FIG. 3. The electronic device of the present embodiment comprises: a first light adjusting unit 12; and a second light adjusting unit 13′ comprising plural pixels P, wherein at least one of the plural pixels P comprises a display region R1 and a viewing angle changing region R2, and an operation mode of the display region R1 is different from an operation mode of the viewing angle changing region R2. The difference between the electronic devices shown in FIG. 1 and FIG. 3 is that the electronic device of FIG. 1 comprises the display cell 11 and the second light adjusting unit 13, but the electronic device of FIG. 3 comprises the second light adjusting unit 13′ with pixels P. Thus, the second light adjusting unit 13′ of the present embodiment can be considered as a display cell with light adjusting function.
  • The electronic device of the present embodiment further comprises: a first polarizer 15 and a second polarizer 16, wherein the second light adjusting unit 13′ is disposed between the first polarizer 15 and the second polarizer 16.
  • The electronic device of the present embodiment further comprises: a third polarizer 17, wherein the first light adjusting unit 12 is disposed between the second polarizer 16 and the third polarizer 17.
  • Furthermore, the electronic device of the present embodiment may further selectively comprise a backlight module 14, disposed under the first light adjusting unit 12 and the second light adjusting unit 13′. In some embodiments, the backlight module 14 may be a direct-lit backlight module or an edge-lit backlight module, but the present disclosure is not limited thereto.
  • The first polarizer 15, the second polarizer 16, the third polarizer 17 and the backlight module 14 are similar to those illustrated above, and are not repeated again.
  • As shown in FIG. 4A, the liquid crystal molecules in the display region R1 may be driven by an IPS mode, and liquid crystal molecules in the viewing angle changing region R2 may be driven by an ECB mode. In another embodiment of the present disclosure, self-luminance display medium may be used in the display region R1. However, the present disclosure is not limited thereto. FIG. 4B and FIG. 4C are respectively cross-sectional views of the second light adjusting unit 13′ shown in FIG. 3 in a wide mode and in a narrow mode.
  • As shown in FIG. 4A to FIG. 4C, the second light adjusting unit 13′ comprises: a first substrate 111; a second substrate 116 opposite to the first substrate 111; a common electrode 112 disposed on the first substrate 111; an insulating layer 113 disposed on the common electrode 112; a pixel electrode 114 disposed on the insulating layer 113; and a first display medium layer 115 disposed between the first substrate 111 and the second substrate 116. Herein, the pixel electrode 114 is disposed in the display region R1 of the pixel P, but is not disposed in the viewing angle changing region R2 of the pixel P. Herein, plural transistors (not shown in the figure) electrically connected to the pixel electrode 114 are disposed on the first substrate 111. The common electrode 112 is a planer electrode, and the pixel electrode 114 is a patterned electrode. Even not shown in the figure, in some embodiments, the display cell 11 may selectively comprise a color filter layer and a black matrix layer respectively formed on the first substrate 111 or the second substrate 116. In addition, the first display medium layer 115 may be a liquid crystal layer, but the present disclosure is not limited thereto. In some embodiments, the shape or design of the pixel electrode 114 can be adjusted according to actual needs, not limited to FIG. 4A.
  • The second light adjusting unit 13′ further comprises: a first electrode 132 disposed on the insulating layer 113, wherein the pixel electrode 114 and the first electrode 132 may be formed by the same layer; and a second electrode 134 disposed on the second substrate 116, wherein the first display medium layer 115 is disposed between the first electrode 132 and the second electrode 134. Herein, the first electrode 132 and the second electrode 134 are disposed in the viewing angle changing region R2 of the pixel P, but are not disposed in the display region R1 of the pixel P. The first electrode 132 and the second electrode 134 may be respectively a planer electrode, but the present disclosure is not limited thereto.
  • In addition, an alignment layer is disposed between the pixel electrode 114 and the first display medium layer 115, and also between the first electrode 132 and the first display medium layer 115. Another alignment layer is disposed between the second electrode 134 and the first display medium layer 115. The rubbing direction of the alignment layer on the pixel electrode 114 and the first electrode 132 is homogeneous. The rubbing direction of the alignment layer on the pixel electrode 114 and the first electrode 132 is different from (for example, opposite to) the rubbing direction of the alignment layer on the second electrode 134.
  • As shown in FIG. 4B, when the electronic device is in the wide mode, there is no voltage difference between the first electrode 132 and the second electrode 134. For example, no voltage is applied to the first electrode 132 and the second electrode 134, but the present disclosure is not limited thereto. Thus, the viewing angle changing region R2 is dark at all viewing angle, and the image displayed by the display region R1 can be observed by anyone at all viewing angle. As shown in FIG. 4C, when the electronic device is in the narrow mode, there is a voltage difference between the first electrode 132 and the second electrode 134. For example, no voltage is applied to the second electrode 134 and a predetermined voltage is applied to the first electrode 132, but the present disclosure is not limited thereto. Herein, the voltage difference may cause the liquid crystal molecules in the first display medium layer 115 rotates, the rotation of the liquid crystal molecules may not influence the brightness of the viewing angle changing region R2 of the second light adjusting unit 13′ at the user viewing angle (for example, within 25 degrees) but causes the brightness of the viewing angle changing region R2 increased at the narrow viewing angle (for example, in a range from 25 degrees to 40 degrees) and wide viewing angle (for example, in a range from 40 degrees to 80 degrees). Thus, the image displayed by the display region R1 may be observed by the user at the user viewing angle but may not be observed by a person at the narrow and wide viewing angles due to low CR.
  • Herein, the relative position of the first polarizer 15, the second polarizer 16, the third polarizer 17, the first light adjusting unit 12 and the second light adjusting unit 13′ is shown as FIG. 3, thereby the electronic device may have the low contrast ratio function and dark function at the same time in the narrow mode.
  • FIG. 5 is a circuit diagram of pixels of a second light adjusting unit shown in FIG. 3 in one embodiment of the present disclosure. As shown in FIG. 4B and FIG. 5, a voltage source 18 is electrically connected to the first electrode 132 or the second electrode 134 in the viewing angle changing region R2. In the wide mode, the voltage source 18 does not provide a voltage to the first electrode 132 or the second electrode 134. Thus, in the wide mode, the viewing angle changing region R2 is dark at all viewing angle. In the narrow mode, the voltage source 18 provides a predetermined voltage to the first electrode 132 or the second electrode 134. Thus, in the narrow mode, the viewing angle changing region R2 is in a bright state and the purpose of low CR can be achieved. Herein, in the narrow mode, the CR of the second light adjusting unit 13′ can be calculated by the following equation (I), wherein R1 means the display region R1 and R2 means the viewing angle changing region R2:

  • CR=(Brightness of R1 in the bright state+Brightness of R2 in the bright state)/(Brightness of R1 in the dark state+Brightness of R2 in the bright state)   (I).
  • In addition, as shown in FIG. 5, at least one TFT is disposed in the display region R1, wherein a control end of the TFT is electrically connected to a first scan line S1, a first end of the TFT is electrically connected to a first data line D1, and a second end of the TFT is electrically connected to the capacitor CL1 of the first display medium layer 115 which is in the display region R1. A first end of a storage capacitor CS1 is electrically connected to a first end of the capacitor CL1, and a second end of the storage capacitor CS1 and a second end of the capacitor CL2 are connected to the ground. Furthermore, in the viewing angle changing region R2, an end of the capacitor CL2 of the first display medium layer 115 (or the capacitor between first electrode 132 and the second electrode 134) is electrically connected to the voltage source 18, and another end of the capacitor CL2 is connected to the ground.
  • FIG. 6 is a circuit diagram of pixels of a second light adjusting unit shown in FIG. 3 in one embodiment of the present disclosure. As shown in FIG. 4B and FIG. 6, an alignment of liquid crystal molecules in the display region R1 are controlled by a first transistor TFT1, and an alignment of liquid crystal molecules in the viewing angle changing region R2 are controlled by a second transistor TFT2. More specifically, the second light adjusting unit 13′ (as shown in FIG. 3) further comprises a first scan line S1, a first data line D1, a second scan line S2 and a second data line D2, the first transistor TFT1 is electrically connected to the first scan line S1 and the first data line D1, and the second transistor TFT2 is electrically connected to the second scan line S2 and the second data line D2. Thus, the brightness of the display region R1 and the viewing angle changing region R2 are respectively controlled by the first transistor TFT1 and the second transistor TFT2. As shown in FIG. 4B and FIG. 6, the capacitor CL1 of the first display medium layer 115 is electrically connected to the first transistor TFT1, and the capacitor CL2 of the first display medium layer 115 (or the capacitor between first electrode 132 and the second electrode 134) is electrically connected to the second transistor TFT2.
  • In the wide mode, no voltage is provided to the first electrode 132 and/or the second electrode 134. Thus, in the wide mode, the viewing angle changing region R2 is dark at all viewing angle. In the narrow mode, a predetermined voltage is provided to the first electrode 132 or the second electrode 134, so a voltage difference may be formed between the first electrode 132 and the second electrode 134 and the viewing angle changing region R2 is in the bright state. Thus, the purpose of low CR in the narrow mode can be achieved, and the CR can be close to 0.2 to 5. Herein, in the narrow mode, the CR of the second light adjusting unit 13′ can be calculated by the following equation (II), wherein R1 means the display region R1 and R2 means the viewing angle changing region R2:

  • CR=(Brightness of R1 in the bright state+Brightness of R2 in the dark state)/(Brightness of R1 in the dark state+Brightness of R2 in the bright state)   (II).
  • FIG. 7 is a circuit diagram of pixels of a second light adjusting unit shown in FIG. 3 in one embodiment of the present disclosure. The circuit diagram shown in FIG. 7 is similar to that shown in FIG. 6, except for the following difference. In FIG. 6, the second transistor TFT2 is electrically connected to the second scan line S2 and the second data line D2. In FIG. 7, the second light adjusting unit 13′ (as shown in FIG. 3) further comprises a first scan line S1, a first data line D1 and a second scan line S2, the first transistor TFT1 is electrically connected to the first scan line S1 and the first data line D1, and the second transistor TFT2 is electrically connected to the second scan line S2 and the first data line D1. As shown in FIG. 4B and FIG. 7, the capacitor CL1 of the first display medium layer 115 is electrically connected to the first transistor TFT1, and the capacitor CL2 of the first display medium layer 115 (or the capacitor between first electrode 132 and the second electrode 134) is electrically connected to the second transistor TFT2.
  • Furthermore, as shown in FIG. 4B and FIG. 7, a voltage source 18 is further electrically connected to an end of capacitor CL2 (for example, first electrode 132 or the second electrode 134) in the viewing angle changing region R2. Thus, the brightness of the viewing angle changing region R2 is controlled by the second transistor TFT2 and the voltage source 18.
  • As shown in FIG. 4B and FIG. 7, in the wide mode, no voltage is provided to the first electrode 132 and/or the second electrode 134 and the voltage source 18 does not provide a voltage, so there is no voltage difference between the first electrode 132 and the second electrode 134. Thus, in the wide mode, the viewing angle changing region R2 is dark at all viewing angle. In the narrow mode, when the display region R1 is in the dark state, no voltage is provided to the first electrode 132 and/or the second electrode 134 and the voltage source 18 provides a predetermined voltage, so there is a voltage difference between the first electrode 132 and the second electrode 134 and the viewing angle changing region R2 is in the bright state. In the narrow mode, when the display region R1 is in the bright state, the voltage source 18 provides the predetermined voltage and the same predetermined voltage is provided to the first electrode 132 and/or the second electrode 134, so there is no voltage difference between the first electrode 132 and the second electrode 134 and the viewing angle changing region R2 is in the dark state. Thus, the purpose of low CR in the narrow mode can be achieved, and the CR can be close to 0.2 to 5. Herein, in the narrow mode, the CR of the second light adjusting unit 13′ can be calculated by the following equation (III), wherein R1 means the display region R1 and R2 means the viewing angle changing region R2:

  • CR=(Brightness of R1 in the bright state+Brightness of R2 in the dark state)/(Brightness of R1 in the dark state+Brightness of R2 in the bright state)   (II).
  • In FIG. 5 to FIG. 7, the voltage provided to the second transistor TFT2 and/or the voltage provided by the voltage source 18 is not particularly limited, and can be adjusted according to the brightness of the display region R1. For example, the voltage provided to the second transistor TFT2 and/or the voltage provided by the voltage source 18 can be adjusted to make the brightness of the display region R1 in the bright state similar to or the same as the brightness of the viewing angle changing region R2 in the bright state. Thus, the purpose of low CR or CR close to 0.2 to 5 can be achieved.
  • As shown in FIG. 3, in the electronic device of the present embodiment, the first light adjusting unit 12 is disposed on the second light adjusting unit 13′, the second light adjusting unit 13′ is disposed between the first polarizer 15 and the second polarizer 16, and the first light adjusting unit 12 disposed between the second polarizer 16 and the third polarizer 17. In another embodiment of the present disclosure, the second light adjusting unit 13′ may be disposed between the second polarizer 16 and the third polarizer 17, and the first light adjusting unit 12 may be disposed between the first polarizer 15 and the second polarizer 16; thus, the second light adjusting unit 13′ may be disposed on the first light adjusting unit 12. However, the present disclosure is not limited thereto.
  • As shown in FIGS. 2A, 2B, 4B and 4C, the first substrate 111, the second substrate 116, the third substrate 131 and the fourth substrate 135 may respectively be a non-flexible substrate, a flexible substrate, a thin film or a combination thereof. The material thereof may respectively include quartz, glass, silicon wafer, sapphire, polycarbonate (PC), polyimide (PI), polypropylene (PP), polyethylene terephthalate (PET) or other plastic or polymer material, or a combination thereof, but the present disclosure is not limited thereto. When the first substrate 111, the second substrate 116, the third substrate 131 or the fourth substrate 135 is a thin film, which may be a water barrier film or an encapsulating water barrier film formed by laminated inorganic-organic-inorganic (I-O-I) insulating layers. In some embodiment, the materials of the first substrate 111, the second substrate 116, the third substrate 131 and the fourth substrate 135 may be the same or different; but the present disclosure is not limited thereto.
  • The material of the common electrode 112, the pixel electrode 114, the first electrode 132 and the second electrode 134 may respectively include a transparent conductive metal oxide such as ITO (indium tin oxide), IZO (indium zinc oxide), ITZO (indium tin zinc oxide), IGZO (indium gallium zinc oxide), AZO (aluminum zinc oxide) or a combination thereof; but the present disclosure is not limited thereto.
  • The insulating layer 113 may include organic material or inorganic material, for example, silicon oxide, silicon oxynitride, silicon nitride, aluminum oxide, resin, polymer, photoresist, or a combination thereof; but the present disclosure is not limited thereto.
  • FIG. 8 is a schematic cross-sectional view of an electronic device according to another embodiment of the present disclosure. The electronic device of the present embodiment is similar to that shown in FIG. 1, except for the following differences.
  • As shown in FIG. 8, the second light adjusting unit 13 and the display cell 11 is disposed between the first polarizer 15 and the second polarizer 16, the first light adjusting unit 12 disposed between the second polarizer 16 and the third polarizer 17, the second light adjusting unit 13 is disposed on the display cell 11, and the first light adjusting unit 12 can be disposed below the display cell 11. In addition, the first light adjusting unit 12 comprises a first viewing angle changing area 12 a and a first dummy area 12 b, and the second light adjusting unit 13 comprises a second viewing angle changing area 13 a and a second dummy area 13 b. The first viewing angle changing area 12 a corresponds to the second viewing angle changing area 13 a, and in particular, the second viewing angle changing area 13 a the first viewing angle changing area 12 a are overlapped. The first dummy area 12 b corresponds to the second dummy area 13 b, and in particular, the second dummy area 13 b overlaps the first dummy area 12 b.
  • Herein, the region with the first dummy area 12 b and the second dummy area 13 b is in the wide mode, no matter the region with the first viewing angle changing area 12 a and the second viewing angle changing area 13 a is in the narrow mode or in the wide mode. Herein, the first dummy area 12 b of the first light adjusting unit 12 or the second dummy area 13 b of the second light adjusting unit 13 may respectively disposed with or without electrodes. In one embodiment of the present disclosure, the first dummy area 12 b of the first light adjusting unit 12 and the second dummy area 13 b of the second light adjusting unit 13 are disposed with the electrodes to maintain the transmittance of the region with the first dummy area 12 b and the second dummy area 13 b, but the present disclosure is not limited thereto.
  • Even not shown in FIG. 1, the first light adjusting unit 12 and the second light adjusting unit 13 may also comprise the first viewing angle changing area 12 a and the first dummy area 12 b, the second viewing angle changing area 13 a and the second dummy area 13 b mentioned above.
  • FIG. 9 is a schematic cross-sectional view of an electronic device according to further another embodiment of the present disclosure. The electronic device of the present embodiment comprises: a display cell 11; a first light adjusting unit 12; and a second light adjusting unit 13, wherein the display cell 11, the first light adjusting unit 12 and the second light adjusting unit 13 are at least partially overlapped. The electronic device of the present embodiment further comprises: a first polarizer 15 and a second polarizer 16, wherein the display cell 11 and the second light adjusting unit 13 are disposed between the first polarizer 15 and the second polarizer 16.
  • As shown in FIG. 9, in the present embodiment, the first light adjusting unit 12 comprises a collimated backlight module 141 and an active diffuser 142 disposed on the collimated backlight module 141, and the display cell 11 is disposed on the active diffuser 142.
  • In the present embodiment, the collimated backlight module 141 may be a direct-lit backlight module or an edge-lit backlight module. The collimated backlight module 141 may comprise a prism sheet or a louver film to make the light emitting from the collimated backlight module 141 have narrow light dispersion. The beam angle of the collimate light may be, for example, within ±40 degrees, ±30 degrees or ±20 degrees from a normal direction of the display cell 11, but the present disclosure is not limited thereto.
  • In addition, the active diffuser 142 used herein refers to a diffuser that the haze thereof can be adjusted. Example of the active diffuser 142 may include a polymer dispersed liquid crystal (PDLC) film or a polymer network liquid crystal (PNLC) film. In the wide mode, the active diffuser 142 is adjusted to have high haze, and the active diffuser 142 is in a diffusing state. In the narrow mode, the active diffuser 142 is adjusted to have low haze (for example, close to 0%), and the active diffuser 142 is in a transparent state.
  • FIG. 10 is a cross-sectional view of an electronic device according to further another embodiment of the present disclosure. The electronic device of the present embodiment is similar to that shown in FIG. 9, except for the first light adjusting unit 12. In the present embodiment, the first light adjusting unit 12 comprises: a non-collimated backlight module 14; a louver film 143 disposed on the non-collimated backlight module 14; and an active diffuser 142 disposed on the louver film 143, wherein the display cell 11 is disposed on the active diffuser 142. The active diffuser 142 used herein is similar to that illustrated above.
  • The non-collimated backlight module 14 may be a direct-lit backlight module or an edge-lit backlight module. The difference between the non-collimated backlight module 14 and the collimated backlight module 141 is that, the collimated backlight module 141 has narrow light dispersion, but the non-collimated backlight module 14 has wide light dispersion. The beam angle of the light emitting from the non-collimated backlight module 14 may be, for example, within ±90 degrees, ±80 degrees or ±70 degrees from a normal direction of the display cell 11, but the present disclosure is not limited thereto. By using the louver film 143, the light emitting from the non-collimated backlight module 14 can be converted into collimate light.
  • FIG. 11 is a cross-sectional view of an electronic device according to further another embodiment of the present disclosure. The electronic device of the present embodiment is similar to that shown in FIG. 9, except for the first light adjusting unit 12. In the present embodiment, the first light adjusting unit 12 comprises a collimated backlight module 141 and a transparent backlight module 144 disposed on the collimated backlight module 141, and the display cell 11 is disposed on the transparent backlight module 144. Herein, the transparent backlight module 144 has wide light dispersion, and the beam angle of the light emitting from the transparent backlight module 144 may be, for example, within ±90 degrees, ±80 degrees or ±70 degrees from a normal direction of the display cell 11.
  • The structure of the transparent backlight module 144 can be similar to the non-collimated backlight module. For example, the transparent backlight module 144 may comprise a light guide plate, and plural cavities or air bubbles are formed or embedded in the light guide plate. Because the refractive index of the cavities or the air bubbles is different from the refractive index of the material of the light guide plate, so the light incident into the light guide plate may be refracted, reflected or scattered. Thus the purpose of wide viewing angle can be achieved. Herein, the shapes or the sizes of the cavities or the air bubbles are not particularly limited, and may be adjusted according to the need.
  • As shown in FIG. 11, in the wide mode, the collimated backlight module 141 is in the off-state and the transparent backlight module 144 is in the on-state. In the narrow mode, the collimated backlight module 141 is in the on-state and the transparent backlight module 144 is in the off-state.
  • FIG. 12 is a cross-sectional view of an electronic device according to further another embodiment of the present disclosure. The electronic device of the present embodiment is similar to that shown in FIG. 11, except for the first light adjusting unit 12. In the present embodiment, the first light adjusting unit 12 comprises: a non-collimated backlight module 14; a louver film 143 disposed on the non-collimated backlight module 14; and a transparent backlight module 144 disposed on the louver film 143, wherein the display cell 11 is disposed on the transparent backlight module 144. Herein, the transparent backlight module 144 has wide light dispersion.
  • The non-collimated backlight module 14, the louver film 143 and the transparent backlight module 144 with wide light dispersion are similar to those stated above, and the descriptions thereof are not repeated again.
  • As shown in FIG. 12, in the wide mode, the non-collimated backlight module 14 is in an off-state and the transparent backlight module 144 is in an on-state. In the narrow mode, the non-collimated backlight module 14 is in an on-state and the transparent backlight module 144 is in an off-state.
  • FIG. 13 is a cross-sectional view of an electronic device according to further another embodiment of the present disclosure. The electronic device of the present embodiment is similar to that shown in FIG. 11, except for the first light adjusting unit 12. In the present embodiment, the first light adjusting unit 12 comprises: a non-collimated backlight module 14; and a transparent backlight module 144′ disposed on the non-collimated backlight module 14, wherein the display cell 11 is disposed on the transparent backlight module 144′. Herein, the transparent backlight module 144′ has narrow light dispersion, and the beam angle of the light emitting from the transparent backlight module 144 may be, for example, within ±40 degrees, ±30 degrees or ±20 degrees from a normal direction of the display cell 11.
  • As shown in FIG. 13, in the wide mode, the non-collimated backlight module 14 is in the on-state, and the transparent backlight module 144′ is in the off-state. In the narrow mode, the non-collimated backlight module 14 is in the off-state, and the transparent backlight module 144 is in the on-state.
  • In the electronic devices shown in FIG. 9 to FIG. 13, the display cell 11, the second light adjusting unit 13, the first polarizer 15 and the second polarizer 16 are similar to those stated above, and are not repeated again. In addition, in other embodiments of the present disclosure, the display cell 11 and the second light adjusting unit 13 of the electronic devices shown in FIG. 9 to FIG. 13 together may be replaced by the second light adjusting unit 13′ illustrated above.
  • In addition, in other embodiments of the present disclosure, the first light adjusting unit 12 of the electronic devices shown in FIG. 9 to FIG. 13 may comprise a first viewing angle changing area and a first dummy area (not shown in the figure), and the second light adjusting unit 13 comprises a second viewing angle changing area 13 a and a second dummy area 13 b (similar to those shown in FIG. 8). The first viewing angle changing area corresponds to the second viewing angle changing area 13 a, and in particular, the second viewing angle changing area 13 a overlaps the first viewing angle changing area. The first dummy area corresponds to the second dummy area 13 b, and in particular, the second dummy area 13 b overlaps the first dummy area. Herein, the region with the first dummy area and the second dummy area 13 b is in the wide mode, no matter the region with the first viewing angle changing area and the second viewing angle changing area 13 a is in the narrow mode or in the wide mode.
  • In the present disclosure, the features in different embodiments of the present disclosure can be mixed to form another embodiment without departing from the spirit and scope of the disclosure as hereinafter claimed.
  • Although the present disclosure has been explained in relation to its embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the disclosure as hereinafter claimed.

Claims (20)

1. An electronic device, comprising:
a display cell;
a first light adjusting unit; and
a second light adjusting unit,
wherein the display cell, the first light adjusting unit and the second light adjusting unit are at least partially overlapped, the display cell directly contacts the second light adjusting unit, and at least one of the first light adjusting unit and the second light adjusting unit is an ECB mode liquid crystal cell.
2. The electronic device of claim 1, comprising a first polarizer and a second polarizer, wherein the display cell and the second light adjusting unit are disposed between the first polarizer and the second polarizer.
3. The electronic device of claim 2, wherein the second light adjusting unit is disposed on the display cell.
4. The electronic device of claim 2, comprising a third polarizer, wherein the first light adjusting unit is disposed between the second polarizer and the third polarizer.
5. The display device of claim 1, wherein the second light adjusting unit is an ECB mode liquid crystal cell.
6. The electronic device of claim 1, wherein the first light adjusting unit is an ECB mode liquid crystal cell, a TN mode liquid crystal cell, a VA mode liquid crystal cell, or a VA-ECB hybrid mode liquid crystal cell.
7. The display device of claim 1, wherein the first light adjusting unit comprises:
a collimated backlight module; and
an active diffuser disposed on the collimated backlight module, wherein the display cell is disposed on the active diffuser.
8. The display device of claim 1, wherein the first light adjusting unit comprises:
a collimated backlight module; and
a transparent backlight module disposed on the collimated backlight module, wherein the display cell is disposed on the transparent backlight module.
9. The display device of claim 8, wherein the transparent backlight module comprises a light guide plate, and plural cavities or air bubbles are formed or embedded in the light guide plate.
10. The display device of claim 1, wherein the first light adjusting unit comprises:
a non-collimated backlight module;
a louver film disposed on the non-collimated backlight module; and
an active diffuser disposed on the louver film, wherein the display cell is disposed on the active diffuser.
11. The display device of claim 1, wherein the first light adjusting unit comprises:
a non-collimated backlight module;
a louver film disposed on the non-collimated backlight module; and
a transparent backlight module disposed on the louver film, wherein the display cell is disposed on the transparent backlight module.
12. The display device of claim 1, wherein the first light adjusting unit comprises:
a non-collimated backlight module;
a transparent backlight module disposed on the non-collimated backlight module, wherein the display cell is disposed on the transparent backlight module.
13. The electronic device of claim 1, wherein the first light adjusting unit comprises a first viewing angle changing area and a first dummy area, and the second light adjusting unit comprises a second viewing angle changing area and a second dummy area;
wherein the first viewing angle changing area corresponds to the second viewing angle changing area, and the first dummy area corresponds to the second dummy area.
14. An electronic device, comprising:
a backlight module;
a first light adjusting unit; and
a second light adjusting unit disposed between the first light adjusting unit and the backlight module, wherein the second light adjusting unit comprises plural pixels,
wherein at least one of the plural pixels comprises a display region and a viewing angle changing region, and an operation mode of the display region is different from an operation mode of the viewing angle changing region.
15. The electronic device of claim 14, wherein the display region is operated by an IPS mode.
16. The electronic device of claim 14, wherein the viewing angle changing region is operated by an ECB mode.
17. The electronic device of claim 14, wherein an alignment of liquid crystal molecules in the display region are controlled by a first transistor, and an alignment of liquid crystal molecules in the viewing angle changing region are controlled by a second transistor.
18. The electronic device of claim 14, further comprising a first polarizer and a second polarizer, wherein the second light adjusting unit is disposed between the first polarizer and the second polarizer.
19. The electronic device of claim 18, further comprising a third polarizer, wherein the first light adjusting unit is disposed between the second polarizer and the third polarizer.
20. The display device of claim 14, wherein the first light adjusting unit is an ECB mode liquid crystal cell, a TN mode liquid crystal cell, a VA mode liquid crystal cell, or a VA-ECB hybrid mode liquid crystal cell.
US17/104,587 2020-11-25 2020-11-25 Electronic device Abandoned US20220163828A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/104,587 US20220163828A1 (en) 2020-11-25 2020-11-25 Electronic device
CN202111245990.1A CN114545665A (en) 2020-11-25 2021-10-26 Electronic device
US18/154,021 US20230168529A1 (en) 2020-11-25 2023-01-12 Electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/104,587 US20220163828A1 (en) 2020-11-25 2020-11-25 Electronic device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/154,021 Continuation US20230168529A1 (en) 2020-11-25 2023-01-12 Electronic device

Publications (1)

Publication Number Publication Date
US20220163828A1 true US20220163828A1 (en) 2022-05-26

Family

ID=81657011

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/104,587 Abandoned US20220163828A1 (en) 2020-11-25 2020-11-25 Electronic device
US18/154,021 Pending US20230168529A1 (en) 2020-11-25 2023-01-12 Electronic device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/154,021 Pending US20230168529A1 (en) 2020-11-25 2023-01-12 Electronic device

Country Status (1)

Country Link
US (2) US20220163828A1 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050286000A1 (en) * 2004-06-24 2005-12-29 Au Optronics Corp. Adjustable-viewing-angle liquid crystal display
US20090040772A1 (en) * 2007-08-08 2009-02-12 Rohm And Haas Denmark Finance A/S Optical element comprising restrained asymmetrical diffuser
US20100103148A1 (en) * 2007-03-16 2010-04-29 Tsuyoshi Okazaki Viewing angle control device and display provided with the same
US20100128208A1 (en) * 2008-11-27 2010-05-27 Epson Imaging Devices Corporation Liquid crystal display device
US20100188617A1 (en) * 2007-07-19 2010-07-29 Takehiko Sakai Display and view angle control element employed therein
US20110128471A1 (en) * 2008-07-07 2011-06-02 James Rowland Suckling Illumination panel and display
CN103913912A (en) * 2014-03-31 2014-07-09 京东方科技集团股份有限公司 Display panel and display control method thereof
US20160071884A1 (en) * 2014-09-05 2016-03-10 Japan Display Inc. Display device
US20160093255A1 (en) * 2014-09-29 2016-03-31 Japan Display Inc. Display device
US20160097943A1 (en) * 2010-06-21 2016-04-07 Nlt Technologies, Ltd. Image display device, electronic apparatuse using the same, display output control method for image display device, and output control program thereof
US20160357046A1 (en) * 2015-06-03 2016-12-08 Apple Inc. Electronic Device Display With Switchable Film Structures
US20180299726A1 (en) * 2017-04-13 2018-10-18 Japan Display Inc. Display device
US20190353943A1 (en) * 2018-05-16 2019-11-21 Sharp Kabushiki Kaisha Liquid crystal private device
US20190353944A1 (en) * 2018-05-16 2019-11-21 Sharp Kabushiki Kaisha Bistable switchable liquid crystal private device
US20200057343A1 (en) * 2016-11-03 2020-02-20 3M Innovative Properties Company Multiplexing backlight with asymmetric turning film

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050286000A1 (en) * 2004-06-24 2005-12-29 Au Optronics Corp. Adjustable-viewing-angle liquid crystal display
US20100103148A1 (en) * 2007-03-16 2010-04-29 Tsuyoshi Okazaki Viewing angle control device and display provided with the same
US20100188617A1 (en) * 2007-07-19 2010-07-29 Takehiko Sakai Display and view angle control element employed therein
US20090040772A1 (en) * 2007-08-08 2009-02-12 Rohm And Haas Denmark Finance A/S Optical element comprising restrained asymmetrical diffuser
US20110128471A1 (en) * 2008-07-07 2011-06-02 James Rowland Suckling Illumination panel and display
US20100128208A1 (en) * 2008-11-27 2010-05-27 Epson Imaging Devices Corporation Liquid crystal display device
US20160097943A1 (en) * 2010-06-21 2016-04-07 Nlt Technologies, Ltd. Image display device, electronic apparatuse using the same, display output control method for image display device, and output control program thereof
CN103913912A (en) * 2014-03-31 2014-07-09 京东方科技集团股份有限公司 Display panel and display control method thereof
US20160071884A1 (en) * 2014-09-05 2016-03-10 Japan Display Inc. Display device
US20160093255A1 (en) * 2014-09-29 2016-03-31 Japan Display Inc. Display device
US20160357046A1 (en) * 2015-06-03 2016-12-08 Apple Inc. Electronic Device Display With Switchable Film Structures
US20200057343A1 (en) * 2016-11-03 2020-02-20 3M Innovative Properties Company Multiplexing backlight with asymmetric turning film
US20180299726A1 (en) * 2017-04-13 2018-10-18 Japan Display Inc. Display device
US20190353943A1 (en) * 2018-05-16 2019-11-21 Sharp Kabushiki Kaisha Liquid crystal private device
US20190353944A1 (en) * 2018-05-16 2019-11-21 Sharp Kabushiki Kaisha Bistable switchable liquid crystal private device

Also Published As

Publication number Publication date
US20230168529A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
US7728801B2 (en) Adjustable-viewing-angle liquid crystal display
US7528910B2 (en) Liquid crystal display device and electronic apparatus
TWI408456B (en) Liquid crystal display device
TWI437322B (en) Display device
US20060066792A1 (en) Liquid crystal display device having variable viewing angle
US7663716B2 (en) Liquid crystal display device and electronic apparatus
KR20070048601A (en) Display device
US10969634B2 (en) Liquid crystal display panel, liquid crystal display device and method of controlling gray scale of liquid crystal display device
US20190004349A1 (en) Display device
JP2012128001A (en) Liquid crystal display device
US11556030B2 (en) Liquid crystal display device
US20230168529A1 (en) Electronic device
KR20070046354A (en) Liquid crystal display device and the operating method thereof
JP4001009B2 (en) Liquid crystal display device and electronic device
US11927840B2 (en) Electronic device
CN115685602A (en) Display device with switchable viewing angle and driving method thereof
KR101855985B1 (en) Bistable chiral splay nematic mode liquid crystal display device
US20190011774A1 (en) Display device
KR101274027B1 (en) Display panel and display apparatus having the same
CN114545665A (en) Electronic device
CN220020023U (en) Reflective liquid crystal display panel
US20050140902A1 (en) In plane switching liquid crystal display with transflector
JP2004004938A (en) Liquid crystal display device and electronic equipment
US11709388B2 (en) Display device having light emitting diode formed on the array substrate
US20240111195A1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
AS Assignment

Owner name: INNOLUX CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JITSUI, KAZUTO;REEL/FRAME:054515/0883

Effective date: 20201123

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION