US20220133789A1 - Generating cik nkt cells from cord blood - Google Patents
Generating cik nkt cells from cord blood Download PDFInfo
- Publication number
- US20220133789A1 US20220133789A1 US17/260,544 US201917260544A US2022133789A1 US 20220133789 A1 US20220133789 A1 US 20220133789A1 US 201917260544 A US201917260544 A US 201917260544A US 2022133789 A1 US2022133789 A1 US 2022133789A1
- Authority
- US
- United States
- Prior art keywords
- cells
- nkt cells
- cik nkt
- cell
- cik
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000004700 fetal blood Anatomy 0.000 title claims description 41
- 210000000581 natural killer T-cell Anatomy 0.000 claims abstract description 234
- 238000000034 method Methods 0.000 claims abstract description 107
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 210000004027 cell Anatomy 0.000 claims description 186
- 206010028980 Neoplasm Diseases 0.000 claims description 92
- 201000011510 cancer Diseases 0.000 claims description 57
- 102000004127 Cytokines Human genes 0.000 claims description 17
- 108090000695 Cytokines Proteins 0.000 claims description 17
- 230000002147 killing effect Effects 0.000 claims description 15
- 108700014844 flt3 ligand Proteins 0.000 claims description 13
- 108010057840 ALT-803 Proteins 0.000 claims description 12
- 108010002350 Interleukin-2 Proteins 0.000 claims description 11
- 108010002586 Interleukin-7 Proteins 0.000 claims description 11
- 206010025323 Lymphomas Diseases 0.000 claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 210000005087 mononuclear cell Anatomy 0.000 claims description 10
- 208000034578 Multiple myelomas Diseases 0.000 claims description 9
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 9
- 208000032839 leukemia Diseases 0.000 claims description 9
- 201000009030 Carcinoma Diseases 0.000 claims description 8
- 208000000172 Medulloblastoma Diseases 0.000 claims description 7
- 206010039491 Sarcoma Diseases 0.000 claims description 7
- VQFKFAKEUMHBLV-BYSUZVQFSA-N 1-O-(alpha-D-galactosyl)-N-hexacosanoylphytosphingosine Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@H]([C@H](O)[C@H](O)CCCCCCCCCCCCCC)CO[C@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQFKFAKEUMHBLV-BYSUZVQFSA-N 0.000 claims description 6
- 102000003812 Interleukin-15 Human genes 0.000 claims description 6
- 108090000172 Interleukin-15 Proteins 0.000 claims description 6
- 208000036142 Viral infection Diseases 0.000 claims description 6
- 238000001990 intravenous administration Methods 0.000 claims description 6
- 230000009385 viral infection Effects 0.000 claims description 6
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 claims description 5
- 238000007912 intraperitoneal administration Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 5
- 238000007920 subcutaneous administration Methods 0.000 claims description 5
- 102000008070 Interferon-gamma Human genes 0.000 claims description 4
- 108010074328 Interferon-gamma Proteins 0.000 claims description 4
- 208000017733 acquired polycythemia vera Diseases 0.000 claims description 4
- 208000025750 heavy chain disease Diseases 0.000 claims description 4
- 229960003130 interferon gamma Drugs 0.000 claims description 4
- 208000037244 polycythemia vera Diseases 0.000 claims description 4
- 208000025113 myeloid leukemia Diseases 0.000 claims description 3
- 238000012258 culturing Methods 0.000 abstract description 4
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 27
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 22
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 22
- 210000002966 serum Anatomy 0.000 description 22
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 16
- 239000002609 medium Substances 0.000 description 12
- 238000011282 treatment Methods 0.000 description 12
- 108091007433 antigens Proteins 0.000 description 11
- 102000036639 antigens Human genes 0.000 description 11
- 230000036210 malignancy Effects 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- 108091008874 T cell receptors Proteins 0.000 description 10
- 239000000427 antigen Substances 0.000 description 10
- 201000010099 disease Diseases 0.000 description 10
- 206010006187 Breast cancer Diseases 0.000 description 9
- 208000026310 Breast neoplasm Diseases 0.000 description 9
- 102000000588 Interleukin-2 Human genes 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 210000000822 natural killer cell Anatomy 0.000 description 9
- 210000002826 placenta Anatomy 0.000 description 9
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 8
- 239000012636 effector Substances 0.000 description 8
- 201000001441 melanoma Diseases 0.000 description 8
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 7
- 206010033128 Ovarian cancer Diseases 0.000 description 7
- 206010061535 Ovarian neoplasm Diseases 0.000 description 7
- 210000001744 T-lymphocyte Anatomy 0.000 description 7
- 230000003013 cytotoxicity Effects 0.000 description 7
- 231100000135 cytotoxicity Toxicity 0.000 description 7
- 239000001963 growth medium Substances 0.000 description 7
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 6
- 206010009944 Colon cancer Diseases 0.000 description 6
- 208000009329 Graft vs Host Disease Diseases 0.000 description 6
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 6
- 206010029260 Neuroblastoma Diseases 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- 210000003719 b-lymphocyte Anatomy 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 208000035475 disorder Diseases 0.000 description 6
- 208000024908 graft versus host disease Diseases 0.000 description 6
- 230000000670 limiting effect Effects 0.000 description 6
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 5
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 5
- 208000017604 Hodgkin disease Diseases 0.000 description 5
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 5
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 5
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 5
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 230000001472 cytotoxic effect Effects 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 210000005259 peripheral blood Anatomy 0.000 description 5
- 239000011886 peripheral blood Substances 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 4
- 208000028564 B-cell non-Hodgkin lymphoma Diseases 0.000 description 4
- 208000035473 Communicable disease Diseases 0.000 description 4
- 102000013462 Interleukin-12 Human genes 0.000 description 4
- 108010065805 Interleukin-12 Proteins 0.000 description 4
- 108060001084 Luciferase Proteins 0.000 description 4
- 239000005089 Luciferase Substances 0.000 description 4
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 4
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 4
- 206010060862 Prostate cancer Diseases 0.000 description 4
- 125000003275 alpha amino acid group Chemical group 0.000 description 4
- 239000002771 cell marker Substances 0.000 description 4
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 238000002703 mutagenesis Methods 0.000 description 4
- 231100000350 mutagenesis Toxicity 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 210000000130 stem cell Anatomy 0.000 description 4
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 4
- -1 tetrazolium compound Chemical class 0.000 description 4
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 3
- 101000914324 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 5 Proteins 0.000 description 3
- 101000914321 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 7 Proteins 0.000 description 3
- 101000617725 Homo sapiens Pregnancy-specific beta-1-glycoprotein 2 Proteins 0.000 description 3
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 3
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 3
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 3
- 102100022019 Pregnancy-specific beta-1-glycoprotein 2 Human genes 0.000 description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 3
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 208000009956 adenocarcinoma Diseases 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003183 carcinogenic agent Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000009089 cytolysis Effects 0.000 description 3
- 231100000433 cytotoxic Toxicity 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 229940126622 therapeutic monoclonal antibody Drugs 0.000 description 3
- 210000000037 type II NK T lymphocyte Anatomy 0.000 description 3
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 102100024217 CAMPATH-1 antigen Human genes 0.000 description 2
- 108010065524 CD52 Antigen Proteins 0.000 description 2
- 206010057248 Cell death Diseases 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 101150029707 ERBB2 gene Proteins 0.000 description 2
- 108010066687 Epithelial Cell Adhesion Molecule Proteins 0.000 description 2
- 102000018651 Epithelial Cell Adhesion Molecule Human genes 0.000 description 2
- 108700011146 GPA 7 Proteins 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 description 2
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 2
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 description 2
- 101001109501 Homo sapiens NKG2-D type II integral membrane protein Proteins 0.000 description 2
- 101001074035 Homo sapiens Zinc finger protein GLI2 Proteins 0.000 description 2
- 102000003810 Interleukin-18 Human genes 0.000 description 2
- 108090000171 Interleukin-18 Proteins 0.000 description 2
- 102100030703 Interleukin-22 Human genes 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102100028123 Macrophage colony-stimulating factor 1 Human genes 0.000 description 2
- 206010027406 Mesothelioma Diseases 0.000 description 2
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 2
- 102100022680 NKG2-D type II integral membrane protein Human genes 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 208000006265 Renal cell carcinoma Diseases 0.000 description 2
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 208000024313 Testicular Neoplasms Diseases 0.000 description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 2
- 102100035558 Zinc finger protein GLI2 Human genes 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000005784 autoimmunity Effects 0.000 description 2
- 230000008276 biophysical mechanism Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 201000008275 breast carcinoma Diseases 0.000 description 2
- 229960000455 brentuximab vedotin Drugs 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000022534 cell killing Effects 0.000 description 2
- 230000006037 cell lysis Effects 0.000 description 2
- 238000002659 cell therapy Methods 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 230000000973 chemotherapeutic effect Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000012997 ficoll-paque Substances 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 208000005017 glioblastoma Diseases 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 238000011134 hematopoietic stem cell transplantation Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 108010074108 interleukin-21 Proteins 0.000 description 2
- 229940047122 interleukins Drugs 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 229960005386 ipilimumab Drugs 0.000 description 2
- IOOMXAQUNPWDLL-UHFFFAOYSA-M lissamine rhodamine anion Chemical compound C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=C(S([O-])(=O)=O)C=C1S([O-])(=O)=O IOOMXAQUNPWDLL-UHFFFAOYSA-M 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 230000001394 metastastic effect Effects 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 210000001616 monocyte Anatomy 0.000 description 2
- PGSADBUBUOPOJS-UHFFFAOYSA-N neutral red Chemical compound Cl.C1=C(C)C(N)=CC2=NC3=CC(N(C)C)=CC=C3N=C21 PGSADBUBUOPOJS-UHFFFAOYSA-N 0.000 description 2
- 229960002450 ofatumumab Drugs 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 201000008968 osteosarcoma Diseases 0.000 description 2
- 229960001972 panitumumab Drugs 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- LOUPRKONTZGTKE-LHHVKLHASA-N quinidine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@H]2[C@@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-LHHVKLHASA-N 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000003757 reverse transcription PCR Methods 0.000 description 2
- 229960004641 rituximab Drugs 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 201000003120 testicular cancer Diseases 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 229960005267 tositumomab Drugs 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 201000005112 urinary bladder cancer Diseases 0.000 description 2
- RTQWWZBSTRGEAV-PKHIMPSTSA-N 2-[[(2s)-2-[bis(carboxymethyl)amino]-3-[4-(methylcarbamoylamino)phenyl]propyl]-[2-[bis(carboxymethyl)amino]propyl]amino]acetic acid Chemical compound CNC(=O)NC1=CC=C(C[C@@H](CN(CC(C)N(CC(O)=O)CC(O)=O)CC(O)=O)N(CC(O)=O)CC(O)=O)C=C1 RTQWWZBSTRGEAV-PKHIMPSTSA-N 0.000 description 1
- HVCOBJNICQPDBP-UHFFFAOYSA-N 3-[3-[3,5-dihydroxy-6-methyl-4-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-2-yl]oxydecanoyloxy]decanoic acid;hydrate Chemical compound O.OC1C(OC(CC(=O)OC(CCCCCCC)CC(O)=O)CCCCCCC)OC(C)C(O)C1OC1C(O)C(O)C(O)C(C)O1 HVCOBJNICQPDBP-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- 108010068327 4-hydroxyphenylpyruvate dioxygenase Proteins 0.000 description 1
- 102100031585 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Human genes 0.000 description 1
- 206010000830 Acute leukaemia Diseases 0.000 description 1
- 102100023635 Alpha-fetoprotein Human genes 0.000 description 1
- 206010073478 Anaplastic large-cell lymphoma Diseases 0.000 description 1
- 201000003076 Angiosarcoma Diseases 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 102100035526 B melanoma antigen 1 Human genes 0.000 description 1
- 208000003950 B-cell lymphoma Diseases 0.000 description 1
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 206010004593 Bile duct cancer Diseases 0.000 description 1
- 108700012439 CA9 Proteins 0.000 description 1
- 108091058556 CTAG1B Proteins 0.000 description 1
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 1
- 229940045513 CTLA4 antagonist Drugs 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 description 1
- 102100024423 Carbonic anhydrase 9 Human genes 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 108010009685 Cholinergic Receptors Proteins 0.000 description 1
- 208000005243 Chondrosarcoma Diseases 0.000 description 1
- 201000009047 Chordoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 208000009798 Craniopharyngioma Diseases 0.000 description 1
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 201000009051 Embryonal Carcinoma Diseases 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 102100031940 Epithelial cell adhesion molecule Human genes 0.000 description 1
- 208000031637 Erythroblastic Acute Leukemia Diseases 0.000 description 1
- 208000036566 Erythroleukaemia Diseases 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 208000032027 Essential Thrombocythemia Diseases 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 102100027285 Fanconi anemia group B protein Human genes 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 208000001258 Hemangiosarcoma Diseases 0.000 description 1
- 101000777636 Homo sapiens ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Proteins 0.000 description 1
- 101000874316 Homo sapiens B melanoma antigen 1 Proteins 0.000 description 1
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 1
- 101000920667 Homo sapiens Epithelial cell adhesion molecule Proteins 0.000 description 1
- 101000914679 Homo sapiens Fanconi anemia group B protein Proteins 0.000 description 1
- 101001055157 Homo sapiens Interleukin-15 Proteins 0.000 description 1
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 1
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 1
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 description 1
- 101000589305 Homo sapiens Natural cytotoxicity triggering receptor 2 Proteins 0.000 description 1
- 101000874141 Homo sapiens Probable ATP-dependent RNA helicase DDX43 Proteins 0.000 description 1
- 101001136592 Homo sapiens Prostate stem cell antigen Proteins 0.000 description 1
- 101000661807 Homo sapiens Suppressor of tumorigenicity 14 protein Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 101000621309 Homo sapiens Wilms tumor protein Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 208000037147 Hypercalcaemia Diseases 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 101710123134 Ice-binding protein Proteins 0.000 description 1
- 101710082837 Ice-structuring protein Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 208000018142 Leiomyosarcoma Diseases 0.000 description 1
- 206010024305 Leukaemia monocytic Diseases 0.000 description 1
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 1
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 231100000002 MTT assay Toxicity 0.000 description 1
- 238000000134 MTT assay Methods 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 description 1
- 208000007054 Medullary Carcinoma Diseases 0.000 description 1
- 208000002030 Merkel cell carcinoma Diseases 0.000 description 1
- 108090000015 Mesothelin Proteins 0.000 description 1
- 102000003735 Mesothelin Human genes 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102100034256 Mucin-1 Human genes 0.000 description 1
- 102100023123 Mucin-16 Human genes 0.000 description 1
- 108010004217 Natural Cytotoxicity Triggering Receptor 1 Proteins 0.000 description 1
- 108010004222 Natural Cytotoxicity Triggering Receptor 3 Proteins 0.000 description 1
- 102100032870 Natural cytotoxicity triggering receptor 1 Human genes 0.000 description 1
- 102100032851 Natural cytotoxicity triggering receptor 2 Human genes 0.000 description 1
- 102100032852 Natural cytotoxicity triggering receptor 3 Human genes 0.000 description 1
- 108010012255 Neural Cell Adhesion Molecule L1 Proteins 0.000 description 1
- 102100024964 Neural cell adhesion molecule L1 Human genes 0.000 description 1
- 206010029266 Neuroendocrine carcinoma of the skin Diseases 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 201000010133 Oligodendroglioma Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 208000007641 Pinealoma Diseases 0.000 description 1
- 102100035724 Probable ATP-dependent RNA helicase DDX43 Human genes 0.000 description 1
- 102100036735 Prostate stem cell antigen Human genes 0.000 description 1
- 239000012979 RPMI medium Substances 0.000 description 1
- 241000725643 Respiratory syncytial virus Species 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 201000010208 Seminoma Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 101710107540 Type-2 ice-structuring protein Proteins 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000014070 Vestibular schwannoma Diseases 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- 102100022748 Wilms tumor protein Human genes 0.000 description 1
- IEDXPSOJFSVCKU-HOKPPMCLSA-N [4-[[(2S)-5-(carbamoylamino)-2-[[(2S)-2-[6-(2,5-dioxopyrrolidin-1-yl)hexanoylamino]-3-methylbutanoyl]amino]pentanoyl]amino]phenyl]methyl N-[(2S)-1-[[(2S)-1-[[(3R,4S,5S)-1-[(2S)-2-[(1R,2R)-3-[[(1S,2R)-1-hydroxy-1-phenylpropan-2-yl]amino]-1-methoxy-2-methyl-3-oxopropyl]pyrrolidin-1-yl]-3-methoxy-5-methyl-1-oxoheptan-4-yl]-methylamino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]-N-methylcarbamate Chemical compound CC[C@H](C)[C@@H]([C@@H](CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C)[C@@H](O)c1ccccc1)OC)N(C)C(=O)[C@@H](NC(=O)[C@H](C(C)C)N(C)C(=O)OCc1ccc(NC(=O)[C@H](CCCNC(N)=O)NC(=O)[C@@H](NC(=O)CCCCCN2C(=O)CCC2=O)C(C)C)cc1)C(C)C IEDXPSOJFSVCKU-HOKPPMCLSA-N 0.000 description 1
- 102000034337 acetylcholine receptors Human genes 0.000 description 1
- 208000004064 acoustic neuroma Diseases 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 208000021841 acute erythroid leukemia Diseases 0.000 description 1
- 230000033289 adaptive immune response Effects 0.000 description 1
- 230000001919 adrenal effect Effects 0.000 description 1
- 208000037844 advanced solid tumor Diseases 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 238000012867 alanine scanning Methods 0.000 description 1
- 229960000548 alemtuzumab Drugs 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 102000006707 alpha-beta T-Cell Antigen Receptors Human genes 0.000 description 1
- 108010087408 alpha-beta T-Cell Antigen Receptors Proteins 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 201000007180 bile duct carcinoma Diseases 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 208000003362 bronchogenic carcinoma Diseases 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- HXCHCVDVKSCDHU-LULTVBGHSA-N calicheamicin Chemical compound C1[C@H](OC)[C@@H](NCC)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@](C/3=C/CSSSC)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HXCHCVDVKSCDHU-LULTVBGHSA-N 0.000 description 1
- 229930195731 calicheamicin Natural products 0.000 description 1
- 229940112129 campath Drugs 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 208000002458 carcinoid tumor Diseases 0.000 description 1
- 238000012219 cassette mutagenesis Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 229960005395 cetuximab Drugs 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000024207 chronic leukemia Diseases 0.000 description 1
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 1
- 210000001228 classical NK T cell Anatomy 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 208000017763 cutaneous neuroendocrine carcinoma Diseases 0.000 description 1
- 208000002445 cystadenocarcinoma Diseases 0.000 description 1
- 210000004405 cytokine-induced killer cell Anatomy 0.000 description 1
- 230000001461 cytolytic effect Effects 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 229960002204 daratumumab Drugs 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 229960004137 elotuzumab Drugs 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 1
- 208000037828 epithelial carcinoma Diseases 0.000 description 1
- 229940082789 erbitux Drugs 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 210000003020 exocrine pancreas Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- AAXVEMMRQDVLJB-BULBTXNYSA-N fludrocortisone Chemical compound O=C1CC[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 AAXVEMMRQDVLJB-BULBTXNYSA-N 0.000 description 1
- 229960002011 fludrocortisone Drugs 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229940014144 folate Drugs 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 201000003444 follicular lymphoma Diseases 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 229960000578 gemtuzumab Drugs 0.000 description 1
- 229960003297 gemtuzumab ozogamicin Drugs 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 201000002222 hemangioblastoma Diseases 0.000 description 1
- 230000002607 hemopoietic effect Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 229940022353 herceptin Drugs 0.000 description 1
- 238000001794 hormone therapy Methods 0.000 description 1
- 102000056003 human IL15 Human genes 0.000 description 1
- 230000000148 hypercalcaemia Effects 0.000 description 1
- 208000030915 hypercalcemia disease Diseases 0.000 description 1
- 229960001001 ibritumomab tiuxetan Drugs 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- APFVFJFRJDLVQX-AHCXROLUSA-N indium-111 Chemical compound [111In] APFVFJFRJDLVQX-AHCXROLUSA-N 0.000 description 1
- 229940055742 indium-111 Drugs 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 201000005296 lung carcinoma Diseases 0.000 description 1
- 208000037829 lymphangioendotheliosarcoma Diseases 0.000 description 1
- 208000012804 lymphangiosarcoma Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 208000003747 lymphoid leukemia Diseases 0.000 description 1
- 201000000564 macroglobulinemia Diseases 0.000 description 1
- 208000012966 malignant exocrine pancreas neoplasm Diseases 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 208000026037 malignant tumor of neck Diseases 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 238000012737 microarray-based gene expression Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 201000006894 monocytic leukemia Diseases 0.000 description 1
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 1
- 208000001611 myxosarcoma Diseases 0.000 description 1
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 208000025189 neoplasm of testis Diseases 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 229940127084 other anti-cancer agent Drugs 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 229960000402 palivizumab Drugs 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 208000004019 papillary adenocarcinoma Diseases 0.000 description 1
- 201000010198 papillary carcinoma Diseases 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 208000024724 pineal body neoplasm Diseases 0.000 description 1
- 201000004123 pineal gland cancer Diseases 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 201000001514 prostate carcinoma Diseases 0.000 description 1
- 229960001404 quinidine Drugs 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 201000008407 sebaceous adenocarcinoma Diseases 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 206010040882 skin lesion Diseases 0.000 description 1
- 231100000444 skin lesion Toxicity 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 238000011476 stem cell transplantation Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 201000010965 sweat gland carcinoma Diseases 0.000 description 1
- 229940036185 synagis Drugs 0.000 description 1
- 206010042863 synovial sarcoma Diseases 0.000 description 1
- 101150047061 tag-72 gene Proteins 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 229960000575 trastuzumab Drugs 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 210000003606 umbilical vein Anatomy 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 229940055760 yervoy Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/17—Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4613—Natural-killer cells [NK or NK-T]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2809—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2818—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0646—Natural killers cells [NK], NKT cells
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/23—Interleukins [IL]
- C12N2501/2302—Interleukin-2 (IL-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/23—Interleukins [IL]
- C12N2501/2307—Interleukin-7 (IL-7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/23—Interleukins [IL]
- C12N2501/2315—Interleukin-15 (IL-15)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/26—Flt-3 ligand (CD135L, flk-2 ligand)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/50—Cell markers; Cell surface determinants
- C12N2501/51—B7 molecules, e.g. CD80, CD86, CD28 (ligand), CD152 (ligand)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/50—Cell markers; Cell surface determinants
- C12N2501/515—CD3, T-cell receptor complex
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/998—Proteins not provided for elsewhere
Definitions
- Natural killer T cells represent a subset of T lymphocytes that express natural killer (NK) cell surface markers.
- a subset of NKT cells termed invariant NKT cells (iNKT) express a highly restricted T cell receptor (TCR).
- TCR T cell receptor
- iNKT cells play an important role in linking innate and adaptive immune responses and have been implicated in various diseases, such as infectious diseases, allergy, asthma, autoimmunity, and tumor surveillance (Juno et al. PLoS Pathog. 2012; 8(8)), their activation typically requires CD1d-restricted lipid ligands alpha-galactosylceramide (Gal-Cer).
- CIK NKT cells that can be activated in the absence of Gal-Cer.
- greater than 50% of the cells in the CIK NKT cell population express CD56 and CD3 and less than 10% of the cells in the population express Va24.
- compositions and kits comprising a plurality of CIK NKT cells from the population. Methods of producing the CIK NKT cells and using the cells to treat cancer are also provided.
- This disclosure provides a population of CIK NKT cells, wherein greater than 50% of the cells in the population express CD 56 and CD3 and less than 10% of the cells in the population express Va24.
- the population of CIK NKT cells can kill a target cell in the absence of alpha-galactosylceramide (Gal-Cer).
- the target cell is a cancer cell.
- the cancer cell line may be selected from the group consisting of a myelogenous leukemia cell, a medulloblastoma cell, and a monocytic cell.
- the cancer cell is selected from the group consisting of a K562 cell, a Daudi cell, a DAOY cell, and a THP-1 cell.
- the CIK NKT cells kill a plurality of the target cells at an EC50 of between 1.0 and 10.0.
- the CIK NKT cells can kill the target cells at a EC50 that is no less than 90% and no greater than 110% of the IC50 at which the CIK NKT cells killing the target cells in the presence of Gal-Cer.
- composition comprising a plurality of CIK NKT cells from any of the populations of CIK NKT cells described above, and a physiologically acceptable excipient.
- kits for treating cancer comprising a plurality of CIK NKT cells from any of the populations of CIK NKT cells described above and a container and/or a label indicating the kit is for treating cancer.
- a method of enriching CIK NKT cells from a cord blood sample comprising: isolating mononuclear cells from the cord blood sample; and contacting the isolated mononuclear cells with one or more agents selected from the group consisting of IL-7, ALT-803 or IL-15, FLT3 ligand, and Gal-Cer, whereby enriching CIK NKT cells.
- IL-7 if present, may be in a concentration ranging from 5 to 20 ng/mL.
- ALT-803 if present, may be in a concentration ranging from 100 to 300 ng/mL.
- FLT3 ligand if present, may be in a concentration ranging from 5 to 20 ng/mL.
- Gal-Cer if present, may be in a concentration ranging from 2 to 10 ⁇ g/mL.
- the method further comprises isolating the enriched CIK NKT cells from the rest of the cord blood sample.
- the method further comprises contacting the isolated CIK NKT cells with anti-CD3, anti-CD28, and IL2 to expand the CIK NKT cells.
- the method further comprises contacting the separated CIK NKT cells with Gal-Cer.
- the Gal-Cer is used in a form of a Gal-Cer loaded CD1d tetramer.
- the anti-CD3 antibody may be present in an amount of 5 ng/mL to 60 ng/mL.
- the anti-CD28 antibody is present in an amount of 0.1 ⁇ g/mL to 2 ⁇ g/mL.
- IL-2 is present in a concentration of 50 ng/mL to 500 ng/mL.
- enriching and/or expansion of CIK NKT cells does not include interferon-gamma.
- 1 ⁇ 10 8 to about 1 ⁇ 10 11 CIK NKT cells per m 2 of body surface area of the patient are administered to the patient.
- the cancer is selected from the group consisting of a leukemia, a lymphoma, polycythemia vera, multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, a sarcoma and a carcinoma.
- the cells are administered to the patient by a route selected from the group consisting of intravenous, intraperitoneal, and subcutaneous.
- the method further comprises administering an antibody.
- CIK NKT cells of claim 1 wherein the CIK NKT cells express a CAR and/or a cytokine, and greater than 50% of the cells in the CIK NKT cell population express CD56 and CD3 and less than 10% of the cells in the population express Va24.
- FIG. 1 is a schematic representation of the pathway which CIK NKT cells employ to kill target cells.
- FIG. 2A shows the results of flow cytometry analysis of CIK NKT cells stained with CD3, CD56, and Va24.
- FIG. 2A is the forward scatter and size scatter diagram;
- FIG. 2B shows CD3 and CD56 diagrams; and
- FIG. 2C shows the Va24 diagram.
- FIG. 3A shows the killing of DAOY cells in the presence (represented by circles) or absence (represented by squares) by the cord blood CIK NKT cells.
- FIG. 3B shows the killing of luciferase-expressing THP 1 cells by cord blood CIK NKT cells (represented by squares) or peripheral blood iNKT cells (represented by circles).
- FIG. 4 shows the killing of K562 cells, DAOY cells, and Daudi cells by cord blood CIK NKT cells.
- This application provides cytokine induced killer NKT cells (CIK NKT cells) that can kill target cells in a non-CD1d restricted manner, i.e., independent of the formation of the Gal-Cer/CD1d tetramer.
- the CIK NKT cells can be used to target a broad range of target cells and will not trigger Graft-versus-host disease (GVHD).
- GVHD occurs due to invasive ability of lymphocytes to infiltrate and cause extensive inflammation in organs such as the gut, skin and liver. It has been shown that CIK NKTs do not express chemokine receptors important for targeting to GVHD organs but do express receptors that facilitate homing to tumors, thus they will not trigger GVHD.
- the present methods produce a cell population that consists of predominantly CD3+/CD56+ double positive cells.
- at least 50% of the CIK NKT cells in the population express both CD56 and CD3 and less than 10% of the cells in the population express Va24.
- the method of producing CIK NKT cells do not require the exposing the cells to interferon-gamma, which saves cost.
- the application provides a safe and cost-effective NKT cell therapy that can be used broadly to treat various diseases, e.g., cancers, without causing clinically adverse symptoms such as GVHD.
- compositions and kits comprising a plurality of CIK NKT cells from the population. Methods of producing the CIK NKT cells and using the CIK NKT cells to treat cancer are also provided.
- “+”, when used to indicate the presence of a particular cellular marker, means that the cellular marker is detectably present in fluorescence activated cell sorting over an isotype control; or is detectable above background in quantitative or semi-quantitative RT-PCR.
- - when used to indicate the presence of a particular cellular marker, means that the cellular marker is not detectably present in fluorescence activated cell sorting over an isotype control; or is not detectable above background in quantitative or semi-quantitative RT-PCR.
- a range includes each individual member.
- a group having 1-3 cells refers to groups having 1, 2, or 3 cells.
- a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.
- compositions and methods include the recited elements, but not excluding others.
- Consisting essentially of when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination. For example, a composition consisting essentially of the elements as defined herein would not exclude other elements that do not materially affect the basic and novel characteristic(s) of the claims.
- Consisting of shall mean excluding more than trace amount of other ingredients and substantial method steps. Embodiments defined by each of these transition terms are within the scope of the disclosure.
- cytotoxic when used to describe the activity of effector cells such as NK cells, are intended to be synonymous.
- cytotoxic activity relates to killing of target cells by any of a variety of biological, biochemical, or biophysical mechanisms. Cytolysis refers more specifically to activity in which the effector lyses the plasma membrane of the target cell, thereby destroying its physical integrity. This results in the killing of the target cell. Without wishing to be bound by theory, it is believed that the cytotoxic effect of NK cells is due to cytolysis.
- kill with respect to a cell/cell population is directed to include any type of manipulation that will lead to the death of that cell/cell population.
- cytokine refers to the general class of biological molecules which effect cells of the immune system.
- cytokines include but are not limited to FLT3 ligand, interferons and interleukins (IL), in particular IL-2, IL-12, IL-15, IL-18 and IL-21.
- patient refers to any animal, or cells thereof whether in vitro or in situ, amenable to the methods described herein.
- the patient, subject or individual is a human.
- treating covers the treatment of a disease or disorder described herein, in a subject, such as a human, and includes: (i) inhibiting a disease or disorder, i.e., arresting its development; (ii) relieving a disease or disorder, i.e., causing regression of the disorder; (iii) slowing progression of the disorder; and/or (iv) inhibiting, relieving, or slowing progression of one or more symptoms of the disease or disorder.
- administering or “administration” of a monoclonal antibody or a natural killer cell to a subject includes any route of introducing or delivering the antibody or cells to perform the intended function.
- Administration can be carried out by any route suitable for the delivery of the cells or monoclonal antibody.
- delivery routes can include intravenous, intramuscular, intraperitoneal, or subcutaneous delivery.
- the CIK NKT cells are administered directly to the tumor, e.g., by injection into the tumor.
- the modified CIK NKT cells described herein are administered parenterally, e.g., by injection, infusion or implantation (subcutaneous, intravenous, intramuscular, intravesicularly, or intraperitoneal).
- expression refers to the production of a gene product.
- cytotoxic when used to describe the activity of effector cells such as NK cells, relates to killing of target cells by any of a variety of biological, biochemical, or biophysical mechanisms.
- decrease is all used herein to refer to a decrease by at least 10% as compared to a reference level, for example a decrease by at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90% or up to and including a 100% decrease (i.e. absent level as compared to a reference sample), or any decrease between 10-100% as compared to a reference level.
- cancer refers to all types of cancer, neoplasm, or malignant tumors found in mammals, including leukemia, carcinomas and sarcomas.
- exemplary cancers include cancer of the brain, breast, cervix, colon, head & neck, liver, kidney, lung, non-small cell lung, melanoma, mesothelioma, ovary, sarcoma, stomach, uterus and medulloblastoma.
- Additional examples include, Hodgkin's Disease, Non-Hodgkin's Lymphoma, multiple myeloma, neuroblastoma, ovarian cancer, rhabdomyosarcoma, primary thrombocytosis, primary macroglobulinemia, primary brain tumors, cancer, malignant pancreatic insulanoma, malignant carcinoid, urinary bladder cancer, premalignant skin lesions, testicular cancer, lymphomas, thyroid cancer, neuroblastoma, esophageal cancer, genitourinary tract cancer, malignant hypercalcemia, endometrial cancer, adrenal cortical cancer, neoplasms of the endocrine and exocrine pancreas, and prostate cancer.
- terapéuticaally effective amount refers to the amount required to ameliorate the symptoms of a disease relative to an untreated patient.
- the effective amount of active compound(s) used to practice the present disclosure for therapeutic treatment of a disease varies depending upon the manner of administration, the age, body weight, and general health of the subject. Ultimately, the attending physician or veterinarian will decide the appropriate amount and dosage regimen. Such amount is referred to as an “effective” amount.
- Natural killer T cells are a heterogeneous group of T cells that share properties of both T cells and natural killer cells.
- NKT cells express an alpha beta T-cell receptor, but also express a variety of molecular markers that are typically associated with NK cells, such as NKp44, NKp46, and NKp30.
- NKp44, NKp46, and NKp30 express a variety of molecular markers that are typically associated with NK cells, such as NKp44, NKp46, and NKp30.
- NKT cells constitute only about 0.1% of all peripheral blood T cells. NKT cells have been implicated in suppression of autoimmunity and graft rejection, promotion of resistance to pathogens, and promotion of tumor immunity.
- NKT cells are typically classified into type I and type II, based on differences in T cell receptor (TCR) usage.
- Type 1 NKT cells also commonly referred to as invariant NKT cells, are NKT cells that express a highly restricted T cell receptor, which comprises an invariant TCR alpha chain, Va24.
- Invariant NKT cells are typically activated by recognizing lipid ligands alpha-galactosylceramide (Gal-Cer) presented by CD1d.
- CD1d is a member of CD1 family of glycoproteins expressed on the surface of various antigen presenting cells and are involved in the presentation of lipid antigens.
- MHC major histocompatibility complex
- CD1 molecules can capture and process both foreign and self lipid antigens for display to T cells.
- Gal-Cer are typically derived from pathogenic cells, for example, bacteria.
- Type II NKT cells As compared to Type I NKT cells, type II NKT cells have a more diverse TCR repertoire and a higher sequence diversity. Type II NKT cells do not respond to Gal-Cer, i.e., their activation is independent of the presence of Gal-Cer.
- the CIK NKT cells disclosed herein belong to the category of type II NKT cells.
- the CIK NKT cells can be produced through cytokine induction. In some instances, they are produced from e.g., cord blood, through cytokine induction. In some instances they are produced during the process of enriching or isolating iNKT cells from cord blood samples.
- CIK NKT cells differ from the typical iNKT cells in several aspects. Phenotypically, unlike iNKT cells, which express Va24, a marker for the alpha chain of a TCR receptor, and the percentage of iNKT cells that express Va24 is can be 70% or higher, CIK NKT cells have reduced expression of Va24.
- the percentage of CIK NKT cells that express Va24 may be less than 10% of the total population of CIK NKT cells.
- cytotoxicity unlike iNKT cells, which are activated by recognizing the alpha galactosyl ceramide (Gal-Cer), a glycolipid, the CIK NKT cells do not need Gal-Cer to be activated and can kill the cells in the absence of (Gal-Cer). See FIG. 3 and FIG. 4 .
- the CIK NKT cells provided herein typically have high expression levels of CD56 and CD3 and low expression of Va24. In some instances, at least 90% of the CIK NKT population produced from the cord blood cells express CD56 and CD3, and less than 10% of the cells in the population express Va24.
- Human umbilical cord blood has high composition of hematopoietic stem cells and can be used as a source for generating CIK NKT cells.
- a human placenta is recovered shortly after its expulsion after birth.
- the placenta can be transported in a sterile, thermally insulated transport device (maintaining the temperature of the placenta between 20-28° C.), for example, in a cord blood collection kit substantially as described in U.S. Pat. No. 7,147,626.
- the placenta is delivered to the laboratory four to twenty-four hours following delivery.
- the placenta can be subjected to a conventional cord blood recovery process.
- a needle or cannula is used, with the aid of gravity, to exsanguinate the placenta (see, e.g., Anderson, U.S. Pat. No. 5,372,581; Hessel et al., U.S. Pat. No. 5,415,665).
- the needle or cannula is usually placed in the umbilical vein and the placenta can be gently massaged to aid in draining cord blood from the placenta.
- Such cord blood recovery may be performed commercially, e.g., LifeBank Inc., Cedar Knolls, N.J., ViaCord, Cord Blood Registry and CryoCell.
- the placenta is gravity drained without further manipulation so as to minimize tissue disruption during cord blood recovery.
- Cord blood mononuclear cells can be isolated from collected cord blood using methods well known in the art, e.g., a density gradient method using Ficoll-Paque.
- Reagents suitable for isolating Comics are commercially available, e.g., from Stem cell Technology Inc.
- Comics can be cultured for a period of time in the presence of various cytokines in order to enrich for CIK NKT cells. Enriching refers to increasing the percentage of number of target cells in a heterogenous cell population (e.g., the Comics). The enrichment period may be 2 days-3 weeks, e.g., 1-2 weeks, 5-10 days, or about 2 weeks.
- Various growth media can be used, for example, Roswell Park Memorial Institute medium (RPMI), or Dulbecco's modified eagle medium (DMEM).
- the medium further comprises human AB serum and/or Gal-Cer.
- the human AB serum is present in 5-15% v/v, e.g., about 10% v/v.
- the Gal-Cer is present in a concentration of 2-10 ⁇ g/mL, e.g., about 5 ⁇ g/mL.
- Suitable cytokines that can be added to the medium may include one or more cytokines selected from the group consisting of stem cell factor, FLT3 ligand, IL-7, and ALT-803 or IL-15.
- FLT3 ligand is present in a concentration ranging from 5-20 ng/mL, e.g., 10 ng/mL; IL-7 is present in a concentration ranging from 5-20 ng/mL, e.g., 10 ng/mL; and/or ALT-803 is present in a concentration ranging from 100-300 ng/mL, e.g., about 175 ng/mL.
- FLT3 ligand is a hematopoietic four helical bundle cytokine and it is structurally homologous to stem cell factor (SCF) and colony stimulating factor 1 (CSF-1). In synergy with other growth factors, FLT3 ligand stimulates the proliferation and differentiation of various blood cell progenitors. It is a major growth factor stimulating the growth of dendritic cells.
- SCF stem cell factor
- CSF-1 colony stimulating factor 1
- ALT-803 is a complex consisting of human IL-15 mutant IL-15N72D (residue substitution at position 72) and IL-15R ⁇ sushi-Fc fusion protein (see Zhu et al. J. Immunol. 2009; 183:3598-607, the relevant disclosure is hereby incorporated by reference).
- CIK NKT cells can be isolated from the enriched culture described above by methods well known in the art, for example, incubating magnetic beads coupled with antibody against the Va24-J18 chain of the TCR with the enriched culture so that the CIK NKT cells will bind to the magnetic beads, and subsequently isolating the CIK NKT cells that are bound to the beads in presence of a magnetic field.
- suitable antibodies that can be used is the 6B11 antibody, which are commercially available for vendors such as Biolegend (San Diego, Calif.).
- Suitable reagents for isolating CIK NKT cells are from Miltenyi Biotec, Germany.
- CIK NKT cells are typically isolated in PBS-containing serum (e.g., human AB serum).
- the isolation solution also contains EDTA.
- a method of enriching CIK NKT cells from cord blood comprising: from a cord blood sample, the method comprising: isolating mononuclear cells from the cord blood sample; and contacting the isolated monocytes with one or more agents selected from the group consisting of IL-7, ALT-803, FLT3 ligand, and Gal-Cer to enrich CIK NKT cells.
- the CIK NKT cells as isolated above can be expanded in suitable growth medium. Expanding refers to growing an isolated population of target cells so that the target cells increase in number.
- the growth medium is the NK Macs medium, available from Miltenyi Biotec, Germany.
- the growth medium is supplemented with IL-2, anti-CD3, and/or anti CD28 antibodies in amounts suitable for NKT cell growth.
- the anti-CD3 antibody is present in a concentration of 5 ng/mL to 60 ng/mL, e.g., 20 ng/mL.
- the anti-CD28 antibody is present in a concentration of 0.1 ⁇ g/mL to 2 ⁇ g/mL, e.g., 0.5 ⁇ g/mL.
- IL-2 is present in a concentration of 50 ng/mL to 500 ng/mL, e.g., 200 ng/mL.
- the growth medium comprises human AB serum (e.g., about 10% v/v).
- the growth medium further comprises a Gal-Cer loaded CD1d tetramer.
- the Gal-Cer loaded CD1d tetramer is a pre-assembled tetramer that are commerically available, e.g., from ProImmune (Oxford, UK). Methods for assembling Gal-Cer loaded CD1d tetramer is well known. Typically, Gal-Cer lipid is co-incubated with CD1d protein, which are oligomerized on streptavidin surface to become tetramers. Upon Gal-Cer binding to CD1d complex, it was column purified and used as reagents for expansion.
- the Gal-Cer loaded CD1d tetramer is used at an amount such that the concentration of the Gal-Cer in the growth medium is about 20-200 ng/mL, e.g., 50-150 ng/mL, or 80-120 ng/mL, or about 100 ng/mL of Gal-Cer.
- the CIK NKT cells are let grown and expanded for over a few days or weeks to reach a suitable amount of cells for various applications.
- the disclosure provides a method of growing CIK NKT cells from cord blood, the method comprising: from a cord blood sample, the method comprising: isolating mononuclear cells from the cord blood sample; and contacting the isolated monocytes with one or more agents selected from the group consisting of IL-7, ALT-803, FLT3 ligand, and Gal-Cer to enrich CIK NKT cells.
- a CIK NKT cell populations can be assessed by detecting one or more functionally relevant markers, for example, CD56 and CD3 (markers for NKT cells) and TCR receptor Va24 (a high expression of which indicates the NKT cells are invariant NKT cells).
- functionally relevant markers for example, CD56 and CD3 (markers for NKT cells) and TCR receptor Va24 (a high expression of which indicates the NKT cells are invariant NKT cells).
- a CIK NKT cell population comprising a lower percentage of Va24+ cells as compared to typical invariant NKT cells.
- the CIK NKT cell population comprises about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10% of Va24+ cells.
- the CIK NKT cell population comprises between 0-20%, 5-10%, 1-7%, or 4-8% Va24+ cells.
- the CIK NKT cell population comprises no more than 20%, no more than 15%, no more than 10% of the Va24+ cells.
- a CIK NKT cell population comprising a percentage of CD56+ cells that is substantially similar to that in a typical invariant NKT cell population.
- the CIK NKT cell population comprises at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or about 99% of CD56+ cells.
- the CIK NKT cell population comprises between 50-100%, 70-100%, 85-100%, 90-100%, 95-100%, or 98-100% CD56+ cells.
- the CIK NKT cell population comprises no less than 50%, no less than 70%, no less than 85%, no less than 90%, no less than 93%, or no less than 95% of the CD56+ cells.
- a CIK NKT cell population comprising a percentage of CD3+ cells that is substantially similar to that in a typical invariant NKT cell population.
- the CIK NKT cell population comprises at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or about 99% of CD3+ cells.
- the CIK NKT cell population comprises between 50-100%, 70-100%, 85-100%, 90-100%, 95-100%, or 98-100% of the CD3+ cells.
- the CIK NKT cell population comprises no less than 50%, no less than 70%, no less than 85%, no less than 90%, no less than 93%, or no less than 95% of the CD3+ cells.
- a CIK NKT cell population comprising a percentage of CD56+ CD3+ cells that is substantially similar to that in a typical invariant NKT cell population.
- the CIK NKT cell population comprises at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or about 99% of CD56+ CD3+ cells.
- the CIK NKT cell population comprises between 50-100%, 70-100%, 85-100%, 90-100%, 95-100%, or 98-100% of the CD56+ CD3+ cells.
- the CIK NKT cell population comprises no less than 50%, no less than 70%, no less than 85%, no less than 90%, no less than 93%, or no less than 95% of the CD56+ CD3+ cells.
- the cytotoxic activity isolated or enriched natural killer cells can be assessed, e.g., in a cytotoxicity assay using tumor cells, e.g., cultured K562, DAOY, THP-1, LN-18, U937, WERI-RB-1, U-118MG, HT-29, HCC2218, KG-1, or U266 tumor cells, or the like as target cells.
- tumor cells e.g., cultured K562, DAOY, THP-1, LN-18, U937, WERI-RB-1, U-118MG, HT-29, HCC2218, KG-1, or U266 tumor cells, or the like as target cells.
- CIK NKT cells disclosed herein can kill target cells regardless of MHC type and regardless of the presence of ⁇ Gal-Cer.
- MTT assay for evaluating cytotoxicity are well known, for example, MTT assay. This is a system based on the tetrazolium compound MTT. Briefly, after the treatment period in which the target cells are in contact with CIK NKT cells, 10 uL of a freshly diluted MTT solution (2.5 mg mL ⁇ 1 ) was added to each well, and the plate was incubated at 37 C in a humidified 5% CO2 atmosphere for 4 h. At the end of the incubation period, the medium was removed, and the formazan product was dissolved in 100 ⁇ L of dimethyl sulfoxide. Cell viability was evaluated by measurement of the absorbance at 570 nm, using a SUNRICE Tecan absorbance reader (Schoeller).
- Non-limiting methods of cell killing assays include Sulphorhodamine B (SRB) assay, Neutral red (NR) assay, such as those described in www.rsc.org/suppdata/mt/c4/c4mt00112e/c4mt00112e1.pdf, herein incorporated by reference in its entirety.
- SRB Sulphorhodamine B
- NR Neutral red
- EC50 used in this disclosure refers to the effector to target ratio used in an assay where 50% of target cells are killed.
- the CIK NKT cells is able to kill a plurality of the target cells at an EC50 of 1-10, e.g., 1-8, 2-6, 2-5.5, or 3-7.
- the target cell is THP-1 and the EC50 is 4.64.
- the target cell is DAOY and the IC50 is 3.69.
- the target cell is K562 and the IC50 is 2.6.
- the CIK NKT cells produced as above can be further engineered to express a chimeric antigen receptor (CAR) on the cell surface.
- CAR chimeric antigen receptor
- the CAR is specific for a tumor-specific antigen.
- Tumor-specific antigens are described, by way of non-limiting example, in US 2013/0189268; WO 1999024566 A1; U.S. Pat. No. 7,098,008; and WO 2000020460 A1, each of which is incorporated herein by reference in its entirety.
- Tumor-specific antigens include, without limitation, NKG2D, CS1, GD2, CD138, EpCAM, EBNA3C, GPA7, CD244, CA-125, ETA, MAGE, CAGE, BAGE, HAGE, LAGE, PAGE, NY-SEO-1, GAGE, CEA, CD52, CD30, MUCSAC, c-Met, EGFR, FAB, WT-1, PSMA, NY-ESO1, AFP, CEA, CTAG1B, CD19 and CD33. Additional non-limiting tumor-associated antigens, and the malignancies associated therewith, can be found in Table 1.
- the CAR targets CD19, CD33 or CSPG-4.
- variant polypeptides are made using methods known in the art such as oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis.
- Site direct mutagenesis Carter, 1986; Zoller and Smith, 1987
- cassette mutagenesis restriction selection mutagenesis
- Wells et al., 1985 or other known techniques can be performed on the cloned DNA to produce CD16 variants (Ausubel, 2002; Sambrook and Russell, 2001).
- the CAR targets an antigen associated with a specific cancer type.
- the cancer is selected from the group consisting of leukemia (including acute leukemias (e.g., acute lymphocytic leukemia, acute myelocytic leukemia (including myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia)) and chronic leukemias (e.g., chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia), polycythemia vera, lymphomas (e.g., Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, solid tumors including, but not limited to, sarcomas and carcinomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic
- a polynucleotide encoding a CAR is mutated to alter the amino acid sequence encoding for CAR without altering the function of the CAR.
- polynucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues can be made in the CARs disclosed above.
- CARs can be engineered as described, for example, in Patent Publication Nos. WO 2014039523; US 20140242701; US 20140274909; US 20130280285; and WO 2014099671, each of which is incorporated herein by reference in its entirety.
- the CAR is a CD19 CAR, a CD33 CAR or CSPG-4 CAR.
- CAR-expressing CIK NKT cells are further modified to express at least one cytokine.
- the at least one cytokine is IL-2, IL-12, IL-15, IL-18, IL-21 or a variant thereof.
- the cytokine is IL-12.
- a representative polypeptide of IL-12 comprises or consists of an amino acid sequence set forth in Accession No. IF45_A (https://www.ncbi.nlm.nih.gov/protein/1F45_A) and an amino acid sequence set forth in Accession No. IF45_B (https://www.ncbi.nlm.nih.gov/protein/1F45_B).
- This disclosure also provides a method to treat any type of cancer in a subject at any stage of the disease.
- suitable cancers include carcinoma, melanoma, or sarcoma.
- the invention is used to treat cancer of hemopoietic origin such as leukemia or lymphoma.
- the cancer is a solid tumor.
- the method to treat any type of cancer in a subject comprises administering to the patient a therapeutically effective amount of CIK NKT cells, wherein the thereby treating cancer.
- the CIK NKT cells are from a population of CIK NKT cells, wherein greater than 90% of the cells in the population express CD 56 and CD3 and less than 10% of the cells in the population express Va24.
- the disclosure also provides a method to treat any type of viral infection, the method comprising administering to the patient a therapeutically effective amount of CIK NKT cells, wherein the thereby treating cancer.
- the CIK NKT cells are from a population of CIK NKT cells, wherein greater than 90% of the cells in the population express CD 56 and CD3 and less than 10% of the cells in the population express Va24.
- CIK NKT cells are also provided.
- the subject or patient is suffering from cancer or an infectious disease, such as a viral infection.
- the CIK NKT cells can be administered to an individual by absolute numbers of cells, e.g., said individual can be administered from about 1000 cells/injection to up to about 10 billion cells/injection, such as at about, at least about, or at most about, 1 ⁇ 10 8 , 1 ⁇ 10 7 , 5 ⁇ 10 7 , 1 ⁇ 10 6 , 5 ⁇ 10 6 , 1 ⁇ 10 5 , 5 ⁇ 10 5 , 1 ⁇ 10 4 , 5 ⁇ 10 4 , 1 ⁇ 10 3 , 5 ⁇ 10 3 (and so forth) CIK NKT cells per injection, or any ranges between any two of the numbers, end points inclusive.
- this disclosure also provides a composition comprising a plurality of CIK NKT cells, wherein the number of cells are 1 ⁇ 10 8 , 1 ⁇ 10 7 , 5 ⁇ 10 7 , 1 ⁇ 10 6 , 5 ⁇ 10 6 , 1 ⁇ 10 5 , 5 ⁇ 10 5 , 1 ⁇ 10 4 , 5 ⁇ 10 4 , 1 ⁇ 10 3 , or 5 ⁇ 10 3 (and so forth).
- said individual can be administered from about 1000 cells/injection/m 2 to up to about 10 billion cells/injection/m 2 , such as at about, at least about, or at most about, 1 ⁇ 10 8 /m 2 , 1 ⁇ 10 7 /m 2 , 5 ⁇ 10 7 /m 2 , 1 ⁇ 10 6 /m 2 , 5 ⁇ 10 6 /m 2 , 1 ⁇ 10 5 /m 2 , 5 ⁇ 10 5 /m 2 , 1 ⁇ 10 4 /m 2 , 5 ⁇ 10 4 /m 2 , 1 ⁇ 10 3 /m 2 , 5 ⁇ 10 3 /m 2 (and so forth) CIK NKT cells per injection, or any ranges between any two of the numbers, end points inclusive.
- CIK NKT cells can be administered to such individual by relative numbers of cells, e.g., said individual can be administered about 1000 cells to up to about 10 billion cells per kilogram of the individual, such as at about, at least about, or at most about, 1 ⁇ 10 8 , 1 ⁇ 10 7 , 5 ⁇ 10 7 , 1 ⁇ 10 6 , 5 ⁇ 10 6 , 1 ⁇ 10 5 , 5 ⁇ 10 5 , 1 ⁇ 10 4 , 5 ⁇ 10 4 , 1 ⁇ 10 3 , or 5 ⁇ 10 3 (and so forth) CIK NKT cells per kilogram of the individual, or any ranges between any two of the numbers, end points inclusive.
- the total dose may be calculated by m 2 of body surface area, including about 1 ⁇ 10 11 , 1 ⁇ 10 10 , 1 ⁇ 10 9 , 1 ⁇ 10 8 , 1 ⁇ 10 7 , per m 2 , or any ranges between any two of the numbers, end points inclusive.
- the average person is about 1.6 to about 1.8 m 2 .
- between about 1 billion and about 3 billion CIK NKT cells are administered to a patient.
- the amount of CIK NKT cells injected per dose may calculated by m 2 of body surface area, including 1 ⁇ 10 11 , 1 ⁇ 10 10 , 1 ⁇ 10 9 , 1 ⁇ 10 8 , 1 ⁇ 10 7 , per m 2 .
- the average body surface area for a person is 1.6-1.8 m 2 .
- CIK NKT cells can be administered to such individual by relative numbers of cells, e.g., said individual can be administered about 1000 cells to up to about 10 billion cells per kilogram of the individual, such as at about, at least about, or at most about, 1 ⁇ 10 8 , 1 ⁇ 10 7 , 5 ⁇ 10 7 , 1 ⁇ 10 6 , 5 ⁇ 10 6 , 1 ⁇ 10 5 , 5 ⁇ 10 5 , 1 ⁇ 10 4 , 5 ⁇ 10 4 , 1 ⁇ 10 3 , or 5 ⁇ 10 3 (and so forth) CIK NKT cells per kilogram of the individual, or any ranges between any two of the numbers, end points inclusive.
- CIK NKT cells can be administered once to a patient with cancer or they can be administered multiple times, e.g., once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23 hours, or once every 1, 2, 3, 4, 5, 6 or 7 days, or once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more weeks during therapy, or any ranges between any two of the numbers, end points inclusive.
- CIK NKT cells are administered in a composition comprising the CIK NKT cells and a medium, such as human serum or an equivalent thereof.
- the medium comprises human serum albumin.
- the medium comprises human plasma.
- the medium comprises about 1% to about 15% human serum or human serum equivalent.
- the medium comprises about 1% to about 10% human serum or human serum equivalent.
- the medium comprises about 1% to about 5% human serum or human serum equivalent.
- the medium comprises about 2.5% human serum or human serum equivalent.
- the serum is human AB serum.
- a serum substitute that is acceptable for use in human therapeutics is used instead of human serum.
- CIK NKT cells are administered in a composition comprising CIK NKT cells and an isotonic liquid solution that supports cell viability. In some embodiments, CIK NKT cells are administered in a composition that has been reconstituted from a cryopreserved sample.
- compositions comprising the CIK NKT cells can include a variety of carriers and excipients.
- a variety of aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter. Suitable carriers and excipients and their formulations are described in Remington: The Science and Practice of Pharmacy, 21st Edition, David B. Troy, ed., Lippincott Williams & Wilkins (2005).
- pharmaceutically acceptable carrier is meant a material that is not biologically or otherwise undesirable, i.e., the material is administered to a subject without causing undesirable biological effects or interacting in a deleterious manner with the other components of the pharmaceutical composition in which it is contained.
- the carrier is optionally selected to minimize degradation of the active ingredient and to minimize adverse side effects in the subject.
- pharmaceutically acceptable is used synonymously with physiologically acceptable and pharmacologically acceptable.
- a pharmaceutical composition will generally comprise agents for buffering and preservation in storage and can include buffers and carriers for appropriate delivery, depending on the route of administration.
- compositions for use in in vivo or in vitro may be sterilized by sterilization techniques employed for cells.
- the compositions may contain acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like.
- concentration of cells in these formulations and/or other agents can vary and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the subject's needs.
- CIK NKT cells are administered to the patient in conjunction with one or more other treatments or agent for the cancer being treated.
- the one or more other treatments for the cancer being treated include, for example, an antibody, radiation, chemotherapeutic, stem cell transplantation, or hormone therapy.
- CIK NKT cells and the other cancer agent/treatment are administered simultaneously or approximately simultaneously (e.g., within about 1, 5, 10, 15, 20, or 30 minutes of each other). In some embodiments, the CIK NKT cells and the other cancer agent/treatment are administered sequentially. In some embodiments, the other cancer treatment/agent is administered one, two, or three days after the administration of the CIK NKT cells.
- the other cancer agent is an antibody.
- CIK NKT cells are administered in conjunction with an antibody targeting the diseased cells.
- CIK NKT cells and an antibody are administered to the patient together, e.g., in the same formulation; separately, e.g., in separate formulations, concurrently; or can be administered separately, e.g., on different dosing schedules or at different times of the day.
- the antibody can be administered via any suitable route, such as intravenous or intra-tumoral injection.
- CIK NKT cells of the present disclosure are used in combination with therapeutic antibodies and/or other anti-cancer agents.
- Therapeutic antibodies may be used to target cells that express cancer-associated or tumor-associated markers. Examples of cancer therapeutic monoclonal antibodies are shown in Table 2.
- CIK NKT cells may be carried out simultaneously with the administration of the monoclonal antibody, or in a sequential manner.
- the CIK NKT cells are administered to the subject after the subject has been treated with the monoclonal antibody.
- the CIK NKT cells may be administered at the same time, e.g., within 24 hours, of the monoclonal antibody.
- CIK NKT cells are administered intravenously. In some embodiments the CIK NKT cells are infused directly into the bone marrow.
- this disclosure provides a method of treating cancer or viral infection in a patient in need thereof, the method comprising administering to the patient a therapeutically effective amount of CIK NKT cells from the population of CIK NKT cells using the methods disclosed herein to thereby treating cancer
- the kits of the present disclosure may also include at least one monoclonal antibody.
- the kit may contain additional compounds such as therapeutically active compounds or drugs that are to be administered before, at the same time or after administration of CIK NKT cells.
- additional compounds such as therapeutically active compounds or drugs that are to be administered before, at the same time or after administration of CIK NKT cells.
- additional compounds include an antibody, vitamins, minerals, fludrocortisone, ibuprofen, lidocaine, quinidine, chemotherapeutic, etc.
- instructions for use of the kits will include directions to use the kit components in the treatment of a cancer or an infectious disease.
- the instructions may further contain information regarding how to CIK NKT cells (e.g., thawing and/or culturing).
- the instructions may further include guidance regarding the dosage and frequency of administration.
- the kit further comprises one or more containers filled with one or more compositions described herein, e.g., a composition comprising CIK NKT cells as described herein.
- a label indicating the kit is for treating a cancer, such as those described herein.
- the label also includes a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
- CIK NKT cells can also be generated from other hematopoietic progenitor cell samples using similar approaches to the ones described herein.
- any subset or combination of these is also specifically contemplated and disclosed. This concept applies to all aspects of this disclosure including, but not limited to, steps in methods using the disclosed compositions. Thus, if there are a variety of additional steps that can be performed, it is understood that each of these additional steps can be performed with any specific method steps or combination of method steps of the disclosed methods, and that each such combination or subset of combinations is specifically contemplated and should be considered disclosed.
- a population of CIK NKT cells wherein greater than 50% of the cells in the population express CD 56 and CD3 and less than 10% of the cells in the population express Va24.
- the population of CIK NKT cells of embodiments 6, wherein the CIK NKT cells can kill the target cells at a EC50 that is no less than 90% and no greater than 110% of the EC50 at which the CIK NKT cells killing the target cells in the presence of Gal-Cer.
- composition comprising a plurality of CIK NKT cells from the population of CIK NKT cells of any of embodiments 1-7, and a physiologically acceptable excipient.
- kits for treating cancer comprising a plurality of CIK NKT cells from the population of CIK NKT cells of any of embodiments 1-7, wherein the kit further comprises a container and/or a label indicating the kit is for treating cancer.
- a method of enriching CIK NKT cells from a cord blood sample comprising: isolating mononuclear cells from the cord blood sample; and contacting the isolated mononuclear cells with one or more agents selected from the group consisting of IL-7, ALT-803 or IL-15, FLT3 ligand, and Gal-Cer, whereby enriching CIK NKT cells.
- the method further comprises contacting the isolated CIK NKT cells with anti-CD3, anti-CD28, and IL2 to expand the CIK NKT cells.
- a method of treating cancer or viral infection in a patient in need thereof comprising administering to the patient a therapeutically effective amount of CIK NKT cells from the population of CIK NKT cells of any of embodiments 1-7, thereby treating cancer.
- the cancer is selected from the group consisting of a leukemia, a lymphoma, polycythemia vera, multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, a sarcoma and a carcinoma.
- a population of CIK NKT cells produced by the methods of any of embodiments 10-27.
- Cord blood mononuclear cells were isolated from cord blood samples by density gradient method using Ficoll-Paque and SepmateTM, from Stem cell Technology Inc.
- Comics were incubated with Gal-Cer (5 ⁇ g/mL), FLT3-L (10 ng/mL), IL-7 (10 ng/mL), and ALT-803 (175 ng/mL) for enrichment of NKT for 2 weeks in RPMI medium with 10% Human AB serum.
- NKT cells were isolated by affinity chromatography using reagents from Miltenyi Biotec, Germany.
- isolated cells were expanded in the presence of anti-CD3 antibody (20 ng/mL), anti-CD28 antibody (0.5 ⁇ g/mL), and IL2 (200 ng/mL) in the NK Macs medium with 10% Human AB serum for overnight activation with Gal-Cer loaded CD1d tetramer.
- the Gal-Cer loaded CD1d tetramer was from ProImmune, Oxford, UK and was used in an amount such that the Gal-Cer was present in an amount of 100 ng/mL
- these cells were stained with antibodies recognizing CD3, CD56, or Va24.
- the results show that a majority of the cells (97.1%) were positive for both CD56 and CD3 ( FIG. 2B ) and a small percentage of cells (6.45%) were positive for Va24 ( FIG. 2C ). This indicates that cord blood CIK NKT cells have low Va24 expression but the expression of CD3 and CD56 remain intact.
- the NKT-CIK cells prepared as described in Example 2 were assessed for cytotoxicity against cancer cell line DAOY.
- DAOY cells were incubated with Gal-Cer at 1 ⁇ g/mL overnight.
- the Gal-Cer treated DAOY Cells were then incubated with a fluorescent dye, Calcien AM, for 30 min.
- the cells were washed and then incubated with CB-NKT CIKs, at various effector to target ratios as indicated (the highest ratio was 32:1), for 4 hours.
- the killing of the DAOY cells was measured by the cell lysis, which is represented by the amount of CalcienAM dye released from cells.
- FIG. 3A shows the amount of CalcienAM dye released from DAOY cells caused by the CB-NKT CIKs.
- FIG. 3B compares the cytotoxicity of NKT-CIK cells derived from cord blood as described above (CB-CIK NKT cells) versus PBiNKT cells (iNKT cells isolated from peripheral blood) on a luciferase-expressing THP1 cells.
- PBiNKT cells were isolated in the same manner as the CB-CIK NKT cells (see Example 1) except that the source is peripheral blood instead of cord blood.
- the THP1 cells were co-cultured with CB-CIK NKT cells or PBiNKT cells at various effector to target ratios as indicated, the highest ratio being 32:1. No Gal-Cer was used in this experiment. The results show that CB-CIK NKT cells are more potent in killing THP-1 than do PBiNKT cells.
- CB-NKT CIK cells obtained as above were assayed for their ability to kill luciferase-expressing cancer cell lines, DAOY, Daudi, and K562 (represented by triangles, squares, and circles, respectively, in FIG. 4 ).
- Peripheral blood isolated iNKTs were used as control (inverted triangles in FIG. 4 ).
- Cell killing assays were performed after 4-hour of co-culturing of the cancer cells and effector cells (CB CIK NKTs or PBiNKTs). The killing of the cancer cells was measured by % of cell lysis, which was represented by the loss of luciferase in these cancer cell lines.
- Various effector to target ratios were used as indicated, the highest being 32:1. The results indicate that CB-CIK NKT cells kill target cells in a non CD1d/MHC restricted manner.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Mycology (AREA)
- Biochemistry (AREA)
- Hematology (AREA)
- General Engineering & Computer Science (AREA)
- Dermatology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Oncology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Developmental Biology & Embryology (AREA)
- Virology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
- This application is a national stage under 35 U.S.C. § 371 of PCT application no. PCT/US2019/040145, filed Jul. 1, 2019, which claims priority benefit of U.S. Provisional Application No. 62/696,131 filed Jul. 10, 2018, each of which application is herein incorporated by reference.
- Natural killer T cells (NKT cells) represent a subset of T lymphocytes that express natural killer (NK) cell surface markers. A subset of NKT cells, termed invariant NKT cells (iNKT), express a highly restricted T cell receptor (TCR). Although iNKT cells play an important role in linking innate and adaptive immune responses and have been implicated in various diseases, such as infectious diseases, allergy, asthma, autoimmunity, and tumor surveillance (Juno et al. PLoS Pathog. 2012; 8(8)), their activation typically requires CD1d-restricted lipid ligands alpha-galactosylceramide (Gal-Cer). Procedures necessary to introduce Gal-Cer (e.g., in the form of a Gal-Cer/CD1d tetramer) could significantly increase the cost of the treating patients using these NKT cells and in some cases limit the scope of their therapeutical utility. Thus, a need remains for a safe and cost-effective NKT cell therapy that can be used to treat patients having a broad range of tissue types.
- Provided herein are CIK NKT cells that can be activated in the absence of Gal-Cer. In some embodiments, greater than 50% of the cells in the CIK NKT cell population express CD56 and CD3 and less than 10% of the cells in the population express Va24. Also provided are compositions and kits comprising a plurality of CIK NKT cells from the population. Methods of producing the CIK NKT cells and using the cells to treat cancer are also provided.
- This disclosure provides a population of CIK NKT cells, wherein greater than 50% of the cells in the population express CD 56 and CD3 and less than 10% of the cells in the population express Va24.
- Optionally, the population of CIK NKT cells can kill a target cell in the absence of alpha-galactosylceramide (Gal-Cer). Optionally, the target cell is a cancer cell. The cancer cell line may be selected from the group consisting of a myelogenous leukemia cell, a medulloblastoma cell, and a monocytic cell. Optionally, the cancer cell is selected from the group consisting of a K562 cell, a Daudi cell, a DAOY cell, and a THP-1 cell.
- Optionally, the CIK NKT cells kill a plurality of the target cells at an EC50 of between 1.0 and 10.0. Optionally, the CIK NKT cells can kill the target cells at a EC50 that is no less than 90% and no greater than 110% of the IC50 at which the CIK NKT cells killing the target cells in the presence of Gal-Cer.
- This disclosure also provides a composition comprising a plurality of CIK NKT cells from any of the populations of CIK NKT cells described above, and a physiologically acceptable excipient.
- Also provided is a kit for treating cancer comprising a plurality of CIK NKT cells from any of the populations of CIK NKT cells described above and a container and/or a label indicating the kit is for treating cancer.
- Also provided is a method of enriching CIK NKT cells from a cord blood sample, the method comprising: isolating mononuclear cells from the cord blood sample; and contacting the isolated mononuclear cells with one or more agents selected from the group consisting of IL-7, ALT-803 or IL-15, FLT3 ligand, and Gal-Cer, whereby enriching CIK NKT cells. IL-7, if present, may be in a concentration ranging from 5 to 20 ng/mL. ALT-803, if present, may be in a concentration ranging from 100 to 300 ng/mL. FLT3 ligand, if present, may be in a concentration ranging from 5 to 20 ng/mL. Gal-Cer, if present, may be in a concentration ranging from 2 to 10 μg/mL.
- Optionally, the method further comprises isolating the enriched CIK NKT cells from the rest of the cord blood sample. Optionally, the method further comprises contacting the isolated CIK NKT cells with anti-CD3, anti-CD28, and IL2 to expand the CIK NKT cells. Optionally, the method further comprises contacting the separated CIK NKT cells with Gal-Cer. Optionally, the Gal-Cer is used in a form of a Gal-Cer loaded CD1d tetramer. Optionally, the anti-CD3 antibody may be present in an amount of 5 ng/mL to 60 ng/mL. Optionally, the anti-CD28 antibody is present in an amount of 0.1 μg/mL to 2 μg/mL. Optionally, IL-2 is present in a concentration of 50 ng/mL to 500 ng/mL. Optionally, enriching and/or expansion of CIK NKT cells does not include interferon-gamma.
- Also provided is a population of CIK NKT cells produced by the methods of enriching, isolating and expanding CIK NKT cells described above.
- Also provided is a method of treating cancer or viral infection in a patient in need thereof, the method comprising administering to the patient a therapeutically effective amount of CIK NKT cells from any of the populations of CIK NKT cells as described above, thereby treating cancer. Optionally, 1×108 to about 1×1011 CIK NKT cells per m2 of body surface area of the patient are administered to the patient. Optionally, the cancer is selected from the group consisting of a leukemia, a lymphoma, polycythemia vera, multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, a sarcoma and a carcinoma. Optionally the cells are administered to the patient by a route selected from the group consisting of intravenous, intraperitoneal, and subcutaneous. Optionally, the method further comprises administering an antibody.
- Also provided is a population of CIK NKT cells of
claim 1, wherein the CIK NKT cells express a CAR and/or a cytokine, and greater than 50% of the cells in the CIK NKT cell population express CD56 and CD3 and less than 10% of the cells in the population express Va24. - The foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the disclosure. Other objects, advantages and novel features will be readily apparent to those skilled in the art.
- The objects, features and advantages will be more readily appreciated upon reference to the following disclosure when considered in conjunction with the accompanying drawings.
-
FIG. 1 is a schematic representation of the pathway which CIK NKT cells employ to kill target cells. -
FIG. 2A shows the results of flow cytometry analysis of CIK NKT cells stained with CD3, CD56, and Va24.FIG. 2A is the forward scatter and size scatter diagram;FIG. 2B shows CD3 and CD56 diagrams; andFIG. 2C shows the Va24 diagram. -
FIG. 3A shows the killing of DAOY cells in the presence (represented by circles) or absence (represented by squares) by the cord blood CIK NKT cells.FIG. 3B shows the killing of luciferase-expressingTHP 1 cells by cord blood CIK NKT cells (represented by squares) or peripheral blood iNKT cells (represented by circles). -
FIG. 4 shows the killing of K562 cells, DAOY cells, and Daudi cells by cord blood CIK NKT cells. - This application provides cytokine induced killer NKT cells (CIK NKT cells) that can kill target cells in a non-CD1d restricted manner, i.e., independent of the formation of the Gal-Cer/CD1d tetramer. The CIK NKT cells can be used to target a broad range of target cells and will not trigger Graft-versus-host disease (GVHD). GVHD occurs due to invasive ability of lymphocytes to infiltrate and cause extensive inflammation in organs such as the gut, skin and liver. It has been shown that CIK NKTs do not express chemokine receptors important for targeting to GVHD organs but do express receptors that facilitate homing to tumors, thus they will not trigger GVHD. As compared to existing technologies of generating CIK NKT cells, which normally produce a heterogenous population consisting of CD3+, CD56+ single positive cells and CD3+/CD56+ double positive cells, and the double positive cells typically 30% or less, the present methods produce a cell population that consists of predominantly CD3+/CD56+ double positive cells. In one aspect, at least 50% of the CIK NKT cells in the population express both CD56 and CD3 and less than 10% of the cells in the population express Va24. The method of producing CIK NKT cells do not require the exposing the cells to interferon-gamma, which saves cost. Thus, the application provides a safe and cost-effective NKT cell therapy that can be used broadly to treat various diseases, e.g., cancers, without causing clinically adverse symptoms such as GVHD.
- The disclosure also provides compositions and kits comprising a plurality of CIK NKT cells from the population. Methods of producing the CIK NKT cells and using the CIK NKT cells to treat cancer are also provided.
- Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art.
- In this specification and in the claims that follow, reference will be made to a number of terms that shall be defined to have the following meanings:
- The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Thus, for example, reference to “a natural killer cell” includes a plurality of natural killer cells.
- All numerical designations, e.g., pH, temperature, time, concentration, amounts, and molecular weight, including ranges, are approximations which are varied (+) or (−) by increments of 0.1 or 1.0, where appropriate. It is to be understood, although not always explicitly stated, that all numerical designations may be preceded by the term “about.”
- As used herein, “+”, when used to indicate the presence of a particular cellular marker, means that the cellular marker is detectably present in fluorescence activated cell sorting over an isotype control; or is detectable above background in quantitative or semi-quantitative RT-PCR.
- As used herein, “-”, when used to indicate the presence of a particular cellular marker, means that the cellular marker is not detectably present in fluorescence activated cell sorting over an isotype control; or is not detectable above background in quantitative or semi-quantitative RT-PCR.
- As will be understood by one skilled in the art, for any and all purposes, particularly in terms of providing a written description, all ranges disclosed herein also encompass any and all possible subranges and combinations of subranges thereof. Any listed range can be easily recognized as sufficiently describing and enabling the same range being broken down into at least equal halves, thirds, quarters, fifths, tenths, etc. As a non-limiting example, each range discussed herein can be readily broken down into a lower third, middle third and upper third, etc. As will also be understood by one skilled in the art all language such as “up to,” “at least,” “greater than,” “less than,” and the like, include the number recited and refer to ranges which can be subsequently broken down into subranges as discussed above. Finally, as will be understood by one skilled in the art, a range includes each individual member. Thus, for example, a group having 1-3 cells refers to groups having 1, 2, or 3 cells. Similarly, a group having 1-5 cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.
- It is also to be understood, although not always explicitly stated, that the reagents described herein are merely exemplary and that equivalents of such are known in the art.
- “Optional” or “optionally” means that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where the event or circumstance occurs and instances where it does not.
- The term “comprising” is intended to mean that the compositions and methods include the recited elements, but not excluding others. “Consisting essentially of,” when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination. For example, a composition consisting essentially of the elements as defined herein would not exclude other elements that do not materially affect the basic and novel characteristic(s) of the claims. “Consisting of” shall mean excluding more than trace amount of other ingredients and substantial method steps. Embodiments defined by each of these transition terms are within the scope of the disclosure.
- As used herein, the terms “cytotoxic” and “cytolytic”, when used to describe the activity of effector cells such as NK cells, are intended to be synonymous. In general, cytotoxic activity relates to killing of target cells by any of a variety of biological, biochemical, or biophysical mechanisms. Cytolysis refers more specifically to activity in which the effector lyses the plasma membrane of the target cell, thereby destroying its physical integrity. This results in the killing of the target cell. Without wishing to be bound by theory, it is believed that the cytotoxic effect of NK cells is due to cytolysis.
- The term “kill” with respect to a cell/cell population is directed to include any type of manipulation that will lead to the death of that cell/cell population.
- The term “cytokine” or “cytokines” refers to the general class of biological molecules which effect cells of the immune system. Exemplary cytokines include but are not limited to FLT3 ligand, interferons and interleukins (IL), in particular IL-2, IL-12, IL-15, IL-18 and IL-21.
- The terms “patient,” “subject,” “individual,” and the like are used interchangeably herein, and refer to any animal, or cells thereof whether in vitro or in situ, amenable to the methods described herein. In certain non-limiting embodiments, the patient, subject or individual is a human.
- The term “treating” or “treatment” covers the treatment of a disease or disorder described herein, in a subject, such as a human, and includes: (i) inhibiting a disease or disorder, i.e., arresting its development; (ii) relieving a disease or disorder, i.e., causing regression of the disorder; (iii) slowing progression of the disorder; and/or (iv) inhibiting, relieving, or slowing progression of one or more symptoms of the disease or disorder. The term “administering” or “administration” of a monoclonal antibody or a natural killer cell to a subject includes any route of introducing or delivering the antibody or cells to perform the intended function. Administration can be carried out by any route suitable for the delivery of the cells or monoclonal antibody. Thus, delivery routes can include intravenous, intramuscular, intraperitoneal, or subcutaneous delivery. In some embodiments the CIK NKT cells are administered directly to the tumor, e.g., by injection into the tumor. In some embodiments the modified CIK NKT cells described herein are administered parenterally, e.g., by injection, infusion or implantation (subcutaneous, intravenous, intramuscular, intravesicularly, or intraperitoneal).
- The term “expression” refers to the production of a gene product.
- As used herein, the terms “cytotoxic” when used to describe the activity of effector cells such as NK cells, relates to killing of target cells by any of a variety of biological, biochemical, or biophysical mechanisms.
- The terms “decrease,” “reduced,” “reduction,” and “decrease” are all used herein to refer to a decrease by at least 10% as compared to a reference level, for example a decrease by at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 90% or up to and including a 100% decrease (i.e. absent level as compared to a reference sample), or any decrease between 10-100% as compared to a reference level.
- The term “cancer” refers to all types of cancer, neoplasm, or malignant tumors found in mammals, including leukemia, carcinomas and sarcomas. Exemplary cancers include cancer of the brain, breast, cervix, colon, head & neck, liver, kidney, lung, non-small cell lung, melanoma, mesothelioma, ovary, sarcoma, stomach, uterus and medulloblastoma. Additional examples include, Hodgkin's Disease, Non-Hodgkin's Lymphoma, multiple myeloma, neuroblastoma, ovarian cancer, rhabdomyosarcoma, primary thrombocytosis, primary macroglobulinemia, primary brain tumors, cancer, malignant pancreatic insulanoma, malignant carcinoid, urinary bladder cancer, premalignant skin lesions, testicular cancer, lymphomas, thyroid cancer, neuroblastoma, esophageal cancer, genitourinary tract cancer, malignant hypercalcemia, endometrial cancer, adrenal cortical cancer, neoplasms of the endocrine and exocrine pancreas, and prostate cancer.
- The term “therapeutically effective amount” or “effective amount” refers to the amount required to ameliorate the symptoms of a disease relative to an untreated patient. The effective amount of active compound(s) used to practice the present disclosure for therapeutic treatment of a disease varies depending upon the manner of administration, the age, body weight, and general health of the subject. Ultimately, the attending physician or veterinarian will decide the appropriate amount and dosage regimen. Such amount is referred to as an “effective” amount.
- Titles or subtitles may be used in the specification for the convenience of a reader, which are not intended to influence the scope of the present disclosure. Additionally, some terms used in this specification are more specifically defined below.
- Natural killer T cells are a heterogeneous group of T cells that share properties of both T cells and natural killer cells. For example, NKT cells express an alpha beta T-cell receptor, but also express a variety of molecular markers that are typically associated with NK cells, such as NKp44, NKp46, and NKp30. NKT cells constitute only about 0.1% of all peripheral blood T cells. NKT cells have been implicated in suppression of autoimmunity and graft rejection, promotion of resistance to pathogens, and promotion of tumor immunity.
- NKT cells are typically classified into type I and type II, based on differences in T cell receptor (TCR) usage.
Type 1 NKT cells, also commonly referred to as invariant NKT cells, are NKT cells that express a highly restricted T cell receptor, which comprises an invariant TCR alpha chain, Va24. - Invariant NKT cells are typically activated by recognizing lipid ligands alpha-galactosylceramide (Gal-Cer) presented by CD1d. CD1d is a member of CD1 family of glycoproteins expressed on the surface of various antigen presenting cells and are involved in the presentation of lipid antigens. In contrast to class I and II major histocompatibility complex (MHC) molecules that present protein antigens to CD8+ and CD4+ T cells, respectively, CD1 molecules can capture and process both foreign and self lipid antigens for display to T cells. Gal-Cer are typically derived from pathogenic cells, for example, bacteria.
- As compared to Type I NKT cells, type II NKT cells have a more diverse TCR repertoire and a higher sequence diversity. Type II NKT cells do not respond to Gal-Cer, i.e., their activation is independent of the presence of Gal-Cer.
- The CIK NKT cells disclosed herein belong to the category of type II NKT cells. The CIK NKT cells can be produced through cytokine induction. In some instances, they are produced from e.g., cord blood, through cytokine induction. In some instances they are produced during the process of enriching or isolating iNKT cells from cord blood samples. However, CIK NKT cells differ from the typical iNKT cells in several aspects. Phenotypically, unlike iNKT cells, which express Va24, a marker for the alpha chain of a TCR receptor, and the percentage of iNKT cells that express Va24 is can be 70% or higher, CIK NKT cells have reduced expression of Va24. For example, the percentage of CIK NKT cells that express Va24 may be less than 10% of the total population of CIK NKT cells. In terms of cytotoxicity, unlike iNKT cells, which are activated by recognizing the alpha galactosyl ceramide (Gal-Cer), a glycolipid, the CIK NKT cells do not need Gal-Cer to be activated and can kill the cells in the absence of (Gal-Cer). See
FIG. 3 andFIG. 4 . - Thus, in terms of phenotypes, the CIK NKT cells provided herein typically have high expression levels of CD56 and CD3 and low expression of Va24. In some instances, at least 90% of the CIK NKT population produced from the cord blood cells express CD56 and CD3, and less than 10% of the cells in the population express Va24.
- Human umbilical cord blood has high composition of hematopoietic stem cells and can be used as a source for generating CIK NKT cells. To collect cord blood, generally, a human placenta is recovered shortly after its expulsion after birth. The placenta can be transported in a sterile, thermally insulated transport device (maintaining the temperature of the placenta between 20-28° C.), for example, in a cord blood collection kit substantially as described in U.S. Pat. No. 7,147,626. Preferably, the placenta is delivered to the laboratory four to twenty-four hours following delivery.
- The placenta can be subjected to a conventional cord blood recovery process. Typically a needle or cannula is used, with the aid of gravity, to exsanguinate the placenta (see, e.g., Anderson, U.S. Pat. No. 5,372,581; Hessel et al., U.S. Pat. No. 5,415,665). The needle or cannula is usually placed in the umbilical vein and the placenta can be gently massaged to aid in draining cord blood from the placenta. Such cord blood recovery may be performed commercially, e.g., LifeBank Inc., Cedar Knolls, N.J., ViaCord, Cord Blood Registry and CryoCell. Preferably, the placenta is gravity drained without further manipulation so as to minimize tissue disruption during cord blood recovery.
- Methods for collecting cord blood cells are well known, for example, as described in US20150225697. Cord blood mononuclear cells (Comics) can be isolated from collected cord blood using methods well known in the art, e.g., a density gradient method using Ficoll-Paque. Reagents suitable for isolating Comics are commercially available, e.g., from Stem cell Technology Inc.
- Comics can be cultured for a period of time in the presence of various cytokines in order to enrich for CIK NKT cells. Enriching refers to increasing the percentage of number of target cells in a heterogenous cell population (e.g., the Comics). The enrichment period may be 2 days-3 weeks, e.g., 1-2 weeks, 5-10 days, or about 2 weeks. Various growth media can be used, for example, Roswell Park Memorial Institute medium (RPMI), or Dulbecco's modified eagle medium (DMEM). Optionally, the medium further comprises human AB serum and/or Gal-Cer. Optionally, the human AB serum is present in 5-15% v/v, e.g., about 10% v/v. Optionally, the Gal-Cer is present in a concentration of 2-10 μg/mL, e.g., about 5 μg/mL. Suitable cytokines that can be added to the medium may include one or more cytokines selected from the group consisting of stem cell factor, FLT3 ligand, IL-7, and ALT-803 or IL-15. In some embodiments, FLT3 ligand is present in a concentration ranging from 5-20 ng/mL, e.g., 10 ng/mL; IL-7 is present in a concentration ranging from 5-20 ng/mL, e.g., 10 ng/mL; and/or ALT-803 is present in a concentration ranging from 100-300 ng/mL, e.g., about 175 ng/mL.
- FLT3 ligand is a hematopoietic four helical bundle cytokine and it is structurally homologous to stem cell factor (SCF) and colony stimulating factor 1 (CSF-1). In synergy with other growth factors, FLT3 ligand stimulates the proliferation and differentiation of various blood cell progenitors. It is a major growth factor stimulating the growth of dendritic cells.
- ALT-803 is a complex consisting of human IL-15 mutant IL-15N72D (residue substitution at position 72) and IL-15Rα sushi-Fc fusion protein (see Zhu et al. J. Immunol. 2009; 183:3598-607, the relevant disclosure is hereby incorporated by reference).
- CIK NKT cells can be isolated from the enriched culture described above by methods well known in the art, for example, incubating magnetic beads coupled with antibody against the Va24-J18 chain of the TCR with the enriched culture so that the CIK NKT cells will bind to the magnetic beads, and subsequently isolating the CIK NKT cells that are bound to the beads in presence of a magnetic field. One example of the suitable antibodies that can be used is the 6B11 antibody, which are commercially available for vendors such as Biolegend (San Diego, Calif.). Suitable reagents for isolating CIK NKT cells are from Miltenyi Biotec, Germany. CIK NKT cells are typically isolated in PBS-containing serum (e.g., human AB serum). Optionally, the isolation solution also contains EDTA.
- Thus, provided herein is a method of enriching CIK NKT cells from cord blood, the method comprising: from a cord blood sample, the method comprising: isolating mononuclear cells from the cord blood sample; and contacting the isolated monocytes with one or more agents selected from the group consisting of IL-7, ALT-803, FLT3 ligand, and Gal-Cer to enrich CIK NKT cells.
- The CIK NKT cells as isolated above can be expanded in suitable growth medium. Expanding refers to growing an isolated population of target cells so that the target cells increase in number. In some embodiments, the growth medium is the NK Macs medium, available from Miltenyi Biotec, Germany. In some embodiments, the growth medium is supplemented with IL-2, anti-CD3, and/or anti CD28 antibodies in amounts suitable for NKT cell growth. In some embodiments, the anti-CD3 antibody is present in a concentration of 5 ng/mL to 60 ng/mL, e.g., 20 ng/mL. In some embodiments, the anti-CD28 antibody is present in a concentration of 0.1 μg/mL to 2 μg/mL, e.g., 0.5 μg/mL. In some embodiments, IL-2 is present in a concentration of 50 ng/mL to 500 ng/mL, e.g., 200 ng/mL. In some embodiments, the growth medium comprises human AB serum (e.g., about 10% v/v). In some embodiments, the growth medium further comprises a Gal-Cer loaded CD1d tetramer. In some embodiments, the Gal-Cer loaded CD1d tetramer is a pre-assembled tetramer that are commerically available, e.g., from ProImmune (Oxford, UK). Methods for assembling Gal-Cer loaded CD1d tetramer is well known. Typically, Gal-Cer lipid is co-incubated with CD1d protein, which are oligomerized on streptavidin surface to become tetramers. Upon Gal-Cer binding to CD1d complex, it was column purified and used as reagents for expansion. Some of the exemplary methods for preparing the Gal-Cer loaded CD1d tetramers are described in
www.proimmune.com/ecommerce/pdf_files/PS_DE000-RPE_V1.1% 20%28CD1d%20Tetramer%20Empty% 20%28R-PE%20Labeled%29%29.pdf and proimmune.com/ecommerce/pdf_files/ST14.pdf. In some embodiments, the Gal-Cer loaded CD1d tetramer is used at an amount such that the concentration of the Gal-Cer in the growth medium is about 20-200 ng/mL, e.g., 50-150 ng/mL, or 80-120 ng/mL, or about 100 ng/mL of Gal-Cer. In some embodiments, the CIK NKT cells are let grown and expanded for over a few days or weeks to reach a suitable amount of cells for various applications. - Accordingly, the disclosure provides a method of growing CIK NKT cells from cord blood, the method comprising: from a cord blood sample, the method comprising: isolating mononuclear cells from the cord blood sample; and contacting the isolated monocytes with one or more agents selected from the group consisting of IL-7, ALT-803, FLT3 ligand, and Gal-Cer to enrich CIK NKT cells.
- In certain embodiments, a CIK NKT cell populations can be assessed by detecting one or more functionally relevant markers, for example, CD56 and CD3 (markers for NKT cells) and TCR receptor Va24 (a high expression of which indicates the NKT cells are invariant NKT cells).
- In some embodiments, provided herein are a CIK NKT cell population comprising a lower percentage of Va24+ cells as compared to typical invariant NKT cells. The CIK NKT cell population comprises about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10% of Va24+ cells. In some embodiments, the CIK NKT cell population comprises between 0-20%, 5-10%, 1-7%, or 4-8% Va24+ cells. In some embodiments, the CIK NKT cell population comprises no more than 20%, no more than 15%, no more than 10% of the Va24+ cells.
- In some embodiments, provided herein are a CIK NKT cell population comprising a percentage of CD56+ cells that is substantially similar to that in a typical invariant NKT cell population. The CIK NKT cell population comprises at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or about 99% of CD56+ cells. In some embodiments, the CIK NKT cell population comprises between 50-100%, 70-100%, 85-100%, 90-100%, 95-100%, or 98-100% CD56+ cells. In some embodiments, the CIK NKT cell population comprises no less than 50%, no less than 70%, no less than 85%, no less than 90%, no less than 93%, or no less than 95% of the CD56+ cells.
- In some embodiments, provided herein are a CIK NKT cell population comprising a percentage of CD3+ cells that is substantially similar to that in a typical invariant NKT cell population. The CIK NKT cell population comprises at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or about 99% of CD3+ cells. In some embodiments, the CIK NKT cell population comprises between 50-100%, 70-100%, 85-100%, 90-100%, 95-100%, or 98-100% of the CD3+ cells. In some embodiments, the CIK NKT cell population comprises no less than 50%, no less than 70%, no less than 85%, no less than 90%, no less than 93%, or no less than 95% of the CD3+ cells.
- In some embodiments, provided herein are a CIK NKT cell population comprising a percentage of CD56+ CD3+ cells that is substantially similar to that in a typical invariant NKT cell population. The CIK NKT cell population comprises at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or about 99% of CD56+ CD3+ cells. In some embodiments, the CIK NKT cell population comprises between 50-100%, 70-100%, 85-100%, 90-100%, 95-100%, or 98-100% of the CD56+ CD3+ cells. In some embodiments, the CIK NKT cell population comprises no less than 50%, no less than 70%, no less than 85%, no less than 90%, no less than 93%, or no less than 95% of the CD56+ CD3+ cells.
- Optionally, the cytotoxic activity isolated or enriched natural killer cells can be assessed, e.g., in a cytotoxicity assay using tumor cells, e.g., cultured K562, DAOY, THP-1, LN-18, U937, WERI-RB-1, U-118MG, HT-29, HCC2218, KG-1, or U266 tumor cells, or the like as target cells. CIK NKT cells disclosed herein can kill target cells regardless of MHC type and regardless of the presence of αGal-Cer.
- Assays for evaluating cytotoxicity are well known, for example, MTT assay. This is a system based on the tetrazolium compound MTT. Briefly, after the treatment period in which the target cells are in contact with CIK NKT cells, 10 uL of a freshly diluted MTT solution (2.5 mg mL−1) was added to each well, and the plate was incubated at 37 C in a humidified 5% CO2 atmosphere for 4 h. At the end of the incubation period, the medium was removed, and the formazan product was dissolved in 100 μL of dimethyl sulfoxide. Cell viability was evaluated by measurement of the absorbance at 570 nm, using a SUNRICE Tecan absorbance reader (Schoeller). Compound concentrations that produce 50% cell growth inhibition (IC50) were calculated from curves constructed by plotting cell survival (%) versus drug concentration (μM). The reading values were converted to the percentage of the control (percentage cell survival). Non-limiting methods of cell killing assays include Sulphorhodamine B (SRB) assay, Neutral red (NR) assay, such as those described in www.rsc.org/suppdata/mt/c4/c4mt00112e/c4mt00112e1.pdf, herein incorporated by reference in its entirety.
- The efficacy of the CIK NKT cells on killing target cells can be evaluated with an EC50. EC50 used in this disclosure refers to the effector to target ratio used in an assay where 50% of target cells are killed. In some embodiments, the CIK NKT cells is able to kill a plurality of the target cells at an EC50 of 1-10, e.g., 1-8, 2-6, 2-5.5, or 3-7. In some embodiments, the target cell is THP-1 and the EC50 is 4.64. In some embodiments, the target cell is DAOY and the IC50 is 3.69. In some embodiments, the target cell is K562 and the IC50 is 2.6.
- The CIK NKT cells produced as above can be further engineered to express a chimeric antigen receptor (CAR) on the cell surface. Optionally, the CAR is specific for a tumor-specific antigen. Tumor-specific antigens are described, by way of non-limiting example, in US 2013/0189268; WO 1999024566 A1; U.S. Pat. No. 7,098,008; and WO 2000020460 A1, each of which is incorporated herein by reference in its entirety. Tumor-specific antigens include, without limitation, NKG2D, CS1, GD2, CD138, EpCAM, EBNA3C, GPA7, CD244, CA-125, ETA, MAGE, CAGE, BAGE, HAGE, LAGE, PAGE, NY-SEO-1, GAGE, CEA, CD52, CD30, MUCSAC, c-Met, EGFR, FAB, WT-1, PSMA, NY-ESO1, AFP, CEA, CTAG1B, CD19 and CD33. Additional non-limiting tumor-associated antigens, and the malignancies associated therewith, can be found in Table 1.
-
TABLE 1 Tumor-Specific Antigens and Associated Malignancies Target Antigen Associated Malignancy α-Folate Receptor Ovarian Cancer CAIX Renal Cell Carcinoma CD19 B-cell Malignancies Chronic lymphocytic leukemia (CLL) B-cell CLL (B-CLL) Acute lymphoblastic leukemia (ALL); ALL post Hematopoietic stem cell transplantation (HSCT) Lymphoma; Refractory Follicular Lymphoma; B-cell non-Hodgkin lymphoma (B-NHL) Leukemia B-cell Malignancies post-HSCT B-lineage Lymphoid Malignancies post umbilical cord blood transplantation (UCBT) CD19/CD20 Lymphoblastic Leukemia CD20 Lymphomas B-Cell Malignancies B-cell Lymphomas Mantle Cell Lymphoma Indolent B-NHL Leukemia CD22 B-cell Malignancies CD30 Lymphomas; Hodgkin Lymphoma CD33 AML CD44v7/8 Cervical Carcinoma CD138 Multiple Myeloma CD244 Neuroblastoma CEA Breast Cancer Colorectal Cancer CS1 Multiple Myeloma EBNA3C EBV Positive T-cells EGP-2 Multiple Malignancies EGP-40 Colorectal Cancer EpCAM Breast Carcinoma Erb-B2 Colorectal Cancer Breast Cancer and Others Prostate Cancer Erb-B 2,3,4 Breast Cancer and Others FBP Ovarian Cancer Fetal Acetylcholine Receptor Rhabdomyosarcoma GD2 Neuroblastoma GD3 Melanoma GPA7 Melanoma Her2 Breast Carcinoma Ovarian Cancer Tumors of Epithelial Origin Her2/new Medulloblastoma Lung Malignancy Advanced Osteosarcoma Glioblastoma IL-13R-a2 Glioma Glioblastoma Medulloblastoma KDR Tumor Neovasculature k-light chain B-cell Malignancies B-NHL, CLL LeY Carcinomas Epithelial Derived Tumors L1 Cell Adhesion Molecule Neuroblastoma MAGE-A1 Melanoma Mesothelin Various Tumors MUC1 Breast Cancer; Ovarian Cancer NKG2D Ligands Various Tumors Oncofetal Antigen (h5T4) Various Tumors PSCA Prostate Carcinoma PSMA Prostate/Tumor Vasculature TAA Targeted by mAb IgE Various Tumors TAG-72 Adenocarcinomas VEGF-R2 Tumor Neovasculature - In some embodiments, the CAR targets CD19, CD33 or CSPG-4.
- In examples, variant polypeptides are made using methods known in the art such as oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. Site direct mutagenesis (Carter, 1986; Zoller and Smith, 1987), cassette mutagenesis, restriction selection mutagenesis (Wells et al., 1985) or other known techniques can be performed on the cloned DNA to produce CD16 variants (Ausubel, 2002; Sambrook and Russell, 2001).
- Optionally, the CAR targets an antigen associated with a specific cancer type. Optionally, the cancer is selected from the group consisting of leukemia (including acute leukemias (e.g., acute lymphocytic leukemia, acute myelocytic leukemia (including myeloblastic, promyelocytic, myelomonocytic, monocytic, and erythroleukemia)) and chronic leukemias (e.g., chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia), polycythemia vera, lymphomas (e.g., Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, solid tumors including, but not limited to, sarcomas and carcinomas such as fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, menangioma, melanoma, neuroblastoma and retinoblastoma.
- In some embodiments, a polynucleotide encoding a CAR is mutated to alter the amino acid sequence encoding for CAR without altering the function of the CAR. For example, polynucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues can be made in the CARs disclosed above. CARs can be engineered as described, for example, in Patent Publication Nos. WO 2014039523; US 20140242701; US 20140274909; US 20130280285; and WO 2014099671, each of which is incorporated herein by reference in its entirety. Optionally, the CAR is a CD19 CAR, a CD33 CAR or CSPG-4 CAR.
- In some embodiments, CAR-expressing CIK NKT cells are further modified to express at least one cytokine. In specific embodiments, the at least one cytokine is IL-2, IL-12, IL-15, IL-18, IL-21 or a variant thereof. In preferred embodiments, the cytokine is IL-12. A representative polypeptide of IL-12 comprises or consists of an amino acid sequence set forth in Accession No. IF45_A (https://www.ncbi.nlm.nih.gov/protein/1F45_A) and an amino acid sequence set forth in Accession No. IF45_B (https://www.ncbi.nlm.nih.gov/protein/1F45_B).
- This disclosure also provides a method to treat any type of cancer in a subject at any stage of the disease. Non-limiting examples of the suitable cancers include carcinoma, melanoma, or sarcoma. In some embodiments, the invention is used to treat cancer of hemopoietic origin such as leukemia or lymphoma. In some embodiments, the cancer is a solid tumor.
- In some embodiments, the method to treat any type of cancer in a subject comprises administering to the patient a therapeutically effective amount of CIK NKT cells, wherein the thereby treating cancer. The CIK NKT cells are from a population of CIK NKT cells, wherein greater than 90% of the cells in the population express CD 56 and CD3 and less than 10% of the cells in the population express Va24.
- The disclosure also provides a method to treat any type of viral infection, the method comprising administering to the patient a therapeutically effective amount of CIK NKT cells, wherein the thereby treating cancer. The CIK NKT cells are from a population of CIK NKT cells, wherein greater than 90% of the cells in the population express CD 56 and CD3 and less than 10% of the cells in the population express Va24.
- Also provided are methods of treating a subject in need thereof with CIK NKT cells as described herein. In some embodiments, the subject or patient is suffering from cancer or an infectious disease, such as a viral infection.
- The CIK NKT cells can be administered to an individual by absolute numbers of cells, e.g., said individual can be administered from about 1000 cells/injection to up to about 10 billion cells/injection, such as at about, at least about, or at most about, 1×108, 1×107, 5×107, 1×106, 5×106, 1×105, 5×105, 1×104, 5×104, 1×103, 5×103 (and so forth) CIK NKT cells per injection, or any ranges between any two of the numbers, end points inclusive. Therefore, this disclosure also provides a composition comprising a plurality of CIK NKT cells, wherein the number of cells are 1×108, 1×107, 5×107, 1×106, 5×106, 1×105, 5×105, 1×104, 5×104, 1×103, or 5×103 (and so forth).
- In other embodiments, said individual can be administered from about 1000 cells/injection/m2 to up to about 10 billion cells/injection/m2, such as at about, at least about, or at most about, 1×108/m2, 1×107/m2, 5×107/m2, 1×106/m2, 5×106/m2, 1×105/m2, 5×105/m2, 1×104/m2, 5×104/m2, 1×103/m2, 5×103/m2 (and so forth) CIK NKT cells per injection, or any ranges between any two of the numbers, end points inclusive.
- In other embodiments, CIK NKT cells can be administered to such individual by relative numbers of cells, e.g., said individual can be administered about 1000 cells to up to about 10 billion cells per kilogram of the individual, such as at about, at least about, or at most about, 1×108, 1×107, 5×107, 1×106, 5×106, 1×105, 5×105, 1×104, 5×104, 1×103, or 5×103 (and so forth) CIK NKT cells per kilogram of the individual, or any ranges between any two of the numbers, end points inclusive.
- In other embodiments, the total dose may be calculated by m2 of body surface area, including about 1×1011, 1×1010, 1×109, 1×108, 1×107, per m2, or any ranges between any two of the numbers, end points inclusive. The average person is about 1.6 to about 1.8 m2. In a preferred embodiment, between about 1 billion and about 3 billion CIK NKT cells are administered to a patient. In other embodiments, the amount of CIK NKT cells injected per dose may calculated by m2 of body surface area, including 1×1011, 1×1010, 1×109, 1×108, 1×107, per m2. The average body surface area for a person is 1.6-1.8 m2.
- In other embodiments, CIK NKT cells can be administered to such individual by relative numbers of cells, e.g., said individual can be administered about 1000 cells to up to about 10 billion cells per kilogram of the individual, such as at about, at least about, or at most about, 1×108, 1×107, 5×107, 1×106, 5×106, 1×105, 5×105, 1×104, 5×104, 1×103, or 5×103 (and so forth) CIK NKT cells per kilogram of the individual, or any ranges between any two of the numbers, end points inclusive.
- CIK NKT cells can be administered once to a patient with cancer or they can be administered multiple times, e.g., once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23 hours, or once every 1, 2, 3, 4, 5, 6 or 7 days, or once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more weeks during therapy, or any ranges between any two of the numbers, end points inclusive.
- In some embodiments, CIK NKT cells are administered in a composition comprising the CIK NKT cells and a medium, such as human serum or an equivalent thereof. In some embodiments, the medium comprises human serum albumin. In some embodiments, the medium comprises human plasma. In some embodiments, the medium comprises about 1% to about 15% human serum or human serum equivalent. In some embodiments, the medium comprises about 1% to about 10% human serum or human serum equivalent. In some embodiments, the medium comprises about 1% to about 5% human serum or human serum equivalent. In a preferred embodiment, the medium comprises about 2.5% human serum or human serum equivalent. In some embodiments, the serum is human AB serum. In some embodiments, a serum substitute that is acceptable for use in human therapeutics is used instead of human serum. Such serum substitutes may be known in the art, or developed in the future. Although concentrations of human serum over 15% can be used, it is contemplated that concentrations greater than about 5% will be cost-prohibitive. In some embodiments, CIK NKT cells are administered in a composition comprising CIK NKT cells and an isotonic liquid solution that supports cell viability. In some embodiments, CIK NKT cells are administered in a composition that has been reconstituted from a cryopreserved sample.
- Pharmaceutically acceptable compositions comprising the CIK NKT cells can include a variety of carriers and excipients. A variety of aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter. Suitable carriers and excipients and their formulations are described in Remington: The Science and Practice of Pharmacy, 21st Edition, David B. Troy, ed., Lippincott Williams & Wilkins (2005). By pharmaceutically acceptable carrier is meant a material that is not biologically or otherwise undesirable, i.e., the material is administered to a subject without causing undesirable biological effects or interacting in a deleterious manner with the other components of the pharmaceutical composition in which it is contained. If administered to a subject, the carrier is optionally selected to minimize degradation of the active ingredient and to minimize adverse side effects in the subject. As used herein, the term pharmaceutically acceptable is used synonymously with physiologically acceptable and pharmacologically acceptable. A pharmaceutical composition will generally comprise agents for buffering and preservation in storage and can include buffers and carriers for appropriate delivery, depending on the route of administration.
- These compositions for use in in vivo or in vitro may be sterilized by sterilization techniques employed for cells. The compositions may contain acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of cells in these formulations and/or other agents can vary and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the subject's needs.
- In one embodiment, CIK NKT cells are administered to the patient in conjunction with one or more other treatments or agent for the cancer being treated. In some embodiments, the one or more other treatments for the cancer being treated include, for example, an antibody, radiation, chemotherapeutic, stem cell transplantation, or hormone therapy.
- In some embodiments, CIK NKT cells and the other cancer agent/treatment are administered simultaneously or approximately simultaneously (e.g., within about 1, 5, 10, 15, 20, or 30 minutes of each other). In some embodiments, the CIK NKT cells and the other cancer agent/treatment are administered sequentially. In some embodiments, the other cancer treatment/agent is administered one, two, or three days after the administration of the CIK NKT cells.
- In one embodiment, the other cancer agent is an antibody. In one embodiment, CIK NKT cells are administered in conjunction with an antibody targeting the diseased cells. In one embodiment, CIK NKT cells and an antibody are administered to the patient together, e.g., in the same formulation; separately, e.g., in separate formulations, concurrently; or can be administered separately, e.g., on different dosing schedules or at different times of the day. When administered separately, the antibody can be administered via any suitable route, such as intravenous or intra-tumoral injection.
- In some embodiments, CIK NKT cells of the present disclosure are used in combination with therapeutic antibodies and/or other anti-cancer agents. Therapeutic antibodies may be used to target cells that express cancer-associated or tumor-associated markers. Examples of cancer therapeutic monoclonal antibodies are shown in Table 2.
-
TABLE 2 Illustrative therapeutic monoclonal antibodies Examples of FDA-approved therapeutic monoclonal antibodies Brand Indication Antibody name Company Target (Targeted disease) Alemtuzumab Campath ® Genzyme CD52 Chronic lymphocytic leukemia Brentuximab Adcetris ® CD30 Anaplastic large cell vedotin lymphoma (ALCL) and Hodgkin lymphoma Cetuximab Erbitux ® Bristol-Myers epidermal growth Colorectal cancer, Head and Squibb/Eli factor receptor neck cancer Lilly/Merck KGaA Gemtuzumab Mylotarg ® Wyeth CD33 Acute myelogenous leukemia (with calicheamicin) Ibritumomab Zevalin ® Spectrum CD20 Non-Hodgkin tiuxetan Pharmaceuticals, lymphoma (with yttrium- Inc. 90 or indium-111) Ipilimumab Yervoy ® blocks CTLA-4 Melanoma (MDX-101) Ofatumumab Arzerra ® CD20 Chronic lymphocytic leukemia Palivizumab Synagis ® MedImmune an epitope of the Respiratory Syncytial Virus RSV F protein Panitumumab Vectibix ® Amgen epidermal growth Colorectal cancer factor receptor Rituximab Rituxan ®, Biogen CD20 Non-Hodgkin lymphoma Mabthera ® Idec/Genentech Tositumomab Bexxar ® GlaxoSmithKline CD20 Non-Hodgkin lymphoma Trastuzumab Herceptin ® Genentech ErbB2 Breast cancer Blinatunomab bispecific CD19- Philadelphia chromosome- directed CD3 T- negative relapsed or cell engager refractory B cell precursor acute lymphoblastic leukemia (ALL) Avelumamab anti-PD-L1 Non-small cell lung cancer, metastatic Merkel cell carcinoma; gastic cancer, breast cancer, ovarian cancer, bladder cancer, melanoma, meothelioma, including metastatic or locally advanced solid tumors Daratumumab CD38 Multiple myeloma Elotuzumab a SLAMF7- Multiple myeloma directed (also known as CD 319) immunostimulatory antibody - Administration of such CIK NKT cells may be carried out simultaneously with the administration of the monoclonal antibody, or in a sequential manner. In some embodiments, the CIK NKT cells are administered to the subject after the subject has been treated with the monoclonal antibody. Alternatively, the CIK NKT cells may be administered at the same time, e.g., within 24 hours, of the monoclonal antibody.
- In some embodiments, CIK NKT cells are administered intravenously. In some embodiments the CIK NKT cells are infused directly into the bone marrow.
- Therefore, this disclosure provides a method of treating cancer or viral infection in a patient in need thereof, the method comprising administering to the patient a therapeutically effective amount of CIK NKT cells from the population of CIK NKT cells using the methods disclosed herein to thereby treating cancer
- Also disclosed are kits for the treatment of cancer or an infectious disease using compositions comprising an amount of CIK NKT cells as described herein. In some embodiments, the kits of the present disclosure may also include at least one monoclonal antibody.
- In certain embodiments, the kit may contain additional compounds such as therapeutically active compounds or drugs that are to be administered before, at the same time or after administration of CIK NKT cells. Examples of such compounds include an antibody, vitamins, minerals, fludrocortisone, ibuprofen, lidocaine, quinidine, chemotherapeutic, etc.
- In various embodiments, instructions for use of the kits will include directions to use the kit components in the treatment of a cancer or an infectious disease. The instructions may further contain information regarding how to CIK NKT cells (e.g., thawing and/or culturing). The instructions may further include guidance regarding the dosage and frequency of administration.
- In certain embodiments, the kit further comprises one or more containers filled with one or more compositions described herein, e.g., a composition comprising CIK NKT cells as described herein. Optionally associated with such containers can be a label indicating the kit is for treating a cancer, such as those described herein. Optionally the label also includes a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
- The present disclosure and the working examples exemplifies producing and using CIK NKT cells derived from cord blood samples, one or ordinary skill in the art would appreciate that CIK NKT cells can also be generated from other hematopoietic progenitor cell samples using similar approaches to the ones described herein.
- Disclosed are materials, compositions, and components that can be used for, can be used in conjunction with, can be used in preparation for, or are products of the disclosed methods and compositions. These and other materials are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these materials are disclosed that while specific reference of each various individual and collective combinations and permutations of these compounds may not be explicitly disclosed, each is specifically contemplated and described herein. For example, if a method is disclosed and discussed and a number of modifications that can be made to a number of molecules including the method are discussed, each and every combination and permutation of the method, and the modifications that are possible are specifically contemplated unless specifically indicated to the contrary. Likewise, any subset or combination of these is also specifically contemplated and disclosed. This concept applies to all aspects of this disclosure including, but not limited to, steps in methods using the disclosed compositions. Thus, if there are a variety of additional steps that can be performed, it is understood that each of these additional steps can be performed with any specific method steps or combination of method steps of the disclosed methods, and that each such combination or subset of combinations is specifically contemplated and should be considered disclosed.
- This disclosure comprises the following, non-limiting embodiments.
- A population of CIK NKT cells, wherein greater than 50% of the cells in the population express CD 56 and CD3 and less than 10% of the cells in the population express Va24.
- The population of CIK NKT cells of
embodiment 1, wherein the CIK NKT cells can kill a target cell in the absence of alpha-galactosylceramide (Gal-Cer). - The population of CIK NKT cells of
embodiment 1, wherein the target cell is a cancer cell. - The population of CIK NKT cells of
embodiment 1, wherein the cancer cell line is selected from the group consisting of a myelogenous leukemia cell, a medulloblastoma cell, and a monocytic cell. - The population of CIK NKT cells of embodiment 3, wherein the cancer cell is selected from the group consisting of a K562 cell, a Daudi cell, a DAOY cell, and a THP-1 cell.
- The population of CIK NKT cells of embodiments 2-5, wherein the CIK NKT cells kill a plurality of the target cells at an EC50 of between 1.0 and 10.0.
- The population of CIK NKT cells of embodiments 6, wherein the CIK NKT cells can kill the target cells at a EC50 that is no less than 90% and no greater than 110% of the EC50 at which the CIK NKT cells killing the target cells in the presence of Gal-Cer.
- A composition comprising a plurality of CIK NKT cells from the population of CIK NKT cells of any of embodiments 1-7, and a physiologically acceptable excipient.
- A kit for treating cancer comprising a plurality of CIK NKT cells from the population of CIK NKT cells of any of embodiments 1-7, wherein the kit further comprises a container and/or a label indicating the kit is for treating cancer.
- A method of enriching CIK NKT cells from a cord blood sample, the method comprising: isolating mononuclear cells from the cord blood sample; and contacting the isolated mononuclear cells with one or more agents selected from the group consisting of IL-7, ALT-803 or IL-15, FLT3 ligand, and Gal-Cer, whereby enriching CIK NKT cells.
- The method of
embodiment 10, wherein the IL-7, if present, is in a concentration ranging from 5 to 20 ng/mL. - The method of
embodiment 10 or 11, wherein the ALT-803, if present, is in a concentration ranging from 100 to 300 ng/mL. - The method of any of embodiments 10-12, wherein the FLT3 ligand, if present, is in a concentration ranging from 5 to 20 ng/mL.
- The method of any of embodiments 10-13, wherein the Gal-Cer is present in a concentration ranging from 2 to 10 μg/mL.
- The method of
embodiment 10, wherein the method further comprises isolating the enriched CIK NKT cells from the rest of the cord blood sample. - The method of embodiment 15, wherein the method further comprises contacting the isolated CIK NKT cells with anti-CD3, anti-CD28, and IL2 to expand the CIK NKT cells.
- The method of embodiment 16, wherein the method further comprises contacting the isolated CIK NKT cells with Gal-Cer.
- The method of embodiment 17, wherein the Gal-Cer is a present in a form of a Gal-Cer loaded CD1d tetramer.
- The method of embodiment 16, wherein the anti-CD3 antibody is present in an amount of 5 ng/mL to 60 ng/mL.
- The method of any of embodiments 16-19, wherein the anti-CD28 antibody is present in an amount of 0.1 μg/mL to 2 μg/mL.
- The method of any of embodiments 16-20, wherein IL-2 is present in a concentration of 50 ng/mL to 500 ng/mL.
- The method of any of embodiments 16-21, wherein the production of CIK NKT cells does not include interferon-gamma.
- A method of treating cancer or viral infection in a patient in need thereof, the method comprising administering to the patient a therapeutically effective amount of CIK NKT cells from the population of CIK NKT cells of any of embodiments 1-7, thereby treating cancer.
- The method of embodiment 23, wherein about 1×108 to about 1×1011 cells per m2 of body surface area of the patient are administered to the patient.
- The method of embodiment 23, wherein the cancer is selected from the group consisting of a leukemia, a lymphoma, polycythemia vera, multiple myeloma, Waldenstrom's macroglobulinemia, heavy chain disease, a sarcoma and a carcinoma.
- The method of
embodiment 25, wherein the cells are administered to the patient by a route selected from the group consisting of intravenous, intraperitoneal, and subcutaneous. - The method of any of embodiments 23-26, wherein the method further comprises administering an antibody.
- A population of CIK NKT cells produced by the methods of any of embodiments 10-27.
- The population of CIK NKT cells of
embodiment 1, wherein the CIK NKT cells express a CAR and/or a cytokine. - The following examples are for illustrative purposes only and should not be interpreted as limitations. There are a variety of alternative techniques and procedures available to those of skill in the art which would similarly permit one to successfully perform the examples below.
- Cord blood mononuclear cells (Comics) were isolated from cord blood samples by density gradient method using Ficoll-Paque and Sepmate™, from Stem cell Technology Inc. Comics were incubated with Gal-Cer (5 μg/mL), FLT3-L (10 ng/mL), IL-7 (10 ng/mL), and ALT-803 (175 ng/mL) for enrichment of NKT for 2 weeks in RPMI medium with 10% Human AB serum. NKT cells were isolated by affinity chromatography using reagents from Miltenyi Biotec, Germany. Subsequently, isolated cells were expanded in the presence of anti-CD3 antibody (20 ng/mL), anti-CD28 antibody (0.5 μg/mL), and IL2 (200 ng/mL) in the NK Macs medium with 10% Human AB serum for overnight activation with Gal-Cer loaded CD1d tetramer. The Gal-Cer loaded CD1d tetramer was from ProImmune, Oxford, UK and was used in an amount such that the Gal-Cer was present in an amount of 100 ng/mL Upon a week of expansion, these cells were stained with antibodies recognizing CD3, CD56, or Va24. The results show that a majority of the cells (97.1%) were positive for both CD56 and CD3 (
FIG. 2B ) and a small percentage of cells (6.45%) were positive for Va24 (FIG. 2C ). This indicates that cord blood CIK NKT cells have low Va24 expression but the expression of CD3 and CD56 remain intact. - The NKT-CIK cells prepared as described in Example 2 were assessed for cytotoxicity against cancer cell line DAOY. DAOY cells were incubated with Gal-Cer at 1 μg/mL overnight. The Gal-Cer treated DAOY Cells were then incubated with a fluorescent dye, Calcien AM, for 30 min. The cells were washed and then incubated with CB-NKT CIKs, at various effector to target ratios as indicated (the highest ratio was 32:1), for 4 hours. The killing of the DAOY cells was measured by the cell lysis, which is represented by the amount of CalcienAM dye released from cells.
FIG. 3A shows the amount of CalcienAM dye released from DAOY cells caused by the CB-NKT CIKs. Data were presented as % lysis of target cells. The results show that there were significant difference in terms of killing between the group in which target cell were loaded with Gal-Cer and the group in which target cells were not loaded with Gal-Cer, indicating that Gal-Cer treatment did not confer killing specificity. -
FIG. 3B compares the cytotoxicity of NKT-CIK cells derived from cord blood as described above (CB-CIK NKT cells) versus PBiNKT cells (iNKT cells isolated from peripheral blood) on a luciferase-expressing THP1 cells. PBiNKT cells were isolated in the same manner as the CB-CIK NKT cells (see Example 1) except that the source is peripheral blood instead of cord blood. The THP1 cells were co-cultured with CB-CIK NKT cells or PBiNKT cells at various effector to target ratios as indicated, the highest ratio being 32:1. No Gal-Cer was used in this experiment. The results show that CB-CIK NKT cells are more potent in killing THP-1 than do PBiNKT cells. - CB-NKT CIK cells obtained as above were assayed for their ability to kill luciferase-expressing cancer cell lines, DAOY, Daudi, and K562 (represented by triangles, squares, and circles, respectively, in
FIG. 4 ). Peripheral blood isolated iNKTs were used as control (inverted triangles inFIG. 4 ). Cell killing assays were performed after 4-hour of co-culturing of the cancer cells and effector cells (CB CIK NKTs or PBiNKTs). The killing of the cancer cells was measured by % of cell lysis, which was represented by the loss of luciferase in these cancer cell lines. Various effector to target ratios were used as indicated, the highest being 32:1. The results indicate that CB-CIK NKT cells kill target cells in a non CD1d/MHC restricted manner.
Claims (29)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/260,544 US20220133789A1 (en) | 2018-07-10 | 2019-07-01 | Generating cik nkt cells from cord blood |
US17/151,085 US11351196B2 (en) | 2018-07-10 | 2021-01-15 | Generating CIK NKT cells from cord blood |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862696131P | 2018-07-10 | 2018-07-10 | |
PCT/US2019/040145 WO2020014029A1 (en) | 2018-07-10 | 2019-07-01 | Generating cik nkt cells from cord blood |
US17/260,544 US20220133789A1 (en) | 2018-07-10 | 2019-07-01 | Generating cik nkt cells from cord blood |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2019/040145 A-371-Of-International WO2020014029A1 (en) | 2018-07-10 | 2019-07-01 | Generating cik nkt cells from cord blood |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/151,085 Continuation US11351196B2 (en) | 2018-07-10 | 2021-01-15 | Generating CIK NKT cells from cord blood |
US17/856,997 Continuation US11931382B2 (en) | 2018-07-10 | 2022-07-03 | Generating CIK NKT cells from cord blood |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220133789A1 true US20220133789A1 (en) | 2022-05-05 |
Family
ID=76655823
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/260,544 Pending US20220133789A1 (en) | 2018-07-10 | 2019-07-01 | Generating cik nkt cells from cord blood |
US17/151,085 Active US11351196B2 (en) | 2018-07-10 | 2021-01-15 | Generating CIK NKT cells from cord blood |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/151,085 Active US11351196B2 (en) | 2018-07-10 | 2021-01-15 | Generating CIK NKT cells from cord blood |
Country Status (1)
Country | Link |
---|---|
US (2) | US20220133789A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115651905B (en) * | 2022-11-16 | 2023-06-16 | 南京鼓楼医院 | Staged culture method for in-vitro amplification of human CIK cells and application thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2010347018A1 (en) * | 2010-02-24 | 2012-09-20 | Ingo Schmidt-Wolf | Method for the generation of a CIK cell and NK cell population |
WO2015112793A2 (en) | 2014-01-27 | 2015-07-30 | St. Jude Children's Research Hospital, Inc. | Methods of expanding ex vivo natural killer t (nkt) cells and therapeutic uses thereof |
CN106434552B (en) * | 2015-08-13 | 2022-04-29 | 清华大学 | Novel NKT-like cell subsets and their use for treating tumors |
WO2017053649A1 (en) * | 2015-09-25 | 2017-03-30 | Altor Bioscience Corporation | Interleukin-15 superagonist significantly enhances graft-versus-tumor activity |
-
2019
- 2019-07-01 US US17/260,544 patent/US20220133789A1/en active Pending
-
2021
- 2021-01-15 US US17/151,085 patent/US11351196B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US11351196B2 (en) | 2022-06-07 |
US20210205367A1 (en) | 2021-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11931382B2 (en) | Generating CIK NKT cells from cord blood | |
Motohashi et al. | A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non–small cell lung cancer | |
DE102018108612A1 (en) | METHOD FOR INCREASING PERSISTENCE OF ADOPTIVELY INFUNDED T CELLS | |
KR102661091B1 (en) | PM21 particles improve bone marrow homing of NK cells | |
JP2022503685A (en) | A pharmaceutical combination that treats tumors, including anti-CD19 antibodies and natural killer cells | |
Zhang et al. | Phenotypic characterization and anti-tumor effects of cytokine-induced killer cells derived from cord blood | |
JP2021516666A (en) | Prostate cancer-specific medullary infiltrative lymphocytes and their use | |
EP3071220A1 (en) | Preparations and methods for treating a gd2 positive cancer | |
Anderson et al. | Lack of B7 expression, not human leukocyte antigen expression, facilitates immune evasion by human malignant gliomas | |
US11351196B2 (en) | Generating CIK NKT cells from cord blood | |
JP2010220479A (en) | Method for culturing nk cell and use of the same | |
US9944898B2 (en) | Method of generating tumor-specific T cells | |
KR101299299B1 (en) | The method for production of cell for cancer immunotherapy | |
JP2001314183A (en) | Lymphocyte having enhanced killer activity | |
Okita et al. | Targeting of CD4+ CD25high cells while preserving CD4+ CD25low cells with low-dose chimeric anti-CD25 antibody in adoptive immunotherapy of cancer | |
US20200306302A1 (en) | Treating and inhibiting leukemia with nk-92 cells | |
Asl et al. | Intra-lesion injection of activated Natural Killer (NK) cells in recurrent Malignant brain tumors | |
KR102721222B1 (en) | Generating cik nkt cells from cord blood | |
CN112424343B (en) | Production of CIK NKT cells from umbilical cord blood | |
KR20240154707A (en) | Generating cik nkt cells from cord blood | |
Lwin et al. | Immune-cell-mediated cancer treatment: advantages, drawbacks and future direction. | |
KR20230085116A (en) | Pharmaceutical combinations for treating tumor comprising anti-cd19 antibody and natural killer cell | |
EP2875827A1 (en) | Preparations and methods for treating a GD2 positive cancer | |
Guthrie et al. | CAR-T CELL THERAPY: A REVOLUTIONARY CANCER TREATMENT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NANTKWEST, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUGGAL, ROHIT;SINHA, RANJEET;REEL/FRAME:055040/0111 Effective date: 20180613 |
|
AS | Assignment |
Owner name: IMMUNITYBIO, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:NANTKWEST, INC.;REEL/FRAME:057059/0802 Effective date: 20210309 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: INFINITY SA LLC, AS PURCHASER AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:IMMUNITYBIO, INC.;NANTCELL, INC.;RECEPTOME, INC.;AND OTHERS;REEL/FRAME:066179/0074 Effective date: 20231229 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |