US20220096835A1 - Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals - Google Patents

Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals Download PDF

Info

Publication number
US20220096835A1
US20220096835A1 US17/498,882 US202117498882A US2022096835A1 US 20220096835 A1 US20220096835 A1 US 20220096835A1 US 202117498882 A US202117498882 A US 202117498882A US 2022096835 A1 US2022096835 A1 US 2022096835A1
Authority
US
United States
Prior art keywords
seizure
therapy
cardiac
signal
cardiac signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/498,882
Inventor
Ivan Osorio
Mark Frei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flint Hills Scientific LLC
Original Assignee
Flint Hills Scientific LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flint Hills Scientific LLC filed Critical Flint Hills Scientific LLC
Priority to US17/498,882 priority Critical patent/US20220096835A1/en
Publication of US20220096835A1 publication Critical patent/US20220096835A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36064Epilepsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4094Diagnosing or monitoring seizure diseases, e.g. epilepsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/70ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mental therapies, e.g. psychological therapy or autogenous training
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present invention relates to medical devices and, more specifically without limitation, to implanted medical devices.
  • Epilepsy affects about 2.3 million Americans, and its direct and indirect annual costs amount to approximately $12.5 billion. Although anti-epileptic drugs are useful, 20-30% of persons are not helped by them and up to 30% of those treated have intolerable or serious side effects.
  • Cardiac activity is under cerebral control. That is, certain changes in global, regional or focal brain activity, either physiological or brain states associated with changes in heart activity including but not limited to changes in heart rate, most frequently an increase and referred to as ictal tachycardia, or in other indices of cardiac function such as R-R variability.
  • the incidence of heart changes increases as the seizure spreads outside its site of origin to other brain regions being, for example invariably present in all subjects with primarily or secondarily generalized tonic-clonic seizures (“convulsions”), in whom purportedly, most or all of the brain is involved.
  • tachycardia precedes electrographic onset of temporal lobe seizures by several seconds, as ascertained via scalp electrodes (EEG), while combined activation of parasympathetic and sympathetic systems as estimated by using spectral analysis of oscillations in R-R intervals at respiratory and non-respiratory frequencies, may be detectable minutes in advance of seizure onset. Since these changes may precede visible electrographic or behavioral manifestations indicative of seizures and even of the so-called “aura,” they may have predictive value.
  • the need exists for a system and method for logging seizures, or other events originating in the brain that impact cardiac activity, and associated event characteristics such as frequency, duration, intensity, and severity. Moreover, this system and method needs to be robust in the presence of artifacts or other sources of noise. The need also exists for a minimally invasive system and method to provide effective and objective means for assessing the efficacy of therapies used to control seizures.
  • Changes in heart activity associated with seizures can be used to automatically and in real-time detect the seizures, quantify their frequency, duration, intensity, or severity as reflected in the cardiac signal changes, predict their electrographic or clinical onset in a subset of cases, and control the seizures via therapeutic intervention.
  • the present invention enables the logging of this information and its utilization to objectively assess the efficacy of an applied therapy.
  • the invention can utilize EKG and complimentary information obtained from other signals representative of cardiac function such as the phonocardiogram (PKG), echocardiogram, or ultrasound.
  • FIG. 1 is a schematic representation of a system for receiving and analyzing cardiac signals and detecting and logging seizures according to the present invention.
  • FIG. 2 shows an EKG signal corrupted by artifact at the start of a seizure.
  • FIG. 3 illustrates simultaneously recorded EKG and PKG data and the ability of PKG to provide complementary information regarding cardiac function contained therein.
  • Epileptic seizures are one important example of a pathological brain state with demonstrated association to changes in heart activity.
  • the incidence of heart changes increases as the seizure spreads outside its site of origin to other brain regions being, for example invariably present in all subjects with primarily or secondarily generalized tonic-clonic seizures (“convulsions”), in whom purportedly, most or all of the brain is involved.
  • the system is configured to include a clock 103 and non-volatile memory 104 to enable these events and relevant data and information about associated event features to be logged.
  • These features may include, but are not limited to, start time, end time, or duration of detected cardiac changes which provide information about underlying seizures or other brain events, the frequency or relative intensity of these changes, and the evolution of the distribution of such features as inter-beat intervals.
  • These and other features representative of cardiac state well known to one skilled in the art, such as heart rate and heart rate variability measures, can be measured and relevant changes logged.
  • the system can be configured with a communication interface 105 that allows the subject or other user to access information from the logs stored in non-volatile memory 104 and/or to program parameters used in the operation of the system 100 , including parameters involved in the analysis of cardiac signals performed using processor 102 .
  • FIG. 2 illustrates an EKG signal from a subject just before and during the onset of an epileptic seizure in which there is significant artifact present as the seizure begins. This artifact makes it difficult to determine from this signal precisely when heart beats are occurring.
  • One strategy to overcome noise is to simultaneously acquire other cardiac signals such as PKG to take advantage of the fact that these other signals have different sensitivities than EKG to certain types of noise. This approach increases the information content about the state of the heart, and indirectly about the state of the brain, and decreases the probability of signal loss or degradation by noise.
  • FIG. 3 illustrates the differential sensitivity to noise: the EKG signal shown is contaminated by muscle artifact, a common source of noise during seizures, and is not easily recognizable visually or using spectral signal analysis while the simultaneously recorded PKG is virtually immune to this type of noise.
  • the two arrows in FIG. 3 annotate time points when R-waves in the EKG are obscured by muscle artifacts; FIG. 3 also displays the simultaneously recorded PKG signal which is immune to this type of artifacts.
  • the PKG can be used instead of EKG for tracking heart rate and its variability given the high temporal correlation between the S1 and the QRS complex. Simultaneous use of PKG and EKG allows the system access to good quality information for more complete and accurate tracking of the cardiac system dynamics and, indirectly, of brain dynamics effecting the heart.
  • PKG and PKG can also be used in addition to, or instead of, EKG and PKG for this purpose.
  • the approach of the present invention disclosed herein makes use of these signals for a) the invasive or non-invasive extracerebral, real-time automated detection of seizures based on heart signals; b) the logging of frequency, date/time of occurrence, relative intensity and relative duration of seizures; c) the anticipation of electrographic or behavioral seizure onset and/or loss of function in a subgroup of subjects with epilepsy, for automated warning and other useful purposes; and d) the automated delivery of a selected therapy, either contingent or closed-loop. Additionally and of equal importance is the ability to detect, in real-time, cardiac rhythm abnormalities, which may be life-threatening and which are temporally correlated with seizures or
  • cardiac signals such as EKG and/or PKG for the automated detection of seizures, and in certain cases for the anticipation of their onset, will complement and, in a subgroup of subjects with pharmaco-resistant epilepsy, may replace scalp or intracranial (invasive) acquisition of cortical signals for automated warning and/or therapy delivery and in either case will allow for seizure logging and other tasks.
  • EKG/PKG for seizure detection is that unlike methods based on cortical signals recorded either directly from the cortex, which requires a craniotomy or burr hole, or indirectly from the scalp (EEG), it is not critically dependent on accurate placement of electrodes and, in a subset of cases, the onset of heart changes may even precede scalp or behavioral changes providing yet another advantage.
  • Heart signals can be obtained from several body sites obviating, in a subgroup of patients, the need for surgery, thus decreasing the inconvenience, stress, cost, potential morbidity and recovery time associated with such procedures. Furthermore, the wealth of commercially available, low power, implantable devices for analysis and control of heart signals can be easily leveraged for this application.
  • Another advantage of EKG over EEG or ECoG is its lower dimensionality and relative simplicity wherein a single channel recording is sufficient for capturing all of the information necessary for the tasks at hand.
  • Another advantage of the ⁇ methods of the present invention is that they can be used to quantify the intensity, type, and evolution of cardiac changes, which in turn may be used to detect and estimate the duration and intensity of underlying brain state changes whether physiological or pathological.
  • the changes in heart activity that may indicate a possible onset of a seizure include, but are not limited to, changes in heart rate and heart rate variability and their interrelationship, rhythm, morphology of the P-QRS-T complex or of the length of the different intervals (e.g., Q-T).
  • the R-R interval times or other quantities representative of cardiac state may be processed/analyzed using methods in the time or frequency domains to generate a multitude of derivative signals/sequences or ratios from which a wealth of information can be obtained about the heart, including instantaneous heart rate (IHR), its average rate in fixed or moving windows of any desired length, and measures of heart rate variability (“HRV”) (e.g., standard deviation of means of R-R intervals in a moving window, or the second derivative of instantaneous heart rate, etc.) on any desired timescale but with emphasis on those timescales suitable for seizure detection.
  • IHR instantaneous heart rate
  • HRV measures of heart rate variability
  • Changes in the distributions of these, or any other quantity derived from the time-of-beat sequence, as time evolves can be detected and quantified in real-time, for example using the “lambda estimator” as disclosed in Nikitin et al, U.S. Patent Application Publication No. 20030187621, or other statistical methods.
  • Stereotypical patterns, if found in these data, may be learned over time as more seizures are recorded and analyzed. For example, cardiac data from a subject can be used to establish normal or baseline patterns for this subject and compared against moving windows of new data to determine deviations from normalcy or baseline, proximity to dangerous or undesirable patterns, and to quantify these deviations.
  • the aforementioned lambda estimator provides one of many possible examples illustrating how statistical changes in feature signals, even when multi-dimensional, obtained from cardiac recordings, such as EKG, can be quantified as they evolve.
  • thresholding techniques or, more generally, by identifying values of quantified features that are associated with particular cardiac or body states, e.g., seizures, the start and end of these state changes can be localized in time and their relative intensity quantified.
  • EKG waveforms such as Q-T intervals
  • changes in spectral properties of the EKG or signal morphology such as sl-sl intervals, amplitude (magnitude) of the signal, or changes in its waveshape and/or spectral characteristics, etc.
  • time-of-beat information obtained from PKG such as sl-sl intervals, amplitude (magnitude) of the signal, or changes in its waveshape and/or spectral characteristics, etc.
  • changes in the magnitude or rate of change of the high- and low-frequency components of the heart beat using autoregressive, Fast Fourier, wavelets, Intrinsic Timescale Decomposition (U.S. patent application Ser. No. 10/684,189, filed Oct.
  • cardiac measures may be used alone or combined with other cardiac measures to increase the sensitivity, specificity, and/or speed of prediction or detection of seizures or in their ability to quantify brain state changes.
  • Other measures derived from the raw or processed signals that may be of additional use in the present invention include, but are not limited to, analysis of entropy, correlation dimension, Lyapunov exponents, measures of synchronization, fractal analysis, etc.
  • the real-time prediction, detection and quantification of seizures may be adapted or tailored to fit an individual's cardiac state change patterns or characteristics, thereby increasing sensitivity, specificity or speed of detection of state changes.
  • the performance of the detection methods such as sensitivity, specificity and speed, may be enhanced, if necessary, by characterizing baseline patterns for a subject and comparing them against moving windows of current data to determine and quantify deviations from baseline and proximity to patterns indicative of state change. These can be used, together with the frequency, intensity, and duration of heart signal changes, time to maximal deviation from baseline, time to recovery to baseline rates, for assessing a patient's condition, safety risks, and even efficacy of therapy.
  • degree of conformance to stereotypical cardiac signal patterns that may be associated with certain seizure types can be used to infer other severity-related measures such as degree of seizure spread in the brain.
  • Simultaneous recording and analysis of other non-cardiac signals such as muscle, joints, skin or peripheral nerves, may also improve prediction, detection and quantification of state changes.
  • the recording, analysis, and comparison of changes in cardiac signals during the state change of interest, e.g., seizures, to that obtained during activities such as exercise can increase their sensitivity, specificity, and/or detection speed for real-time seizure detection purposes, or for detecting changes of body state. These processes may be carried out on- or off-line.
  • the information about heart state provided by the present invention can be used to compute seizure index, which is defined as the fraction of time spent in a seizure over a moving window of a given size.
  • the information can also be used to determine seizure severity, e.g., using the product of intensity and duration.
  • seizure index is defined as the fraction of time spent in a seizure over a moving window of a given size.
  • the information can also be used to determine seizure severity, e.g., using the product of intensity and duration.
  • These and other measures may be logged as part of the present invention (or later computed from other logged information) and can provide valuable diagnostic and prognostic information, as well as information regarding efficacy of any therapy attempted during the period of monitoring/analysis.
  • the set of logged information stored by the present invention can also be used to develop models that may allow or refine seizure prediction or detection (using cardiac signals or in general) and shed light on an individual's seizure dynamics.
  • the implantable or portable device implementing the present invention is configured to include a real-time clock and a rewritable, non-volatile memory, as well as one or more sensors for use in recording EKG, PKG and/or other representative signals indicative of cardiac function and/or state, such as echocardiogram, ultrasound, blood pressure, blood flow rate or volume, heart muscle tension, etc., and processing components capable of receiving, conditioning, and analyzing the EKG and/or PKG signals to detect and/or quantify events of interest such as seizures.
  • the logging process consists of reading the real-time clock each time an event or cluster of events of a certain designated type occurs, and logging the clock time and variables associated with the quantification of the event to the non-volatile memory. These variables may include but are not limited to information obtained through processing of the signals, and/or the raw signals themselves, i.e., “loop recordings” of events.
  • the system of the present invention may be further configured with an output mechanism to: a) warn the subject of an impending seizure or other type of detected event such as a cardiac arrhythmia, low system battery, full memory, etc., and b) deliver a selected therapy to the subject when heart activity reaches or exceeds safe or prespecified limits.
  • an impending seizure or other type of detected event such as a cardiac arrhythmia, low system battery, full memory, etc.
  • a selected therapy to the subject when heart activity reaches or exceeds safe or prespecified limits.
  • Osorio and Frei in U.S. Pat. No. 6,341,236 disclose a means to trigger the pacing of the heart in the event of a seizure detected by analysis of EKG.
  • Osorio et al. in U.S. Pat. No. 5,995,868, disclose a method of treating seizures by, among other methods, stimulating the brain, heart and/or vagus nerve when a seizure is detected.
  • the output mechanism may include or be connected to a neurostimulator and/or a pacemaker to control brain and/or heart activity within prespecified tolerable/safe limits.
  • a neurostimulator and/or a pacemaker to control brain and/or heart activity within prespecified tolerable/safe limits.
  • Commonly used types of warnings include audio alarms with varied tones and/or combinations of short and long sounds, other types of acoustic devices, LED or other visual displays, e.g., flashing lights, etc., low-voltage so-called “tickler” stimulus, and communication with external devices, e.g., triggering an external device such as “calling 911 ,” etc.
  • any additional implanted or portable device may also use the non-volatile memory for storing information about events through the use of a uni- or bi-directional communications protocol.
  • a pacemaker that detects an unusual EKG rhythm or heart beat pattern could trigger the device described herein that an event has occurred and potentially could communicate other features/attributes of the event, such as type, severity, etc., to the device for logging purposes.
  • the system may also contain a display, or means to be externally interrogated, to review and/or download the information it has stored and/or logged for review by the user, subject, or physician.
  • the system and method of the present invention can be used to objectively assess the efficacy of therapies used to control the occurrence or severity of these events. For example, when a subject takes medication in order to control his seizures, the availability of a seizure log that includes their time of occurrence, severity, and other features can be analyzed in reference to administration times and concentrations of medication or other therapy, which also can be logged by the system via the communication interface described above. Such comparisons enable the modeling and objective efficacy assessment of the effect of the therapy on the system.
  • the seizure frequency measure plotted against the level of medication expected to be present in the subject's system as time evolves allows the user to optimize dosing levels and times to minimize seizure frequency.

Abstract

A system and method for analyzing and logging changes in brain state of a subject for administering therapy to the subject based on the at least one cardiac signal wherein the system and method comprises the steps of receiving at least one cardiac signal of the subject into a processor, analyzing the cardiac signal to detect at least one cardiac signal change indicative of a brain state change, and logging at least one characteristic of the detected signal change or brain state change.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims priority to and is a continuation application of U.S. patent application Ser. No. 12/315,390 entitled “Method and System for Logging Quantitative Seizure Information and Assessing Efficacy of Therapy Using Cardiac Signals”, filed Dec. 3, 2008, which is a divisional application of U.S. patent application Ser. No. 10/997,540 filed Nov. 24, 2004 (Now U.S. Pat. No. 9,050,469), which claims priority to U.S. Provisional Patent Application No. 60/525,501 entitled “A Method and Apparatus for Logging, Warning, and Treatment of Seizures Using Cardiac Signals”, filed Nov. 26, 2003, which are all incorporated herein by reference in their entirety.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to medical devices and, more specifically without limitation, to implanted medical devices.
  • 2. Description of the Related Art
  • Epilepsy affects about 2.3 million Americans, and its direct and indirect annual costs amount to approximately $12.5 billion. Although anti-epileptic drugs are useful, 20-30% of persons are not helped by them and up to 30% of those treated have intolerable or serious side effects.
  • Recently published studies demonstrate the importance of quantitative analysis of brain signals for automated warning and blockage of seizures, optimization of existing therapies and development of new ones. Cardiac activity is under cerebral control. That is, certain changes in global, regional or focal brain activity, either physiological or brain states associated with changes in heart activity including but not limited to changes in heart rate, most frequently an increase and referred to as ictal tachycardia, or in other indices of cardiac function such as R-R variability. The incidence of heart changes increases as the seizure spreads outside its site of origin to other brain regions being, for example invariably present in all subjects with primarily or secondarily generalized tonic-clonic seizures (“convulsions”), in whom purportedly, most or all of the brain is involved. These changes reflect shifts in the ongoing interplay between sympathetic and parasympathetic influences, which can be quantified using time or frequency domain methods of analysis. For example, tachycardia precedes electrographic onset of temporal lobe seizures by several seconds, as ascertained via scalp electrodes (EEG), while combined activation of parasympathetic and sympathetic systems as estimated by using spectral analysis of oscillations in R-R intervals at respiratory and non-respiratory frequencies, may be detectable minutes in advance of seizure onset. Since these changes may precede visible electrographic or behavioral manifestations indicative of seizures and even of the so-called “aura,” they may have predictive value. Real-time prediction or detection of epileptic seizures, based on extracerebral sources such as the heart, is of great clinical and practical value as it obviates the reliance on cerebral signals which are highly complex and of high dimensionality and whose origin may not only be difficult to localize but quite often requires invasive intracranial implantation of electrodes or other sensors.
  • While methods presently exist to detect seizures using cardiac signals and quantify their characteristics, for example as described in U.S. Pat. No. 6,341,236 which is incorporated herein by reference in its entirety, no system for logging the times of seizures and their quantitative characteristics, such as date and time of occurrence, and duration based on the degree of cardiac changes, and for using this information in the objective assessment of seizure frequency and of therapeutic intervention, presently exists. This is partially due to the impact of artifacts (noise) on EKG signal analysis which can lead to inaccuracies in heart rate assessments.
  • Thus, the need exists for a system and method for logging seizures, or other events originating in the brain that impact cardiac activity, and associated event characteristics such as frequency, duration, intensity, and severity. Moreover, this system and method needs to be robust in the presence of artifacts or other sources of noise. The need also exists for a minimally invasive system and method to provide effective and objective means for assessing the efficacy of therapies used to control seizures.
  • SUMMARY OF THE INVENTION
  • Changes in heart activity associated with seizures can be used to automatically and in real-time detect the seizures, quantify their frequency, duration, intensity, or severity as reflected in the cardiac signal changes, predict their electrographic or clinical onset in a subset of cases, and control the seizures via therapeutic intervention. The present invention enables the logging of this information and its utilization to objectively assess the efficacy of an applied therapy. To accomplish this task with improved robustness in the presence of signal artifacts or noise, the invention can utilize EKG and complimentary information obtained from other signals representative of cardiac function such as the phonocardiogram (PKG), echocardiogram, or ultrasound.
  • BRIEF DESCRIPTION OF THE DRAWING FIGURES
  • FIG. 1 is a schematic representation of a system for receiving and analyzing cardiac signals and detecting and logging seizures according to the present invention.
  • FIG. 2 shows an EKG signal corrupted by artifact at the start of a seizure.
  • FIG. 3 illustrates simultaneously recorded EKG and PKG data and the ability of PKG to provide complementary information regarding cardiac function contained therein.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Changes in certain types of global, regional or focal brain activity, either physiological or pathological, modify heart activity. Epileptic seizures are one important example of a pathological brain state with demonstrated association to changes in heart activity. The incidence of heart changes increases as the seizure spreads outside its site of origin to other brain regions being, for example invariably present in all subjects with primarily or secondarily generalized tonic-clonic seizures (“convulsions”), in whom purportedly, most or all of the brain is involved. Real-time prediction or detection, and quantitative analysis of epileptic seizures, based on extracerebral sources such as the heart, is of great clinical and practical value as it obviates the reliance on cerebral signals which are highly complex and of high dimensionality, and whose origin may not only be difficult to localize but quite often requires invasive intracranial implantation of electrodes or other sensors. The invention disclosed herein, and depicted schematically in FIG. 1, utilizes information present in signals 101 representative of the cardiac activity state, fed to system 100 that performs real-time quantitative analysis of this information in a processor 102. This processor analyzes and measures relevant changes in the cardiac activity state in order to predict or detect and quantify underlying events occurring in the brain of a subject. The system is configured to include a clock 103 and non-volatile memory 104 to enable these events and relevant data and information about associated event features to be logged. These features may include, but are not limited to, start time, end time, or duration of detected cardiac changes which provide information about underlying seizures or other brain events, the frequency or relative intensity of these changes, and the evolution of the distribution of such features as inter-beat intervals. These and other features representative of cardiac state well known to one skilled in the art, such as heart rate and heart rate variability measures, can be measured and relevant changes logged. The system can be configured with a communication interface 105 that allows the subject or other user to access information from the logs stored in non-volatile memory 104 and/or to program parameters used in the operation of the system 100, including parameters involved in the analysis of cardiac signals performed using processor 102.
  • While methods presently exist to detect seizures using cardiac signals and quantify their characteristics, for example as described in U.S. Pat. No. 6,341,236, no system presently exists for logging these quantitative characteristics, such as times of occurrence, durations and degrees of cardiac changes associated with seizures or other underlying brain events and for using this information in objective assessment of the neurological disorder and of efficacy of therapeutic intervention. This is partially due to the impact of artifacts (noise) on EKG signal analysis which can lead to inaccuracies in heart rate assessments.
  • Seizures often are associated with movement, muscle, and other artifacts that can obscure or distort the EKG making it difficult or impossible to extract the important information contained in the contaminated signals. FIG. 2 illustrates an EKG signal from a subject just before and during the onset of an epileptic seizure in which there is significant artifact present as the seizure begins. This artifact makes it difficult to determine from this signal precisely when heart beats are occurring. One strategy to overcome noise is to simultaneously acquire other cardiac signals such as PKG to take advantage of the fact that these other signals have different sensitivities than EKG to certain types of noise. This approach increases the information content about the state of the heart, and indirectly about the state of the brain, and decreases the probability of signal loss or degradation by noise. FIG. 3 illustrates the differential sensitivity to noise: the EKG signal shown is contaminated by muscle artifact, a common source of noise during seizures, and is not easily recognizable visually or using spectral signal analysis while the simultaneously recorded PKG is virtually immune to this type of noise. The two arrows in FIG. 3 annotate time points when R-waves in the EKG are obscured by muscle artifacts; FIG. 3 also displays the simultaneously recorded PKG signal which is immune to this type of artifacts.
  • The PKG can be used instead of EKG for tracking heart rate and its variability given the high temporal correlation between the S1 and the QRS complex. Simultaneous use of PKG and EKG allows the system access to good quality information for more complete and accurate tracking of the cardiac system dynamics and, indirectly, of brain dynamics effecting the heart. Those skilled in the art can appreciate that many other types of physical or chemical heart signals suitable for use with implantable devices can also be used in addition to, or instead of, EKG and PKG for this purpose.
  • In view of the clinical importance of real-time automated quantitative seizure analysis and the greater signal-to-noise ratio and shorter propagation time from source to sensor, and ease of use of heart signals (electrocardiogram, EKG, or phonocardiogram, PKG) compared to scalp signals (EEG) or intracranial recording of electrical signals (ECoG), the approach of the present invention disclosed herein makes use of these signals for a) the invasive or non-invasive extracerebral, real-time automated detection of seizures based on heart signals; b) the logging of frequency, date/time of occurrence, relative intensity and relative duration of seizures; c) the anticipation of electrographic or behavioral seizure onset and/or loss of function in a subgroup of subjects with epilepsy, for automated warning and other useful purposes; and d) the automated delivery of a selected therapy, either contingent or closed-loop. Additionally and of equal importance is the ability to detect, in real-time, cardiac rhythm abnormalities, which may be life-threatening and which are temporally correlated with seizures or occur in between seizures and to provide appropriate intervention such as pacing or defibrillation.
  • Use of cardiac signals such as EKG and/or PKG for the automated detection of seizures, and in certain cases for the anticipation of their onset, will complement and, in a subgroup of subjects with pharmaco-resistant epilepsy, may replace scalp or intracranial (invasive) acquisition of cortical signals for automated warning and/or therapy delivery and in either case will allow for seizure logging and other tasks. One of the main advantages of using EKG/PKG for seizure detection is that unlike methods based on cortical signals recorded either directly from the cortex, which requires a craniotomy or burr hole, or indirectly from the scalp (EEG), it is not critically dependent on accurate placement of electrodes and, in a subset of cases, the onset of heart changes may even precede scalp or behavioral changes providing yet another advantage.
  • Heart signals, can be obtained from several body sites obviating, in a subgroup of patients, the need for surgery, thus decreasing the inconvenience, stress, cost, potential morbidity and recovery time associated with such procedures. Furthermore, the wealth of commercially available, low power, implantable devices for analysis and control of heart signals can be easily leveraged for this application. Another advantage of EKG over EEG or ECoG is its lower dimensionality and relative simplicity wherein a single channel recording is sufficient for capturing all of the information necessary for the tasks at hand.
  • Those skilled in the art can appreciate that in certain cases or situations, dual, simultaneous monitoring of brain and heart may be necessary or useful to improve detection of changes in either organ or to improve the efficacy of control measures. Also, undesirable changes in heart activity caused by abnormal brain activity may be better controlled by directing the intervention to the brain rather than to the heart. For instance, while asystole caused by seizures can be controlled using a demand pacemaker, a more definitive and rational approach is to prevent or block asystole-inducing seizures. It is clear that the dynamic interactions between heart and brain can be exploited to detect changes and to control them by monitoring either organ or both and by applying control to either of them, or to both.
  • Frei and Osorio and others, see for example U.S. Pat. No. 6,341,236, have disclosed methods for automated EKG analysis and detection of cardiac signal changes associated with epileptic seizures. The methods developed by Frei and Osorio are especially well-suited for seizure detection using heart signals, a task which requires analysis of data over very short windows (1-2 sec). The length requirements of other methods for standard low/ultra-low frequency band power assessments of heart rate variability, typically five-minute segments assumed to be stationary, are much longer than the duration of a seizure or a dangerous cardiac abnormality that may lead to sudden death. In addition, the assumptions regarding stationarity of the system/signal are counter to the well-known nonstationarity of the normal cardiac system. Given these deficiencies, it is therefore impractical to apply methods of heart signal analysis that require long segments of data, minutes for example, for the detection of phenomena for which warning and control must take place in a very short time period (e.g., under ten seconds) for purposes of safety and efficacy. Another advantage of the⋅methods of the present invention is that they can be used to quantify the intensity, type, and evolution of cardiac changes, which in turn may be used to detect and estimate the duration and intensity of underlying brain state changes whether physiological or pathological. The changes in heart activity that may indicate a possible onset of a seizure (a pathologic state change) include, but are not limited to, changes in heart rate and heart rate variability and their interrelationship, rhythm, morphology of the P-QRS-T complex or of the length of the different intervals (e.g., Q-T).
  • One skilled in the art can appreciate that, in addition to the aforementioned methods, a number of methods for detection and analysis of cardiac signal changes exist in prior art, many of which have been implemented in hardware, software, or in a hybrid configuration, and which can be used, for example, to obtain the time of each heart beat as well as the interbeat (e.g., R-R) interval. One skilled in the art will appreciate for example, that the R-R interval times or other quantities representative of cardiac state may be processed/analyzed using methods in the time or frequency domains to generate a multitude of derivative signals/sequences or ratios from which a wealth of information can be obtained about the heart, including instantaneous heart rate (IHR), its average rate in fixed or moving windows of any desired length, and measures of heart rate variability (“HRV”) (e.g., standard deviation of means of R-R intervals in a moving window, or the second derivative of instantaneous heart rate, etc.) on any desired timescale but with emphasis on those timescales suitable for seizure detection. Changes in the distributions of these, or any other quantity derived from the time-of-beat sequence, as time evolves can be detected and quantified in real-time, for example using the “lambda estimator” as disclosed in Nikitin et al, U.S. Patent Application Publication No. 20030187621, or other statistical methods. Stereotypical patterns, if found in these data, may be learned over time as more seizures are recorded and analyzed. For example, cardiac data from a subject can be used to establish normal or baseline patterns for this subject and compared against moving windows of new data to determine deviations from normalcy or baseline, proximity to dangerous or undesirable patterns, and to quantify these deviations. Degree of absolute or relative changes in heart rate, heart rate variability, and their interrelationship, ST-wave depression, and QT prolongation are examples of such quantities. The time of specific changes and their duration and/or intensity are obtainable from these analyses. As in the aforementioned Nikitin et al reference, one skilled in the art will appreciate that the analysis of interest can⋅be multifactorial and/or multidimensional. For example, U.S. Pat. No. 6,341,236 of Osorio and Frei disclosed that changes in the relationship between IHR and HRV provide information about heart function which is not obtainable if IHR. and HRV are analyzed separately.
  • The aforementioned lambda estimator provides one of many possible examples illustrating how statistical changes in feature signals, even when multi-dimensional, obtained from cardiac recordings, such as EKG, can be quantified as they evolve. By applying thresholding techniques or, more generally, by identifying values of quantified features that are associated with particular cardiac or body states, e.g., seizures, the start and end of these state changes can be localized in time and their relative intensity quantified.
  • These analyses may also be applied to PKG signals in order to detect similar, complementary, or different changes reflective of heart state. Other measures that may be used by the present invention include but are not limited to: duration including time of onset and termination of changes in heart rate or in any of its derivatives; changes in heart rate variability or in any of its derivatives; changes in rhythmicity or in generation and conduction of electrical impulses; or changes in the acoustic properties of heart beats and their variability. It will be appreciated that additional information may be obtained through analysis of occurrence times of other EKG waveforms such as Q-T intervals, changes in spectral properties of the EKG or signal morphology, as well as time-of-beat information obtained from PKG such as sl-sl intervals, amplitude (magnitude) of the signal, or changes in its waveshape and/or spectral characteristics, etc. For example, changes in the magnitude or rate of change of the high- and low-frequency components of the heart beat, using autoregressive, Fast Fourier, wavelets, Intrinsic Timescale Decomposition (U.S. patent application Ser. No. 10/684,189, filed Oct. 10, 2003), or other suitable techniques, may be used alone or combined with other cardiac measures to increase the sensitivity, specificity, and/or speed of prediction or detection of seizures or in their ability to quantify brain state changes. Other measures derived from the raw or processed signals that may be of additional use in the present invention include, but are not limited to, analysis of entropy, correlation dimension, Lyapunov exponents, measures of synchronization, fractal analysis, etc.
  • The real-time prediction, detection and quantification of seizures that is possible by using the methods disclosed herein and/or associated systems may be adapted or tailored to fit an individual's cardiac state change patterns or characteristics, thereby increasing sensitivity, specificity or speed of detection of state changes. The performance of the detection methods, such as sensitivity, specificity and speed, may be enhanced, if necessary, by characterizing baseline patterns for a subject and comparing them against moving windows of current data to determine and quantify deviations from baseline and proximity to patterns indicative of state change. These can be used, together with the frequency, intensity, and duration of heart signal changes, time to maximal deviation from baseline, time to recovery to baseline rates, for assessing a patient's condition, safety risks, and even efficacy of therapy. Moreover, degree of conformance to stereotypical cardiac signal patterns that may be associated with certain seizure types can be used to infer other severity-related measures such as degree of seizure spread in the brain. Simultaneous recording and analysis of other non-cardiac signals, such as muscle, joints, skin or peripheral nerves, may also improve prediction, detection and quantification of state changes. For example, the recording, analysis, and comparison of changes in cardiac signals during the state change of interest, e.g., seizures, to that obtained during activities such as exercise, can increase their sensitivity, specificity, and/or detection speed for real-time seizure detection purposes, or for detecting changes of body state. These processes may be carried out on- or off-line.
  • The information about heart state provided by the present invention can be used to compute seizure index, which is defined as the fraction of time spent in a seizure over a moving window of a given size. The information can also be used to determine seizure severity, e.g., using the product of intensity and duration. These and other measures may be logged as part of the present invention (or later computed from other logged information) and can provide valuable diagnostic and prognostic information, as well as information regarding efficacy of any therapy attempted during the period of monitoring/analysis. The set of logged information stored by the present invention can also be used to develop models that may allow or refine seizure prediction or detection (using cardiac signals or in general) and shed light on an individual's seizure dynamics.
  • The implantable or portable device implementing the present invention is configured to include a real-time clock and a rewritable, non-volatile memory, as well as one or more sensors for use in recording EKG, PKG and/or other representative signals indicative of cardiac function and/or state, such as echocardiogram, ultrasound, blood pressure, blood flow rate or volume, heart muscle tension, etc., and processing components capable of receiving, conditioning, and analyzing the EKG and/or PKG signals to detect and/or quantify events of interest such as seizures. The logging process consists of reading the real-time clock each time an event or cluster of events of a certain designated type occurs, and logging the clock time and variables associated with the quantification of the event to the non-volatile memory. These variables may include but are not limited to information obtained through processing of the signals, and/or the raw signals themselves, i.e., “loop recordings” of events.
  • The system of the present invention may be further configured with an output mechanism to: a) warn the subject of an impending seizure or other type of detected event such as a cardiac arrhythmia, low system battery, full memory, etc., and b) deliver a selected therapy to the subject when heart activity reaches or exceeds safe or prespecified limits. For example, Osorio and Frei in U.S. Pat. No. 6,341,236 disclose a means to trigger the pacing of the heart in the event of a seizure detected by analysis of EKG. Osorio et al., in U.S. Pat. No. 5,995,868, disclose a method of treating seizures by, among other methods, stimulating the brain, heart and/or vagus nerve when a seizure is detected. The output mechanism may include or be connected to a neurostimulator and/or a pacemaker to control brain and/or heart activity within prespecified tolerable/safe limits. Commonly used types of warnings include audio alarms with varied tones and/or combinations of short and long sounds, other types of acoustic devices, LED or other visual displays, e.g., flashing lights, etc., low-voltage so-called “tickler” stimulus, and communication with external devices, e.g., triggering an external device such as “calling 911,” etc.
  • Any additional implanted or portable device may also use the non-volatile memory for storing information about events through the use of a uni- or bi-directional communications protocol. For example, a pacemaker that detects an unusual EKG rhythm or heart beat pattern could trigger the device described herein that an event has occurred and potentially could communicate other features/attributes of the event, such as type, severity, etc., to the device for logging purposes. The system may also contain a display, or means to be externally interrogated, to review and/or download the information it has stored and/or logged for review by the user, subject, or physician. In addition to logging seizures or other events of neurological origin which impact the cardiac system, the system and method of the present invention can be used to objectively assess the efficacy of therapies used to control the occurrence or severity of these events. For example, when a subject takes medication in order to control his seizures, the availability of a seizure log that includes their time of occurrence, severity, and other features can be analyzed in reference to administration times and concentrations of medication or other therapy, which also can be logged by the system via the communication interface described above. Such comparisons enable the modeling and objective efficacy assessment of the effect of the therapy on the system.
  • For instance, the seizure frequency measure plotted against the level of medication expected to be present in the subject's system as time evolves allows the user to optimize dosing levels and times to minimize seizure frequency.
  • It is to be understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.

Claims (14)

1. A method of detecting and logging a non-induced seizure event, comprising:
receiving a cardiac signal of a patient into a processor;
determining via the processor a first cardiac parameter based on the received cardiac signal;
detecting a non-induced seizure based on the first cardiac parameter;
determining via the processor at least one seizure characteristic, wherein the seizure characteristic is different from the first cardiac parameter; and
logging the at least one seizure characteristic in a memory.
2. The method of claim 1, wherein the first cardiac parameter is a parameter indicative of at least one of: a change in heart rate; a change in heart rate variability; or a change in an acoustic property of at least one heart beat.
3. The method of claim 1, wherein the at least one seizure characteristic comprises at least one of:
a date and a time of an occurrence of the seizure;
a start time of the seizure;
an end time of the seizure;
a duration of the seizure;
an intensity of the seizure;
a severity of the seizure;
a degree of spread of the seizure in a brain of the patient; or
a fraction of time spent in the seizure over a moving time window.
4. The method of claim 1, further comprising:
logging at least a time of an occurrence for at least two seizure events; and
determining, based on the logging of the at least two seizure events, a seizure frequency.
5. The method of claim 1, further comprising:
receiving an electrocardiogram (“EKG”) signal;
receiving a phonocardiogram (“PKG”) signal when the EKG signal-to-noise ratio is below a predetermined number; and
wherein the determining the first cardiac parameter is based on the EKG signal and on the PKG signal when the EKG signal-to-noise ratio is below the predetermined number.
6. The method of claim 1, further comprising:
performing an action in response to detecting the seizure, wherein the action is at least one of:
providing a warning signal of the seizure;
providing a warning signal of a detected arrhythmia;
providing a therapy to treat the seizure utilizing a heart pacing procedure, stimulating a brain of the patient, stimulating a heart of the patient, or stimulating a vagus nerve;
displaying the at least one seizure characteristic; and
assessing an efficacy of a patient therapy.
7. The method of claim 1, further comprising:
administering a therapy in response to detecting the epileptic seizure based on the cardiac signal change;
receiving a second cardiac signal of the patient into the processor, after detecting the epileptic seizure and administering the therapy;
determining a second cardiac signal change based on the received second cardiac signal;
assessing at least one of an efficacy of the therapy and an occurrence of a side effect based on the cardiac signal change and the second cardiac signal change; and
logging information corresponding to at least one of the efficacy of the therapy and the occurrence of the side effect into the memory.
8. The method of claim 7, further comprising communicating at least one of the logged information corresponding to the efficacy of the therapy and the occurrence of the side effect to the external device.
9. The method of claim 7, wherein administering the therapy comprises applying an electrical signal to a vagus nerve of the patient.
10. The method of claim 7, wherein the second cardiac signal is at least one of an electrocardiogram signal and a phonocardiogram signal.
11. The method of claim 7, further comprising modifying at least one of the therapy and at least one stimulation parameter based on at least one of a determination that the therapy is not efficacious and a side effect determination.
12. A method of detecting and logging an epileptic seizure event via a medical system comprising:
receiving a cardiac signal of a patient into a processor of the medical system;
detecting via the processor of the medical system a cardiac signal change associated with an epileptic seizure;
determining via the processor of the medical system an epileptic seizure characteristic where the epileptic seizure characteristic is at least one of an intensity, a duration, a severity, an extent of spread, a date, and a time of an occurrence of the epileptic seizure;
logging the epileptic seizure characteristic in a memory;
transferring to an external device the logged epileptic seizure characteristic;
administering a therapy in response to detecting the epileptic seizure based on the cardiac signal change;
receiving a second cardiac signal of the patient into the processor, after detecting the epileptic seizure and administering the therapy;
determining a second cardiac signal change based on the received second cardiac signal; and
assessing at least one of an efficacy of the therapy and an occurrence of a side effect based on the cardiac signal change and the second cardiac signal change.
13. The method of claim 12, further comprising logging information corresponding to at least one of the efficacy of the therapy and the occurrence of the side effect into the memory.
14. The method of claim 12, further comprising classifying the epileptic event as one of a partial seizure and a generalized seizure based on the cardiac signal change.
US17/498,882 2003-11-26 2021-10-12 Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals Pending US20220096835A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/498,882 US20220096835A1 (en) 2003-11-26 2021-10-12 Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US52550103P 2003-11-26 2003-11-26
US10/997,540 US9050469B1 (en) 2003-11-26 2004-11-24 Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals
US12/315,390 US11185695B1 (en) 2003-11-26 2008-12-03 Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals
US17/498,882 US20220096835A1 (en) 2003-11-26 2021-10-12 Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/315,390 Continuation US11185695B1 (en) 2003-11-26 2008-12-03 Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals

Publications (1)

Publication Number Publication Date
US20220096835A1 true US20220096835A1 (en) 2022-03-31

Family

ID=53267754

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/997,540 Active 2028-12-03 US9050469B1 (en) 2003-11-26 2004-11-24 Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals
US12/315,390 Active 2026-12-23 US11185695B1 (en) 2003-11-26 2008-12-03 Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals
US17/498,882 Pending US20220096835A1 (en) 2003-11-26 2021-10-12 Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/997,540 Active 2028-12-03 US9050469B1 (en) 2003-11-26 2004-11-24 Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals
US12/315,390 Active 2026-12-23 US11185695B1 (en) 2003-11-26 2008-12-03 Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals

Country Status (1)

Country Link
US (3) US9050469B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8725239B2 (en) * 2011-04-25 2014-05-13 Cyberonics, Inc. Identifying seizures using heart rate decrease
US20180132734A1 (en) * 2016-11-16 2018-05-17 Jose Carmelo Martinez Active biomonitor
US10624588B2 (en) 2017-01-16 2020-04-21 General Electric Company System and method for predicting an excitation pattern of a deep brain stimulation
US10390766B2 (en) 2017-01-16 2019-08-27 General Electric Company System and method for predicting an excitation pattern of a deep brain stimulation
EP3684463A4 (en) 2017-09-19 2021-06-23 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
WO2019133997A1 (en) 2017-12-31 2019-07-04 Neuroenhancement Lab, LLC System and method for neuroenhancement to enhance emotional response
CN108324268A (en) * 2018-02-26 2018-07-27 河南善仁医疗科技有限公司 A kind of analysis method of electrocardiogram caardiophonogram
CN108606778B (en) * 2018-04-16 2024-04-19 顾继炎 Medical device, algorithm updating method, medical system and external monitoring device
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
US11141097B2 (en) * 2018-04-26 2021-10-12 The Penn State Research Foundation Biological marker and methods
CN113382683A (en) 2018-09-14 2021-09-10 纽罗因恒思蒙特实验有限责任公司 System and method for improving sleep

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088138A (en) * 1974-01-02 1978-05-09 Cardiac Resuscitator Corp. Cardiac resuscitator and monitoring apparatus
US5995868A (en) * 1996-01-23 1999-11-30 University Of Kansas System for the prediction, rapid detection, warning, prevention, or control of changes in activity states in the brain of a subject

Family Cites Families (322)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850161A (en) * 1973-04-09 1974-11-26 S Liss Method and apparatus for monitoring and counteracting excess brain electrical energy to prevent epileptic seizures and the like
US4172459A (en) 1977-10-17 1979-10-30 Medtronic, Inc. Cardiac monitoring apparatus and monitor
IT1118131B (en) 1978-07-20 1986-02-24 Medtronic Inc IMPROVEMENT IN MULTI-MODE CARDIAC PACEMAKERS ADAPTABLE IMPLANTABLE
US4291699A (en) 1978-09-21 1981-09-29 Purdue Research Foundation Method of and apparatus for automatically detecting and treating ventricular fibrillation
CA1215128A (en) 1982-12-08 1986-12-09 Pedro Molina-Negro Electric nerve stimulator device
US4702254A (en) 1983-09-14 1987-10-27 Jacob Zabara Neurocybernetic prosthesis
US5025807A (en) 1983-09-14 1991-06-25 Jacob Zabara Neurocybernetic prosthesis
US4867164A (en) 1983-09-14 1989-09-19 Jacob Zabara Neurocybernetic prosthesis
US4573481A (en) 1984-06-25 1986-03-04 Huntington Institute Of Applied Research Implantable electrode array
US5156148A (en) * 1987-10-06 1992-10-20 Leonard Bloom System for treating a malfunctioning heart
US5269301A (en) * 1987-10-06 1993-12-14 Leonard Bloom Multimode system for monitoring and treating a malfunctioning heart
US4949721A (en) 1988-08-11 1990-08-21 Omron Tateisi Electronics Co. Transcutaneous electric nerve stimulater
US4920979A (en) 1988-10-12 1990-05-01 Huntington Medical Research Institute Bidirectional helical electrode for nerve stimulation
US4979511A (en) 1989-11-03 1990-12-25 Cyberonics, Inc. Strain relief tether for implantable electrode
US5235980A (en) 1989-11-13 1993-08-17 Cyberonics, Inc. Implanted apparatus disabling switching regulator operation to allow radio frequency signal reception
US5179950A (en) 1989-11-13 1993-01-19 Cyberonics, Inc. Implanted apparatus having micro processor controlled current and voltage sources with reduced voltage levels when not providing stimulation
US5186170A (en) 1989-11-13 1993-02-16 Cyberonics, Inc. Simultaneous radio frequency and magnetic field microprocessor reset circuit
US5154172A (en) 1989-11-13 1992-10-13 Cyberonics, Inc. Constant current sources with programmable voltage source
US5042411A (en) * 1990-01-29 1991-08-27 Krolczyk Ronald G Collapsible catamaran sailboat
US5113869A (en) 1990-08-21 1992-05-19 Telectronics Pacing Systems, Inc. Implantable ambulatory electrocardiogram monitor
CU22179A1 (en) * 1990-11-09 1994-01-31 Neurociencias Centro Method and system for evaluating abnormal electro-magnetic physiological activity of the heart and brain and plotting it in graph form.
US5137020A (en) 1990-11-29 1992-08-11 Medtronic, Inc. Battery impedance measurement apparatus
AU645848B2 (en) 1991-01-15 1994-01-27 Pacesetter Ab A system and method for post-processing intracardiac signals
US5263480A (en) 1991-02-01 1993-11-23 Cyberonics, Inc. Treatment of eating disorders by nerve stimulation
US5188104A (en) 1991-02-01 1993-02-23 Cyberonics, Inc. Treatment of eating disorders by nerve stimulation
US5269303A (en) 1991-02-22 1993-12-14 Cyberonics, Inc. Treatment of dementia by nerve stimulation
US5188106A (en) * 1991-03-08 1993-02-23 Telectronics Pacing Systems, Inc. Method and apparatus for chronically monitoring the hemodynamic state of a patient using doppler ultrasound
US5299569A (en) 1991-05-03 1994-04-05 Cyberonics, Inc. Treatment of neuropsychiatric disorders by nerve stimulation
US5335657A (en) 1991-05-03 1994-08-09 Cyberonics, Inc. Therapeutic treatment of sleep disorder by nerve stimulation
US5251634A (en) 1991-05-03 1993-10-12 Cyberonics, Inc. Helical nerve electrode
US5215086A (en) 1991-05-03 1993-06-01 Cyberonics, Inc. Therapeutic treatment of migraine symptoms by stimulation
US5269302A (en) * 1991-05-10 1993-12-14 Somatics, Inc. Electroconvulsive therapy apparatus and method for monitoring patient seizures
US5205285A (en) 1991-06-14 1993-04-27 Cyberonics, Inc. Voice suppression of vagal stimulation
US5222494A (en) 1991-07-31 1993-06-29 Cyberonics, Inc. Implantable tissue stimulator output stabilization system
US5231988A (en) 1991-08-09 1993-08-03 Cyberonics, Inc. Treatment of endocrine disorders by nerve stimulation
US5215089A (en) 1991-10-21 1993-06-01 Cyberonics, Inc. Electrode assembly for nerve stimulation
US5304206A (en) 1991-11-18 1994-04-19 Cyberonics, Inc. Activation techniques for implantable medical device
US5237991A (en) 1991-11-19 1993-08-24 Cyberonics, Inc. Implantable medical device with dummy load for pre-implant testing in sterile package and facilitating electrical lead connection
US5203326A (en) 1991-12-18 1993-04-20 Telectronics Pacing Systems, Inc. Antiarrhythmia pacer using antiarrhythmia pacing and autonomic nerve stimulation therapy
US5313953A (en) 1992-01-14 1994-05-24 Incontrol, Inc. Implantable cardiac patient monitor
IT1259358B (en) 1992-03-26 1996-03-12 Sorin Biomedica Spa IMPLANTABLE DEVICE FOR DETECTION AND CONTROL OF THE SYMPATHIC-VAGAL TONE
US5330507A (en) 1992-04-24 1994-07-19 Medtronic, Inc. Implantable electrical vagal stimulation for prevention or interruption of life threatening arrhythmias
US5330505A (en) * 1992-05-08 1994-07-19 Leonard Bloom System for and method of treating a malfunctioning heart
US5330515A (en) 1992-06-17 1994-07-19 Cyberonics, Inc. Treatment of pain by vagal afferent stimulation
US5243980A (en) 1992-06-30 1993-09-14 Medtronic, Inc. Method and apparatus for discrimination of ventricular and supraventricular tachycardia
JPH07504597A (en) 1992-06-30 1995-05-25 メドトロニック インコーポレーテッド Electrical medical stimulators and electrical stimulation methods
US5311876A (en) 1992-11-18 1994-05-17 The Johns Hopkins University Automatic detection of seizures using electroencephalographic signals
US5404877A (en) 1993-06-04 1995-04-11 Telectronics Pacing Systems, Inc. Leadless implantable sensor assembly and a cardiac emergency warning alarm
EP0688578B1 (en) 1994-06-24 1999-11-10 Pacesetter AB Arrhythmia detector
US5527344A (en) * 1994-08-01 1996-06-18 Illinois Institute Of Technology Pharmacologic atrial defibrillator and method
US5522862A (en) 1994-09-21 1996-06-04 Medtronic, Inc. Method and apparatus for treating obstructive sleep apnea
US5540734A (en) 1994-09-28 1996-07-30 Zabara; Jacob Cranial nerve stimulation treatments using neurocybernetic prosthesis
US5571150A (en) 1994-12-19 1996-11-05 Cyberonics, Inc. Treatment of patients in coma by nerve stimulation
US5540730A (en) 1995-06-06 1996-07-30 Cyberonics, Inc. Treatment of motility disorders by nerve stimulation
US5720771A (en) 1995-08-02 1998-02-24 Pacesetter, Inc. Method and apparatus for monitoring physiological data from an implantable medical device
US5707400A (en) 1995-09-19 1998-01-13 Cyberonics, Inc. Treating refractory hypertension by nerve stimulation
US5700282A (en) 1995-10-13 1997-12-23 Zabara; Jacob Heart rhythm stabilization using a neurocybernetic prosthesis
US6944501B1 (en) 2000-04-05 2005-09-13 Neurospace, Inc. Neurostimulator involving stimulation strategies and process for using it
US6480743B1 (en) 2000-04-05 2002-11-12 Neuropace, Inc. System and method for adaptive brain stimulation
US6073048A (en) 1995-11-17 2000-06-06 Medtronic, Inc. Baroreflex modulation with carotid sinus nerve stimulation for the treatment of heart failure
US6463328B1 (en) 1996-02-02 2002-10-08 Michael Sasha John Adaptive brain stimulation method and system
US5611350A (en) 1996-02-08 1997-03-18 John; Michael S. Method and apparatus for facilitating recovery of patients in deep coma
US5913876A (en) 1996-02-20 1999-06-22 Cardiothoracic Systems, Inc. Method and apparatus for using vagus nerve stimulation in surgery
US5651378A (en) 1996-02-20 1997-07-29 Cardiothoracic Systems, Inc. Method of using vagal nerve stimulation in surgery
US6051017A (en) 1996-02-20 2000-04-18 Advanced Bionics Corporation Implantable microstimulator and systems employing the same
US5743860A (en) 1996-03-20 1998-04-28 Lockheed Martin Energy Systems, Inc. Apparatus and method for epileptic seizure detection using non-linear techniques
US5690681A (en) 1996-03-29 1997-11-25 Purdue Research Foundation Method and apparatus using vagal stimulation for control of ventricular rate during atrial fibrillation
US5716377A (en) 1996-04-25 1998-02-10 Medtronic, Inc. Method of treating movement disorders by brain stimulation
US5683422A (en) 1996-04-25 1997-11-04 Medtronic, Inc. Method and apparatus for treating neurodegenerative disorders by electrical brain stimulation
US6532388B1 (en) 1996-04-30 2003-03-11 Medtronic, Inc. Method and system for endotracheal/esophageal stimulation prior to and during a medical procedure
US6628987B1 (en) 2000-09-26 2003-09-30 Medtronic, Inc. Method and system for sensing cardiac contractions during vagal stimulation-induced cardiopalegia
US6006134A (en) 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US5713923A (en) 1996-05-13 1998-02-03 Medtronic, Inc. Techniques for treating epilepsy by brain stimulation and drug infusion
US6104956A (en) 1996-05-31 2000-08-15 Board Of Trustees Of Southern Illinois University Methods of treating traumatic brain injury by vagus nerve stimulation
CA2260209C (en) 1996-07-11 2005-08-30 Medtronic, Inc. Minimally invasive implantable device for monitoring physiologic events
US5800474A (en) 1996-11-01 1998-09-01 Medtronic, Inc. Method of controlling epilepsy by brain stimulation
US5690688A (en) 1996-11-12 1997-11-25 Pacesetter Ab Medical therapy apparatus which administers therapy adjusted to follow natural variability of the physiological function being controlled
US7630757B2 (en) 1997-01-06 2009-12-08 Flint Hills Scientific Llc System for the prediction, rapid detection, warning, prevention, or control of changes in activity states in the brain of a subject
US6208894B1 (en) 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US5942979A (en) 1997-04-07 1999-08-24 Luppino; Richard On guard vehicle safety warning system
US5861014A (en) 1997-04-30 1999-01-19 Medtronic, Inc. Method and apparatus for sensing a stimulating gastrointestinal tract on-demand
US6479523B1 (en) 1997-08-26 2002-11-12 Emory University Pharmacologic drug combination in vagal-induced asystole
US6248080B1 (en) 1997-09-03 2001-06-19 Medtronic, Inc. Intracranial monitoring and therapy delivery control device, system and method
US5941906A (en) 1997-10-15 1999-08-24 Medtronic, Inc. Implantable, modular tissue stimulator
US6597954B1 (en) 1997-10-27 2003-07-22 Neuropace, Inc. System and method for controlling epileptic seizures with spatially separated detection and stimulation electrodes
US6016449A (en) 1997-10-27 2000-01-18 Neuropace, Inc. System for treatment of neurological disorders
US6427086B1 (en) 1997-10-27 2002-07-30 Neuropace, Inc. Means and method for the intracranial placement of a neurostimulator
US6647296B2 (en) 1997-10-27 2003-11-11 Neuropace, Inc. Implantable apparatus for treating neurological disorders
US6459936B2 (en) 1997-10-27 2002-10-01 Neuropace, Inc. Methods for responsively treating neurological disorders
US6091992A (en) 1997-12-15 2000-07-18 Medtronic, Inc. Method and apparatus for electrical stimulation of the gastrointestinal tract
US6221908B1 (en) 1998-03-12 2001-04-24 Scientific Learning Corporation System for stimulating brain plasticity
US6836685B1 (en) 1998-04-07 2004-12-28 William R. Fitz Nerve stimulation method and apparatus for pain relief
US6374140B1 (en) 1998-04-30 2002-04-16 Medtronic, Inc. Method and apparatus for treating seizure disorders by stimulating the olfactory senses
US6018682A (en) 1998-04-30 2000-01-25 Medtronic, Inc. Implantable seizure warning system
US5928272A (en) * 1998-05-02 1999-07-27 Cyberonics, Inc. Automatic activation of a neurostimulator device using a detection algorithm based on cardiac activity
US6735474B1 (en) 1998-07-06 2004-05-11 Advanced Bionics Corporation Implantable stimulator system and method for treatment of incontinence and pain
US7209787B2 (en) 1998-08-05 2007-04-24 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US6366813B1 (en) 1998-08-05 2002-04-02 Dilorenzo Daniel J. Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease
US7242984B2 (en) 1998-08-05 2007-07-10 Neurovista Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US9320900B2 (en) 1998-08-05 2016-04-26 Cyberonics, Inc. Methods and systems for determining subject-specific parameters for a neuromodulation therapy
US7277758B2 (en) 1998-08-05 2007-10-02 Neurovista Corporation Methods and systems for predicting future symptomatology in a patient suffering from a neurological or psychiatric disorder
US7747325B2 (en) 1998-08-05 2010-06-29 Neurovista Corporation Systems and methods for monitoring a patient's neurological disease state
US7231254B2 (en) 1998-08-05 2007-06-12 Bioneuronics Corporation Closed-loop feedback-driven neuromodulation
US7403820B2 (en) 1998-08-05 2008-07-22 Neurovista Corporation Closed-loop feedback-driven neuromodulation
US8762065B2 (en) 1998-08-05 2014-06-24 Cyberonics, Inc. Closed-loop feedback-driven neuromodulation
US7324851B1 (en) 1998-08-05 2008-01-29 Neurovista Corporation Closed-loop feedback-driven neuromodulation
US9375573B2 (en) 1998-08-05 2016-06-28 Cyberonics, Inc. Systems and methods for monitoring a patient's neurological disease state
AU5394099A (en) 1998-08-07 2000-02-28 Infinite Biomedical Technologies, Incorporated Implantable myocardial ischemia detection, indication and action technology
US6171239B1 (en) 1998-08-17 2001-01-09 Emory University Systems, methods, and devices for controlling external devices by signals derived directly from the nervous system
US6269270B1 (en) 1998-10-26 2001-07-31 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy of Dementia and Alzheimer's disease utilizing an implantable lead and external stimulator
US6564102B1 (en) 1998-10-26 2003-05-13 Birinder R. Boveja Apparatus and method for adjunct (add-on) treatment of coma and traumatic brain injury with neuromodulation using an external stimulator
US7076307B2 (en) 2002-05-09 2006-07-11 Boveja Birinder R Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders
US20030212440A1 (en) 2002-05-09 2003-11-13 Boveja Birinder R. Method and system for modulating the vagus nerve (10th cranial nerve) using modulated electrical pulses with an inductively coupled stimulation system
US6208902B1 (en) 1998-10-26 2001-03-27 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy for pain syndromes utilizing an implantable lead and an external stimulator
US6611715B1 (en) 1998-10-26 2003-08-26 Birinder R. Boveja Apparatus and method for neuromodulation therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator
US6356788B2 (en) 1998-10-26 2002-03-12 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy for depression, migraine, neuropsychiatric disorders, partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator
US6615081B1 (en) 1998-10-26 2003-09-02 Birinder R. Boveja Apparatus and method for adjunct (add-on) treatment of diabetes by neuromodulation with an external stimulator
US6668191B1 (en) 1998-10-26 2003-12-23 Birinder R. Boveja Apparatus and method for electrical stimulation adjunct (add-on) therapy of atrial fibrillation, inappropriate sinus tachycardia, and refractory hypertension with an external stimulator
US6366814B1 (en) 1998-10-26 2002-04-02 Birinder R. Boveja External stimulator for adjunct (add-on) treatment for neurological, neuropsychiatric, and urological disorders
US6205359B1 (en) 1998-10-26 2001-03-20 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy of partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator
US6505074B2 (en) 1998-10-26 2003-01-07 Birinder R. Boveja Method and apparatus for electrical stimulation adjunct (add-on) treatment of urinary incontinence and urological disorders using an external stimulator
US6253109B1 (en) 1998-11-05 2001-06-26 Medtronic Inc. System for optimized brain stimulation
US6272379B1 (en) 1999-03-17 2001-08-07 Cathco, Inc. Implantable electronic system with acute myocardial infarction detection and patient warning capabilities
US6324421B1 (en) 1999-03-29 2001-11-27 Medtronic, Inc. Axis shift analysis of electrocardiogram signal parameters especially applicable for multivector analysis by implantable medical devices, and use of same
US6115630A (en) 1999-03-29 2000-09-05 Medtronic, Inc. Determination of orientation of electrocardiogram signal in implantable medical devices
US6115628A (en) 1999-03-29 2000-09-05 Medtronic, Inc. Method and apparatus for filtering electrocardiogram (ECG) signals to remove bad cycle information and for use of physiologic signals determined from said filtered ECG signals
US6190324B1 (en) 1999-04-28 2001-02-20 Medtronic, Inc. Implantable medical device for tracking patient cardiac status
US6356784B1 (en) 1999-04-30 2002-03-12 Medtronic, Inc. Method of treating movement disorders by electrical stimulation and/or drug infusion of the pendunulopontine nucleus
US6341236B1 (en) 1999-04-30 2002-01-22 Ivan Osorio Vagal nerve stimulation techniques for treatment of epileptic seizures
US7134996B2 (en) 1999-06-03 2006-11-14 Cardiac Intelligence Corporation System and method for collection and analysis of patient information for automated remote patient care
US6167311A (en) 1999-06-14 2000-12-26 Electro Core Techniques, Llc Method of treating psychological disorders by brain stimulation within the thalamus
US6587719B1 (en) 1999-07-01 2003-07-01 Cyberonics, Inc. Treatment of obesity by bilateral vagus nerve stimulation
US6304775B1 (en) 1999-09-22 2001-10-16 Leonidas D. Iasemidis Seizure warning and prediction
US7346391B1 (en) 1999-10-12 2008-03-18 Flint Hills Scientific Llc Cerebral or organ interface system
US6560486B1 (en) 1999-10-12 2003-05-06 Ivan Osorio Bi-directional cerebral interface system
US6473644B1 (en) 1999-10-13 2002-10-29 Cyberonics, Inc. Method to enhance cardiac capillary growth in heart failure patients
US6628985B2 (en) 2000-12-18 2003-09-30 Cardiac Pacemakers, Inc. Data logging system for implantable medical device
US20030208212A1 (en) 1999-12-07 2003-11-06 Valerio Cigaina Removable gastric band
US6418346B1 (en) 1999-12-14 2002-07-09 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
US7483743B2 (en) * 2000-01-11 2009-01-27 Cedars-Sinai Medical Center System for detecting, diagnosing, and treating cardiovascular disease
US6885888B2 (en) 2000-01-20 2005-04-26 The Cleveland Clinic Foundation Electrical stimulation of the sympathetic nerve chain
US6708064B2 (en) 2000-02-24 2004-03-16 Ali R. Rezai Modulation of the brain to affect psychiatric disorders
US6477404B1 (en) 2000-03-01 2002-11-05 Cardiac Pacemakers, Inc. System and method for detection of pacing pulses within ECG signals
US6473639B1 (en) 2000-03-02 2002-10-29 Neuropace, Inc. Neurological event detection procedure using processed display channel based algorithms and devices incorporating these procedures
US6484132B1 (en) 2000-03-07 2002-11-19 Lockheed Martin Energy Research Corporation Condition assessment of nonlinear processes
US7831301B2 (en) 2001-03-16 2010-11-09 Medtronic, Inc. Heart failure monitor quicklook summary for patient management systems
CA2403256A1 (en) 2000-03-17 2001-09-27 Medtronic, Inc. Heart failure monitor quick look summary for patient management systems
US6768969B1 (en) 2000-04-03 2004-07-27 Flint Hills Scientific, L.L.C. Method, computer program, and system for automated real-time signal analysis for detection, quantification, and prediction of signal changes
US6466822B1 (en) 2000-04-05 2002-10-15 Neuropace, Inc. Multimodal neurostimulator and process of using it
US6610713B2 (en) 2000-05-23 2003-08-26 North Shore - Long Island Jewish Research Institute Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation
DE60018556T2 (en) 2000-07-11 2006-03-02 Sorin Biomedica Crm S.R.L., Saluggia Implantable pacemaker with automatic mode switching controlled by sympatho-vagal matching
US7010351B2 (en) 2000-07-13 2006-03-07 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US20040176831A1 (en) 2000-07-13 2004-09-09 Gliner Bradford Evan Apparatuses and systems for applying electrical stimulation to a patient
US20030125786A1 (en) 2000-07-13 2003-07-03 Gliner Bradford Evan Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7305268B2 (en) 2000-07-13 2007-12-04 Northstar Neurscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US7236831B2 (en) 2000-07-13 2007-06-26 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US20050021118A1 (en) 2000-07-13 2005-01-27 Chris Genau Apparatuses and systems for applying electrical stimulation to a patient
US7024247B2 (en) 2001-10-15 2006-04-04 Northstar Neuroscience, Inc. Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures
US7831305B2 (en) 2001-10-15 2010-11-09 Advanced Neuromodulation Systems, Inc. Neural stimulation system and method responsive to collateral neural activity
US7146217B2 (en) 2000-07-13 2006-12-05 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a change in a neural-function of a patient
US7672730B2 (en) 2001-03-08 2010-03-02 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US7756584B2 (en) 2000-07-13 2010-07-13 Advanced Neuromodulation Systems, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
WO2002034331A2 (en) 2000-10-26 2002-05-02 Medtronic, Inc. Externally worn transceiver for use with an implantable medical device
US6832114B1 (en) 2000-11-21 2004-12-14 Advanced Bionics Corporation Systems and methods for modulation of pancreatic endocrine secretion and treatment of diabetes
US6594524B2 (en) 2000-12-12 2003-07-15 The Trustees Of The University Of Pennsylvania Adaptive method and apparatus for forecasting and controlling neurological disturbances under a multi-level control
US6609025B2 (en) 2001-01-02 2003-08-19 Cyberonics, Inc. Treatment of obesity by bilateral sub-diaphragmatic nerve stimulation
US6788975B1 (en) 2001-01-30 2004-09-07 Advanced Bionics Corporation Fully implantable miniature neurostimulator for stimulation as a therapy for epilepsy
US7299096B2 (en) 2001-03-08 2007-11-20 Northstar Neuroscience, Inc. System and method for treating Parkinson's Disease and other movement disorders
US7369897B2 (en) 2001-04-19 2008-05-06 Neuro And Cardiac Technologies, Llc Method and system of remotely controlling electrical pulses provided to nerve tissue(s) by an implanted stimulator system for neuromodulation therapies
US6684105B2 (en) 2001-08-31 2004-01-27 Biocontrol Medical, Ltd. Treatment of disorders by unidirectional nerve stimulation
US6671555B2 (en) 2001-04-27 2003-12-30 Medtronic, Inc. Closed loop neuromodulation for suppression of epileptic activity
US6656125B2 (en) 2001-06-01 2003-12-02 Dale Julian Misczynski System and process for analyzing a medical condition of a user
US6622047B2 (en) 2001-07-28 2003-09-16 Cyberonics, Inc. Treatment of neuropsychiatric disorders by near-diaphragmatic nerve stimulation
US6622038B2 (en) 2001-07-28 2003-09-16 Cyberonics, Inc. Treatment of movement disorders by near-diaphragmatic nerve stimulation
US6622041B2 (en) 2001-08-21 2003-09-16 Cyberonics, Inc. Treatment of congestive heart failure and autonomic cardiovascular drive disorders
US6449512B1 (en) 2001-08-29 2002-09-10 Birinder R. Boveja Apparatus and method for treatment of urological disorders using programmerless implantable pulse generator system
US6760626B1 (en) 2001-08-29 2004-07-06 Birinder R. Boveja Apparatus and method for treatment of neurological and neuropsychiatric disorders using programmerless implantable pulse generator system
US6840904B2 (en) 2001-10-11 2005-01-11 Jason Goldberg Medical monitoring device and system
US20030083716A1 (en) 2001-10-23 2003-05-01 Nicolelis Miguel A.L. Intelligent brain pacemaker for real-time monitoring and controlling of epileptic seizures
US6944489B2 (en) 2001-10-31 2005-09-13 Medtronic, Inc. Method and apparatus for shunting induced currents in an electrical lead
US6985771B2 (en) 2002-01-22 2006-01-10 Angel Medical Systems, Inc. Rapid response system for the detection and treatment of cardiac events
US6721603B2 (en) 2002-01-25 2004-04-13 Cyberonics, Inc. Nerve stimulation as a treatment for pain
WO2003063684A2 (en) 2002-01-25 2003-08-07 Intellipatch, Inc. Evaluation of a patient and prediction of chronic symptoms
WO2003066155A2 (en) 2002-02-01 2003-08-14 The Cleveland Clinic Foundation Methods of affecting hypothalamic-related conditions
US8391989B2 (en) 2002-12-18 2013-03-05 Cardiac Pacemakers, Inc. Advanced patient management for defining, identifying and using predetermined health-related events
US7043305B2 (en) 2002-03-06 2006-05-09 Cardiac Pacemakers, Inc. Method and apparatus for establishing context among events and optimizing implanted medical device performance
US7983759B2 (en) 2002-12-18 2011-07-19 Cardiac Pacemakers, Inc. Advanced patient management for reporting multiple health-related parameters
US6957107B2 (en) 2002-03-13 2005-10-18 Cardionet, Inc. Method and apparatus for monitoring and communicating with an implanted medical device
US7239912B2 (en) 2002-03-22 2007-07-03 Leptos Biomedical, Inc. Electric modulation of sympathetic nervous system
US7689276B2 (en) 2002-09-13 2010-03-30 Leptos Biomedical, Inc. Dynamic nerve stimulation for treatment of disorders
US7221981B2 (en) 2002-03-28 2007-05-22 Northstar Neuroscience, Inc. Electrode geometries for efficient neural stimulation
EP1356762A1 (en) 2002-04-22 2003-10-29 UbiCom Gesellschaft für Telekommunikation mbH Device for remote monitoring of body functions
US6825767B2 (en) 2002-05-08 2004-11-30 Charles Humbard Subscription system for monitoring user well being
US20060009815A1 (en) 2002-05-09 2006-01-12 Boveja Birinder R Method and system to provide therapy or alleviate symptoms of involuntary movement disorders by providing complex and/or rectangular electrical pulses to vagus nerve(s)
US20050165458A1 (en) 2002-05-09 2005-07-28 Boveja Birinder R. Method and system to provide therapy for depression using electroconvulsive therapy(ECT) and pulsed electrical stimulation to vagus nerve(s)
US20050154426A1 (en) 2002-05-09 2005-07-14 Boveja Birinder R. Method and system for providing therapy for neuropsychiatric and neurological disorders utilizing transcranical magnetic stimulation and pulsed electrical vagus nerve(s) stimulation
US7191012B2 (en) 2003-05-11 2007-03-13 Boveja Birinder R Method and system for providing pulsed electrical stimulation to a craniel nerve of a patient to provide therapy for neurological and neuropsychiatric disorders
US20060079936A1 (en) 2003-05-11 2006-04-13 Boveja Birinder R Method and system for altering regional cerebral blood flow (rCBF) by providing complex and/or rectangular electrical pulses to vagus nerve(s), to provide therapy for depression and other medical disorders
US7277761B2 (en) 2002-06-12 2007-10-02 Pacesetter, Inc. Vagal stimulation for improving cardiac function in heart failure or CHF patients
US7292890B2 (en) 2002-06-20 2007-11-06 Advanced Bionics Corporation Vagus nerve stimulation via unidirectional propagation of action potentials
US6934585B1 (en) 2002-06-21 2005-08-23 Pacesetter, Inc. System and method for far-field R-wave detection
US7139677B2 (en) 2002-07-12 2006-11-21 Ut-Battelle, Llc Methods for consistent forewarning of critical events across multiple data channels
US6934580B1 (en) 2002-07-20 2005-08-23 Flint Hills Scientific, L.L.C. Stimulation methodologies and apparatus for control of brain states
US7006859B1 (en) 2002-07-20 2006-02-28 Flint Hills Scientific, L.L.C. Unitized electrode with three-dimensional multi-site, multi-modal capabilities for detection and control of brain state changes
US7263467B2 (en) 2002-09-30 2007-08-28 University Of Florida Research Foundation Inc. Multi-dimensional multi-parameter time series processing for seizure warning and prediction
CA2497239A1 (en) 2002-08-27 2004-04-29 James Chris Sackellares Optimization of multi-dimensional time series processing for seizure warning and prediction
US8509897B2 (en) 2002-09-19 2013-08-13 Cardiac Pacemakers, Inc. Morphology-based diagnostic monitoring of electrograms by implantable cardiac device
ATE489031T1 (en) 2002-10-11 2010-12-15 Flint Hills Scient Llc MULTIMODAL SYSTEM FOR DETECTING AND CONTROLLING CHANGES IN THE STATE OF THE BRAIN
US7204833B1 (en) 2002-10-11 2007-04-17 Flint Hills Scientific Llc Multi-modal system for detection and control of changes in brain state
EP1579608A4 (en) 2002-10-11 2012-09-05 Flint Hills Scient Llc Method, computer program, and system for intrinsic timescale decomposition, filtering, and automated analysis of signals of arbitrary origin or timescale
US7282030B2 (en) 2002-10-15 2007-10-16 Medtronic, Inc. Timed delay for redelivery of treatment therapy for a medical device system
AU2003287166A1 (en) 2002-10-15 2004-05-04 Medtronic Inc. Phase shifting of neurological signals in a medical device system
EP1558334B1 (en) 2002-10-15 2015-03-18 Medtronic, Inc. Configuring and testing treatment therapy parameters for a medical device system
US7079977B2 (en) 2002-10-15 2006-07-18 Medtronic, Inc. Synchronization and calibration of clocks for a medical device and calibrated clock
AU2003285889A1 (en) 2002-10-15 2004-05-04 Medtronic Inc. Control of treatment therapy during start-up and during operation of a medical device system
AU2003301370A1 (en) 2002-10-15 2004-05-04 Medtronic Inc. Multi-modal operation of a medical device system
US8579786B2 (en) 2002-10-15 2013-11-12 Medtronic, Inc. Screening techniques for management of a nervous system disorder
ATE542566T1 (en) 2002-10-15 2012-02-15 Medtronic Inc CHANNEL SELECTIVE COVERING FOR A MEDICAL SYSTEM
WO2004034885A2 (en) 2002-10-15 2004-04-29 Medtronic Inc. Signal quality monitoring and control for a medical device system
WO2004034982A2 (en) 2002-10-15 2004-04-29 Medtronic Inc. Treatment termination in a medical device
US8187181B2 (en) 2002-10-15 2012-05-29 Medtronic, Inc. Scoring of sensed neurological signals for use with a medical device system
US7933646B2 (en) 2002-10-15 2011-04-26 Medtronic, Inc. Clustering of recorded patient neurological activity to determine length of a neurological event
EP1558121A4 (en) 2002-10-15 2008-10-15 Medtronic Inc Signal quality monitoring and control for a medical device system
US7236830B2 (en) 2002-12-10 2007-06-26 Northstar Neuroscience, Inc. Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders
US7302298B2 (en) 2002-11-27 2007-11-27 Northstar Neuroscience, Inc Methods and systems employing intracranial electrodes for neurostimulation and/or electroencephalography
AU2003297761A1 (en) 2002-12-09 2004-06-30 Northstar Neuroscience, Inc. Methods for treating neurological language disorders
US7076288B2 (en) 2003-01-29 2006-07-11 Vicor Technologies, Inc. Method and system for detecting and/or predicting biological anomalies
US20040172084A1 (en) 2003-02-03 2004-09-02 Knudson Mark B. Method and apparatus for treatment of gastro-esophageal reflux disease (GERD)
US7613515B2 (en) 2003-02-03 2009-11-03 Enteromedics Inc. High frequency vagal blockage therapy
US7444183B2 (en) 2003-02-03 2008-10-28 Enteromedics, Inc. Intraluminal electrode apparatus and method
US7844338B2 (en) 2003-02-03 2010-11-30 Enteromedics Inc. High frequency obesity treatment
US20040199212A1 (en) 2003-04-01 2004-10-07 Fischell David R. External patient alerting system for implantable devices
US7228167B2 (en) 2003-04-10 2007-06-05 Mayo Foundation For Medical Education Method and apparatus for detecting vagus nerve stimulation
AU2004251021A1 (en) 2003-04-24 2005-01-06 Advanced Neuromodulation Systems, Inc. Systems and methods for facilitating and/or effectuating development, rehabilitation, restoration, and/or recovery of visual function through neural stimulation
US20050187590A1 (en) 2003-05-11 2005-08-25 Boveja Birinder R. Method and system for providing therapy for autism by providing electrical pulses to the vagus nerve(s)
US7444184B2 (en) 2003-05-11 2008-10-28 Neuro And Cardial Technologies, Llc Method and system for providing therapy for bulimia/eating disorders by providing electrical pulses to vagus nerve(s)
US20060074450A1 (en) 2003-05-11 2006-04-06 Boveja Birinder R System for providing electrical pulses to nerve and/or muscle using an implanted stimulator
US20040249302A1 (en) 2003-06-09 2004-12-09 Cyberkinetics, Inc. Methods and systems for processing of brain signals
US7149574B2 (en) 2003-06-09 2006-12-12 Palo Alto Investors Treatment of conditions through electrical modulation of the autonomic nervous system
CA2432810A1 (en) 2003-06-19 2004-12-19 Andres M. Lozano Method of treating depression, mood disorders and anxiety disorders by brian infusion
WO2005007120A2 (en) 2003-07-18 2005-01-27 The Johns Hopkins University System and method for treating nausea and vomiting by vagus nerve stimulation
US20050049515A1 (en) 2003-07-31 2005-03-03 Dale Julian Misczynski Electrode belt for acquisition, processing and transmission of cardiac (ECG) signals
US7684866B2 (en) 2003-08-01 2010-03-23 Advanced Neuromodulation Systems, Inc. Apparatus and methods for applying neural stimulation to a patient
US7263405B2 (en) 2003-08-27 2007-08-28 Neuro And Cardiac Technologies Llc System and method for providing electrical pulses to the vagus nerve(s) to provide therapy for obesity, eating disorders, neurological and neuropsychiatric disorders with a stimulator, comprising bi-directional communication and network capabilities
US20050075702A1 (en) 2003-10-01 2005-04-07 Medtronic, Inc. Device and method for inhibiting release of pro-inflammatory mediator
US7418292B2 (en) 2003-10-01 2008-08-26 Medtronic, Inc. Device and method for attenuating an immune response
US20050153885A1 (en) 2003-10-08 2005-07-14 Yun Anthony J. Treatment of conditions through modulation of the autonomic nervous system
US20050131467A1 (en) 2003-11-02 2005-06-16 Boveja Birinder R. Method and apparatus for electrical stimulation therapy for at least one of atrial fibrillation, congestive heart failure, inappropriate sinus tachycardia, and refractory hypertension
US7389144B1 (en) 2003-11-07 2008-06-17 Flint Hills Scientific Llc Medical device failure detection and warning system
WO2005053788A1 (en) 2003-12-01 2005-06-16 Medtronic, Inc. Method and system for vagal nerve stimulation with multi-site cardiac pacing
US20050124901A1 (en) 2003-12-05 2005-06-09 Misczynski Dale J. Method and apparatus for electrophysiological and hemodynamic real-time assessment of cardiovascular fitness of a user
US7783349B2 (en) 2006-04-10 2010-08-24 Cardiac Pacemakers, Inc. System and method for closed-loop neural stimulation
US7295881B2 (en) 2003-12-29 2007-11-13 Biocontrol Medical Ltd. Nerve-branch-specific action-potential activation, inhibition, and monitoring
US7254439B2 (en) 2004-01-06 2007-08-07 Monebo Technologies, Inc. Method and system for contactless evaluation of fatigue of an operator
US20050148895A1 (en) 2004-01-06 2005-07-07 Misczynski Dale J. Method and apparatus for ECG derived sleep monitoring of a user
US7164941B2 (en) 2004-01-06 2007-01-16 Dale Julian Misczynski Method and system for contactless monitoring and evaluation of sleep states of a user
US7979137B2 (en) 2004-02-11 2011-07-12 Ethicon, Inc. System and method for nerve stimulation
US7433732B1 (en) 2004-02-25 2008-10-07 University Of Florida Research Foundation, Inc. Real-time brain monitoring system
WO2005104779A2 (en) 2004-04-28 2005-11-10 Transoma Medical, Inc. Implantable medical devices and related methods
US7324850B2 (en) 2004-04-29 2008-01-29 Cardiac Pacemakers, Inc. Method and apparatus for communication between a handheld programmer and an implantable medical device
US7697991B2 (en) 2004-05-04 2010-04-13 The Cleveland Clinic Foundation Methods of treating neurological conditions by neuromodulation of interhemispheric fibers
US7640063B2 (en) 2004-05-04 2009-12-29 The Cleveland Clinic Foundation Methods of treating medical conditions by neuromodulation of the cerebellar pathways
US7725196B2 (en) 2004-05-04 2010-05-25 The Cleveland Clinic Foundation Corpus callosum neuromodulation assembly
US7601115B2 (en) 2004-05-24 2009-10-13 Neuronetics, Inc. Seizure therapy method and apparatus
US7209786B2 (en) 2004-06-10 2007-04-24 Cardiac Pacemakers, Inc. Method and apparatus for optimization of cardiac resynchronization therapy using heart sounds
US7706866B2 (en) 2004-06-24 2010-04-27 Cardiac Pacemakers, Inc. Automatic orientation determination for ECG measurements using multiple electrodes
US20050154425A1 (en) 2004-08-19 2005-07-14 Boveja Birinder R. Method and system to provide therapy for neuropsychiatric disorders and cognitive impairments using gradient magnetic pulses to the brain and pulsed electrical stimulation to vagus nerve(s)
US7672733B2 (en) 2004-10-29 2010-03-02 Medtronic, Inc. Methods and apparatus for sensing cardiac activity via neurological stimulation therapy system or medical electrical lead
US8244355B2 (en) 2004-10-29 2012-08-14 Medtronic, Inc. Method and apparatus to provide diagnostic index and therapy regulated by subject's autonomic nervous system
WO2006050524A1 (en) 2004-11-02 2006-05-11 Medtronic, Inc. Techniques for data retention upon detection of an event in an implantable medical device
US20060106430A1 (en) 2004-11-12 2006-05-18 Brad Fowler Electrode configurations for reducing invasiveness and/or enhancing neural stimulation efficacy, and associated methods
US8108046B2 (en) 2004-12-17 2012-01-31 Medtronic, Inc. System and method for using cardiac events to trigger therapy for treating nervous system disorders
US8108038B2 (en) 2004-12-17 2012-01-31 Medtronic, Inc. System and method for segmenting a cardiac signal based on brain activity
US7945316B2 (en) 2004-12-17 2011-05-17 Medtronic, Inc. System and method for monitoring or treating nervous system disorders
US8112148B2 (en) 2004-12-17 2012-02-07 Medtronic, Inc. System and method for monitoring cardiac signal activity in patients with nervous system disorders
US8209009B2 (en) 2004-12-17 2012-06-26 Medtronic, Inc. System and method for segmenting a cardiac signal based on brain stimulation
US7353063B2 (en) 2004-12-22 2008-04-01 Cardiac Pacemakers, Inc. Generating and communicating web content from within an implantable medical device
US8600521B2 (en) 2005-01-27 2013-12-03 Cyberonics, Inc. Implantable medical device having multiple electrode/sensor capability and stimulation based on sensed intrinsic activity
US20060173493A1 (en) 2005-01-28 2006-08-03 Cyberonics, Inc. Multi-phasic signal for stimulation by an implantable device
US20060173522A1 (en) 2005-01-31 2006-08-03 Medtronic, Inc. Anchoring of a medical device component adjacent a dura of the brain or spinal cord
JP2008535538A (en) 2005-03-01 2008-09-04 ファンクショナル ニューロサイエンス インコーポレイテッド Methods for treating depression, mood disorders and anxiety disorders using neuromodulation
US20090048500A1 (en) 2005-04-20 2009-02-19 Respimetrix, Inc. Method for using a non-invasive cardiac and respiratory monitoring system
US20060241725A1 (en) 2005-04-25 2006-10-26 Imad Libbus Method and apparatus for simultaneously presenting cardiac and neural signals
US7640057B2 (en) 2005-04-25 2009-12-29 Cardiac Pacemakers, Inc. Methods of providing neural markers for sensed autonomic nervous system activity
US7561923B2 (en) 2005-05-09 2009-07-14 Cardiac Pacemakers, Inc. Method and apparatus for controlling autonomic balance using neural stimulation
US20070027497A1 (en) 2005-07-27 2007-02-01 Cyberonics, Inc. Nerve stimulation for treatment of syncope
US20070025608A1 (en) 2005-07-29 2007-02-01 Cyberonics, Inc. Enhancing intrinsic neural activity using a medical device to treat a patient
US7499752B2 (en) 2005-07-29 2009-03-03 Cyberonics, Inc. Selective nerve stimulation for the treatment of eating disorders
US7532935B2 (en) 2005-07-29 2009-05-12 Cyberonics, Inc. Selective neurostimulation for treating mood disorders
US20070055320A1 (en) 2005-09-07 2007-03-08 Northstar Neuroscience, Inc. Methods for treating temporal lobe epilepsy, associated neurological disorders, and other patient functions
US8165682B2 (en) 2005-09-29 2012-04-24 Uchicago Argonne, Llc Surface acoustic wave probe implant for predicting epileptic seizures
US20070088403A1 (en) 2005-10-19 2007-04-19 Allen Wyler Methods and systems for establishing parameters for neural stimulation
US7856264B2 (en) 2005-10-19 2010-12-21 Advanced Neuromodulation Systems, Inc. Systems and methods for patient interactive neural stimulation and/or chemical substance delivery
US7555344B2 (en) 2005-10-28 2009-06-30 Cyberonics, Inc. Selective neurostimulation for treating epilepsy
US20090221882A1 (en) 2005-12-08 2009-09-03 Dan Gur Furman Implantable Biosensor Assembly and Health Monitoring system and Method including same
CN101340846A (en) 2005-12-20 2009-01-07 皇家飞利浦电子股份有限公司 Device for detecting and warning of a medical condition
US8725243B2 (en) 2005-12-28 2014-05-13 Cyberonics, Inc. Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US8868172B2 (en) 2005-12-28 2014-10-21 Cyberonics, Inc. Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders
US7606622B2 (en) 2006-01-24 2009-10-20 Cardiac Pacemakers, Inc. Method and device for detecting and treating depression
US7974697B2 (en) 2006-01-26 2011-07-05 Cyberonics, Inc. Medical imaging feedback for an implantable medical device
US7801601B2 (en) 2006-01-27 2010-09-21 Cyberonics, Inc. Controlling neuromodulation using stimulus modalities
US20070179558A1 (en) 2006-01-30 2007-08-02 Gliner Bradford E Systems and methods for varying electromagnetic and adjunctive neural therapies
US8209018B2 (en) 2006-03-10 2012-06-26 Medtronic, Inc. Probabilistic neurological disorder treatment
ES2573323T3 (en) 2006-03-29 2016-06-07 Dignity Health Electrical stimulation of cranial nerve microburst for the treatment of medical conditions
US20070249956A1 (en) 2006-04-21 2007-10-25 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US7761145B2 (en) 2006-04-21 2010-07-20 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US8165683B2 (en) 2006-04-21 2012-04-24 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US20070249953A1 (en) 2006-04-21 2007-10-25 Medtronic, Inc. Method and apparatus for detection of nervous system disorders
US7764988B2 (en) 2006-04-27 2010-07-27 Medtronic, Inc. Flexible memory management scheme for loop recording in an implantable device
US7610083B2 (en) 2006-04-27 2009-10-27 Medtronic, Inc. Method and system for loop recording with overlapping events
US7856272B2 (en) 2006-04-28 2010-12-21 Flint Hills Scientific, L.L.C. Implantable interface for a medical device system
NL1031958C2 (en) 2006-06-07 2007-12-10 Hobo Heeze B V Personal monitoring system for real-time signaling of epilepsy attacks.
US20080103548A1 (en) 2006-08-02 2008-05-01 Northstar Neuroscience, Inc. Methods for treating neurological disorders, including neuropsychiatric and neuropsychological disorders, and associated systems
US20080077028A1 (en) 2006-09-27 2008-03-27 Biotronic Crm Patent Personal health monitoring and care system
US7797046B2 (en) 2006-10-11 2010-09-14 Cardiac Pacemakers, Inc. Percutaneous neurostimulator for modulating cardiovascular function
US8295934B2 (en) 2006-11-14 2012-10-23 Neurovista Corporation Systems and methods of reducing artifact in neurological stimulation systems
US8096954B2 (en) 2006-11-29 2012-01-17 Cardiac Pacemakers, Inc. Adaptive sampling of heart sounds
US20080139870A1 (en) 2006-12-12 2008-06-12 Northstar Neuroscience, Inc. Systems and methods for treating patient hypertonicity
US20080161712A1 (en) 2006-12-27 2008-07-03 Kent Leyde Low Power Device With Contingent Scheduling
US9913593B2 (en) 2006-12-27 2018-03-13 Cyberonics, Inc. Low power device with variable scheduling
US9898656B2 (en) 2007-01-25 2018-02-20 Cyberonics, Inc. Systems and methods for identifying a contra-ictal condition in a subject
US20080183097A1 (en) 2007-01-25 2008-07-31 Leyde Kent W Methods and Systems for Measuring a Subject's Susceptibility to a Seizure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088138A (en) * 1974-01-02 1978-05-09 Cardiac Resuscitator Corp. Cardiac resuscitator and monitoring apparatus
US5995868A (en) * 1996-01-23 1999-11-30 University Of Kansas System for the prediction, rapid detection, warning, prevention, or control of changes in activity states in the brain of a subject

Also Published As

Publication number Publication date
US11185695B1 (en) 2021-11-30
US9050469B1 (en) 2015-06-09

Similar Documents

Publication Publication Date Title
US20220096835A1 (en) Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals
US11801007B2 (en) Detecting, quantifying, and/or classifying seizures using multimodal data
US20200170575A1 (en) Systems and methods to infer brain state during burst suppression
Toledo et al. Wavelet analysis of instantaneous heart rate: a study of autonomic control during thrombolysis
Kleiger et al. Heart rate variability: measurement and clinical utility
Fürbass et al. Automatic multimodal detection for long-term seizure documentation in epilepsy
Osorio Automated seizure detection using EKG
Ramshur Jr Design, evaluation, and application of heart rate variability analysis software (HRVAS)
Quyen et al. Toward a neurodynamical understanding of ictogenesis
EP0666724B1 (en) Cardiac vulnerability tracking method and apparatus
US8827912B2 (en) Methods and systems for detecting epileptic events using NNXX, optionally with nonlinear analysis parameters
US8172759B2 (en) Methods and systems for detecting epileptic events using nonlinear analysis parameters
US20070260147A1 (en) System and method for monitoring cardiac signal activity in patients with nervous system disorders
CN104853673A (en) System and method for non-invasive autonomic nerve activity monitoring
Britton et al. Seizures and syncope: anatomic basis and diagnostic considerations
Yılmaz et al. Heart rate variability: Highlights from hidden signals
Hamner et al. Automated quantification of sympathetic beat-by-beat activity, independent of signal quality
Harreby et al. Early seizure detection in rats based on vagus nerve activity
Matsunaga et al. Spectral analysis of circadian rhythms in heart rate variability of dogs
Galli et al. Analysis of RR variability in drug-resistant epilepsy patients chronically treated with vagus nerve stimulation
Goudman et al. Effects of spinal cord stimulation on heart rate variability in patients with failed back surgery syndrome: comparison between a 2-lead ECG and a wearable device
Britton Syncope and seizures: differential diagnosis and evaluation
Chandra Heart rate variability analysis–Current and future trends
Ghosh et al. Epileptic seizure: a new approach for quantification of autonomic deregulation with Chaos based technique
JP2001505441A (en) Implantable medical device responsive to heart rate variability analysis

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER