US20220095619A1 - Method of controlling weeds in a cultivation area of determinate soybean - Google Patents

Method of controlling weeds in a cultivation area of determinate soybean Download PDF

Info

Publication number
US20220095619A1
US20220095619A1 US17/547,471 US202117547471A US2022095619A1 US 20220095619 A1 US20220095619 A1 US 20220095619A1 US 202117547471 A US202117547471 A US 202117547471A US 2022095619 A1 US2022095619 A1 US 2022095619A1
Authority
US
United States
Prior art keywords
soybean
trifludimoxazin
determinate
determinate soybean
cultivation area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/547,471
Inventor
Yoshinao Sada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to US17/547,471 priority Critical patent/US20220095619A1/en
Publication of US20220095619A1 publication Critical patent/US20220095619A1/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/84Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms six-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,4
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P13/00Herbicides; Algicides

Definitions

  • the present invention relates to a method of controlling weeds in a cultivation area of determinate soybean.
  • a method of treating trifludimoxazin has been known, as a method for controlling weeds in a cultivation area of soybean (see Patent Document 1).
  • several types of soybean such as determinate soybean, indeterminate soybean and semi-determinate soybean are known (see Non-Patent Document 1).
  • Patent Document 1 WO2010/145992
  • Non-Patent Document 1 Crop Science 12 (1972), 235-239.
  • An object of the present invention is to provide a method having superior crop selectivity for weed control in a cultivation area of determinate soybean.
  • the present inventor has found out that weeds can be effectively controlled with superior crop selectivity by applying trifludimoxazin in a cultivation area of determinate soybean.
  • the present invention includes the following aspects [1] and [2].
  • a method of controlling weeds in a cultivation area of determinate soybean including a step of applying trifludimoxazin in the cultivation area of determinate soybean.
  • Weeds can be controlled in a cultivation area of determinate soybean without causing significant injury on determinate soybean according to the present invention.
  • the method of controlling weeds in a cultivation area of determinate soybean of the present invention includes a step of applying trifludimoxazin in cultivation area of determinate soybean.
  • Trifludimoxazin is compound showing herbicidal activity by inhibiting protoporphyrinogen oxidase that is involved in chlorophyll biosynthesis system, and can be manufactured by a known method.
  • Soybean in the present invention is a plant species generally described as Glycine max, but it also includes ‘biologically identical species having the homogeneous Genome to Glycine max’ such as wild soybean (Glycine soja, also known as Glycine max subsp. soja).
  • Determinate soybean in the present method is a variety group among the aforementioned soybean showing a Genotype dt1/dt1 at the locus (Dt1) relating to the growth habit. Varieties showing Dt1/dt1 or Dt1/Dt1 on the locus become indeterminate soybean or semi-determinate soybean depending on the condition on another locus (Dt2) relating to the growth habit.
  • determinate soybean is not particularly limited as long as the determinate soybean is a variety which is usually cultivated.
  • determinate soybean belonging to diverse maturity groups from early-maturing to late-maturing can be used.
  • the varieties are not limited by diverse intended usages of the harvest of determinate soybean.
  • determinate soybean for any of the intended usages such as seed production, ornamentals, green manures, silage, grains, and the like can be used.
  • determinate soybean for any of the intended usages such as food, oil extraction, feed, flour milling, and the like can be used.
  • determinate soybean varieties include Toyomusume, Sachiyutaka, Fukunari, Tambaguro, Enrei, Hobbit87, Asgrow AG53X6, Credenz CZ5225LL and the like.
  • soybean which does not belong to determinate soybean includes Williams 82, Harosoy Kurosengoku, Tsurusengoku, wild soybean, Asgrow AG4934, Credenz CZ4590RY and the like.
  • a seed weight of determinate soybean is usually within a range of 20 to 600 mg/seed, more preferably 250 to 500 mg/seed.
  • the determinate soybean may be the one producible by natural crossing, plants producible by a mutation, F1 hybrid plants, or transgenic plants (also called genetically modified plants). These plants generally have characteristics such as tolerance to herbicides, accumulation of substances harmful to insect pests, reduction in sensitivity to diseases, increase in yield potential, improvement in resistance to biotic or abiotic stress factors, accumulation of substances, and improvement in preservability and processability.
  • the F1 hybrid plants are those which are each a first. filial hybrid obtained by crossing two different varieties with each other and usually have characteristics of heterosis, which is a nature of having more excellent trait than both of the parents.
  • the transgenic plants are those which are obtained by introducing an exogeneous gene from other organisms such as microorganisms and have characteristics like those that cannot be easily obtained by crossbreeding, mutation induction, or natural recombination in natural environments.
  • Examples of the technologies used to create the above plants include conventional type variety an technologies; genetic recombination technologies; genome breeding technologies; new breeding technologies; and genome editing technologies.
  • the conventional type variety improvement technologies are specifically technologies for obtaining plants having desired properties by a mutation and crossing.
  • the genetic recombination technologies are technologies in which a target gene (DNA) is extracted from a certain organism (for example, microorganism) to introduce it into a genome of a different target organism, thereby imparting new properties to the organism, and antisense technologies or RNA interference technologies for imparting new or improved characteristics by silencing a certain Genes existing in plants.
  • the genome breeding technologies are those improving breeding efficiency by using genome information and include DNA marker (also called genome markers or genetical markers) breeding technologies and Genomic selection.
  • the DNA marker breeding is a method in which a progeny having a target gene with a useful trait is selected from a lot of cross progenies by using a DNA marker which is a DNA sequence and is a marker of the presence position of a gene with a specific useful trait on a genome.
  • This method has the characteristics that the time required for breeding can be efficiently reduced by analyzing the cross progeny using a DNA marker when the progeny is a juvenile plant.
  • the genomic selection is a technique in which a prediction formula is created from a phenotype obtained in advance and genome information to predict the characteristics from the prediction formula and the genome information without any evaluation of the phenotype and is technologies contributing to improvement in efficient breeding.
  • the genome editing technologies are those in which genetic information is transformed in a sequence-specific manner which enables, for example, deletion of a base sequence, substitution of an amino acid sequence, and introduction of an exogenous gene.
  • tools for these techniques include sequence-specific genome modification techniques such as zinc-finger nuclease (ZFN), CRISPR/Cas9, CRISPER/Cpf1, and Meganuclease which each enable sequence-specific DNA scission and. CAS9 Nickase and Target-AID which are each created by modifying the aforementioned tools.
  • plants mentioned above include plants listed in GM APPROVAL DATABASE of genetically modified crops in the electronic information site of INTERNATIONAL SERVICE for the ACQUISITION of AGRI-BIOTECH APPLICATIONS (ISAAA). More specifically, these examples include herbicide tolerant plants, insect pest resistant plants, disease resistant plants, and quality modified (for example, increase or decrease in content of a certain component or change in composition) plants of products (for example, starch, amino acid, and fatty acid), fertile trait modified, plants, abiotic stress tolerant plants, or plants modified in traits relating to Growth and yield.
  • the tolerance to herbicides is obtained, for example, by reducing the compatibility of a chemical with its target, by rapid metabolism (for example, breakdown or modification) resulting from the expression of a chemical deactivation enzyme, or by inhibiting the incorporation of a chemical into a plant body or the transfer of the chemical in the plant body.
  • the plants to which herbicide tolerance is imparted by genetic recombination technologies include plants to which tolerances to the following inhibitors are imparted by genetic recombination technologies: 4-hydroxyphenyl pyruvate dioxygenase (hereinafter abbreviated as HPPD) inhibitors such as isoxaflutole and mesotrione, acetoiactate synthetase (hereinafter abbreviated as ALS) inhibitors such as imadazolinone type herbicides including imazethapyr and sulfonylurea type herbicides including thifensulfuron-methyl, 5-enolpyruvyishikimate-3-phosphate synthase (hereinafter abbreviated as EPSP) inhibitors such as glyphosate, glutamine synthetase inhibitors such as glufosinate, auxin type herbicides such as 2,4-D and dicamba, oxynil type herbicides including bromoxynil, and
  • trifludimoxazin is usually used after making formulation by mixing with a carrier such as a solid or liquid carrier, and adding auxiliary agents for formulation such as a surfactant as necessary.
  • a carrier such as a solid or liquid carrier
  • auxiliary agents for formulation such as a surfactant as necessary.
  • preferable formulation type is a soluble liquid, soluble granule, an aqueous suspension concentrate, oil-based liquid suspension, wettable powder, water dispersible granule, granule, aqueous emulsion, oil-based emulsion, and emulsifiable concentrate. More preferable formulation type is aqueous suspension concentrate.
  • a formulation containing trifludimoxazin singly as an active ingredient may be independently used or may be tank-mixed with a formulation containing other herbicide as active ingredients.
  • a formulation containing trifludimoxazin and other herbicide may be used.
  • a formulation containing trifludimoxazin and other herbicide as active ingredients may be tank-mixed with a formulation containing, as active ingredients, herbicides different from the above herbicides.
  • the content of the active ingredients (trifludimoxazin or a total of trifludimoxazin and other herbicides) in the formulation is usually within a range of 0.01 to 90 % by weight, preferably 1 to 80% by weight.
  • a cultivation area of determinate soybean includes the area where determinate soybean is growing or will grow.
  • “applying trifludimoxazin in a cultivation area of determinate soybean” includes applying trifludimoxazin to weeds growing in the cultivation area of determinate soybean and applying trifludimoxazin to a soil of the cultivation area of determinate soybean, and is usually conducted using a spray dilution produced by mixing a formulation containing trifludimoxazin with water.
  • the amount of the dilution to be sprayed is usually 10 to 1000 L, preferably 100 to 500 L, and more preferably 140 to 300 L per hectare of cultivation area of determinate soybean though no particular limitation is imposed on it.
  • the application rate of trifludimoxazin is preferably 5 to 100 g, more preferably 10 to 50 g, still more preferably 25 p per hectare of the cultivation area.
  • Examples of the specific application rates include 7 g, 8 g, 12 g, 15 g, 18 g, 20 g, 30 g, 40 g, 60 g, 80 g per hectare. These application rates can be described with “approximately.” “Approximately” means plus/minus 10%, so, for example, “approximately 10 g per hectare” means “9 to 11 g per hectare.”
  • a period of time for conducting the present method is not particularly limited, the period of time is usually within a range from 5 a.m. to 9 p.m., and the photon. flux density at land surface of the place where the present method is conducted is usually 10 to 2500 ⁇ mol/m 2 /s.
  • the spray pressure when conducting the present method is usually 30 to 120 PSI and preferably 40 to 80 PSI though no particular limitation is imposed on it.
  • the spray pressure a set value lust before the dilution is introduced into the nozzle.
  • the nozzle used in the present method may be flat-fan nozzles or drift-reducing nozzles.
  • flat-fan nozzles include Teejet110 series and XR Teejet110 series manufactured by Teejet Company.
  • the spray pressure is generally 30 to 120 PSI and the volume median diameter of liquid droplets discharged from the nozzle is usually less than 430 micro meter.
  • the drift-reducing nozzle is a nozzle which leads to less drift compared with a flat-fan nozzle and which is called an air induction nozzle or pre-oriface nozzle.
  • the volume median diameter of a liquid droplet discharged from the drift-reducing nozzle is usually 430 micro meter or more.
  • seeds of determinate soybean are seeded to the cultivation area by usual methods.
  • the present method may be conducted before seeding and may be conducted concurrently with and/or after seeding.
  • examples of the number of times that the present method is conducted include 1 to 3 times during the cultivation of determinate soybean.
  • the present method may be conducted once before, concurrently with, or after seeding.
  • twice the present method may be conducted twice except before seeding, twice except concurrently with seeding, or twice except after seeding.
  • the present method may be conducted three times before, concurrently with, and after seeding.
  • the present method is conducted usually from 50 days before seeding to immediately before seeding, preferably from 30 days before seeding to immediately before seeding, more preferably from 20 days before seeding to immediately before seeding, still preferably from 10 days before seeding to immediately before seeding.
  • the present method is conducted usually from immediately after seeding to before flowering, preferably from immediately after seeding to before emergence, and 1 to 6 true leaf stage of determinate soybean.
  • the case where the present method is conducted concurrently with seedng is a case where a sowing machine and a spraying machine are integrated with each other.
  • seeds of determinate soybean may be treated with one or more compounds selected from the group consisting of insecticidal compounds, nematicidal compounds, fungicidal compounds, and plant growth regulators.
  • compounds to be used for the seed treatment include neonicotinoid compounds, diamide compounds, carbamate compounds, organophosphorous compounds, biological nematicidal compounds, other insecticidal compounds and nematicidal compounds, azole compounds, strobilurin compounds, metalaxyl compounds, SDHI compounds, other fungicidal compounds, and plant growth regulators.
  • Target weed species controlled in the present method include the followings as examples, however they are not limited thereto.
  • Grass weeds ( Poaceae ): barnyardgrass ( Echinochloa crus - galli ), lunglerice ( Echinochloa colona ), green foxtail ( Setaria viridis ), giant foxtail ( Setaria faberi ), large crabgrass ( Digitaria sanguinalis ), Jamaican crabgrass (Digitaria horizontalis), Digitaria insularis, Goosegrass ( Eleusine indica ), Johnsongrass ( Sorghum halepense ), Italian ryeGrass ( Lolium multiflorum ), perennial rye-grass ( Lolium perenne ), rigid ryegrass ( Loliam rigidum ).
  • trifludimoxazin may be used in combination with one or more other herbicides.
  • using in combination includes tank-mix, pre-mix, and sequential treatment.
  • sequential treatment the order of treatments is not particularly limited.
  • Herbicides which may be used in combination with trifludimoxazin is preferably glyphosate-potassium, glyphosate-dimethylamine, glyphosate-monoethanolamine, glyphosate-isopropylammonium, pyroxasulfone, mesotrione, isoxaflutole, metribuzine, dicamba-diglycolamine, dicamba-biproamine, dicamba-tetrabutylammonium, dicamba-tetrabutlyphosphonium, glufosinate-ammonium, imazethapyr-ammonium, dimethenamid-P, pendimethalin, and saflufenacil, and more preferably, saflufenacil.
  • the weight ratio of trifludimoxazin to other herbicide is usually within a range of 1:0.1 to 1:500, preferably 1:0.5 to 1:100, more preferably 1:1 to 1:10.
  • the specific weight ratios include 1:0.2, 1:0.4, 1:0.6, 1:0.8, 1:1.5, 1:2, 1:2.5, 1:3, 1:4, 1:7, 1:15, 1:20, 1:25, 1:30, 1:40, 1:50, 1:80, 1:150, 1:200, 1:250, 1:300 and 1:400.
  • These weight ratios may be described with approximately. Approximately means plus/minus 10%, so, for example, “approximately 1:2” means 1:1.8 to 1:2.2.
  • the cultivation of determinate soybean in the present invention can be managed according to the plant-nutrition in the common crop cultivation.
  • the fertilization system may be based on Precision. Agriculture adopting variable rate application or may be conventionally uniform one.
  • nitrogen fixation bacteria and mycorrhizal fungi may be inoculated by seed treatment.
  • the evaluation of the herbicidal effect and crop injury is classified into 0 to 100, where the numeral “0” indicates no or little difference in the state of germination or growth of weeds or soybean under test at the time of examination as comparison with untreated weeds or soybean, respectively and the numeral “100” indicates the complete death of weeds or soybean under test or the complete inhibition of their germination or growth of weeds or soybean under test.
  • a pot is filled with a soil, and the determinate soybean, indeterminate soybean, semi-determinate soybean, palmer amaranth, waterhemp, kochia, common ragweed and marestail are sown thereto.
  • trifludimoxazin spray liquid prepared by diluting trifludimoxazin formulation an aqueous suspension concentrate containing 500 g/L of trifludimoxazin) with water
  • trifludimoxazin spray liquid is uniformly applied onto the pot using a sprayer at the amount of 200 L per hectare so that the application rate of trifludimoxazin may be 25 or 50 g per hectare.
  • 21 days after the treatment herbicidal effects and injuries on various soybeans are investigated. High herbicidal effects on all weeds are confirmed. It is also confirmed that injury on determinate soybean is less than those on indeterminate soybean and semi-determinate soybean.
  • a pot is filled with a soil, and then Palmer amaranth, waterhemp, kochia, common ragweed and marestail are sown thereto.
  • trifludimoxazin spray liquid prepared by diluting trifludimoxazin formulation (an aqueous suspension concentrate containing 500 g/L of trifludimoxazin) with water
  • trifludimoxazin spray liquid is uniformly applied onto the pot using a sprayer at the amount of 200 L per hectare so that the application rate of trifludimoxazin may be 25 or 50 g per hectare.
  • determinate soybean, indeterminate soybean, and semi-determinate soybean are sown. 21 days after sowing soybeans, herbicidal effects and injuries on various soybeans are investigated. High effects on all weeds are confirmed. It is also confirmed that injury on determinate soybean is less than those on indeterminate soybean and semi-determinate soybean.
  • Weeds can be controlled in a cultivation area of determinate soybean with superior crop selectivity according to the present invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catching Or Destruction (AREA)

Abstract

The present invention can provide a method having superior crop selectivity for weed control in a cultivation area of determinate soybean. The method includes a step of applying trifludimoxazin in a cultivation area of determinate soybean.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation application of co-pending application Ser. No. 16/391,919, filed on Apr. 23, 2019, which claims the benefit under 35 U.S.C. § 119(a) to Patent Application. No. 2019-073974, filed in Japan on Apr. 9, 2019, all of which are hereby expressly incorporated by reference into the present application.
  • TECHNICAL FIELD
  • The present invention relates to a method of controlling weeds in a cultivation area of determinate soybean.
  • BACKGROUND ART
  • Hitherto, a method of treating trifludimoxazin has been known, as a method for controlling weeds in a cultivation area of soybean (see Patent Document 1). Also, several types of soybean such as determinate soybean, indeterminate soybean and semi-determinate soybean are known (see Non-Patent Document 1). However, it is not known that weeds can be controlled with particularly superior crop selectivity by applying trifludimoxazin in a cultivation area of determinate soybean.
  • CITATION LIST Patent Document
  • Patent Document 1: WO2010/145992
  • Non-Patent Document
  • Non-Patent Document 1: Crop Science 12 (1972), 235-239.
  • SUMMARY OF THE INVENTION
  • Problems to Be Solved by the Invention
  • An object of the present invention is to provide a method having superior crop selectivity for weed control in a cultivation area of determinate soybean.
  • Means for Solving the Problems
  • The present inventor has found out that weeds can be effectively controlled with superior crop selectivity by applying trifludimoxazin in a cultivation area of determinate soybean.
  • The present invention includes the following aspects [1] and [2].
  • [1] A method of controlling weeds in a cultivation area of determinate soybean, the method including a step of applying trifludimoxazin in the cultivation area of determinate soybean.
  • [2] The method according to [1], wherein trifludimoxazin is applied to a soil of the cultivation area of determinate soybean.
  • Effect of the Invention
  • Weeds can be controlled in a cultivation area of determinate soybean without causing significant injury on determinate soybean according to the present invention.
  • MODE FOR CARRYING OUT THE INVENTION
  • The method of controlling weeds in a cultivation area of determinate soybean of the present invention (hereinafter, sometimes referred to as “present method”) includes a step of applying trifludimoxazin in cultivation area of determinate soybean.
  • Trifludimoxazin is compound showing herbicidal activity by inhibiting protoporphyrinogen oxidase that is involved in chlorophyll biosynthesis system, and can be manufactured by a known method.
  • Soybean in the present invention is a plant species generally described as Glycine max, but it also includes ‘biologically identical species having the homogeneous Genome to Glycine max’ such as wild soybean (Glycine soja, also known as Glycine max subsp. soja). Determinate soybean in the present method is a variety group among the aforementioned soybean showing a Genotype dt1/dt1 at the locus (Dt1) relating to the growth habit. Varieties showing Dt1/dt1 or Dt1/Dt1 on the locus become indeterminate soybean or semi-determinate soybean depending on the condition on another locus (Dt2) relating to the growth habit.
  • In the present method, variations within determinate soybean are not particularly limited as long as the determinate soybean is a variety which is usually cultivated. For examples, determinate soybean belonging to diverse maturity groups from early-maturing to late-maturing can be used. Also, the varieties are not limited by diverse intended usages of the harvest of determinate soybean. For example, determinate soybean for any of the intended usages such as seed production, ornamentals, green manures, silage, grains, and the like can be used. For grains, determinate soybean for any of the intended usages such as food, oil extraction, feed, flour milling, and the like can be used.
  • Examples of determinate soybean varieties include Toyomusume, Sachiyutaka, Fukunari, Tambaguro, Enrei, Hobbit87, Asgrow AG53X6, Credenz CZ5225LL and the like. Examples of soybean which does not belong to determinate soybean includes Williams 82, Harosoy Kurosengoku, Tsurusengoku, wild soybean, Asgrow AG4934, Credenz CZ4590RY and the like. Although the weight of seeds of determinate soybean which can be used in the present method is not particularly limited, a seed weight of determinate soybean. is usually within a range of 20 to 600 mg/seed, more preferably 250 to 500 mg/seed.
  • The determinate soybean may be the one producible by natural crossing, plants producible by a mutation, F1 hybrid plants, or transgenic plants (also called genetically modified plants). These plants generally have characteristics such as tolerance to herbicides, accumulation of substances harmful to insect pests, reduction in sensitivity to diseases, increase in yield potential, improvement in resistance to biotic or abiotic stress factors, accumulation of substances, and improvement in preservability and processability.
  • The F1 hybrid plants are those which are each a first. filial hybrid obtained by crossing two different varieties with each other and usually have characteristics of heterosis, which is a nature of having more excellent trait than both of the parents. The transgenic plants are those which are obtained by introducing an exogeneous gene from other organisms such as microorganisms and have characteristics like those that cannot be easily obtained by crossbreeding, mutation induction, or natural recombination in natural environments.
  • Examples of the technologies used to create the above plants include conventional type variety an technologies; genetic recombination technologies; genome breeding technologies; new breeding technologies; and genome editing technologies. The conventional type variety improvement technologies are specifically technologies for obtaining plants having desired properties by a mutation and crossing. The genetic recombination technologies are technologies in which a target gene (DNA) is extracted from a certain organism (for example, microorganism) to introduce it into a genome of a different target organism, thereby imparting new properties to the organism, and antisense technologies or RNA interference technologies for imparting new or improved characteristics by silencing a certain Genes existing in plants. The genome breeding technologies are those improving breeding efficiency by using genome information and include DNA marker (also called genome markers or genetical markers) breeding technologies and Genomic selection. For example, the DNA marker breeding is a method in which a progeny having a target gene with a useful trait is selected from a lot of cross progenies by using a DNA marker which is a DNA sequence and is a marker of the presence position of a gene with a specific useful trait on a genome. This method has the characteristics that the time required for breeding can be efficiently reduced by analyzing the cross progeny using a DNA marker when the progeny is a juvenile plant.
  • Also, the genomic selection is a technique in which a prediction formula is created from a phenotype obtained in advance and genome information to predict the characteristics from the prediction formula and the genome information without any evaluation of the phenotype and is technologies contributing to improvement in efficient breeding. The new breeding techniques are a generic term of variety-improvement (=breeding) techniques that are combinations of molecular biological techniques. Examples of the new breeding techniques include cisgenesis/intragenesis, introduction of an oligonucleotide-directed mutation, RNA-dependent DNA methylation, grafting onto a GM rootstock or scion, reverse breeding, agroinfiltration, and seed production technology (SPT). The genome editing technologies are those in which genetic information is transformed in a sequence-specific manner which enables, for example, deletion of a base sequence, substitution of an amino acid sequence, and introduction of an exogenous gene. Examples of tools for these techniques include sequence-specific genome modification techniques such as zinc-finger nuclease (ZFN), CRISPR/Cas9, CRISPER/Cpf1, and Meganuclease which each enable sequence-specific DNA scission and. CAS9 Nickase and Target-AID which are each created by modifying the aforementioned tools.
  • Examples of the plants mentioned above include plants listed in GM APPROVAL DATABASE of genetically modified crops in the electronic information site of INTERNATIONAL SERVICE for the ACQUISITION of AGRI-BIOTECH APPLICATIONS (ISAAA). More specifically, these examples include herbicide tolerant plants, insect pest resistant plants, disease resistant plants, and quality modified (for example, increase or decrease in content of a certain component or change in composition) plants of products (for example, starch, amino acid, and fatty acid), fertile trait modified, plants, abiotic stress tolerant plants, or plants modified in traits relating to Growth and yield.
  • Examples of plants to which tolerance to herbicides is imparted are given as follows.
  • The tolerance to herbicides is obtained, for example, by reducing the compatibility of a chemical with its target, by rapid metabolism (for example, breakdown or modification) resulting from the expression of a chemical deactivation enzyme, or by inhibiting the incorporation of a chemical into a plant body or the transfer of the chemical in the plant body.
  • The plants to which herbicide tolerance is imparted by genetic recombination technologies include plants to which tolerances to the following inhibitors are imparted by genetic recombination technologies: 4-hydroxyphenyl pyruvate dioxygenase (hereinafter abbreviated as HPPD) inhibitors such as isoxaflutole and mesotrione, acetoiactate synthetase (hereinafter abbreviated as ALS) inhibitors such as imadazolinone type herbicides including imazethapyr and sulfonylurea type herbicides including thifensulfuron-methyl, 5-enolpyruvyishikimate-3-phosphate synthase (hereinafter abbreviated as EPSP) inhibitors such as glyphosate, glutamine synthetase inhibitors such as glufosinate, auxin type herbicides such as 2,4-D and dicamba, oxynil type herbicides including bromoxynil, and protoporphyrinogen oxidase (herein after abbreviated as PPO) such as flumioxazin.
  • In the present method, trifludimoxazin is usually used after making formulation by mixing with a carrier such as a solid or liquid carrier, and adding auxiliary agents for formulation such as a surfactant as necessary. In the case of making formulation, preferable formulation type is a soluble liquid, soluble granule, an aqueous suspension concentrate, oil-based liquid suspension, wettable powder, water dispersible granule, granule, aqueous emulsion, oil-based emulsion, and emulsifiable concentrate. More preferable formulation type is aqueous suspension concentrate. Moreover, a formulation containing trifludimoxazin singly as an active ingredient may be independently used or may be tank-mixed with a formulation containing other herbicide as active ingredients. Also, a formulation containing trifludimoxazin and other herbicide may be used. Also, a formulation containing trifludimoxazin and other herbicide as active ingredients may be tank-mixed with a formulation containing, as active ingredients, herbicides different from the above herbicides. The content of the active ingredients (trifludimoxazin or a total of trifludimoxazin and other herbicides) in the formulation is usually within a range of 0.01 to 90 % by weight, preferably 1 to 80% by weight.
  • In the present invention, “a cultivation area of determinate soybean” includes the area where determinate soybean is growing or will grow.
  • In the present method, “applying trifludimoxazin in a cultivation area of determinate soybean” includes applying trifludimoxazin to weeds growing in the cultivation area of determinate soybean and applying trifludimoxazin to a soil of the cultivation area of determinate soybean, and is usually conducted using a spray dilution produced by mixing a formulation containing trifludimoxazin with water. The amount of the dilution to be sprayed is usually 10 to 1000 L, preferably 100 to 500 L, and more preferably 140 to 300 L per hectare of cultivation area of determinate soybean though no particular limitation is imposed on it.
  • In the present method, the application rate of trifludimoxazin is preferably 5 to 100 g, more preferably 10 to 50 g, still more preferably 25 p per hectare of the cultivation area. Examples of the specific application rates include 7 g, 8 g, 12 g, 15 g, 18 g, 20 g, 30 g, 40 g, 60 g, 80 g per hectare. These application rates can be described with “approximately.” “Approximately” means plus/minus 10%, so, for example, “approximately 10 g per hectare” means “9 to 11 g per hectare.”
  • Although a period of time for conducting the present method is not particularly limited, the period of time is usually within a range from 5 a.m. to 9 p.m., and the photon. flux density at land surface of the place where the present method is conducted is usually 10 to 2500 μmol/m2/s.
  • The spray pressure when conducting the present method is usually 30 to 120 PSI and preferably 40 to 80 PSI though no particular limitation is imposed on it. Here, the spray pressure a set value lust before the dilution is introduced into the nozzle.
  • The nozzle used in the present method may be flat-fan nozzles or drift-reducing nozzles. Examples of flat-fan nozzles include Teejet110 series and XR Teejet110 series manufactured by Teejet Company. When using these nozzles, the spray pressure is generally 30 to 120 PSI and the volume median diameter of liquid droplets discharged from the nozzle is usually less than 430 micro meter. The drift-reducing nozzle is a nozzle which leads to less drift compared with a flat-fan nozzle and which is called an air induction nozzle or pre-oriface nozzle. The volume median diameter of a liquid droplet discharged from the drift-reducing nozzle is usually 430 micro meter or more.
  • In the present method, seeds of determinate soybean are seeded to the cultivation area by usual methods. The present method may be conducted before seeding and may be conducted concurrently with and/or after seeding. Namely, examples of the number of times that the present method is conducted include 1 to 3 times during the cultivation of determinate soybean. In the case of once, the present method may be conducted once before, concurrently with, or after seeding. In the case of twice, the present method may be conducted twice except before seeding, twice except concurrently with seeding, or twice except after seeding. In the case of three times, the present method may be conducted three times before, concurrently with, and after seeding.
  • When the present method is conducted before seeding, the present method is conducted usually from 50 days before seeding to immediately before seeding, preferably from 30 days before seeding to immediately before seeding, more preferably from 20 days before seeding to immediately before seeding, still preferably from 10 days before seeding to immediately before seeding.
  • When the present method is conducted after seeding, the present method is conducted usually from immediately after seeding to before flowering, preferably from immediately after seeding to before emergence, and 1 to 6 true leaf stage of determinate soybean.
  • The case where the present method is conducted concurrently with seedng is a case where a sowing machine and a spraying machine are integrated with each other.
  • In the present method, seeds of determinate soybean may be treated with one or more compounds selected from the group consisting of insecticidal compounds, nematicidal compounds, fungicidal compounds, and plant growth regulators. Examples of compounds to be used for the seed treatment include neonicotinoid compounds, diamide compounds, carbamate compounds, organophosphorous compounds, biological nematicidal compounds, other insecticidal compounds and nematicidal compounds, azole compounds, strobilurin compounds, metalaxyl compounds, SDHI compounds, other fungicidal compounds, and plant growth regulators.
  • Target weed species controlled in the present method include the followings as examples, however they are not limited thereto.
  • Broadleaf weeds: Lambsquarters (Chenopodium album), Kochia (Kochia scoparia), Redroot pigweed (Amaranthus retroflexus), smooth pigweed (Amaranthus hybridus), Palmer amaranth (Amaranthus palmeri), Waterhemp (Amaranthus tuberculatus=Amaranthus rudis=Amaranthus tamariscinus), Amaranthus quitensis, Wild poinsettia (Euphorbia heterophylla), hairy fleabane (Convza bonariensis), Conyza sumatrensis marestail (Conyza Canadensis), common ragweed. (Ambrosia artemisijfolia), giant ragweed (Ambrosia trifida).
  • Grass weeds (Poaceae): barnyardgrass (Echinochloa crus-galli), lunglerice (Echinochloa colona), green foxtail (Setaria viridis), giant foxtail (Setaria faberi), large crabgrass (Digitaria sanguinalis), Jamaican crabgrass (Digitaria horizontalis), Digitaria insularis, Goosegrass (Eleusine indica), Johnsongrass (Sorghum halepense), Italian ryeGrass (Lolium multiflorum), perennial rye-grass (Lolium perenne), rigid ryegrass (Loliam rigidum).
  • In the present method, trifludimoxazin may be used in combination with one or more other herbicides. For here, using in combination includes tank-mix, pre-mix, and sequential treatment. In the case of sequential treatment, the order of treatments is not particularly limited.
  • Herbicides which may be used in combination with trifludimoxazin is preferably glyphosate-potassium, glyphosate-dimethylamine, glyphosate-monoethanolamine, glyphosate-isopropylammonium, pyroxasulfone, mesotrione, isoxaflutole, metribuzine, dicamba-diglycolamine, dicamba-biproamine, dicamba-tetrabutylammonium, dicamba-tetrabutlyphosphonium, glufosinate-ammonium, imazethapyr-ammonium, dimethenamid-P, pendimethalin, and saflufenacil, and more preferably, saflufenacil.
  • When aforementioned herbicide is used in combination with trifludimoxazin, the weight ratio of trifludimoxazin to other herbicide is usually within a range of 1:0.1 to 1:500, preferably 1:0.5 to 1:100, more preferably 1:1 to 1:10. Examples of the specific weight ratios include 1:0.2, 1:0.4, 1:0.6, 1:0.8, 1:1.5, 1:2, 1:2.5, 1:3, 1:4, 1:7, 1:15, 1:20, 1:25, 1:30, 1:40, 1:50, 1:80, 1:150, 1:200, 1:250, 1:300 and 1:400. These weight ratios may be described with approximately. Approximately means plus/minus 10%, so, for example, “approximately 1:2” means 1:1.8 to 1:2.2.
  • The cultivation of determinate soybean in the present invention can be managed according to the plant-nutrition in the common crop cultivation. The fertilization system may be based on Precision. Agriculture adopting variable rate application or may be conventionally uniform one. In addition, nitrogen fixation bacteria and mycorrhizal fungi may be inoculated by seed treatment.
  • EXAMPLES
  • The present invention will be explained by way of examples, but the present invention should not be limited thereto.
  • First, evaluation criteria for a herbicidal effect, and crop injury described in the following examples are shown.
  • Herbicidal Effect and Crop Injury
  • The evaluation of the herbicidal effect and crop injury is classified into 0 to 100, where the numeral “0” indicates no or little difference in the state of germination or growth of weeds or soybean under test at the time of examination as comparison with untreated weeds or soybean, respectively and the numeral “100” indicates the complete death of weeds or soybean under test or the complete inhibition of their germination or growth of weeds or soybean under test.
  • Example 1
  • A pot is filled with a soil, and the determinate soybean, indeterminate soybean, semi-determinate soybean, palmer amaranth, waterhemp, kochia, common ragweed and marestail are sown thereto. Two days later, trifludimoxazin spray liquid (prepared by diluting trifludimoxazin formulation an aqueous suspension concentrate containing 500 g/L of trifludimoxazin) with water) is uniformly applied onto the pot using a sprayer at the amount of 200 L per hectare so that the application rate of trifludimoxazin may be 25 or 50 g per hectare. 21 days after the treatment, herbicidal effects and injuries on various soybeans are investigated. High herbicidal effects on all weeds are confirmed. It is also confirmed that injury on determinate soybean is less than those on indeterminate soybean and semi-determinate soybean.
  • Example 2
  • A pot is filled with a soil, and then Palmer amaranth, waterhemp, kochia, common ragweed and marestail are sown thereto. On the same day, trifludimoxazin spray liquid (prepared by diluting trifludimoxazin formulation (an aqueous suspension concentrate containing 500 g/L of trifludimoxazin) with water) is uniformly applied onto the pot using a sprayer at the amount of 200 L per hectare so that the application rate of trifludimoxazin may be 25 or 50 g per hectare. On the next day, determinate soybean, indeterminate soybean, and semi-determinate soybean are sown. 21 days after sowing soybeans, herbicidal effects and injuries on various soybeans are investigated. High effects on all weeds are confirmed. It is also confirmed that injury on determinate soybean is less than those on indeterminate soybean and semi-determinate soybean.
  • Example 3
  • Four varieties of determinate soybean, four varieties of indeterminate soybean, Palmer amaranth, kochia and large crabgrass were sown to a pot filled with a soil. On the next day, a trifludimoxazin spray liquid. (prepared by diluting an emuslfiable concentrate of trifludimoxazin with water) was uniformly sprayed onto the pot at the amount of 200 L, per hectare so that the application rate of trifludimoxazin might be 25 and 50 g per hectare. 18 days after treatment, herbicidal effects on weeds and injury on soybeans were investigated. As a result, the herbicidal effect on each of the three weeds was 100. The results of evaluation of injury on soybeans are shown in Table A.
  • TABLE A
    Variety/growth habit 25 g/hectare 50 g/hectare
    Tambaguro/Determinate 0 10
    Toyomusume/Determinate 0 5
    Sachiyutaka/Determinate 0 0
    Fukunari/Determinate 0 0
    Kurosengoku/Indeterminate 30 60
    Wild soybean/Indeterminate 100 100
    Williams 82/Indeterminate 40 80
    Harosoy/Indeterminate 30 50
  • INDUSTRIAL APPLICABILITY
  • Weeds can be controlled in a cultivation area of determinate soybean with superior crop selectivity according to the present invention.

Claims (3)

1. A method of selectively controlling growing weeds selected from the group consisting of Kochia species and Amaranthus species in a cultivation area of determinate soybean, the method comprising a step of applying trifludimoxazin to growing weeds from 10 days before to immediately before seeding of determinate soybean,
wherein the application rate of trifludimoxazin is from approximately 7 g to approximately 12 g per hectare,
wherein the determinate soybean is not bred to be tolerant to trifludimoxazin transgenically or non-transgenically, and
wherein the application of trifludimoxazin makes no or little difference in the state of germination or growth of the determinate soybean due to crop injury compared with a determinate soybean untreated with trifludimoxazin.
2. The method according to claim 1, wherein the growing weeds are selected from the group consisting of Kochia scoparia and Amaranthus palmeri.
3. The method according to claim 1, wherein the growing weeds are Kochia scoparia.
US17/547,471 2019-04-09 2021-12-10 Method of controlling weeds in a cultivation area of determinate soybean Pending US20220095619A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/547,471 US20220095619A1 (en) 2019-04-09 2021-12-10 Method of controlling weeds in a cultivation area of determinate soybean

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-073974 2019-04-09
JP2019073974A JP2022044851A (en) 2019-04-09 2019-04-09 Method of controlling weeds in cultivation area of determinate soybean
US16/391,919 US11224225B2 (en) 2019-04-09 2019-04-23 Method of controlling weeds in a cultivation area of determinate soybean
US17/547,471 US20220095619A1 (en) 2019-04-09 2021-12-10 Method of controlling weeds in a cultivation area of determinate soybean

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/391,919 Continuation US11224225B2 (en) 2019-04-09 2019-04-23 Method of controlling weeds in a cultivation area of determinate soybean

Publications (1)

Publication Number Publication Date
US20220095619A1 true US20220095619A1 (en) 2022-03-31

Family

ID=72749288

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/391,919 Active US11224225B2 (en) 2019-04-09 2019-04-23 Method of controlling weeds in a cultivation area of determinate soybean
US17/601,180 Pending US20220174956A1 (en) 2019-04-09 2020-04-06 Method of controlling weeds in a cultivation area of determinate soybean
US17/547,471 Pending US20220095619A1 (en) 2019-04-09 2021-12-10 Method of controlling weeds in a cultivation area of determinate soybean

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US16/391,919 Active US11224225B2 (en) 2019-04-09 2019-04-23 Method of controlling weeds in a cultivation area of determinate soybean
US17/601,180 Pending US20220174956A1 (en) 2019-04-09 2020-04-06 Method of controlling weeds in a cultivation area of determinate soybean

Country Status (5)

Country Link
US (3) US11224225B2 (en)
JP (1) JP2022044851A (en)
BR (1) BR112021020131A2 (en)
CA (1) CA3135290A1 (en)
WO (1) WO2020209221A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022044850A (en) * 2019-04-09 2022-03-18 住友化学株式会社 Method of controlling weeds in cultivation area of field corn
JP2022044851A (en) * 2019-04-09 2022-03-18 住友化学株式会社 Method of controlling weeds in cultivation area of determinate soybean

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10772329B2 (en) * 2018-12-26 2020-09-15 Sumitomo Chemical Company, Limited Method of controlling weeds
US11096390B2 (en) * 2019-04-09 2021-08-24 Sumitomo Chemical Company, Limited Method of controlling weeds in a cultivation area of field corn
US11224225B2 (en) * 2019-04-09 2022-01-18 Sumitomo Chemical Company, Limited Method of controlling weeds in a cultivation area of determinate soybean

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040060082A1 (en) 2002-07-11 2004-03-25 Monsanto Technology, L.L.C. High yielding soybean plants with increased seed protein plus oil
PL2443102T3 (en) 2009-06-19 2013-09-30 Basf Se Herbicidal benzoxazinones
AU2011344311B2 (en) 2010-12-15 2015-05-14 Basf Se Herbicidal compositions
IN2014DN07226A (en) * 2012-03-01 2015-04-24 Basf Se
AR091489A1 (en) * 2012-06-19 2015-02-11 Basf Se PLANTS THAT HAVE A GREATER TOLERANCE TO HERBICIDES INHIBITORS OF PROTOPORFIRINOGENO OXIDASA (PPO)
CN105284845A (en) * 2015-10-28 2016-02-03 泰安市农业科学研究院 Weeding emulsifiable concentrate containing trifluoro-bentranil and linuron
CA3025047A1 (en) * 2016-05-24 2017-11-30 Basf Se Method for controlling ppo resistant weeds
US20190254277A1 (en) * 2018-02-21 2019-08-22 Sumitomo Chemical Company, Limited Method of controlling herbicide resistant weeds
WO2020116430A1 (en) * 2018-12-07 2020-06-11 住友化学株式会社 Herbicidal composition and weed control method
US20220225617A1 (en) * 2019-03-27 2022-07-21 Sumitomo Chemical Company, Limited Method for controlling weeds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10772329B2 (en) * 2018-12-26 2020-09-15 Sumitomo Chemical Company, Limited Method of controlling weeds
US11096390B2 (en) * 2019-04-09 2021-08-24 Sumitomo Chemical Company, Limited Method of controlling weeds in a cultivation area of field corn
US11224225B2 (en) * 2019-04-09 2022-01-18 Sumitomo Chemical Company, Limited Method of controlling weeds in a cultivation area of determinate soybean

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Rana, N., Confirmation of Glyphosate- and Acetolactate Synthase (ALS)-Inhibitor-Resistant Kochia (Kochia scoparia) in Nebraska, 2016, Journal of Agricultural Science, Vol. 8, No. 10, pages 54-62. (Year: 2016) *

Also Published As

Publication number Publication date
BR112021020131A2 (en) 2022-02-01
WO2020209221A1 (en) 2020-10-15
US20220174956A1 (en) 2022-06-09
JP2022044851A (en) 2022-03-18
US20200323210A1 (en) 2020-10-15
US11224225B2 (en) 2022-01-18
CA3135290A1 (en) 2020-10-15

Similar Documents

Publication Publication Date Title
US20210337796A1 (en) Method of controlling weeds in a cultivation area of field corn
US20220095619A1 (en) Method of controlling weeds in a cultivation area of determinate soybean
US10881108B2 (en) Method of protecting field corn from damage by a plant pathogen
WO2021148304A1 (en) Ppo formulations containing ether sulfates
US11363817B1 (en) Method of protecting determinate soybean from damage by a plant pathogen
US20230068414A1 (en) Herbicide combinations comprising glufosinate and trifludimoxazin
US20230091043A1 (en) Herbicide Combinations Comprising Glufosinate and Carfentrazone-Ethyl
US20230054333A1 (en) Herbicide Combinations Comprising Glufosinate and Saflufenacil
US20230075365A1 (en) Herbicide combinations comprising glufosinate and selected ppo inhibitors
CN118140933A (en) Application of isotianil in preventing and treating zebra stripes
US20230089506A1 (en) Herbicide Combinations Comprising Glufosinate and Fluthiacet-Methyl
US20230060640A1 (en) Herbicide combinations comprising glufosinate and pyraflufen-ethyl
US20230088774A1 (en) Herbicide Combinations Comprising Glufosinate and Oxadiazon
US20230080819A1 (en) Herbicide combinations comprising glufosinate and tiafenacil
US20230076646A1 (en) Herbicide combinations comprising glufosinate and sulfentrazone
US20230054749A1 (en) Herbicide Combinations Comprising Glufosinate and Flumiclorac-pentyl
US20230086500A1 (en) Herbicide Combinations Comprising Glufosinate and S-3100
US20230067406A1 (en) Herbicide Combinations Comprising Glufosinate and Flumioxazin

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED