US20220085236A1 - Light Emitting Diode (LED) Devices With Nucleation Layer - Google Patents

Light Emitting Diode (LED) Devices With Nucleation Layer Download PDF

Info

Publication number
US20220085236A1
US20220085236A1 US17/531,922 US202117531922A US2022085236A1 US 20220085236 A1 US20220085236 A1 US 20220085236A1 US 202117531922 A US202117531922 A US 202117531922A US 2022085236 A1 US2022085236 A1 US 2022085236A1
Authority
US
United States
Prior art keywords
iii
nitride
layer
nucleation layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/531,922
Inventor
Isaac Wildeson
Toni Lopez
Hee-jin Kim
Robert Armitage
Parijat Deb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumileds LLC
Original Assignee
Lumileds LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumileds LLC filed Critical Lumileds LLC
Priority to US17/531,922 priority Critical patent/US20220085236A1/en
Assigned to LUMILEDS LLC reassignment LUMILEDS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LUMILEDS HOLDING B.V.
Assigned to LUMILEDS HOLDING B.V. reassignment LUMILEDS HOLDING B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, HEE-JIN, ARMITAGE, ROBERT, LOPEZ, TONI, DEB, Parijat, WILDESON, Isaac
Publication of US20220085236A1 publication Critical patent/US20220085236A1/en
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH reassignment DEUTSCHE BANK AG NEW YORK BRANCH PATENT SECURITY AGREEMENT Assignors: Lumileds, LLC
Assigned to SOUND POINT AGENCY LLC reassignment SOUND POINT AGENCY LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LUMILEDS HOLDING B.V., LUMILEDS LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • H01L21/0265Pendeoepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • Embodiments of the disclosure generally relate to light emitting diode (LED) devices and methods of manufacturing the same. More particularly, embodiments are directed to light emitting diode devices that include a nucleation layer on a substrate prior to any patterning and methods for depositing a nucleation layer onto a substrate epitaxial growing a III-nitride layer thereon.
  • LED light emitting diode
  • a light emitting diode is a semiconductor light source that emits visible light when current flows through it. LEDs combine a P-type semiconductor with an N-type semiconductor. LEDs commonly use a III-group compound semiconductor. A III-group compound semiconductor provides stable operation at a higher temperature than devices that use other semiconductors. The III-group compound is typically formed on a substrate formed of sapphire or silicon carbide (SiC).
  • Direct light emitters based on patterned sapphire substrate (PSS) LEDs suffer from low luminance levels and broad angular emission patterns due to their inherent geometrical features (light is emitted from 5 sides of the chip, including the four side surfaces). These limitations can be mitigated by the use of side-coating materials to prevent light escaping from the sides of the chip and enforce light emission only from the top substrate surface. Side coating materials, however, significantly penalize light extraction efficiency (ExE), particularly in domeless emitters, as the side-coat increases light trapping in the die and it itself is not 100% reflective.
  • ExE light extraction efficiency
  • LED light emitting diode
  • a light emitting diode (LED) device comprises a nucleation layer on a substrate, the nucleation layer comprising a first III-nitride material; a patterned dielectric layer on a top surface of the nucleation layer, the patterned dielectric layer comprising a plurality of features and having a plurality of spaces between the plurality of features; and a III-nitride layer on the plurality of features and on the plurality of spaces, the III-nitride layer comprising a second III-nitride material.
  • the first III-nitride material and the second III-nitride material may independently be one or more of aluminum, gallium, and indium. In one or more embodiments, the first III-nitride material and the second III-nitride material independently comprises one or more of aluminum, gallium, and indium.
  • the first III-nitride material may be aluminum nitride (AlN). In one or more embodiments, the first III-nitride material comprises aluminum nitride (AlN).
  • the first III-nitride material and the second III-nitride material may be the same. In one or more embodiments, the first III-nitride material and the second III-nitride material are the same.
  • the dielectric layer may have a low refractive index material having a refractive index in a range of from about 1.2 to about 2. In one or more embodiments, the dielectric layer comprises a low refractive index material having a refractive index in a range of from about 1.2 to about 2
  • the dielectric layer may be one or more of silicon oxide (SiO 2 ) and silicon nitride (Si 3 N 4 ). In one or more embodiments, the dielectric layer comprises one or more of silicon oxide (SiO 2 ) and silicon nitride (Si 3 N 4 )
  • the second III-nitride material may be gallium nitride (GaN).
  • the second III-nitride material comprises gallium nitride (GaN)
  • the nucleation layer may have a thickness in a range of from about 5 nm to about 100 nm. In one or more embodiments, the nucleation layer has a thickness in a range of from about 5 nm to about 100 nm.
  • the plurality of features may be holes. In one or more embodiments, the plurality of features comprises holes.
  • the plurality of features may protrude from a top surface of the nucleation layer and the plurality of spaces may expose a top surface of the nucleation layer. In one or more embodiments, the plurality of features protrude from a top surface of the nucleation layer and the plurality of spaces expose a top surface of the nucleation layer.
  • the plurality of features may have a shape selected from a hemispherical shape, a triangular pyramidal shape, a quadrangular pyramidal shape, a hexagonal pyramidal shape, a conical shape, a semi-spherical shape, or a cut-spherical shape.
  • the plurality of features has a shape selected from a hemispherical shape, a triangular pyramidal shape, a quadrangular pyramidal shape, a hexagonal pyramidal shape, a conical shape, a semi-spherical shape, or a cut-spherical shape.
  • the plurality of features may have a height in a range of from about 100 nm to about 3 ⁇ m, a pitch in a range of from about 50 nm to about 5000 nm, and a width in a range of from about 5 nm to about 500 nm.
  • the plurality of features has a height in a range of from about 100 nm to about 3 ⁇ m, a pitch in a range of from about 50 nm to about 5000 nm, and a width in a range of from about 5 nm to about 500 nm
  • a method of manufacturing a light emitting diode (LED) device comprises: depositing a nucleation layer on a substrate, the nucleation layer comprising a first III-nitride material; depositing a dielectric layer on a top surface of the nucleation layer, the dielectric layer comprising a low refractive index dielectric material; patterning the dielectric layer to form a patterned surface having a plurality of features and a plurality of spaces between the plurality of features; and epitaxially growing a III-nitride layer on the patterned surface, the III-nitride layer comprising a second III-nitride material.
  • the plurality of features may protrude from a top surface of the nucleation layer and may have a height and a width and sidewalls, and the plurality of spaces may expose the top surface of the nucleation layer.
  • the plurality of features protrude from a top surface of the nucleation layer and have a height and a width and sidewalls, and the plurality of spaces expose the top surface of the nucleation layer.
  • the III-nitride layer may grow on the exposed top surface of the nucleation layer and may not grow on the sidewalls of the plurality of features. In one or more embodiments, the III-nitride layer grows on the exposed top surface of the nucleation layer and does not grow on the sidewalls of the plurality of features
  • the nucleation layer and the dielectric layer may be independently deposited by one or more of sputter deposition, atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma enhanced atomic layer deposition (PEALD), and plasma enhanced chemical vapor deposition (PECVD).
  • the nucleation layer and the dielectric layer are independently deposited by one or more of sputter deposition, atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma enhanced atomic layer deposition (PEALD), and plasma enhanced chemical vapor deposition (PECVD).
  • the plurality of features may be holes, and the holes may expose a top surface of the nucleation layer.
  • the plurality of features comprises holes, and the holes expose a top surface of the nucleation layer
  • a light emitting diode (LED) device comprises: a patterned substrate comprising a substrate body, a plurality of integral features protruding from the substrate body, and a base surface defined by a plurality of voids between the plurality of integral features, the plurality of integral features having a top surface and sidewalls and a height, a pitch, and a width; a nucleation layer on a top surface of the plurality of integral features and not in the plurality of voids, the nucleation layer comprising a first III-nitride material; and a III-nitride layer on the nucleation layer, the III-nitride layer comprising a second III-nitride material.
  • the first III-nitride material and the second III-nitride material may independently be one or more of aluminum, gallium, and indium. In one or more embodiments, the first III-nitride material and the second III-nitride material independently comprise one or more of aluminum, gallium, and indium.
  • a method of manufacturing the light emitting diode (LED) device of the nineteenth embodiment comprises depositing the nucleation layer on the substrate, the nucleation layer comprising the first III-nitride material; patterning the substrate to form nucleation layer-coated substrate posts separated by the plurality of voids; and epitaxially growing the III-nitride layer on the nucleation layer-coated substrate posts, the III-nitride layer comprising the second III-nitride material.
  • FIG. 1 illustrates a process flow diagram for a method according to one or more embodiments
  • FIG. 2A illustrates a cross-sectional view of a light emitting diode (LED) device according to one or more embodiments
  • FIG. 2B illustrates a cross-sectional view of a light emitting diode (LED) device according to one or more embodiments
  • FIG. 2C illustrates a cross-sectional view of a light emitting diode (LED) device according to one or more embodiments
  • FIG. 2D illustrates a cross-sectional view of a light emitting diode (LED) device according to one or more embodiments
  • FIGS. 3A-3F illustrate perspective views of a light emitting diode (LED) device according to one or more embodiments
  • FIG. 4A illustrates a perspective view of a light emitting diode (LED) device according to one or more embodiments
  • FIG. 4B illustrates a perspective view of a light emitting diode (LED) device according to one or more embodiments
  • FIG. 5 illustrates a process flow diagram for a method according to one or more embodiments
  • FIG. 6A illustrates a cross-sectional view of a light emitting diode (LED) device according to one or more embodiments
  • FIG. 6B illustrates a cross-sectional view of a light emitting diode (LED) device according to one or more embodiments
  • FIG. 6C illustrates a cross-sectional view of a light emitting diode (LED) device according to one or more embodiments
  • FIG. 6D illustrates a cross-sectional view of a light emitting diode (LED) device according to one or more embodiments.
  • FIG. 7 illustrates a cross-section view of an exemplary LED package according to one or more embodiments.
  • substrate refers to a structure, intermediate or final, having a surface, or portion of a surface, upon which a process acts.
  • reference to a substrate in some embodiments also refers to only a portion of the substrate, unless the context clearly indicates otherwise.
  • reference to depositing on a substrate according to some embodiments includes depositing on a bare substrate, or on a substrate with one or more films or features or materials deposited or formed thereon.
  • the “substrate” means any substrate or material surface formed on a substrate upon which film processing is performed during a fabrication process.
  • a substrate surface on which processing is performed includes materials such as silicon, silicon oxide, silicon on insulator (SOI), strained silicon, amorphous silicon, doped silicon, carbon doped silicon oxides, germanium, gallium arsenide, glass, sapphire, and any other suitable materials such as metals, metal nitrides, III-nitrides (e.g., GaN, AlN, InN and alloys), metal alloys, and other conductive materials, depending on the application.
  • Substrates include, without limitation, light emitting diode (LED) devices.
  • Substrates in some embodiments are exposed to a pretreatment process to polish, etch, reduce, oxidize, hydroxylate, anneal, UV cure, e-beam cure and/or bake the substrate surface.
  • any of the film processing steps disclosed are also performed on an underlayer formed on the substrate, and the term “substrate surface” is intended to include such underlayer as the context indicates.
  • the exposed surface of the newly deposited film/layer becomes the substrate surface.
  • a nucleation layer comprising a III-nitride material
  • a nucleation layer is advantageously grown on a substrate before any patterning takes place. Without intending to be bound by theory, it is thought that this nucleation layer is important for subsequent growth of smooth coalesced III-nitride layers over the patterns.
  • a thin III-nitride layer, a nucleation layer is formed (e.g., deposited) on a substrate prior to forming (e.g., depositing) a dielectric layer and forming the dielectric pattern features.
  • the next process step of III-nitride material growth after a dielectric patterning step can be initiated at a high growth temperature. Initiating this step at a high growth temperature makes possible selective area deposition, i.e. the III-nitride material is deposited only on exposed areas of the nucleation layer and not on the dielectric material. Selective area deposition facilitates the use of patterned feature geometries with improved efficient light extraction properties, that would be difficult or impossible to use following a conventional growth sequence in which a nucleation layer is deposited after patterning the dielectric.
  • FIG. 1 depicts a flow diagram of a method 100 of manufacturing a light emitting diode (LED) device in accordance with one or more embodiments of the present disclosure.
  • the method begins at operation 102 by depositing a nucleation layer on a substrate.
  • a dielectric layer is deposited on the nucleation layer.
  • a patterned surface is formed.
  • a III-nitride layer is grown, e.g. epitaxially, on the areas of the nucleation layer which are not covered by dielectric material.
  • FIG. 2A is cross-section view of a LED device according to one or more embodiments.
  • a nucleation layer 204 is deposited on a substrate 202 .
  • the substrate may be any substrate known to one of skill in the art.
  • the substrate comprises one or more of sapphire, silicon carbide, silicon (Si), quartz, magnesium oxide (MgO), zinc oxide (ZnO), spinel, and the like.
  • the substrate is not patterned prior to deposition of the nucleation layer.
  • the substrate is not patterned and can be considered to be flat or substantially flat. Accordingly, in one or more embodiments, the method of the disclosure differs significantly from the conventional patterned substrate, e.g. patterned sapphire substrate (PSS), fabrication approach in which pattern features are etched directly into the substrate before deposition of a nucleation layer.
  • PSS patterned sapphire substrate
  • the deposition of a nucleation layer 204 on the substrate 202 prior to patterning provides critical advantages.
  • the deposition of a nucleation layer 204 on the substrate 202 prior to patterning provided performance improvements for directional emitters with the growth substrate remaining attached in the finished device.
  • the performance improvements include increased light extraction efficiency (ExE) in emitters without a lens (dome), increased brightness, and increased angular directionality (forward gain, effective increased lumen output within a narrow angular emission cone (e.g. 45 degrees).
  • the nucleation layer 204 comprises a III-nitride material.
  • the III-nitride material comprises one or more of gallium (Ga), aluminum (Al), and indium (In).
  • the nucleation layer 204 comprises one or more of gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), gallium aluminum nitride (GaAlN), gallium indium nitride (GaInN), aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), indium gallium nitride (InGaN), indium aluminum nitride (InAlN), and the like.
  • the nucleation layer 204 comprises aluminum nitride (AlN).
  • the nucleation layer 204 has a thickness in a range of from about 5 nm to about 100 nm, including a range of from about 10 nm to 75 nm, a range of from about 5 nm to about 90 nm, a range of from about 10 nm to about 60 nm, a range of from about 5 nm to about 50 nm, a range of from about 10 nm to about 50 nm, and a range of from about 10 nm to about 90 nm.
  • the nucleation layer 204 is deposited by one or more of sputter deposition, atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma enhanced atomic layer deposition (PEALD), and plasma enhanced chemical vapor deposition (PECVD).
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • PEALD plasma enhanced atomic layer deposition
  • PECVD plasma enhanced chemical vapor deposition
  • Sputter deposition refers to a physical vapor deposition (PVD) method of thin film deposition by sputtering.
  • PVD physical vapor deposition
  • a material e.g. a III-nitride
  • the technique is based on ion bombardment of a source material, the target. Ion bombardment results in a vapor due to a purely physical process, i.e., the sputtering of the target material.
  • atomic layer deposition or “cyclical deposition” refers to a vapor phase technique used to deposit thin films on a substrate surface.
  • ALD atomic layer deposition
  • cyclical deposition refers to a vapor phase technique used to deposit thin films on a substrate surface.
  • the process of ALD involves the surface of a substrate, or a portion of substrate, being exposed to alternating precursors, i.e. two or more reactive compounds, to deposit a layer of material on the substrate surface.
  • the precursors are introduced sequentially or simultaneously.
  • the precursors are introduced into a reaction zone of a processing chamber, and the substrate, or portion of the substrate, is exposed separately to the precursors.
  • chemical vapor deposition refers to a process in which films of materials are deposited from the vapor phase by decomposition of chemicals on a substrate surface.
  • a substrate surface is exposed to precursors and/or co-reagents simultaneous or substantially simultaneously.
  • substantially simultaneously refers to either co-flow or where there is overlap for a majority of exposures of the precursors.
  • PEALD plasma enhanced atomic layer deposition
  • a material may be formed from the same chemical precursors, but at a higher deposition rate and a lower temperature.
  • a PEALD process in general, a reactant gas and a reactant plasma are sequentially introduced into a process chamber having a substrate in the chamber. The first reactant gas is pulsed in the process chamber and is adsorbed onto the substrate surface. Thereafter, the reactant plasma is pulsed into the process chamber and reacts with the first reactant gas to form a deposition material, e.g. a thin film on a substrate.
  • a purge step maybe conducted between the delivery of each of the reactants.
  • plasma enhanced chemical vapor deposition refers to a technique for depositing thin films on a substrate.
  • a source material which is in gas or liquid phase, such as a gas-phase III-nitride material or a vapor of a liquid-phase III-nitride material that have been entrained in a carrier gas, is introduced into a PECVD chamber.
  • a plasma-initiated gas is also introduced into the chamber.
  • the creation of plasma in the chamber creates excited radicals.
  • the excited radicals are chemically bound to the surface of a substrate positioned in the chamber, forming the desired film thereon.
  • FIG. 2B is cross-section view of a LED device according to one or more embodiments.
  • a dielectric layer 206 is deposited on the nucleation layer 204 .
  • the term “dielectric” refers to an electrical insulator material that can be polarized by an applied electric field.
  • the dielectric layer includes, but is not limited to, oxides, e.g., silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), nitrides, e.g., silicon nitride (Si 3 N 4 ).
  • the dielectric layer comprises silicon nitride (Si 3 N 4 ).
  • the dielectric layer comprises silicon oxide (SiO 2 ).
  • the dielectric layer composition is non-stoichiometric relative to the ideal molecular formula.
  • the dielectric layer includes, but is not limited to, oxides (e.g., silicon oxide, aluminum oxide), nitrides (e.g., silicon nitride (SiN)), oxycarbides (e.g. silicon oxycarbide (SiOC)), and oxynitrocarbides (e.g. silicon oxycarbonitride (SiNCO)).
  • oxides e.g., silicon oxide, aluminum oxide
  • nitrides e.g., silicon nitride (SiN)
  • oxycarbides e.g. silicon oxycarbide (SiOC)
  • SiNCO silicon oxycarbonitride
  • the dielectric layer 206 comprises a material with a low refractive index. In one or more embodiments, the dielectric layer 206 comprising a dielectric material having a refractive index in a range of from about 1.2 to about 2.
  • the dielectric layer 206 is deposited by one or more of sputter deposition, atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma enhanced atomic layer deposition (PEALD), and plasma enhanced chemical vapor deposition (PECVD).
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • PEALD plasma enhanced atomic layer deposition
  • PECVD plasma enhanced chemical vapor deposition
  • the dielectric layer 206 has a thickness in a range of from about 50 nm to about 5 ⁇ m, including from about 100 nm to about 4 ⁇ m, from about 50 nm to about 4 ⁇ m, from about 200 nm to about 3 ⁇ m.
  • FIG. 2C is cross-section view of a LED device according to one or more embodiments.
  • a patterned surface is formed.
  • a patterned dielectric layer 207 is formed.
  • the dielectric layer 206 is patterned according to any appropriate patterning technique known to one of skill in the art.
  • the patterned dielectric layer 207 comprises a plurality of features 208 protruding from the top surface of the nucleation layer 204 and having a plurality of spaces 210 between the plurality of features 208 .
  • the plurality of features 208 protruding from the surface of the nucleation layer 204 can have any shape known to one of skill in the art.
  • FIGS. 3A-3F illustrate perspective views of a light emitting diode (LED) device according to one or more embodiments. Specifically, FIGS. 3A-3F illustrate various embodiments of the shapes of the plurality of features 208 protruding from the top surface of the nucleation layer 204 .
  • LED light emitting diode
  • the shape of the plurality of protruding features 208 includes, but is not limited to, a hemispherical shape ( FIG. 3A ), a triangular pyramidal shape ( FIG. 3B ), a quadrangular pyramidal shape ( FIG. 3C ), a hexagonal pyramidal shape ( FIG. 3D ), a conical shape ( FIG. 3E ), a semi-spherical shape or a cut-spherical shape ( FIG. 3F ).
  • the plurality of features 208 protruding from the surface of the nucleation layer 204 has a height in a range of from about 100 nm to about 3 ⁇ m, include a range of from about 500 nm to about 2 ⁇ m, a range of from about 100 nm to about 1 ⁇ m, a range of from about 250 nm to about 2.5 ⁇ m, and a range of from about 100 nm to about 2 ⁇ m.
  • the plurality of features 208 protruding from the surface of the nucleation layer 204 has a pitch in a range of from about 50 nm to about 5000 nm, including a range from about 500 nm to about 2000 nm, and a range of from about 500 nm to about 1000 nm.
  • the plurality of features 208 protruding from the surface of the nucleation layer 204 has a width in a range of from about 5 nm to about 500 nm, including a range from about 10 nm to about 500 nm, and a range of from about 5 nm to about 300 nm.
  • a hexagonal pattern of a plurality of features 208 protruding from the surface of the nucleation layer 204 having a pitch of about 1000 nm and a circle diameter of about 200 nm is transferred to a photoresist coating (not illustrated) on the dielectric layer 206 using nanoimprint lithography.
  • the substrate 202 is etched in a reactive ion etching (RIE) tool using conditions that etch the dielectric layer 206 efficiently but etch the nucleation layer 204 very slowly or not at all. In other words, the etching is selective to the dielectric layer 206 over the nucleation layer 204 .
  • RIE reactive ion etching
  • the photoresist is removed and the wafer is cleaned, resulting in a hexagonal array of cones the dielectric layer 204 .
  • the half-angle of the plurality of features 208 is controlled by adjusting parameters such as the thickness of the starting dielectric layer 206 , thickness of photoresist layer (not illustrated), and differences in RIE etch rates that depend on surface angles and/or materials.
  • FIG. 2D is cross-section view of a LED device according to one or more embodiments.
  • a III-nitride layer 212 is grown, e.g. epitaxially, on the patterned dielectric layer 207 .
  • a III-nitride layer is grown on the nucleation layer 204 and in or on the plurality of spaces 210 between the plurality of features 208 , and not on the dielectric layer 206 .
  • the plurality of features 208 have at least one sidewall (not illustrated), and the III-nitride layer does not grow on the at least one sidewall of the plurality of features 208 .
  • the III-nitride layer 212 comprises a III-nitride material.
  • the III-nitride material comprises one or more of gallium (Ga), aluminum (Al), and indium (In).
  • the III-nitride layer 212 comprises one or more of gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), gallium aluminum nitride (GaAlN), gallium indium nitride (GaInN), aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), indium gallium nitride (InGaN), indium aluminum nitride (InAlN), and the like.
  • the III-nitride layer 212 comprises gallium nitride. In some embodiments, the III-nitride layer 212 and the nucleation layer 204 comprise the same III-nitride material. In other embodiments, the III-nitride layer 212 and the nucleation layer 204 comprise different III-nitride materials. In a specific embodiment, the nucleation layer 204 comprises aluminum nitride (AlN) and the III-nitride layer 212 comprises gallium nitride (GaN).
  • the III-nitride layer 212 is placed in a metalorganic vapor-phase epitaxy (MOVPE) reactor for epitaxy of LED device layers.
  • MOVPE metalorganic vapor-phase epitaxy
  • the MOVPE process starts with high temperature III-nitride growth taking advantage of the large difference in III-nitride nucleation rates on the pre-deposited nucleation layer 204 versus the surfaces of patterned dielectric layer 207 and plurality of features 208 .
  • the device 200 is processed as is typical for a conventional PSS based LED.
  • pre-deposition of the nucleation layer 204 allows high temperature selective area growth around the plurality of features 208 , and, thus, more freedom in pattern feature geometry since nucleation of unwanted misoriented grains on the pattern features is avoided.
  • the temperature at which the III-nitride layer is grown is in a range of from about 800° C. to about 1200° C., or from about 950° C. to about 1150° C.
  • FIGS. 4A and 4B are perspective views of a LED device according to one or more embodiments.
  • a nucleation layer 204 has been deposited on a substrate 202
  • a dielectric layer 206 has been deposited on the nucleation layer 204 , as described above.
  • the dielectric layer 206 is then patterned by any appropriate patterning technique known to one of skill in the art.
  • the patterned dielectric layer 307 has a plurality of features 308 .
  • the plurality of features 308 comprise holes 311 that extend to the nucleation layer 204 .
  • the holes 311 are any appropriate shape or size known to one of skill in the art.
  • the plurality of features 308 or the holes 311 have a diameter in a range of from about 50 nm to about 5000 nm.
  • the plurality of features 308 has a depth that is equal to the thickness of the dielectric layer 204 .
  • the depth of the holes may be at least equal to the thickness of the dielectric layer. In some embodiments, the depth of the holes may extend up to about 500 nm deeper than the thickness of the dielectric layer 204 .
  • the holes 311 are regularly spaced. In other embodiments, the holes 311 are irregularly spaced. In one or more embodiments, the plurality of features 308 (i.e. holes 311 ) have a plurality of spaces 310 between the plurality of features 308 .
  • a III-nitride layer 312 is grown, e.g. epitaxially, on the patterned dielectric layer 307 .
  • the III-nitride layer 312 fills the plurality of features 308 (i.e. holes 311 ) and comes in contact with the nucleation layer 204 .
  • the III-nitride layer 312 comprises a III-nitride material.
  • the III-nitride material comprises one or more of gallium (Ga), aluminum (Al), and indium (In).
  • the III-nitride layer 312 comprises one or more of gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), gallium aluminum nitride (GaAlN), gallium indium nitride (GaInN), aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), indium gallium nitride (InGaN), indium aluminum nitride (InAlN), and the like.
  • the III-nitride layer 312 comprises gallium nitride. In some embodiments, the III-nitride layer 312 and the nucleation layer 204 comprise the same III-nitride material. In other embodiments, the III-nitride layer 312 and the nucleation layer 204 comprise different III-nitride materials. In a specific embodiment, the nucleation layer 204 comprises aluminum nitride (AlN) and the III-nitride layer 312 comprises gallium nitride (GaN).
  • the growth method disclosed herein i.e. forming an epitaxial nucleation layer on the substrate before forming a plurality of features in the dielectric layer
  • the patterned features are packed more densely together than would be possible with current state-of-the-art methods that utilize etching of sapphire before nucleation layer deposition because of the selective area growth around the dielectric patterns.
  • FIG. 5 depicts a flow diagram of a method 500 of manufacturing a light emitting diode (LED) device in accordance with one or more alternative embodiments of the present disclosure.
  • the method begins at operation 502 by depositing a nucleation layer on a substrate.
  • the substrate is patterned.
  • a III-nitride layer is selectively grown, e.g. epitaxially, on the nucleation layer.
  • FIG. 6A is cross-section view of a LED device according to one or more embodiments.
  • a nucleation layer 604 is deposited on a substrate 602 .
  • the substrate 602 is any suitable substrate known to one of skill in the art, including any of the substrates described through the disclosure. In one or more specific embodiments, the substrate 602 comprises sapphire.
  • the deposition of a nucleation layer 604 on the substrate 602 prior to patterning provides critical advantages.
  • the deposition of a nucleation layer 604 on the substrate 602 prior to patterning provided performance improvements for directional emitters with the growth substrate remaining attached in the finished device.
  • the performance improvements include increased light extraction efficiency (ExE) in emitters without a lens (dome), increased brightness, and increased angular directionality (forward gain, effective increased lumen output within a narrow angular emission cone (e.g. 45 degrees)
  • the nucleation layer 604 is deposited by one or more of sputter deposition, atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma enhanced atomic layer deposition (PEALD), and plasma enhanced chemical vapor deposition (PECVD).
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • PEALD plasma enhanced atomic layer deposition
  • PECVD plasma enhanced chemical vapor deposition
  • the nucleation layer 604 comprises a III-nitride material.
  • the III-nitride material comprises one or more of gallium (Ga), aluminum (Al), and indium (In).
  • the nucleation layer 604 comprises one or more of gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), gallium aluminum nitride (GaAlN), gallium indium nitride (GaInN), aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), indium gallium nitride (InGaN), indium aluminum nitride (InAlN), and the like.
  • the nucleation layer 604 comprises aluminum nitride (AlN).
  • the nucleation layer 604 has a thickness in a range of from about 5 nm to about 100 nm, including a range of from about 10 nm to 75 nm, a range of from about 5 nm to about 90 nm, a range of from about 10 nm to about 60 nm, a range of from about 5 nm to about 50 nm, a range of from about 10 nm to about 50 nm, and a range of from about 10 nm to about 90 nm.
  • FIG. 6B is cross-section view of a LED device according to one or more embodiments.
  • the substrate 602 and nucleation layer 604 are patterned to form voids 605 .
  • the voids 605 have any shape known to the skilled artisan, including, but not limited to, rectangular, triangular, oval, rounded, hexagonal, and the like.
  • the plurality of voids 605 may have a thickness approximately determined by the depth of the substrate etch step. In one or more embodiments, the depth of the plurality of voids 605 may be in a range of from about 50 nm to about 5000 nm.
  • the plurality of voids 605 has a pitch in a range of from about 50 nm to about 5000 nm, including a range from about 500 nm to about 2000 nm, and a range of from about 500 nm to about 1000 nm.
  • the plurality of voids has a width in a range of from about 5 nm to about 500 nm, including a range from about 10 nm to about 500 nm, and a range of from about 5 nm to about 300 nm.
  • a hexagonal pattern of voids 605 is transferred to a photoresist coating (not illustrated) on the nucleation layer 204 using conventional photolithography.
  • the device 600 is etched to a depth in an RIE tool using conditions that efficiently etch both the nucleation layer 204 and the substrate 202 , resulting in a void having substantially vertical sidewall angles.
  • the result is an array of nucleation layer-coated substrate posts 609 .
  • FIG. 6C is cross-section view of a LED device according to one or more embodiments.
  • a III-nitride layer 612 is grown, e.g. epitaxially, on the nucleation layer-coated substrate posts 609 .
  • FIG. 6D is cross-section view of a LED device according to one or more embodiments. With reference to FIG. 6D , the III-nitride layer 612 is grown, e.g. epitaxially, laterally on the nucleation layer-coated substrate posts 609 .
  • the III-nitride layer 612 comprises a III-nitride material.
  • the III-nitride material comprises one or more of gallium (Ga), aluminum (Al), and indium (In).
  • the III-nitride layer 212 comprises one or more of gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), gallium aluminum nitride (GaAlN), gallium indium nitride (GaInN), aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), indium gallium nitride (InGaN), indium aluminum nitride (InAlN), and the like.
  • the III-nitride layer 612 comprises gallium nitride. In some embodiments, the III-nitride layer 612 and the nucleation layer 204 comprise the same III-nitride material. In other embodiments, the III-nitride layer 612 and the nucleation layer 204 comprise different III-nitride materials. In a specific embodiment, the nucleation layer 204 comprises aluminum nitride (AlN) and the III-nitride layer 612 comprises gallium nitride (GaN).
  • the device 600 is loaded into a MOVPE reactor for epitaxy of LED device layers. Unlike during a typical MOVPE growth run, which starts with a low temperature nucleation layer, in one or more embodiments the MOVPE process starts with high temperature III-nitride growth taking advantage of the large difference in III-nitride nucleation rates on the pre-deposited nucleation layer 204 versus the etched substrate 202 surfaces not covered by the nucleation layer 204 . In one or more embodiments, the III-nitride layer grows laterally and coalesces above the voids 605 in the substrate 202 leaving an array of buried void features.
  • the voids 605 have a refractive index equal to 1, as the voids are filled with air. In one or more embodiments, after the MOVPE growth run, subsequent processing of the device 600 follows as usual for a conventional PSS based LED.
  • performance improvements of the LED device of one or more embodiments are, in part, a consequence of fabricating the plurality of features from a material with lower refractive index, e.g. low refractive index dielectric material or voids (air), than a substrate, such as a sapphire substrate.
  • the low refractive index features 208 or voids 605 produce a narrow beam angular profile, which is significantly lower than that produced by state-of the art patterned sapphire substrate (PSS), even in side-coated architectures.
  • the narrowing level is quantified by defining a forward-gain parameter (fwdGain).
  • the fwdGain may be defined with respect to different cone angles, e.g. 5 deg, 45 deg and 60 deg, and helps establish the relative level of light concentration within a given cone angle centered at normal. The higher the fwdGain is, the higher the concentration of light.
  • PSS LED emitters with side-coating have a fwdGain (45) ⁇ 0.5, with a full width half max (FWHM) >120 deg.
  • the product of fwdGain and light extraction efficiency (ExE) allows quantifying the relative flux gains concentrated within a given angular acceptance cone.
  • the LED device of one of more embodiments is useful in any product known to one of skill in the art which uses a side-coated chip-scale package (CSP) architecture.
  • the term “chip-scale package (CSP)” refers to a type of integrated circuit package.
  • a chip-scale package is provided which has an area no greater than about 1.2 times that of the die, which is a single-die, direct surface mountable package.
  • the CSP has a ball pitch that is less than or equal to about 1 mm.
  • FIG. 7 is a cross-section view of an exemplary LED package 700 according to one or more embodiments. Referring to FIG. 7 , a chip-scale package (CSP) LED unit 700 comprising the LED device 702 of one or more embodiments. An anode 704 and a cathode 706 are soldered to the LED device 702 .
  • a nucleation layer of AlN was deposited on a non-patterned sapphire substrate using a sputter deposition tool.
  • a SiO 2 layer of thickness 800 nm was coated over the AlN layer using plasma-enhanced chemical vapor deposition (PECVD).
  • PECVD plasma-enhanced chemical vapor deposition
  • a hexagonal pattern of circles having a pitch of 1000 nm and a circle diameter of 200 nm was transferred to a photoresist coating on the SiO 2 layer using nanoimprint lithography.
  • the wafer was etched in an reactive ion etching (RIE) tool using conditions that etch SiO 2 efficiently but etch AlN very slowly or not at all. After the photoresist was removed and the wafer cleaned, the result was a hexagonal array of cones of SiO 2 .
  • RIE reactive ion etching
  • the half-angle of the cones was about 35 degrees and was controlled by adjusting parameters such as the thickness of the starting SiO 2 layer, thickness of photoresist layer, and differences in RIE etch rates that depend on surface angles and/or materials.
  • the wafer was then loaded into a III-nitride MOVPE reactor for epitaxy of LED device layers. Unlike a typical MOVPE growth run which starts with a low temperature nucleation layer, the MOVPE process in this case started with high temperature GaN growth taking advantage of the large difference in GaN nucleation rates on the predeposited AlN vs. the surfaces of the SiO 2 cone features. After the MOVPE growth run. Subsequent processing of the wafer followed as usual for a conventional PSS based LED.
  • a nucleation layer of AlN was deposited on a non-patterned sapphire substrate using a sputter deposition tool.
  • a hexagonal pattern of voids having a pitch of 2000 nm and a void diameter of 750 nm was transferred to a photoresist coating on the AlN layer using conventional photolithography.
  • the wafer was etched to a depth of 600 nm in an RIE tool using conditions that efficiently etch both AlN and sapphire resulting in a nearly vertical sidewall angle. After removing the photoresist and cleaning the wafer the result was an array of AlN-coated sapphire posts.
  • the wafer was then loaded into a III-nitride MOVPE reactor for epitaxy of LED device layers.
  • the MOVPE process in this case started with high temperature GaN growth taking advantage of the large difference in GaN nucleation rates on the pre-deposited AlN vs. the etched sapphire surfaces not covered by AlN.
  • subsequent processing of the wafer follows as usual for a conventional PSS based LED.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)

Abstract

Described are light emitting diode (LED) devices having patterned substrates and methods for effectively growing epitaxial III-nitride layers on them. A nucleation layer, comprising a III-nitride material, is grown on a substrate before any patterning takes place. The nucleation layer results in growth of smooth coalesced III-nitride layers over the patterns.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Divisional of U.S. application Ser. No. 16/721,386, filed Dec. 19, 2019, the entire disclosure of which is hereby incorporated by reference herein.
  • TECHNICAL FIELD
  • Embodiments of the disclosure generally relate to light emitting diode (LED) devices and methods of manufacturing the same. More particularly, embodiments are directed to light emitting diode devices that include a nucleation layer on a substrate prior to any patterning and methods for depositing a nucleation layer onto a substrate epitaxial growing a III-nitride layer thereon.
  • BACKGROUND
  • A light emitting diode (LED) is a semiconductor light source that emits visible light when current flows through it. LEDs combine a P-type semiconductor with an N-type semiconductor. LEDs commonly use a III-group compound semiconductor. A III-group compound semiconductor provides stable operation at a higher temperature than devices that use other semiconductors. The III-group compound is typically formed on a substrate formed of sapphire or silicon carbide (SiC).
  • Direct light emitters based on patterned sapphire substrate (PSS) LEDs suffer from low luminance levels and broad angular emission patterns due to their inherent geometrical features (light is emitted from 5 sides of the chip, including the four side surfaces). These limitations can be mitigated by the use of side-coating materials to prevent light escaping from the sides of the chip and enforce light emission only from the top substrate surface. Side coating materials, however, significantly penalize light extraction efficiency (ExE), particularly in domeless emitters, as the side-coat increases light trapping in the die and it itself is not 100% reflective.
  • Therefore, there is a need for light emitting diode (LED) devices with high luminance levels and high light extraction efficiency.
  • SUMMARY
  • Embodiments of the disclosure are directed to light emitting diode (LED) devices. In an embodiment, a light emitting diode (LED) device comprises a nucleation layer on a substrate, the nucleation layer comprising a first III-nitride material; a patterned dielectric layer on a top surface of the nucleation layer, the patterned dielectric layer comprising a plurality of features and having a plurality of spaces between the plurality of features; and a III-nitride layer on the plurality of features and on the plurality of spaces, the III-nitride layer comprising a second III-nitride material.
  • The first III-nitride material and the second III-nitride material may independently be one or more of aluminum, gallium, and indium. In one or more embodiments, the first III-nitride material and the second III-nitride material independently comprises one or more of aluminum, gallium, and indium.
  • The first III-nitride material may be aluminum nitride (AlN). In one or more embodiments, the first III-nitride material comprises aluminum nitride (AlN).
  • The first III-nitride material and the second III-nitride material may be the same. In one or more embodiments, the first III-nitride material and the second III-nitride material are the same
  • The dielectric layer may have a low refractive index material having a refractive index in a range of from about 1.2 to about 2. In one or more embodiments, the dielectric layer comprises a low refractive index material having a refractive index in a range of from about 1.2 to about 2
  • The dielectric layer may be one or more of silicon oxide (SiO2) and silicon nitride (Si3N4). In one or more embodiments, the dielectric layer comprises one or more of silicon oxide (SiO2) and silicon nitride (Si3N4)
  • The second III-nitride material may be gallium nitride (GaN). In one or more embodiments, the second III-nitride material comprises gallium nitride (GaN)
  • The nucleation layer may have a thickness in a range of from about 5 nm to about 100 nm. In one or more embodiments, the nucleation layer has a thickness in a range of from about 5 nm to about 100 nm.
  • The plurality of features may be holes. In one or more embodiments, the plurality of features comprises holes.
  • The plurality of features may protrude from a top surface of the nucleation layer and the plurality of spaces may expose a top surface of the nucleation layer. In one or more embodiments, the plurality of features protrude from a top surface of the nucleation layer and the plurality of spaces expose a top surface of the nucleation layer.
  • The plurality of features may have a shape selected from a hemispherical shape, a triangular pyramidal shape, a quadrangular pyramidal shape, a hexagonal pyramidal shape, a conical shape, a semi-spherical shape, or a cut-spherical shape. In one or more embodiments, the plurality of features has a shape selected from a hemispherical shape, a triangular pyramidal shape, a quadrangular pyramidal shape, a hexagonal pyramidal shape, a conical shape, a semi-spherical shape, or a cut-spherical shape.
  • The plurality of features may have a height in a range of from about 100 nm to about 3 μm, a pitch in a range of from about 50 nm to about 5000 nm, and a width in a range of from about 5 nm to about 500 nm. In one or more embodiments, the plurality of features has a height in a range of from about 100 nm to about 3 μm, a pitch in a range of from about 50 nm to about 5000 nm, and a width in a range of from about 5 nm to about 500 nm
  • Embodiments of the disclosure are directed to methods of manufacturing light emitting diode (LED) devices. In one or more embodiments, a method of manufacturing a light emitting diode (LED) device comprises: depositing a nucleation layer on a substrate, the nucleation layer comprising a first III-nitride material; depositing a dielectric layer on a top surface of the nucleation layer, the dielectric layer comprising a low refractive index dielectric material; patterning the dielectric layer to form a patterned surface having a plurality of features and a plurality of spaces between the plurality of features; and epitaxially growing a III-nitride layer on the patterned surface, the III-nitride layer comprising a second III-nitride material.
  • The plurality of features may protrude from a top surface of the nucleation layer and may have a height and a width and sidewalls, and the plurality of spaces may expose the top surface of the nucleation layer. In one or more embodiments, the plurality of features protrude from a top surface of the nucleation layer and have a height and a width and sidewalls, and the plurality of spaces expose the top surface of the nucleation layer.
  • The III-nitride layer may grow on the exposed top surface of the nucleation layer and may not grow on the sidewalls of the plurality of features. In one or more embodiments, the III-nitride layer grows on the exposed top surface of the nucleation layer and does not grow on the sidewalls of the plurality of features
  • The nucleation layer and the dielectric layer may be independently deposited by one or more of sputter deposition, atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma enhanced atomic layer deposition (PEALD), and plasma enhanced chemical vapor deposition (PECVD). In one or more embodiments, the nucleation layer and the dielectric layer are independently deposited by one or more of sputter deposition, atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma enhanced atomic layer deposition (PEALD), and plasma enhanced chemical vapor deposition (PECVD).
  • The plurality of features may be holes, and the holes may expose a top surface of the nucleation layer. In one or more embodiments, the plurality of features comprises holes, and the holes expose a top surface of the nucleation layer
  • One or more embodiments of the disclosure are directed to light emitting diode (LED) devices. In an embodiment, a light emitting diode (LED) device comprises: a patterned substrate comprising a substrate body, a plurality of integral features protruding from the substrate body, and a base surface defined by a plurality of voids between the plurality of integral features, the plurality of integral features having a top surface and sidewalls and a height, a pitch, and a width; a nucleation layer on a top surface of the plurality of integral features and not in the plurality of voids, the nucleation layer comprising a first III-nitride material; and a III-nitride layer on the nucleation layer, the III-nitride layer comprising a second III-nitride material.
  • The first III-nitride material and the second III-nitride material may independently be one or more of aluminum, gallium, and indium. In one or more embodiments, the first III-nitride material and the second III-nitride material independently comprise one or more of aluminum, gallium, and indium.
  • Additional embodiments of the disclosure are directed to methods of manufacturing light emitting diode (LED) devices. In an embodiment, a method of manufacturing the light emitting diode (LED) device of the nineteenth embodiment comprises depositing the nucleation layer on the substrate, the nucleation layer comprising the first III-nitride material; patterning the substrate to form nucleation layer-coated substrate posts separated by the plurality of voids; and epitaxially growing the III-nitride layer on the nucleation layer-coated substrate posts, the III-nitride layer comprising the second III-nitride material.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments. The embodiments as described herein are illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements.
  • FIG. 1 illustrates a process flow diagram for a method according to one or more embodiments;
  • FIG. 2A illustrates a cross-sectional view of a light emitting diode (LED) device according to one or more embodiments;
  • FIG. 2B illustrates a cross-sectional view of a light emitting diode (LED) device according to one or more embodiments;
  • FIG. 2C illustrates a cross-sectional view of a light emitting diode (LED) device according to one or more embodiments;
  • FIG. 2D illustrates a cross-sectional view of a light emitting diode (LED) device according to one or more embodiments;
  • FIGS. 3A-3F illustrate perspective views of a light emitting diode (LED) device according to one or more embodiments;
  • FIG. 4A illustrates a perspective view of a light emitting diode (LED) device according to one or more embodiments;
  • FIG. 4B illustrates a perspective view of a light emitting diode (LED) device according to one or more embodiments;
  • FIG. 5 illustrates a process flow diagram for a method according to one or more embodiments;
  • FIG. 6A illustrates a cross-sectional view of a light emitting diode (LED) device according to one or more embodiments;
  • FIG. 6B illustrates a cross-sectional view of a light emitting diode (LED) device according to one or more embodiments;
  • FIG. 6C illustrates a cross-sectional view of a light emitting diode (LED) device according to one or more embodiments;
  • FIG. 6D illustrates a cross-sectional view of a light emitting diode (LED) device according to one or more embodiments; and
  • FIG. 7 illustrates a cross-section view of an exemplary LED package according to one or more embodiments.
  • DETAILED DESCRIPTION
  • Before describing several exemplary embodiments of the disclosure, it is to be understood that the disclosure is not limited to the details of construction or process steps set forth in the following description. The disclosure is capable of other embodiments and of being practiced or being carried out in various ways.
  • The term “substrate” as used herein according to one or more embodiments refers to a structure, intermediate or final, having a surface, or portion of a surface, upon which a process acts. In addition, reference to a substrate in some embodiments also refers to only a portion of the substrate, unless the context clearly indicates otherwise. Further, reference to depositing on a substrate according to some embodiments includes depositing on a bare substrate, or on a substrate with one or more films or features or materials deposited or formed thereon.
  • In one or more embodiments, the “substrate” means any substrate or material surface formed on a substrate upon which film processing is performed during a fabrication process. In exemplary embodiments, a substrate surface on which processing is performed includes materials such as silicon, silicon oxide, silicon on insulator (SOI), strained silicon, amorphous silicon, doped silicon, carbon doped silicon oxides, germanium, gallium arsenide, glass, sapphire, and any other suitable materials such as metals, metal nitrides, III-nitrides (e.g., GaN, AlN, InN and alloys), metal alloys, and other conductive materials, depending on the application. Substrates include, without limitation, light emitting diode (LED) devices. Substrates in some embodiments are exposed to a pretreatment process to polish, etch, reduce, oxidize, hydroxylate, anneal, UV cure, e-beam cure and/or bake the substrate surface. In addition to film processing directly on the surface of the substrate itself, in some embodiments, any of the film processing steps disclosed are also performed on an underlayer formed on the substrate, and the term “substrate surface” is intended to include such underlayer as the context indicates. Thus for example, where a film/layer or partial film/layer has been deposited onto a substrate surface, the exposed surface of the newly deposited film/layer becomes the substrate surface.
  • Embodiments described herein describe different kinds of patterned substrates and methods for effectively growing epitaxial III-nitride layers on them. In one or more embodiments, a nucleation layer, comprising a III-nitride material, is advantageously grown on a substrate before any patterning takes place. Without intending to be bound by theory, it is thought that this nucleation layer is important for subsequent growth of smooth coalesced III-nitride layers over the patterns. In one or more embodiments, a thin III-nitride layer, a nucleation layer, is formed (e.g., deposited) on a substrate prior to forming (e.g., depositing) a dielectric layer and forming the dielectric pattern features. Due to the deposition of the nucleation layer prior to dielectric deposition, the next process step of III-nitride material growth after a dielectric patterning step can be initiated at a high growth temperature. Initiating this step at a high growth temperature makes possible selective area deposition, i.e. the III-nitride material is deposited only on exposed areas of the nucleation layer and not on the dielectric material. Selective area deposition facilitates the use of patterned feature geometries with improved efficient light extraction properties, that would be difficult or impossible to use following a conventional growth sequence in which a nucleation layer is deposited after patterning the dielectric.
  • FIG. 1 depicts a flow diagram of a method 100 of manufacturing a light emitting diode (LED) device in accordance with one or more embodiments of the present disclosure. With reference to FIG. 1, in one or more embodiments, the method begins at operation 102 by depositing a nucleation layer on a substrate. At operation 104 a dielectric layer is deposited on the nucleation layer. At operation 106, a patterned surface is formed. At operation 108, a III-nitride layer is grown, e.g. epitaxially, on the areas of the nucleation layer which are not covered by dielectric material.
  • FIG. 2A is cross-section view of a LED device according to one or more embodiments. With reference to FIG. 2A, a nucleation layer 204 is deposited on a substrate 202.
  • The substrate may be any substrate known to one of skill in the art. In one or more embodiments, the substrate comprises one or more of sapphire, silicon carbide, silicon (Si), quartz, magnesium oxide (MgO), zinc oxide (ZnO), spinel, and the like. In one or more embodiments, the substrate is not patterned prior to deposition of the nucleation layer. Thus, in some embodiments, the substrate is not patterned and can be considered to be flat or substantially flat. Accordingly, in one or more embodiments, the method of the disclosure differs significantly from the conventional patterned substrate, e.g. patterned sapphire substrate (PSS), fabrication approach in which pattern features are etched directly into the substrate before deposition of a nucleation layer.
  • Without intending to be bound by theory, it is thought that the deposition of a nucleation layer 204 on the substrate 202 prior to patterning provides critical advantages. In one or more embodiments, it was found that the deposition of a nucleation layer 204 on the substrate 202 prior to patterning provided performance improvements for directional emitters with the growth substrate remaining attached in the finished device. In one or more embodiments, the performance improvements include increased light extraction efficiency (ExE) in emitters without a lens (dome), increased brightness, and increased angular directionality (forward gain, effective increased lumen output within a narrow angular emission cone (e.g. 45 degrees).
  • In one or more embodiments, the nucleation layer 204 comprises a III-nitride material. In some embodiments, the III-nitride material comprises one or more of gallium (Ga), aluminum (Al), and indium (In). Thus, in some embodiments, the nucleation layer 204 comprises one or more of gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), gallium aluminum nitride (GaAlN), gallium indium nitride (GaInN), aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), indium gallium nitride (InGaN), indium aluminum nitride (InAlN), and the like. In one or more specific embodiments, the nucleation layer 204 comprises aluminum nitride (AlN).
  • In one or more embodiments, the nucleation layer 204 has a thickness in a range of from about 5 nm to about 100 nm, including a range of from about 10 nm to 75 nm, a range of from about 5 nm to about 90 nm, a range of from about 10 nm to about 60 nm, a range of from about 5 nm to about 50 nm, a range of from about 10 nm to about 50 nm, and a range of from about 10 nm to about 90 nm.
  • In one or more embodiments, the nucleation layer 204 is deposited by one or more of sputter deposition, atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma enhanced atomic layer deposition (PEALD), and plasma enhanced chemical vapor deposition (PECVD).
  • “Sputter deposition” as used herein refers to a physical vapor deposition (PVD) method of thin film deposition by sputtering. In sputter deposition, a material, e.g. a III-nitride, is ejected from a target that is a source onto a substrate. The technique is based on ion bombardment of a source material, the target. Ion bombardment results in a vapor due to a purely physical process, i.e., the sputtering of the target material.
  • As used according to some embodiments herein, “atomic layer deposition” (ALD) or “cyclical deposition” refers to a vapor phase technique used to deposit thin films on a substrate surface. The process of ALD involves the surface of a substrate, or a portion of substrate, being exposed to alternating precursors, i.e. two or more reactive compounds, to deposit a layer of material on the substrate surface. When the substrate is exposed to the alternating precursors, the precursors are introduced sequentially or simultaneously. The precursors are introduced into a reaction zone of a processing chamber, and the substrate, or portion of the substrate, is exposed separately to the precursors.
  • As used herein according to some embodiments, “chemical vapor deposition” refers to a process in which films of materials are deposited from the vapor phase by decomposition of chemicals on a substrate surface. In CVD, a substrate surface is exposed to precursors and/or co-reagents simultaneous or substantially simultaneously. As used herein, “substantially simultaneously” refers to either co-flow or where there is overlap for a majority of exposures of the precursors.
  • As used herein according to some embodiments, “plasma enhanced atomic layer deposition (PEALD)” refers to a technique for depositing thin films on a substrate. In some examples of PEALD processes relative to thermal ALD processes, a material may be formed from the same chemical precursors, but at a higher deposition rate and a lower temperature. A PEALD process, in general, a reactant gas and a reactant plasma are sequentially introduced into a process chamber having a substrate in the chamber. The first reactant gas is pulsed in the process chamber and is adsorbed onto the substrate surface. Thereafter, the reactant plasma is pulsed into the process chamber and reacts with the first reactant gas to form a deposition material, e.g. a thin film on a substrate. Similarly to a thermal ALD process, a purge step maybe conducted between the delivery of each of the reactants.
  • As used herein according to one or more embodiments, “plasma enhanced chemical vapor deposition (PECVD)” refers to a technique for depositing thin films on a substrate. In a PECVD process, a source material, which is in gas or liquid phase, such as a gas-phase III-nitride material or a vapor of a liquid-phase III-nitride material that have been entrained in a carrier gas, is introduced into a PECVD chamber. A plasma-initiated gas is also introduced into the chamber. The creation of plasma in the chamber creates excited radicals. The excited radicals are chemically bound to the surface of a substrate positioned in the chamber, forming the desired film thereon.
  • FIG. 2B is cross-section view of a LED device according to one or more embodiments. With reference to FIG. 2B, a dielectric layer 206 is deposited on the nucleation layer 204.
  • As used herein, the term “dielectric” refers to an electrical insulator material that can be polarized by an applied electric field. In one or more embodiments, the dielectric layer includes, but is not limited to, oxides, e.g., silicon oxide (SiO2), aluminum oxide (Al2O3), nitrides, e.g., silicon nitride (Si3N4). In one or more embodiments, the dielectric layer comprises silicon nitride (Si3N4). In one or more embodiments, the dielectric layer comprises silicon oxide (SiO2). In some embodiments, the dielectric layer composition is non-stoichiometric relative to the ideal molecular formula. For example, in some embodiments, the dielectric layer includes, but is not limited to, oxides (e.g., silicon oxide, aluminum oxide), nitrides (e.g., silicon nitride (SiN)), oxycarbides (e.g. silicon oxycarbide (SiOC)), and oxynitrocarbides (e.g. silicon oxycarbonitride (SiNCO)).
  • In one or more embodiments, the dielectric layer 206 comprises a material with a low refractive index. In one or more embodiments, the dielectric layer 206 comprising a dielectric material having a refractive index in a range of from about 1.2 to about 2.
  • In one or more embodiments, the dielectric layer 206 is deposited by one or more of sputter deposition, atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma enhanced atomic layer deposition (PEALD), and plasma enhanced chemical vapor deposition (PECVD).
  • In one or more embodiments, the dielectric layer 206 has a thickness in a range of from about 50 nm to about 5 μm, including from about 100 nm to about 4 μm, from about 50 nm to about 4 μm, from about 200 nm to about 3 μm.
  • FIG. 2C is cross-section view of a LED device according to one or more embodiments. With reference to FIG. 2C, a patterned surface is formed. Thus, in one or more embodiments, a patterned dielectric layer 207 is formed. In one or more embodiments, the dielectric layer 206 is patterned according to any appropriate patterning technique known to one of skill in the art. In some embodiments, the patterned dielectric layer 207 comprises a plurality of features 208 protruding from the top surface of the nucleation layer 204 and having a plurality of spaces 210 between the plurality of features 208.
  • In one or more embodiments, the plurality of features 208 protruding from the surface of the nucleation layer 204 can have any shape known to one of skill in the art. FIGS. 3A-3F illustrate perspective views of a light emitting diode (LED) device according to one or more embodiments. Specifically, FIGS. 3A-3F illustrate various embodiments of the shapes of the plurality of features 208 protruding from the top surface of the nucleation layer 204.
  • In one or more embodiments, the shape of the plurality of protruding features 208 includes, but is not limited to, a hemispherical shape (FIG. 3A), a triangular pyramidal shape (FIG. 3B), a quadrangular pyramidal shape (FIG. 3C), a hexagonal pyramidal shape (FIG. 3D), a conical shape (FIG. 3E), a semi-spherical shape or a cut-spherical shape (FIG. 3F).
  • In one or more embodiments, the plurality of features 208 protruding from the surface of the nucleation layer 204 has a height in a range of from about 100 nm to about 3 μm, include a range of from about 500 nm to about 2 μm, a range of from about 100 nm to about 1 μm, a range of from about 250 nm to about 2.5 μm, and a range of from about 100 nm to about 2 μm.
  • In one of more embodiments, the plurality of features 208 protruding from the surface of the nucleation layer 204 has a pitch in a range of from about 50 nm to about 5000 nm, including a range from about 500 nm to about 2000 nm, and a range of from about 500 nm to about 1000 nm.
  • In one or more embodiments, the plurality of features 208 protruding from the surface of the nucleation layer 204 has a width in a range of from about 5 nm to about 500 nm, including a range from about 10 nm to about 500 nm, and a range of from about 5 nm to about 300 nm.
  • In one or more specific embodiments, a hexagonal pattern of a plurality of features 208 protruding from the surface of the nucleation layer 204 having a pitch of about 1000 nm and a circle diameter of about 200 nm is transferred to a photoresist coating (not illustrated) on the dielectric layer 206 using nanoimprint lithography. In one or more embodiments, the substrate 202 is etched in a reactive ion etching (RIE) tool using conditions that etch the dielectric layer 206 efficiently but etch the nucleation layer 204 very slowly or not at all. In other words, the etching is selective to the dielectric layer 206 over the nucleation layer 204. In one or more embodiments, the photoresist is removed and the wafer is cleaned, resulting in a hexagonal array of cones the dielectric layer 204. In one or more embodiments, the half-angle of the plurality of features 208 is controlled by adjusting parameters such as the thickness of the starting dielectric layer 206, thickness of photoresist layer (not illustrated), and differences in RIE etch rates that depend on surface angles and/or materials.
  • FIG. 2D is cross-section view of a LED device according to one or more embodiments. With reference to FIG. 2D, a III-nitride layer 212 is grown, e.g. epitaxially, on the patterned dielectric layer 207. In one or more embodiments, a III-nitride layer is grown on the nucleation layer 204 and in or on the plurality of spaces 210 between the plurality of features 208, and not on the dielectric layer 206. In one or more embodiments, the plurality of features 208 have at least one sidewall (not illustrated), and the III-nitride layer does not grow on the at least one sidewall of the plurality of features 208.
  • In one or more embodiments, the III-nitride layer 212 comprises a III-nitride material. In some embodiments, the III-nitride material comprises one or more of gallium (Ga), aluminum (Al), and indium (In). Thus, in some embodiments, the III-nitride layer 212 comprises one or more of gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), gallium aluminum nitride (GaAlN), gallium indium nitride (GaInN), aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), indium gallium nitride (InGaN), indium aluminum nitride (InAlN), and the like. In one or more specific embodiments, the III-nitride layer 212 comprises gallium nitride. In some embodiments, the III-nitride layer 212 and the nucleation layer 204 comprise the same III-nitride material. In other embodiments, the III-nitride layer 212 and the nucleation layer 204 comprise different III-nitride materials. In a specific embodiment, the nucleation layer 204 comprises aluminum nitride (AlN) and the III-nitride layer 212 comprises gallium nitride (GaN).
  • In one or more embodiments, the III-nitride layer 212 is placed in a metalorganic vapor-phase epitaxy (MOVPE) reactor for epitaxy of LED device layers. Unlike during a typical MOVPE growth run, which starts with a low temperature nucleation layer, in one or more embodiments the MOVPE process starts with high temperature III-nitride growth taking advantage of the large difference in III-nitride nucleation rates on the pre-deposited nucleation layer 204 versus the surfaces of patterned dielectric layer 207 and plurality of features 208. In one or more embodiments, after the epitaxy, e.g. MOVPE, growth run, the device 200 is processed as is typical for a conventional PSS based LED.
  • In one or more embodiments, pre-deposition of the nucleation layer 204 allows high temperature selective area growth around the plurality of features 208, and, thus, more freedom in pattern feature geometry since nucleation of unwanted misoriented grains on the pattern features is avoided. In one or more embodiments, the temperature at which the III-nitride layer is grown is in a range of from about 800° C. to about 1200° C., or from about 950° C. to about 1150° C.
  • FIGS. 4A and 4B are perspective views of a LED device according to one or more embodiments. With reference to FIG. 4A, a nucleation layer 204 has been deposited on a substrate 202, and a dielectric layer 206 has been deposited on the nucleation layer 204, as described above. Referring to FIG. 4A, the dielectric layer 206 is then patterned by any appropriate patterning technique known to one of skill in the art. In one or more embodiments, the patterned dielectric layer 307 has a plurality of features 308. In one or more embodiments, the plurality of features 308 comprise holes 311 that extend to the nucleation layer 204. In one or more embodiments, the holes 311 are any appropriate shape or size known to one of skill in the art. For example, in some embodiments, the plurality of features 308 or the holes 311 have a diameter in a range of from about 50 nm to about 5000 nm. In one or more embodiments, the plurality of features 308 has a depth that is equal to the thickness of the dielectric layer 204. For the embodiments based on pattern holes in a dielectric layer 204, the depth of the holes may be at least equal to the thickness of the dielectric layer. In some embodiments, the depth of the holes may extend up to about 500 nm deeper than the thickness of the dielectric layer 204.
  • In one or more embodiments, the holes 311 are regularly spaced. In other embodiments, the holes 311 are irregularly spaced. In one or more embodiments, the plurality of features 308 (i.e. holes 311) have a plurality of spaces 310 between the plurality of features 308.
  • Referring to FIG. 4B, a III-nitride layer 312 is grown, e.g. epitaxially, on the patterned dielectric layer 307. In one or more embodiments, the III-nitride layer 312 fills the plurality of features 308 (i.e. holes 311) and comes in contact with the nucleation layer 204.
  • In one or more embodiments, the III-nitride layer 312 comprises a III-nitride material. In some embodiments, the III-nitride material comprises one or more of gallium (Ga), aluminum (Al), and indium (In). Thus, in some embodiments, the III-nitride layer 312 comprises one or more of gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), gallium aluminum nitride (GaAlN), gallium indium nitride (GaInN), aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), indium gallium nitride (InGaN), indium aluminum nitride (InAlN), and the like. In one or more specific embodiments, the III-nitride layer 312 comprises gallium nitride. In some embodiments, the III-nitride layer 312 and the nucleation layer 204 comprise the same III-nitride material. In other embodiments, the III-nitride layer 312 and the nucleation layer 204 comprise different III-nitride materials. In a specific embodiment, the nucleation layer 204 comprises aluminum nitride (AlN) and the III-nitride layer 312 comprises gallium nitride (GaN).
  • In one or more embodiments, the growth method disclosed herein (i.e. forming an epitaxial nucleation layer on the substrate before forming a plurality of features in the dielectric layer) avoids nucleation of misoriented grains onto patterned features, making it easier to grow smooth device-quality III-nitride layers over patterned features. Additionally, in one or more embodiments, the patterned features are packed more densely together than would be possible with current state-of-the-art methods that utilize etching of sapphire before nucleation layer deposition because of the selective area growth around the dielectric patterns.
  • FIG. 5 depicts a flow diagram of a method 500 of manufacturing a light emitting diode (LED) device in accordance with one or more alternative embodiments of the present disclosure. With reference to FIG. 5, in one or more embodiments, the method begins at operation 502 by depositing a nucleation layer on a substrate. At operation 504 the substrate is patterned. At operation 506, a III-nitride layer is selectively grown, e.g. epitaxially, on the nucleation layer.
  • FIG. 6A is cross-section view of a LED device according to one or more embodiments. With reference to FIG. 6A, a nucleation layer 604 is deposited on a substrate 602.
  • In one or more embodiments, the substrate 602 is any suitable substrate known to one of skill in the art, including any of the substrates described through the disclosure. In one or more specific embodiments, the substrate 602 comprises sapphire.
  • Without intending to be bound by theory, it is thought that the deposition of a nucleation layer 604 on the substrate 602 prior to patterning provides critical advantages. In one or more embodiments, it was found that the deposition of a nucleation layer 604 on the substrate 602 prior to patterning provided performance improvements for directional emitters with the growth substrate remaining attached in the finished device. In one or more embodiments, the performance improvements include increased light extraction efficiency (ExE) in emitters without a lens (dome), increased brightness, and increased angular directionality (forward gain, effective increased lumen output within a narrow angular emission cone (e.g. 45 degrees)
  • In one or more embodiments, the nucleation layer 604 is deposited by one or more of sputter deposition, atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma enhanced atomic layer deposition (PEALD), and plasma enhanced chemical vapor deposition (PECVD).
  • In one or more embodiments, the nucleation layer 604 comprises a III-nitride material. In some embodiments, the III-nitride material comprises one or more of gallium (Ga), aluminum (Al), and indium (In). Thus, in some embodiments, the nucleation layer 604 comprises one or more of gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), gallium aluminum nitride (GaAlN), gallium indium nitride (GaInN), aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), indium gallium nitride (InGaN), indium aluminum nitride (InAlN), and the like. In one or more specific embodiments, the nucleation layer 604 comprises aluminum nitride (AlN).
  • In one or more embodiments, the nucleation layer 604 has a thickness in a range of from about 5 nm to about 100 nm, including a range of from about 10 nm to 75 nm, a range of from about 5 nm to about 90 nm, a range of from about 10 nm to about 60 nm, a range of from about 5 nm to about 50 nm, a range of from about 10 nm to about 50 nm, and a range of from about 10 nm to about 90 nm.
  • FIG. 6B is cross-section view of a LED device according to one or more embodiments. With reference to FIG. 6B, the substrate 602 and nucleation layer 604 are patterned to form voids 605. In one or more embodiments, the voids 605 have any shape known to the skilled artisan, including, but not limited to, rectangular, triangular, oval, rounded, hexagonal, and the like.
  • In one or more embodiments, the plurality of voids 605 may have a thickness approximately determined by the depth of the substrate etch step. In one or more embodiments, the depth of the plurality of voids 605 may be in a range of from about 50 nm to about 5000 nm.
  • In one of more embodiments, the plurality of voids 605 has a pitch in a range of from about 50 nm to about 5000 nm, including a range from about 500 nm to about 2000 nm, and a range of from about 500 nm to about 1000 nm.
  • In one or more embodiments, the plurality of voids has a width in a range of from about 5 nm to about 500 nm, including a range from about 10 nm to about 500 nm, and a range of from about 5 nm to about 300 nm.
  • In one or more embodiments, a hexagonal pattern of voids 605 is transferred to a photoresist coating (not illustrated) on the nucleation layer 204 using conventional photolithography. In one or more embodiments, the device 600 is etched to a depth in an RIE tool using conditions that efficiently etch both the nucleation layer 204 and the substrate 202, resulting in a void having substantially vertical sidewall angles. In one or more embodiments, after removing the photoresist (not illustrated) and cleaning the device 600, the result is an array of nucleation layer-coated substrate posts 609.
  • FIG. 6C is cross-section view of a LED device according to one or more embodiments. With reference to FIG. 6C, a III-nitride layer 612 is grown, e.g. epitaxially, on the nucleation layer-coated substrate posts 609. FIG. 6D is cross-section view of a LED device according to one or more embodiments. With reference to FIG. 6D, the III-nitride layer 612 is grown, e.g. epitaxially, laterally on the nucleation layer-coated substrate posts 609.
  • In one or more embodiments, the III-nitride layer 612 comprises a III-nitride material. In some embodiments, the III-nitride material comprises one or more of gallium (Ga), aluminum (Al), and indium (In). Thus, in some embodiments, the III-nitride layer 212 comprises one or more of gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), gallium aluminum nitride (GaAlN), gallium indium nitride (GaInN), aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), indium gallium nitride (InGaN), indium aluminum nitride (InAlN), and the like. In one or more specific embodiments, the III-nitride layer 612 comprises gallium nitride. In some embodiments, the III-nitride layer 612 and the nucleation layer 204 comprise the same III-nitride material. In other embodiments, the III-nitride layer 612 and the nucleation layer 204 comprise different III-nitride materials. In a specific embodiment, the nucleation layer 204 comprises aluminum nitride (AlN) and the III-nitride layer 612 comprises gallium nitride (GaN).
  • In one or more embodiments, the device 600 is loaded into a MOVPE reactor for epitaxy of LED device layers. Unlike during a typical MOVPE growth run, which starts with a low temperature nucleation layer, in one or more embodiments the MOVPE process starts with high temperature III-nitride growth taking advantage of the large difference in III-nitride nucleation rates on the pre-deposited nucleation layer 204 versus the etched substrate 202 surfaces not covered by the nucleation layer 204. In one or more embodiments, the III-nitride layer grows laterally and coalesces above the voids 605 in the substrate 202 leaving an array of buried void features. In one or more embodiments, the voids 605 have a refractive index equal to 1, as the voids are filled with air. In one or more embodiments, after the MOVPE growth run, subsequent processing of the device 600 follows as usual for a conventional PSS based LED.
  • Without intending to be bound by theory, it is thought that performance improvements of the LED device of one or more embodiments are, in part, a consequence of fabricating the plurality of features from a material with lower refractive index, e.g. low refractive index dielectric material or voids (air), than a substrate, such as a sapphire substrate. In one or more embodiments, the low refractive index features 208 or voids 605 produce a narrow beam angular profile, which is significantly lower than that produced by state-of the art patterned sapphire substrate (PSS), even in side-coated architectures. In one or more embodiments, the narrowing level is quantified by defining a forward-gain parameter (fwdGain). The fwdGain may be defined with respect to different cone angles, e.g. 5 deg, 45 deg and 60 deg, and helps establish the relative level of light concentration within a given cone angle centered at normal. The higher the fwdGain is, the higher the concentration of light. In typical reference, PSS LED emitters with side-coating have a fwdGain (45) <0.5, with a full width half max (FWHM) >120 deg. In one or more embodiments, the product of fwdGain and light extraction efficiency (ExE) allows quantifying the relative flux gains concentrated within a given angular acceptance cone.
  • The LED device of one of more embodiments is useful in any product known to one of skill in the art which uses a side-coated chip-scale package (CSP) architecture. As used herein, the term “chip-scale package (CSP)” refers to a type of integrated circuit package. In one or more embodiments, a chip-scale package is provided which has an area no greater than about 1.2 times that of the die, which is a single-die, direct surface mountable package. In one or more embodiments, the CSP has a ball pitch that is less than or equal to about 1 mm. FIG. 7 is a cross-section view of an exemplary LED package 700 according to one or more embodiments. Referring to FIG. 7, a chip-scale package (CSP) LED unit 700 comprising the LED device 702 of one or more embodiments. An anode 704 and a cathode 706 are soldered to the LED device 702.
  • The disclosure is now described with reference to the following examples. Before describing several exemplary embodiments of the disclosure, it is to be understood that the disclosure is not limited to the details of construction or process steps set forth in the following description. The disclosure is capable of other embodiments and of being practiced or being carried out in various ways.
  • EXAMPLES Example 1 SiO2 Pattern Features
  • A nucleation layer of AlN was deposited on a non-patterned sapphire substrate using a sputter deposition tool. A SiO2 layer of thickness 800 nm was coated over the AlN layer using plasma-enhanced chemical vapor deposition (PECVD). A hexagonal pattern of circles having a pitch of 1000 nm and a circle diameter of 200 nm was transferred to a photoresist coating on the SiO2 layer using nanoimprint lithography. The wafer was etched in an reactive ion etching (RIE) tool using conditions that etch SiO2 efficiently but etch AlN very slowly or not at all. After the photoresist was removed and the wafer cleaned, the result was a hexagonal array of cones of SiO2. The half-angle of the cones was about 35 degrees and was controlled by adjusting parameters such as the thickness of the starting SiO2 layer, thickness of photoresist layer, and differences in RIE etch rates that depend on surface angles and/or materials. The wafer was then loaded into a III-nitride MOVPE reactor for epitaxy of LED device layers. Unlike a typical MOVPE growth run which starts with a low temperature nucleation layer, the MOVPE process in this case started with high temperature GaN growth taking advantage of the large difference in GaN nucleation rates on the predeposited AlN vs. the surfaces of the SiO2 cone features. After the MOVPE growth run. Subsequent processing of the wafer followed as usual for a conventional PSS based LED.
  • Example 2 Void Pattern Features
  • A nucleation layer of AlN was deposited on a non-patterned sapphire substrate using a sputter deposition tool. A hexagonal pattern of voids having a pitch of 2000 nm and a void diameter of 750 nm was transferred to a photoresist coating on the AlN layer using conventional photolithography. The wafer was etched to a depth of 600 nm in an RIE tool using conditions that efficiently etch both AlN and sapphire resulting in a nearly vertical sidewall angle. After removing the photoresist and cleaning the wafer the result was an array of AlN-coated sapphire posts. The wafer was then loaded into a III-nitride MOVPE reactor for epitaxy of LED device layers. Unlike a typical MOVPE growth run which starts with a low temperature nucleation layer, the MOVPE process in this case started with high temperature GaN growth taking advantage of the large difference in GaN nucleation rates on the pre-deposited AlN vs. the etched sapphire surfaces not covered by AlN. The GaN grows laterally and coalesces above the voids in the sapphire leaving an array of buried void features with refractive index=1. After the MOVPE growth run subsequent processing of the wafer follows as usual for a conventional PSS based LED.
  • The use of the terms “a” and “an” and “the” and similar referents in the context of describing the materials and methods discussed herein (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the materials and methods and does not pose a limitation on the scope unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the disclosed materials and methods.
  • Reference throughout this specification to “one embodiment,” “certain embodiments,” “one or more embodiments” or “an embodiment” means that a particular feature, structure, material, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. Thus, the appearances of the phrases such as “in one or more embodiments,” “in certain embodiments,” “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily referring to the same embodiment of the disclosure. In one or more embodiments, the particular features, structures, materials, or characteristics are combined in any suitable manner.
  • Although the disclosure herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present disclosure. It will be apparent to those skilled in the art that various modifications and variations can be made to the method and apparatus of the present disclosure without departing from the spirit and scope of the disclosure. Thus, it is intended that the present disclosure include modifications and variations that are within the scope of the appended claims and their equivalents.

Claims (12)

What is claimed is:
1. A light emitting diode device comprising:
a patterned substrate comprising a substrate body, a plurality of integral features protruding from the substrate body, and a base surface defined by a plurality of voids between the plurality of integral features, the plurality of integral features having a top surface and sidewalls and a height, a pitch, and a width;
a nucleation layer on a top surface of the plurality of integral features and not in the plurality of voids, the nucleation layer comprising a first III-nitride material; and
a III-nitride layer on the nucleation layer, the III-nitride layer comprising a second III-nitride material.
2. The light emitting diode device of claim 1, wherein the first III-nitride material and the second III-nitride material independently comprise one or more of aluminum, gallium, and indium.
3. The light emitting diode device of claim 2, wherein the first III-nitride material comprises aluminum nitride (AlN).
4. The light emitting diode device of claim 2, wherein the first III-nitride material and the second III-nitride material are the same.
5. The light emitting diode device of claim 1, wherein the second III-nitride material comprises gallium nitride (GaN).
6. The light emitting diode device of claim 1, wherein the nucleation layer has a thickness in a range of from 5 nm to 50 nm.
7. A method of manufacturing a light emitting diode (LED) device, the method comprising:
depositing a nucleation layer on a substrate, the nucleation layer comprising a first III-nitride material;
patterning the substrate to form a plurality of nucleation layer-coated substrate posts separated by the plurality of voids; and
epitaxially growing the III-nitride layer on the plurality of nucleation layer-coated substrate posts, the III-nitride layer comprising a second III-nitride material.
8. The method of claim 7, wherein the first III-nitride material and the second III-nitride material independently comprise one or more of aluminum, gallium, and indium.
9. The method of claim 8, wherein the first III-nitride material comprises aluminum nitride (AlN).
10. The method of claim 8, wherein the first III-nitride material and the second III-nitride material are the same.
11. The method of claim 7, wherein the second III-nitride material comprises gallium nitride (GaN).
12. The method of claim 7, wherein the nucleation layer has a thickness in a range of from 5 nm to 50 nm.
US17/531,922 2019-12-19 2021-11-22 Light Emitting Diode (LED) Devices With Nucleation Layer Abandoned US20220085236A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/531,922 US20220085236A1 (en) 2019-12-19 2021-11-22 Light Emitting Diode (LED) Devices With Nucleation Layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/721,386 US11264530B2 (en) 2019-12-19 2019-12-19 Light emitting diode (LED) devices with nucleation layer
US17/531,922 US20220085236A1 (en) 2019-12-19 2021-11-22 Light Emitting Diode (LED) Devices With Nucleation Layer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/721,386 Division US11264530B2 (en) 2019-12-19 2019-12-19 Light emitting diode (LED) devices with nucleation layer

Publications (1)

Publication Number Publication Date
US20220085236A1 true US20220085236A1 (en) 2022-03-17

Family

ID=76438756

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/721,386 Active 2040-02-15 US11264530B2 (en) 2019-12-19 2019-12-19 Light emitting diode (LED) devices with nucleation layer
US17/531,922 Abandoned US20220085236A1 (en) 2019-12-19 2021-11-22 Light Emitting Diode (LED) Devices With Nucleation Layer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/721,386 Active 2040-02-15 US11264530B2 (en) 2019-12-19 2019-12-19 Light emitting diode (LED) devices with nucleation layer

Country Status (1)

Country Link
US (2) US11264530B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230154968A1 (en) * 2021-11-12 2023-05-18 Lumileds Llc Thin-film led array with low refractive index patterned structures
WO2023137713A1 (en) * 2022-01-21 2023-07-27 佛山市柔浩电子有限公司 Micro led chip detection structure and preparation method therefor
WO2023137714A1 (en) * 2022-01-21 2023-07-27 佛山市柔浩电子有限公司 Micro led chip, preparation method therefor, and eutectic structure containing same
WO2024129716A1 (en) 2022-12-15 2024-06-20 Lumileds Llc Microleds with nanopatterned surface

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060060866A1 (en) * 2000-03-14 2006-03-23 Toyoda Gosel Co., Ltd. Group III nitride compound semiconductor devices and method for fabricating the same

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04341568A (en) 1991-05-16 1992-11-27 Toshiba Corp Method for forming thin film and device therefor
US5283447A (en) 1992-01-21 1994-02-01 Bandgap Technology Corporation Integration of transistors with vertical cavity surface emitting lasers
US5952681A (en) 1997-11-24 1999-09-14 Chen; Hsing Light emitting diode emitting red, green and blue light
JP4075321B2 (en) 2001-04-24 2008-04-16 日亜化学工業株式会社 Integrated nitride semiconductor light emitting device
US6537838B2 (en) 2001-06-11 2003-03-25 Limileds Lighting, U.S., Llc Forming semiconductor structures including activated acceptors in buried p-type III-V layers
DE102004004765A1 (en) 2004-01-29 2005-09-01 Rwe Space Solar Power Gmbh Active Zones Semiconductor Structure
JP2005236667A (en) 2004-02-19 2005-09-02 Nippon Telegr & Teleph Corp <Ntt> Communication system
US20070170444A1 (en) 2004-07-07 2007-07-26 Cao Group, Inc. Integrated LED Chip to Emit Multiple Colors and Method of Manufacturing the Same
KR100624449B1 (en) 2004-12-08 2006-09-18 삼성전기주식회사 Semiconductor emitting device with approved and manufacturing method for the same
US7872272B2 (en) 2006-09-06 2011-01-18 Palo Alto Research Center Incorporated Nitride semiconductor ultraviolet LEDs with tunnel junctions and reflective contact
US8049256B2 (en) 2006-10-05 2011-11-01 Omnivision Technologies, Inc. Active pixel sensor having a sensor wafer connected to a support circuit wafer
US8502263B2 (en) * 2006-10-19 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
JP2010525555A (en) 2007-03-08 2010-07-22 スリーエム イノベイティブ プロパティズ カンパニー Array of light emitting elements
JP2008263127A (en) 2007-04-13 2008-10-30 Toshiba Corp Led apparatus
US8058663B2 (en) 2007-09-26 2011-11-15 Iii-N Technology, Inc. Micro-emitter array based full-color micro-display
US8022421B2 (en) 2007-11-06 2011-09-20 Industrial Technology Institute Light emitting module having LED pixels and method of forming the same
EP2380217A2 (en) 2008-12-24 2011-10-26 3M Innovative Properties Company Method of making double-sided wavelength converter and light generating device using same
US8507304B2 (en) 2009-07-17 2013-08-13 Applied Materials, Inc. Method of forming a group III-nitride crystalline film on a patterned substrate by hydride vapor phase epitaxy (HVPE)
JP4934705B2 (en) 2009-07-28 2012-05-16 キヤノン株式会社 Surface emitting laser, surface emitting laser manufacturing method, and image forming apparatus
US11271128B2 (en) 2009-10-23 2022-03-08 Utica Leaseco, Llc Multi-junction optoelectronic device
DE102010002966B4 (en) 2010-03-17 2020-07-30 Osram Opto Semiconductors Gmbh Laser diode arrangement and method for producing a laser diode arrangement
US8604498B2 (en) 2010-03-26 2013-12-10 Tsmc Solid State Lighting Ltd. Single phosphor layer photonic device for generating white light or color lights
US8163581B1 (en) 2010-10-13 2012-04-24 Monolith IC 3D Semiconductor and optoelectronic devices
JP5573632B2 (en) 2010-11-25 2014-08-20 豊田合成株式会社 Group III nitride semiconductor light emitting device
KR101230622B1 (en) 2010-12-10 2013-02-06 이정훈 Method of fabricating semiconductor device using gang bonding and semiconductor device fabricated by the same
TWI425666B (en) 2011-04-27 2014-02-01 Univ Nat Central Growth of semi - polarized nitrides
JP5874227B2 (en) 2011-07-22 2016-03-02 富士ゼロックス株式会社 Surface emitting semiconductor laser array, surface emitting semiconductor laser device, optical transmission device, and information processing device
US9184194B2 (en) 2011-12-21 2015-11-10 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Multiband photodetector utilizing serially connected unipolar and bipolar devices
TWI455304B (en) 2012-01-30 2014-10-01 Lextar Electronics Corp Patterned substrate and stacked led structure
CN102593284B (en) 2012-03-05 2014-06-18 映瑞光电科技(上海)有限公司 Methods for manufacturing isolation deep trench and high voltage LED chip
KR101233063B1 (en) * 2012-04-19 2013-02-19 (주)휴넷플러스 Method for fabricating nano patterned substrate for high efficiency nitride based light emitting diode
FR2992466A1 (en) 2012-06-22 2013-12-27 Soitec Silicon On Insulator Method for manufacturing e.g. LED device, involves forming insulating material portion on sides of p-type layer, active layer and portion of n-type layer, and exposing contact studs over another portion of n-type layer
DE102012217644A1 (en) 2012-09-27 2014-03-27 Osram Opto Semiconductors Gmbh Optoelectronic component
EP2743966B1 (en) 2012-12-14 2020-11-25 Seoul Viosys Co., Ltd. Epitaxial layer wafer having void for separating growth substrate therefrom and semiconductor device fabricated using the same
US20140191243A1 (en) 2013-01-08 2014-07-10 University Of Florida Research Foundation, Inc. Patterned articles and light emitting devices therefrom
WO2014122565A1 (en) 2013-02-11 2014-08-14 Koninklijke Philips N.V. A light emitting device and method for manufacturing a light emitting device
FR3005784B1 (en) 2013-05-14 2016-10-07 Aledia OPTOELECTRONIC DEVICE AND METHOD FOR MANUFACTURING THE SAME
FR3005785B1 (en) 2013-05-14 2016-11-25 Aledia OPTOELECTRONIC DEVICE AND METHOD FOR MANUFACTURING THE SAME
EP3011604B1 (en) 2013-06-19 2020-04-22 Lumileds Holding B.V. Led with patterned surface features
JP6183122B2 (en) 2013-10-02 2017-08-23 富士通株式会社 Optical semiconductor device, optical semiconductor device array, optical transmission module, and optical transmission system
FR3019380B1 (en) 2014-04-01 2017-09-01 Centre Nat Rech Scient PIXEL SEMICONDUCTOR, MATRIX OF SUCH PIXELS, SEMICONDUCTOR STRUCTURE FOR CARRYING OUT SUCH PIXELS AND METHODS OF MAKING SAME
JP6764791B2 (en) 2014-05-30 2020-10-07 ルミレッズ ホールディング ベーフェー Light emitting device with a patterned substrate
US11018231B2 (en) 2014-12-01 2021-05-25 Yale University Method to make buried, highly conductive p-type III-nitride layers
US9653642B1 (en) 2014-12-23 2017-05-16 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes
EP3320566A4 (en) 2015-07-10 2019-02-27 The Regents of The University of California Hybrid growth method for iii-nitride tunnel junction devices
US9825088B2 (en) 2015-07-24 2017-11-21 Epistar Corporation Light-emitting device and manufacturing method thereof
US10991861B2 (en) 2015-10-01 2021-04-27 Cree, Inc. Low optical loss flip chip solid state lighting device
KR102374266B1 (en) 2015-10-02 2022-03-18 삼성전자주식회사 White light emitting module and led lighting apparatus
CN108370029B (en) 2015-10-23 2021-08-24 精工爱普生株式会社 Method for producing electrode assembly, and battery
CN105355739A (en) 2015-10-23 2016-02-24 安徽三安光电有限公司 Patterned substrate, preparation method and light-emitting diode
CN105591004B (en) 2016-03-29 2020-07-10 苏州晶湛半导体有限公司 L ED epitaxial wafer based on patterned Si substrate and preparation method thereof
US10312082B2 (en) 2016-05-09 2019-06-04 The Regents Of The University Of Michigan Metal based nanowire tunnel junctions
KR102559993B1 (en) 2016-05-16 2023-07-26 엘지이노텍 주식회사 Semiconductor device
WO2017200845A1 (en) 2016-05-20 2017-11-23 Lumileds Llc Method of forming a p-type layer for a light emitting device
JP6245319B1 (en) 2016-06-30 2017-12-13 富士ゼロックス株式会社 Light emitting component, print head, image forming apparatus, and semiconductor multilayer substrate
US10937924B2 (en) 2016-10-08 2021-03-02 Goertek. Inc Display device and electronics apparatus
US10842705B2 (en) 2016-10-19 2020-11-24 Dynatronics Corporation System and methods for providing and using a knee range of motion device
JP6686876B2 (en) 2016-12-28 2020-04-22 豊田合成株式会社 Semiconductor structure and semiconductor device
CN107068811B (en) 2017-03-15 2019-06-18 京东方科技集团股份有限公司 The production method and light-emitting diode assembly of light-emitting diode assembly
TWI683372B (en) * 2017-06-29 2020-01-21 環球晶圓股份有限公司 Semiconductor device and method of forming the same
US10554020B2 (en) 2017-06-29 2020-02-04 Silanna UV Technologies Pte Ltd LED with emitted light confined to fewer than ten transverse modes
US11508812B2 (en) * 2017-09-29 2022-11-22 Intel Corporation Multi-step lateral epitaxial overgrowth for low defect density III-N films
US10249800B1 (en) 2017-10-03 2019-04-02 Lockheed Martin Corporation Stacked transparent pixel structures for electronic displays
US10804429B2 (en) 2017-12-22 2020-10-13 Lumileds Llc III-nitride multi-wavelength LED for visible light communication
WO2019170536A1 (en) 2018-03-09 2019-09-12 Lumileds Holding B.V. Passive matrix led display assembly
EP3813096A1 (en) * 2019-10-22 2021-04-28 Imec VZW Method for manufacturing an iii-nitride semiconductor structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060060866A1 (en) * 2000-03-14 2006-03-23 Toyoda Gosel Co., Ltd. Group III nitride compound semiconductor devices and method for fabricating the same

Also Published As

Publication number Publication date
US11264530B2 (en) 2022-03-01
US20210193863A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
US11264530B2 (en) Light emitting diode (LED) devices with nucleation layer
US11211527B2 (en) Light emitting diode (LED) devices with high density textures
US11923401B2 (en) III-nitride multi-wavelength LED arrays
US8268648B2 (en) Silicon based solid state lighting
TWI495142B (en) Semiconductor device, light emitting device and method of manufacturing the same
KR100831843B1 (en) Compound semiconductor substrate grown on metal layer, method for manufacturing the same, and compound semiconductor device using the same
JP5539395B2 (en) Semiconductor device, light emitting device and method of manufacturing the same
KR102590362B1 (en) III-Nitride multi-wavelength LED arrays with etch stop layer
US11923402B2 (en) Light emitting diode device
US20220131028A1 (en) Light Emitting Diode (LED) Devices With Nucleation Layer
US20230155070A1 (en) Thin-film led array with low refractive index patterned structures and reflector
US20230154968A1 (en) Thin-film led array with low refractive index patterned structures
US20240297270A1 (en) Green LED With Current-Invariant Emission Wavelength
TW201220532A (en) Integration of cluster MOCVD and HVPE reactors with other process chambers
JP2023548144A (en) light emitting diode device
JP2011124504A (en) Method of manufacturing semiconductor light-emitting element

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: LUMILEDS HOLDING B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WILDESON, ISAAC;LOPEZ, TONI;KIM, HEE-JIN;AND OTHERS;SIGNING DATES FROM 20200124 TO 20200305;REEL/FRAME:058344/0470

Owner name: LUMILEDS LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUMILEDS HOLDING B.V.;REEL/FRAME:058344/0548

Effective date: 20201029

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, NEW YORK

Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:LUMILEDS, LLC;REEL/FRAME:062114/0001

Effective date: 20221208

AS Assignment

Owner name: SOUND POINT AGENCY LLC, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:LUMILEDS LLC;LUMILEDS HOLDING B.V.;REEL/FRAME:062299/0338

Effective date: 20221230

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION