US20220084019A1 - Generating a statistic using electronic transaction data - Google Patents

Generating a statistic using electronic transaction data Download PDF

Info

Publication number
US20220084019A1
US20220084019A1 US17/457,181 US202117457181A US2022084019A1 US 20220084019 A1 US20220084019 A1 US 20220084019A1 US 202117457181 A US202117457181 A US 202117457181A US 2022084019 A1 US2022084019 A1 US 2022084019A1
Authority
US
United States
Prior art keywords
merchants
active
merchant
period
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/457,181
Inventor
Aaron Jaffe
Albert Altarovici
Daniel Moulton
David Montague
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palantir Technologies Inc
Original Assignee
Palantir Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Palantir Technologies Inc filed Critical Palantir Technologies Inc
Priority to US17/457,181 priority Critical patent/US20220084019A1/en
Assigned to Palantir Technologies Inc. reassignment Palantir Technologies Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOULTON, DANIEL, JAFFE, AARON, MONTAGUE, DAVID, ALTAROVICI, ALBERT
Publication of US20220084019A1 publication Critical patent/US20220084019A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/389Keeping log of transactions for guaranteeing non-repudiation of a transaction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2457Query processing with adaptation to user needs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2462Approximate or statistical queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/02Payment architectures, schemes or protocols involving a neutral party, e.g. certification authority, notary or trusted third party [TTP]

Definitions

  • Embodiments of the present disclosure generally relates to the technical field of special-purpose machines that receive transaction data and perform an analysis of the received transaction data including computerized variants of such special-purpose machines and improvements to such variants, and to the technologies by which such special-purpose machines become improved compared to other special-purpose machines that receive transaction data and perform the analysis of the received transaction data.
  • the present disclosure addresses systems and methods to generating a statistic that measures large-scale activity using the transaction data.
  • FIG. 1 is a block diagram illustrating a networked system, according to some example embodiments.
  • FIG. 2 is a block diagram illustrating components of the modeling system, according to some example embodiments.
  • FIG. 3-5 are flowcharts illustrating operations of the modeling system in performing a method of generating a statistic, according to some example embodiments.
  • FIG. 6 illustrates a diagrammatic representation of a machine in the form of a computer system within which a set of instructions may be executed for causing the machine to perform any one or more of the methodologies discussed herein, according to an example embodiment.
  • Example methods facilitate disambiguation of a search criterion, providing one or more users with notification thereof, or both
  • example systems e.g., special-purpose machines
  • example systems are configured to facilitate disambiguation of the search criterion, providing one or more users with notification thereof, or both.
  • Examples merely typify possible variations.
  • structures e.g., structural components, such as modules
  • operations e.g., in a procedure, algorithm, or other function
  • a networked system 102 in the example forms of a network-based publication or payment system, provides server-side functionality via a network 104 (e.g., the Internet or wide area network (WAN)) to one or more client devices 110 .
  • FIG. 1 illustrates, for example, a web client 112 (e.g., a browser, such as the Internet Explorer® browser developed by Microsoft® Corporation of Redmond, Washington State), a client application 114 , and a programmatic client 116 executing on client device 110 .
  • a web client 112 e.g., a browser, such as the Internet Explorer® browser developed by Microsoft® Corporation of Redmond, Washington State
  • client application 114 e.g., a browser, such as the Internet Explorer® browser developed by Microsoft® Corporation of Redmond, Washington State
  • programmatic client 116 executing on client device 110 .
  • the client device 110 may comprise, but is not limited to, a mobile phone, desktop computer, laptop, portable digital assistants (PDAs), smart phones, tablets, ultra-books, netbooks, laptops, multi-processor systems, microprocessor-based or programmable consumer electronics, game consoles, set-top boxes, or any other communication device that a user may utilize to access the networked system 102 .
  • the client device 110 includes components that are used to display information (e.g., in the form of user interfaces).
  • the client device 110 may comprise one or more of touch screens, accelerometers, gyroscopes, cameras, microphones, global positioning system (GPS) devices, and so forth.
  • GPS global positioning system
  • one or more portions of the network 104 may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a cellular telephone network, a wireless network, a WiFi network, a WiMax network, another type of network, or a combination of two or more such networks.
  • VPN virtual private network
  • LAN local area network
  • WLAN wireless LAN
  • WAN wide area network
  • WWAN wireless WAN
  • MAN metropolitan area network
  • PSTN Public Switched Telephone Network
  • PSTN Public Switched Telephone Network
  • Each of the client devices 110 include one or more applications (also referred to as “apps”) such as, but not limited to, a web browser, messaging application, electronic mail (email) application.
  • a user 106 may be a person, a machine, or other means of interacting with the client device 110 .
  • the user 106 is not part of the network architecture 100 , but interacts with the network architecture 100 via the client device 110 or other means.
  • the user 106 provides input (e.g., touch screen input or alphanumeric input) to the client device 110 and the input is communicated to the networked system 102 via the network 104 .
  • the networked system 102 in response to receiving the input from the user 106 , communicates information to the client device 110 via the network 104 to be presented to the user 106 . In this way, the user 106 can interact with the networked system 102 using the client device 110 .
  • An application program interface (API) server 120 and a web server 122 are coupled to, and provide programmatic and web interfaces respectively to, one or more application servers 140 .
  • the application servers 140 host the publication system 142 which may comprise one or more modules, engines, or applications and each of which may be embodied as hardware, software, firmware, circuitry, or any combination thereof.
  • the application servers 140 are, in turn, shown to be coupled to one or more database servers 124 that facilitate access to one or more information storage repositories or database(s) 126 .
  • the databases 126 are storage devices that store information communicated to the publication system 142 .
  • the databases 126 may also store digital item information in accordance with example embodiments.
  • a third party application 132 executing on third party server(s) 130 , is shown as having programmatic access to the networked system 102 via the programmatic interface provided by the API server 120 .
  • the third party application 132 utilizing information retrieved from the networked system 102 , supports one or more features or functions on a website hosted by the third party.
  • the third party website for example, provides one or more promotional, publication, that are supported by the relevant applications of the networked system 102 .
  • the publication systems 142 provide a number of publication functions and services to users 106 that access the networked system 102 . While the publication system 142 is shown in FIG. 1 to form part of the networked system 102 , it will be appreciated that, in alternative embodiments, the publication system 142 forms part of a service that is separate and distinct from the networked system 102 .
  • the modeling system 150 provides functionality operable to analyze transaction data and provide a statistic that measure transaction activity using the transaction data. For example, the modeling system 150 may access the transaction data from the databases 126 , the third party servers 130 , the publication system 142 , and other sources. In some example embodiments, the modeling system 150 may analyze the user data to generate the statistic.
  • client-server-based network architecture 100 shown in FIG. 1 employs a client-server architecture
  • present inventive subject matter is of course not limited to such an architecture, and could equally well find application in a distributed, or peer-to-peer, architecture system, for example.
  • the web client 112 accesses the various publication systems 142 via the web interface supported by the web server 122 .
  • the programmatic client 116 accesses the various services and functions provided by the publication systems 142 via the programmatic interface provided by the API server 120 .
  • the programmatic client 116 may, for example, be a client application to enable users to access data provided by the networked system 102 in an off-line manner, and to perform batch-mode communications between the programmatic client 116 and the networked system 102 .
  • any of the systems or machines (e.g., databases, devices, servers) shown in FIG. 1 may be, include, or otherwise be implemented in a special-purpose (e.g., specialized or otherwise non-generic) computer that has been modified (e.g., configured or programmed by software, such as one or more software modules of an application, operating system, firmware, middleware, or other program) to perform one or more of the functions described herein for that system or machine.
  • a special-purpose computer system able to implement any one or more of the methodologies described herein is discussed below with respect to FIG. 3-5 , and such a special-purpose computer may accordingly be a means for performing any one or more of the methodologies discussed herein.
  • a special-purpose computer that has been modified by the structures discussed herein to perform the functions discussed herein is technically improved compared to other special-purpose computers that lack the structures discussed herein or are otherwise unable to perform the functions discussed herein. Accordingly, a special-purpose machine configured according to the systems and methods discussed herein provides an improvement to the technology of similar special-purpose machines.
  • a “database” is a data storage resource and may store data structured as a text file, a table, a spreadsheet, a relational database (e.g., an object-relational database), a triple store, a hierarchical data store, or any suitable combination thereof.
  • a relational database e.g., an object-relational database
  • a triple store e.g., a hierarchical data store, or any suitable combination thereof.
  • any two or more of the systems or machines illustrated in FIG. 1 may be combined into a single system or machine, and the functions described herein for any single system or machine may be subdivided among multiple systems or machines.
  • FIG. 2 is a block diagram illustrating components of the modeling system 150 , according to some example embodiments.
  • the modeling system 150 is shown as including a reception module 210 , a generation module 220 , a determination module 230 , and a display module 240 , all configured to communicate with each other (e.g., via a bus, shared memory, or a switch). Any one or more of the components (e.g., modules) described herein may be implemented using hardware alone (e.g., one or more processors of a machine) or a combination of hardware and software.
  • any component described herein may physically include an arrangement of one or more of the processors or configure a processor (e.g., among one or more processors of a machine) to perform the operations described herein for that module.
  • different components described herein may include and configure different arrangements of the processors at different points in time or a single arrangement of the processors at different points in time.
  • Each component (e.g., module) described herein is an example of a means for performing the operations described herein for that component.
  • any two or more of these components may be combined into a single component, and the functions described herein for a single component may be subdivided among multiple components.
  • components described herein as being implemented within a single machine, database, or device may be distributed across multiple machines, databases, or devices.
  • the reception module 210 is configured to receive transaction data that indicates information regarding transactions performed by a group of merchants. In some instances, the transaction data indicates a total number of transactions performed by the group of merchants. In further instances, the transaction data indicates a total amount of revenue generated from the transactions performed by the group of merchants.
  • the transaction data is arranged or organized into components.
  • component represents an individual transaction.
  • the transaction data indicates an amount of revenue and a merchant ID.
  • each component includes the amount of revenue and the merchant ID to identify a respective merchant from the group of merchants that performed the transaction.
  • the transactions do not occur simultaneously. Instead, they occur over a length of time (e.g., day, week, month, or year). Therefore, each transaction may also include a timestamp to indicate when the transaction was completed.
  • the transaction data may indicate, for each merchant, a time-dependent attribute that relates to transaction activity of the respective merchant.
  • the time-dependent attribute includes at least one of revenue, days of activity, frequency of transactions, and the like.
  • the transaction data is received from a third party server that provides credit card processing services to the group of merchants (e.g., First Data Corporation).
  • the transaction data includes credit card transactions performed by the group of merchants.
  • the transaction data is received in response to a query to the third party server (e.g., querying a database maintained by the third party server).
  • the generation module 220 is configured to generate an activity filter based on the transaction data.
  • the activity filter indicates a threshold amount of transaction activity that corresponds to a period of time, which is used as criteria for selecting the active merchants.
  • Examples of activity filters include filters based on at least one or more of the following: a number of days transacted within a given period, or growth rates over a variable range of time (e.g., variable period of time).
  • the activity filters may also include comparing the growth rates of the set of merchants over the variable range of time. In some instances, merchants that exceed a threshold rate of growth corresponding to a certain range of time will be selected.
  • the generation module 220 generates the activity filter using transaction data that corresponds to a period of time (e.g., transactions that occur during the period of time).
  • the threshold amount of transaction activity is statistically correlated with the transaction activity of the group of merchants during the period of time.
  • the threshold amount of transaction activity is an average amount of transaction activity, performed by the group of merchants, during the period of time.
  • the transaction activity of the group of merchants may be measured by their growth rates, or a number of days transacted within a given period.
  • the threshold amount of transaction activity is indicated a value or a range of values.
  • the period of time in some instances, is a variable length of time set by the generation module 220 and can be adjusted or changed. For example, the period of time could be a week, a month, or any other variable length of time.
  • the determination module 230 is configured to count a total number of transactions performed by the group of merchants during the period of time. The count may then be used by the determination module 230 to calculate the average amount of transaction activity for the activity filter.
  • the generation module 220 is configured to generate more than one activity filter based on the transaction data. In some instances, the generation module 220 generates a subsequent activity filter that indicates a threshold amount of activity for a subsequent period of time. Similar to the generation of the activity filter, the generation module 220 generates the subsequent activity filter using transaction data that corresponds to a subsequent period of time (e.g., transactions that occur during the subsequent period of time).
  • the determination module 230 is configured to select active merchants from the group of merchants using the generated activity filter. In this regard, the determination module 230 selects active merchants that each performs the threshold amount of transaction activity during the period of time indicated by the activity filter.
  • the selected active merchants in some cases, are merchants that engage in a similar amount of transaction activity during the period of time and therefore behave like one another. As a result, the determination module 230 is further configured to refrain from selecting merchants that perform an anomalous amount of transaction activity during the period of time.
  • the determination module 230 is further configured to select subsequent active merchants that each performs the threshold amount of transaction activity during the subsequent period of time.
  • the active merchants and the subsequent active merchants entirely overlap.
  • the active merchants and the subsequent active merchants partially overlap or do not overlap at all. For example, these situations may occur when a merchant that is considered active for the period of time but is no longer considered active for the subsequent period of time.
  • the determination module 230 is configured to extract, from the transaction data, information regarding transactions performed by the active merchants.
  • the determination module 230 is further configured to extract information regarding transactions performed by the subsequent active merchants.
  • the extracted information may include an amount of revenue generated by the active merchants and an amount of revenue generated by the subsequent active merchants.
  • the extracted information may also include a number of transactions performed by active merchants and a number of transactions performed by the subsequent active merchants.
  • the generation module 220 generates weights for the active merchants based on census data that indicates a distribution of activity across the active merchants.
  • the active merchants may include merchants from more than industry (e.g., retail or travel). Accordingly, the census data may reveal a percentage of total transactions from the census that occur from merchants in the retail industry and a percentage of total transactions from the census that occur from merchants in the travel industry.
  • the generation module 220 normalizes the information regarding the transactions performed by the active merchants based on the generated weights. This allows the information regarding the transactions to accurate reflect the distribution of activity across the active merchants indicated in the census data.
  • the generation module 220 generates a statistic based on the amount of revenue generated by the active merchants and the amount of revenue generated by the further active merchants.
  • the statistic is used to an estimate to predict changes or fluctuations in transaction activity performed by the group of merchants between the period of time and the subsequent period of time. For instance, the statistic measures the change in transaction activity relative to a previous period of time.
  • the generation module 220 generates an interface that depicts the statistic. For example, the statistic is plotted in a graph that depicts a value of the statistic over an axis that represents time.
  • the generation module 220 generates the statistic based on transaction data of the active merchants and/or transaction data of the further active merchants.
  • the transaction data indicates, for each merchant, a time-dependent attribute that relates to transaction activity of the respective merchant.
  • the time-dependent attribute includes at least one of revenue, days of activity, frequency of transactions, and the like. Therefore, the transaction data may be sliced in a variety of ways and the statistic may be generated using any of the time-dependent attributes of the active merchants and/or the further active merchants.
  • using the transaction data of both the active merchants and the further active merchants increases the accuracy of the statistic.
  • the generated statistic indicates fluctuations in the time-dependent attributes of the group of merchants.
  • the statistic is a series of values. Moreover, for each additional period of time, a value is added to the series of values.
  • the display module 240 causes display of the generated interface on a client device.
  • the display module 240 transmits that to the client device which results in display of the generated interface that depicts the statistic.
  • FIG. 3-5 are flowcharts illustrating operations of the modeling system 150 in performing a method 300 of generating a statistic, according to some example embodiments.
  • Operations in the method 300 may be performed in part or in whole by components of the modeling system 150 , which can be embodied either in whole or in part in one or more application servers 140 of a networked system 102 using components described above with respect to FIG. 2 . Accordingly, the method 300 is described by way of example with reference to the modeling system 150 . However, it shall be appreciated that at least some of the operations of the method 300 may be deployed on various other hardware configurations or be performed by similar components residing elsewhere in the network architecture 100 . Therefore, the method 300 is not intended to be limited to the modeling system 150 . As shown in FIG. 3 , the method 300 includes operations 310 , 320 , 330 , 340 , and 350 .
  • the reception module 210 receives transaction data transaction data that indicates information regarding transactions performed by a group of merchants.
  • the transaction data includes information regarding a total number of transactions performed by the group of merchants or a total amount of revenue generated from the transactions performed by the group of merchants.
  • the transaction data may be received from a third party server (e.g., third party server 130 ). Further, the transaction data may include credit card transactions performed by the group of merchants and processed by the third party server.
  • the generation module 220 generates an activity filter based on the transaction data.
  • the activity filter indicates a threshold amount of transaction activity that corresponds to a period of time, which is used as criteria for selecting the active merchants.
  • the activity filter generated in the operation 320 may correspond to the month of January.
  • the period of time is adjustable may be adjusted to a variable length of time.
  • Further examples of activity filters include filters based on at least one or more of the following: a number of days transacted within a given period, or growth rates over a variable range of time (e.g., variable period of time).
  • the determination module 230 selects active merchants from the group of merchants using the generated activity filter. Therefore, at operation 330 , the determination module 230 selects active merchants for the month of January.
  • the generation module 220 generates a subsequent activity filter.
  • the activity filter indicates a threshold amount of transaction activity that corresponds to a subsequent period of time, which is used as criteria for selecting the subsequent active merchants.
  • the subsequent activity filter generated in the operation 340 may correspond to the month of February.
  • the determination module 230 selects subsequent active merchants that each performs the threshold amount of transaction activity during the subsequent period of time. Therefore, at operation 350 , the determination module 230 selects active merchants for the month of February.
  • the method 300 may include one or more of operations 410 , 420 , 430 , 440 , and 450 .
  • Each of the operations 410 , 420 , 430 , 440 , and 450 may be performed after the operation 350 of FIG. 3 .
  • the determination module 230 extracts information from the transaction data. For instance, the determination module 230 extracts information that indicates an amount of revenue generated by the merchants selected at operations 320 and 340 (e.g., active and subsequent active merchants). Alternatively, the determination module 230 extracts information that indicates an amount of revenue generated by the merchants selected at operations 320 and 340 . Other information regarding transaction data may include a number of distinct days of activity for the active merchants during the period of time and a number of distinct days of activity for the subsequent active merchants during the subsequent period of time.
  • the generation module 220 generates weights for the active merchants based on census data that indicates a distribution of activity across the active merchants.
  • the generation module 220 may also generate weights for the subsequent active merchants based on census data that indicates a distribution of activity across the subsequent active merchants.
  • each of the active merchants may belong to an industry or a category, and the census data may indicate a percentage of transactions that come from each industry or category.
  • the determination module 230 normalizes the extracted information regarding the transactions performed by the active merchants based on the generated weights. For example, if the census data indicates that a larger amount of activity originates from merchants in industry A as compared to an amount of activity originating from merchants outside of industry A, then the determination module 230 may place a greater weight on the information regarding transactions performed merchants in industry A. The determination module 230 may also normalize the extracted information regarding the transactions performed by the subsequent active merchants.
  • the generation module 220 generates a statistic based on the amount of revenue generated by the active merchants and the amount of revenue generated by the further active merchants.
  • the statistic is used to an estimate to predict changes or fluctuations in transaction activity performed by the group of merchants between the period of time and the subsequent period of time. For instance, the statistic measures the change in transaction activity relative to a previous period of time.
  • the display module 240 causes display of the statistic.
  • the statistic is plotted in a user interface that is generated by the generation module 220 .
  • the method 300 may include one or more of operations 510 , 520 , 530 , and 540 .
  • the operation 510 may be performed after the operation 310 but prior to the operation 320 .
  • the operation 520 may be performed as part of the operation 330 .
  • the determination module 230 counts a total number of transactions performed by the group of merchants during the period of time. In further embodiments, the determination module 230 counts a total number of transactions performed by the group of merchants during the subsequent period of time. These counts may be used by the generation module 220 at the operations 320 and 340 to generate the activity filters.
  • the determination module 230 refrains from selecting merchants that perform an anomalous amount of activity.
  • merchants not selected as active merchants 330 may be merchants that perform an anomalous amount of activity.
  • the anomalous amount of activity may result from an occurrence of an event at a particular geographical location that coincides with the period of time indicated by the activity filter. For example, in the event of a hurricane, some merchants may experience spike in terms of transaction activity whereas other merchants may experience a drop in terms of transaction activity. As another example, in the event of a holiday, some merchants may experience a spike in terms of transaction activity.
  • the determination module 230 determines that the active merchants are active for a moment prior to the period of time indicated by the activity filter. This ensures that the determination module 230 does not select merchants that begin their transaction activities after the period of time begins.
  • the determination module 230 determines that the active merchants remain active upon completion of the period of time indicated by the activity filter. This ensures that the determination module 230 does not select merchants that finish their transaction activities before the period of time elapses.
  • Modules may constitute either software modules (e.g., code embodied on a machine-readable medium) or hardware modules.
  • a “hardware module” is a tangible unit capable of performing certain operations and may be configured or arranged in a certain physical manner.
  • one or more computer systems e.g., a standalone computer system, a client computer system, or a server computer system
  • one or more hardware modules of a computer system e.g., a processor or a group of processors
  • software e.g., an application or application portion
  • a hardware module may be implemented mechanically, electronically, or any suitable combination thereof.
  • a hardware module may include dedicated circuitry or logic that is permanently configured to perform certain operations.
  • a hardware module may be a special-purpose processor, such as a Field-Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC).
  • a hardware module may also include programmable logic or circuitry that is temporarily configured by software to perform certain operations.
  • a hardware module may include software executed by a general-purpose processor or other programmable processor. Once configured by such software, hardware modules become specific machines (or specific components of a machine) uniquely tailored to perform the configured functions and are no longer general-purpose processors. It will be appreciated that the decision to implement a hardware module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
  • hardware module should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein.
  • “hardware-implemented module” refers to a hardware module. Considering embodiments in which hardware modules are temporarily configured (e.g., programmed), each of the hardware modules need not be configured or instantiated at any one instance in time. For example, where a hardware module comprises a general-purpose processor configured by software to become a special-purpose processor, the general-purpose processor may be configured as respectively different special-purpose processors (e.g., comprising different hardware modules) at different times. Software accordingly configures a particular processor or processors, for example, to constitute a particular hardware module at one instance of time and to constitute a different hardware module at a different instance of time.
  • Hardware modules can provide information to, and receive information from, other hardware modules. Accordingly, the described hardware modules may be regarded as being communicatively coupled. Where multiple hardware modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) between or among two or more of the hardware modules. In embodiments in which multiple hardware modules are configured or instantiated at different times, communications between such hardware modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware modules have access. For example, one hardware module may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware modules may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information).
  • a resource e.g., a collection of information
  • processors may be temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions described herein.
  • processor-implemented module refers to a hardware module implemented using one or more processors.
  • the methods described herein may be at least partially processor-implemented, with a particular processor or processors being an example of hardware.
  • a particular processor or processors being an example of hardware.
  • the operations of a method may be performed by one or more processors or processor-implemented modules.
  • the one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS).
  • SaaS software as a service
  • at least some of the operations may be performed by a group of computers (as examples of machines including processors), with these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., an Application Program Interface (API)).
  • API Application Program Interface
  • processors may be distributed among the processors, not only residing within a single machine, but deployed across a number of machines.
  • the processors or processor-implemented modules may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example embodiments, the processors or processor-implemented modules may be distributed across a number of geographic locations.
  • FIG. 6 is a block diagram illustrating components of a machine 600 , according to some example embodiments, able to read instructions from a machine-readable medium (e.g., a machine-readable storage medium) and perform any one or more of the methodologies discussed herein.
  • FIG. 6 shows a diagrammatic representation of the machine 600 in the example form of a computer system, within which instructions 616 (e.g., software, a program, an application, an applet, an app, or other executable code) for causing the machine 600 to perform any one or more of the methodologies discussed herein may be executed.
  • the instructions may cause the machine to execute the flow diagrams of FIGS. 3-5 .
  • the instructions transform the general, non-programmed machine into a particular machine specially configured to carry out the described and illustrated functions in the manner described.
  • the machine 600 operates as a standalone device or may be coupled (e.g., networked) to other machines.
  • the machine 600 may operate in the capacity of a server machine or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.
  • the machine 600 may comprise, but not be limited to, a server computer, a client computer, a personal computer (PC), a tablet computer, a laptop computer, a netbook, a set-top box (STB), a personal digital assistant (PDA), an entertainment media system, a cellular telephone, a smart phone, a mobile device, a wearable device (e.g., a smart watch), a smart home device (e.g., a smart appliance), other smart devices, a web appliance, a network router, a network switch, a network bridge, or any machine capable of executing the instructions 616 , sequentially or otherwise, that specify actions to be taken by machine 600 .
  • the term “machine” shall also be taken to include a collection of machines 600 that individually or jointly execute the instructions 616 to perform any one or more of the methodologies discussed herein.
  • the machine 600 may include processors 610 , memory 630 , and I/O components 650 , which may be configured to communicate with each other such as via a bus 602 .
  • the processors 610 e.g., a Central Processing Unit (CPU), a Reduced Instruction Set Computing (RISC) processor, a Complex Instruction Set Computing (CISC) processor, a Graphics Processing Unit (GPU), a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Radio-Frequency Integrated Circuit (RFIC), another processor, or any suitable combination thereof
  • the processors 610 may include, for example, processor 612 and processor 614 that may execute instructions 616 .
  • processor is intended to include multi-core processor that may comprise two or more independent processors (sometimes referred to as “cores”) that may execute instructions contemporaneously.
  • FIG. 6 shows multiple processors, the machine 600 may include a single processor with a single core, a single processor with multiple cores (e.g., a multi-core process), multiple processors with a single core, multiple processors with multiples cores, or any combination thereof
  • the memory/storage 630 may include a memory 632 , such as a main memory, or other memory storage, and a storage unit 636 , both accessible to the processors 610 such as via the bus 602 .
  • the storage unit 636 and memory 632 store the instructions 616 embodying any one or more of the methodologies or functions described herein.
  • the instructions 616 may also reside, completely or partially, within the memory 632 , within the storage unit 636 , within at least one of the processors 610 (e.g., within the processor's cache memory), or any suitable combination thereof, during execution thereof by the machine 600 .
  • the memory 632 , the storage unit 636 , and the memory of processors 610 are examples of machine-readable media.
  • machine-readable medium means a device able to store instructions and data temporarily or permanently and may include, but is not be limited to, random-access memory (RAM), read-only memory (ROM), buffer memory, flash memory, optical media, magnetic media, cache memory, other types of storage (e.g., Erasable Programmable Read-Only Memory (EEPROM)) and/or any suitable combination thereof.
  • RAM random-access memory
  • ROM read-only memory
  • buffer memory flash memory
  • optical media magnetic media
  • cache memory other types of storage
  • EEPROM Erasable Programmable Read-Only Memory
  • machine-readable medium shall also be taken to include any medium, or combination of multiple media, that is capable of storing instructions (e.g., instructions 616 ) for execution by a machine (e.g., machine 600 ), such that the instructions, when executed by one or more processors of the machine 600 (e.g., processors 610 ), cause the machine 600 to perform any one or more of the methodologies described herein.
  • a “machine-readable medium” refers to a single storage apparatus or device, as well as “cloud-based” storage systems or storage networks that include multiple storage apparatus or devices.
  • the term “machine-readable medium” excludes signals per se.
  • the machine-readable medium is non-transitory in that it does not embody a propagating signal.
  • labeling the tangible machine-readable medium as “non-transitory” should not be construed to mean that the medium is incapable of movement—the medium should be considered as being transportable from one physical location to another.
  • the machine-readable medium since the machine-readable medium is tangible, the medium may be considered to be a machine-readable device.
  • the I/O components 650 may include a wide variety of components to receive input, provide output, produce output, transmit information, exchange information, capture measurements, and so on.
  • the specific I/O components 650 that are included in a particular machine will depend on the type of machine. For example, portable machines such as mobile phones will likely include a touch input device or other such input mechanisms, while a headless server machine will likely not include such a touch input device. It will be appreciated that the I/O components 650 may include many other components that are not shown in FIG. 6 .
  • the I/O components 650 are grouped according to functionality merely for simplifying the following discussion and the grouping is in no way limiting. In various example embodiments, the I/O components 650 may include output components 652 and input components 654 .
  • the output components 652 may include visual components (e.g., a display such as a plasma display panel (PDP), a light emitting diode (LED) display, a liquid crystal display (LCD), a projector, or a cathode ray tube (CRT)), acoustic components (e.g., speakers), haptic components (e.g., a vibratory motor, resistance mechanisms), other signal generators, and so forth.
  • a display such as a plasma display panel (PDP), a light emitting diode (LED) display, a liquid crystal display (LCD), a projector, or a cathode ray tube (CRT)
  • acoustic components e.g., speakers
  • haptic components e.g., a vibratory motor, resistance mechanisms
  • the input components 654 may include alphanumeric input components (e.g., a keyboard, a touch screen configured to receive alphanumeric input, a photo-optical keyboard, or other alphanumeric input components), point based input components (e.g., a mouse, a touchpad, a trackball, a joystick, a motion sensor, or other pointing instrument), tactile input components (e.g., a physical button, a touch screen that provides location and/or force of touches or touch gestures, or other tactile input components), audio input components (e.g., a microphone), and the like.
  • alphanumeric input components e.g., a keyboard, a touch screen configured to receive alphanumeric input, a photo-optical keyboard, or other alphanumeric input components
  • point based input components e.g., a mouse, a touchpad, a trackball, a joystick, a motion sensor, or other pointing instrument
  • tactile input components e.g., a physical button,
  • the I/O components 650 may include biometric components 656 , motion components 658 , environmental components 660 , or position components 662 among a wide array of other components.
  • the biometric components 656 may include components to detect expressions (e.g., hand expressions, facial expressions, vocal expressions, body gestures, or eye tracking), measure biosignals (e.g., blood pressure, heart rate, body temperature, perspiration, or brain waves), identify a person (e.g., voice identification, retinal identification, facial identification, fingerprint identification, or electroencephalogram based identification), and the like.
  • the motion components 658 may include acceleration sensor components (e.g., accelerometer), gravitation sensor components, rotation sensor components (e.g., gyroscope), and so forth.
  • the environmental components 660 may include, for example, illumination sensor components (e.g., photometer), temperature sensor components (e.g., one or more thermometer that detect ambient temperature), humidity sensor components, pressure sensor components (e.g., barometer), acoustic sensor components (e.g., one or more microphones that detect background noise), proximity sensor components (e.g., infrared sensors that detect nearby objects), gas sensors (e.g., gas detection sensors to detection concentrations of hazardous gases for safety or to measure pollutants in the atmosphere), or other components that may provide indications, measurements, or signals corresponding to a surrounding physical environment.
  • illumination sensor components e.g., photometer
  • temperature sensor components e.g., one or more thermometer that detect ambient temperature
  • humidity sensor components e.g., pressure sensor components (e.g., barometer)
  • the position components 662 may include location sensor components (e.g., a Global Position System (GPS) receiver component), altitude sensor components (e.g., altimeters or barometers that detect air pressure from which altitude may be derived), orientation sensor components (e.g., magnetometers), and the like.
  • location sensor components e.g., a Global Position System (GPS) receiver component
  • altitude sensor components e.g., altimeters or barometers that detect air pressure from which altitude may be derived
  • orientation sensor components e.g., magnetometers
  • the I/O components 650 may include communication components 664 operable to couple the machine 600 to a network 680 or devices 670 via coupling 682 and coupling 672 respectively.
  • the communication components 664 may include a network interface component or other suitable device to interface with the network 680 .
  • communication components 664 may include wired communication components, wireless communication components, cellular communication components, Near Field Communication (NFC) components, Bluetooth® components (e.g., Bluetooth® Low Energy), Wi-Fi® components, and other communication components to provide communication via other modalities.
  • the devices 670 may be another machine or any of a wide variety of peripheral devices (e.g., a peripheral device coupled via a Universal Serial Bus (USB)).
  • USB Universal Serial Bus
  • the communication components 664 may detect identifiers or include components operable to detect identifiers.
  • the communication components 664 may include Radio Frequency Identification (RFID) tag reader components, NFC smart tag detection components, optical reader components (e.g., an optical sensor to detect one-dimensional bar codes such as Universal Product Code (UPC) bar code, multi-dimensional bar codes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar code, and other optical codes), or acoustic detection components (e.g., microphones to identify tagged audio signals).
  • RFID Radio Frequency Identification
  • NFC smart tag detection components e.g., an optical sensor to detect one-dimensional bar codes such as Universal Product Code (UPC) bar code, multi-dimensional bar codes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar code, and other optical codes
  • RFID Radio Fre
  • IP Internet Protocol
  • Wi-Fi® Wireless Fidelity
  • one or more portions of the network 680 may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), the Internet, a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a plain old telephone service (POTS) network, a cellular telephone network, a wireless network, a Wi-Fi® network, another type of network, or a combination of two or more such networks.
  • VPN virtual private network
  • LAN local area network
  • WLAN wireless LAN
  • WAN wide area network
  • WWAN wireless WAN
  • MAN metropolitan area network
  • PSTN Public Switched Telephone Network
  • POTS plain old telephone service
  • the network 680 or a portion of the network 680 may include a wireless or cellular network and the coupling 682 may be a Code Division Multiple Access (CDMA) connection, a Global System for Mobile communications (GSM) connection, or other type of cellular or wireless coupling.
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile communications
  • the coupling 682 may implement any of a variety of types of data transfer technology, such as Single Carrier Radio Transmission Technology (1 ⁇ RTT), Evolution-Data Optimized (EVDO) technology, General Packet Radio Service (GPRS) technology, Enhanced Data rates for GSM Evolution (EDGE) technology, third Generation Partnership Project (3GPP) including 3G, fourth generation wireless (4G) networks, Universal Mobile Telecommunications System (UMTS), High Speed Packet Access (HSPA), Worldwide Interoperability for Microwave Access (WiMAX), Long Term Evolution (LTE) standard, others defined by various standard setting organizations, other long range protocols, or other data transfer technology.
  • RTT Single Carrier Radio Transmission Technology
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data rates for GSM Evolution
  • 3GPP Third Generation Partnership Project
  • 4G fourth generation wireless (4G) networks
  • Universal Mobile Telecommunications System (UMTS) Universal Mobile Telecommunications System
  • HSPA High Speed Packet Access
  • WiMAX Worldwide Interoperability for Microwave Access
  • LTE
  • the instructions 616 may be transmitted or received over the network 680 using a transmission medium via a network interface device (e.g., a network interface component included in the communication components 664 ) and utilizing any one of a number of well-known transfer protocols (e.g., hypertext transfer protocol (HTTP)). Similarly, the instructions 616 may be transmitted or received using a transmission medium via the coupling 672 (e.g., a peer-to-peer coupling) to devices 670 .
  • the term “transmission medium” shall be taken to include any intangible medium that is capable of storing, encoding, or carrying instructions 616 for execution by the machine 600 , and includes digital or analog communications signals or other intangible medium to facilitate communication of such software.
  • the term “or” may be construed in either an inclusive or exclusive sense. Moreover, plural instances may be provided for resources, operations, or structures described herein as a single instance. Additionally, boundaries between various resources, operations, modules, engines, and data stores are somewhat arbitrary, and particular operations are illustrated in a context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within a scope of various embodiments of the present disclosure. In general, structures and functionality presented as separate resources in the example configurations may be implemented as a combined structure or resource. Similarly, structures and functionality presented as a single resource may be implemented as separate resources. These and other variations, modifications, additions, and improvements fall within a scope of embodiments of the present disclosure as represented by the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Abstract

In various example embodiments, a system and method for generating a statistic using transaction data are presented. Transaction data is received, the transaction data regarding transactions performed by a set of merchants. An activity filter is generated based on the transaction data. A set of active merchants that each performs the threshold amount of transaction activity during a period of time is selected. A statistic is generated based on the transaction data.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 15/811,460, entitles “GENERATING A STATISTIC USING ELECTRONIC TRANSACTION DATA,” filed Nov. 13, 2017, which claims the priority benefit of U.S. Provisional Application No. 62/428,419, entitled “GENERATING A STATISTIC USING ELECTRONIC TRANSACTION DATA,” filed Nov. 30, 2016, which are hereby incorporated herein by reference in their entireties.
  • TECHNICAL FIELD
  • Embodiments of the present disclosure generally relates to the technical field of special-purpose machines that receive transaction data and perform an analysis of the received transaction data including computerized variants of such special-purpose machines and improvements to such variants, and to the technologies by which such special-purpose machines become improved compared to other special-purpose machines that receive transaction data and perform the analysis of the received transaction data. Specifically, the present disclosure addresses systems and methods to generating a statistic that measures large-scale activity using the transaction data.
  • BACKGROUND
  • Conventionally, systems that measure large-scale activity using a merchant survey implementation provide inaccurate results.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various ones of the appended drawings merely illustrate example embodiments of the present disclosure and cannot be considered as limiting its scope.
  • FIG. 1 is a block diagram illustrating a networked system, according to some example embodiments.
  • FIG. 2 is a block diagram illustrating components of the modeling system, according to some example embodiments.
  • FIG. 3-5 are flowcharts illustrating operations of the modeling system in performing a method of generating a statistic, according to some example embodiments.
  • FIG. 6 illustrates a diagrammatic representation of a machine in the form of a computer system within which a set of instructions may be executed for causing the machine to perform any one or more of the methodologies discussed herein, according to an example embodiment.
  • DETAILED DESCRIPTION
  • The description that follows describes systems, methods, techniques, instruction sequences, and computing machine program products that illustrate example embodiments of the present subject matter. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide an understanding of various example embodiments of the subject matter discussed herein. It will be evident, however, to those skilled in the art, that embodiments of the subject matter may be practiced without these specific details.
  • Example methods (e.g., algorithms) facilitate disambiguation of a search criterion, providing one or more users with notification thereof, or both, and example systems (e.g., special-purpose machines) are configured to facilitate disambiguation of the search criterion, providing one or more users with notification thereof, or both. Examples merely typify possible variations. Unless explicitly stated otherwise, structures (e.g., structural components, such as modules) are optional and may be combined or subdivided, and operations (e.g., in a procedure, algorithm, or other function) may vary in sequence or be combined or subdivided. In the following description, for purposes of explanation, numerous specific details are set forth to provide a thorough understanding of various example embodiments. It will be evident to one skilled in the art, however, that the present subject matter may be practiced without these specific details.
  • With reference to FIG. 1, an example embodiment of a high-level client-server-based network architecture 100 is shown. A networked system 102, in the example forms of a network-based publication or payment system, provides server-side functionality via a network 104 (e.g., the Internet or wide area network (WAN)) to one or more client devices 110. FIG. 1 illustrates, for example, a web client 112 (e.g., a browser, such as the Internet Explorer® browser developed by Microsoft® Corporation of Redmond, Washington State), a client application 114, and a programmatic client 116 executing on client device 110.
  • The client device 110 may comprise, but is not limited to, a mobile phone, desktop computer, laptop, portable digital assistants (PDAs), smart phones, tablets, ultra-books, netbooks, laptops, multi-processor systems, microprocessor-based or programmable consumer electronics, game consoles, set-top boxes, or any other communication device that a user may utilize to access the networked system 102. In some embodiments, the client device 110 includes components that are used to display information (e.g., in the form of user interfaces). In further embodiments, the client device 110 may comprise one or more of touch screens, accelerometers, gyroscopes, cameras, microphones, global positioning system (GPS) devices, and so forth. For example, one or more portions of the network 104 may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a cellular telephone network, a wireless network, a WiFi network, a WiMax network, another type of network, or a combination of two or more such networks.
  • Each of the client devices 110 include one or more applications (also referred to as “apps”) such as, but not limited to, a web browser, messaging application, electronic mail (email) application.
  • A user 106 may be a person, a machine, or other means of interacting with the client device 110. In example embodiments, the user 106 is not part of the network architecture 100, but interacts with the network architecture 100 via the client device 110 or other means. For instance, the user 106 provides input (e.g., touch screen input or alphanumeric input) to the client device 110 and the input is communicated to the networked system 102 via the network 104. In this instance, the networked system 102, in response to receiving the input from the user 106, communicates information to the client device 110 via the network 104 to be presented to the user 106. In this way, the user 106 can interact with the networked system 102 using the client device 110.
  • An application program interface (API) server 120 and a web server 122 are coupled to, and provide programmatic and web interfaces respectively to, one or more application servers 140. The application servers 140 host the publication system 142 which may comprise one or more modules, engines, or applications and each of which may be embodied as hardware, software, firmware, circuitry, or any combination thereof. The application servers 140 are, in turn, shown to be coupled to one or more database servers 124 that facilitate access to one or more information storage repositories or database(s) 126. In an example embodiment, the databases 126 are storage devices that store information communicated to the publication system 142. The databases 126 may also store digital item information in accordance with example embodiments.
  • Additionally, a third party application 132, executing on third party server(s) 130, is shown as having programmatic access to the networked system 102 via the programmatic interface provided by the API server 120. For example, the third party application 132, utilizing information retrieved from the networked system 102, supports one or more features or functions on a website hosted by the third party. The third party website, for example, provides one or more promotional, publication, that are supported by the relevant applications of the networked system 102.
  • The publication systems 142 provide a number of publication functions and services to users 106 that access the networked system 102. While the publication system 142 is shown in FIG. 1 to form part of the networked system 102, it will be appreciated that, in alternative embodiments, the publication system 142 forms part of a service that is separate and distinct from the networked system 102.
  • The modeling system 150 provides functionality operable to analyze transaction data and provide a statistic that measure transaction activity using the transaction data. For example, the modeling system 150 may access the transaction data from the databases 126, the third party servers 130, the publication system 142, and other sources. In some example embodiments, the modeling system 150 may analyze the user data to generate the statistic.
  • Further, while the client-server-based network architecture 100 shown in FIG. 1 employs a client-server architecture, the present inventive subject matter is of course not limited to such an architecture, and could equally well find application in a distributed, or peer-to-peer, architecture system, for example.
  • The web client 112 accesses the various publication systems 142 via the web interface supported by the web server 122. Similarly, the programmatic client 116 accesses the various services and functions provided by the publication systems 142 via the programmatic interface provided by the API server 120. The programmatic client 116 may, for example, be a client application to enable users to access data provided by the networked system 102 in an off-line manner, and to perform batch-mode communications between the programmatic client 116 and the networked system 102.
  • Any of the systems or machines (e.g., databases, devices, servers) shown in FIG. 1 may be, include, or otherwise be implemented in a special-purpose (e.g., specialized or otherwise non-generic) computer that has been modified (e.g., configured or programmed by software, such as one or more software modules of an application, operating system, firmware, middleware, or other program) to perform one or more of the functions described herein for that system or machine. For example, a special-purpose computer system able to implement any one or more of the methodologies described herein is discussed below with respect to FIG. 3-5, and such a special-purpose computer may accordingly be a means for performing any one or more of the methodologies discussed herein. Within the technical field of such special-purpose computers, a special-purpose computer that has been modified by the structures discussed herein to perform the functions discussed herein is technically improved compared to other special-purpose computers that lack the structures discussed herein or are otherwise unable to perform the functions discussed herein. Accordingly, a special-purpose machine configured according to the systems and methods discussed herein provides an improvement to the technology of similar special-purpose machines.
  • As used herein, a “database” is a data storage resource and may store data structured as a text file, a table, a spreadsheet, a relational database (e.g., an object-relational database), a triple store, a hierarchical data store, or any suitable combination thereof. Moreover, any two or more of the systems or machines illustrated in FIG. 1 may be combined into a single system or machine, and the functions described herein for any single system or machine may be subdivided among multiple systems or machines.
  • FIG. 2 is a block diagram illustrating components of the modeling system 150, according to some example embodiments. The modeling system 150 is shown as including a reception module 210, a generation module 220, a determination module 230, and a display module 240, all configured to communicate with each other (e.g., via a bus, shared memory, or a switch). Any one or more of the components (e.g., modules) described herein may be implemented using hardware alone (e.g., one or more processors of a machine) or a combination of hardware and software. For example, any component described herein may physically include an arrangement of one or more of the processors or configure a processor (e.g., among one or more processors of a machine) to perform the operations described herein for that module. Accordingly, different components described herein may include and configure different arrangements of the processors at different points in time or a single arrangement of the processors at different points in time. Each component (e.g., module) described herein is an example of a means for performing the operations described herein for that component. Moreover, any two or more of these components may be combined into a single component, and the functions described herein for a single component may be subdivided among multiple components. Furthermore, according to various example embodiments, components described herein as being implemented within a single machine, database, or device may be distributed across multiple machines, databases, or devices.
  • In various example embodiments, the reception module 210 is configured to receive transaction data that indicates information regarding transactions performed by a group of merchants. In some instances, the transaction data indicates a total number of transactions performed by the group of merchants. In further instances, the transaction data indicates a total amount of revenue generated from the transactions performed by the group of merchants.
  • In various example embodiments, the transaction data is arranged or organized into components. Moreover, component represents an individual transaction. Also, for each individual transaction, the transaction data indicates an amount of revenue and a merchant ID. In other words, each component includes the amount of revenue and the merchant ID to identify a respective merchant from the group of merchants that performed the transaction. In various example embodiments, the transactions do not occur simultaneously. Instead, they occur over a length of time (e.g., day, week, month, or year). Therefore, each transaction may also include a timestamp to indicate when the transaction was completed.
  • In further example embodiments, the transaction data may indicate, for each merchant, a time-dependent attribute that relates to transaction activity of the respective merchant. The time-dependent attribute includes at least one of revenue, days of activity, frequency of transactions, and the like.
  • In various example embodiments, the transaction data is received from a third party server that provides credit card processing services to the group of merchants (e.g., First Data Corporation). As a result, the transaction data includes credit card transactions performed by the group of merchants. In further example embodiments, the transaction data is received in response to a query to the third party server (e.g., querying a database maintained by the third party server).
  • In various example embodiments, the generation module 220 is configured to generate an activity filter based on the transaction data. In various example embodiments, the activity filter indicates a threshold amount of transaction activity that corresponds to a period of time, which is used as criteria for selecting the active merchants. Examples of activity filters include filters based on at least one or more of the following: a number of days transacted within a given period, or growth rates over a variable range of time (e.g., variable period of time). The activity filters may also include comparing the growth rates of the set of merchants over the variable range of time. In some instances, merchants that exceed a threshold rate of growth corresponding to a certain range of time will be selected.
  • The generation module 220 generates the activity filter using transaction data that corresponds to a period of time (e.g., transactions that occur during the period of time). In various example embodiments, the threshold amount of transaction activity is statistically correlated with the transaction activity of the group of merchants during the period of time. As an example, the threshold amount of transaction activity is an average amount of transaction activity, performed by the group of merchants, during the period of time. The transaction activity of the group of merchants may be measured by their growth rates, or a number of days transacted within a given period. In further example embodiments, the threshold amount of transaction activity is indicated a value or a range of values. The period of time, in some instances, is a variable length of time set by the generation module 220 and can be adjusted or changed. For example, the period of time could be a week, a month, or any other variable length of time.
  • In various example embodiments, the determination module 230 is configured to count a total number of transactions performed by the group of merchants during the period of time. The count may then be used by the determination module 230 to calculate the average amount of transaction activity for the activity filter.
  • In various example embodiments, the generation module 220 is configured to generate more than one activity filter based on the transaction data. In some instances, the generation module 220 generates a subsequent activity filter that indicates a threshold amount of activity for a subsequent period of time. Similar to the generation of the activity filter, the generation module 220 generates the subsequent activity filter using transaction data that corresponds to a subsequent period of time (e.g., transactions that occur during the subsequent period of time).
  • In various example embodiments, the determination module 230 is configured to select active merchants from the group of merchants using the generated activity filter. In this regard, the determination module 230 selects active merchants that each performs the threshold amount of transaction activity during the period of time indicated by the activity filter. The selected active merchants, in some cases, are merchants that engage in a similar amount of transaction activity during the period of time and therefore behave like one another. As a result, the determination module 230 is further configured to refrain from selecting merchants that perform an anomalous amount of transaction activity during the period of time.
  • In various example embodiments, the determination module 230 is further configured to select subsequent active merchants that each performs the threshold amount of transaction activity during the subsequent period of time. In various example embodiments, the active merchants and the subsequent active merchants entirely overlap. In further embodiments, the active merchants and the subsequent active merchants partially overlap or do not overlap at all. For example, these situations may occur when a merchant that is considered active for the period of time but is no longer considered active for the subsequent period of time.
  • In various example embodiments, the determination module 230 is configured to extract, from the transaction data, information regarding transactions performed by the active merchants. The determination module 230 is further configured to extract information regarding transactions performed by the subsequent active merchants. The extracted information may include an amount of revenue generated by the active merchants and an amount of revenue generated by the subsequent active merchants. The extracted information may also include a number of transactions performed by active merchants and a number of transactions performed by the subsequent active merchants.
  • In various example embodiments, the generation module 220 generates weights for the active merchants based on census data that indicates a distribution of activity across the active merchants. The active merchants may include merchants from more than industry (e.g., retail or travel). Accordingly, the census data may reveal a percentage of total transactions from the census that occur from merchants in the retail industry and a percentage of total transactions from the census that occur from merchants in the travel industry.
  • Moreover, the generation module 220 normalizes the information regarding the transactions performed by the active merchants based on the generated weights. This allows the information regarding the transactions to accurate reflect the distribution of activity across the active merchants indicated in the census data.
  • In various example embodiments, the generation module 220 generates a statistic based on the amount of revenue generated by the active merchants and the amount of revenue generated by the further active merchants. The statistic is used to an estimate to predict changes or fluctuations in transaction activity performed by the group of merchants between the period of time and the subsequent period of time. For instance, the statistic measures the change in transaction activity relative to a previous period of time. In various example embodiments, the generation module 220 generates an interface that depicts the statistic. For example, the statistic is plotted in a graph that depicts a value of the statistic over an axis that represents time.
  • In further example embodiments, the generation module 220 generates the statistic based on transaction data of the active merchants and/or transaction data of the further active merchants. As stated earlier, the transaction data indicates, for each merchant, a time-dependent attribute that relates to transaction activity of the respective merchant. The time-dependent attribute includes at least one of revenue, days of activity, frequency of transactions, and the like. Therefore, the transaction data may be sliced in a variety of ways and the statistic may be generated using any of the time-dependent attributes of the active merchants and/or the further active merchants. In various example embodiments, using the transaction data of both the active merchants and the further active merchants increases the accuracy of the statistic. Moreover, the generated statistic indicates fluctuations in the time-dependent attributes of the group of merchants.
  • In further example embodiments, the statistic is a series of values. Moreover, for each additional period of time, a value is added to the series of values.
  • In various example embodiments, the display module 240 causes display of the generated interface on a client device. The display module 240 transmits that to the client device which results in display of the generated interface that depicts the statistic.
  • FIG. 3-5 are flowcharts illustrating operations of the modeling system 150 in performing a method 300 of generating a statistic, according to some example embodiments. Operations in the method 300 may be performed in part or in whole by components of the modeling system 150, which can be embodied either in whole or in part in one or more application servers 140 of a networked system 102 using components described above with respect to FIG. 2. Accordingly, the method 300 is described by way of example with reference to the modeling system 150. However, it shall be appreciated that at least some of the operations of the method 300 may be deployed on various other hardware configurations or be performed by similar components residing elsewhere in the network architecture 100. Therefore, the method 300 is not intended to be limited to the modeling system 150. As shown in FIG. 3, the method 300 includes operations 310, 320, 330, 340, and 350.
  • At operation 310, the reception module 210 receives transaction data transaction data that indicates information regarding transactions performed by a group of merchants. As stated above, the transaction data includes information regarding a total number of transactions performed by the group of merchants or a total amount of revenue generated from the transactions performed by the group of merchants. The transaction data may be received from a third party server (e.g., third party server 130). Further, the transaction data may include credit card transactions performed by the group of merchants and processed by the third party server.
  • At operation 320, the generation module 220 generates an activity filter based on the transaction data. In various example embodiments, the activity filter indicates a threshold amount of transaction activity that corresponds to a period of time, which is used as criteria for selecting the active merchants. As an example, the activity filter generated in the operation 320 may correspond to the month of January. As stated above, the period of time is adjustable may be adjusted to a variable length of time. Further examples of activity filters include filters based on at least one or more of the following: a number of days transacted within a given period, or growth rates over a variable range of time (e.g., variable period of time).
  • At operation 330, the determination module 230 selects active merchants from the group of merchants using the generated activity filter. Therefore, at operation 330, the determination module 230 selects active merchants for the month of January.
  • At operation 340, the generation module 220 generates a subsequent activity filter. In various example embodiments, the activity filter indicates a threshold amount of transaction activity that corresponds to a subsequent period of time, which is used as criteria for selecting the subsequent active merchants. As an example, the subsequent activity filter generated in the operation 340 may correspond to the month of February.
  • At operation 350, the determination module 230 selects subsequent active merchants that each performs the threshold amount of transaction activity during the subsequent period of time. Therefore, at operation 350, the determination module 230 selects active merchants for the month of February.
  • As shown in FIG. 4, the method 300 may include one or more of operations 410, 420, 430, 440, and 450. Each of the operations 410, 420, 430, 440, and 450 may be performed after the operation 350 of FIG. 3.
  • At operation 410, the determination module 230 extracts information from the transaction data. For instance, the determination module 230 extracts information that indicates an amount of revenue generated by the merchants selected at operations 320 and 340 (e.g., active and subsequent active merchants). Alternatively, the determination module 230 extracts information that indicates an amount of revenue generated by the merchants selected at operations 320 and 340. Other information regarding transaction data may include a number of distinct days of activity for the active merchants during the period of time and a number of distinct days of activity for the subsequent active merchants during the subsequent period of time.
  • At operation 420, the generation module 220 generates weights for the active merchants based on census data that indicates a distribution of activity across the active merchants. The generation module 220 may also generate weights for the subsequent active merchants based on census data that indicates a distribution of activity across the subsequent active merchants. For example, each of the active merchants may belong to an industry or a category, and the census data may indicate a percentage of transactions that come from each industry or category.
  • At operation 430, the determination module 230 normalizes the extracted information regarding the transactions performed by the active merchants based on the generated weights. For example, if the census data indicates that a larger amount of activity originates from merchants in industry A as compared to an amount of activity originating from merchants outside of industry A, then the determination module 230 may place a greater weight on the information regarding transactions performed merchants in industry A. The determination module 230 may also normalize the extracted information regarding the transactions performed by the subsequent active merchants.
  • At operation 440, the generation module 220 generates a statistic based on the amount of revenue generated by the active merchants and the amount of revenue generated by the further active merchants. As stated above, the statistic is used to an estimate to predict changes or fluctuations in transaction activity performed by the group of merchants between the period of time and the subsequent period of time. For instance, the statistic measures the change in transaction activity relative to a previous period of time.
  • At operation 450, the display module 240 causes display of the statistic. In some instances, the statistic is plotted in a user interface that is generated by the generation module 220.
  • As shown in FIG. 5, the method 300 may include one or more of operations 510, 520, 530, and 540. The operation 510 may be performed after the operation 310 but prior to the operation 320. The operation 520 may be performed as part of the operation 330.
  • At operation 510, the determination module 230 counts a total number of transactions performed by the group of merchants during the period of time. In further embodiments, the determination module 230 counts a total number of transactions performed by the group of merchants during the subsequent period of time. These counts may be used by the generation module 220 at the operations 320 and 340 to generate the activity filters.
  • At operation 520, the determination module 230 refrains from selecting merchants that perform an anomalous amount of activity. As a result, merchants not selected as active merchants 330 may be merchants that perform an anomalous amount of activity. The anomalous amount of activity may result from an occurrence of an event at a particular geographical location that coincides with the period of time indicated by the activity filter. For example, in the event of a hurricane, some merchants may experience spike in terms of transaction activity whereas other merchants may experience a drop in terms of transaction activity. As another example, in the event of a holiday, some merchants may experience a spike in terms of transaction activity.
  • At operation 530, the determination module 230 determines that the active merchants are active for a moment prior to the period of time indicated by the activity filter. This ensures that the determination module 230 does not select merchants that begin their transaction activities after the period of time begins.
  • At operation 540, the determination module 230 determines that the active merchants remain active upon completion of the period of time indicated by the activity filter. This ensures that the determination module 230 does not select merchants that finish their transaction activities before the period of time elapses.
  • Modules, Components, and Logic
  • Certain embodiments are described herein as including logic or a number of components, modules, or mechanisms. Modules may constitute either software modules (e.g., code embodied on a machine-readable medium) or hardware modules. A “hardware module” is a tangible unit capable of performing certain operations and may be configured or arranged in a certain physical manner. In various example embodiments, one or more computer systems (e.g., a standalone computer system, a client computer system, or a server computer system) or one or more hardware modules of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware module that operates to perform certain operations as described herein.
  • In some embodiments, a hardware module may be implemented mechanically, electronically, or any suitable combination thereof. For example, a hardware module may include dedicated circuitry or logic that is permanently configured to perform certain operations. For example, a hardware module may be a special-purpose processor, such as a Field-Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC). A hardware module may also include programmable logic or circuitry that is temporarily configured by software to perform certain operations. For example, a hardware module may include software executed by a general-purpose processor or other programmable processor. Once configured by such software, hardware modules become specific machines (or specific components of a machine) uniquely tailored to perform the configured functions and are no longer general-purpose processors. It will be appreciated that the decision to implement a hardware module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
  • Accordingly, the phrase “hardware module” should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. As used herein, “hardware-implemented module” refers to a hardware module. Considering embodiments in which hardware modules are temporarily configured (e.g., programmed), each of the hardware modules need not be configured or instantiated at any one instance in time. For example, where a hardware module comprises a general-purpose processor configured by software to become a special-purpose processor, the general-purpose processor may be configured as respectively different special-purpose processors (e.g., comprising different hardware modules) at different times. Software accordingly configures a particular processor or processors, for example, to constitute a particular hardware module at one instance of time and to constitute a different hardware module at a different instance of time.
  • Hardware modules can provide information to, and receive information from, other hardware modules. Accordingly, the described hardware modules may be regarded as being communicatively coupled. Where multiple hardware modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) between or among two or more of the hardware modules. In embodiments in which multiple hardware modules are configured or instantiated at different times, communications between such hardware modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware modules have access. For example, one hardware module may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware modules may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information).
  • The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions described herein. As used herein, “processor-implemented module” refers to a hardware module implemented using one or more processors.
  • Similarly, the methods described herein may be at least partially processor-implemented, with a particular processor or processors being an example of hardware. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented modules. Moreover, the one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), with these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., an Application Program Interface (API)).
  • The performance of certain of the operations may be distributed among the processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processors or processor-implemented modules may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example embodiments, the processors or processor-implemented modules may be distributed across a number of geographic locations.
  • Example Machine Architecture and Machine-Readable Medium
  • FIG. 6 is a block diagram illustrating components of a machine 600, according to some example embodiments, able to read instructions from a machine-readable medium (e.g., a machine-readable storage medium) and perform any one or more of the methodologies discussed herein. Specifically, FIG. 6 shows a diagrammatic representation of the machine 600 in the example form of a computer system, within which instructions 616 (e.g., software, a program, an application, an applet, an app, or other executable code) for causing the machine 600 to perform any one or more of the methodologies discussed herein may be executed. For example the instructions may cause the machine to execute the flow diagrams of FIGS. 3-5. The instructions transform the general, non-programmed machine into a particular machine specially configured to carry out the described and illustrated functions in the manner described. In alternative embodiments, the machine 600 operates as a standalone device or may be coupled (e.g., networked) to other machines. In a networked deployment, the machine 600 may operate in the capacity of a server machine or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine 600 may comprise, but not be limited to, a server computer, a client computer, a personal computer (PC), a tablet computer, a laptop computer, a netbook, a set-top box (STB), a personal digital assistant (PDA), an entertainment media system, a cellular telephone, a smart phone, a mobile device, a wearable device (e.g., a smart watch), a smart home device (e.g., a smart appliance), other smart devices, a web appliance, a network router, a network switch, a network bridge, or any machine capable of executing the instructions 616, sequentially or otherwise, that specify actions to be taken by machine 600. Further, while only a single machine 600 is illustrated, the term “machine” shall also be taken to include a collection of machines 600 that individually or jointly execute the instructions 616 to perform any one or more of the methodologies discussed herein.
  • The machine 600 may include processors 610, memory 630, and I/O components 650, which may be configured to communicate with each other such as via a bus 602. In an example embodiment, the processors 610 (e.g., a Central Processing Unit (CPU), a Reduced Instruction Set Computing (RISC) processor, a Complex Instruction Set Computing (CISC) processor, a Graphics Processing Unit (GPU), a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Radio-Frequency Integrated Circuit (RFIC), another processor, or any suitable combination thereof) may include, for example, processor 612 and processor 614 that may execute instructions 616. The term “processor” is intended to include multi-core processor that may comprise two or more independent processors (sometimes referred to as “cores”) that may execute instructions contemporaneously. Although FIG. 6 shows multiple processors, the machine 600 may include a single processor with a single core, a single processor with multiple cores (e.g., a multi-core process), multiple processors with a single core, multiple processors with multiples cores, or any combination thereof
  • The memory/storage 630 may include a memory 632, such as a main memory, or other memory storage, and a storage unit 636, both accessible to the processors 610 such as via the bus 602. The storage unit 636 and memory 632 store the instructions 616 embodying any one or more of the methodologies or functions described herein. The instructions 616 may also reside, completely or partially, within the memory 632, within the storage unit 636, within at least one of the processors 610 (e.g., within the processor's cache memory), or any suitable combination thereof, during execution thereof by the machine 600. Accordingly, the memory 632, the storage unit 636, and the memory of processors 610 are examples of machine-readable media.
  • As used herein, “machine-readable medium” means a device able to store instructions and data temporarily or permanently and may include, but is not be limited to, random-access memory (RAM), read-only memory (ROM), buffer memory, flash memory, optical media, magnetic media, cache memory, other types of storage (e.g., Erasable Programmable Read-Only Memory (EEPROM)) and/or any suitable combination thereof. The term “machine-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, or associated caches and servers) able to store instructions 616. The term “machine-readable medium” shall also be taken to include any medium, or combination of multiple media, that is capable of storing instructions (e.g., instructions 616) for execution by a machine (e.g., machine 600), such that the instructions, when executed by one or more processors of the machine 600 (e.g., processors 610), cause the machine 600 to perform any one or more of the methodologies described herein. Accordingly, a “machine-readable medium” refers to a single storage apparatus or device, as well as “cloud-based” storage systems or storage networks that include multiple storage apparatus or devices. The term “machine-readable medium” excludes signals per se.
  • Furthermore, the machine-readable medium is non-transitory in that it does not embody a propagating signal. However, labeling the tangible machine-readable medium as “non-transitory” should not be construed to mean that the medium is incapable of movement—the medium should be considered as being transportable from one physical location to another. Additionally, since the machine-readable medium is tangible, the medium may be considered to be a machine-readable device.
  • The I/O components 650 may include a wide variety of components to receive input, provide output, produce output, transmit information, exchange information, capture measurements, and so on. The specific I/O components 650 that are included in a particular machine will depend on the type of machine. For example, portable machines such as mobile phones will likely include a touch input device or other such input mechanisms, while a headless server machine will likely not include such a touch input device. It will be appreciated that the I/O components 650 may include many other components that are not shown in FIG. 6. The I/O components 650 are grouped according to functionality merely for simplifying the following discussion and the grouping is in no way limiting. In various example embodiments, the I/O components 650 may include output components 652 and input components 654. The output components 652 may include visual components (e.g., a display such as a plasma display panel (PDP), a light emitting diode (LED) display, a liquid crystal display (LCD), a projector, or a cathode ray tube (CRT)), acoustic components (e.g., speakers), haptic components (e.g., a vibratory motor, resistance mechanisms), other signal generators, and so forth. The input components 654 may include alphanumeric input components (e.g., a keyboard, a touch screen configured to receive alphanumeric input, a photo-optical keyboard, or other alphanumeric input components), point based input components (e.g., a mouse, a touchpad, a trackball, a joystick, a motion sensor, or other pointing instrument), tactile input components (e.g., a physical button, a touch screen that provides location and/or force of touches or touch gestures, or other tactile input components), audio input components (e.g., a microphone), and the like.
  • In further example embodiments, the I/O components 650 may include biometric components 656, motion components 658, environmental components 660, or position components 662 among a wide array of other components. For example, the biometric components 656 may include components to detect expressions (e.g., hand expressions, facial expressions, vocal expressions, body gestures, or eye tracking), measure biosignals (e.g., blood pressure, heart rate, body temperature, perspiration, or brain waves), identify a person (e.g., voice identification, retinal identification, facial identification, fingerprint identification, or electroencephalogram based identification), and the like. The motion components 658 may include acceleration sensor components (e.g., accelerometer), gravitation sensor components, rotation sensor components (e.g., gyroscope), and so forth. The environmental components 660 may include, for example, illumination sensor components (e.g., photometer), temperature sensor components (e.g., one or more thermometer that detect ambient temperature), humidity sensor components, pressure sensor components (e.g., barometer), acoustic sensor components (e.g., one or more microphones that detect background noise), proximity sensor components (e.g., infrared sensors that detect nearby objects), gas sensors (e.g., gas detection sensors to detection concentrations of hazardous gases for safety or to measure pollutants in the atmosphere), or other components that may provide indications, measurements, or signals corresponding to a surrounding physical environment. The position components 662 may include location sensor components (e.g., a Global Position System (GPS) receiver component), altitude sensor components (e.g., altimeters or barometers that detect air pressure from which altitude may be derived), orientation sensor components (e.g., magnetometers), and the like.
  • Communication may be implemented using a wide variety of technologies. The I/O components 650 may include communication components 664 operable to couple the machine 600 to a network 680 or devices 670 via coupling 682 and coupling 672 respectively. For example, the communication components 664 may include a network interface component or other suitable device to interface with the network 680. In further examples, communication components 664 may include wired communication components, wireless communication components, cellular communication components, Near Field Communication (NFC) components, Bluetooth® components (e.g., Bluetooth® Low Energy), Wi-Fi® components, and other communication components to provide communication via other modalities. The devices 670 may be another machine or any of a wide variety of peripheral devices (e.g., a peripheral device coupled via a Universal Serial Bus (USB)).
  • Moreover, the communication components 664 may detect identifiers or include components operable to detect identifiers. For example, the communication components 664 may include Radio Frequency Identification (RFID) tag reader components, NFC smart tag detection components, optical reader components (e.g., an optical sensor to detect one-dimensional bar codes such as Universal Product Code (UPC) bar code, multi-dimensional bar codes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar code, and other optical codes), or acoustic detection components (e.g., microphones to identify tagged audio signals). In addition, a variety of information may be derived via the communication components 664, such as, location via Internet Protocol (IP) geo-location, location via Wi-Fi® signal triangulation, location via detecting a NFC beacon signal that may indicate a particular location, and so forth.
  • Transmission Medium
  • In various example embodiments, one or more portions of the network 680 may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), the Internet, a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a plain old telephone service (POTS) network, a cellular telephone network, a wireless network, a Wi-Fi® network, another type of network, or a combination of two or more such networks. For example, the network 680 or a portion of the network 680 may include a wireless or cellular network and the coupling 682 may be a Code Division Multiple Access (CDMA) connection, a Global System for Mobile communications (GSM) connection, or other type of cellular or wireless coupling. In this example, the coupling 682 may implement any of a variety of types of data transfer technology, such as Single Carrier Radio Transmission Technology (1×RTT), Evolution-Data Optimized (EVDO) technology, General Packet Radio Service (GPRS) technology, Enhanced Data rates for GSM Evolution (EDGE) technology, third Generation Partnership Project (3GPP) including 3G, fourth generation wireless (4G) networks, Universal Mobile Telecommunications System (UMTS), High Speed Packet Access (HSPA), Worldwide Interoperability for Microwave Access (WiMAX), Long Term Evolution (LTE) standard, others defined by various standard setting organizations, other long range protocols, or other data transfer technology.
  • The instructions 616 may be transmitted or received over the network 680 using a transmission medium via a network interface device (e.g., a network interface component included in the communication components 664) and utilizing any one of a number of well-known transfer protocols (e.g., hypertext transfer protocol (HTTP)). Similarly, the instructions 616 may be transmitted or received using a transmission medium via the coupling 672 (e.g., a peer-to-peer coupling) to devices 670. The term “transmission medium” shall be taken to include any intangible medium that is capable of storing, encoding, or carrying instructions 616 for execution by the machine 600, and includes digital or analog communications signals or other intangible medium to facilitate communication of such software.
  • Language
  • Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. Structures and functionality presented as separate components in example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.
  • Although an overview of the subject matter has been described with reference to specific example embodiments, various modifications and changes may be made to these embodiments without departing from the broader scope of embodiments of the present disclosure. Such embodiments of the subject matter may be referred to herein, individually or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single disclosure or concept if more than one is, in fact, disclosed.
  • The embodiments illustrated herein are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed. Other embodiments may be used and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. The Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.
  • As used herein, the term “or” may be construed in either an inclusive or exclusive sense. Moreover, plural instances may be provided for resources, operations, or structures described herein as a single instance. Additionally, boundaries between various resources, operations, modules, engines, and data stores are somewhat arbitrary, and particular operations are illustrated in a context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within a scope of various embodiments of the present disclosure. In general, structures and functionality presented as separate resources in the example configurations may be implemented as a combined structure or resource. Similarly, structures and functionality presented as a single resource may be implemented as separate resources. These and other variations, modifications, additions, and improvements fall within a scope of embodiments of the present disclosure as represented by the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims (20)

What is claimed is:
1. A method comprising:
identifying a set of active merchants that performed at least a threshold number of transactions;
generating a set of weights for the set of active merchants, wherein generating a weight for each respective merchant is based on a respective percentage of transactions performed by an industry associated with the respective merchant;
normalizing transaction data identifying transactions performed by the set of active merchants during a first period of time based on the set of weights, yielding normalized transaction data; and
generating a statistic based on the normalized transaction data during a subset of the first period of time.
2. The method of claim 1, wherein identifying the set of active merchants comprises:
for each respective merchant from a set of merchants, determining, based on the transaction data, a number of transactions performed by the respective merchant during a first period of time;
comparing the number of transactions performed by the respective merchant during the first period of time to the threshold number of transactions, yielding a comparison; and
determining whether the respective merchant is an active merchant based on the comparison.
3. The method of claim 1, wherein generating the set of weights for the set of active merchants comprises:
determining an industry associated with a first active merchant;
determining a first percentage of the transactions performed by a set of merchants that originated from merchants in the industry associated with the first active merchant, wherein the first percentage of the transactions is determined based on at least one transaction that originated from the first active merchant and at least one transaction that originated from a second merchant that is different than the first active merchant; and
determining the weight for the first active merchant based on the first percentage of transactions performed by the set of merchants that originated from merchants in the industry associated with the first active merchant.
4. The method of claim 3, wherein generating the set of weights for the set of active merchants is further based on data that indicates seasonality.
5. The method of claim 1, wherein identifying the set of active merchants includes refraining from selecting merchants that perform an anomalous number of transactions during the first period of time.
6. The method of claim 1, further comprising:
generating an interface that depicts the statistic; and
causing display of the interface on a client device.
7. The method of claim 1, further comprising:
determining that the set of active merchants are active for a moment prior to the first period of time.
8. The method of claim 1, further comprising:
determining that the set of active merchants remain active upon completion of the first period of time.
9. The method of claim 1, wherein the first period of time coincides with an occurrence of an event at a particular geographical location.
10. A system comprising:
one or more computer processors; and
one or more computer-readable mediums storing instructions that, when executed by the one or more computer processors, cause the system to perform operations comprising:
identifying a set of active merchants that performed at least a threshold number of transactions;
generating a set of weights for the set of active merchants, wherein generating a weight for each respective merchant is based on a respective percentage of transactions performed by an industry associated with the respective merchant;
normalizing transaction data identifying transactions performed by the set of active merchants during a first period of time based on the set of weights, yielding normalized transaction data; and
generating a statistic based on the normalized transaction data during a subset of the first period of time.
11. The system of claim 10, wherein identifying the set of active merchants comprises:
for each respective merchant from a set of merchants, determining, based on the transaction data, a number of transactions performed by the respective merchant during a first period of time;
comparing the number of transactions performed by the respective merchant during the first period of time to the threshold number of transactions, yielding a comparison; and
determining whether the respective merchant is an active merchant based on the comparison.
12. The system of claim 10, wherein generating the set of weights for the set of active merchants comprises:
determining an industry associated with a first active merchant;
determining a first percentage of the transactions performed by a set of merchants that originated from merchants in the industry associated with the first active merchant, wherein the first percentage of the transactions is determined based on at least one transaction that originated from the first active merchant and at least one transaction that originated from a second merchant that is different than the first active merchant; and
determining the weight for the first active merchant based on the first percentage of transactions performed by the set of merchants that originated from merchants in the industry associated with the first active merchant.
13. The system of claim 12, wherein generating the set of weights for the set of active merchants is further based on data that indicates seasonality.
14. The system of claim 10, wherein identifying the set of active merchants includes refraining from selecting merchants that perform an anomalous number of transactions during the first period of time.
15. The system of claim 10, the operations further comprising:
generating an interface that depicts the statistic; and
causing display of the interface on a client device.
16. The system of claim 10, the operations further comprising:
determining that the set of active merchants are active for a moment prior to the first period of time.
17. The system of claim 10, the operations further comprising:
determining that the set of active merchants remain active upon completion of the first period of time.
18. The system of claim 10, wherein the first period of time coincides with an occurrence of an event at a particular geographical location.
19. A non-transitory computer-readable medium storing instructions that, when executed by one or more computer processors of one or more computing devices, cause the one or more computing devices to perform operations comprising:
identifying a set of active merchants that performed at least a threshold number of transactions;
generating a set of weights for the set of active merchants, wherein generating a weight for each respective merchant is based on a respective percentage of transactions performed by an industry associated with the respective merchant;
normalizing transaction data identifying transactions performed by the set of active merchants during a first period of time based on the set of weights, yielding normalized transaction data; and
generating a statistic based on the normalized transaction data during a subset of the first period of time.
20. The non-transitory computer-readable medium of claim 19, wherein identifying the set of active merchants comprises:
for each respective merchant from a set of merchants, determining, based on the transaction data, a number of transactions performed by the respective merchant during a first period of time;
comparing the number of transactions performed by the respective merchant during the first period of time to the threshold number of transactions, yielding a comparison; and
determining whether the respective merchant is an active merchant based on the comparison.
US17/457,181 2016-11-30 2021-12-01 Generating a statistic using electronic transaction data Pending US20220084019A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/457,181 US20220084019A1 (en) 2016-11-30 2021-12-01 Generating a statistic using electronic transaction data

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662428419P 2016-11-30 2016-11-30
US15/811,460 US11250425B1 (en) 2016-11-30 2017-11-13 Generating a statistic using electronic transaction data
US17/457,181 US20220084019A1 (en) 2016-11-30 2021-12-01 Generating a statistic using electronic transaction data

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/811,460 Continuation US11250425B1 (en) 2016-11-30 2017-11-13 Generating a statistic using electronic transaction data

Publications (1)

Publication Number Publication Date
US20220084019A1 true US20220084019A1 (en) 2022-03-17

Family

ID=80249618

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/811,460 Active 2039-06-20 US11250425B1 (en) 2016-11-30 2017-11-13 Generating a statistic using electronic transaction data
US17/457,181 Pending US20220084019A1 (en) 2016-11-30 2021-12-01 Generating a statistic using electronic transaction data

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/811,460 Active 2039-06-20 US11250425B1 (en) 2016-11-30 2017-11-13 Generating a statistic using electronic transaction data

Country Status (1)

Country Link
US (2) US11250425B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040039686A1 (en) * 2002-01-10 2004-02-26 Klebanoff Victor Franklin Method and system for detecting payment account fraud
US20110178841A1 (en) * 2010-01-20 2011-07-21 American Express Travel Related Services Company, Inc. System and method for clustering a population using spend level data
US20120215717A1 (en) * 2002-06-03 2012-08-23 Research Affiliates, Llc Using accounting data based indexing to create a portfolio of financial objects
US20130124263A1 (en) * 2011-11-14 2013-05-16 Visa International Service Association Systems and Methods to Summarize Transaction data
US20130246178A1 (en) * 2012-03-13 2013-09-19 American Express Travel Related Services Company, Inc. Systems and Methods for Tailoring Marketing
US20140236678A1 (en) * 2013-02-19 2014-08-21 Visa International Service Association Systems and methods to enhance search via transaction data
US20160148092A1 (en) * 2014-11-20 2016-05-26 Mastercard International Incorporated Systems and methods for determining activity level at a merchant location by leveraging real-time transaction data
US20160364727A1 (en) * 2015-06-11 2016-12-15 Early Warning Services, Llc System and method for identifying compromised accounts
US20170193534A1 (en) * 2016-01-04 2017-07-06 American Express Travel Related Services Company, Inc. System and method for transaction volume determination

Family Cites Families (217)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5819226A (en) 1992-09-08 1998-10-06 Hnc Software Inc. Fraud detection using predictive modeling
US5892900A (en) 1996-08-30 1999-04-06 Intertrust Technologies Corp. Systems and methods for secure transaction management and electronic rights protection
US6094643A (en) 1996-06-14 2000-07-25 Card Alert Services, Inc. System for detecting counterfeit financial card fraud
US5870559A (en) 1996-10-15 1999-02-09 Mercury Interactive Software system and associated methods for facilitating the analysis and management of web sites
US6430305B1 (en) 1996-12-20 2002-08-06 Synaptics, Incorporated Identity verification methods
US6026233A (en) 1997-05-27 2000-02-15 Microsoft Corporation Method and apparatus for presenting and selecting options to modify a programming language statement
US7403922B1 (en) 1997-07-28 2008-07-22 Cybersource Corporation Method and apparatus for evaluating fraud risk in an electronic commerce transaction
US7168039B2 (en) 1998-06-02 2007-01-23 International Business Machines Corporation Method and system for reducing the horizontal space required for displaying a column containing text data
GB2371901B (en) 1999-09-21 2004-06-23 Andrew E Borthwick A probabilistic record linkage model derived from training data
JP2001283120A (en) 2000-03-31 2001-10-12 Oki Electric Ind Co Ltd Transaction supporting system
US6792422B1 (en) 2000-06-19 2004-09-14 Microsoft Corporation Automatic categorization of financial transactions
US6795868B1 (en) 2000-08-31 2004-09-21 Data Junction Corp. System and method for event-driven data transformation
US20020065708A1 (en) 2000-09-22 2002-05-30 Hikmet Senay Method and system for interactive visual analyses of organizational interactions
US8707185B2 (en) 2000-10-10 2014-04-22 Addnclick, Inc. Dynamic information management system and method for content delivery and sharing in content-, metadata- and viewer-based, live social networking among users concurrently engaged in the same and/or similar content
US8117281B2 (en) 2006-11-02 2012-02-14 Addnclick, Inc. Using internet content as a means to establish live social networks by linking internet users to each other who are simultaneously engaged in the same and/or similar content
US6754640B2 (en) 2000-10-30 2004-06-22 William O. Bozeman Universal positive pay match, authentication, authorization, settlement and clearing system
US6978419B1 (en) 2000-11-15 2005-12-20 Justsystem Corporation Method and apparatus for efficient identification of duplicate and near-duplicate documents and text spans using high-discriminability text fragments
US20020103705A1 (en) 2000-12-06 2002-08-01 Forecourt Communication Group Method and apparatus for using prior purchases to select activities to present to a customer
US7529698B2 (en) 2001-01-16 2009-05-05 Raymond Anthony Joao Apparatus and method for providing transaction history information, account history information, and/or charge-back information
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
US20100057622A1 (en) 2001-02-27 2010-03-04 Faith Patrick L Distributed Quantum Encrypted Pattern Generation And Scoring
US7809650B2 (en) 2003-07-01 2010-10-05 Visa U.S.A. Inc. Method and system for providing risk information in connection with transaction processing
US6980984B1 (en) 2001-05-16 2005-12-27 Kanisa, Inc. Content provider systems and methods using structured data
CA3077873A1 (en) 2002-03-20 2003-10-02 Catalina Marketing Corporation Targeted incentives based upon predicted behavior
US7533026B2 (en) 2002-04-12 2009-05-12 International Business Machines Corporation Facilitating management of service elements usable in providing information technology service offerings
US20040111480A1 (en) 2002-12-09 2004-06-10 Yue Jonathan Zhanjun Message screening system and method
US8589273B2 (en) 2002-12-23 2013-11-19 Ge Corporate Financial Services, Inc. Methods and systems for managing risk management information
US7752117B2 (en) 2003-01-31 2010-07-06 Trading Technologies International, Inc. System and method for money management in electronic trading environment
US20040153418A1 (en) 2003-02-05 2004-08-05 Hanweck Gerald Alfred System and method for providing access to data from proprietary tools
US8412566B2 (en) 2003-07-08 2013-04-02 Yt Acquisition Corporation High-precision customer-based targeting by individual usage statistics
WO2005036319A2 (en) 2003-09-22 2005-04-21 Catalina Marketing International, Inc. Assumed demographics, predicted behaviour, and targeted incentives
US7584172B2 (en) 2003-10-16 2009-09-01 Sap Ag Control for selecting data query and visual configuration
US6948656B2 (en) 2003-12-23 2005-09-27 First Data Corporation System with GPS to manage risk of financial transactions
US7917376B2 (en) 2003-12-29 2011-03-29 Montefiore Medical Center System and method for monitoring patient care
US20050154769A1 (en) 2004-01-13 2005-07-14 Llumen, Inc. Systems and methods for benchmarking business performance data against aggregated business performance data
US20050154628A1 (en) 2004-01-13 2005-07-14 Illumen, Inc. Automated management of business performance information
US7853533B2 (en) 2004-03-02 2010-12-14 The 41St Parameter, Inc. Method and system for identifying users and detecting fraud by use of the internet
US20060026120A1 (en) 2004-03-24 2006-02-02 Update Publications Lp Method and system for collecting, processing, and distributing residential property data
US7668951B2 (en) 2004-05-25 2010-02-23 Google Inc. Electronic message source reputation information system
US7617232B2 (en) 2004-09-02 2009-11-10 Microsoft Corporation Centralized terminology and glossary development
US7797197B2 (en) 2004-11-12 2010-09-14 Amazon Technologies, Inc. Method and system for analyzing the performance of affiliate sites
US7899796B1 (en) 2004-11-23 2011-03-01 Andrew Borthwick Batch automated blocking and record matching
US8700414B2 (en) 2004-12-29 2014-04-15 Sap Ag System supported optimization of event resolution
US20060143079A1 (en) 2004-12-29 2006-06-29 Jayanta Basak Cross-channel customer matching
US8091784B1 (en) 2005-03-09 2012-01-10 Diebold, Incorporated Banking system controlled responsive to data bearing records
US7596528B1 (en) 2005-03-31 2009-09-29 Trading Technologies International, Inc. System and method for dynamically regulating order entry in an electronic trading environment
US7672968B2 (en) 2005-05-12 2010-03-02 Apple Inc. Displaying a tooltip associated with a concurrently displayed database object
US8341259B2 (en) 2005-06-06 2012-12-25 Adobe Systems Incorporated ASP for web analytics including a real-time segmentation workbench
EP1732034A1 (en) 2005-06-06 2006-12-13 First Data Corporation System and method for authorizing electronic payment transactions
EP1904965A4 (en) 2005-06-24 2009-06-17 Fair Isaac Corp Mass compromise / point of compromise analytic detection and compromised card portfolio management system
US8285639B2 (en) 2005-07-05 2012-10-09 mConfirm, Ltd. Location based authentication system
CA2615659A1 (en) 2005-07-22 2007-05-10 Yogesh Chunilal Rathod Universal knowledge management and desktop search system
US7421429B2 (en) 2005-08-04 2008-09-02 Microsoft Corporation Generate blog context ranking using track-back weight, context weight and, cumulative comment weight
US8095866B2 (en) 2005-09-09 2012-01-10 Microsoft Corporation Filtering user interface for a data summary table
US7668769B2 (en) 2005-10-04 2010-02-23 Basepoint Analytics, LLC System and method of detecting fraud
US20090168163A1 (en) 2005-11-01 2009-07-02 Global Bionic Optics Pty Ltd. Optical lens systems
US8726144B2 (en) 2005-12-23 2014-05-13 Xerox Corporation Interactive learning-based document annotation
US8712828B2 (en) 2005-12-30 2014-04-29 Accenture Global Services Limited Churn prediction and management system
US20070185867A1 (en) 2006-02-03 2007-08-09 Matteo Maga Statistical modeling methods for determining customer distribution by churn probability within a customer population
US7756843B1 (en) 2006-05-25 2010-07-13 Juniper Networks, Inc. Identifying and processing confidential information on network endpoints
US9195985B2 (en) 2006-06-08 2015-11-24 Iii Holdings 1, Llc Method, system, and computer program product for customer-level data verification
US7747562B2 (en) 2006-08-15 2010-06-29 International Business Machines Corporation Virtual multidimensional datasets for enterprise software systems
US8230332B2 (en) 2006-08-30 2012-07-24 Compsci Resources, Llc Interactive user interface for converting unstructured documents
US8054756B2 (en) 2006-09-18 2011-11-08 Yahoo! Inc. Path discovery and analytics for network data
US20080103798A1 (en) 2006-10-25 2008-05-01 Domenikos Steven D Identity Protection
US7792353B2 (en) 2006-10-31 2010-09-07 Hewlett-Packard Development Company, L.P. Retraining a machine-learning classifier using re-labeled training samples
US8229902B2 (en) 2006-11-01 2012-07-24 Ab Initio Technology Llc Managing storage of individually accessible data units
US7657497B2 (en) 2006-11-07 2010-02-02 Ebay Inc. Online fraud prevention using genetic algorithm solution
US7953627B2 (en) * 2006-12-12 2011-05-31 American Express Travel Related Services Company, Inc. Identifying industry segments with highest potential for new customers or new spending for current customers
US8290838B1 (en) 2006-12-29 2012-10-16 Amazon Technologies, Inc. Indicating irregularities in online financial transactions
WO2008092147A2 (en) 2007-01-26 2008-07-31 Information Resources, Inc. Analytic platform
US8180717B2 (en) 2007-03-20 2012-05-15 President And Fellows Of Harvard College System for estimating a distribution of message content categories in source data
US8036971B2 (en) 2007-03-30 2011-10-11 Palantir Technologies, Inc. Generating dynamic date sets that represent market conditions
US20080255973A1 (en) 2007-04-10 2008-10-16 Robert El Wade Sales transaction analysis tool and associated method of use
US7840456B2 (en) 2007-05-30 2010-11-23 Intuit Inc. System and method for categorizing credit card transaction data
US7930547B2 (en) 2007-06-15 2011-04-19 Alcatel-Lucent Usa Inc. High accuracy bloom filter using partitioned hashing
WO2009009623A1 (en) 2007-07-09 2009-01-15 Tailwalker Technologies, Inc. Integrating a methodology management system with project tasks in a project management system
US8600872B1 (en) 2007-07-27 2013-12-03 Wells Fargo Bank, N.A. System and method for detecting account compromises
US8631015B2 (en) 2007-09-06 2014-01-14 Linkedin Corporation Detecting associates
US8849728B2 (en) 2007-10-01 2014-09-30 Purdue Research Foundation Visual analytics law enforcement tools
US8484115B2 (en) 2007-10-03 2013-07-09 Palantir Technologies, Inc. Object-oriented time series generator
US8214308B2 (en) 2007-10-23 2012-07-03 Sas Institute Inc. Computer-implemented systems and methods for updating predictive models
US7650310B2 (en) 2007-10-30 2010-01-19 Intuit Inc. Technique for reducing phishing
US20090126020A1 (en) 2007-11-09 2009-05-14 Norton Richard Elliott Engine for rule based content filtering
US9898767B2 (en) 2007-11-14 2018-02-20 Panjiva, Inc. Transaction facilitating marketplace platform
US8055633B2 (en) 2008-01-21 2011-11-08 International Business Machines Corporation Method, system and computer program product for duplicate detection
KR100915295B1 (en) 2008-01-22 2009-09-03 성균관대학교산학협력단 System and method for search service having a function of automatic classification of search results
US8191766B2 (en) 2008-03-04 2012-06-05 Mastercard International Incorporated Methods and systems for managing merchant identifiers
US8121962B2 (en) 2008-04-25 2012-02-21 Fair Isaac Corporation Automated entity identification for efficient profiling in an event probability prediction system
US20090307049A1 (en) 2008-06-05 2009-12-10 Fair Isaac Corporation Soft Co-Clustering of Data
US8860754B2 (en) 2008-06-22 2014-10-14 Tableau Software, Inc. Methods and systems of automatically generating marks in a graphical view
BRPI0917246A2 (en) 2008-08-04 2015-11-10 Quid Inc method and system for measuring an entity's performance, computer readable medium, and methods for determining a competitive landscape for entities in an industry, for connecting competitive entities in an industry, and for predicting an entity's future performance
US10747952B2 (en) 2008-09-15 2020-08-18 Palantir Technologies, Inc. Automatic creation and server push of multiple distinct drafts
US20100114887A1 (en) 2008-10-17 2010-05-06 Google Inc. Textual Disambiguation Using Social Connections
US8391584B2 (en) 2008-10-20 2013-03-05 Jpmorgan Chase Bank, N.A. Method and system for duplicate check detection
US20100131502A1 (en) 2008-11-25 2010-05-27 Fordham Bradley S Cohort group generation and automatic updating
US8719350B2 (en) 2008-12-23 2014-05-06 International Business Machines Corporation Email addressee verification
US10115153B2 (en) 2008-12-31 2018-10-30 Fair Isaac Corporation Detection of compromise of merchants, ATMS, and networks
US20100262688A1 (en) 2009-01-21 2010-10-14 Daniar Hussain Systems, methods, and devices for detecting security vulnerabilities in ip networks
US20100191563A1 (en) 2009-01-23 2010-07-29 Doctors' Administrative Solutions, Llc Physician Practice Optimization Tracking
WO2010085773A1 (en) 2009-01-24 2010-07-29 Kontera Technologies, Inc. Hybrid contextual advertising and related content analysis and display techniques
US10453142B2 (en) * 2009-02-11 2019-10-22 Johnathan Mun System and method for modeling and quantifying regulatory capital, key risk indicators, probability of default, exposure at default, loss given default, liquidity ratios, and value at risk, within the areas of asset liability management, credit risk, market risk, operational risk, and liquidity risk for banks
US8473454B2 (en) 2009-03-10 2013-06-25 Xerox Corporation System and method of on-demand document processing
US20100235915A1 (en) 2009-03-12 2010-09-16 Nasir Memon Using host symptoms, host roles, and/or host reputation for detection of host infection
US8495151B2 (en) 2009-06-05 2013-07-23 Chandra Bodapati Methods and systems for determining email addresses
US8554742B2 (en) 2009-07-06 2013-10-08 Intelligent Medical Objects, Inc. System and process for record duplication analysis
US9104695B1 (en) 2009-07-27 2015-08-11 Palantir Technologies, Inc. Geotagging structured data
US10242540B2 (en) 2009-09-02 2019-03-26 Fair Isaac Corporation Visualization for payment card transaction fraud analysis
US9280777B2 (en) 2009-09-08 2016-03-08 Target Brands, Inc. Operations dashboard
US8214490B1 (en) 2009-09-15 2012-07-03 Symantec Corporation Compact input compensating reputation data tracking mechanism
US20110078173A1 (en) 2009-09-30 2011-03-31 Avaya Inc. Social Network User Interface
US8595058B2 (en) 2009-10-15 2013-11-26 Visa U.S.A. Systems and methods to match identifiers
US8321360B2 (en) 2009-10-22 2012-11-27 Symantec Corporation Method and system for weighting transactions in a fraud detection system
GB2541307A (en) 2009-10-23 2017-02-15 Cadio Inc Analyzing consumer behavior using electronically-captured consumer location data
US20110112995A1 (en) 2009-10-28 2011-05-12 Industrial Technology Research Institute Systems and methods for organizing collective social intelligence information using an organic object data model
CN102054015B (en) 2009-10-28 2014-05-07 财团法人工业技术研究院 System and method of organizing community intelligent information by using organic matter data model
US8412605B2 (en) 2009-12-01 2013-04-02 Bank Of America Corporation Comprehensive suspicious activity monitoring and alert system
US11122009B2 (en) 2009-12-01 2021-09-14 Apple Inc. Systems and methods for identifying geographic locations of social media content collected over social networks
US8645478B2 (en) 2009-12-10 2014-02-04 Mcafee, Inc. System and method for monitoring social engineering in a computer network environment
US20110153384A1 (en) 2009-12-17 2011-06-23 Matthew Donald Horne Visual comps builder
EP2524299A4 (en) 2010-01-11 2013-11-13 Panjiva Inc Evaluating public records of supply transactions for financial investment decisions
US9026552B2 (en) 2010-01-18 2015-05-05 Salesforce.Com, Inc. System and method for linking contact records to company locations
US8255268B2 (en) * 2010-01-20 2012-08-28 American Express Travel Related Services Company, Inc. System and method for matching merchants based on consumer spend behavior
US20110208565A1 (en) 2010-02-23 2011-08-25 Michael Ross complex process management
US8478709B2 (en) 2010-03-08 2013-07-02 Hewlett-Packard Development Company, L.P. Evaluation of client status for likelihood of churn
US8752054B2 (en) 2010-03-11 2014-06-10 Avaya Inc. Intelligent merging of transactions based on a variety of criteria
US20110231296A1 (en) 2010-03-16 2011-09-22 UberMedia, Inc. Systems and methods for interacting with messages, authors, and followers
US20110231305A1 (en) 2010-03-19 2011-09-22 Visa U.S.A. Inc. Systems and Methods to Identify Spending Patterns
US8306846B2 (en) 2010-04-12 2012-11-06 First Data Corporation Transaction location analytics systems and methods
US8874432B2 (en) 2010-04-28 2014-10-28 Nec Laboratories America, Inc. Systems and methods for semi-supervised relationship extraction
US8255399B2 (en) 2010-04-28 2012-08-28 Microsoft Corporation Data classifier
US8473415B2 (en) 2010-05-04 2013-06-25 Kevin Paul Siegel System and method for identifying a point of compromise in a payment transaction processing system
US20110289397A1 (en) 2010-05-19 2011-11-24 Mauricio Eastmond Displaying Table Data in a Limited Display Area
US20110295649A1 (en) 2010-05-31 2011-12-01 International Business Machines Corporation Automatic churn prediction
US8756224B2 (en) 2010-06-16 2014-06-17 Rallyverse, Inc. Methods, systems, and media for content ranking using real-time data
US8380719B2 (en) 2010-06-18 2013-02-19 Microsoft Corporation Semantic content searching
US8407341B2 (en) 2010-07-09 2013-03-26 Bank Of America Corporation Monitoring communications
US8554653B2 (en) 2010-07-22 2013-10-08 Visa International Service Association Systems and methods to identify payment accounts having business spending activities
US8775530B2 (en) 2010-08-25 2014-07-08 International Business Machines Corporation Communication management method and system
US20120066166A1 (en) 2010-09-10 2012-03-15 International Business Machines Corporation Predictive Analytics for Semi-Structured Case Oriented Processes
US8549004B2 (en) 2010-09-30 2013-10-01 Hewlett-Packard Development Company, L.P. Estimation of unique database values
WO2012054868A2 (en) 2010-10-21 2012-04-26 Visa International Service Association Software and methods for risk and fraud mitigation
JP5706137B2 (en) 2010-11-22 2015-04-22 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Method and computer program for displaying a plurality of posts (groups of data) on a computer screen in real time along a plurality of axes
WO2012071533A1 (en) 2010-11-24 2012-05-31 LogRhythm Inc. Advanced intelligence engine
CN102546446A (en) 2010-12-13 2012-07-04 太仓市浏河镇亿网行网络技术服务部 Email device
US9141405B2 (en) 2010-12-15 2015-09-22 International Business Machines Corporation User interface construction
US8719166B2 (en) 2010-12-16 2014-05-06 Verizon Patent And Licensing Inc. Iterative processing of transaction information to detect fraud
US20120173381A1 (en) 2011-01-03 2012-07-05 Stanley Benjamin Smith Process and system for pricing and processing weighted data in a federated or subscription based data source
IL211163A0 (en) 2011-02-10 2011-04-28 Univ Ben Gurion A method for generating a randomized data structure for representing sets, based on bloom filters
WO2012116287A1 (en) 2011-02-24 2012-08-30 Lexisnexis, A Division Of Reed Elsevier Inc. Methods for electronic document searching and graphically representing electronic document searches
AU2012230299B2 (en) 2011-03-23 2016-04-14 Detica Patent Limited An automated fraud detection method and system
US20120278249A1 (en) 2011-04-29 2012-11-01 American Express Travel Related Services Company, Inc. Generating an Identity Theft Score
US9104765B2 (en) 2011-06-17 2015-08-11 Robert Osann, Jr. Automatic webpage characterization and search results annotation
US8726379B1 (en) 2011-07-15 2014-05-13 Norse Corporation Systems and methods for dynamic protection from electronic attacks
US8982130B2 (en) 2011-07-15 2015-03-17 Green Charge Networks Cluster mapping to highlight areas of electrical congestion
US8630892B2 (en) 2011-08-31 2014-01-14 Accenture Global Services Limited Churn analysis system
US8949164B1 (en) 2011-09-08 2015-02-03 George O. Mohler Event forecasting system
US20130226318A1 (en) 2011-09-22 2013-08-29 Dariusz Procyk Process transformation and transitioning apparatuses, methods and systems
WO2013052872A2 (en) 2011-10-05 2013-04-11 Mastercard International Incorporated Nomination engine
US8843421B2 (en) 2011-11-01 2014-09-23 Accenture Global Services Limited Identification of entities likely to engage in a behavior
US9159024B2 (en) 2011-12-07 2015-10-13 Wal-Mart Stores, Inc. Real-time predictive intelligence platform
CN103167093A (en) 2011-12-08 2013-06-19 青岛海信移动通信技术股份有限公司 Filling method of mobile phone email address
US9026480B2 (en) 2011-12-21 2015-05-05 Telenav, Inc. Navigation system with point of interest classification mechanism and method of operation thereof
US8880420B2 (en) 2011-12-27 2014-11-04 Grubhub, Inc. Utility for creating heatmaps for the study of competitive advantage in the restaurant marketplace
US8843431B2 (en) 2012-01-16 2014-09-23 International Business Machines Corporation Social network analysis for churn prediction
US8909648B2 (en) 2012-01-18 2014-12-09 Technion Research & Development Foundation Limited Methods and systems of supervised learning of semantic relatedness
US8620963B2 (en) 2012-03-08 2013-12-31 eBizprise Inc. Large-scale data processing system, method, and non-transitory tangible machine-readable medium thereof
JP2013191187A (en) 2012-03-15 2013-09-26 Fujitsu Ltd Processing device, program and processing system
US20130262328A1 (en) 2012-03-30 2013-10-03 CSRSI, Inc. System and method for automated data breach compliance
US20130263019A1 (en) 2012-03-30 2013-10-03 Maria G. Castellanos Analyzing social media
US9298856B2 (en) 2012-04-23 2016-03-29 Sap Se Interactive data exploration and visualization tool
US8798354B1 (en) 2012-04-25 2014-08-05 Intuit Inc. Method and system for automatic correlation of check-based payments to customer accounts and/or invoices
US9043710B2 (en) 2012-04-26 2015-05-26 Sap Se Switch control in report generation
US10304036B2 (en) 2012-05-07 2019-05-28 Nasdaq, Inc. Social media profiling for one or more authors using one or more social media platforms
EP2662782A1 (en) 2012-05-10 2013-11-13 Siemens Aktiengesellschaft Method and system for storing data in a database
US8788471B2 (en) 2012-05-30 2014-07-22 International Business Machines Corporation Matching transactions in multi-level records
US9032531B1 (en) 2012-06-28 2015-05-12 Middlegate, Inc. Identification breach detection
US10163158B2 (en) 2012-08-27 2018-12-25 Yuh-Shen Song Transactional monitoring system
US20140068487A1 (en) 2012-09-05 2014-03-06 Roche Diagnostics Operations, Inc. Computer Implemented Methods For Visualizing Correlations Between Blood Glucose Data And Events And Apparatuses Thereof
WO2014052493A1 (en) 2012-09-25 2014-04-03 Moneydesktop, Inc. Aggregation source routing
US20140095509A1 (en) 2012-10-02 2014-04-03 Banjo, Inc. Method of tagging content lacking geotags with a location
US9792004B2 (en) 2012-10-08 2017-10-17 Fisher-Rosemount Systems, Inc. Derived and linked definitions with override
US9104786B2 (en) 2012-10-12 2015-08-11 International Business Machines Corporation Iterative refinement of cohorts using visual exploration and data analytics
US8688573B1 (en) 2012-10-16 2014-04-01 Intuit Inc. Method and system for identifying a merchant payee associated with a cash transaction
US8914886B2 (en) 2012-10-29 2014-12-16 Mcafee, Inc. Dynamic quarantining for malware detection
US9378030B2 (en) 2013-10-01 2016-06-28 Aetherpal, Inc. Method and apparatus for interactive mobile device guidance
US10504127B2 (en) 2012-11-15 2019-12-10 Home Depot Product Authority, Llc System and method for classifying relevant competitors
US20140143009A1 (en) 2012-11-16 2014-05-22 International Business Machines Corporation Risk reward estimation for company-country pairs
US20140156527A1 (en) 2012-11-30 2014-06-05 Bank Of America Corporation Pre-payment authorization categorization
US20140157172A1 (en) 2012-11-30 2014-06-05 Drillmap Geographic layout of petroleum drilling data and methods for processing data
US10672008B2 (en) 2012-12-06 2020-06-02 Jpmorgan Chase Bank, N.A. System and method for data analytics
US9497289B2 (en) 2012-12-07 2016-11-15 Genesys Telecommunications Laboratories, Inc. System and method for social message classification based on influence
US9294576B2 (en) 2013-01-02 2016-03-22 Microsoft Technology Licensing, Llc Social media impact assessment
US20140195515A1 (en) 2013-01-10 2014-07-10 I3 Analytics Methods and systems for querying and displaying data using interactive three-dimensional representations
US9892026B2 (en) 2013-02-01 2018-02-13 Ab Initio Technology Llc Data records selection
US20140222521A1 (en) 2013-02-07 2014-08-07 Ibms, Llc Intelligent management and compliance verification in distributed work flow environments
US20140222793A1 (en) 2013-02-07 2014-08-07 Parlance Corporation System and Method for Automatically Importing, Refreshing, Maintaining, and Merging Contact Sets
US9264393B2 (en) 2013-02-13 2016-02-16 International Business Machines Corporation Mail server-based dynamic workflow management
US8744890B1 (en) 2013-02-14 2014-06-03 Aktana, Inc. System and method for managing system-level workflow strategy and individual workflow activity
US10140664B2 (en) 2013-03-14 2018-11-27 Palantir Technologies Inc. Resolving similar entities from a transaction database
GB2513720A (en) 2013-03-15 2014-11-05 Palantir Technologies Inc Computer-implemented systems and methods for comparing and associating objects
GB2513721A (en) 2013-03-15 2014-11-05 Palantir Technologies Inc Computer-implemented systems and methods for comparing and associating objects
US8924388B2 (en) 2013-03-15 2014-12-30 Palantir Technologies Inc. Computer-implemented systems and methods for comparing and associating objects
US9372929B2 (en) 2013-03-20 2016-06-21 Securboration, Inc. Methods and systems for node and link identification
US20140358789A1 (en) 2013-05-30 2014-12-04 B. Scott Boding Acquirer facing fraud management system and method
US9576248B2 (en) 2013-06-01 2017-02-21 Adam M. Hurwitz Record linkage sharing using labeled comparison vectors and a machine learning domain classification trainer
US8938686B1 (en) 2013-10-03 2015-01-20 Palantir Technologies Inc. Systems and methods for analyzing performance of an entity
US8812960B1 (en) 2013-10-07 2014-08-19 Palantir Technologies Inc. Cohort-based presentation of user interaction data
US8832594B1 (en) 2013-11-04 2014-09-09 Palantir Technologies Inc. Space-optimized display of multi-column tables with selective text truncation based on a combined text width
US9356937B2 (en) 2013-11-13 2016-05-31 International Business Machines Corporation Disambiguating conflicting content filter rules
US10586234B2 (en) 2013-11-13 2020-03-10 Mastercard International Incorporated System and method for detecting fraudulent network events
US20150161611A1 (en) 2013-12-10 2015-06-11 Sas Institute Inc. Systems and Methods for Self-Similarity Measure
US10356032B2 (en) 2013-12-26 2019-07-16 Palantir Technologies Inc. System and method for detecting confidential information emails
US8832832B1 (en) 2014-01-03 2014-09-09 Palantir Technologies Inc. IP reputation
US9129219B1 (en) 2014-06-30 2015-09-08 Palantir Technologies, Inc. Crime risk forecasting
US9256664B2 (en) 2014-07-03 2016-02-09 Palantir Technologies Inc. System and method for news events detection and visualization
US10510078B2 (en) * 2015-11-24 2019-12-17 Vesta Corporation Anomaly detection in groups of transactions

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040039686A1 (en) * 2002-01-10 2004-02-26 Klebanoff Victor Franklin Method and system for detecting payment account fraud
US20120215717A1 (en) * 2002-06-03 2012-08-23 Research Affiliates, Llc Using accounting data based indexing to create a portfolio of financial objects
US20110178841A1 (en) * 2010-01-20 2011-07-21 American Express Travel Related Services Company, Inc. System and method for clustering a population using spend level data
US20130124263A1 (en) * 2011-11-14 2013-05-16 Visa International Service Association Systems and Methods to Summarize Transaction data
US20130246178A1 (en) * 2012-03-13 2013-09-19 American Express Travel Related Services Company, Inc. Systems and Methods for Tailoring Marketing
US20140236678A1 (en) * 2013-02-19 2014-08-21 Visa International Service Association Systems and methods to enhance search via transaction data
US20160148092A1 (en) * 2014-11-20 2016-05-26 Mastercard International Incorporated Systems and methods for determining activity level at a merchant location by leveraging real-time transaction data
US20160364727A1 (en) * 2015-06-11 2016-12-15 Early Warning Services, Llc System and method for identifying compromised accounts
US20170193534A1 (en) * 2016-01-04 2017-07-06 American Express Travel Related Services Company, Inc. System and method for transaction volume determination

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Alam, Rizwan. "Normalization vs Standardization Explained." Towards Data Science. Published 5 May 2020. Accessed 6 April 2023 from https://towardsdatascience.com/normalization-vs-standardization-explained-209e84d0f81e (Year: 2020) *

Also Published As

Publication number Publication date
US11250425B1 (en) 2022-02-15

Similar Documents

Publication Publication Date Title
US11488175B2 (en) Interactive error user interface
US20170372398A1 (en) Vector representation of descriptions and queries
US20170193544A1 (en) Modification of content according to user engagement
US11681768B2 (en) Search and notification in response to a request
US10885040B2 (en) Search-initiated content updates
US9996236B1 (en) Simplified frontend processing and visualization of large datasets
US20240086383A1 (en) Search engine optimization by selective indexing
US10360621B2 (en) Near-identical multi-faceted entity identification in search
US11126628B2 (en) System, method and computer-readable medium for enhancing search queries using user implicit data
US11954723B2 (en) Replaced device handler
US20210049586A1 (en) Automated transaction processing
EP3226157A1 (en) Interactive map interface depicting user activity
US10713250B2 (en) Distributed database job data skew detection
US20160335312A1 (en) Updating asset references
US10157240B2 (en) Systems and methods to generate a concept graph
US20220084019A1 (en) Generating a statistic using electronic transaction data
US10354327B2 (en) Transmitting data to select users
US10769695B2 (en) Generating titles for a structured browse page
US20180018400A1 (en) Presentation bias compensation for multiple item internet web pages
US20170161814A1 (en) Discovering products in item inventory

Legal Events

Date Code Title Description
AS Assignment

Owner name: PALANTIR TECHNOLOGIES INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JAFFE, AARON;ALTAROVICI, ALBERT;MOULTON, DANIEL;AND OTHERS;SIGNING DATES FROM 20180330 TO 20180721;REEL/FRAME:058260/0383

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED