US20220081635A1 - Synthetic esters derived from high stability oleic acid - Google Patents
Synthetic esters derived from high stability oleic acid Download PDFInfo
- Publication number
- US20220081635A1 US20220081635A1 US17/482,080 US202117482080A US2022081635A1 US 20220081635 A1 US20220081635 A1 US 20220081635A1 US 202117482080 A US202117482080 A US 202117482080A US 2022081635 A1 US2022081635 A1 US 2022081635A1
- Authority
- US
- United States
- Prior art keywords
- propanediol
- fatty acid
- acid mixture
- moles
- eox
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M101/00—Lubricating compositions characterised by the base-material being a mineral or fatty oil
- C10M101/04—Fatty oil fractions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/08—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/026—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/2805—Esters used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/281—Esters of (cyclo)aliphatic monocarboxylic acids
- C10M2207/2815—Esters of (cyclo)aliphatic monocarboxylic acids used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
- C10M2207/2835—Esters of polyhydroxy compounds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/401—Fatty vegetable or animal oils used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/104—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/064—Di- and triaryl amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/223—Five-membered rings containing nitrogen and carbon only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/047—Thioderivatives not containing metallic elements
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/02—Pour-point; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/10—Inhibition of oxidation, e.g. anti-oxidants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/08—Hydraulic fluids, e.g. brake-fluids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2070/00—Specific manufacturing methods for lubricant compositions
Definitions
- Triglycerides obtained from vegetable or animal sources are known to be used as base oil for lubricant formulations. These natural triglycerides often show poor hydrolytic stability as well as limited low temperature properties such as pour point and cold test stability.
- the present invention relates to synthetic esters prepared from, for example, an algal-derived triglyceride such as high stability algal oil from Solazyme Inc., which may provide excellent oxidation stability as well as improved low temperature properties and hydrolytic stability as compared to the corresponding triglycerides, making them suitable for a range of industrial lubricants.
- the present invention relates to a composition
- a composition comprising a synthetic ester having a fatty acid mixture comprising: oleic acid in amount of at least about 85 wt % of the fatty acid mixture; linoleic acid in an amount of about 3 wt % of the fatty acid mixture or less; and linolenic acid in an amount of about 0.5 wt % of the fatty acid mixture or less.
- the linolenic acid is present in an amount of about 0.2 wt % of the fatty acid mixture or less.
- the synthetic ester is derived from high stability oleic acid. In some embodiments, the synthetic ester is derived from high stability algal oil.
- the composition includes alcohol.
- the alcohol includes neo pentyl glycol (NPG), trimethylol propane (TMP), penta-erythritol (PE), di-TMP, di-PE, 2-ethyl hexanol, butyl ethyl propane diol (BEPD), trimethyl propanediol (TMPD), and/or propylene glycol.
- the composition meets standards for fire resistance according to Factory Mutual Approvals Class Number 6930, April 2009. In some embodiments, the composition maintains oxidative stability for about 2,500 hours or greater according to ASTM D943. In some embodiments, the composition exhibits a pour point temperature of about ⁇ 10° C. or less.
- the composition is a lubricant or a hydraulic fluid.
- the present invention relates to a method of preparing a synthetic ester, comprising esterifying high stability oleic acid to produce a synthetic ester having a fatty acid mixture comprising: oleic acid in amount of at least about 85 wt % of the fatty acid mixture; linoleic acid in an amount of about 3 wt % of the fatty acid mixture or less; and linolenic acid in an amount of about 0.5 wt % of the fatty acid mixture or less.
- FIG. 1 is graph showing the varying acid number of esters including certain additives.
- FIG. 2 is a graph showing the varying viscosity of esters including certain additives.
- compositions and methods of the present invention relate to synthetic esters derived from high stability oleic acid, which may be manufactured from high stability algal oil.
- the synthetic esters have unique lubricant properties such as exceptional oxidation stability and/or improved low temperature properties as compared to the corresponding triglycerides.
- Tailored triglycerides e.g. obtained via genetically engineered plant seeds such as High Oleic Sunflower or High Oleic Canola, or genetically modified Algae, such as that manufactured by Solazyme, have been used in the past as a base oil for lubricant formulations.
- Specific triglycerides may provide beneficial properties such as oxidation stability, however, they may exhibit drawbacks such as limited low temperature properties including pour point and/or cold test stability.
- a synthetic ester prepared from a triglyceride having a unique fatty acid distribution such as high stability algal oil, may provide desirable lubricant properties including exceptional oxidation stability and superior low temperature properties compared with the corresponding triglyceride.
- the present invention relates to synthetic esters containing a) fatty acid mixtures with an oleic acid content of about 85 wt %, a linoleic acid content of about ⁇ 3 wt % and a linolenic acid content of about ⁇ 0.5 wt % relative to the mixture, b) alcohols, and c) as desired, polyfunctional carboxylic acids.
- Embodiments of the present invention also relate to industrial lubricants, such as hydraulic fluids, based on these esters.
- compositions and methods of some embodiments of the present invention relate to triglycerides having a certain fatty acid distribution.
- a suitable triglyceride may include high stability algal oil, such as that produced by Solazyme Inc.
- a suitable triglyceride may include a fatty acid mixture having oleic acid in amount of at least about 85 wt % of the fatty acid mixture; linoleic acid in an amount of about 3 wt % of the fatty acid mixture or less; and/or linolenic acid in an amount of about 0.5 wt % of the fatty acid mixture or less.
- a suitable triglyceride includes a fatty acid mixture having oleic acid in an amount of at least about 80 wt % of the fatty acid mixture; at least about 82 wt % of the fatty acid mixture; at least about 84 wt % of the fatty acid mixture; at least about 85 wt % of the fatty acid mixture; at least about 86 wt % of the fatty acid mixture; about 80 wt % to about 92 wt % of the fatty acid mixture; about 82 wt % to about 90 wt % of the fatty acid mixture; about 84 wt % to about 88 wt % of the fatty acid mixture; about 85 wt % to about 87 wt % of the fatty acid mixture; about 80 wt % of the fatty acid mixture; about 82 wt % of the fatty acid mixture; about 84 wt % of the fatty acid mixture; about 86 wt %
- a suitable triglyceride includes a fatty acid mixture having linoleic acid in an amount of about 5 wt % of the fatty acid mixture or less; about 4 wt % of the fatty acid mixture or less; about 3 wt % of the fatty acid mixture or less; about 2 wt % of the fatty acid mixture or less; about 1 wt % of the fatty acid mixture or less; about 0.7 wt % of the fatty acid mixture or less; about 0.5 wt % of the fatty acid mixture or less; about 0.1 wt % to about 5 wt % of the fatty acid mixture; about 0.1 wt % to about 4 wt % of the fatty acid mixture; about 0.1 wt % to about 3 wt % of the fatty acid mixture; about 0.1 wt % to 2 wt % of the fatty acid mixture; about 0.1 wt % to about 1.5 wt % of
- a suitable triglyceride includes a fatty acid mixture having linolenic acid in an amount of about 3 wt % of the fatty acid mixture or less; about 2 wt % of the fatty acid mixture or less; about 1 wt % of the fatty acid mixture or less; about 0.7 wt % of the fatty acid mixture or less; about 0.5 wt % of the fatty acid mixture or less; about 0.4 wt % of the fatty acid mixture or less; about 0.3 wt % of the fatty acid mixture or less; about 0.2 wt % of the fatty acid mixture or less; about 0.1 wt % of the fatty acid mixture or less; about 0 wt % to about 5 wt % of the fatty acid mixture; about 0.1 wt % to about 5 wt % of the fatty acid mixture; about 0 wt % to about 4 wt % of the fatty acid mixture; about 0
- a suitable triglyceride includes a fatty acid mixture having palmitoleic acid in an amount of about 5 wt % of the fatty acid mixture or less; about 4 wt % of the fatty acid mixture or less; about 3 wt % of the fatty acid mixture or less; about 2 wt % of the fatty acid mixture or less; about 1 wt % of the fatty acid mixture or less; about 0.7 wt % of the fatty acid mixture or less; about 0.5 wt % of the fatty acid mixture or less; about 0.1 wt % to about 5 wt % of the fatty acid mixture; about 0.1 wt % to about 4 wt % of the fatty acid mixture; about 0.1 wt % to about 3 wt % of the fatty acid mixture; about 0.1 wt % to 2 wt % of the fatty acid mixture; about 0.1 wt % to about 1.5 wt % of the
- a suitable triglyceride includes a fatty acid mixture having palmitic acid in an amount of about 4 wt % to about 14 wt % of the fatty acid mixture; about 6 wt % to about 12 wt % of the fatty acid mixture; about 8 wt % to about 10 wt % of the fatty acid mixture; about 4 wt % of the fatty acid mixture; about 6 wt % of the fatty acid mixture; about 8 wt % of the fatty acid mixture; about 9 wt % of the fatty acid mixture; about 10 wt % of the fatty acid mixture; about 12 wt % of the fatty acid mixture; or about 14 wt % of the fatty acid mixture.
- a suitable triglyceride includes a fatty acid mixture having stearic acid in an amount of about 1 wt % to about 6 wt % of the fatty acid mixture; about 2 wt % to about 5 wt % of the fatty acid mixture; about 3 wt % to about 4 wt % of the fatty acid mixture; about 1 wt % of the fatty acid mixture; about 2 wt % of the fatty acid mixture; about 3 wt % of the fatty acid mixture; about 4 wt % of the fatty acid mixture; about 5 wt % of the fatty acid mixture; or about 6 wt % of the fatty acid mixture.
- HSAO triglyceride may be split into glycerol and fatty acid (HSAO fa), which may be converted to many synthetic esters, including, neo pentyl glycol or NPG-ester, trimethylol propane or TMP-ester and penta-erythritol or PE-ester.
- a synthetic ester of the present invention comprises alcohol.
- the fatty acids obtained from the triglyceride are converted with alcohol to prepare a synthetic ester.
- Selection of a suitable alcohol may provide improved properties, such as low temperature properties, of the synthetic ester in comparison to the corresponding triglyceride.
- alcohols that may be used for esterification include, but are not limited to neo pentyl glycol (NPG), trimethylol propane (TMP), and/or penta-erythritol (PE).
- NPG neo pentyl glycol
- TMP trimethylol propane
- PE penta-erythritol
- complex esters may be prepared by using, for example, dimer acid, adipic acid, and/or dodecanoic acid.
- suitable alcohols may include isopropanol, neo pentyl glycol (NPG), trimethylol propane (TMP), penta-erythritol (PE), di-TMP, di-PE, 2-ethyl hexanol, butyl ethyl propane diol (BEPD), trimethyl propanediol (TMPD), and/or propylene glycol.
- NPG neo pentyl glycol
- TMP trimethylol propane
- PE penta-erythritol
- DEPD butyl ethyl propane diol
- TMPD trimethyl propanediol
- suitable alcohols may include 2-ethyl-2-(hydroxymethyl)-1,3-propanediol (trimethylol propane, TMP), 2,2-dimethyl-1,3-propanediol (neopentyl glycol, NPG), 2,2-bis(hydroxymethyl)-1,3-propanediol (pentaerythritol, penta), 2-butyl-2-ethyl-1,3-propanediol (BEPD), 2,2,4-trimethyl-1,3-propanediol (TMPD), polyglycerine, 2,2-diethyl-1,3-propanediol, 1,3-propanediol, 1,2-propanediol (propylene glycol), 1,6-hexanediol, 1,4-butanediol, 1,4-butenediol, 1,4-butynediol, 1,2-cyclohexanediol, 1,
- HSAO triglyceride may be split into glycerol and fatty acid (HSAO fa), which may be converted to many synthetic esters, including, NPG-ester, TMP-ester and PE-ester.
- the fatty acids obtained from the triglyceride are converted with alcohol to prepare a synthetic ester.
- These synthetic esters can be obtained by standard techniques known to those skilled in the art.
- compositions comprising synthetic esters of the present invention may be used for lubricants. In some embodiments, compositions comprising synthetic esters of the present invention may be used for hydraulic fluids. Synthetic esters prepared according to embodiments of the present invention are understood to have the same fatty acid distribution as the corresponding triglyceride from which they were derived. In some embodiments, the fatty acid distribution of the compositions comprising synthetic esters of the present invention may be associated with desirable lubricant properties.
- compositions including synthetic esters of the present invention may include selected additional ingredients in suitable amounts to achieve the desired result.
- compositions may include phenolic and/or aminic anti-oxidants, extreme pressure additives, anti-wear additives, viscosity modifiers, dewatering agents, emulsifiers, defoamers, and/or wetting agents.
- phenolic and/or aminic anti-oxidants extreme pressure additives, anti-wear additives, viscosity modifiers, dewatering agents, emulsifiers, defoamers, and/or wetting agents.
- suitable phenolic antioxidants may include alkylated monophenols, bis-hydroxyphenols, bisphenols, tris and tetraphenolics, thioester antioxidants, aminic antioxidants, and/or phosphite antioxidants.
- suitable alkylated monophenols may include 2,4-di-tert-butylphenol, 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-4-methylphenol (BHT), 2-tert-4,6-dimethylphenol, di-sec-butylphenol, 2-sec-4-tert-butylphenol, 2,4-di-tert-amylphenol, 2,4-di-cumylphenol, 2,4,6-tri-tert-butylphenol, 2-tert-butylphenol, (1,1-dimethyl)-4-methoxyphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-butyl-4-hydroxymethylphenol, 2,6-di-tert-butyl-4-iso-butylphenol, 2,6-di-octadecyl-4
- BHT
- suitable bis-hydroxyphenols may include 2-(1,1-dimethylethyl)-1,4-benzenediol, 2,5-di-tert-butyl-hydroquinone, 2,5-di-tert-amylhydroquinone, and/or 2,6-diphenyl-4-octadecyloxyphenol.
- suitable bisphenols may include 2,2-methylenebis-(6-tert-butyl-4-methylphenol), 2,2-methylenebis-(4-ethyl-6-tert-butylphenol), 4,4-methylenebis-(2,6-di-tert-butylphenol), 4,4-butylidenebis-(3-methyl-6-tert-butylphenol), triethyleneglycol-bis[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionate], 2,2-methylenebis-[4-methyl-6-(alpha-methylcyclohexyl)-phenol], 2,2-methylenebis-(4-methyl-6-cyclohexylphenol), 2,2-methylenebis-(6-nonyl-4-methylphenol), 1,6-hexanediol-bis[3-(3,5-di-tert-butyl-4-hydroxyphenylpropionate], 4,4-thiobis(3-methyl-6-tert-butyl
- suitable tris and tetraphenolics may include tris-(3,5-di-tert-butylhydroxybenzyl)isocyanurate, 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, tetrakis[methylene-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]methane, 1,1,1,-tris-(2-methyl-4-hydroxy-5-tert-butylphenol)butane, 1,3,5-tris-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 3,3-bis-(3-tert-butyl-4-hydroxyphenyl)-ethylenebutyrate, di-(3-tert-butyl-4-hydroxy-5-methylphenyl)-dicyclopentadiene, di-[2-(3-tert-butyl
- suitable thioester antioxidants may include pentaerythrityl-tetrakis(3-laurylpropionate), dilauryl-3,3-thiopropionate, distearyl-3,3-thiopropionate, di-tridecyl-3,3-thiopropionate, di-myristyl-3,3-thiopropionate, stearylthiopropionamide, bis[2-methyl-4-(3-n-C 12 -C 14 alkylthiopropionyloxy)-5-tert-butylphenyl]sulphode, and/or di-octadecyldisulphide.
- suitable aminic antioxidants may include octyl/butyl-diphenylamine, p,p-bis-nonyl-diphenylamine, N-phenyl-1-diphenylamine, N-phenyl-2-diphenylamine, octylated-phenyl-alpha-naphtylamine, p,p-bis-octyl-diphenylamine, polymerized 2,2,4-trimethyl-1,2-dihydroquinoline, 4,4-bis-(alpha,alpha-dimethylbenzyl)-diphenylamine, N, N-di-2-naphtyl-p-phenylenediamine, N,N-diphenyl-p-phenylenediamine, N-phenyl-N-isopropyl-p-phenylenediamine, N-phenyl-N-(1,3-dimethylbutyl)-p-phenylenedi
- suitable phosphite antioxidants may include tris-(2,4-di-tert-butylphenyl)-phosphite, tris-(n-nonylphenyl)-phosphite, diphenyl-iso-octyl-phosphite, diphenyl-isodecyl-phosphite, diphenyl-mono-tridecyl-phosphite, phenyl-di-isodecyl-phosphite, tris-(2-ethylhexyl)-phosphite, tris(isodecyl) phosphite, tris(tridecyl) phosphite, tri-laurylthio-phosphite, tris-(mono & di nonylphenyl mixed) phosphites, bis-(2,4-di-tert-butylphenyl) pent
- a composition may include a yellow metal passivator.
- suitable yellow metal passivators may include beznotriazole, tolutriazole, triazole, 2-mercaptobenzothiazole, 2,5-dimercaptothiadiazole, tetrahydrobenzotriazole, Irgamet 39 ⁇ (BASF), Irgamet 42 ⁇ (BASF), and/or Irgamet 30 ⁇ (BASF).
- synthetic esters of the present invention are prepared and/or formulated to provide improved properties, such as low temperature properties, of the synthetic ester in comparison to the corresponding triglyceride.
- Synthetic esters prepared from a triglyceride having a unique fatty acid distribution as described herein, such as high stability algal oil may provide desirable lubricant properties including exceptional oxidation stability and superior low temperature properties compared with the corresponding triglyceride.
- such synthetic esters may be useful in metal lubricants and/or hydraulic fluids, and metal lubricants and/or hydraulic fluid containing such synthetic esters may exhibit improved properties as well.
- compositions including synthetic esters of the present invention meet standards for fire resistance according to Factory Mutual Approvals Class Number 6930, April 2009, which standard is incorporated by reference herein in its entirety.
- compositions including synthetic esters of the present invention maintain oxidative stability for about 750 hours or greater according to ASTM D943, which standard is incorporated by reference herein in its entirety. In some embodiments, compositions including synthetic esters of the present invention maintain oxidative stability according to ASTM D943 for about 200 hours or greater; about 250 hours or greater; about 300 hours or greater; about 350 hours or greater; about 400 hours or greater; about 450 hours or greater; about 500 hours or greater; about 550 hours or greater; about 600 hours or greater; about 650 hours or greater; about 700 hour or greater; about 750 hours or greater; about 800 hours or greater; about 850 hours or greater; about 900 hours or greater; about 950 hours or greater; about 1000 hours or greater; about 1100 hours or greater; about 1200 hours or greater; about 1300 hours or greater; about 1400 hours or greater; about 1500 hours or greater; about 1600 hours or greater; about 1700 hours or greater; about 1800 hours or greater; about 1900 hours or greater; about 2000 hours or greater; about 2100 hours or greater
- compositions including synthetic esters of the present invention exhibit a pour point temperature of about ⁇ 10° C. or less. In some embodiments, compositions including synthetic esters of the present invention exhibit a pour point temperature of about 0° C. or less; about ⁇ 5° C. or less; about ⁇ 10° C. or less; about ⁇ 15° C. or less; about ⁇ 20° C. or less; about ⁇ 25° C. or less; about ⁇ 30° C. or less; about ⁇ 35° C. or less; about ⁇ 40° C. or less; about ⁇ 45° C. or less; about ⁇ 50° C.
- compositions including synthetic esters of the present invention exhibit a cloud point temperature of about ⁇ 10° C. or less. In some embodiments, compositions including synthetic esters of the present invention exhibit a pour point temperature of about 0° C. or less; about ⁇ 5° C. or less; about ⁇ 10° C. or less; about ⁇ 15° C. or less; about ⁇ 20° C. or less; about ⁇ 25° C. or less; about ⁇ 30° C. or less; about ⁇ 35° C. or less; about ⁇ 40° C. or less; about ⁇ 45° C. or less; about ⁇ 50° C.
- High Oleic Algal Oil HOAO
- High Stability Algal Oil HSAO
- TMPTO Trimethylolpropane tri-oleate
- Rapeseed Oil Rapeseed Oil
- High Oleic Sunflower Oil The test profile included: fatty acid distribution, viscosities/VI, Flash- and Fire point, Cloud point, Pour point, and Cold test (e.g., the temperature when solid after 24 hours, in 5° C. steps).
- pour point depressants were used, with the impact noted in the chart below:
- Treat Rates (%) Pour Point Depressants Supplier Recommended Actual Viscoplex 10-171 Evonik 0.25-0.5 0.25-5.0 Viscoplex 10-312 Evonik 0.25-0.5 0.25-0.5 Functional PPD-555 Functional Products 0.5-1.0 0.5-1.0 Functional PPD-557 Functional Products 0.5-1.0 0.5-1.0 Lubrizol 3702 Lubrizol 0.2-2.0 0.2-2.0 Lubrizol 3715 Lubrizol 0.2-2.0 0.2-2.0 Pour point decrease: 5° C. max (at 4-5% treat rate)
- HSAO-based Synthetic Esters when evaluated in hydraulic fluids, include the following non-optimized additive package:
- Viscosity index mm2/s 198 187 184 Pour point ° C. ⁇ 21 ⁇ 36 ⁇ 21 Flash point (COC) ° C. 262 315 314 Esters - HSAO Fatty Acid NPG-VHOA TMP-VHOA Penta-VHOA Parameters
- Viscosity 40° C. mm2/s 25.7 47.5 68.3 Viscosity 100° C. mm2/s 6.26 9.42 12.84 Viscosity index mm2/s 210 187 191 Pour point ° C. ⁇ 21 ⁇ 27 ⁇ 24 Flash point (COC) ° C. 274 320 312
- esters prepared from the triglycerides listed above will have the same fatty acid distribution as the corresponding triglyceride.
- test results above demonstrate the effectiveness of the formulation in providing desirable levels of corrosion protection and paint adhesion.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Lubricants (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The present invention is directed to a composition comprising a synthetic ester having a fatty acid mixture including: oleic acid in amount of at least about 85 wt % of the fatty acid mixture; linoleic acid in an amount of about 3 wt % of the fatty acid mixture or less; and linolenic acid in an amount of about 0.5 wt % of the fatty acid mixture or less.
Description
- This application claims the benefit of U.S. Provisional Patent Application No. 62/163,922 filed May 19, 2015, entitled “Synthetic Esters Derived from High Stability Oleic Acid,” incorporated by reference herein in its entirety.
- Triglycerides obtained from vegetable or animal sources are known to be used as base oil for lubricant formulations. These natural triglycerides often show poor hydrolytic stability as well as limited low temperature properties such as pour point and cold test stability. The present invention relates to synthetic esters prepared from, for example, an algal-derived triglyceride such as high stability algal oil from Solazyme Inc., which may provide excellent oxidation stability as well as improved low temperature properties and hydrolytic stability as compared to the corresponding triglycerides, making them suitable for a range of industrial lubricants.
- According to some embodiments, the present invention relates to a composition comprising a synthetic ester having a fatty acid mixture comprising: oleic acid in amount of at least about 85 wt % of the fatty acid mixture; linoleic acid in an amount of about 3 wt % of the fatty acid mixture or less; and linolenic acid in an amount of about 0.5 wt % of the fatty acid mixture or less. In some embodiments, the linolenic acid is present in an amount of about 0.2 wt % of the fatty acid mixture or less.
- In some embodiments, the synthetic ester is derived from high stability oleic acid. In some embodiments, the synthetic ester is derived from high stability algal oil.
- In certain embodiments, the composition includes alcohol. In some embodiments the alcohol includes neo pentyl glycol (NPG), trimethylol propane (TMP), penta-erythritol (PE), di-TMP, di-PE, 2-ethyl hexanol, butyl ethyl propane diol (BEPD), trimethyl propanediol (TMPD), and/or propylene glycol.
- In some embodiments, the composition meets standards for fire resistance according to Factory Mutual Approvals Class Number 6930, April 2009. In some embodiments, the composition maintains oxidative stability for about 2,500 hours or greater according to ASTM D943. In some embodiments, the composition exhibits a pour point temperature of about −10° C. or less.
- In certain embodiments, the composition is a lubricant or a hydraulic fluid.
- According to some embodiments, the present invention relates to a method of preparing a synthetic ester, comprising esterifying high stability oleic acid to produce a synthetic ester having a fatty acid mixture comprising: oleic acid in amount of at least about 85 wt % of the fatty acid mixture; linoleic acid in an amount of about 3 wt % of the fatty acid mixture or less; and linolenic acid in an amount of about 0.5 wt % of the fatty acid mixture or less.
- The foregoing summary, as well as the following detailed description of certain embodiments of the invention will be better understood when read in conjunction with the following exemplary embodiments and the appended drawings.
-
FIG. 1 is graph showing the varying acid number of esters including certain additives. -
FIG. 2 is a graph showing the varying viscosity of esters including certain additives. - Compositions and methods of the present invention relate to synthetic esters derived from high stability oleic acid, which may be manufactured from high stability algal oil. In some embodiments, the synthetic esters have unique lubricant properties such as exceptional oxidation stability and/or improved low temperature properties as compared to the corresponding triglycerides.
- Tailored triglycerides, e.g. obtained via genetically engineered plant seeds such as High Oleic Sunflower or High Oleic Canola, or genetically modified Algae, such as that manufactured by Solazyme, have been used in the past as a base oil for lubricant formulations. Specific triglycerides may provide beneficial properties such as oxidation stability, however, they may exhibit drawbacks such as limited low temperature properties including pour point and/or cold test stability.
- Surprisingly, it has been found that a synthetic ester prepared from a triglyceride having a unique fatty acid distribution, such as high stability algal oil, may provide desirable lubricant properties including exceptional oxidation stability and superior low temperature properties compared with the corresponding triglyceride.
- In some embodiments, the present invention relates to synthetic esters containing a) fatty acid mixtures with an oleic acid content of about 85 wt %, a linoleic acid content of about ≤3 wt % and a linolenic acid content of about ≤0.5 wt % relative to the mixture, b) alcohols, and c) as desired, polyfunctional carboxylic acids. Embodiments of the present invention also relate to industrial lubricants, such as hydraulic fluids, based on these esters.
- Triglyceride
- Compositions and methods of some embodiments of the present invention relate to triglycerides having a certain fatty acid distribution. In some embodiments, a suitable triglyceride may include high stability algal oil, such as that produced by Solazyme Inc.
- In some embodiments, a suitable triglyceride may include a fatty acid mixture having oleic acid in amount of at least about 85 wt % of the fatty acid mixture; linoleic acid in an amount of about 3 wt % of the fatty acid mixture or less; and/or linolenic acid in an amount of about 0.5 wt % of the fatty acid mixture or less.
- In some embodiments, a suitable triglyceride includes a fatty acid mixture having oleic acid in an amount of at least about 80 wt % of the fatty acid mixture; at least about 82 wt % of the fatty acid mixture; at least about 84 wt % of the fatty acid mixture; at least about 85 wt % of the fatty acid mixture; at least about 86 wt % of the fatty acid mixture; about 80 wt % to about 92 wt % of the fatty acid mixture; about 82 wt % to about 90 wt % of the fatty acid mixture; about 84 wt % to about 88 wt % of the fatty acid mixture; about 85 wt % to about 87 wt % of the fatty acid mixture; about 80 wt % of the fatty acid mixture; about 82 wt % of the fatty acid mixture; about 84 wt % of the fatty acid mixture; about 86 wt % of the fatty acid mixture; about 88 wt % of the fatty acid mixture; about 90 wt % of the fatty acid mixture; or about 92 wt % of the fatty acid mixture.
- In some embodiments, a suitable triglyceride includes a fatty acid mixture having linoleic acid in an amount of about 5 wt % of the fatty acid mixture or less; about 4 wt % of the fatty acid mixture or less; about 3 wt % of the fatty acid mixture or less; about 2 wt % of the fatty acid mixture or less; about 1 wt % of the fatty acid mixture or less; about 0.7 wt % of the fatty acid mixture or less; about 0.5 wt % of the fatty acid mixture or less; about 0.1 wt % to about 5 wt % of the fatty acid mixture; about 0.1 wt % to about 4 wt % of the fatty acid mixture; about 0.1 wt % to about 3 wt % of the fatty acid mixture; about 0.1 wt % to 2 wt % of the fatty acid mixture; about 0.1 wt % to about 1.5 wt % of the fatty acid mixture; about 0.1 wt % to about 1 wt % of the fatty acid mixture; about 0.2 wt % to about 0.8 wt % of the fatty acid mixture; about 0.2 wt % to about 0.6 wt % of the fatty acid mixture; about 0.1 wt % of the fatty acid mixture; about 0.2 wt % of the fatty acid mixture; about 0.3 wt % of the fatty acid mixture; about 0.4 wt % of the fatty acid mixture; about 0.5 wt % of the fatty acid mixture; about 0.6 wt % of the fatty acid mixture; about 0.8 wt % of the fatty acid mixture; about 1 wt % of the fatty acid mixture; about 1.5 wt % of the fatty acid mixture; about 2 wt % of the fatty acid mixture; about 3 wt % of the fatty acid mixture; about 4 wt % of the fatty acid mixture; or about 5 wt % of the fatty acid mixture.
- In some embodiments, a suitable triglyceride includes a fatty acid mixture having linolenic acid in an amount of about 3 wt % of the fatty acid mixture or less; about 2 wt % of the fatty acid mixture or less; about 1 wt % of the fatty acid mixture or less; about 0.7 wt % of the fatty acid mixture or less; about 0.5 wt % of the fatty acid mixture or less; about 0.4 wt % of the fatty acid mixture or less; about 0.3 wt % of the fatty acid mixture or less; about 0.2 wt % of the fatty acid mixture or less; about 0.1 wt % of the fatty acid mixture or less; about 0 wt % to about 5 wt % of the fatty acid mixture; about 0.1 wt % to about 5 wt % of the fatty acid mixture; about 0 wt % to about 4 wt % of the fatty acid mixture; about 0 wt % to about 3 wt % of the fatty acid mixture; about 0 wt % to 2 wt % of the fatty acid mixture; about 0 wt % to about 1.5 wt % of the fatty acid mixture; about 0 wt % to about 1 wt % of the fatty acid mixture; about 0 wt % to about 0.8 wt % of the fatty acid mixture; about 0 wt % to about 0.6 wt % of the fatty acid mixture; about 0 wt % to about 0.4 wt % of the fatty acid mixture; about 0 wt % to about 0.2 wt % of the fatty acid mixture; about 0.1 wt % to about 4 wt % of the fatty acid mixture; about 0.1 wt % to about 3 wt % of the fatty acid mixture; about 0.1 wt % to 2 wt % of the fatty acid mixture; about 0.1 wt % to about 1.5 wt % of the fatty acid mixture; about 0.1 wt % to about 1 wt % of the fatty acid mixture; about 0.2 wt % to about 0.8 wt % of the fatty acid mixture; about 0.2 wt % to about 0.6 wt % of the fatty acid mixture; about 0.1 wt % of the fatty acid mixture; about 0.2 wt % of the fatty acid mixture; about 0.3 wt % of the fatty acid mixture; about 0.4 wt % of the fatty acid mixture; about 0.5 wt % of the fatty acid mixture; about 0.6 wt % of the fatty acid mixture; about 0.8 wt % of the fatty acid mixture; about 1 wt % of the fatty acid mixture; about 1.5 wt % of the fatty acid mixture; about 2 wt % of the fatty acid mixture; about 3 wt % of the fatty acid mixture; about 4 wt % of the fatty acid mixture; or about 5 wt % of the fatty acid mixture.
- In some embodiments, a suitable triglyceride includes a fatty acid mixture having palmitoleic acid in an amount of about 5 wt % of the fatty acid mixture or less; about 4 wt % of the fatty acid mixture or less; about 3 wt % of the fatty acid mixture or less; about 2 wt % of the fatty acid mixture or less; about 1 wt % of the fatty acid mixture or less; about 0.7 wt % of the fatty acid mixture or less; about 0.5 wt % of the fatty acid mixture or less; about 0.1 wt % to about 5 wt % of the fatty acid mixture; about 0.1 wt % to about 4 wt % of the fatty acid mixture; about 0.1 wt % to about 3 wt % of the fatty acid mixture; about 0.1 wt % to 2 wt % of the fatty acid mixture; about 0.1 wt % to about 1.5 wt % of the fatty acid mixture; about 0.1 wt % to about 1 wt % of the fatty acid mixture; about 0.2 wt % to about 0.8 wt % of the fatty acid mixture; about 0.2 wt % to about 0.6 wt % of the fatty acid mixture; about 0.1 wt % of the fatty acid mixture; about 0.2 wt % of the fatty acid mixture; about 0.3 wt % of the fatty acid mixture; about 0.4 wt % of the fatty acid mixture; about 0.5 wt % of the fatty acid mixture; about 0.6 wt % of the fatty acid mixture; about 0.8 wt % of the fatty acid mixture; about 1 wt % of the fatty acid mixture; about 1.5 wt % of the fatty acid mixture; about 2 wt % of the fatty acid mixture; about 3 wt % of the fatty acid mixture; about 4 wt % of the fatty acid mixture; or about 5 wt % of the fatty acid mixture.
- In some embodiments, a suitable triglyceride includes a fatty acid mixture having palmitic acid in an amount of about 4 wt % to about 14 wt % of the fatty acid mixture; about 6 wt % to about 12 wt % of the fatty acid mixture; about 8 wt % to about 10 wt % of the fatty acid mixture; about 4 wt % of the fatty acid mixture; about 6 wt % of the fatty acid mixture; about 8 wt % of the fatty acid mixture; about 9 wt % of the fatty acid mixture; about 10 wt % of the fatty acid mixture; about 12 wt % of the fatty acid mixture; or about 14 wt % of the fatty acid mixture.
- In some embodiments, a suitable triglyceride includes a fatty acid mixture having stearic acid in an amount of about 1 wt % to about 6 wt % of the fatty acid mixture; about 2 wt % to about 5 wt % of the fatty acid mixture; about 3 wt % to about 4 wt % of the fatty acid mixture; about 1 wt % of the fatty acid mixture; about 2 wt % of the fatty acid mixture; about 3 wt % of the fatty acid mixture; about 4 wt % of the fatty acid mixture; about 5 wt % of the fatty acid mixture; or about 6 wt % of the fatty acid mixture.
- Fatty Acid
- The fatty acids in the triglyceride can be obtained by standard techniques known to those skilled in the art. For example, HSAO triglyceride may be split into glycerol and fatty acid (HSAO fa), which may be converted to many synthetic esters, including, neo pentyl glycol or NPG-ester, trimethylol propane or TMP-ester and penta-erythritol or PE-ester.
- Alcohols
- In some embodiments, a synthetic ester of the present invention comprises alcohol. In some embodiments, the fatty acids obtained from the triglyceride are converted with alcohol to prepare a synthetic ester. Selection of a suitable alcohol may provide improved properties, such as low temperature properties, of the synthetic ester in comparison to the corresponding triglyceride.
- In some embodiments, alcohols that may be used for esterification include, but are not limited to neo pentyl glycol (NPG), trimethylol propane (TMP), and/or penta-erythritol (PE). In some embodiments, complex esters may be prepared by using, for example, dimer acid, adipic acid, and/or dodecanoic acid.
- In some embodiments, suitable alcohols may include isopropanol, neo pentyl glycol (NPG), trimethylol propane (TMP), penta-erythritol (PE), di-TMP, di-PE, 2-ethyl hexanol, butyl ethyl propane diol (BEPD), trimethyl propanediol (TMPD), and/or propylene glycol.
- In some embodiments, suitable alcohols may include 2-ethyl-2-(hydroxymethyl)-1,3-propanediol (trimethylol propane, TMP), 2,2-dimethyl-1,3-propanediol (neopentyl glycol, NPG), 2,2-bis(hydroxymethyl)-1,3-propanediol (pentaerythritol, penta), 2-butyl-2-ethyl-1,3-propanediol (BEPD), 2,2,4-trimethyl-1,3-propanediol (TMPD), polyglycerine, 2,2-diethyl-1,3-propanediol, 1,3-propanediol, 1,2-propanediol (propylene glycol), 1,6-hexanediol, 1,4-butanediol, 1,4-butenediol, 1,4-butynediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,2-, 1,3-, 1,4-, 1,8-, 2,4-, 2,7-, and 4,5-octanediol, tricyclodecane dimethanol (octahydro-4,7-methano-1-H-indenedimethanol, TCD Alcohol DM), 1,4-cyclohexanedimethanol (1,4-bis-(hydroxymethyl)-cyclohexane), 1,12-dodecanediol, 2-methyl-2,4-pentanediol (hexylene glycol), 2-methyl-1,3-propanediol (MPD), 2-methyl-1,2-propanediol, 2-hydroxyethoxy-ethan-2-ol (diethylene glycol), dipropylene glycol (3 isomer mixture), di-pentaerythritol, tri-pentaerythritol, di-trimethylolpropane (di-TMP), triethylene glycol, tri-propylene glycol, tetraethylene glycol, tetrapropylene glycol, polyethylene glycol (PEG, MW 200-1.000.000 gram/mol), polypropylene glycol (PPG, MW 200 10.000 gram/mol), ethane-1,2-diol (ethylene glycol), 1,2,-, 1,3-, 2,3-butanediol, 1,1-, 1,3-, 1,4-, 2,3- and 2,4-, pentanediol, 2-butene-1,2-diol, 2-butene-1,4-diol, 2-methyl-1,5-pentanediol, 2,4-dimethyl-2,4-pentanediol, 2,2-diethyl-1,4-butanediol, 2-pentene-1,5-diol, 2-propyl-1,3-butanediol, 1,4-hexanediol, 1,6-hexanediol, 5-methyl-1,2-hexanediol, 1-phenyl-1,2-ethanediol, 2-phenyl-1,2-propanediol, 1,6-diphenyl-1,6-hexanediol, 1,2-diphenyl-1,2-ethanediol, tris(2-hydroxyethyl)isocyanurate (THEIC), poly-tetrahyfrofuran (poly-THF, MW 250, 650, 1000, 1400, 1800 and 2000), 2-ethyl-1,3-hexanediol (EHD), EO-PO block copolymers, EO-PO-EO block copolymers, PO-EO block copolymers, PO-EO-PO block copolymers (so called “reverse” types), 1,2-pentanediol, 4-methyl-1,4-hexanediol, 3,3-dimethyl-1,6-hexanediol, 2,4-dimethyl-3-hexene-2,5-diol, 2,3-, 2,4-, 2,5-, and 3,4-hexanediol, 1,2,3,6-hexanetetrol, 2-heptene-1,6-diol, 5-ethyl-3-methyl-2,4-heptanediol, 2-methyl-2-octene-1,4-diol, 2,4,4,5,5,7-hexamethyl-3,6-octanediol, 2,7-dimethyl-4-octane-2,7-diol, 2-butyl-4-ethyl-3-methyl-1,3-octanediol, 1,9-nonanediol, 1,2- and 1,10-decanediol, 5-decyne-4,7-diol, 5,8-diethyl-6,7-dodecanediol, 9-octadecene-1,12-diol, 9,10 and 1,12-octadecanediol, 1,9- and 1,11-undecanediol, 1,13-tridecanediol, 1,2-tetradecanediol, 1,2- and 1,16-hexadecanediol, 1,2- or 1,12-octadecanediol, 2-Isobutyl-1,3-propanediol, 2-ethyl-1,3-propanediol, 2-ethyl-1,3-butanediol, 2,2-diethyl-1,4-butanediol, 2,2,3,3,-tetramethyl-1,4-butanediol, bisphenol A, hydrogenated bisphenol A, ortho,meta or para-xylene-alpha, alpha diols, 3,6-dimethyl-ortho-xylene-alpha,alpha-diol, alpha,alpha,-dimethyl-para-xylene-alpha,alpha diol, 1,6-diphenyl-1,6-hexanediol, alkanolamines such as: triethanolamine (TEA), diethanolamine (DEA), N,N-dimethylaminoethanol, N,N-diethylaminoethanol, N,N-dibutylaminoethanol, N-phenyl-diethanolamine, N-methyl-diethanolamine, di-isopropyl-ethanolamine (mixture of isomers); 2-ethyl-2-(hydroxymethyl)-1,3-propanediol ethoxylates (trimethylol propane, TMP EOx where x ranges from 1 to 100 moles of EO), 2-ethyl-2-(hydroxymethyl)-1,3-propanediol propoxylates (Trimethylol propane, TMP, PDx, where x ranges from 1-100 moles of PO), 2-Ethyl-2-(hydroxymethyl)-1,3-propanediol (random) Alkoxylates (Trimethylol propane, TMP EOx-POy, TMP EOx-POy-EOx, reverse types like TMP POx-EOy, TMP POx-EOy-POx, where x and y range from 1-100 moles both for ethylene oxide (EO) and propylene oxide (PO), 2-ethyl-2-(hydroxymethyl)-1,3-propanediol butoxylate (trimethylol propane, TMP BuOx, where x ranges from 1 25 moles of butyleneoxide), 2,2-dimethyl-1,3-propanediol ethoxylates (neopentyl glycol, NPG EOx, where x ranges from 1 to 100 moles of EO), 2,2-dimethyl-1,3-propanediol propoxylates (neopentyl glycol, NPG PDx, where x ranges from 1 to 100 moles of PO), 2,2-dimethyl-1,3-propanediol (random) alkoxylates (neopentyl glycol, NPG EOx POy, NPG POx-EOy, NPG EOx-POy-EOx, reverse types like NPG POx-EOy-PDx where x and y range from 1 to 100 moles for both ethylene oxide (EO) and propylene oxide (PO), 2,2-dimethyl-1,3-propanediol butoxylate (neopentyl glycol, NPG BuOx, where x ranges from 1 to 25 moles of butyleneoxide), 2,2-bis(hydroxymethyl)-1,3-propanediol ethoxylates (pentaerythritol, penta EOx, where x ranges from 1-100 moles of EO), 2,2-bis(hydroxymethyl)-1,3-propanediol propoxylates (pentaerythritol, penta PDx, where x ranges from 1-100 moles of propyleneoxide (PO), 2,2-bis(hydroxymethyl)-1,3-propanediol (random) alkoxylates (pentaerythritol, penta EOx-POy where x and y range from 1-100 moles of EO and PO), 2,2-bis(hydroxymethyl)-1,3-propanediol EOxPOy-EOx (pentaerythritol, penta EOx-POy-EOx, where x and y range from 1-100 moles of EO and PO), 2,2-bis(hydroxymethyl)-1,3-propanediol butoxylates (pentaerythritol, penta BuOx, where x ranges from 1-25 moles of butyleneoxide), 2-butyl-2-ethyl-1,3-propanediol (BEPD) ethoxylates (BEPD EO where x ranges from 1-100 moles of EO), 2-butyl-2-ethyl-1,3-propanediol (BEPD) propoxylates (BEPD PDx, where x ranges from 1-100 moles of PO), 2-butyl-2-ethyl-1,3-propanediol (BEPD) (random) alkoxylates (BEPD EOx-POy, BEPD EOx-POy-EOx, BEPD POx-EOy-POx, where x ranges from 1-100 moles of EO and PO), and/or 2-butyl-2-ethyl-1,3-propanediol (BEPD) butoxylates (BEPD BuOx, where x ranges from 1-25 moles of butyleneoxide).
- Method
- For example, HSAO triglyceride may be split into glycerol and fatty acid (HSAO fa), which may be converted to many synthetic esters, including, NPG-ester, TMP-ester and PE-ester. In some embodiments, the fatty acids obtained from the triglyceride are converted with alcohol to prepare a synthetic ester. These synthetic esters can be obtained by standard techniques known to those skilled in the art.
- Product/Additional Components
- In some embodiments, compositions comprising synthetic esters of the present invention may be used for lubricants. In some embodiments, compositions comprising synthetic esters of the present invention may be used for hydraulic fluids. Synthetic esters prepared according to embodiments of the present invention are understood to have the same fatty acid distribution as the corresponding triglyceride from which they were derived. In some embodiments, the fatty acid distribution of the compositions comprising synthetic esters of the present invention may be associated with desirable lubricant properties.
- Compositions including synthetic esters of the present invention may include selected additional ingredients in suitable amounts to achieve the desired result. In some embodiments, compositions may include phenolic and/or aminic anti-oxidants, extreme pressure additives, anti-wear additives, viscosity modifiers, dewatering agents, emulsifiers, defoamers, and/or wetting agents. Depending on the type of composition to be prepared and the desired properties, some or all of the following components may be included in suitable amounts:
-
Component Exemplary Amount Phenolic anti-oxidant 0.1-3.0 wt % Aminic anti-oxidant 0.1-3.0 wt % Extreme pressure additive 0.05-1.0 wt % Anti-wear additive 0.05-1.0 wt % Viscosity modifiers 0.0-10 wt % Dewatering agents 0.0-0.2 wt % Emulsifiers 0.0-10.0 wt % Defoamers 0.0-0.2 wt % Wetting agents 0.0-3.0 wt % - In some embodiments, suitable phenolic antioxidants may include alkylated monophenols, bis-hydroxyphenols, bisphenols, tris and tetraphenolics, thioester antioxidants, aminic antioxidants, and/or phosphite antioxidants.
- In some embodiments, suitable alkylated monophenols may include 2,4-di-tert-butylphenol, 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-4-methylphenol (BHT), 2-tert-4,6-dimethylphenol, di-sec-butylphenol, 2-sec-4-tert-butylphenol, 2,4-di-tert-amylphenol, 2,4-di-cumylphenol, 2,4,6-tri-tert-butylphenol, 2-tert-butylphenol, (1,1-dimethyl)-4-methoxyphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-butyl-4-hydroxymethylphenol, 2,6-di-tert-butyl-4-iso-butylphenol, 2,6-di-octadecyl-4-methylphenol, n-octadecyl-beta-4-hydroxy-3,5-di-tert-butylhydroxyphenyl)propionate, isotridecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, iso-octyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, 2,6-di-tert-butyl-4-(N,N-dimethylaminomethyl)phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, 4,6-Bis(octylthiomethyl)-ortho-cresol, 2,4-bis(n-octylthio)-6-(4-hydroxy-3,5-di-tert-butylanilino)-1,3,5-triazine, and/or styrenated phenol (=mono or di or tri-alphamethylbenzyl-phenol).
- In some embodiments, suitable bis-hydroxyphenols may include 2-(1,1-dimethylethyl)-1,4-benzenediol, 2,5-di-tert-butyl-hydroquinone, 2,5-di-tert-amylhydroquinone, and/or 2,6-diphenyl-4-octadecyloxyphenol.
- In some embodiments, suitable bisphenols may include 2,2-methylenebis-(6-tert-butyl-4-methylphenol), 2,2-methylenebis-(4-ethyl-6-tert-butylphenol), 4,4-methylenebis-(2,6-di-tert-butylphenol), 4,4-butylidenebis-(3-methyl-6-tert-butylphenol), triethyleneglycol-bis[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionate], 2,2-methylenebis-[4-methyl-6-(alpha-methylcyclohexyl)-phenol], 2,2-methylenebis-(4-methyl-6-cyclohexylphenol), 2,2-methylenebis-(6-nonyl-4-methylphenol), 1,6-hexanediol-bis[3-(3,5-di-tert-butyl-4-hydroxyphenylpropionate], 4,4-thiobis(3-methyl-6-tert-butylphenol), bis-(3,5-di-tert-butyl-4-hydroxybenzyl)sulphide, 2,2-thiodiethylene-bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], N.N-hexamethylene-bis-(3,5-di-tert-butyl-4-hydroxy)hydrocinnamide, 2,2-ethylidenebis-(4,6-di-tert-butylphenol), 1,2-bis[3,5-di-tert-butyl-4-hydroxyhydrocinnamoyl]hydrazine, 2,2-methylenebis-(4,6-di-tert-butylphenol), 2,2-ethylidenebis-(4,6-di-tert-butylphenol), 2,2-ethylidenebis-(6-tert-butyl-para-isobutylphenol), 2,2-methylenebis-[6-(alpha-methylbenzyl)-4-nonylphenol, 4,4-methylenebis-(6-tert-butyl-2-methylphenol), 1,1-bis-(5-tert-butyl-4-hydroxy-2-methyl phenyl)butane, 2,6-di-(-3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol, 2,2-methylene-bis-(6-(1-methylcyclohexyl-para-cresol), 2,2-oxamidobis[ethyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate, and/or 6,6-di-tert-butyl-2,2-thiobis-para-cresol.
- In some embodiments, suitable tris and tetraphenolics may include tris-(3,5-di-tert-butylhydroxybenzyl)isocyanurate, 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, tetrakis[methylene-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]methane, 1,1,1,-tris-(2-methyl-4-hydroxy-5-tert-butylphenol)butane, 1,3,5-tris-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 3,3-bis-(3-tert-butyl-4-hydroxyphenyl)-ethylenebutyrate, di-(3-tert-butyl-4-hydroxy-5-methylphenyl)-dicyclopentadiene, di-[2-(3-tert-butyl-2-hydroxy-5-methylbenzyl)-6-tert-butyl-4-methylphenyl]terephtalate, butylated reaction product of p-cresol and dicyclopentadiene.
- In some embodiments, suitable thioester antioxidants may include pentaerythrityl-tetrakis(3-laurylpropionate), dilauryl-3,3-thiopropionate, distearyl-3,3-thiopropionate, di-tridecyl-3,3-thiopropionate, di-myristyl-3,3-thiopropionate, stearylthiopropionamide, bis[2-methyl-4-(3-n-C12-C14 alkylthiopropionyloxy)-5-tert-butylphenyl]sulphode, and/or di-octadecyldisulphide.
- In some embodiments, suitable aminic antioxidants may include octyl/butyl-diphenylamine, p,p-bis-nonyl-diphenylamine, N-phenyl-1-diphenylamine, N-phenyl-2-diphenylamine, octylated-phenyl-alpha-naphtylamine, p,p-bis-octyl-diphenylamine, polymerized 2,2,4-trimethyl-1,2-dihydroquinoline, 4,4-bis-(alpha,alpha-dimethylbenzyl)-diphenylamine, N, N-di-2-naphtyl-p-phenylenediamine, N,N-diphenyl-p-phenylenediamine, N-phenyl-N-isopropyl-p-phenylenediamine, N-phenyl-N-(1,3-dimethylbutyl)-p-phenylenediamine, N-(1-methylheptyl)-N-phenyl-p-phenylenediamine, mixed diaryl-p-phenylenediamine (Wingstay 100), N,N-di-sec-butyl-para-phenylenediamine, N,N-di-iso-propyl-para-phenylenediamine, N,N-bis-(1,4-dimethylpentyl)-para-phenylenediamine, N,N-bis-(1-ethyl-3-methylpentyl)-para-phenylenediamine, N,N-dicyclohexyl-para-phenylenediamine, N,N-diphenyl-para-phenylenediamine, N-isopropyl-N-phenyl-para-phenylenediamine, N,N-di-sec-butyl-para-phenylenediamine, N-cyclohexyl-N-phenyl-para-phenylenediamine, N,N-dimethyl-N,N-di-sec-butyl-para-phenylenediamine, diphenylamine, and/or 2,4-diaminodiphenyl methane.
- In some embodiments, suitable phosphite antioxidants may include tris-(2,4-di-tert-butylphenyl)-phosphite, tris-(n-nonylphenyl)-phosphite, diphenyl-iso-octyl-phosphite, diphenyl-isodecyl-phosphite, diphenyl-mono-tridecyl-phosphite, phenyl-di-isodecyl-phosphite, tris-(2-ethylhexyl)-phosphite, tris(isodecyl) phosphite, tris(tridecyl) phosphite, tri-laurylthio-phosphite, tris-(mono & di nonylphenyl mixed) phosphites, bis-(2,4-di-tert-butylphenyl) pentaerythritol, and/or di stearylpentaerythritol diphosphite.
- In some embodiments, a composition may include a yellow metal passivator. In some embodiments, suitable yellow metal passivators may include beznotriazole, tolutriazole, triazole, 2-mercaptobenzothiazole, 2,5-dimercaptothiadiazole, tetrahydrobenzotriazole, Irgamet 39© (BASF), Irgamet 42© (BASF), and/or Irgamet 30© (BASF).
- Use
- In some embodiments, synthetic esters of the present invention are prepared and/or formulated to provide improved properties, such as low temperature properties, of the synthetic ester in comparison to the corresponding triglyceride. Synthetic esters prepared from a triglyceride having a unique fatty acid distribution as described herein, such as high stability algal oil, may provide desirable lubricant properties including exceptional oxidation stability and superior low temperature properties compared with the corresponding triglyceride. As a result, such synthetic esters may be useful in metal lubricants and/or hydraulic fluids, and metal lubricants and/or hydraulic fluid containing such synthetic esters may exhibit improved properties as well.
- In some embodiments, compositions including synthetic esters of the present invention meet standards for fire resistance according to Factory Mutual Approvals Class Number 6930, April 2009, which standard is incorporated by reference herein in its entirety.
- In some embodiments, compositions including synthetic esters of the present invention maintain oxidative stability for about 750 hours or greater according to ASTM D943, which standard is incorporated by reference herein in its entirety. In some embodiments, compositions including synthetic esters of the present invention maintain oxidative stability according to ASTM D943 for about 200 hours or greater; about 250 hours or greater; about 300 hours or greater; about 350 hours or greater; about 400 hours or greater; about 450 hours or greater; about 500 hours or greater; about 550 hours or greater; about 600 hours or greater; about 650 hours or greater; about 700 hour or greater; about 750 hours or greater; about 800 hours or greater; about 850 hours or greater; about 900 hours or greater; about 950 hours or greater; about 1000 hours or greater; about 1100 hours or greater; about 1200 hours or greater; about 1300 hours or greater; about 1400 hours or greater; about 1500 hours or greater; about 1600 hours or greater; about 1700 hours or greater; about 1800 hours or greater; about 1900 hours or greater; about 2000 hours or greater; about 2100 hours or greater; about 2200 hours or greater; about 2300 hours or greater; about 2400 hours or greater; about 2500 hours or greater; about 200 hours to about 3000 hours; about 500 hours to about 3000 hours; about 750 hours to about 3000 hours; about 750 hours to about 2500 hours; about 800 hours to about 2000 hours; about 1000 hours to about 1800 hours; about 1200 hours to about 1600 hours; about 200 hours; about 800 hours; about 900 hours; about 1000 hours; about 1200 hours; about 1400 hours; about 1600 hours; about 1800 hours; about 2000 hours; about 2200 hours; about 2400 hours; or about 2500 hours.
- In some embodiments, compositions including synthetic esters of the present invention exhibit a pour point temperature of about −10° C. or less. In some embodiments, compositions including synthetic esters of the present invention exhibit a pour point temperature of about 0° C. or less; about −5° C. or less; about −10° C. or less; about −15° C. or less; about −20° C. or less; about −25° C. or less; about −30° C. or less; about −35° C. or less; about −40° C. or less; about −45° C. or less; about −50° C. or less; about 0° C.; about −5° C.; about −10° C.; about −15° C.; about −20° C.; about −25° C.; about −30° C.; about −35° C.; about −40° C.; about −45° C.; about −50° C.; about −10° C. to about −70° C.; about −10° C. to about −50° C.; about −15° C. to about −65° C.; about −20° C. to about −60° C.; about −25° C. to about −55° C.; about −30° C. to about −50° C.; or about −35° C. to about −45° C.
- In some embodiments, compositions including synthetic esters of the present invention exhibit a cloud point temperature of about −10° C. or less. In some embodiments, compositions including synthetic esters of the present invention exhibit a pour point temperature of about 0° C. or less; about −5° C. or less; about −10° C. or less; about −15° C. or less; about −20° C. or less; about −25° C. or less; about −30° C. or less; about −35° C. or less; about −40° C. or less; about −45° C. or less; about −50° C. or less; about 0° C.; about −5° C.; about −10° C.; about −15° C.; about −20° C.; about −25° C.; about −30° C.; about −35° C.; about −40° C.; about −45° C.; about −50° C.; about −10° C. to about −70° C.; about −10° C. to about −50° C.; about −15° C. to about −65° C.; about −20° C. to about −60° C.; about −25° C. to about −55° C.; about −30° C. to about −50° C.; or about −35° C. to about −45° C.
- As used throughout, the term “about” is understood to mean±10% of the value referenced. For example, “about 90” is understood to literally mean 81 to 99.
- The Oxidation Tests followed the following protocol:
- Dry-TOST test: ASTM D 943, ISO 4263
-
- Test sample: 330 ml
- Oxidation bath temperature 95.5° C. (204° F.)
- O2 flow 3 liter/hour, 0.4 bar inlet pressure
- Catalyst: Copper-Iron coil
- Initial measurement of acid number and viscosity, t=0 situation
- Sampling at regular intervals for AN and viscosity
- ‘Lifetime’ (hrs) is reached when the initial AN has increased with 2.0 mg KOH/g
- Reproducibility (at tight variable control): ±5% (hrs)
- Latest revision: Appearance rating of catalyst coil wires
- Tests were performed without additives, and also with a fixed (hydraulic fluid) additive package as set forth below, including:
- 0.25% Aminic AO
- 0.50% Phenolic AO
- 0.10% Cu-corrosion inhibitor
- 0.25% Thiophosphate AW additive
- 0.05% Defoamer
- Results of the Dry-TOST without additives are set forth in the chart below:
-
Details 24 Details 48 hr check hr check Dry TOST ΔAN/ ΔAN/ Lifetime Acidity ΔViscosity ΔViscosity Product (hrs) (mg KOH/g) 40° C. 40° C. HOAO <24 0.43 4.4/31 10/72 HSAO <24 0.06 2.6/19 8.7/51 TMPTO 31 1.38 2.2/35 6.4/71 Rapeseed Oil <24 0.19 3.3/36 6.3/113 HO <24 0.12 6.9/48 6.9/48 Sunflower - Results of the Dry-TOST with additives are set forth in the chart below and
FIG. 1 andFIG. 2 : -
Lifetime Product (hrs) HOAO + additives 176 HSAO + additives 513 TMPTO + additives 438 Rapeseed Oil + additives <72 HO Sunflower + additives 113 - High Oleic Algal Oil (HOAO) and High Stability Algal Oil (HSAO) were evaluated in comparison to Trimethylolpropane tri-oleate (TMPTO), Rapeseed Oil and High Oleic Sunflower Oil. The test profile included: fatty acid distribution, viscosities/VI, Flash- and Fire point, Cloud point, Pour point, and Cold test (e.g., the temperature when solid after 24 hours, in 5° C. steps).
- The viscosities and viscosity indices of the products are set forth in the chart below:
-
Viscosity at Viscosity at Product 40° C. 100° C. VI HOAO 38.91 8.49 204 HSAO 40.32 8.64 200 TMPTO 46.44 9.44 193 Rapeseed Oil 35.01 8.06 215 HO Sunflower 39.57 8.57 203 - The flash and fire point of the products are set forth in the chart below:
-
Flash Point Fire Point Product (° C.) (° C.) HOAO 326 362 HSAO 326 366 TMPTO 316 362 Rapeseed Oil 326 360 HO Sunflower 332 362 - The cloud point, pour point and cold test of the products are set forth in the chart below:
-
Cold Test Cloud Point Pour Point (° C.) (° C.) (° C.) 24 hrs/−5° C. Product ISL MPP5G ISL MPP5G steps HOAO −13 −24 Solid at −10 HSAO −14 −18 Solid at −10 TMPTO −26 −51 Liquid at −30 Rapeseed Oil −15 −21 Solid at −15 HO Sunflower −13 −18 Solid at −10 - In some embodiments, the following pour point depressants were used, with the impact noted in the chart below:
-
Treat Rates (%) Pour Point Depressants Supplier Recommended Actual Viscoplex 10-171 Evonik 0.25-0.5 0.25-5.0 Viscoplex 10-312 Evonik 0.25-0.5 0.25-0.5 Functional PPD-555 Functional Products 0.5-1.0 0.5-1.0 Functional PPD-557 Functional Products 0.5-1.0 0.5-1.0 Lubrizol 3702 Lubrizol 0.2-2.0 0.2-2.0 Lubrizol 3715 Lubrizol 0.2-2.0 0.2-2.0
Pour point decrease: 5° C. max (at 4-5% treat rate) - In some embodiments, HSAO-based Synthetic Esters, when evaluated in hydraulic fluids, include the following non-optimized additive package:
-
Cu-corrosion inhibitor 0.10 Mono-phenolic AO 0.50 Aminic AO 0.35 EP/AW-agent 0.25 Dewatering agent 0.02 Anti-foam 0.05 - The properties of certain oleic acid types are set forth in the charts below:
-
Fatty acid distributions of various Oleic acid types Typical values Carbon chain Oleic acid HSAO fatty acid distribution vegetable origin algal origin C 12 0.5 0.1 C 14 0.3 0.4 C 16 5.7 4.1 C 16:1 — 0.1 C 18 2.1 3.4 C 18:1 78.8 88.8 C 18:2 11.8 1.8 C 18:3 0.1 0.2 C 20 0.3 0.3 C 20:1 0.5 0.5 Esters - Standard Oleic Acid NPG-DO TMP-TO Penta-TO Parameters UOM Clear light Clear yellow Clear yellow Appearance visual amber liquid to amber liquid liquid Acid number mgKOH/g 0.4 1.1 1.4 Viscosity 40° C.mm2/s 24.4 46.7 72.1 Viscosity 100° C. mm2/s 5.84 9.3 13 Viscosity index mm2/s 198 187 184 Pour point ° C. −21 −36 −21 Flash point (COC) ° C. 262 315 314 Esters - HSAO Fatty Acid NPG-VHOA TMP-VHOA Penta-VHOA Parameters UOM Clear light Clear yellow Clear yellow Appearance visual yellow liquid liquid liquid Acid number mgKOH/g 1.45 1.2 1.4 Viscosity 40° C.mm2/s 25.7 47.5 68.3 Viscosity 100° C. mm2/s 6.26 9.42 12.84 Viscosity index mm2/s 210 187 191 Pour point ° C. −21 −27 −24 Flash point (COC) ° C. 274 320 312 -
ISO 25 ISO 25 ISO 46 ISO 46 ISO 68 ISO 68 Raw Material % % % % % % Dry-TOST Results NPG Di-HSAO ester 98.73 NPG-DO 98.73 TMP Tri-HSAO ester 98.73 TMP-TO 98.73 Penta Tetra-HSAO ester 98.73 PETO 98.73 Additive package 1.27 1.27 1.27 1.27 1.27 1.27 Total, %: 100.00 100.00 100.00 100.00 100.00 100.00 Dry-TOST test Acid Number (mg KOH/g) t = 0 hrs 2.10 1.45 2.05 1.94 2.03 1.81 t = 96 hrs 1.95 1.40 1.93 1.91 1.92 1.45 t = 144 hrs 1.88 1.34 1.82 1.88 1.84 1.49 t = 336 hrs 1.82 1.34 1.51 1.78 1.72 4.86 t = 480 hrs 1.68 16.4 1.54 1.75 1.40 — t = 600 hrs 1.38 — 1.42 14.1 1.40 — t = 792 hrs Life time, hours 356 501 277 Ester overview for the patent All esters made with Soleum Very High Oleic Acid (SVHOA) NPG-Di SVHOA ester 98.73 NPG-DO 98.73 TMP-Tri-SVHOA ester 98.73 TMP-TO 98.73 Penta Tetra SVHOA ester 98.73 PETO 98.73 Tolutriazole 0.10 0.10 0.10 0.10 0.10 0.10 2,6-di-tert-Butylphenol 0.50 0.50 0.50 0.50 0.50 0.50 Irgalube 349* 0.25 0.25 0.25 0.25 0.25 0.25 Irganox L 57* 0.35 0.35 0.35 0.35 0.35 0.35 EO-PO Block copolymer 0.02 0.02 0.02 0.02 0.02 0.02 Clerol AMH 2* 0.05 0.05 0.05 0.05 0.05 0.05 Total, %: 100.00 100.00 100.00 100.00 100.00 100.00 Dry-TOST test Acidnumber, mgKOH/g: t = 0 hrs 2.10 1.45 2.05 1.94 2.03 1.81 t = 96 hrs 1.95 1.40 1.93 1.91 1.92 1.45 t = 144 hrs 1.88 1.34 1.82 1.88 1.84 1.49 t = 336 hrs 1.82 1.34 1.51 1.78 1.72 4.86 t = 480 hrs 1.68 16.4 1.54 1.75 1.40 — t = 600 hrs 1.38 1.42 14.1 1.66 Lifetime, hours 356 501 277 *Irgalube 349 is a trade mark of BASF/Ciba *Irganox L-57 is a trade mark of BASF/Ciba *Clerol AMH 2 is a trade mark of BASF/Ciba *NPG-DO, TMP-TO and PETO are esters made in-house at Quaker Chemical B.V. - Various triglycerides and esters were analyzed for fatty acid distribution. The results are included in the chart below:
-
Fatty Acid Distribution (Typical values) Product C16 C16:1 C18 C18:1 C18:2 C18:3 Other HOAO 3.5 0 3.2 83.8 7.8 .4 1.3 High stability 8.8 0.4 3.3 86.2 0.4 0 0.9 algal oil TMPTO* 5.3 1.8 1.9 76.8 10.7 0 3.5 Rapeseed Oil 4.5 .2 2 63.9 18 8.6 2.8 HO Sunflower 4.0 0.1 3.6 83.8 6.3 0.2 2 *Ester prepared from standard oleic acid (not high stability algal oil); HOAO very similar to HO Sunflower (as intended); Rapeseed oil: high unsaturation; HSAO: high Oleic, but near-zero C18:2 and C18:3; TMPTO: relatively high in C18:2. - It is understood that esters prepared from the triglycerides listed above will have the same fatty acid distribution as the corresponding triglyceride.
- The test results above demonstrate the effectiveness of the formulation in providing desirable levels of corrosion protection and paint adhesion.
- While illustrative embodiments and examples of the invention are disclosed herein, it will be appreciated that numerous modifications and other embodiments may be devised by those skilled in the art and that these embodiments and examples are non-limiting. For example, the features for the various embodiments can be used in other embodiments. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments that come within the spirit and scope of the present disclosure.
- A number of references have been cited, the entire disclosures of which are incorporated herein in their entirety by reference.
Claims (12)
1.-14. (canceled)
15. A method of preparing a synthetic ester, the method comprising reacting a fatty acid mixture with an alcohol, wherein the fatty acid mixture comprises:
a. oleic acid in amount of at least about 85 wt % of the fatty acid mixture;
b. linoleic acid in an amount of about 3 wt % of the fatty acid mixture or less; and
c. linolenic acid in an amount of about 0.5 wt % of the fatty acid mixture or less.
16. The method of claim 15 , wherein the oleic acid is a high stability oleic acid.
17. The method of claim 15 , wherein the alcohol is selected from the group consisting of: trimethylol propane (TMP), neopentyl glycol (NPG), pentaerythritol (PE), 2-butyl-2-ethyl-1,3-propanediol (BEPD), 2,2,4-trimethyl-1,3-propanediol (TMPD), polyglycerol, 2,2-diethyl-1,3-propanediol, 1,3,-propanediol, 1,2-propanediol, 1,4-butanediol, 1,4-butenediol, 1,4-butynediol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,2-, 1,3-, 1,4-, 1,8-, 2,4-, 2,7-, and 4,5-octanediol, tricyclodecane dimethanol (TCD), 1,4-cyclohexanedimethanol, 1,12-dodecanediol, 2-methyl-2,4-pentanediol, 2-methyl-1,3-propanediol (MPD), 2-methyl-1,2-propanediol, 2-hydroxyethoxy-ethan-2-ol, dipropylene glycol (3 isomer mixture), di-pentaerythritol, tri-pentaerythritol, di-trimethylolpropane (di-TMP), triethylene glycol, tri-propylene glycol, tetraethylene glycol, tetrapropylene glycol, polyethylene glycol (PEG, 1\4W 200-1.000.000 g/mol), polypropylene glycol (PPG, MW 200-10.000 g/mol), ethylene glycol, 1,2,-, 1,3-, 2,3-butanediol, 1,1-, 1,3-, 1,4-, 2,3-, 2,4-pentanediol, 2-butene-1,2-diol, 2-butene-1,4-diol, 2-methyl-1,5-pentanediol, 2,4-dimethyl-2,4-pentanediol, 2,2-diethyl-1,4-butanediol, 2-pentene-1,5-diol, 2-propyl-1,3-butanediol, 1,4-hexanediol, 1,6-hexanediol, 5-methyl-1,2-hexanediol, 1-phenyl-1,2-ethanediol, 2-phenyl-1,2-propanediol, 1,6-diphenyl-1,6-hexanediol, 1,2-diphenyl-1,2-ethanediol, tris(2-hydroxyethyl)isocyanurate (THEIC), poly-tetrahyfrofuran (poly-THF, MW 250, 650, 1000, 1400, 1800 and 2000 g/mol), 2-ethyl-1,3-hexanediol (EHD), EO-PO block copolymers, EO-PO-EO block copolymers, PO-EO block copolymers, PO-EO-PO block copolymers, 1,2-pentanediol, 4-methyl-1,4-hexanediol, 3,3-dimethyl-1,6-hexanediol, 2,4-dimethyl-3-hexene-2,5-diol, 2,3-, 2,4-, 2,5-, 3,4-hexanediol, 1,2,3,6-hexanetetrol, 2-heptene-1,6-diol, 5-ethyl-3-methyl-2,4-heptanediol, 2-methyl-2-octene-1,4-diol, 2,4,4,5,5,7-hexamethyl-3,6-octanediol, 2,7-dimethyl-4-octane-2,7-diol, 2-butyl-4-ethyl-3-methyl-1,3-octanediol, 1,9-nonanediol, 1,2-, 1,10-decanediol, 5-decyne-4,7-diol, 5,8-diethyl-6,7-dodecanediol, 9-octadecene-1,12-diol, 9,10,1,12-octadecanediol, 1,9-, 1,11-undecanediol, 1,13-tridecanediol, 1,2-tetradecanediol, 1,2-, 1,16-hexadecanediol, 1,2-, 1,12-octadecanediol, 2-isobutyl-1,3-propanediol, 2-ethyl-1,3-propanediol, 2-ethyl-1,3-butanediol, 2,2-diethyl-1,4-butanediol, 2,2,3,3,-tetramethyl-1,4-butanediol, bisphenol A, hydrogenated bisphenol A, ortho,meta, para-xylene-alpha, alpha diols, 3,6-dimethyl-ortho-xylene-alpha,alpha-diol, alpha,alpha-dimethyl-para-xylene-alpha,alpha diol, 1,6-diphenyl-1,6-hexanediol; 2-ethyl-2-(hydroxymethyl)-1,3-propanediol ethoxylates (TMP-EOx where x ranges from 1 to 100 moles of EO), 2-ethyl-2-(hydroxymethyl)-1,3-propanediol propoxylates (TMP-POx, where x ranges from 1-100 moles of PO), 2-ethyl-2-(hydroxymethyl)-1,3-propanediol (random) alkoxylates (TMP-EOx-POy, TMP-EOx-POy-EOx, TMP-POx-EOy, TMP-POx-EOy-POx, where x and y range from 1-100 moles both for E0 and PO), 2-ethyl-2-(hydroxymethyl)-1,3-propanediol butoxylate (TMP-BuOx, where x ranges from 1-25 moles of BuO (butyleneoxide)), 2,2-dimethyl-1,3-propanediol ethoxylates (NPG-EOx, where x ranges from 1 to 100 moles of EO), 2,2-dimethyl-1,3-propanediol propoxylates (NPG-PDx, where x ranges from 1 to 100 moles of PO), 2,2-dimethyl-1,3-propanediol (random) alkoxylates (NPG-EOx-POy, NPG-POx-EOy, NPG-EOx-POy-EOx, NPG-POx-EOy-POx where x and y range from 1 to 100 moles for both EO and PO), 2,2-dimethyl-1,3-propanediol butoxylate (NPG-BuOx, where x ranges from 1 to 25 moles of BuO), 2,2-bis(hydroxymethyl)-1,3-propanediol ethoxylates (penta EOx, where x ranges from 1-100 moles of EO), 2,2-bis(hydroxymethyl)-1,3-propanediol propoxylates (penta POx, where x ranges from 1-100 moles of propyleneoxide (PO)), 2,2-bis(hydroxymethyl)-1,3-propanediol (random) alkoxylates (penta EOx-POy where x and y range from 1-100 moles of EO and PO), 2,2-bis(hydroxymethyl)-1,3-propanediol EOx-POy-EOx (penta EOx-POy-EOx, where x and y range from 1-100 moles of EO and PO), 2,2-bis(hydroxymethyl)-1,3-propanediol butoxylates (penta BuOx, where x ranges from 1-25 moles of butyleneoxide), 2-butyl-2-ethyl-1,3-propanediol (BEPD) ethoxylates (BEPD-EOx, where x ranges from 1-100 moles of EO), 2-butyl-2-ethyl-1,3-propanediol propoxylates (BEPD-POx, where x ranges from 1-100 moles of PO), 2-butyl-2-ethyl-1,3-propanediol (random) alkoxylates (BEPD-EOx-POy, BEPD-EOx-POy-EOx, BEPD-POx-EOy-POx, where x ranges from 1-100 moles of E0 and PO), and 2-butyl-2-ethyl-1,3-propanediol butoxylates (BEPD-BuOx, where x ranges from 1-25 moles of butyleneoxide).
18. The method of claim 15 , wherein the alcohol is selected from the group consisting of neo pentyl glycol (NPG), trimethylol propane (TMP), penta-erythritol (PE), di-TMP, di-PE, 2-ethyl hexanol, butyl ethyl propane diol (BEPD), trimethyl propanediol (TMPD), propylene glycol, and combinations thereof.
19. The method of claim 15 , wherein the alcohol is selected from the group consisting of neo pentyl glycol, trimethylol propane, and penta-erythritol.
20. The method of claim 15 , wherein the alcohol is trimethylol propane.
21. The method of claim 15 , wherein the linolenic acid is present in an amount of about 0.2 wt % of the fatty acid mixture or less.
22. The method of claim 15 , wherein a composition comprising the synthetic ester meets standards for fire resistance according to Factory Mutual Approvals Class Number 6930, April 2009.
23. The method of claim 15 , wherein a composition comprising the synthetic ester maintains oxidative stability for about 2,500 hours or greater according to ASTM D943.
24. The method of claim 15 , wherein a composition comprising the synthetic ester exhibits a pour point temperature of about −10° C. or less.
25. The method of claim 15 , wherein the fatty acid mixture is derived from cleaving of a high stability algal oil sourced from genetically modified algae.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/482,080 US20220081635A1 (en) | 2015-05-19 | 2021-09-22 | Synthetic esters derived from high stability oleic acid |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562163922P | 2015-05-19 | 2015-05-19 | |
PCT/US2016/033056 WO2016187288A1 (en) | 2015-05-19 | 2016-05-18 | Synthetic esters derived from high stability oleic acid |
US201715573721A | 2017-11-13 | 2017-11-13 | |
US17/482,080 US20220081635A1 (en) | 2015-05-19 | 2021-09-22 | Synthetic esters derived from high stability oleic acid |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2016/033056 Continuation WO2016187288A1 (en) | 2015-05-19 | 2016-05-18 | Synthetic esters derived from high stability oleic acid |
US15/573,721 Continuation US11155761B2 (en) | 2015-05-19 | 2016-05-18 | Synthetic esters derived from high stability oleic acid |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220081635A1 true US20220081635A1 (en) | 2022-03-17 |
Family
ID=57320688
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/573,721 Active 2036-05-21 US11155761B2 (en) | 2015-05-19 | 2016-05-18 | Synthetic esters derived from high stability oleic acid |
US17/482,080 Abandoned US20220081635A1 (en) | 2015-05-19 | 2021-09-22 | Synthetic esters derived from high stability oleic acid |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/573,721 Active 2036-05-21 US11155761B2 (en) | 2015-05-19 | 2016-05-18 | Synthetic esters derived from high stability oleic acid |
Country Status (5)
Country | Link |
---|---|
US (2) | US11155761B2 (en) |
EP (1) | EP3298112B1 (en) |
CA (1) | CA2986040C (en) |
ES (1) | ES2948463T3 (en) |
WO (1) | WO2016187288A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11155761B2 (en) | 2015-05-19 | 2021-10-26 | Quaker Chemical Corporation | Synthetic esters derived from high stability oleic acid |
JP7181778B2 (en) * | 2018-12-07 | 2022-12-01 | シェルルブリカンツジャパン株式会社 | Flame-retardant hydraulic fluid |
KR102624723B1 (en) * | 2023-08-30 | 2024-01-12 | 주식회사 엘엔씨테크 | Hydraulic oil and manufacturing method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120065111A1 (en) * | 2009-05-15 | 2012-03-15 | Idemitsu Kosan Co., Ltd. | Biodegradable lubricant composition |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR9504838A (en) | 1994-11-15 | 1997-10-07 | Lubrizol Corp | Polyol ester lubricating oil composition |
US6180575B1 (en) * | 1998-08-04 | 2001-01-30 | Mobil Oil Corporation | High performance lubricating oils |
CA2575502C (en) * | 2004-08-18 | 2013-06-04 | Ciba Specialty Chemicals Holding Inc. | Lubricating oil compositions comprising phenolic antioxidant |
MY182828A (en) * | 2004-09-28 | 2021-02-05 | Malaysian Palm Oil Board Mpob | Fuel lubricity additive |
EP1728846A1 (en) | 2005-05-30 | 2006-12-06 | Monsanto S.A.S. | A new biodiesel composition |
EP1741770A1 (en) | 2005-07-04 | 2007-01-10 | Monsanto S.A.S. | Use of rapeseed oil in biolubricants |
EP2228425A1 (en) | 2009-02-27 | 2010-09-15 | Dako Ag | Lubricant |
JP5404261B2 (en) | 2009-04-16 | 2014-01-29 | モレックス インコーポレイテド | Cooling device, electronic board, electronic equipment |
EP3521408B1 (en) * | 2010-11-03 | 2021-12-22 | Corbion Biotech, Inc. | Genetically-engineered chlorella or prototheca microbe and oil produced therefrom |
EP2819987B1 (en) * | 2012-02-28 | 2020-12-23 | Petroliam Nasional Berhad | Lubricant composition of matter and methods of preparation |
SG10201702442RA (en) * | 2012-04-18 | 2017-05-30 | Terravia Holdings Inc | Tailored oils |
US9719114B2 (en) | 2012-04-18 | 2017-08-01 | Terravia Holdings, Inc. | Tailored oils |
US11155761B2 (en) | 2015-05-19 | 2021-10-26 | Quaker Chemical Corporation | Synthetic esters derived from high stability oleic acid |
-
2016
- 2016-05-18 US US15/573,721 patent/US11155761B2/en active Active
- 2016-05-18 WO PCT/US2016/033056 patent/WO2016187288A1/en active Application Filing
- 2016-05-18 ES ES16797207T patent/ES2948463T3/en active Active
- 2016-05-18 EP EP16797207.4A patent/EP3298112B1/en active Active
- 2016-05-18 CA CA2986040A patent/CA2986040C/en active Active
-
2021
- 2021-09-22 US US17/482,080 patent/US20220081635A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120065111A1 (en) * | 2009-05-15 | 2012-03-15 | Idemitsu Kosan Co., Ltd. | Biodegradable lubricant composition |
Also Published As
Publication number | Publication date |
---|---|
CA2986040C (en) | 2022-05-31 |
ES2948463T3 (en) | 2023-09-12 |
US20180119043A1 (en) | 2018-05-03 |
CA2986040A1 (en) | 2016-11-24 |
WO2016187288A1 (en) | 2016-11-24 |
US11155761B2 (en) | 2021-10-26 |
EP3298112A1 (en) | 2018-03-28 |
EP3298112B1 (en) | 2023-05-10 |
EP3298112A4 (en) | 2018-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220081635A1 (en) | Synthetic esters derived from high stability oleic acid | |
US5102567A (en) | High performance food-grade lubricating oil | |
TWI576425B (en) | Lubricant composition for air compressors | |
EP2773731A2 (en) | Oil soluble polyalkylene glycol lubricant compositions | |
CN101133143A (en) | Method for improving the oxidative stability of industrial fluids | |
JP2011137089A (en) | Lubricating base oil | |
GB2541929A (en) | Ester compositions for dielectric fluids | |
US20080132436A1 (en) | Fluid Composition Having Excellent Fire-Resistance | |
JPWO2017217297A1 (en) | Lubricating base oil | |
CN106833839A (en) | Biodegradable gear oil composition and preparation method thereof | |
CN106381189A (en) | Lubricating oil base oil based on synthetic ester compound of gallic acid and application thereof | |
JP2010195912A (en) | Lubricant for press-working stainless alloy plate or steel plate, and method for press-working stainless alloy plate or steel plate therewith | |
EP4079830A1 (en) | Biodegradable lubricant composition | |
RU2387703C2 (en) | Lubricant composition for aviation power installations | |
US20170152458A1 (en) | Hydraulic Fluid and Lubricant Compositions Using Biodiesel | |
RU2452767C1 (en) | Lubricating composition for universal synthetic oil, capable of operating in gas-turbine engines and helicopter gear assemblies, as well as turbine-propeller engines and turbine-propeller-fan motors of airplanes | |
CN106604981B (en) | Lubricant compositions for improved thermo-oxidative stability and color stability | |
JP2010065134A (en) | Lubricant for press-working stainless alloy plate or steel plate, and method for press-working stainless alloy plate or steel plate therewith | |
EP2228425A1 (en) | Lubricant | |
US11248188B2 (en) | Lubricant composition | |
KR20070087870A (en) | Pro-circumstantial lubricatig oil | |
KR100958003B1 (en) | Water soluble cold rolling oil for decreasing formation of scum | |
WO2024004900A1 (en) | Lubricating oil composition, method for using same, and method for producing same | |
KR101974660B1 (en) | Excellent Oxidation Stable and Color Stable Lubricant Composition | |
CN104152214A (en) | Lubricating oil composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |