US20220071709A1 - Systems and methods for performing spinal surgery - Google Patents

Systems and methods for performing spinal surgery Download PDF

Info

Publication number
US20220071709A1
US20220071709A1 US17/527,800 US202117527800A US2022071709A1 US 20220071709 A1 US20220071709 A1 US 20220071709A1 US 202117527800 A US202117527800 A US 202117527800A US 2022071709 A1 US2022071709 A1 US 2022071709A1
Authority
US
United States
Prior art keywords
rod
screw
bend
user
location
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/527,800
Inventor
Robert E. Isaacs
Thomas Scholl
Jeff Barnes
Eric Finley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuvasive Inc
Original Assignee
Nuvasive Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuvasive Inc filed Critical Nuvasive Inc
Priority to US17/527,800 priority Critical patent/US20220071709A1/en
Publication of US20220071709A1 publication Critical patent/US20220071709A1/en
Assigned to NUVASIVE, INC. reassignment NUVASIVE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHOLL, THOMAS, ISAACS, ROBERT E., BARNES, JEFFREY, FINLEY, ERIC
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8863Apparatus for shaping or cutting osteosynthesis equipment by medical personnel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7011Longitudinal element being non-straight, e.g. curved, angled or branched
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/108Computer aided selection or customisation of medical implants or cutting guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3983Reference marker arrangements for use with image guided surgery

Definitions

  • the present application pertains to spine surgery. More particularly, the present application pertains to systems and methods related to the planning, design, and formation of spinal implants.
  • the spinal column is a highly complex system of bones and connective tissues that provide support for the body and protect the delicate spinal cord and nerves.
  • the spinal column includes a series of vertebral bodies stacked atop one another, each vertebral body including an inner or central portion of relatively weak cancellous bone and an outer portion of relatively strong cortical bone. Situated between each vertebral body is an intervertebral disc that cushions and dampens compressive forces exerted upon the spinal column.
  • a vertebral canal containing the spinal cord is located behind the vertebral bodies.
  • the spine has a natural curvature (i.e., lordosis in the lumbar and cervical regions and kyphosis in the thoracic region) such that the endplates of the upper and lower vertebrae are inclined towards one another.
  • spinal column disorders including scoliosis (abnormal lateral curvature of the spine), excess kyphosis (abnormal forward curvature of the spine), excess lordosis (abnormal backward curvature of the spine), spondylolisthesis (forward displacement of one vertebra over another), and other disorders caused by abnormalities, disease, or trauma (such as ruptured or slipped discs, degenerative disc disease, fractured vertebrae, and the like). Patients that suffer from such conditions often experience extreme and debilitating pain, as well as diminished nerve function. Posterior fixation for spinal fusions, decompression, deformity, and other reconstructions are performed to treat these patients. The aim of posterior fixation in lumbar, thoracic, and cervical procedures is to stabilize the spinal segments, correct multi-axis alignment, and aid in optimizing the long-term health of the spinal cord and nerves.
  • Screws, hooks, and rods are devices used to stabilize the spine during a spinal fixation procedure. Such procedures often require the instrumentation of many bony elements.
  • the devices, for example rods can be extremely challenging to design and implant into the patient.
  • Spinal rods are usually formed of stainless steel, titanium, cobalt chrome, or other similarly hard metal, and as such are difficult to bend without some sort of leverage-based bender.
  • a spinal rod needs to be oriented in six degrees of freedom to compensate for the anatomical structure of a patient's spine as well as the attachment points (screws, hooks) for securing the rod to the vertebrae. Additionally, the physiological problem being treated as well as the physician's preferences will determine the exact configuration necessary.
  • the size, length, and particular bends of the spinal rod depends on the size, number, and position of each vertebrae to be constrained, the spatial relationship amongst vertebrae, as well as the screws and hooks used to hold the rods attached to the vertebrae.
  • the bending of a spinal rod can be accomplished by a number of methods.
  • the most widely used method is a three-point bender called a French Bender.
  • the French bender is a pliers-like device that is manually operated to place one or more bends in a rod.
  • the French bender requires both handles to operate and provides leverage based on the length of the handle.
  • the use of the French bender requires a high degree of physician skill because the determination of the location, angle, and rotation of bends is often subjective and can be difficult to correlate to a patient's anatomy.
  • Other methods of bending a rod to fit a screw and/or hook construct include the use of an in-situ rod bender and a keyhole bender.
  • rod bending and reduction activities can be a time consuming and potentially frustrating step in the finalization of a complex and/or long spinal construct.
  • Increased time in the operating room to achieve optimum bending can be costly to the patient and increase the chance of the morbidity.
  • the rod can preload the construct and increase the chance of failure of the fixation system.
  • the bending and re-bending involved can also promote metal fatigue and the creation of stress risers in the rod.
  • the present invention includes a system and methods for rod bending that enable the user (e.g., surgeon) to customize screw-based rod bend instructions to suit the desired correction of a patient's spinal condition.
  • the present invention includes a spatial tracking system for obtaining the three-dimensional position information of surgical implants, a processing system with software to convert the implant locations to a series of bend instructions based on a desired correction, and a mechanical rod bender for bending a surgical linking device to achieve the desired spinal correction.
  • the spatial tracking system includes includes an infrared (IR) position sensor and at least one IR-reflective tracking array attached to at digitizer pointer used to digitize the surgical implant location.
  • the spatial tracking system is communicatively linked to the processing system such that the processing system may utilize the spatial position information to generate bend instructions.
  • the processing system is programmed to generate bend instructions based on one or more surgeon-prescribed clinical objectives.
  • the processing system may be programmed to create a custom bend, adjust one or more points to which the rod will be bent to, suggest a pre-bent rod option, provide spinal correction in the sagittal plane, provide spinal correction in the coronal plane, and provide correction to achieve global spinal balance, and as well as perform a plurality of predetermined functions.
  • the processing system is further configured to preview and display the results of these clinical objectives and/or predetermined functions to the user in a meaningful way.
  • one or more surgical procedures may be performed using various embodiments of the system.
  • FIG. 1 is a surgical procedure setup depicting the components of a surgical bending system, according to one embodiment
  • FIG. 2 is a perspective view of one embodiment of a digitizer array in the closed position comprising part of the system of FIG. 1 ;
  • FIG. 3 is an exploded perspective view of the digitizer array of FIG. 2 ;
  • FIG. 4 is a perspective view of the digitizer array of FIG. 2 in the open position
  • FIG. 5 is a front view of one embodiment of a digitizer pointer assembly comprising part of the system of FIG. 1 ;
  • FIG. 6 is a perspective view of various surgical pointers compatible with the digitizer array of FIG. 2 ;
  • FIG. 7 is a partial perspective view of the offset pointer of FIG. 6 in a collapsed position
  • FIG. 8 is a partial exploded view of the offset pointer of FIG. 6 ;
  • FIG. 9 is a partial perspective view of the offset pointer of FIG. 6 in an extended position
  • FIG. 10 is a flowchart depicting the steps of the spatial tracking algorithm according to one embodiment
  • FIG. 11 is a flowchart depicting the rod bending workflow according to one embodiment
  • FIG. 12 is a flowchart depicting the steps in generating a rod solution according to a first embodiment
  • FIG. 13 is a flowchart depicting the steps in generating rod solution according to a second embodiment
  • FIG. 14 is a flowchart depicting the steps in generating a rod solution according to a third embodiment
  • FIG. 15 is a flowchart depicting the steps of the rod bending process according to a first embodiment
  • FIG. 16 is a screen shot depicting an example setup screen of the system of FIG. 1 ;
  • FIG. 17 is a screen shot depicting an example IR positioning sensor setup screen of the system of FIG. 1 ;
  • FIG. 18 is a screen shot depicting an example screw location digitization screen during a first step in the Acquire Screws step of FIG. 15 ;
  • FIG. 19 is a screen shot depicting an example screw location digitization screen during a second step in the Acquire Screws step of FIG. 15 ;
  • FIG. 20 is a screen shot depicting an example screw digitization screen during a third step in the Acquire Screws step of FIG. 15 ;
  • FIG. 21 is a screen shot depicting an example bend instructions screen in the Bend Instructions step of FIG. 15 ;
  • FIG. 22 is a flowchart depicting the steps of the rod bending process according to a second embodiment
  • FIG. 23 is a screen shot depicting an example Advanced Options menu screen of the system of FIG. 1 ;
  • FIG. 24 is a screen shot illustrating a first example screen of an Adjust Points feature according to one embodiment
  • FIG. 25 is a screen shot illustrating a second example screen of the Adjust Points feature of FIG. 24 ;
  • FIG. 26 is a screen shot illustrating a third example screen of the Adjust Points feature of FIG. 24 ;
  • FIG. 27 is a screen shot illustrating a first example screen of a Pre-Bent Preview feature according to one embodiment
  • FIG. 28 is a screen shot illustrating a second example screen of the Pre-Bent Preview feature of FIG. 27 ;
  • FIG. 29 is a screen shot illustrating a third example screen of the Pre-Bent Preview feature of FIG. 27 ;
  • FIG. 30 is a screen shot illustrating a first example screen of a Sagittal Correction feature according to one embodiment
  • FIG. 31 is a screen shot illustrating a second example screen of the Sagittal Correction feature according to the first embodiment
  • FIG. 32 is a screen shot illustrating a first example screen of the Sagittal Correction feature according to a second embodiment
  • FIG. 33 is a screen shot illustrating an additional example screen of the Sagittal Correction feature according to the first and/or second embodiment
  • FIG. 34 is a screen shot illustrating a first example screen of the Coronal Correction feature according to a first embodiment
  • FIG. 35 is a screen shot illustrating a second example screen of the Coronal Correction feature according to a first embodiment
  • FIG. 36 is a screen shot illustrating a third example screen of the Coronal Correction feature according to the first embodiment
  • FIG. 37 is a screen shot illustrating a fourth example screen of the Coronal Correction feature according to the first embodiment
  • FIG. 38 is a screen shot illustrating a first example screen of the Coronal Correction feature according to a second embodiment
  • FIG. 39 is a screen shot illustrating a second example screen of the Coronal Correction feature according to the second embodiment.
  • FIG. 40 is a screen shot illustrating a third example screen of the Coronal Correction feature according to the second embodiment.
  • FIG. 41 is a flowchart illustrating the steps of the Global Spinal Balance feature according to one embodiment
  • FIG. 42 is a screen shot illustrating a first example screen of the Global Spinal Balance feature in pre-operative mode
  • FIG. 43 is a screen shot illustrating a first example screen of the Global Spinal Balance feature in target mode
  • FIG. 44 is a screen shot illustrating a second example screen of the Global Spinal Balance feature in target mode
  • FIG. 45 is a screen shot illustrating a first example screen of the Global Spinal Balance feature in intraoperative mode
  • FIG. 46 is a screen shot illustrating a second example screen of the Global Spinal Balance feature in intraoperative mode
  • FIG. 47 is a screen shot illustrating a third example screen of the Global Spinal Balance feature in intraoperative mode
  • FIG. 48 is a screen shot illustrating a fourth example screen of the Global Spinal Balance feature in intraoperative mode
  • FIG. 49 is a screen shot illustrating a fifth example screen of the Global Spinal Balance feature in intraoperative mode.
  • FIG. 50 is a perspective view of one embodiment of a mechanical rod bender comprising part of the surgical bending system of FIG. 1 .
  • a surgical bending system 10 including a spatial tracking system 12 to obtain the location of one or more surgical implants 14 , a control unit 16 containing software to convert the implant locations to a series of bend instructions, and a bending device 18 to execute the bend instructions.
  • the spatial tracking system 12 includes an IR camera 20 , a digitizer pointer 23 , as well as other components including Host USB converter 21 .
  • the spatial tracking system 12 is in communication with control unit 16 .
  • the control unit 16 has spatial relation software and is communicatively linked to the display 32 so that information relevant to the surgical procedure may be conveyed to the user in a meaningful manner.
  • the relevant information includes, but is not limited to, spatial positioning data (e.g., translational data in the x, y, and z axes and orientation/rotational data R x , R y , and R z ) acquired by the IR camera 20 .
  • the system 10 comprises a neuromonitoring system communicatively linked to the spatial tracking system 12 via the control unit 16 .
  • the neuromonitoring system may be the neuromonitoring system shown and described in U.S. Pat. No. 8,255,045, entitled “Neurophysiologic Monitoring System” and filed on Apr. 3, 2008, the entire contents of which are hereby incorporated by reference as if set forth fully herein.
  • FIGS. 2-9 depict the various components of one or more digitizer pointers 23 for use with the present invention.
  • FIGS. 2-4 detail an example IR-reflective tracking array 22 component of the digitizer pointer 23 .
  • Array 22 includes a housing 34 , bilateral shutters 36 , and a plurality of IR-reflective spheres 38 arranged in a calculated manner at various locations on the array 22 such that their position information is selectively detectable by the IR camera 20 .
  • Housing 34 comprises a top housing 40 , bottom housing 42 , and a distal threaded aperture 56 configured to threadably receive the threaded end 78 of a stylus (e.g., stylus 24 , 26 , 28 , and/or 30 ).
  • a stylus e.g., stylus 24 , 26 , 28 , and/or 30 .
  • Top housing portion 40 is further comprised of upper portion 44 , underside 46 , and sides 48 .
  • a plurality of sphere apertures 52 extend between upper portion 44 and underside 46 and are sized and dimensioned to receive reflective spheres 38 within recessed pockets 54 .
  • Each side 48 includes cutout 50 sized and dimensioned to receive tongue 70 .
  • Bottom housing 42 is comprised of a first face 58 and a second face 60 .
  • the first face 58 includes nesting platforms 62 and bullet posts 64 .
  • Each shutter 36 includes handle portion 66 , cover portion 68 , tongue 70 , interdigitating gear teeth 72 , and channel 74 for receiving bullet posts 64 .
  • a spring 76 extends between the two shutters 36 and is held in place via spring posts 71 .
  • each IR-reflective sphere 38 is nested on a platform 62 .
  • Top housing 40 is placed over bottom housing 42 in a snap fit configuration such that each IR-reflective sphere 38 fits within a recessed pocket 54 within its respective sphere aperture 52 .
  • bilateral shutters 36 are positioned over the housing 34 with tongues 70 sliding into cutouts 50 such that each shutter cover 68 obscures exactly one half of the IR-reflective sphere 38 (for example, the middle IR-reflective sphere 38 ) as depicted in FIG. 2 .
  • the IR-reflective tracking array 22 mates with one or more surgical objects (for example styluses 24 , 26 , 28 , 30 ).
  • Each stylus 24 , 26 , 28 , 30 includes a threaded proximal end 78 for mating with the threaded distal aperture 56 of the IR-reflective tracking array 22 , elongate shaft 80 , and shaped distal tip 82 .
  • Shaped distal tip 82 may be any shape that is complimentary to, and fits securely within, the shape of a particular screw head. For example, FIG.
  • FIG. 6 shows styluses 24 , 26 , 28 , and 30 each with a different shaped distal tip designed to mate with different open screw systems, minimally-invasive screw systems, and closed tulip, iliac, and offset connector systems.
  • the distal tip 82 is preferably inserted into each screw while orienting the digitizer pointer coaxial to that screw (or other fixation device).
  • the length of the elongate shaft 80 is fixed relative to the array 22 such that all digitized points are a consistent length from the geometry of the IR-reflective markers 38 and position information may be obtained from this relationship.
  • the length of the elongate shaft 80 is adjustable relative to the array 22 such as that shown with stylus 30 , effectively elongating the distance from the digitized point and the IR-reflective markers. This longer distance translates to digitization of a point above the actual screw head based on the distance the user adjusted the elongate shaft 80 .
  • the resulting bend instructions would shape a rod that traverses that point above the screw allowing the user to reduce the screw to the rod.
  • offset pointer 30 includes an elongate tubular member 84 and an inner piston 86 .
  • Elongate tubular member 84 is comprised of a milled helical slot 104 and a plurality of offset depth slots 106 located around the helix that correspond to a plurality of offset distances as will be described below.
  • Inner piston 86 includes shaft 88 , T-shaped cap 92 , springs 94 , and bushing 96 .
  • the T-shaped cap 92 is positioned over the proximal end of the shaft 88 and is preferably welded to the proximal end 105 of the elongate tubular member 84 .
  • Springs 94 are slideably positioned along the length of the shaft 88 between the distal end 93 of the T-shaped cap 92 and bushing 96 .
  • Bushing 96 is positioned over the distal end of the shaft 88 .
  • Pin 100 is travels through, and protrudes laterally from, slots 90 , 98 on the inner shaft 88 and bushing 96 , thereby securing the bushing 96 to the inner shaft 88 .
  • the pin 100 is sized and dimensioned such that it travels through the helical slot 104 and be positioned within each of the offset depth slots 106 .
  • the offset pointer 30 gives the user the ability to execute planned screw movement by a specific amount.
  • the user inserts the offset pointer 30 into the screw head. Keeping the distal tip 82 engaged to the screw head, the user then selects an offset amount to be added to the screw and angles the offset pointer 30 in the direction he or she wishes to apply the offset to.
  • the shaft 88 is pulled away from the array 22 and twisted until the pin 100 falls into the desired offset slot 106 . As the shaft 88 is pulled, it telescopes in and out of the elongate tubular member 84 such that the distance between the shaped distal end 82 and the array 22 is increased. For purposes of illustration, FIG.
  • Offset options may be provided, by way of example only from 0 mm to 16 mm offsets in 2 mm increments. The system 10 will then acquire position information at that
  • the digitizer pointer 23 may be used to acquire positional information about some or all screw locations.
  • the shaped distal tip 82 is coaxially aligned into the screw head and the array 22 is triggered to register the screw point.
  • Screw locations may be digitized in a superior-inferior or inferior-superior direction.
  • the first screw location digitized correlates to the rod insertion direction component of the bend instructions (described below).
  • Squeezing handles 66 activates the spring mechanism and permits the shutters 36 to open equally via the interdigitating gear teeth 72 ( FIG. 4 ).
  • Opening the shutter covers 68 exposes the middle IR-reflective sphere 38 and allows the IRtracking array 22 to be “seen” by the IR camera 20 and the position of the digitizer pointer 23 to be digitized. In this way, the IR camera 20 only recognizes the digitizer pointer 23 once the middle sphere 38 is exposed which allows for point-by-point tracking and obviates the sensing and digitization of one or more unnecessary data points which may occur with prior art systems that continually track surgical objects. Further, use of the gear mechanism allows the passive IR-reflective sphere 38 to be “seen” symmetrically by the IR camera 20 , thereby enabling a more accurate calculation of position information by the system 10 .
  • control unit 16 emits an audible sound to notify the user that the middle sphere 38 is recognized by the IR camera 20 and the screw point is acquired. Once a point has been registered, the shutter handles 66 may be released, thereby closing the bilateral shutters 36 . This process is then repeated for all screw locations to be digitized.
  • the surgical bending algorithms may be divided into two smaller sub-systems: (1) the spatial location algorithms that acquire, collect, and digitize points in space and (2) the bending algorithms that analyze the points and calculate the bend instructions and rod length needed to bend a rod with the mechanical bending device 18 .
  • the spatial tracking system 12 measures the six degrees of freedom ( 6 DOF) information for the tracked IR-reflective spheres 38 . These data provide the full pose (position and orientation) of each screw of interest which may then be made available to the algorithm library to calculate the bend instructions.
  • FIG. 10 is a flow chart indicating the steps of the spatial location data acquisition process according to one embodiment.
  • the system 10 initializes the sensor objects from configuration to connect to, control, and read data from the IR camera 20 (step 140 ).
  • the system 10 inspects all devices connected to it and finds the device with a device ID that corresponds to the IR camera 20 (step 141 ).
  • step 142 if an IR camera 20 is found at step 141 , the system 10 continues to establish a connection with the IR camera 20 (step 143 ). However, if not the system 10 continues to search. After the system 10 connects to the IR camera 20 , it then loads a tool file that defines the array 22 (step 144 ). After initialization and tool file loading, the IR camera 20 must prepare for taking data. At step 145 , the IR camera 20 is enabled and ready to generate positional data but is left idle until tracking is enabled. By way of example and as described with reference to FIG. 17 , selecting the position of the IR camera 20 with respect to the patient's body causes the control unit 16 to send the IR camera 20 a command to begin tracking.
  • the IR camera 20 may be polled to for data (step 147 ).
  • new data is requested twenty times per second from the IR camera 20 .
  • the data generated from polling the IR camera 20 is checked to ensure that it is reporting valid data. The data may be considered valid if all of the IR-reflective spheres 38 are visible to the IR camera 20 , the digitizer pointer 23 is fully inside the IR camera's 20 working volume, there is no interference between the IR camera 20 and the digitizer pointer 23 , and both the location and rotation information reported are not null.
  • step 149 if the data is not deemed valid, then the digitized point is not used by the system 10 and polling is resumed. If the fifth IR-reflective sphere 38 (i.e. the middle sphere) is visible on the digitizer pointer 23 (step 150 ), the process of collecting positional data for the bend algorithm commences. If the middle sphere 38 is not visible, then the data is available to the system 10 only to show proximity of the IR camera 20 and IR-reflective tracking array 22 (step 151 ). Points used by the bend algorithm are preferably an average of several raw elements (step 152 ). Normally, five points are collected at this step before the points are processed and made available to the bend algorithm. The position data is averaged using a mean calculation.
  • the directions are averaged in the quaternion representation (raw form) then converted to a unit direction vector.
  • the data is rotated from the spatial tracking system 12 coordinate from into the system 10 coordinate frame using a rotation matrix.
  • the data is available for the bend algorithm to collect and process further as will be described in greater detail below.
  • the surgical bending software takes the location and direction data of the screw locations as described above and uses one or more geometry-based algorithms to convert these relative screw locations into a series of bend instructions.
  • FIG. 11 is a flow chart indicating the steps of the surgical bending process according to a first embodiment.
  • the system 10 may validate the system inputs to ensure the rod overhang is greater than zero, validate the sensor setup to ensure that the IR camera 20 location has been set, and validate each of the acquired points.
  • the validation of each of the acquired points ensures, for example, that there are at least two screw points digitized, no two screw locations are too far apart, no two screw locations are too close together, and the span between the superior-most and inferior-most screw locations is not longer than the longest available rod.
  • the data may be centered and aligned such that the first data point acquired is set at the system 10 coordinate's origin and all data is aligned to the x-axis of the system's coordinates thereby reducing any potential misalignment of the IR camera 20 relative to the patient's spine.
  • the system 10 may perform rod calculations for a straight rod solution, a pre-bent rod solution, and a custom-bend solution.
  • a straight rod solution the system 10 first determines the length of a straight rod that will span all of the screw locations. This length may be calculated to accommodate each of the screw heads, hex and nose lengths of the rods chosen, and the user's selected rod overhang length.
  • the system 10 fits the data to a straight line, if the screw data is within tolerance of the straight line, then the bend instructions will return a straight rod, otherwise it will return no rod solution and proceed to look for a pre-bent rod solution.
  • the tolerance may be 2 mm in each of the sagittal and coronal planes.
  • the system 10 For a pre-bent rod solution, the system 10 first determines the length of the shortest pre-bent rod from the available rod from the available rods (as will be described in greater detail below) that will span all of the screw locations. This length may be calculated to accommodate each of the screw heads, hex and nose lengths of the rods chosen, and the user's selected rod overhang length. Next, the system 10 fits the digitized screw data to a circular arc in 3-dimensional space. If the screw data is within the tolerance of the arc, then the bend instructions will return a pre-bent rod solution, otherwise it will return no rod solution and proceed to look for a custom-bend rod solution. By way of example, this tolerance may be 2 mm in each of the sagittal and coronal planes.
  • FIG. 12 depicts a flow chart of a custom bend algorithm according to one embodiment.
  • screw location and direction data is generated by the spatial tracking system 12 as set forth above. The data is then projected into two planes: the x-y plane (coronal view) and the x-z plane (sagittal view). Each projection is then handled as a 2D data set.
  • a fixed size loop is generated over small incremental offsets for the first bend location for the end of the rod which optimizes the ability of the bend reduction step 162 to make smooth solutions.
  • the system 10 creates a spline node at each screw location and makes a piecewise continuous 4 th order polynomial curve (cubic spline) through the screw points.
  • the smooth, continuous spline is sampled at a regular interval (e.g., every 1 cm) along the curve to generate an initial set of proposed bend locations.
  • a regular interval e.g., every 1 cm
  • as many bends as possible are removed from the initial set of proposed bend locations from step 161 as possible to reduce the number of bends the user must execute on a rod in order to fit it into a screw at each digitized screw point.
  • no bend is removed if eliminating it would: (1) cause the path of the bent rod to deviate more than a predefined tolerance limit; (2) cause any of the bend angles to exceed the maximum desired bend angle; and (3) cause the rod-to-screw intersection angle to exceed the maximum angulation of the screw head.
  • the 2D data sets are combined and handled as a 3D data set.
  • the 3D line segments are then evaluated based on distance between each line segment interaction (Location), the angle between two line segments (Bend Angle), and the rotation (Rotation) needed to orient the bend into the next bend plane using the following calculations:
  • BA A 0.94 * BA T - 5.66
  • BA T is the theoretical bend angle needed that was calculated from the 3D line segment and BA A is the actual bend angle needed to bend the rod to so it can spring back to the theoretical bend angle.
  • BA A is the actual bend angle needed to bend the rod to so it can spring back to the theoretical bend angle.
  • the loop is completed (step 163 ).
  • the system 10 may output the rod solution having the smallest maximum bend angle (i.e., the smoothest bent rod). It is to be appreciated that the system 10 may choose the rod solution displayed based on any number of other criteria.
  • the system 10 then generates the three-dimensional locations of the bends in space.
  • the system 10 generates instructions for the user to choose a straight rod, a pre-bent rod, or to custom bend a rod (step 157 ). All of the output instructions are human-readable strings or characters. In all cases, the length of the required rod is calculated as described above and is displayed to the user as either a cut rod or standard rod. For custom bend solutions, rods are loaded into the bender with the “inserter end” (e.g., one pre-determined end of the rod) into the bender collet 126 .
  • the instructions are flipped, and the cut (or nose) end of the rod is instructed to be put into the bender collet 126 .
  • the bend instructions are generated from the geometric bend locations and are given as “Location”, “Rotation”, and “Bend” values as will be described in greater detail below. These values correspond to marks on the mechanical bender 18 .
  • FIGS. 13-14 depict a flow chart of a second embodiment of a custom bend algorithm.
  • the custom bend algorithm includes a virtual bender used to render a virtual rod. The following calculations and the flowcharts of FIGS. 13-14 highlight the steps of this embodiment.
  • the 3D vector s i [s i x , s i y , s i z ] T denotes the i' th screw digitized by the user such that the set of N acquired screws that defines a rod construct may be denoted as
  • the screws have been collected in order (e.g. superior-most screw to inferior-most screw or inferior-most screw to superior-most screw) so the index i can also be thought of as the index through time.
  • Each rod point r i is composed of two components, a spatial component and a directional component r i ⁇ r i s , r i d ⁇ , where r i s , r i d ⁇ 3 .
  • the segments between rod points is constant and defined by
  • a virtual bender (B) consists of a mandrel (M) of radius M r (mm).
  • M mandrel
  • M r radius
  • the key assumption when bending the virtual rod around M is the conservation of arc length.
  • the virtual rod, R is bent according to a list of instructions.
  • Each instruction consists of a location (I l ), rotation (I r ), and bend angle (I ⁇ ).
  • the location is the position of the rod in the bender and corresponds to the point directly under the mandrel M.
  • the rotation is given in degrees (0°-360°) and corresponds to the amount the rod is rotated from 0 in the collet.
  • the bend angle is given by a single letter that corresponds to a specific angle in degrees. There is a corresponding notch on the bender with the same letter for the user to select.
  • i 0 N r -1 which effectively orients the virtual rod to be at zero rotation in the virtual bender.
  • the system 10 rotates the virtual rod around the x-axis by I r (step 168 ).
  • the system 10 finds the point that matches I l .
  • the virtual rod is translated by ⁇ circumflex over (r) ⁇ i .
  • each rod point from i to i+M r *I ⁇ is projected onto the mandrel M while preserving segment length (step 169 - 170 ).
  • the virtual rod is then rotated around the x-axis by angle ⁇ I r .
  • the next step is to align the bent virtual rod to the acquired screw positions (step 172 ).
  • the alignment process has two stages—first, the system 100 finds the optimum rotation coarse scale (step 174 ). Second, the system performs the iterative closest point iteration algorithm fine scale.
  • the system first initializes the result close to a global minimum (step 173 ).
  • this initialization follows the approach described below:
  • T denotes the rotation matrix.
  • ⁇ circumflex over (T) ⁇ denote the optimum 3D rotation matrix
  • step 175 the proposed solution may not be the global minimum. Thus, the following are repeated until convergence (step 175 ):
  • Verify the error is reduced (step 179 ).
  • the virtual rod is rendered at step 180 .
  • 0, then the middle point of the triad (in this case r 1 ) is redundant, provides no new information to the geometry of the rod and may be removed.
  • the virtual bender may be capable of bending a rod at any location of any angle perfectly to observe arc length.
  • Using a virtually bent 3D rod to determine problem screws i.e. screw locations with a high screw-rod fit error
  • a Markov chain is a sequence of random variables, X 0 , X 1 . . . , such that the current state, the future and past states are independent.
  • the system 10 finds the set of bend instructions that define a rod that fits the screws in an optimum way defined by an error function. It is to be appreciated that the search of the bender space is quite complex as there are several constraints that must be observed for the algorithm to produce valid bend instructions (e.g., the bend locations cannot be in close proximity to the screws, the bend locations must be in multiples of 5 mm apart, the bend angles must be in multiples of 5°, no bend angle can be greater than 60°, etc.).
  • the likelihood or error function may be constructed based on how well the virtual rod fits the data.
  • the rod is fit to the data in the least squares sense.
  • a likelihood function is defined that incorporates, for example, a prior to prefer fewer bend instructions:
  • log-likelihood function may be defined as
  • N b denotes the number of bends in the rod
  • N s denotes the number of screw locations
  • s i is the i'th screw
  • r i is the i'th rod point
  • Equation (3) there has been introduced a prior to control the number of bends introduced into the rod.
  • This probabilistic approach to bend instruction generation allows for tailoring of constraints, for instance, a prior on the severity of the bends could also be introduced. Further, a prior could be introduced on how to define how close to the screws the bends may be located. This prior may have a “preferred” value, but probabilistically, there may be an optimal solution away from this idealized value.
  • some hypothesized rules that may be applied to this algorithm include, but are not limited to: birth move: add a bend to the current solution; death move; remove a bend from the current solution; update move: translate rod points along the rod. Use of this embodiment may provide more potential rod solutions to the user.
  • the surgical bending system 10 obtains position information of the implanted screw positions and outputs bend instructions for a rod shaped to custom-fit within those implanted screws.
  • pertinent information is inputted into the system via a setup screen.
  • the user designates which side (left or right) rod will be created.
  • the system 10 digitizes the screw locations.
  • the system 10 outputs bend instructions.
  • the user bends the rod according to the bend instructions. Steps 190 - 198 may then be repeated for the other rod.
  • FIG. 16 illustrates, by way of example only, one embodiment of a screen display 200 of the control unit 16 capable of receiving input from a user in addition to communicating feedback information to the user.
  • a graphical user interface GUI
  • the screen display 200 may contain a header bar 202 , a navigation column 204 , device column 206 , and a message bar 208 .
  • Header bar 302 may allow the user to view the date and time, alter settings, adjust the system volume, and obtain help information via date and time display 210 , settings menu 212 , volume menu 214 , and help menu 216 respectively. Selecting the settings drop-down menu 212 allows the user to navigate to system, history, and shutdown buttons (not shown). For example, choosing the system button displays the rod bending software version and rod bender configuration file; choosing the shutdown option shuts down the rod bending software application as well as any other software application residing on the control unit 16 (e.g. a neuromonitoring software application); and choosing the history option allows the user to navigate to historical bend points/instruction data in previous system sessions as will be described in greater detail below.
  • navigation column 204 contains various buttons (e.g., buttons 218 , 220 , 222 , 224 , 226 ) for navigation through various steps in the rod bending process. Pressing button 204 expands/minimizes the details of the navigation column.
  • Devices column 206 contains various buttons indicating the status of one or more devices associated with the surgical bending system 10 . By way of example, devices column 206 may include buttons 228 and 230 for the digitizer 23 and IR camera 20 components of the system 10 , respectively. Pressing button 206 expands/minimizes the details of the devices column.
  • pop-up message bar 208 communicates instructions, alerts, and system errors to the user.
  • FIGS. 16-17 depict an example setup screen.
  • the surgical bending system 10 automatically initiates the setup procedure.
  • the system 10 is configured to detect the connection status of each of its required components.
  • icons 228 , 230 indicate the connectivity and activity status of the digitizer 23 and IR camera 20 , respectively. If one or more required components are not connected or are connected improperly, the display 200 may alert the user to address the issue before proceeding via textual, audio, and/or visual means (e.g., textual messages, audible tones, colored icons or screens, blinking icons or screens, etc.).
  • the digitizer icon 228 is a status indicator for the active acquisition and/or recognition of the digitizer and the presence and background color of the icon 228 may change to indicate the digitizer tracking status.
  • the icon 228 may be absent when the system 10 is not acquiring screws and does not recognize the digitizer, gray when the system 10 is not acquiring screws and recognizes the digitizer, green when the system 10 is in screw acquisition mode and recognizes the digitizer, and red when the system 10 is in screw acquisition mode and does not recognize the digitizer. Pressing button 206 expands minimizes the details of the device column 206 .
  • pressing icon 228 expands a pull-out window for the different stylus options available with the rod bending system 10 (e.g., styluses 22 , 24 , 26 , 30 as described above).
  • the IR Camera graphic icon 230 is a status indicator for the IR camera 20 .
  • the presence and background color of the icon 230 may change to indicate the status of the IR camera 20 .
  • the icon 230 may be absent when the system 10 does not recognize the camera 20 , gray when the system 10 recognizes the camera 20 is connected to the system 10 , and red when the system 10 senses a communication or bump error for the camera 20 .
  • the camera 20 should be recognized if it is connected after initialization of the bending application.
  • the user may then input one or more pieces of case-specific information from one or more drop-down menus.
  • drop-down menus for rod system 234 , rod material/diameter 236 , rod overhang 238 , procedure type (not shown), and surgical levels may be accessed from the setup selection panel 232 of the screen display 200 .
  • the rod system drop-down menu 234 allows the user to choose the rod system he/she plans to use. This selection drives choices for the rod material/diameter 236 drop-down menus.
  • the system 10 may be programmed with numerous fixation options from one or more manufacturers.
  • the fixation system selections for one manufacturer only e.g. NuVasive® PreceptTM, Armada®, and SpherX® EXT.
  • the user may also choose the combination of rod material (e.g. titanium, cobalt chrome, etc.) and rod diameter (e.g. 5.5 mm diameter, 3.5 mm diameter, etc.).
  • the drop-down menu 238 for material and diameter options may preferably be dependent upon the choice of rod system. Because the geometry and sizes can vary between manufacturers and/or rod systems, programming the system 10 with these specific inputs can aid in outputting even more accurate bend instructions.
  • the user may also choose the amount of overhang from the rod overhang pull-down menu 238 .
  • the amount of overhang may be selectable in 0 mm, 2.5 mm, 5 mm, 7.5 mm, and 10 mm lengths.
  • this function prescribes a symmetric overhang on both the superior and inferior ends of the rod.
  • this function also prescribes different overhang lengths on either end of the rod based on user preference and patient anatomical considerations.
  • the system 10 also contains functionality for accommodating multiple rod diameters and transitional rods as used, for example in Occipital-Cervical-Thoracic (OCT) fusion procedures
  • the surgical bending system 10 aids the user in setting up the IR camera 20 in an optimal position for positional data acquisition.
  • any visual (textual, graphic) indicator may be used to indicate the camera placement instructions.
  • an active graphic directs the user to position the IR camera 20 relative to the digitizer array 22 held static within the patient's body. As shown in FIG. 17 , the user first selects the side of the patient the IR camera 20 is located on by selecting the left side sensor position button 242 or right side sensor position button 244 in the IR camera setup panel 240 .
  • Choosing the left or right side sensor position button 242 , 244 activates a the IR camera positioning panel 246 such that camera graphic 248 and a tracking volume box graphic 250 appear on the display screen 200 .
  • Tracking volume box 252 that moves with the camera graphic 248 as the IR camera 20 is moved.
  • the user positions the digitizer array 22 into the body of the patient.
  • a target volume box 252 (which may be displayed as white in color) is positioned over the patient graphic 254 .
  • the user moves the IR camera 20 relative to the digitizer array 22 until the tracking volume box 250 matches up to the position of the target volume box 252 .
  • the camera graphic 248 increases in size if it is moved superior to the target tracking volume and decreases in size if it is moved inferior to the target volume.
  • the tracking volume box 250 may be color-coded to depict the relative distance to the target volume. By way of example, the tracking volume box 250 may be depicted in red if the distance to the target volume is outside of a certain distance in one or more axes (e.g., outside ⁇ 8 cm in all 3 axes) and green if within or equal to ⁇ 8 cm in all 3 axes.
  • a graphic (e.g., a check) may appear on setup button 218 to indicate such a completion and the system 10 proceeds to step 192 in the flowchart of FIG. 15 .
  • the user designates which side of the patient's spine to acquire digitized positional information from by selecting either the Left “L” toggle/status button 220 or Right “R” toggle/status button 222 .
  • the user selects the Acquire Screws button 224 which navigates the display screen 200 to an Acquire Screws (left or right) screen shown by way of example in FIGS. 18-20 .
  • the display screen 200 includes a sagittal view panel 256 and a coronal view panel 258 with spine graphics 260 , 262 in each of the sagittal and coronal views, respectively.
  • Spine graphic 260 may flip orientation depending on which side of the spine the user is digitizing (left or right).
  • spine graphic 262 may highlight the side of the patient the user is digitizing (left or right). The user may digitize the location of each implanted screw using, by way of example, the digitizer pointer 23 as described above.
  • each screw point 264 is digitized, its relative location with respect to the other acquired screw points 264 can be viewed in both sagittal and coronal views via the sagittal view panel 256 and the coronal view panel 258 as shown in FIG. 19 .
  • the last screw point digitized may have a different graphic 266 than the previously-acquired screw points 264 (by way of example, the last screw point acquired 266 may be a halo and the previously-acquired screw points 264 may be circles).
  • the screws locations may be digitized from a superior-to-inferior or inferior-to-superior direction and according to some embodiments, the system 10 can detect which direction the digitization is occurring in after the acquisition of two consecutive screw point locations.
  • the user wishes to delete a digitized screw point, he/she may do so by pressing the “Clear Point” button 270 . If the user wishes to delete all digitized screw points, he/she may do so by pressing the “Clear All Points” button 268 .
  • the user may press the “Calculate Rod” button 272 which initiates the curve calculation preferably using one of the algorithms discussed above.
  • a rod graphic 274 populates through the screw points 264 , 266 and a confirmation graphic (e.g., a check) may appear on the “Acquire Screws” button 224 to indicate that the system 10 has generated a rod solution.
  • the “Calculate Rod” button 272 becomes the “Undo Rod” button 272 . If the user presses the “Undo Rod” button 272 , the rod solution 274 is cleared and the user may acquire more screw points or clear one or more screw points.
  • the system 10 may include a visual graphic for where along a rod the curve calculation is generating a severe bend (acute angle).
  • the user may select “Undo Rod” button 272 , perform one or more surgical maneuvers (e.g. reduce the screw, backup the screw, adjust the screw head, etc.), redigitize the screw point, and generate a more feasible solution. If the rod solution is acceptable to the user, the Screw Acquisition step 194 is complete and the system 10 proceeds the Bend Instructions step 196 in the flowchart of FIG. 15 .
  • the bend instructions within the bend instructions panel 276 allows the user to view the bend instructions corresponding to the resulting rod solution in the Acquire Screws screen ( FIG. 20 ).
  • the bend instructions panel 276 contains three fields containing various aspects of the bending instruction: upper message field 278 , bender instructions field 280 , and lower message field 282 .
  • the upper message field 278 may communicate the rod cut length, rod type, and/or rod loading instructions to the user (e.g. “Cut Rod: 175.00 mm Load Inserter End Into Bender”).
  • the bender instructions field 280 displays rows 284 of bend maneuvers in location 286 , rotation 288 , and bend angle 290 to perform on the mechanical bender 18 as will be described in greater detail below. In the example shown in FIG. 21 , there are five rows indicating five bend instructions.
  • the lower message field 282 may communicate the direction of insertion or orientation of implanting the rod to the user. For example, the lower message field 282 shown in FIG. 21 provides the following sample instruction: “Insert Rod head to foot.” In some implementations, the rod insertion direction into the patient is dependent on the sequence of screw digitization (superior-to-inferior or inferior-to superior).
  • the bend instruction algorithm takes into account the orientation of the inferior, superior, anterior, and posterior aspects of the rod and ensures that these aspects are known to the user.
  • the system 10 manages which bends are imparted on the rod first based on the severity of the bend angles. The section of the bend instructions with greater bend angles may be performed first then the straighter bend sections of the bend instructions are performed last. Further, the instructions may also direct the user to align a laser line or orientation line on the rod to an alignment arrow (not shown) on the mechanical rod bender 18 . This alignment controls the Anterior/Posterior orientation of the rod geometry and generates bend instructions accordingly.
  • the user follows the bend instructions generated by the system 10 for location (location may be color-coded on the bender 18 and on the screen 200 as green triangle), rotation (rotation may be color-coded on the bender 18 and on the screen 200 as red circle), and bend angle (bend angle may be color-coded on the bender 18 and on the screen 200 as blue square), sequentially, starting at the first bend instruction and working sequentially until the final bend is completed. From here, the user may repeat steps 190 - 198 on the construct for the opposite side of the spine.
  • a user may wish to toggle between left and right screens to view left and right digitized screw points, rod previews, and bend instructions for reference or comparison. Selecting the Left “L” toggle/status button 220 and right “R” toggle/status button 222 allows the user to do so.
  • the GUI may additionally include a History feature. Selecting the History button (not shown) will allow the user to refer back to any previous rod bending solution. The user navigates to the Bend Instructions screen 226 based on choice of the UR toggle buttons 220 , 222 and pressing Bend Instruction button 226 . If navigating to previous bend instructions, the Bend Instructions screen will display previous bend instructions. Once the user has selected the desired rod solution, the user then executes the bends using the mechanical bender 18 .
  • the system 10 obtains position information of the implanted screws (steps 192 and 194 ), accepts correction inputs via one or more advanced options features (step 195 ), and generates for viewing bend instructions for a rod shaped to fit at locations apart from those implanted screw positions (step 196 ) as depicted in the flowchart of FIG. 22 . Installing a rod shaped in this manner could correct a curvature or deformity in the patient's spine according to a user's prescribed surgical plan. Details of the surgical bending system 10 are discussed now discussed with examples for obtaining a rod bent according to one or more surgical plans.
  • selecting the “Advanced Options” button 292 expands an Advanced Options menu 294 from which the user may perform one or more corrections to the digitized screw points and the system 10 generates bend instructions that will achieve those desired corrections on the patient's spine once the rod is implanted and the screws are brought to the rod.
  • a user may wish that the rod bend solution will consider a point that is not a digitized screw point in determining the bend instructions. According to some implementations, this point is an adjusted distance from the digitized screw point location. Selecting the “Adjust Points” button 296 from the Advanced Options menu 294 navigates the user to an Adjust Points screen as depicted in FIG. 23 . Selecting a digitized screw location of interest (for example the screw point represented as dot 304 in FIG. 24 ) highlights the screw point and brings up an adjust points control 306 in each of the sagittal and coronal views 256 , 258 .
  • dot 304 changes color based on the distance from the originally digitized screw location as shown in FIG. 25 .
  • that color corresponds to color-coded offset distance indicator 322 which provides visual feedback to the user as to the distance the point has been adjusted.
  • dot 304 appears yellow in FIG. 25 indicating that the point has moved 4 mm in each of the sagittal and coronal planes.
  • the system 10 may have a maximum distance from the digitized point past which it will not allow the manipulated point to exceed (by way of example only, this distance may be 5 mm).
  • the user may adjust as many points as desired in this fashion.
  • the user may reset all adjusted points to their original configurations via “Reset” button 316 or may undo the last adjusted point via the “Undo Last” button 318 .
  • the user may either proceed to one or more additional advanced options as set forth below or select “Calculate Rod” 272 .
  • “Calculate Rod” 272 Once “Calculate Rod” 272 has been selected, the system 10 generates a rod in which the curve traverses the adjusted points, as in FIG. 26 , thereby creating a correction-specific rod and providing the user with the ability to correct the curvature or deformity in the spine to his or her prescribed curve.
  • a user may wish for a smoother rod bend.
  • the “Virtual Point” button 320 shown by way of example in FIG. 25
  • the system 10 allows the user to add an additional point anywhere in between the superior-most and inferior-most digitized screw locations. While there is no screw at this location, this point is taken into consideration during the curve calculation and may coerce the curve into a more natural shape yielding a smoother rod bend.
  • the user may either proceed to one or more additional advanced options as set forth below or select “Calculate Rod” 272 and as described above, the system 10 generates a correction-specific rod solution 274 that the user may use to correct the spine to the shape of the rod.
  • pre-bent rod it may be advantageous for some patient anatomies for a user to use a pre-bent rod.
  • Use of a pre-bent rod eliminates the need for making additional bends to a rod while assuring that a desirable rod curve is achieved.
  • selecting the “View Pre-Bent Rod” button 298 from the Advanced Options menu 294 navigates the user to a “View Pre-Bent Rod” screen as depicted in FIGS. 27-28 .
  • the system 10 calculates and outputs the best pre-bent rod geometry based on the selected manufacturer's rod system that was chosen during the setup step 190 (e.g.
  • a color-coded offset distance indicator 322 may provide the user with an indication of the distance each screw position will be from the pre-bent rod construct.
  • the system 10 proceeds to the Bend Instructions step 196 which displays the corresponding pre-bent rod specifications in the Bend Instructions Screen ( FIG. 29 ).
  • the upper message field 278 instructs the user that, based on the digitized screw points, an 85.0 mm pre-bent rod is recommended. From here, the user may decide whether the patient's anatomical and surgical requirements would be better suited with a pre-bent option or a custom-bent option. Armed with the information from FIGS. 27-29 , the user may then adjust the screw positions to fit the pre-bent rod if needed (e.g., adjust the screw head, adjust the screw depth, etc.).
  • a user may want to align or correct the patient's spine in the sagittal plane (i.e., add or subtract lordosis or kyphosis).
  • the surgical bending system 10 includes a sagittal correction feature in which the user is able to measure the amount of lordosis in the spine and adjust angles in the sagittal plane. The system 10 then incorporates these inputs into the bend algorithm such that the rod solution includes the desired alignment or correction.
  • Selecting the “View Vectors” button 300 from the Advanced Options menu 294 initiates the sagittal correction feature.
  • the user may select at least two points of interest and the system then determines the appropriate vector in the sagittal view.
  • the angles are measured and adjusted based on the screw trajectory screw axis position) using the digitized screw data acquired in the Acquire Screws step 194 .
  • the user selects at least two screw points of interest (e.g., screw points 338 and 342 ).
  • the system 10 measures the angle between the screw trajectories (shown here as 35 degrees).
  • the system 10 may measure the total amount of lumbar lordosis by measuring the lumbar lordosis angle 334 in the superior lumbar spine (shown in FIG. 30 as 15 degrees) and the lumbar lordosis angle 336 in the inferior lumbar spine (show in FIG. 30 as 35 degrees).
  • the angle adjustment buttons 328 , 330 on the Angle Adjustment Menu 326 the user may increase or decrease the desired angle correction of the spine in the sagittal plane (i.e., add or subtract lordosis or kyphosis superiorly or inferiorly). As the angle is adjusted, the angular position 336 between the two screw points 338 , 342 is changed as well.
  • the system 10 may include a color-coded offset distance indicator 322 to provide the user with an indication of the distance each digitized screw position will be adjusted in the sagittal plane as described above.
  • the user may select the “Set” button 332 , and then the “Calculate Rod” button 270 .
  • the system 10 displays a rod solution 274 incorporating the user's clinical objective for correction of the spine in the sagittal plane as depicted in FIG. 33 .
  • the superior and inferior lumbar lordosis angles 334 , 336 are measured, displayed, and adjusted referencing anatomy from an imported lateral radiographic image.
  • lateral radiographic image 358 may be inputted into the system 10 .
  • the user may touch the screen 200 and move lines 360 over at least two points of interest (e.g. the superior endplate of V1 and the inferior endplate of V3) and the system 10 then then measures the angle between the two lines 360 .
  • the user may increase or decrease the desired angle correction of the spine in the sagittal plane (i.e., add or subtract lordosis or kyphosis superiorly or inferiorly).
  • the amount of adjustment is dynamically altered in its respective angle measurement box (i.e., either superior lumbar lordosis angle box 354 or inferior lumbar lordosis angle box 356 ).
  • the user adjusts angle lines 360 as part of the inferior lumbar lordosis angle.
  • the system 10 measures this angle as 20 degrees as depicted in angle measurement field 350 .
  • the desired amount of correction in this example, it is achieved at 50 degrees.
  • the user may then press the capture angle button 352 and this parameter may be correlated to the digitized screw positions corresponding to the vertebral levels that those angles were measured off of.
  • the system 10 may include a color-coded offset distance indicator 322 to provide the user with an indication of the distance each digitized screw position will be adjusted in the sagittal plane as described above.
  • the user may select the “Set” button 332 , and then the “Calculate Rod” button 272 .
  • the system 10 displays a rod solution 274 incorporating the user's clinical objective for correction of the spine in the sagittal plane as depicted in FIG. 33 .
  • the sagittal correction feature of the system will be able to account for any patient positioning-related deviations. It will also be appreciated that in addition to lordotic corrections, the sagittal angle assessment tool may be useful for other types of surgical maneuvers, including but not limited to pedicle subtraction osteotomy (PSO) procedures and anterior column reconstruction (ACR) procedures.
  • PSO pedicle subtraction osteotomy
  • ACR anterior column reconstruction
  • a user may want to align or correct the patient's spine in the coronal plane (i.e., correct scoliosis).
  • the system 10 includes a coronal correction feature in which the user is able persuade one or more screw locations towards a particular coronal alignment profile by manually or automatically biasing which direction the rod bend curve is adjusted. The system 10 then incorporates these inputs into the bend algorithm such that the rod solution includes the desired alignment or correction.
  • Selecting the “Coronal Correction” button 302 from the Advanced Options menu 294 initiates the coronal correction feature.
  • the user may select at least two points of interest and the system then generates a best fit reference line through all points including and lying between the at least two points of interest.
  • the ideal correction of the spine in the coronal plane is a straight vertical line extending between the superior-most and inferior-most screw locations of interest.
  • the user may wish to achieve a certain amount of correction relative to the ideal correction. From the display screen, the user may select a percentage of relative correction between the screw points as digitized (0% correction) and the best fit reference line (100%).
  • the system calculates a rod solution and shows an off-center indicator 322 to provide a user with an indication of the distance each screw is from the coronally-adjusted rod construct as wet forth above.
  • the user may straighten all points within the construct (global coronal correction).
  • the superior and inferior screw points 362 , 364 are selected and the system 10 generates a best fit global reference line 366 through all points 362 , 364 , 368 .
  • the user manipulates the + and ⁇ buttons 372 , 374 to adjust the percentage of correction desired.
  • the amount of desired correction is shown as 100% on the percentage correction indicator 376 , meaning the rod solution 274 will be a straight line in the coronal plane and all screw locations will be adjusted to fit the rod/line.
  • the percentage correction indicator 376 As depicted in FIG.
  • the system 10 may include a color-coded offset distance indicator 322 to provide the user with an indication of the distance each digitized screw position will be adjusted in the coronal plane as set forth above. If the user deems this an acceptable rod solution, the user selects the “Calculate Rod” button 272 to view the rod solution 274 ( FIG. 37 ) and receive bend instructions or proceeds to another advanced feature as will be described in greater detail below.
  • the user may straighten a subset of the screw points within the construct (segmental coronal correction). Based on the sequence those points are inputted into the system, a best-fit segmental reference line is generated through the points in the direction of the last chosen point. If an inferior point 364 is selected first and then a superior point 362 is selected second, the system 10 will draw the best-fit segmental reference line 378 superiorly as shown in FIG. 38 . Conversely, if a superior point 362 is selected first and then an inferior point 364 is selected second, the system 10 will draw the best-fit segmental reference line 378 inferiorly.
  • the user manipulates the + and ⁇ buttons 372 , 374 to adjust the percentage of correction desired.
  • the amount of desired correction is shown as 100% on the percentage correction indicator 376 , meaning the rod solution 274 will be a straight line in the coronal plane and all selected screw locations will be adjusted to fit the rod/line.
  • unselected screw locations 380 will not be adjusted to fit the rod/line and their relative locations will be inputted into the system 10 and taken into consideration when the rod calculation is made. As depicted in FIG.
  • the system 10 may include a color-coded offset distance indicator 322 to provide the user with an indication of the distance each digitized screw position will be adjusted in the coronal plane as set forth above. If the user deems this an acceptable rod solution, the user selects the “Calculate Rod” button 272 to view the rod solution 274 ( FIG. 40 ) and receive bend instructions or proceeds to another advanced feature as will be described in greater detail below.
  • the surgical bending system 10 may include a Global Spinal Balance feature configured to receive preoperative and/or theoretical spinal parameter inputs, use these spinal parameter inputs to determine a target rod shape that will restore or improve spinal balance, display the balanced rod curvature and how that rod would traverse the screws in the deformed spine, and output a target rod that may be used to correct the spine to the rod and achieve a desired balanced alignment.
  • a Global Spinal Balance feature configured to receive preoperative and/or theoretical spinal parameter inputs, use these spinal parameter inputs to determine a target rod shape that will restore or improve spinal balance, display the balanced rod curvature and how that rod would traverse the screws in the deformed spine, and output a target rod that may be used to correct the spine to the rod and achieve a desired balanced alignment.
  • these spinal parameters may comprise Pelvic Incidence (PI), Pelvic Tilt (PT), Sacral Slope (SS), Lumbar Lordosis (LL), Superior Lumbar Lordosis ( ⁇ LL), Inferior Lumbar Lordosis ( ⁇ LL), C7 Plumb Line offset (C7PL), and Thoracic Kyphosis (TK) measurements.
  • the surgical bending system 10 may be further configured to assess spinal parameter inputs intraoperatively to determine how the surgical correction is progressing.
  • FIG. 41 depicts a flowchart indicating the steps of the Global Spinal Balance feature according to one embodiment.
  • the system 10 inputs a patient's preoperative spinal parameter measurements.
  • the system generates theoretical target spinal parameter measurements (step 392 ).
  • One or more target spinal parameter measurements may be optionally adjusted the user in accordance with a surgical plan a step 394 .
  • a target spinal rod may be scaled to match the patient's anatomy using the theoretical or adjusted target spinal parameter measurements from step 392 or 394 . This scaled target rod may then be displayed 398 to the user.
  • the system 10 may generate one or more measurements (step 400 ) during the surgical procedure.
  • the target spinal parameter data may then be adjusted based on the intraoperative measurements from step 400 .
  • the system 10 may generate bend instructions for balanced spine correction.
  • the user may input a patient's preoperative measurements into the system 10 as depicted, by way of example in FIG. 42 .
  • Selecting the Pre-Op measurement button 404 allows the user to input measurements into PI, LL, Superior LL, Inferior LL, C7PL, and TK input fields 408 , 410 , 412 , 414 , 416 , 418 , and 420 respectively.
  • These pre-operative anatomical measurements may be used to understand the imbalance in the patient's deformed spine as well as help determine an operative plan to implant devices that would adjust or form the spine to a more natural balance (e.g., rods, screws, a hyperlordotic intervertebral implant, etc.).
  • the global spinal balance feature allows the user to adjust the patient's anatomical measurement values to the user's preferred target spinal parameters for a balanced and/or aligned spine.
  • selecting the target measurement button 406 populates measurements into input fields 410 , 412 , 414 , 416 , 418 , 420 that represent an ideal or properly balanced spine. If the user accepts these target spinal parameters, the system 10 would output a theoretical rod solution comprising rod shapes and curves representing an ideal or properly balanced spine scaled and overlaid onto the digitized screw points as shown in FIG. 44 .
  • the system 10 may also include a color-coded offset distance indicator 322 to provide the user with an indication of the distance each digitized screw position is from the rod solution in the sagittal and coronal planes as set forth above.
  • a color-coded offset distance indicator 322 to provide the user with an indication of the distance each digitized screw position is from the rod solution in the sagittal and coronal planes as set forth above.
  • the user may use buttons 422 , 424 , 426 to adjust these target spinal parameters.
  • the user could then refer to the correction indicator 428 for an indication of how much correction (relative to the pre-operative and theoretical spinal parameters) would be achieved based on those adjusted input correction values.
  • the user's input correction values would then drive the rod bending algorithm (based on the digitized screw locations) to a rod shape customized to the user's plan for that particular placement.
  • the final rod could be positioned within the patient and the screws and spine would be adjusted to the rod at the desired alignment.
  • spinal parameter inputs may be assessed intraoperatively.
  • the user may wish to intraoperatively measure the amount of lumbar lordosis that has been achieved (for example, after placement of an intervertebral implant).
  • the system 10 may include be configured to obtain or import one or more lateral images, generate one or more lines between two or more landmarks on the patient's anatomy, determine a relationship between those landmarks, and adjust one or more spinal parameters to be used in generating the rod solution.
  • the user first selects the intraoperative measurement button 408 .
  • lateral radiographic image 358 may be inputted into the system 10 .
  • the user may touch the screen 200 and move lines 360 over at least two points of interest (e.g. the superior endplate of V1 and the superior endplate of V2) and the system 10 then measures the angle between the two lines 360 . As shown in FIG. 45 , the system 10 measures this angle as 15 degrees as indicated in the angle measurement field 350 .
  • the system may compare the intraoperative measurement to the preoperative and/or target spinal parameter value and provide an indication to the user of how much correction has been achieved relative to the pre-operative and theoretical spinal parameters.
  • the user may increase the desired angle of correction of the spine in the sagittal plane (i.e., add or subtract lordosis or kyphosis).
  • the amount of adjustment may dynamically displayed within angle measurement field 350 .
  • the system 10 may include a color-coded offset distance indicator (not shown) to provide the user with an indication of the distance each digitized screw position will be adjusted in the sagittal plane as described above.
  • the user may press the “Set” button 332 and then the “Calculate Rod” button (not shown in this view).
  • the system displays a rod solution 274 incorporating the user's intraoperative objective for correction of the spine in the sagittal plane.
  • the user may also wish intraoperatively measure the patient's pelvic incidence angle.
  • selecting the intra-op measurement button 408 optionally brings up a PI assessment tool.
  • the system 10 obtains a fluoroscopic image 452 of the patient's pelvis.
  • the user first selects the femoral head button 432 and uses arrows 450 on the PI Adjustment Menu 448 to locate the center point of the femoral head 434 .
  • the user selects the posterior sacrum button 436 and uses arrows 450 to identify the posterior aspect of the sacral endplate 438 .
  • the user selects the anterior sacrum button 440 and uses arrows 450 to identify the anterior aspect of the sacral end plate 442 .
  • the user may press the “Draw PI” button 446 after which the system 10 automatically draws and measures the pelvic incidence angle 446 for the user.
  • the system may include a Coronal Offset Assessment feature configured to obtain or import one or more Anterior-Posterior images, acquire digital position information regarding landmarks on the patient's anatomy, generate one or more lines between those landmarks, and determine a relationship between those landmarks.
  • the system 10 first obtains a fluoroscopic image 454 of the iliac sacral region ( FIG. 48 ).
  • the user digitizes two points 456 and selects the Iliac Line: Set button 460 to establish a horizontal iliac line 458 .
  • the user digitizes the midpoint 462 of the sacrum and selects the CSVL Line: Set button 466 and the system 10 automatically generates an orthogonal line (CSVL line 464 ) from the sacral midpoint 462 to the iliac line 458 .
  • the system 10 then obtains a fluoroscopic image 468 of the C7 vertebra as depicted in FIG. 49 .
  • the user digitizes the midpoint 470 of the C7 vertebra and selects the “C7PL: Set” button 474 and the system 10 automatically generates an orthogonal line (C7PL line 476 ) from the midpoint 470 of C7 to the iliac line 458 .
  • the system 10 calculates the coronal offset distance (in box 476 ) using the offset distance between the CSVL line 464 and the C7PL line 476 line.
  • the user is given an intraoperative assessment of the amount of coronal offset corrected or left to be corrected which affords the opportunity to decide if a surgical planning goal has been achieved or if one or more spinal parameter inputs need to be updated with respect to coronal alignment.
  • the mechanical rod bender 18 may be any bender that takes into account six degrees of freedom information as it effects bends onto a spinal rod.
  • the mechanical rod bender 18 may be the bender described in commonly-owned U.S. Pat. No. 7,957,831 entitled “System and Device for Designing and Forming a Surgical Implant” patented Jun. 7, 2011, the disclosure of which is hereby incorporated by reference as if set forth in its entirety herein.
  • the mechanical rod bender 18 may be the bender shown in FIG. 50 .
  • First and second levers 106 , 110 are shown as is lever handle 108 designed for grabbing the lever 106 manually and a base 112 for holding lever 110 in a static position.
  • Second lever 110 has a rod pass through 114 so that an infinitely long rod can be used as well as steady the rod during the bending process with the rod bending device 18 .
  • the user grabs handle 108 and opens it to bend a particular rod by picking an angle on the angle gauge 132 and closing the handle 108 such that levers 106 , 110 are brought closer together.
  • the mechanical rod bender 18 in other embodiments could be produced to bend the rod during the handle opening movement as well.
  • the rod moves through mandrel 118 and in between moving die 120 and fixed die 122 .
  • the rod is bent between the two dies 120 , 122 . Gauges on the bender 18 allow the user to manipulate the rod in order to determine bend position, bend angle, and bend rotation.
  • the rod is held in place by collet 126 .
  • the rod By sliding slide block 128 along base 112 , the rod can be moved proximally and distally within the mechanical rod bender 18 .
  • Position may be measured by click stops 130 at regular intervals along base 112 . Each click stop 130 is a measured distance along the base 112 and thus moving a specific number of click stops 130 gives one a precise location for the location of a rod bend.
  • the bend angle is measured by using angle gauge 132 .
  • Angle gauge 132 has ratchet teeth 116 spaced at regular intervals. Each ratchet stop represents five degrees of bend angle with the particular bend angle gauge 132 as the handle 106 is opened and closed. It is to be appreciated that each ratchet step may represent any suitable degree increment (e.g., between 0.25 degrees to 10 degrees).
  • the bend rotation is controlled by collet knob 134 . By rotating collet knob 134 either clockwise or counterclockwise, the user can set a particular rotation angle.
  • the collet knob 134 is marked with regular interval notches 136 but this particular embodiment is continuously turnable and thus has infinite settings.
  • knob 134 Once a user turns knob 134 , the user can set the knob 134 at a particular marking or in between or the like to determine a particular angle rotation to a high degree of accuracy. Additionally, base 112 may have a ruler 138 along its length to aid the user in measuring a rod intraoperatively.
  • the rod bender 18 may be a pneumatic or motor-driven device which automatically adjusts the location, rotation and bend angle of the rod.
  • three motors may be utilized for each movement.
  • a linear translator motor would move the rod in and out of the mandrel 118 and moving die 120 .
  • One rotational motor would rotate the rod and moving die 120 .
  • the bend calculations could be converted into an interface program that would run to power and control the motors.
  • the automated bender would lessen the possibility of user error in following the manual bend instructions. It would also increase the resolution or number of bends that can be imparted in the rod making for a smoother looking rod.

Abstract

A method is provided for correcting a curvature or deformity in a patient's spine based on the digitized locations of implanted screws. The method is implemented by a control unit through a GUI to digitize screw locations, accept one or more correction outputs, and generate one or more rod solution outputs shaped to fit at locations distinct from the implanted screw locations.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This patent application is a continuation of U.S. application Ser. No. 13/815,643, filed 2013 Mar. 12, which claimed priority to: U.S. Provisional Application No. 61/609,556 filed on 2012 Mar. 12, U.S. Provisional Application No. 61/661,190 filed on 2012 Jun. 18, and U.S. Provisional Application No. 61/717,359 filed on 2012 Oct. 23. The disclosures of each of these related applications is hereby incorporated herein by reference.
  • FIELD
  • The present application pertains to spine surgery. More particularly, the present application pertains to systems and methods related to the planning, design, and formation of spinal implants.
  • BACKGROUND
  • The spinal column is a highly complex system of bones and connective tissues that provide support for the body and protect the delicate spinal cord and nerves. The spinal column includes a series of vertebral bodies stacked atop one another, each vertebral body including an inner or central portion of relatively weak cancellous bone and an outer portion of relatively strong cortical bone. Situated between each vertebral body is an intervertebral disc that cushions and dampens compressive forces exerted upon the spinal column. A vertebral canal containing the spinal cord is located behind the vertebral bodies. The spine has a natural curvature (i.e., lordosis in the lumbar and cervical regions and kyphosis in the thoracic region) such that the endplates of the upper and lower vertebrae are inclined towards one another.
  • There are many types of spinal column disorders including scoliosis (abnormal lateral curvature of the spine), excess kyphosis (abnormal forward curvature of the spine), excess lordosis (abnormal backward curvature of the spine), spondylolisthesis (forward displacement of one vertebra over another), and other disorders caused by abnormalities, disease, or trauma (such as ruptured or slipped discs, degenerative disc disease, fractured vertebrae, and the like). Patients that suffer from such conditions often experience extreme and debilitating pain, as well as diminished nerve function. Posterior fixation for spinal fusions, decompression, deformity, and other reconstructions are performed to treat these patients. The aim of posterior fixation in lumbar, thoracic, and cervical procedures is to stabilize the spinal segments, correct multi-axis alignment, and aid in optimizing the long-term health of the spinal cord and nerves.
  • Screws, hooks, and rods are devices used to stabilize the spine during a spinal fixation procedure. Such procedures often require the instrumentation of many bony elements. The devices, for example rods, can be extremely challenging to design and implant into the patient. Spinal rods are usually formed of stainless steel, titanium, cobalt chrome, or other similarly hard metal, and as such are difficult to bend without some sort of leverage-based bender. Moreover, a spinal rod needs to be oriented in six degrees of freedom to compensate for the anatomical structure of a patient's spine as well as the attachment points (screws, hooks) for securing the rod to the vertebrae. Additionally, the physiological problem being treated as well as the physician's preferences will determine the exact configuration necessary. Accordingly, the size, length, and particular bends of the spinal rod depends on the size, number, and position of each vertebrae to be constrained, the spatial relationship amongst vertebrae, as well as the screws and hooks used to hold the rods attached to the vertebrae.
  • The bending of a spinal rod can be accomplished by a number of methods. The most widely used method is a three-point bender called a French Bender. The French bender is a pliers-like device that is manually operated to place one or more bends in a rod. The French bender requires both handles to operate and provides leverage based on the length of the handle. The use of the French bender requires a high degree of physician skill because the determination of the location, angle, and rotation of bends is often subjective and can be difficult to correlate to a patient's anatomy. Other methods of bending a rod to fit a screw and/or hook construct include the use of an in-situ rod bender and a keyhole bender. However, all of these methods can be subjective, iterative, and are often referred to as an “art.” As such, rod bending and reduction activities can be a time consuming and potentially frustrating step in the finalization of a complex and/or long spinal construct. Increased time in the operating room to achieve optimum bending can be costly to the patient and increase the chance of the morbidity. When rod bending is performed poorly, the rod can preload the construct and increase the chance of failure of the fixation system. The bending and re-bending involved can also promote metal fatigue and the creation of stress risers in the rod.
  • Efforts directed to computer-aided design or shaping of spinal rods have been largely unsuccessful due to the lack of bending devices as well as lack of understanding of all of the issues involved in bending surgical devices. Recently, in U.S. Pat. No. 7,957,831, issued Jun. 7, 2011 to Isaacs, there is described a rod bending system which includes a spatial measurement sub-system with a digitizer to obtain the three dimensional location of surgical implants (screws, hooks), software to convert the implant locations to a series of bend instructions, and a mechanical rod bender used to execute the bend instructions such that the rod will be bent precisely to custom fit within each of the screws. This is advantageous because it provides quantifiable rod bending steps that are customized to each patient's anatomy enabling surgeons to create custom-fit rods on the first pass, thereby increasing the speed and efficiency of rod bending, particularly in complex cases. This, in turn, reduces the morbidity and cost associated with such procedures. However, a need still exists for improved rod bending systems that allow for curvature and deformity correction in fixation procedures, provide the user with more rod bending options, and accommodate more of the user's clinical preferences.
  • SUMMARY
  • The present invention includes a system and methods for rod bending that enable the user (e.g., surgeon) to customize screw-based rod bend instructions to suit the desired correction of a patient's spinal condition. According to a broad aspect, the present invention includes a spatial tracking system for obtaining the three-dimensional position information of surgical implants, a processing system with software to convert the implant locations to a series of bend instructions based on a desired correction, and a mechanical rod bender for bending a surgical linking device to achieve the desired spinal correction.
  • According to another aspect of the present invention, the spatial tracking system includes includes an infrared (IR) position sensor and at least one IR-reflective tracking array attached to at digitizer pointer used to digitize the surgical implant location. The spatial tracking system is communicatively linked to the processing system such that the processing system may utilize the spatial position information to generate bend instructions.
  • According to another aspect of the present invention, the processing system is programmed to generate bend instructions based on one or more surgeon-prescribed clinical objectives. For example, the processing system may be programmed to create a custom bend, adjust one or more points to which the rod will be bent to, suggest a pre-bent rod option, provide spinal correction in the sagittal plane, provide spinal correction in the coronal plane, and provide correction to achieve global spinal balance, and as well as perform a plurality of predetermined functions. The processing system is further configured to preview and display the results of these clinical objectives and/or predetermined functions to the user in a meaningful way.
  • According to another aspect of the invention, one or more surgical procedures may be performed using various embodiments of the system.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Many advantages of the present invention will be apparent to those skilled in the art with a reading of this specification in conjunction with the attached drawings, wherein like reference numerals are applied to like elements and wherein:
  • FIG. 1 is a surgical procedure setup depicting the components of a surgical bending system, according to one embodiment;
  • FIG. 2 is a perspective view of one embodiment of a digitizer array in the closed position comprising part of the system of FIG. 1;
  • FIG. 3 is an exploded perspective view of the digitizer array of FIG. 2;
  • FIG. 4 is a perspective view of the digitizer array of FIG. 2 in the open position;
  • FIG. 5 is a front view of one embodiment of a digitizer pointer assembly comprising part of the system of FIG. 1;
  • FIG. 6 is a perspective view of various surgical pointers compatible with the digitizer array of FIG. 2;
  • FIG. 7 is a partial perspective view of the offset pointer of FIG. 6 in a collapsed position;
  • FIG. 8 is a partial exploded view of the offset pointer of FIG. 6;
  • FIG. 9 is a partial perspective view of the offset pointer of FIG. 6 in an extended position;
  • FIG. 10 is a flowchart depicting the steps of the spatial tracking algorithm according to one embodiment;
  • FIG. 11 is a flowchart depicting the rod bending workflow according to one embodiment;
  • FIG. 12 is a flowchart depicting the steps in generating a rod solution according to a first embodiment;
  • FIG. 13 is a flowchart depicting the steps in generating rod solution according to a second embodiment;
  • FIG. 14 is a flowchart depicting the steps in generating a rod solution according to a third embodiment;
  • FIG. 15 is a flowchart depicting the steps of the rod bending process according to a first embodiment;
  • FIG. 16 is a screen shot depicting an example setup screen of the system of FIG. 1;
  • FIG. 17 is a screen shot depicting an example IR positioning sensor setup screen of the system of FIG. 1;
  • FIG. 18 is a screen shot depicting an example screw location digitization screen during a first step in the Acquire Screws step of FIG. 15;
  • FIG. 19 is a screen shot depicting an example screw location digitization screen during a second step in the Acquire Screws step of FIG. 15;
  • FIG. 20 is a screen shot depicting an example screw digitization screen during a third step in the Acquire Screws step of FIG. 15;
  • FIG. 21 is a screen shot depicting an example bend instructions screen in the Bend Instructions step of FIG. 15;
  • FIG. 22 is a flowchart depicting the steps of the rod bending process according to a second embodiment;
  • FIG. 23 is a screen shot depicting an example Advanced Options menu screen of the system of FIG. 1;
  • FIG. 24 is a screen shot illustrating a first example screen of an Adjust Points feature according to one embodiment;
  • FIG. 25 is a screen shot illustrating a second example screen of the Adjust Points feature of FIG. 24;
  • FIG. 26 is a screen shot illustrating a third example screen of the Adjust Points feature of FIG. 24;
  • FIG. 27 is a screen shot illustrating a first example screen of a Pre-Bent Preview feature according to one embodiment;
  • FIG. 28 is a screen shot illustrating a second example screen of the Pre-Bent Preview feature of FIG. 27;
  • FIG. 29 is a screen shot illustrating a third example screen of the Pre-Bent Preview feature of FIG. 27;
  • FIG. 30 is a screen shot illustrating a first example screen of a Sagittal Correction feature according to one embodiment;
  • FIG. 31 is a screen shot illustrating a second example screen of the Sagittal Correction feature according to the first embodiment;
  • FIG. 32 is a screen shot illustrating a first example screen of the Sagittal Correction feature according to a second embodiment;
  • FIG. 33 is a screen shot illustrating an additional example screen of the Sagittal Correction feature according to the first and/or second embodiment;
  • FIG. 34 is a screen shot illustrating a first example screen of the Coronal Correction feature according to a first embodiment;
  • FIG. 35 is a screen shot illustrating a second example screen of the Coronal Correction feature according to a first embodiment;
  • FIG. 36 is a screen shot illustrating a third example screen of the Coronal Correction feature according to the first embodiment;
  • FIG. 37 is a screen shot illustrating a fourth example screen of the Coronal Correction feature according to the first embodiment;
  • FIG. 38 is a screen shot illustrating a first example screen of the Coronal Correction feature according to a second embodiment;
  • FIG. 39 is a screen shot illustrating a second example screen of the Coronal Correction feature according to the second embodiment;
  • FIG. 40 is a screen shot illustrating a third example screen of the Coronal Correction feature according to the second embodiment;
  • FIG. 41 is a flowchart illustrating the steps of the Global Spinal Balance feature according to one embodiment;
  • FIG. 42 is a screen shot illustrating a first example screen of the Global Spinal Balance feature in pre-operative mode;
  • FIG. 43 is a screen shot illustrating a first example screen of the Global Spinal Balance feature in target mode;
  • FIG. 44 is a screen shot illustrating a second example screen of the Global Spinal Balance feature in target mode;
  • FIG. 45 is a screen shot illustrating a first example screen of the Global Spinal Balance feature in intraoperative mode;
  • FIG. 46 is a screen shot illustrating a second example screen of the Global Spinal Balance feature in intraoperative mode;
  • FIG. 47 is a screen shot illustrating a third example screen of the Global Spinal Balance feature in intraoperative mode;
  • FIG. 48 is a screen shot illustrating a fourth example screen of the Global Spinal Balance feature in intraoperative mode;
  • FIG. 49 is a screen shot illustrating a fifth example screen of the Global Spinal Balance feature in intraoperative mode; and
  • FIG. 50 is a perspective view of one embodiment of a mechanical rod bender comprising part of the surgical bending system of FIG. 1.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in development of any such actual embodiment, numerous implantation-specific decisions must be made to achieve the developers' specific goals such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. The systems and methods disclosed herein boast a variety of inventive features and components that warrant patent protection, both individually and in combination.
  • With reference now to FIG. 1, there is shown, by way of example, one embodiment of a surgical bending system 10 including a spatial tracking system 12 to obtain the location of one or more surgical implants 14, a control unit 16 containing software to convert the implant locations to a series of bend instructions, and a bending device 18 to execute the bend instructions.
  • Preferably, the spatial tracking system 12 includes an IR camera 20, a digitizer pointer 23, as well as other components including Host USB converter 21. The spatial tracking system 12 is in communication with control unit 16. The control unit 16 has spatial relation software and is communicatively linked to the display 32 so that information relevant to the surgical procedure may be conveyed to the user in a meaningful manner. By way of example, the relevant information includes, but is not limited to, spatial positioning data (e.g., translational data in the x, y, and z axes and orientation/rotational data Rx, Ry, and Rz) acquired by the IR camera 20. According to one or more embodiments, the system 10 comprises a neuromonitoring system communicatively linked to the spatial tracking system 12 via the control unit 16. By way of example only, the neuromonitoring system may be the neuromonitoring system shown and described in U.S. Pat. No. 8,255,045, entitled “Neurophysiologic Monitoring System” and filed on Apr. 3, 2008, the entire contents of which are hereby incorporated by reference as if set forth fully herein.
  • FIGS. 2-9 depict the various components of one or more digitizer pointers 23 for use with the present invention. FIGS. 2-4 detail an example IR-reflective tracking array 22 component of the digitizer pointer 23. Array 22 includes a housing 34, bilateral shutters 36, and a plurality of IR-reflective spheres 38 arranged in a calculated manner at various locations on the array 22 such that their position information is selectively detectable by the IR camera 20. Housing 34 comprises a top housing 40, bottom housing 42, and a distal threaded aperture 56 configured to threadably receive the threaded end 78 of a stylus (e.g., stylus 24, 26, 28, and/or 30). Top housing portion 40 is further comprised of upper portion 44, underside 46, and sides 48. A plurality of sphere apertures 52 extend between upper portion 44 and underside 46 and are sized and dimensioned to receive reflective spheres 38 within recessed pockets 54. Each side 48 includes cutout 50 sized and dimensioned to receive tongue 70. Bottom housing 42 is comprised of a first face 58 and a second face 60. The first face 58 includes nesting platforms 62 and bullet posts 64. Each shutter 36 includes handle portion 66, cover portion 68, tongue 70, interdigitating gear teeth 72, and channel 74 for receiving bullet posts 64. A spring 76 extends between the two shutters 36 and is held in place via spring posts 71.
  • In an assembled state, each IR-reflective sphere 38 is nested on a platform 62. Top housing 40 is placed over bottom housing 42 in a snap fit configuration such that each IR-reflective sphere 38 fits within a recessed pocket 54 within its respective sphere aperture 52. According to one implementation, bilateral shutters 36 are positioned over the housing 34 with tongues 70 sliding into cutouts 50 such that each shutter cover 68 obscures exactly one half of the IR-reflective sphere 38 (for example, the middle IR-reflective sphere 38) as depicted in FIG. 2.
  • As depicted in FIG. 5, the IR-reflective tracking array 22 mates with one or more surgical objects (for example styluses 24, 26, 28, 30). Each stylus 24, 26, 28, 30 includes a threaded proximal end 78 for mating with the threaded distal aperture 56 of the IR-reflective tracking array 22, elongate shaft 80, and shaped distal tip 82. Shaped distal tip 82 may be any shape that is complimentary to, and fits securely within, the shape of a particular screw head. For example, FIG. 6 shows styluses 24, 26, 28, and 30 each with a different shaped distal tip designed to mate with different open screw systems, minimally-invasive screw systems, and closed tulip, iliac, and offset connector systems. The distal tip 82 is preferably inserted into each screw while orienting the digitizer pointer coaxial to that screw (or other fixation device).
  • According to some implementations (for example, the implementations shown with respect to styluses 24, 26, and 28), the length of the elongate shaft 80 is fixed relative to the array 22 such that all digitized points are a consistent length from the geometry of the IR-reflective markers 38 and position information may be obtained from this relationship. According to other implementations (for example, the implementation shown with respect to offset pointer 30), the length of the elongate shaft 80 is adjustable relative to the array 22 such as that shown with stylus 30, effectively elongating the distance from the digitized point and the IR-reflective markers. This longer distance translates to digitization of a point above the actual screw head based on the distance the user adjusted the elongate shaft 80. As will be appreciated in conjunction with the discussion below, the resulting bend instructions would shape a rod that traverses that point above the screw allowing the user to reduce the screw to the rod.
  • As shown in FIGS. 6-8, offset pointer 30 includes an elongate tubular member 84 and an inner piston 86. Elongate tubular member 84 is comprised of a milled helical slot 104 and a plurality of offset depth slots 106 located around the helix that correspond to a plurality of offset distances as will be described below. Inner piston 86 includes shaft 88, T-shaped cap 92, springs 94, and bushing 96. The T-shaped cap 92 is positioned over the proximal end of the shaft 88 and is preferably welded to the proximal end 105 of the elongate tubular member 84. Springs 94 are slideably positioned along the length of the shaft 88 between the distal end 93 of the T-shaped cap 92 and bushing 96. Bushing 96 is positioned over the distal end of the shaft 88. Pin 100 is travels through, and protrudes laterally from, slots 90, 98 on the inner shaft 88 and bushing 96, thereby securing the bushing 96 to the inner shaft 88. The pin 100 is sized and dimensioned such that it travels through the helical slot 104 and be positioned within each of the offset depth slots 106.
  • The offset pointer 30 gives the user the ability to execute planned screw movement by a specific amount. The user inserts the offset pointer 30 into the screw head. Keeping the distal tip 82 engaged to the screw head, the user then selects an offset amount to be added to the screw and angles the offset pointer 30 in the direction he or she wishes to apply the offset to. To adjust between offset depth slots 106, the shaft 88 is pulled away from the array 22 and twisted until the pin 100 falls into the desired offset slot 106. As the shaft 88 is pulled, it telescopes in and out of the elongate tubular member 84 such that the distance between the shaped distal end 82 and the array 22 is increased. For purposes of illustration, FIG. 8 shows the offset pointer 30 with the pin 100 in the 16 mm offset slot 106 corresponding to a 16 mm offset between the pointer 30 length and the IR-reflective array 22. Offset options may be provided, by way of example only from 0 mm to 16 mm offsets in 2 mm increments. The system 10 will then acquire position information at that
  • The digitizer pointer 23 may be used to acquire positional information about some or all screw locations. According to a preferred embodiment, the shaped distal tip 82 is coaxially aligned into the screw head and the array 22 is triggered to register the screw point. Screw locations may be digitized in a superior-inferior or inferior-superior direction. According to some implementations, the first screw location digitized correlates to the rod insertion direction component of the bend instructions (described below). Squeezing handles 66 activates the spring mechanism and permits the shutters 36 to open equally via the interdigitating gear teeth 72 (FIG. 4). Opening the shutter covers 68 exposes the middle IR-reflective sphere 38 and allows the IRtracking array 22 to be “seen” by the IR camera 20 and the position of the digitizer pointer 23 to be digitized. In this way, the IR camera 20 only recognizes the digitizer pointer 23 once the middle sphere 38 is exposed which allows for point-by-point tracking and obviates the sensing and digitization of one or more unnecessary data points which may occur with prior art systems that continually track surgical objects. Further, use of the gear mechanism allows the passive IR-reflective sphere 38 to be “seen” symmetrically by the IR camera 20, thereby enabling a more accurate calculation of position information by the system 10. According to some implementations, the control unit 16 emits an audible sound to notify the user that the middle sphere 38 is recognized by the IR camera 20 and the screw point is acquired. Once a point has been registered, the shutter handles 66 may be released, thereby closing the bilateral shutters 36. This process is then repeated for all screw locations to be digitized.
  • In accordance with the present invention, there are provided a plurality algorithms for achieving rod bends. The surgical bending algorithms may be divided into two smaller sub-systems: (1) the spatial location algorithms that acquire, collect, and digitize points in space and (2) the bending algorithms that analyze the points and calculate the bend instructions and rod length needed to bend a rod with the mechanical bending device 18.
  • As set forth above, the spatial tracking system 12 measures the six degrees of freedom (6 DOF) information for the tracked IR-reflective spheres 38. These data provide the full pose (position and orientation) of each screw of interest which may then be made available to the algorithm library to calculate the bend instructions. FIG. 10 is a flow chart indicating the steps of the spatial location data acquisition process according to one embodiment. The system 10 initializes the sensor objects from configuration to connect to, control, and read data from the IR camera 20 (step 140). The system 10 then inspects all devices connected to it and finds the device with a device ID that corresponds to the IR camera 20 (step 141). At step 142, if an IR camera 20 is found at step 141, the system 10 continues to establish a connection with the IR camera 20 (step 143). However, if not the system 10 continues to search. After the system 10 connects to the IR camera 20, it then loads a tool file that defines the array 22 (step 144). After initialization and tool file loading, the IR camera 20 must prepare for taking data. At step 145, the IR camera 20 is enabled and ready to generate positional data but is left idle until tracking is enabled. By way of example and as described with reference to FIG. 17, selecting the position of the IR camera 20 with respect to the patient's body causes the control unit 16 to send the IR camera 20 a command to begin tracking. With tracking enabled (step 146), the IR camera 20 may be polled to for data (step 147). Preferably, new data is requested twenty times per second from the IR camera 20. At step 148, the data generated from polling the IR camera 20 is checked to ensure that it is reporting valid data. The data may be considered valid if all of the IR-reflective spheres 38 are visible to the IR camera 20, the digitizer pointer 23 is fully inside the IR camera's 20 working volume, there is no interference between the IR camera 20 and the digitizer pointer 23, and both the location and rotation information reported are not null. At step 149, if the data is not deemed valid, then the digitized point is not used by the system 10 and polling is resumed. If the fifth IR-reflective sphere 38 (i.e. the middle sphere) is visible on the digitizer pointer 23 (step 150), the process of collecting positional data for the bend algorithm commences. If the middle sphere 38 is not visible, then the data is available to the system 10 only to show proximity of the IR camera 20 and IR-reflective tracking array 22 (step 151). Points used by the bend algorithm are preferably an average of several raw elements (step 152). Normally, five points are collected at this step before the points are processed and made available to the bend algorithm. The position data is averaged using a mean calculation. The directions are averaged in the quaternion representation (raw form) then converted to a unit direction vector. The data is rotated from the spatial tracking system 12 coordinate from into the system 10 coordinate frame using a rotation matrix. At step 153, after all processing, the data is available for the bend algorithm to collect and process further as will be described in greater detail below.
  • The surgical bending software takes the location and direction data of the screw locations as described above and uses one or more geometry-based algorithms to convert these relative screw locations into a series of bend instructions. FIG. 11 is a flow chart indicating the steps of the surgical bending process according to a first embodiment. At the input validation step 154, the system 10 may validate the system inputs to ensure the rod overhang is greater than zero, validate the sensor setup to ensure that the IR camera 20 location has been set, and validate each of the acquired points. By way of the example, the validation of each of the acquired points ensures, for example, that there are at least two screw points digitized, no two screw locations are too far apart, no two screw locations are too close together, and the span between the superior-most and inferior-most screw locations is not longer than the longest available rod.
  • At the transformation step 155, the data may be centered and aligned such that the first data point acquired is set at the system 10 coordinate's origin and all data is aligned to the x-axis of the system's coordinates thereby reducing any potential misalignment of the IR camera 20 relative to the patient's spine.
  • At the rod calculations step 156, the system 10 may perform rod calculations for a straight rod solution, a pre-bent rod solution, and a custom-bend solution. For a straight rod solution, the system 10 first determines the length of a straight rod that will span all of the screw locations. This length may be calculated to accommodate each of the screw heads, hex and nose lengths of the rods chosen, and the user's selected rod overhang length. The system 10 then fits the data to a straight line, if the screw data is within tolerance of the straight line, then the bend instructions will return a straight rod, otherwise it will return no rod solution and proceed to look for a pre-bent rod solution. By way of example only, the tolerance may be 2 mm in each of the sagittal and coronal planes.
  • For a pre-bent rod solution, the system 10 first determines the length of the shortest pre-bent rod from the available rod from the available rods (as will be described in greater detail below) that will span all of the screw locations. This length may be calculated to accommodate each of the screw heads, hex and nose lengths of the rods chosen, and the user's selected rod overhang length. Next, the system 10 fits the digitized screw data to a circular arc in 3-dimensional space. If the screw data is within the tolerance of the arc, then the bend instructions will return a pre-bent rod solution, otherwise it will return no rod solution and proceed to look for a custom-bend rod solution. By way of example, this tolerance may be 2 mm in each of the sagittal and coronal planes.
  • FIG. 12 depicts a flow chart of a custom bend algorithm according to one embodiment. At step 158, screw location and direction data is generated by the spatial tracking system 12 as set forth above. The data is then projected into two planes: the x-y plane (coronal view) and the x-z plane (sagittal view). Each projection is then handled as a 2D data set. At step 159, a fixed size loop is generated over small incremental offsets for the first bend location for the end of the rod which optimizes the ability of the bend reduction step 162 to make smooth solutions. At step 160, the system 10 creates a spline node at each screw location and makes a piecewise continuous 4th order polynomial curve (cubic spline) through the screw points. At step 161, the smooth, continuous spline is sampled at a regular interval (e.g., every 1 cm) along the curve to generate an initial set of proposed bend locations. At step 162, as many bends as possible are removed from the initial set of proposed bend locations from step 161 as possible to reduce the number of bends the user must execute on a rod in order to fit it into a screw at each digitized screw point. According to one embodiment, no bend is removed if eliminating it would: (1) cause the path of the bent rod to deviate more than a predefined tolerance limit; (2) cause any of the bend angles to exceed the maximum desired bend angle; and (3) cause the rod-to-screw intersection angle to exceed the maximum angulation of the screw head. Once the number of bends has been reduced, the 2D data sets are combined and handled as a 3D data set. The 3D line segments are then evaluated based on distance between each line segment interaction (Location), the angle between two line segments (Bend Angle), and the rotation (Rotation) needed to orient the bend into the next bend plane using the following calculations:

  • Location: ((X2−X1)2+(Y2−Y1)2+(Z2−Z1)2)1/2

  • Bend Angle: arc-cosine(V12·V23)
      • where · is the dot product and V is a vector between 2 points

  • Rotation: arc-cosine(N123·N234)
      • where · is the dot product and N is the normal vector to a plane containing 3 points.
        These calculated numbers are then tabulated to the physical design of the rod bender 18 and the selected rod material and diameter. Bend angles account for the mechanical rod bender's 18 tolerance and will account for the rod's material and diameter based on previous calibration testing performed with mechanical rod bender 18 and the specific kind of rod. Calibration testing quantifies the amount of spring-back that is expected when bending a certain rod material and diameter. By way of illustration, a 5.5 mm diameter titanium rod's spring-back can be characterized by a 1st order linear equation:
  • BA A = 0.94 * BA T - 5.66
  • where BAT is the theoretical bend angle needed that was calculated from the 3D line segment and BAA is the actual bend angle needed to bend the rod to so it can spring back to the theoretical bend angle. Thus, using this equation, when 20 degrees of bend is calculated from the 3D line segment above, the “spring-back” equation for that rod will formulate that a 25 degree bend needs to be executed in order for it to spring-back to 20 degrees. The length of the final rod is the total of all the calculated distances plus the selected rod overhang.
  • Once all of the rod solutions have been generated, the loop is completed (step 163). At step 164, from all of the rod solutions generated in the loop above, the system 10 may output the rod solution having the smallest maximum bend angle (i.e., the smoothest bent rod). It is to be appreciated that the system 10 may choose the rod solution displayed based on any number of other criteria. At step 169, the system 10 then generates the three-dimensional locations of the bends in space.
  • Referring back to the flow chart of FIG. 11, from the geometric bend locations and/or pre-bent rod output of the rod calculations step 156 above, the system 10 generates instructions for the user to choose a straight rod, a pre-bent rod, or to custom bend a rod (step 157). All of the output instructions are human-readable strings or characters. In all cases, the length of the required rod is calculated as described above and is displayed to the user as either a cut rod or standard rod. For custom bend solutions, rods are loaded into the bender with the “inserter end” (e.g., one pre-determined end of the rod) into the bender collet 126. If, due to geometric constraints, the rod cannot be bent from the inserter end, then the instructions are flipped, and the cut (or nose) end of the rod is instructed to be put into the bender collet 126. The bend instructions are generated from the geometric bend locations and are given as “Location”, “Rotation”, and “Bend” values as will be described in greater detail below. These values correspond to marks on the mechanical bender 18.
  • FIGS. 13-14 depict a flow chart of a second embodiment of a custom bend algorithm. In accordance with this second embodiment, the custom bend algorithm includes a virtual bender used to render a virtual rod. The following calculations and the flowcharts of FIGS. 13-14 highlight the steps of this embodiment.
  • The 3D vector si=[si x, si y, si z]T denotes the i'th screw digitized by the user such that the set of N acquired screws that defines a rod construct may be denoted as
  • S = [ s 0 , , s N - 1 ] 3 × N ( 1 )
  • It may be assumed that the screws have been collected in order (e.g. superior-most screw to inferior-most screw or inferior-most screw to superior-most screw) so the index i can also be thought of as the index through time.
  • A virtual rod (R) of length Lr given in mm is broken down into Nr uniformly distributed points, R=[r0, . . . , rNr-1]. Each rod point ri is composed of two components, a spatial component and a directional component ri {ri s, ri d}, where ri s, ri d ϵ
    Figure US20220071709A1-20220310-P00001
    3. The segments between rod points is constant and defined by
  • δ i = r i + 1 s - r i s . Let Δ d = i = 0 a δ i , then Δ N r - 1 = L r .
  • A virtual bender (B) consists of a mandrel (M) of radius Mr (mm). Preferably, though not necessary, the key assumption when bending the virtual rod around M is the conservation of arc length. For illustrative purposes only, if a 90° bend is introduced to an example rod R of length 100 mm around a mandrel with radius 10 mm to produce a rod
    Figure US20220071709A1-20220310-P00002
    , then
  • dR = dR ^ ( 2 )
  • The virtual rod, R, is bent according to a list of instructions. Each instruction consists of a location (Il), rotation (Ir), and bend angle (Iθ). The location is the position of the rod in the bender and corresponds to the point directly under the mandrel M. The rotation is given in degrees (0°-360°) and corresponds to the amount the rod is rotated from 0 in the collet. The bend angle is given by a single letter that corresponds to a specific angle in degrees. There is a corresponding notch on the bender with the same letter for the user to select.
  • The rod is initialized (step 166) such that the spatial component ri s=[Δi, 0, 0]T|i=0 N r -1, and the direction component ri d=[0, 1, 0]T|i=0 N r -1 which effectively orients the virtual rod to be at zero rotation in the virtual bender. For each bend instruction (step 167), the system 10 rotates the virtual rod around the x-axis by Ir (step 168). The system 10 finds the point that matches Il. The virtual rod is translated by −{circumflex over (r)}i. Next, each rod point from i to i+Mr*Iθ is projected onto the mandrel M while preserving segment length (step 169-170). The virtual rod is then rotated around the x-axis by angle −Ir. Next, the system 10 checks that r0 d=[0, 1, 0]T to verify that the virtual rod in the collet has the correct direction vector (step 171). At this point, R has approximated the geometry of the rod as it would be bent in the physical mechanical bender 18.
  • The next step is to align the bent virtual rod to the acquired screw positions (step 172). According to one embodiment, the alignment process has two stages—first, the system 100 finds the optimum rotation coarse scale (step 174). Second, the system performs the iterative closest point iteration algorithm fine scale.
  • Preferably, the system first initializes the result close to a global minimum (step 173). In the rod alignment algorithm, this initialization follows the approach described below:
  • Using the arc length of the custom rod and the arc length of the screws, putative matches from the screws to the rod are produced. This produces two 3D point sets of equal size. Given two 3D mean centered point sets Σ=[σ0, . . . , σN-1] and Γ=[γ0 . . . γN-1], then in the least squares sense, it is desirable to minimize
  • E = 1 N i = 0 N - 1 ( σ i - T γ i ) T ( σ i - T γ i ) ( 3 )
  • Where T denotes the rotation matrix. Let {circumflex over (T)} denote the optimum 3D rotation matrix, then
  • T ^ = arg T min 1 N i = 0 N - 1 ( σ i - T γ i ) T ( σ i - T γ i ) ( 4 )
  • It turns out that {circumflex over (T)}=UVT, where
  • C = SVD ( H ) = U V T ( 5 )
  • and
  • ( step 174 ) H = 1 N i = 0 N - 1 σ i T γ i . ( 6 )
  • Due to error potentially introduced by differences in arc length, the proposed solution may not be the global minimum. Thus, the following are repeated until convergence (step 175):
  • For each si, find the closest rj (step 176)
  • Calculate the residual vector ei=si−rj
  • Calculate the average residual vector
  • ( step 177 ) e ^ = 1 N i = 0 N - 1 e i
  • Translate the rod by ê (step 178)
  • Verify the error is reduced (step 179).
  • Next the virtual rod is rendered at step 180. The curve may be simplified for rendering purposes by traversing each triad of rod points and calculating the angle between the two vectors. If the first triad is {r0, r1, r2}, the two vectors are formed as v=r1−r0 and w=r2−r0. If |v×w|=0, then the middle point of the triad (in this case r1) is redundant, provides no new information to the geometry of the rod and may be removed.
  • It will be appreciated that, in accordance with this embodiment of the rod bending algorithm, the virtual bender may be capable of bending a rod at any location of any angle perfectly to observe arc length. Using a virtually bent 3D rod to determine problem screws (i.e. screw locations with a high screw-rod fit error) may give an accurate fit between the actual screws and actual rod before the actual rod is bent. This may be particularly advantageous in certain surgical applications where it is desirable to quantify the amount of offset between a rod solution and the digitized screw locations as well as input one or more surgical parameters into the rod bending calculation.
  • In accordance with the present invention, there is described a third embodiment of an algorithm for generating a custom bend which may be utilized in conjunction with the second embodiment. The approach is directed to one or more algorithms that sample from probability distributions and employ random sampling to obtain a numerical result. A Markov chain is a sequence of random variables, X0, X1 . . . , such that the current state, the future and past states are independent.
  • p ( X n + 1 = x | X 0 = x 0 , X 1 = x 1 , , X n = x n ) = p ( X n + 1 = x | X n = x n ) ( 1 )
  • Given an ordered set of screws that define a construct
  • S = [ s 0 , , s N - 1 ] 3 × N ( 2 )
  • where si=[si x, si y, si z]T denotes the i'th 3D screw digitized by the user, the system 10 finds the set of bend instructions that define a rod that fits the screws in an optimum way defined by an error function. It is to be appreciated that the search of the bender space is quite complex as there are several constraints that must be observed for the algorithm to produce valid bend instructions (e.g., the bend locations cannot be in close proximity to the screws, the bend locations must be in multiples of 5 mm apart, the bend angles must be in multiples of 5°, no bend angle can be greater than 60°, etc.).
  • In accordance with the second embodiment, the likelihood or error function may be constructed based on how well the virtual rod fits the data. Here, the rod is fit to the data in the least squares sense. In this way, a likelihood function is defined that incorporates, for example, a prior to prefer fewer bend instructions:
  • L = i = 0 N s - 1 1 σ s π e - ( s i - r i ) 2 σ s 2 e - N b α = ( 1 σ s π ) N s e i = 0 N s - 1 - ( s i - r i ) 2 σ s 2 e - N b α
  • such that the log-likelihood function may be defined as
  • log ( L ) = - N s log ( σ s ) - i = 0 N s - 1 - ( s i - r i ) 2 σ s 2 - - N b α ( 3 )
  • Where Nb denotes the number of bends in the rod, Ns denotes the number of screw locations, si is the i'th screw, ri is the i'th rod point, and α is the control hyper-parameter for the number of bends (e.g. α=0.05).
  • As can be seen from equation (3), there has been introduced a prior to control the number of bends introduced into the rod. This probabilistic approach to bend instruction generation allows for tailoring of constraints, for instance, a prior on the severity of the bends could also be introduced. Further, a prior could be introduced on how to define how close to the screws the bends may be located. This prior may have a “preferred” value, but probabilistically, there may be an optimal solution away from this idealized value. By way of example, some hypothesized rules that may be applied to this algorithm include, but are not limited to: birth move: add a bend to the current solution; death move; remove a bend from the current solution; update move: translate rod points along the rod. Use of this embodiment may provide more potential rod solutions to the user.
  • Details of the surgical bending system 10 are discussed in conjunction with a first embodiment of a method for obtaining a custom-fit rod. The system 10 is typically utilized at the end of a posterior or lateral fixation surgical procedure after screws, hooks or other instrumentation have been placed, but prior to rod insertion. As shown in the flowchart of FIG. 15, the surgical bending system 10 obtains position information of the implanted screw positions and outputs bend instructions for a rod shaped to custom-fit within those implanted screws. At step 190, pertinent information is inputted into the system via a setup screen. At step 192, the user designates which side (left or right) rod will be created. At step 194, the system 10 digitizes the screw locations. At step 196, the system 10 outputs bend instructions. At step 198, the user bends the rod according to the bend instructions. Steps 190-198 may then be repeated for the other rod.
  • FIG. 16 illustrates, by way of example only, one embodiment of a screen display 200 of the control unit 16 capable of receiving input from a user in addition to communicating feedback information to the user. In this example (though it is not a necessity), a graphical user interface (GUI) is utilized to enter data directly from the screen display 200. As depicted in FIG. 16, the screen display 200 may contain a header bar 202, a navigation column 204, device column 206, and a message bar 208.
  • Header bar 302 may allow the user to view the date and time, alter settings, adjust the system volume, and obtain help information via date and time display 210, settings menu 212, volume menu 214, and help menu 216 respectively. Selecting the settings drop-down menu 212 allows the user to navigate to system, history, and shutdown buttons (not shown). For example, choosing the system button displays the rod bending software version and rod bender configuration file; choosing the shutdown option shuts down the rod bending software application as well as any other software application residing on the control unit 16 (e.g. a neuromonitoring software application); and choosing the history option allows the user to navigate to historical bend points/instruction data in previous system sessions as will be described in greater detail below. Selecting the help menu 216 navigates the user to the system user manual. As will be described in greater detail below, navigation column 204 contains various buttons (e.g., buttons 218, 220, 222, 224, 226) for navigation through various steps in the rod bending process. Pressing button 204 expands/minimizes the details of the navigation column. Devices column 206 contains various buttons indicating the status of one or more devices associated with the surgical bending system 10. By way of example, devices column 206 may include buttons 228 and 230 for the digitizer 23 and IR camera 20 components of the system 10, respectively. Pressing button 206 expands/minimizes the details of the devices column. Furthermore, pop-up message bar 208 communicates instructions, alerts, and system errors to the user.
  • FIGS. 16-17 depict an example setup screen. Upon selecting setup button 218 on the display screen 200, the surgical bending system 10 automatically initiates the setup procedure. The system 10 is configured to detect the connection status of each of its required components. By way of example only, icons 228, 230 indicate the connectivity and activity status of the digitizer 23 and IR camera 20, respectively. If one or more required components are not connected or are connected improperly, the display 200 may alert the user to address the issue before proceeding via textual, audio, and/or visual means (e.g., textual messages, audible tones, colored icons or screens, blinking icons or screens, etc.). According to one embodiment, the digitizer icon 228 is a status indicator for the active acquisition and/or recognition of the digitizer and the presence and background color of the icon 228 may change to indicate the digitizer tracking status. By way of example, the icon 228 may be absent when the system 10 is not acquiring screws and does not recognize the digitizer, gray when the system 10 is not acquiring screws and recognizes the digitizer, green when the system 10 is in screw acquisition mode and recognizes the digitizer, and red when the system 10 is in screw acquisition mode and does not recognize the digitizer. Pressing button 206 expands minimizes the details of the device column 206. Depending on the type of surgery, type of patient deformity, etc., it may be advantageous for the user to choose a digitizer from a selection of different digitizers. According to one embodiment, pressing icon 228 expands a pull-out window for the different stylus options available with the rod bending system 10 (e.g., styluses 22, 24, 26, 30 as described above). According to another embodiment, the IR Camera graphic icon 230 is a status indicator for the IR camera 20. The presence and background color of the icon 230 may change to indicate the status of the IR camera 20. By way of example, the icon 230 may be absent when the system 10 does not recognize the camera 20, gray when the system 10 recognizes the camera 20 is connected to the system 10, and red when the system 10 senses a communication or bump error for the camera 20. Preferably, the camera 20 should be recognized if it is connected after initialization of the bending application.
  • With all of the required components properly connected to the surgical bending system 10, the user may then input one or more pieces of case-specific information from one or more drop-down menus. By way of example, drop-down menus for rod system 234, rod material/diameter 236, rod overhang 238, procedure type (not shown), and surgical levels) may be accessed from the setup selection panel 232 of the screen display 200. The rod system drop-down menu 234 allows the user to choose the rod system he/she plans to use. This selection drives choices for the rod material/diameter 236 drop-down menus. By way of example, under the rod system drop-down menu 234, the system 10 may be programmed with numerous fixation options from one or more manufacturers. Alternatively, it may be programmed with the fixation system selections for one manufacturer only (e.g. NuVasive® Precept™, Armada®, and SpherX® EXT). The user may also choose the combination of rod material (e.g. titanium, cobalt chrome, etc.) and rod diameter (e.g. 5.5 mm diameter, 3.5 mm diameter, etc.). The drop-down menu 238 for material and diameter options may preferably be dependent upon the choice of rod system. Because the geometry and sizes can vary between manufacturers and/or rod systems, programming the system 10 with these specific inputs can aid in outputting even more accurate bend instructions. The user may also choose the amount of overhang from the rod overhang pull-down menu 238. By way of example, the amount of overhang may be selectable in 0 mm, 2.5 mm, 5 mm, 7.5 mm, and 10 mm lengths. According to one embodiment, this function prescribes a symmetric overhang on both the superior and inferior ends of the rod. According to another embodiment, this function also prescribes different overhang lengths on either end of the rod based on user preference and patient anatomical considerations. Although not shown, the system 10 also contains functionality for accommodating multiple rod diameters and transitional rods as used, for example in Occipital-Cervical-Thoracic (OCT) fusion procedures
  • After the setup inputs have been inputted into the setup selection panel 232, the surgical bending system 10 aids the user in setting up the IR camera 20 in an optimal position for positional data acquisition. It is to be appreciated that any visual (textual, graphic) indicator may be used to indicate the camera placement instructions. According to some implementations, an active graphic directs the user to position the IR camera 20 relative to the digitizer array 22 held static within the patient's body. As shown in FIG. 17, the user first selects the side of the patient the IR camera 20 is located on by selecting the left side sensor position button 242 or right side sensor position button 244 in the IR camera setup panel 240. Choosing the left or right side sensor position button 242, 244 activates a the IR camera positioning panel 246 such that camera graphic 248 and a tracking volume box graphic 250 appear on the display screen 200. Tracking volume box 252 that moves with the camera graphic 248 as the IR camera 20 is moved. Next, the user positions the digitizer array 22 into the body of the patient. Once recognized by the system 10, a target volume box 252 (which may be displayed as white in color) is positioned over the patient graphic 254. Next, the user moves the IR camera 20 relative to the digitizer array 22 until the tracking volume box 250 matches up to the position of the target volume box 252. According to some implementations, the camera graphic 248 increases in size if it is moved superior to the target tracking volume and decreases in size if it is moved inferior to the target volume. According to some other implementations, the tracking volume box 250 may be color-coded to depict the relative distance to the target volume. By way of example, the tracking volume box 250 may be depicted in red if the distance to the target volume is outside of a certain distance in one or more axes (e.g., outside ±8 cm in all 3 axes) and green if within or equal to ±8 cm in all 3 axes. Once the optimal position of the IR camera 20 has been ascertained, the setup process is complete.
  • Once the user has completed all of the required steps in the setup screen, a graphic (e.g., a check) may appear on setup button 218 to indicate such a completion and the system 10 proceeds to step 192 in the flowchart of FIG. 15. Using the GUI, the user designates which side of the patient's spine to acquire digitized positional information from by selecting either the Left “L” toggle/status button 220 or Right “R” toggle/status button 222. The user then selects the Acquire Screws button 224 which navigates the display screen 200 to an Acquire Screws (left or right) screen shown by way of example in FIGS. 18-20. In Acquire Screws mode, the display screen 200 includes a sagittal view panel 256 and a coronal view panel 258 with spine graphics 260, 262 in each of the sagittal and coronal views, respectively. Spine graphic 260 may flip orientation depending on which side of the spine the user is digitizing (left or right). Additionally, spine graphic 262 may highlight the side of the patient the user is digitizing (left or right). The user may digitize the location of each implanted screw using, by way of example, the digitizer pointer 23 as described above. As each screw point 264 is digitized, its relative location with respect to the other acquired screw points 264 can be viewed in both sagittal and coronal views via the sagittal view panel 256 and the coronal view panel 258 as shown in FIG. 19. Optionally, the last screw point digitized may have a different graphic 266 than the previously-acquired screw points 264 (by way of example, the last screw point acquired 266 may be a halo and the previously-acquired screw points 264 may be circles). The screws locations may be digitized from a superior-to-inferior or inferior-to-superior direction and according to some embodiments, the system 10 can detect which direction the digitization is occurring in after the acquisition of two consecutive screw point locations. If during the digitization process, the user wishes to delete a digitized screw point, he/she may do so by pressing the “Clear Point” button 270. If the user wishes to delete all digitized screw points, he/she may do so by pressing the “Clear All Points” button 268.
  • Once the digitized screw points 264 are deemed acceptable, the user may press the “Calculate Rod” button 272 which initiates the curve calculation preferably using one of the algorithms discussed above. Once a rod solution has been calculated, a rod graphic 274 populates through the screw points 264, 266 and a confirmation graphic (e.g., a check) may appear on the “Acquire Screws” button 224 to indicate that the system 10 has generated a rod solution. Simultaneously, the “Calculate Rod” button 272 becomes the “Undo Rod” button 272. If the user presses the “Undo Rod” button 272, the rod solution 274 is cleared and the user may acquire more screw points or clear one or more screw points. After the “Undo Rod” button 272 is pressed, it then changes back to the “Calculate Rod” button 272. Optionally, the system 10 may include a visual graphic for where along a rod the curve calculation is generating a severe bend (acute angle). The user may select “Undo Rod” button 272, perform one or more surgical maneuvers (e.g. reduce the screw, backup the screw, adjust the screw head, etc.), redigitize the screw point, and generate a more feasible solution. If the rod solution is acceptable to the user, the Screw Acquisition step 194 is complete and the system 10 proceeds the Bend Instructions step 196 in the flowchart of FIG. 15.
  • The user then selects the “Bend Instructions” button 226 which navigates the display screen 200 to a Bend Instructions (left or right) screen shown by way of example in FIG. 21. The bend instructions within the bend instructions panel 276 allows the user to view the bend instructions corresponding to the resulting rod solution in the Acquire Screws screen (FIG. 20). By way of example, the bend instructions panel 276 contains three fields containing various aspects of the bending instruction: upper message field 278, bender instructions field 280, and lower message field 282. By way of example, the upper message field 278 may communicate the rod cut length, rod type, and/or rod loading instructions to the user (e.g. “Cut Rod: 175.00 mm Load Inserter End Into Bender”). The bender instructions field 280 displays rows 284 of bend maneuvers in location 286, rotation 288, and bend angle 290 to perform on the mechanical bender 18 as will be described in greater detail below. In the example shown in FIG. 21, there are five rows indicating five bend instructions. The lower message field 282 may communicate the direction of insertion or orientation of implanting the rod to the user. For example, the lower message field 282 shown in FIG. 21 provides the following sample instruction: “Insert Rod head to foot.” In some implementations, the rod insertion direction into the patient is dependent on the sequence of screw digitization (superior-to-inferior or inferior-to superior). According to one or more preferred embodiments, the bend instruction algorithm takes into account the orientation of the inferior, superior, anterior, and posterior aspects of the rod and ensures that these aspects are known to the user. As the instructions for use direct the user to load the rod into the bender, the system 10 manages which bends are imparted on the rod first based on the severity of the bend angles. The section of the bend instructions with greater bend angles may be performed first then the straighter bend sections of the bend instructions are performed last. Further, the instructions may also direct the user to align a laser line or orientation line on the rod to an alignment arrow (not shown) on the mechanical rod bender 18. This alignment controls the Anterior/Posterior orientation of the rod geometry and generates bend instructions accordingly. The user follows the bend instructions generated by the system 10 for location (location may be color-coded on the bender 18 and on the screen 200 as green triangle), rotation (rotation may be color-coded on the bender 18 and on the screen 200 as red circle), and bend angle (bend angle may be color-coded on the bender 18 and on the screen 200 as blue square), sequentially, starting at the first bend instruction and working sequentially until the final bend is completed. From here, the user may repeat steps 190-198 on the construct for the opposite side of the spine.
  • Within a surgical procedure, a user may wish to toggle between left and right screens to view left and right digitized screw points, rod previews, and bend instructions for reference or comparison. Selecting the Left “L” toggle/status button 220 and right “R” toggle/status button 222 allows the user to do so. According to one more implementations, the GUI may additionally include a History feature. Selecting the History button (not shown) will allow the user to refer back to any previous rod bending solution. The user navigates to the Bend Instructions screen 226 based on choice of the UR toggle buttons 220,222 and pressing Bend Instruction button 226. If navigating to previous bend instructions, the Bend Instructions screen will display previous bend instructions. Once the user has selected the desired rod solution, the user then executes the bends using the mechanical bender 18.
  • The embodiments described with respect to FIGS. 15 and 18-21 above contemplate digitizing the implanted screw positions and outputting bend instructions for a rod shaped to custom-fit within those implanted screws. In one or more additional embodiments, the system 10 obtains position information of the implanted screws (steps 192 and 194), accepts correction inputs via one or more advanced options features (step 195), and generates for viewing bend instructions for a rod shaped to fit at locations apart from those implanted screw positions (step 196) as depicted in the flowchart of FIG. 22. Installing a rod shaped in this manner could correct a curvature or deformity in the patient's spine according to a user's prescribed surgical plan. Details of the surgical bending system 10 are discussed now discussed with examples for obtaining a rod bent according to one or more surgical plans.
  • As depicted in FIG. 23, selecting the “Advanced Options” button 292 expands an Advanced Options menu 294 from which the user may perform one or more corrections to the digitized screw points and the system 10 generates bend instructions that will achieve those desired corrections on the patient's spine once the rod is implanted and the screws are brought to the rod.
  • In some surgical procedures, a user may wish that the rod bend solution will consider a point that is not a digitized screw point in determining the bend instructions. According to some implementations, this point is an adjusted distance from the digitized screw point location. Selecting the “Adjust Points” button 296 from the Advanced Options menu 294 navigates the user to an Adjust Points screen as depicted in FIG. 23. Selecting a digitized screw location of interest (for example the screw point represented as dot 304 in FIG. 24) highlights the screw point and brings up an adjust points control 306 in each of the sagittal and coronal views 256, 258. The user adjusts point 304 to its desired location in the sagittal and coronal planes using arrows 308, 310, 312, and 314. In some implementations, as the point moves, dot 304 changes color based on the distance from the originally digitized screw location as shown in FIG. 25. Preferably, that color corresponds to color-coded offset distance indicator 322 which provides visual feedback to the user as to the distance the point has been adjusted. As depicted by way of example, dot 304 appears yellow in FIG. 25 indicating that the point has moved 4 mm in each of the sagittal and coronal planes. In some implementations, the system 10 may have a maximum distance from the digitized point past which it will not allow the manipulated point to exceed (by way of example only, this distance may be 5 mm). The user may adjust as many points as desired in this fashion. The user may reset all adjusted points to their original configurations via “Reset” button 316 or may undo the last adjusted point via the “Undo Last” button 318. Once satisfied with the adjusted points, the user may either proceed to one or more additional advanced options as set forth below or select “Calculate Rod” 272. Once “Calculate Rod” 272 has been selected, the system 10 generates a rod in which the curve traverses the adjusted points, as in FIG. 26, thereby creating a correction-specific rod and providing the user with the ability to correct the curvature or deformity in the spine to his or her prescribed curve.
  • According to other implementations, a user may wish for a smoother rod bend. When the “Virtual Point” button 320 (shown by way of example in FIG. 25) is selected, the system 10 allows the user to add an additional point anywhere in between the superior-most and inferior-most digitized screw locations. While there is no screw at this location, this point is taken into consideration during the curve calculation and may coerce the curve into a more natural shape yielding a smoother rod bend. Once satisfied with the virtual points, the user may either proceed to one or more additional advanced options as set forth below or select “Calculate Rod” 272 and as described above, the system 10 generates a correction-specific rod solution 274 that the user may use to correct the spine to the shape of the rod.
  • It may be advantageous for some patient anatomies for a user to use a pre-bent rod. Use of a pre-bent rod eliminates the need for making additional bends to a rod while assuring that a desirable rod curve is achieved. After all screw points have been digitized in the Acquire Screws step 194, selecting the “View Pre-Bent Rod” button 298 from the Advanced Options menu 294 navigates the user to a “View Pre-Bent Rod” screen as depicted in FIGS. 27-28. Based on the digitized screw locations shown in FIG. 27, the system 10 calculates and outputs the best pre-bent rod geometry based on the selected manufacturer's rod system that was chosen during the setup step 190 (e.g. NuVasive® Precept™) and displays the best fit virtual pre-bent rod solution 324 available on top of the digitized screw points for viewing in the sagittal and coronal views 256, 258 (see FIG. 28). Preferably, the system 10 only generates a pre-bent rod solution if the geometry of the pre-bent rod fits the digitized screw points within a predetermined curve fitting tolerance (e.g. 7 mm). According to one or more embodiments (as depicted in FIG. 28), a color-coded offset distance indicator 322 may provide the user with an indication of the distance each screw position will be from the pre-bent rod construct. If the user is satisfied with the pre-bent rod suggestion, the system 10 proceeds to the Bend Instructions step 196 which displays the corresponding pre-bent rod specifications in the Bend Instructions Screen (FIG. 29). The upper message field 278 instructs the user that, based on the digitized screw points, an 85.0 mm pre-bent rod is recommended. From here, the user may decide whether the patient's anatomical and surgical requirements would be better suited with a pre-bent option or a custom-bent option. Armed with the information from FIGS. 27-29, the user may then adjust the screw positions to fit the pre-bent rod if needed (e.g., adjust the screw head, adjust the screw depth, etc.).
  • In some instances, a user may want to align or correct the patient's spine in the sagittal plane (i.e., add or subtract lordosis or kyphosis). The surgical bending system 10 includes a sagittal correction feature in which the user is able to measure the amount of lordosis in the spine and adjust angles in the sagittal plane. The system 10 then incorporates these inputs into the bend algorithm such that the rod solution includes the desired alignment or correction.
  • Selecting the “View Vectors” button 300 from the Advanced Options menu 294 initiates the sagittal correction feature. The user may select at least two points of interest and the system then determines the appropriate vector in the sagittal view. According to the embodiment shown in FIGS. 30-31 and 33, the angles are measured and adjusted based on the screw trajectory screw axis position) using the digitized screw data acquired in the Acquire Screws step 194. As shown in FIG. 30, the user selects at least two screw points of interest (e.g., screw points 338 and 342). The system 10 then measures the angle between the screw trajectories (shown here as 35 degrees). In some implementations, the system 10 may measure the total amount of lumbar lordosis by measuring the lumbar lordosis angle 334 in the superior lumbar spine (shown in FIG. 30 as 15 degrees) and the lumbar lordosis angle 336 in the inferior lumbar spine (show in FIG. 30 as 35 degrees). Using the angle adjustment buttons 328, 330 on the Angle Adjustment Menu 326, the user may increase or decrease the desired angle correction of the spine in the sagittal plane (i.e., add or subtract lordosis or kyphosis superiorly or inferiorly). As the angle is adjusted, the angular position 336 between the two screw points 338, 342 is changed as well. FIG. 31 illustrates an example in which the angular position 336 between points 338 and 342 is increased to 50 degrees). The system 10 may include a color-coded offset distance indicator 322 to provide the user with an indication of the distance each digitized screw position will be adjusted in the sagittal plane as described above. Once the desired amount of angular correction is achieved, the user may select the “Set” button 332, and then the “Calculate Rod” button 270. The system 10 then displays a rod solution 274 incorporating the user's clinical objective for correction of the spine in the sagittal plane as depicted in FIG. 33.
  • According to the embodiment of the sagittal correction feature shown in FIG. 32, the superior and inferior lumbar lordosis angles 334, 336 are measured, displayed, and adjusted referencing anatomy from an imported lateral radiographic image. By way of example, lateral radiographic image 358 may be inputted into the system 10. The user may touch the screen 200 and move lines 360 over at least two points of interest (e.g. the superior endplate of V1 and the inferior endplate of V3) and the system 10 then then measures the angle between the two lines 360. The Using the angle adjustment buttons 328, 330 on the Superior Angle Adjustment Menu 346 or
  • Inferior Angle Adjustment Menu 348, the user may increase or decrease the desired angle correction of the spine in the sagittal plane (i.e., add or subtract lordosis or kyphosis superiorly or inferiorly). As either the superior or inferior lumbar lordosis angle is adjusted, the amount of adjustment is dynamically altered in its respective angle measurement box (i.e., either superior lumbar lordosis angle box 354 or inferior lumbar lordosis angle box 356). As depicted in FIG. 32, the user adjusts angle lines 360 as part of the inferior lumbar lordosis angle. The system 10 measures this angle as 20 degrees as depicted in angle measurement field 350. The user then uses button 330 in superior angle adjustment menu 346 to increase the angle. This change is depicted in inferior lumbar lordosis angle box 356. Once the desired amount of correction is achieved, in this example, it is achieved at 50 degrees. The user may then press the capture angle button 352 and this parameter may be correlated to the digitized screw positions corresponding to the vertebral levels that those angles were measured off of. The system 10 may include a color-coded offset distance indicator 322 to provide the user with an indication of the distance each digitized screw position will be adjusted in the sagittal plane as described above. Once the desired amount of angular correction is achieved, the user may select the “Set” button 332, and then the “Calculate Rod” button 272. The system 10 then displays a rod solution 274 incorporating the user's clinical objective for correction of the spine in the sagittal plane as depicted in FIG. 33.
  • It is to be appreciated that, because patient position (e.g., pelvic tilt) may have an effect on the lumbar lordosis measurements, the sagittal correction feature of the system will be able to account for any patient positioning-related deviations. It will also be appreciated that in addition to lordotic corrections, the sagittal angle assessment tool may be useful for other types of surgical maneuvers, including but not limited to pedicle subtraction osteotomy (PSO) procedures and anterior column reconstruction (ACR) procedures.
  • In some instances, a user may want to align or correct the patient's spine in the coronal plane (i.e., correct scoliosis). The system 10 includes a coronal correction feature in which the user is able persuade one or more screw locations towards a particular coronal alignment profile by manually or automatically biasing which direction the rod bend curve is adjusted. The system 10 then incorporates these inputs into the bend algorithm such that the rod solution includes the desired alignment or correction.
  • Selecting the “Coronal Correction” button 302 from the Advanced Options menu 294 initiates the coronal correction feature. The user may select at least two points of interest and the system then generates a best fit reference line through all points including and lying between the at least two points of interest. In some instances, the ideal correction of the spine in the coronal plane is a straight vertical line extending between the superior-most and inferior-most screw locations of interest. However, depending on a patient's individual anatomy, achieving a straight vertical line may not be feasible. The user may wish to achieve a certain amount of correction relative to the ideal correction. From the display screen, the user may select a percentage of relative correction between the screw points as digitized (0% correction) and the best fit reference line (100%). Furthermore, the system then calculates a rod solution and shows an off-center indicator 322 to provide a user with an indication of the distance each screw is from the coronally-adjusted rod construct as wet forth above.
  • According to the embodiment shown in FIGS. 34-37, the user may straighten all points within the construct (global coronal correction). From the display screen 200, the superior and inferior screw points 362, 364 are selected and the system 10 generates a best fit global reference line 366 through all points 362, 364, 368. Using the Coronal Correction Menu 370, the user manipulates the + and − buttons 372, 374 to adjust the percentage of correction desired. In the example shown in FIG. 36, the amount of desired correction is shown as 100% on the percentage correction indicator 376, meaning the rod solution 274 will be a straight line in the coronal plane and all screw locations will be adjusted to fit the rod/line. As depicted in FIG. 36, the system 10 may include a color-coded offset distance indicator 322 to provide the user with an indication of the distance each digitized screw position will be adjusted in the coronal plane as set forth above. If the user deems this an acceptable rod solution, the user selects the “Calculate Rod” button 272 to view the rod solution 274 (FIG. 37) and receive bend instructions or proceeds to another advanced feature as will be described in greater detail below.
  • According to the embodiment shown in FIGS. 38-40, the user may straighten a subset of the screw points within the construct (segmental coronal correction). Based on the sequence those points are inputted into the system, a best-fit segmental reference line is generated through the points in the direction of the last chosen point. If an inferior point 364 is selected first and then a superior point 362 is selected second, the system 10 will draw the best-fit segmental reference line 378 superiorly as shown in FIG. 38. Conversely, if a superior point 362 is selected first and then an inferior point 364 is selected second, the system 10 will draw the best-fit segmental reference line 378 inferiorly. Using the Coronal Correction Menu 370, the user manipulates the + and − buttons 372, 374 to adjust the percentage of correction desired. In the example shown in FIG. 39, the amount of desired correction is shown as 100% on the percentage correction indicator 376, meaning the rod solution 274 will be a straight line in the coronal plane and all selected screw locations will be adjusted to fit the rod/line. As shown in FIG. 40, however, unselected screw locations 380 will not be adjusted to fit the rod/line and their relative locations will be inputted into the system 10 and taken into consideration when the rod calculation is made. As depicted in FIG. 39, the system 10 may include a color-coded offset distance indicator 322 to provide the user with an indication of the distance each digitized screw position will be adjusted in the coronal plane as set forth above. If the user deems this an acceptable rod solution, the user selects the “Calculate Rod” button 272 to view the rod solution 274 (FIG. 40) and receive bend instructions or proceeds to another advanced feature as will be described in greater detail below.
  • In some spinal procedures (e.g., anterior column deformity correction procedures), restoring a patient's spine to a balanced position may be a desired surgical outcome. The surgical bending system 10 may include a Global Spinal Balance feature configured to receive preoperative and/or theoretical spinal parameter inputs, use these spinal parameter inputs to determine a target rod shape that will restore or improve spinal balance, display the balanced rod curvature and how that rod would traverse the screws in the deformed spine, and output a target rod that may be used to correct the spine to the rod and achieve a desired balanced alignment. Depending on user preference, these spinal parameters may comprise Pelvic Incidence (PI), Pelvic Tilt (PT), Sacral Slope (SS), Lumbar Lordosis (LL), Superior Lumbar Lordosis (⬆LL), Inferior Lumbar Lordosis (⬇LL), C7 Plumb Line offset (C7PL), and Thoracic Kyphosis (TK) measurements. The surgical bending system 10 may be further configured to assess spinal parameter inputs intraoperatively to determine how the surgical correction is progressing.
  • FIG. 41 depicts a flowchart indicating the steps of the Global Spinal Balance feature according to one embodiment. At step 390, the system 10 inputs a patient's preoperative spinal parameter measurements. Next, the system generates theoretical target spinal parameter measurements (step 392). One or more target spinal parameter measurements may be optionally adjusted the user in accordance with a surgical plan a step 394. At step 396, a target spinal rod may be scaled to match the patient's anatomy using the theoretical or adjusted target spinal parameter measurements from step 392 or 394. This scaled target rod may then be displayed 398 to the user. Optionally, the system 10 may generate one or more measurements (step 400) during the surgical procedure. At step 402, the target spinal parameter data may then be adjusted based on the intraoperative measurements from step 400. Finally, the system 10 may generate bend instructions for balanced spine correction.
  • The user may input a patient's preoperative measurements into the system 10 as depicted, by way of example in FIG. 42. Selecting the Pre-Op measurement button 404 allows the user to input measurements into PI, LL, Superior LL, Inferior LL, C7PL, and TK input fields 408, 410, 412, 414, 416, 418, and 420 respectively. These pre-operative anatomical measurements may be used to understand the imbalance in the patient's deformed spine as well as help determine an operative plan to implant devices that would adjust or form the spine to a more natural balance (e.g., rods, screws, a hyperlordotic intervertebral implant, etc.).
  • As depicted in FIG. 43, the global spinal balance feature allows the user to adjust the patient's anatomical measurement values to the user's preferred target spinal parameters for a balanced and/or aligned spine. According to one implementation, selecting the target measurement button 406 populates measurements into input fields 410, 412, 414, 416, 418, 420 that represent an ideal or properly balanced spine. If the user accepts these target spinal parameters, the system 10 would output a theoretical rod solution comprising rod shapes and curves representing an ideal or properly balanced spine scaled and overlaid onto the digitized screw points as shown in FIG. 44. The system 10 may also include a color-coded offset distance indicator 322 to provide the user with an indication of the distance each digitized screw position is from the rod solution in the sagittal and coronal planes as set forth above. Alternatively, if the user seeks to achieve a different alignment, he or she may use buttons 422, 424, 426 to adjust these target spinal parameters. The user could then refer to the correction indicator 428 for an indication of how much correction (relative to the pre-operative and theoretical spinal parameters) would be achieved based on those adjusted input correction values. The user's input correction values would then drive the rod bending algorithm (based on the digitized screw locations) to a rod shape customized to the user's plan for that particular placement. The final rod could be positioned within the patient and the screws and spine would be adjusted to the rod at the desired alignment.
  • In accordance with the Global Spinal Balance feature, spinal parameter inputs may be assessed intraoperatively. For example, the user may wish to intraoperatively measure the amount of lumbar lordosis that has been achieved (for example, after placement of an intervertebral implant). As depicted in FIGS. 45-46, the system 10 may include be configured to obtain or import one or more lateral images, generate one or more lines between two or more landmarks on the patient's anatomy, determine a relationship between those landmarks, and adjust one or more spinal parameters to be used in generating the rod solution. As shown by way of example in FIG. 45, the user first selects the intraoperative measurement button 408. Next, lateral radiographic image 358 may be inputted into the system 10. The user may touch the screen 200 and move lines 360 over at least two points of interest (e.g. the superior endplate of V1 and the superior endplate of V2) and the system 10 then measures the angle between the two lines 360. As shown in FIG. 45, the system 10 measures this angle as 15 degrees as indicated in the angle measurement field 350. Optionally, the system may compare the intraoperative measurement to the preoperative and/or target spinal parameter value and provide an indication to the user of how much correction has been achieved relative to the pre-operative and theoretical spinal parameters. Using the angle measurement buttons 328, 330, the user may increase the desired angle of correction of the spine in the sagittal plane (i.e., add or subtract lordosis or kyphosis). As the angle is adjusted, the amount of adjustment may dynamically displayed within angle measurement field 350. The system 10 may include a color-coded offset distance indicator (not shown) to provide the user with an indication of the distance each digitized screw position will be adjusted in the sagittal plane as described above. Once the desired amount of angular correction is updated, the user may press the “Set” button 332 and then the “Calculate Rod” button (not shown in this view). The system then displays a rod solution 274 incorporating the user's intraoperative objective for correction of the spine in the sagittal plane.
  • The user may also wish intraoperatively measure the patient's pelvic incidence angle. As shown in FIG. 47, selecting the intra-op measurement button 408 optionally brings up a PI assessment tool. The system 10 obtains a fluoroscopic image 452 of the patient's pelvis. The user first selects the femoral head button 432 and uses arrows 450 on the PI Adjustment Menu 448 to locate the center point of the femoral head 434. Next, the user selects the posterior sacrum button 436 and uses arrows 450 to identify the posterior aspect of the sacral endplate 438. Then, the user selects the anterior sacrum button 440 and uses arrows 450 to identify the anterior aspect of the sacral end plate 442. With all PI inputs selected, the user may press the “Draw PI” button 446 after which the system 10 automatically draws and measures the pelvic incidence angle 446 for the user.
  • In some circumstances, the user may want to assess the amount/severity of coronal plane decompensation and/or intraoperatively ascertain the amount of correction achieved with a given rod bend configuration. The system may include a Coronal Offset Assessment feature configured to obtain or import one or more Anterior-Posterior images, acquire digital position information regarding landmarks on the patient's anatomy, generate one or more lines between those landmarks, and determine a relationship between those landmarks.
  • According to some implementations, the system 10 first obtains a fluoroscopic image 454 of the iliac sacral region (FIG. 48). The user digitizes two points 456 and selects the Iliac Line: Set button 460 to establish a horizontal iliac line 458. Next, the user digitizes the midpoint 462 of the sacrum and selects the CSVL Line: Set button 466 and the system 10 automatically generates an orthogonal line (CSVL line 464) from the sacral midpoint 462 to the iliac line 458. The system 10 then obtains a fluoroscopic image 468 of the C7 vertebra as depicted in FIG. 49. The user digitizes the midpoint 470 of the C7 vertebra and selects the “C7PL: Set” button 474 and the system 10 automatically generates an orthogonal line (C7PL line 476) from the midpoint 470 of C7 to the iliac line 458. Finally, the system 10 calculates the coronal offset distance (in box 476) using the offset distance between the CSVL line 464 and the C7PL line 476 line. As such, the user is given an intraoperative assessment of the amount of coronal offset corrected or left to be corrected which affords the opportunity to decide if a surgical planning goal has been achieved or if one or more spinal parameter inputs need to be updated with respect to coronal alignment.
  • Once the user has selected the desired rod solution, the user then executes the bends using a mechanical rod bender 18. It is contemplated that the mechanical rod bender 18 may be any bender that takes into account six degrees of freedom information as it effects bends onto a spinal rod. By way of example, according to one implementation, the mechanical rod bender 18 may be the bender described in commonly-owned U.S. Pat. No. 7,957,831 entitled “System and Device for Designing and Forming a Surgical Implant” patented Jun. 7, 2011, the disclosure of which is hereby incorporated by reference as if set forth in its entirety herein. According to a second implementation, the mechanical rod bender 18 may be the bender shown in FIG. 50. First and second levers 106, 110 are shown as is lever handle 108 designed for grabbing the lever 106 manually and a base 112 for holding lever 110 in a static position. Second lever 110 has a rod pass through 114 so that an infinitely long rod can be used as well as steady the rod during the bending process with the rod bending device 18. The user grabs handle 108 and opens it to bend a particular rod by picking an angle on the angle gauge 132 and closing the handle 108 such that levers 106, 110 are brought closer together. The mechanical rod bender 18 in other embodiments could be produced to bend the rod during the handle opening movement as well. The rod moves through mandrel 118 and in between moving die 120 and fixed die 122. The rod is bent between the two dies 120, 122. Gauges on the bender 18 allow the user to manipulate the rod in order to determine bend position, bend angle, and bend rotation. The rod is held in place by collet 126. By sliding slide block 128 along base 112, the rod can be moved proximally and distally within the mechanical rod bender 18. Position may be measured by click stops 130 at regular intervals along base 112. Each click stop 130 is a measured distance along the base 112 and thus moving a specific number of click stops 130 gives one a precise location for the location of a rod bend.
  • The bend angle is measured by using angle gauge 132. Angle gauge 132 has ratchet teeth 116 spaced at regular intervals. Each ratchet stop represents five degrees of bend angle with the particular bend angle gauge 132 as the handle 106 is opened and closed. It is to be appreciated that each ratchet step may represent any suitable degree increment (e.g., between 0.25 degrees to 10 degrees). The bend rotation is controlled by collet knob 134. By rotating collet knob 134 either clockwise or counterclockwise, the user can set a particular rotation angle. The collet knob 134 is marked with regular interval notches 136 but this particular embodiment is continuously turnable and thus has infinite settings. Once a user turns knob 134, the user can set the knob 134 at a particular marking or in between or the like to determine a particular angle rotation to a high degree of accuracy. Additionally, base 112 may have a ruler 138 along its length to aid the user in measuring a rod intraoperatively.
  • According to another implementation, the rod bender 18 may be a pneumatic or motor-driven device which automatically adjusts the location, rotation and bend angle of the rod. By way of example, three motors may be utilized for each movement. A linear translator motor would move the rod in and out of the mandrel 118 and moving die 120. One rotational motor would rotate the rod and moving die 120. The bend calculations could be converted into an interface program that would run to power and control the motors. The automated bender would lessen the possibility of user error in following the manual bend instructions. It would also increase the resolution or number of bends that can be imparted in the rod making for a smoother looking rod.
  • While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown, by way of example only, in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed. On the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined herein.

Claims (20)

What is claimed is:
1. A method comprising:
displaying an initial rod graphic representing an adjustable rod according to an initial bend curve;
receiving at least one correction input;
generating a revised bend curve based on the at least one correction input;
providing an offset indicator indicative of a relative position between an implanted screw location and a revised screw location along the adjustable rod based on the at least one correction input; and
providing a revised rod graphic representing the adjustable rod according to the revised bend curve.
2. The method of claim 1, further comprising:
receiving spatial position information associated with locations of each of a plurality of implanted screws, including the implanted screw location.
3. The method of claim 1, wherein receiving the correction input includes:
receiving, via an adjust points control of a user interface, an adjustment of a selected point from a first position corresponding to an initial screw location to a modified screw position corresponding to a location without an implanted screw.
4. The method of claim 1, further comprising:
based on the correction input, adding at least one virtual point.
5. The method of claim 1, wherein the at least one correction input includes:
at least one virtual point input; and
at least one adjustment input.
6. A method comprising:
obtaining digitized spatial position information associated with locations of implanted screws;
receiving selection of a location of one of the implanted screws;
receiving an adjustment via an adjust points control of a user interface, wherein the adjustment is movement of the selected location from a first position corresponding to an originally digitized screw location to a second position corresponding to a location without an implanted screw;
developing a bend curve based on the digitized spatial position information and the adjustment; and
providing a rod graphic representing an adjustable rod according to the bend curve.
7. The method of claim 6, wherein the selected location is between a superior-most screw location and an inferior-most screw location of the digitized screw locations.
8. The method of claim 6,
wherein the adjustment is in a coronal plane or a sagittal plane.
9. The method of claim 6, further comprising:
receiving one or more added virtual locations,
wherein the bend curve is further dependent on the one or more added virtual locations.
10. The method of claim 9,
wherein the added virtual locations are between a superior-most digitized screw location and an inferior-most digitized screw location.
11. The method of claim 9,
wherein the one or more added virtual locations are at least two or more additional locations.
12. The method of claim 6, further comprising:
generating bend instructions describing how to bend a rod with a bending tool to approximate the rod shown in the rod graphic.
13. The method of claim 12, further comprising:
bending a rod with a bending tool according to the bend instructions; and
implanting the rod in a patient.
14. A method comprising:
receiving spatial position information associated with locations of a plurality of implanted screws;
displaying a user interface that includes:
a rod graphic representing a virtual adjustable rod; and
a plurality of screw points representing to the plurality of implanted screws;
receiving a selection of one screw point of the plurality of screw points;
providing an adjust points control by which a user can adjust the selected screw point;
receiving, over the adjust points control, an adjustment to a location of the selected screw point from a first position to a second position; and
displaying an updated rod graphic that takes into account the adjustment.
15. The method of claim 14, further comprising:
generating bend instructions to bend a physical rod with a bending tool to approximate a bend curve corresponding to the updated rod graphic;
bending the physical rod according to the bend instructions; and
implanting the rod.
16. The method of claim 14, wherein the adjustment is in a coronal plane.
17. The method of claim 14,
wherein the rod graphic is a sagittal rod graphic representing the adjustable rod in a sagittal view; and
wherein the plurality of screw points is a plurality of sagittal screw points representing the plurality of implanted screws in a sagittal view.
18. The method of claim 14, wherein displaying the user interface includes displaying the user interface including:
a coronal rod graphic representing the adjustable rod in a coronal view; and
a plurality of coronal screw points representing the plurality of implanted screws in a coronal view.
19. The method of claim 18,
wherein the adjust points control is a sagittal adjust points control configured to adjust the selected screw point in a sagittal plane.
20. The method of claim 18, wherein displaying the user interface includes displaying the user interface including:
a sagittal adjust points control; and
a coronal adjust points control configured to adjust the selected screw point in a coronal plane.
US17/527,800 2012-03-12 2021-11-16 Systems and methods for performing spinal surgery Pending US20220071709A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/527,800 US20220071709A1 (en) 2012-03-12 2021-11-16 Systems and methods for performing spinal surgery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261609556P 2012-03-12 2012-03-12
US201261661190P 2012-06-18 2012-06-18
US201261717359P 2012-10-23 2012-10-23
US13/815,643 US11207132B2 (en) 2012-03-12 2013-03-12 Systems and methods for performing spinal surgery
US17/527,800 US20220071709A1 (en) 2012-03-12 2021-11-16 Systems and methods for performing spinal surgery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/815,643 Continuation US11207132B2 (en) 2012-03-12 2013-03-12 Systems and methods for performing spinal surgery

Publications (1)

Publication Number Publication Date
US20220071709A1 true US20220071709A1 (en) 2022-03-10

Family

ID=58720091

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/815,643 Active 2034-09-07 US11207132B2 (en) 2012-03-12 2013-03-12 Systems and methods for performing spinal surgery
US17/527,800 Pending US20220071709A1 (en) 2012-03-12 2021-11-16 Systems and methods for performing spinal surgery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/815,643 Active 2034-09-07 US11207132B2 (en) 2012-03-12 2013-03-12 Systems and methods for performing spinal surgery

Country Status (1)

Country Link
US (2) US11207132B2 (en)

Families Citing this family (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US10653497B2 (en) 2006-02-16 2020-05-19 Globus Medical, Inc. Surgical tool systems and methods
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
US8549888B2 (en) * 2008-04-04 2013-10-08 Nuvasive, Inc. System and device for designing and forming a surgical implant
WO2012131660A1 (en) 2011-04-01 2012-10-04 Ecole Polytechnique Federale De Lausanne (Epfl) Robotic system for spinal and other surgeries
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US10646280B2 (en) 2012-06-21 2020-05-12 Globus Medical, Inc. System and method for surgical tool insertion using multiaxis force and moment feedback
US10842461B2 (en) 2012-06-21 2020-11-24 Globus Medical, Inc. Systems and methods of checking registrations for surgical systems
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US10624710B2 (en) 2012-06-21 2020-04-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US10799298B2 (en) 2012-06-21 2020-10-13 Globus Medical Inc. Robotic fluoroscopic navigation
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US10350013B2 (en) 2012-06-21 2019-07-16 Globus Medical, Inc. Surgical tool systems and methods
US10758315B2 (en) 2012-06-21 2020-09-01 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US11786324B2 (en) 2012-06-21 2023-10-17 Globus Medical, Inc. Surgical robotic automation with tracking markers
JP2015528713A (en) 2012-06-21 2015-10-01 グローバス メディカル インコーポレイティッド Surgical robot platform
US11589771B2 (en) 2012-06-21 2023-02-28 Globus Medical Inc. Method for recording probe movement and determining an extent of matter removed
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11896446B2 (en) 2012-06-21 2024-02-13 Globus Medical, Inc Surgical robotic automation with tracking markers
US10874466B2 (en) 2012-06-21 2020-12-29 Globus Medical, Inc. System and method for surgical tool insertion using multiaxis force and moment feedback
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
FR3010628B1 (en) 2013-09-18 2015-10-16 Medicrea International METHOD FOR REALIZING THE IDEAL CURVATURE OF A ROD OF A VERTEBRAL OSTEOSYNTHESIS EQUIPMENT FOR STRENGTHENING THE VERTEBRAL COLUMN OF A PATIENT
US9283048B2 (en) 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
FR3012030B1 (en) 2013-10-18 2015-12-25 Medicrea International METHOD FOR REALIZING THE IDEAL CURVATURE OF A ROD OF A VERTEBRAL OSTEOSYNTHESIS EQUIPMENT FOR STRENGTHENING THE VERTEBRAL COLUMN OF A PATIENT
WO2015107099A1 (en) 2014-01-15 2015-07-23 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
WO2015121311A1 (en) 2014-02-11 2015-08-20 KB Medical SA Sterile handle for controlling a robotic surgical system from a sterile field
WO2015162256A1 (en) 2014-04-24 2015-10-29 KB Medical SA Surgical instrument holder for use with a robotic surgical system
EP3157446B1 (en) 2014-06-19 2018-08-15 KB Medical SA Systems for performing minimally invasive surgery
US10357257B2 (en) 2014-07-14 2019-07-23 KB Medical SA Anti-skid surgical instrument for use in preparing holes in bone tissue
US10765438B2 (en) 2014-07-14 2020-09-08 KB Medical SA Anti-skid surgical instrument for use in preparing holes in bone tissue
US9993177B2 (en) 2014-08-28 2018-06-12 DePuy Synthes Products, Inc. Systems and methods for intraoperatively measuring anatomical orientation
US9913669B1 (en) 2014-10-17 2018-03-13 Nuvasive, Inc. Systems and methods for performing spine surgery
US11103316B2 (en) 2014-12-02 2021-08-31 Globus Medical Inc. Robot assisted volume removal during surgery
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
EP3258872B1 (en) 2015-02-18 2023-04-26 KB Medical SA Systems for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
US10646298B2 (en) 2015-07-31 2020-05-12 Globus Medical, Inc. Robot arm and methods of use
US10058394B2 (en) 2015-07-31 2018-08-28 Globus Medical, Inc. Robot arm and methods of use
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
US10687905B2 (en) 2015-08-31 2020-06-23 KB Medical SA Robotic surgical systems and methods
US10034716B2 (en) 2015-09-14 2018-07-31 Globus Medical, Inc. Surgical robotic systems and methods thereof
EP3361958B1 (en) 2015-10-13 2023-01-25 Mazor Robotics Ltd. Global spinal alignment planning method
US9771092B2 (en) 2015-10-13 2017-09-26 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
AU2016349705B2 (en) 2015-11-04 2021-07-29 Medicrea International Methods and Apparatus for spinal reconstructive surgery and measuring spinal length and intervertebral spacing, tension and rotation
AU2015414802B2 (en) * 2015-11-19 2020-12-24 Eos Imaging Method of preoperative planning to correct spine misalignment of a patient
US9554411B1 (en) 2015-12-30 2017-01-24 DePuy Synthes Products, Inc. Systems and methods for wirelessly powering or communicating with sterile-packed devices
US10335241B2 (en) 2015-12-30 2019-07-02 DePuy Synthes Products, Inc. Method and apparatus for intraoperative measurements of anatomical orientation
AU2017210124B2 (en) 2016-01-22 2021-05-20 Nuvasive, Inc. Systems and methods for facilitating spine surgery
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
WO2017139556A1 (en) 2016-02-12 2017-08-17 Medos International Sarl Systems and methods for intraoperatively measuring anatomical orientation
ES2877761T3 (en) 2016-03-02 2021-11-17 Nuvasive Inc Systems and Procedures for Spinal Correction Surgical Planning
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
EP3474758B1 (en) * 2016-06-23 2023-09-13 Mazor Robotics Ltd. Minimally invasive intervertebral rod insertion
US10820835B2 (en) 2016-09-12 2020-11-03 Medos International Sarl Systems and methods for anatomical alignment
US11039893B2 (en) 2016-10-21 2021-06-22 Globus Medical, Inc. Robotic surgical systems
WO2018109556A1 (en) 2016-12-12 2018-06-21 Medicrea International Systems and methods for patient-specific spinal implants
JP2018114280A (en) 2017-01-18 2018-07-26 ケービー メディカル エスアー Universal instrument guide for robotic surgical system, surgical instrument system, and method of using them
EP3351202B1 (en) 2017-01-18 2021-09-08 KB Medical SA Universal instrument guide for robotic surgical systems
JP7233841B2 (en) 2017-01-18 2023-03-07 ケービー メディカル エスアー Robotic Navigation for Robotic Surgical Systems
US11071594B2 (en) 2017-03-16 2021-07-27 KB Medical SA Robotic navigation of robotic surgical systems
US11089975B2 (en) 2017-03-31 2021-08-17 DePuy Synthes Products, Inc. Systems, devices and methods for enhancing operative accuracy using inertial measurement units
AU2018255892A1 (en) 2017-04-21 2019-11-07 Medicrea International A system for providing intraoperative tracking to assist spinal surgery
US11033341B2 (en) 2017-05-10 2021-06-15 Mako Surgical Corp. Robotic spine surgery system and methods
WO2018209042A2 (en) 2017-05-10 2018-11-15 Mako Surgical Corp. Robotic spine surgery system and methods
US10675094B2 (en) 2017-07-21 2020-06-09 Globus Medical Inc. Robot surgical platform
US11707324B2 (en) * 2017-09-01 2023-07-25 Spinologics Inc. Spinal correction rod implant manufacturing process part
US10898252B2 (en) 2017-11-09 2021-01-26 Globus Medical, Inc. Surgical robotic systems for bending surgical rods, and related methods and devices
US11382666B2 (en) 2017-11-09 2022-07-12 Globus Medical Inc. Methods providing bend plans for surgical rods and related controllers and computer program products
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
US10918422B2 (en) 2017-12-01 2021-02-16 Medicrea International Method and apparatus for inhibiting proximal junctional failure
CN108151670B (en) * 2017-12-30 2020-02-11 北京工业大学 Device and method for evaluating three-dimensional symmetry of back
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11918313B2 (en) 2019-03-15 2024-03-05 Globus Medical Inc. Active end effectors for surgical robots
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US20200297357A1 (en) 2019-03-22 2020-09-24 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
WO2020201353A1 (en) 2019-04-02 2020-10-08 Medicrea International Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures
US11925417B2 (en) 2019-04-02 2024-03-12 Medicrea International Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
JP7317776B2 (en) * 2019-09-04 2023-07-31 グローバス メディカル インコーポレイティッド Surgical rod and associated controller
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
US11769251B2 (en) 2019-12-26 2023-09-26 Medicrea International Systems and methods for medical image analysis
US11464581B2 (en) 2020-01-28 2022-10-11 Globus Medical, Inc. Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11941814B2 (en) 2020-11-04 2024-03-26 Globus Medical Inc. Auto segmentation using 2-D images taken during 3-D imaging spin
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
TWI768575B (en) * 2020-12-03 2022-06-21 財團法人工業技術研究院 Three-dimensional image dynamic correction evaluation and auxiliary design method and system for orthotics
US11857273B2 (en) 2021-07-06 2024-01-02 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
US11918304B2 (en) 2021-12-20 2024-03-05 Globus Medical, Inc Flat panel registration fixture and method of using same

Family Cites Families (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE301060B (en) 1964-04-27 1968-05-20 B Fjellstroem
US4282737A (en) 1980-03-24 1981-08-11 Maples Billy G Hand operated bending apparatus and method for metal bar, tubing and the like
US4474046A (en) 1982-06-18 1984-10-02 Zimmer, Inc. Rod bender
US4773402A (en) 1985-09-13 1988-09-27 Isola Implants, Inc. Dorsal transacral surgical implant
US5257184A (en) 1990-04-10 1993-10-26 Mushabac David R Method and apparatus with multiple data input stylii for collecting curvilinear contour data
US5290289A (en) 1990-05-22 1994-03-01 Sanders Albert E Nitinol spinal instrumentation and method for surgically treating scoliosis
US6347240B1 (en) 1990-10-19 2002-02-12 St. Louis University System and method for use in displaying images of a body part
US5113685A (en) 1991-01-28 1992-05-19 Acromed Corporation Apparatus for contouring spine plates and/or rods
US5161404A (en) 1991-10-23 1992-11-10 Zimmer, Inc. Rod bender
US5365996A (en) 1992-06-10 1994-11-22 Amei Technologies Inc. Method and apparatus for making customized fixation devices
US5389099A (en) 1993-07-28 1995-02-14 Hartmeister; Ruben Keyhole rod bender
FR2709246B1 (en) 1993-08-27 1995-09-29 Martin Jean Raymond Dynamic implanted spinal orthosis.
FR2709248B1 (en) 1993-08-27 1995-09-29 Martin Jean Raymond Ancillary equipment for placing a spinal instrumentation.
BE1008372A3 (en) 1994-04-19 1996-04-02 Materialise Nv METHOD FOR MANUFACTURING A perfected MEDICAL MODEL BASED ON DIGITAL IMAGE INFORMATION OF A BODY.
US5548985A (en) 1994-05-13 1996-08-27 Yapp; Ronald A. Rod bender for forming surgical implants in the operating room
US6978166B2 (en) 1994-10-07 2005-12-20 Saint Louis University System for use in displaying images of a body part
ATE320226T1 (en) 1994-10-07 2006-04-15 Univ St Louis SURGICAL NAVIGATION ARRANGEMENT INCLUDING REFERENCE AND LOCATION SYSTEMS
US5490409A (en) 1994-11-07 1996-02-13 K-Medic, Inc. Adjustable cam action rod bender for surgical rods
US5682886A (en) 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
US5658286A (en) 1996-02-05 1997-08-19 Sava; Garard A. Fabrication of implantable bone fixation elements
SG64340A1 (en) 1996-02-27 1999-04-27 Inst Of Systems Science Nation Curved surgical instruments and methods of mapping a curved path for stereotactic surgery
US5806521A (en) 1996-03-26 1998-09-15 Sandia Corporation Composite ultrasound imaging apparatus and method
US8556983B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US8735773B2 (en) 2007-02-14 2014-05-27 Conformis, Inc. Implant device and method for manufacture
US20040133276A1 (en) 2002-10-07 2004-07-08 Imaging Therapeutics, Inc. Minimally invasive joint implant with 3-Dimensional geometry matching the articular surfaces
US7618451B2 (en) 2001-05-25 2009-11-17 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
US8083745B2 (en) 2001-05-25 2011-12-27 Conformis, Inc. Surgical tools for arthroplasty
US8882847B2 (en) 2001-05-25 2014-11-11 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US20110071802A1 (en) 2009-02-25 2011-03-24 Ray Bojarski Patient-adapted and improved articular implants, designs and related guide tools
US8234097B2 (en) 2001-05-25 2012-07-31 Conformis, Inc. Automated systems for manufacturing patient-specific orthopedic implants and instrumentation
US5819571A (en) 1997-02-10 1998-10-13 Johnson; Stephen Apparatus for bending surgical instruments
US6314310B1 (en) * 1997-02-14 2001-11-06 Biosense, Inc. X-ray guided surgical location system with extended mapping volume
US6205411B1 (en) 1997-02-21 2001-03-20 Carnegie Mellon University Computer-assisted surgery planner and intra-operative guidance system
US5901600A (en) 1997-08-06 1999-05-11 Decker; Ronald R. Rod bending device
US6226548B1 (en) 1997-09-24 2001-05-01 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
ATE260607T1 (en) 1997-11-21 2004-03-15 Synthes Ag DEVICE FOR SIMULATING IMPLANTS POSITIONED UNDER THE SKIN
US5819580A (en) 1998-04-13 1998-10-13 Beere Precision Medical Instruments, Inc. Bending tool
US6529765B1 (en) 1998-04-21 2003-03-04 Neutar L.L.C. Instrumented and actuated guidance fixture for sterotactic surgery
US6327491B1 (en) 1998-07-06 2001-12-04 Neutar, Llc Customized surgical fixture
US6006581A (en) 1998-10-26 1999-12-28 Hol-Med Corporation Rod bending system
CA2363254C (en) 1999-03-07 2009-05-05 Discure Ltd. Method and apparatus for computerized surgery
US6301495B1 (en) 1999-04-27 2001-10-09 International Business Machines Corporation System and method for intra-operative, image-based, interactive verification of a pre-operative surgical plan
US6035691A (en) 1999-08-10 2000-03-14 Lin; Ruey-Mo Adjustable rod bending device for a corrective spinal rod which is used in a surgical operation
WO2001010339A2 (en) 1999-08-11 2001-02-15 Case Western Reserve University Method and apparatus for producing an implant
US8781557B2 (en) 1999-08-11 2014-07-15 Osteoplastics, Llc Producing a three dimensional model of an implant
EP1312025A2 (en) 2000-04-05 2003-05-21 Therics, Inc. System and method for rapidly customizing a design and remotely manufacturing biomedical devices using a computer system
US6701174B1 (en) 2000-04-07 2004-03-02 Carnegie Mellon University Computer-aided bone distraction
US20040068187A1 (en) 2000-04-07 2004-04-08 Krause Norman M. Computer-aided orthopedic surgery
EP2293009B1 (en) 2000-09-20 2012-05-09 Bridgestone Corporation Residual torsion measuring apparatus
FR2816200A1 (en) 2000-11-06 2002-05-10 Praxim DETERMINING THE POSITION OF A KNEE PROSTHESIS
US20030055435A1 (en) 2000-11-27 2003-03-20 Barrick Earl Frederick Orthopaedic implant shaper
US6786930B2 (en) 2000-12-04 2004-09-07 Spineco, Inc. Molded surgical implant and method
US6500131B2 (en) 2001-03-19 2002-12-31 Orthoscan Technologies, Inc. Contour mapping system applicable as a spine analyzer, and probe useful therein
US6612143B1 (en) 2001-04-13 2003-09-02 Orametrix, Inc. Robot and method for bending orthodontic archwires and other medical devices
DE60239674D1 (en) 2001-05-25 2011-05-19 Conformis Inc METHOD AND COMPOSITIONS FOR REPAIRING THE SURFACE OF JOINTS
US9308091B2 (en) 2001-05-25 2016-04-12 Conformis, Inc. Devices and methods for treatment of facet and other joints
US20130211531A1 (en) 2001-05-25 2013-08-15 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
WO2003030787A1 (en) 2001-10-05 2003-04-17 Therics, Inc. System and method for rapidly customizing design, manufacture and/or selection of biomedical devices
US6906724B2 (en) 2001-10-17 2005-06-14 Lntel Corporation Generating a shadow for a three-dimensional model
SE0104323D0 (en) 2001-12-20 2001-12-20 Matts Andersson Method and arrangement of implants for preferably human intermediate disc and such implant
US7634306B2 (en) 2002-02-13 2009-12-15 Kinamed, Inc. Non-image, computer assisted navigation system for joint replacement surgery with modular implant system
FR2836818B1 (en) 2002-03-05 2004-07-02 Eurosurgical PROCESS FOR VISUALIZING AND CHECKING THE BALANCE OF A SPINE COLUMN
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
US7831292B2 (en) * 2002-03-06 2010-11-09 Mako Surgical Corp. Guidance system and method for surgical procedures with improved feedback
AU2003218010A1 (en) 2002-03-06 2003-09-22 Z-Kat, Inc. System and method for using a haptic device in combination with a computer-assisted surgery system
JP4070493B2 (en) 2002-04-03 2008-04-02 株式会社東芝 X-ray diagnostic apparatus and medical image analysis apparatus
US20030205075A1 (en) 2002-05-02 2003-11-06 Walter Strippgen Spinal rod curving instrument and method for using same
AU2003215562A1 (en) 2002-05-21 2003-12-02 Plus Endoprothetik Ag Arrangement for determining function-determined geometric variables of a joint of a vertebrate
DE10306793A1 (en) 2002-05-21 2003-12-04 Plus Endoprothetik Ag Rotkreuz Arrangement and method for the intraoperative determination of the position of a joint replacement implant
US6644087B1 (en) 2002-07-26 2003-11-11 Third Millennium Engineering, Llc Rod bender for bending surgical rods
JP3904993B2 (en) 2002-08-16 2007-04-11 ファナック株式会社 Curve interpolation method
DE10393169T5 (en) 2002-08-26 2006-02-02 Orthosoft, Inc., Montreal A method of placing multiple implants during surgery using a computer-aided surgery system
GB2393625C (en) 2002-09-26 2004-08-18 Meridian Tech Ltd Orthopaedic surgery planning
US6978188B1 (en) 2002-09-30 2005-12-20 Medical Modeling, Llc Method for contouring bone reconstruction plates
EP1413257B1 (en) 2002-10-25 2005-02-23 BrainLAB AG Device for positioning an element, for example in the spine
ATE291384T1 (en) 2002-10-25 2005-04-15 Brainlab Ag APPARATUS AND METHOD FOR CALIBRATING AN ELEMENT
CN1780594A (en) 2002-11-07 2006-05-31 康复米斯公司 Methods for determining meniscal size and shape and for devising treatment
EP1426023A1 (en) 2002-11-22 2004-06-09 Sulzer Markets and Technology AG Method, system and computer program product for the determination of implantation parameters
FR2849516B1 (en) 2002-12-30 2009-01-09 Axs Ingenierie METHOD FOR BIOMECHANICALLY SIMULATING A BONE JOINT ASSEMBLY
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
EP1667574A4 (en) 2003-02-04 2008-03-12 Z Kat Inc System and method for providing computer assistance with spinal fixation procedures
DE102004008870A1 (en) 2003-03-31 2004-10-14 Anders, Peter, Prof. Dr.-Ing. Bending method for a workpiece such as a rod or tube for use in e.g. spinal surgery where a target curve is defined about which the rod is bent
DE10314882A1 (en) 2003-04-01 2004-10-14 Anders, Peter, Prof. Dr.-Ing. Bending procedure for rod used in operatively treating scoliosis, by determining space curve or target curve using navigation system which dismantles the curve into part curves from which the bending of the rod takes place
WO2004110309A2 (en) 2003-06-11 2004-12-23 Case Western Reserve University Computer-aided-design of skeletal implants
US20050262911A1 (en) * 2004-02-06 2005-12-01 Harry Dankowicz Computer-aided three-dimensional bending of spinal rod implants, other surgical implants and other articles, systems for three-dimensional shaping, and apparatuses therefor
EP1734878B1 (en) 2004-02-20 2011-10-19 Hector O. Pacheco Method for determining the size of pedicle screws
US20050203511A1 (en) 2004-03-02 2005-09-15 Wilson-Macdonald James Orthopaedics device and system
WO2005087125A2 (en) 2004-03-10 2005-09-22 Depuy International Ltd Orthopaedic operating systems, methods, implants and instruments
US7567834B2 (en) 2004-05-03 2009-07-28 Medtronic Navigation, Inc. Method and apparatus for implantation between two vertebral bodies
US7494489B2 (en) 2004-05-07 2009-02-24 Jeffrey S. Roh Systems and methods that facilitate minimally invasive spine surgery
US7340316B2 (en) 2004-06-28 2008-03-04 Hanger Orthopedic Group, Inc. System and method for producing medical devices
US7055362B2 (en) 2004-07-12 2006-06-06 Widmayer Joseph B Apparatus and method for bending tubing
US20070239159A1 (en) 2005-07-22 2007-10-11 Vertiflex, Inc. Systems and methods for stabilization of bone structures
US7883477B2 (en) 2004-11-01 2011-02-08 Nihon University Human body backbone measuring/displaying system
EP1657681B1 (en) 2004-11-10 2009-01-21 Agfa HealthCare NV Method of performing measurements on digital images
US8014625B2 (en) 2004-11-10 2011-09-06 Agfa Healthcare Method of performing measurements on digital images
AT501151B8 (en) 2004-11-24 2007-02-15 Univ Fuer Angewandte Kunst Wie METHOD FOR CONTROLLING BENDING MACHINES
US20090226055A1 (en) 2004-12-10 2009-09-10 Harry Dankowicz Systems and methods for multi-dimensional characterization and classification of spinal shape
US20060212158A1 (en) 2004-12-23 2006-09-21 Robert Miller System for manufacturing an implant
US7454939B2 (en) 2005-01-12 2008-11-25 Depuy Spine, Inc. Instrument for bending spinal rods used in a spinal fixation system
WO2006089112A2 (en) 2005-02-17 2006-08-24 University Of Florida Research Foundation, Inc. Systems and methods for planning medical procedures and designing medical devices based on anatomical scan deformations
GB0504172D0 (en) 2005-03-01 2005-04-06 King S College London Surgical planning
JP4976370B2 (en) 2005-03-07 2012-07-18 パチェコ,ヘクター,オー. Improved system and method for entering a vertebral body for posterior bay formation, vertebral formation, vertebral body biopsy, or screw placement
US20100100011A1 (en) 2008-10-22 2010-04-22 Martin Roche System and Method for Orthopedic Alignment and Measurement
US20060247864A1 (en) 2005-04-29 2006-11-02 Jose Tamez-Pena Method and system for assessment of biomarkers by measurement of response to surgical implant
US8177817B2 (en) 2005-05-18 2012-05-15 Stryker Spine System and method for orthopedic implant configuration
US7488331B2 (en) 2005-05-23 2009-02-10 Custon Spine, Inc. Orthopedic implant bender
US20100030231A1 (en) 2005-06-02 2010-02-04 Ian Revie Surgical system and method
US8394142B2 (en) 2005-06-13 2013-03-12 Synthes Usa, Llc Customizing an intervertebral implant
WO2007009263A1 (en) 2005-07-22 2007-01-25 Cedara Software Corp. Implant inventory management system and method using digital image planning
US7983777B2 (en) 2005-08-19 2011-07-19 Mark Melton System for biomedical implant creation and procurement
US20070066917A1 (en) 2005-09-20 2007-03-22 Hodorek Robert A Method for simulating prosthetic implant selection and placement
EP1767161A1 (en) 2005-09-22 2007-03-28 Zimmer Spine, Inc. Spinal fixation rod contouring system
WO2007045000A2 (en) 2005-10-14 2007-04-19 Vantus Technology Corporation Personal fit medical implants and orthopedic surgical instruments and methods for making
US20070118055A1 (en) 2005-11-04 2007-05-24 Smith & Nephew, Inc. Systems and methods for facilitating surgical procedures involving custom medical implants
JP5215872B2 (en) 2006-02-06 2013-06-19 ストライカー・スピン Apparatus and method for shaping a rod in a percutaneous pedicle screw extension
CN105030297A (en) 2006-02-06 2015-11-11 康复米斯公司 Patient selectable joint arthroplasty devices and surgical tools
US8177843B2 (en) 2006-02-16 2012-05-15 Nabil L. Muhanna Automated pedicle screw rod bender
US20070233246A1 (en) 2006-03-31 2007-10-04 Sdgi Holdings, Inc. Spinal implants with improved mechanical response
WO2007139949A2 (en) 2006-05-25 2007-12-06 Spinemedica Corporation Patient-specific spinal implants and related systems and methods
KR101347916B1 (en) 2006-06-28 2014-02-06 헥터 오. 파체코 Templating and placing artifical discs in spine
US8092458B2 (en) 2006-08-04 2012-01-10 Magrod, Llc Magnetic targeting system and method of using the same
US8092461B2 (en) 2006-08-04 2012-01-10 Magrod, Llc Method and apparatus for facilitating navigation of an implant
US7976546B2 (en) 2006-08-04 2011-07-12 Magrod, Llc Magnetic targeting system for facilitating navigation
US8565853B2 (en) 2006-08-11 2013-10-22 DePuy Synthes Products, LLC Simulated bone or tissue manipulation
EP2083758B1 (en) 2006-08-18 2017-11-01 Smith & Nephew, Inc. Systems and methods for designing, analyzing and using orthopaedic devices
US8394144B2 (en) 2006-09-25 2013-03-12 Mazor Surgical Technologies Ltd. System for positioning of surgical inserts and tools
WO2008039048A1 (en) 2006-09-27 2008-04-03 Aldo Arvizo Arvizo Solid models for medical diagnosis
FR2909791B1 (en) 2006-12-07 2009-02-13 Ecole Nale Sup Artes Metiers METHOD FOR SIMULATING THE BEHAVIOR OF AN ARTICULATED BONE ASSEMBLY
US8097037B2 (en) * 2006-12-20 2012-01-17 Depuy Spine, Inc. Methods and devices for correcting spinal deformities
US20080154120A1 (en) 2006-12-22 2008-06-26 General Electric Company Systems and methods for intraoperative measurements on navigated placements of implants
US20080177203A1 (en) * 2006-12-22 2008-07-24 General Electric Company Surgical navigation planning system and method for placement of percutaneous instrumentation and implants
WO2008101090A2 (en) 2007-02-14 2008-08-21 Conformis, Inc. Implant device and method for manufacture
EP2129317B1 (en) 2007-03-06 2014-11-05 The Cleveland Clinic Foundation Method for preparing for a surgical procedure
WO2008130355A1 (en) 2007-04-24 2008-10-30 Medtronic, Inc. Method for performing multiple registrations in a navigated procedure
US7822465B2 (en) 2007-04-25 2010-10-26 Warsaw Orthopedic, Inc. Device and method for image-based device performance measurement
US8934961B2 (en) 2007-05-18 2015-01-13 Biomet Manufacturing, Llc Trackable diagnostic scope apparatus and methods of use
EP2147398A2 (en) 2007-05-18 2010-01-27 Nordic Bioscience Imaging A/S Semi-automatic contour detection
US20090024164A1 (en) 2007-06-25 2009-01-22 Neubardt Seth L System for determining spinal implants
EP2017785A1 (en) 2007-07-17 2009-01-21 BrainLAB AG Imaging method for motion analysis
JP2009056299A (en) 2007-08-07 2009-03-19 Stryker Leibinger Gmbh & Co Kg Method of and system for planning surgery
JP2011501982A (en) 2007-09-12 2011-01-20 ノベル バイオケア サーヴィシィズ アーゲー Method and system for planning a medical procedure and generating data related to the medical procedure
PT103823B (en) 2007-09-13 2010-09-17 Univ Do Minho AUTOMATIC AND CUSTOMIZED SURGICAL PROSTATE MODELING / BENDING SYSTEM FOR CORRECTION OF PECTUS EXCAVATUM BASED ON PRE-SURGICAL IMAGIOLOGICAL INFORMATION
WO2009046399A1 (en) 2007-10-05 2009-04-09 Hynes Richard A Spinal stabilization treatment methods for maintaining axial spine height and sagital plane spine balance
US20100332248A1 (en) 2007-10-12 2010-12-30 Nobel Biocare Services Ag Computer implemented planning and providing of mass customized bone structure
DE112008002851B4 (en) * 2007-10-24 2018-06-21 Nuvasive, Inc. Surgical pathway monitoring system and related procedures
US20090149977A1 (en) 2007-11-06 2009-06-11 Schendel Stephen A Methods, systems, and computer program products for shaping medical implants directly from virtual reality models
US20090157185A1 (en) 2007-12-18 2009-06-18 Chong Chol Kim Prosthetic Monolithic Spinal Discs and Method of Customizing and Constructing Discs
US8221430B2 (en) 2007-12-18 2012-07-17 Otismed Corporation System and method for manufacturing arthroplasty jigs
US10070903B2 (en) 2008-01-09 2018-09-11 Stryker European Holdings I, Llc Stereotactic computer assisted surgery method and system
ITRM20080078A1 (en) 2008-02-12 2009-08-13 Cml Intarnational S P A METHOD OF VERIFICATION AND COMMAND TO CURVE IN AN CONTINUOUS WAY A PIECE EXTENDED ACCORDING TO VARIABLE CURCATORS SPOKES AND MACHINE SO COMMANDED
US9665686B2 (en) 2008-02-20 2017-05-30 Mako Surgical Corp. Implant planning using corrected captured joint motion information
GB0803514D0 (en) 2008-02-27 2008-04-02 Depuy Int Ltd Customised surgical apparatus
US20110015514A1 (en) 2008-02-29 2011-01-20 Ecole National Superieure D'arts Et Metiers (Ensam Medical imaging method and system for providing a finite-element model
US8682052B2 (en) 2008-03-05 2014-03-25 Conformis, Inc. Implants for altering wear patterns of articular surfaces
US8549888B2 (en) * 2008-04-04 2013-10-08 Nuvasive, Inc. System and device for designing and forming a surgical implant
US20090254097A1 (en) 2008-04-04 2009-10-08 Isaacs Robert E System and device for designing and forming a surgical implant
EP2334262B1 (en) * 2008-06-27 2015-02-25 K2M, Inc. System for performing spinal surgery
EP2349107B1 (en) 2008-08-14 2016-12-21 Oxford Performance Materials, Inc. Customized implants for bone replacement
US8078440B2 (en) 2008-09-19 2011-12-13 Smith & Nephew, Inc. Operatively tuning implants for increased performance
RU2513155C2 (en) 2008-10-01 2014-04-20 Шервин ХУА System and method for spine stabilisation using wired pedicle screw
US20100101295A1 (en) 2008-10-28 2010-04-29 Warsaw Orthopedic, Inc. Isulated sheath for bending polymer-based rod
US20100111631A1 (en) 2008-10-31 2010-05-06 Warsaw Orthopedic, Inc. Tool for Finishing the Ends of Surgical Rods and Methods of Use
US8126736B2 (en) 2009-01-23 2012-02-28 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US8685093B2 (en) 2009-01-23 2014-04-01 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US20100191100A1 (en) 2009-01-23 2010-07-29 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
CA2753488C (en) 2009-02-25 2014-04-29 Mohamed Rashwan Mahfouz Customized orthopaedic implants and related methods
US8457930B2 (en) 2009-04-15 2013-06-04 James Schroeder Personalized fit and functional designed medical prostheses and surgical instruments and methods for making
US20100292795A1 (en) 2009-05-13 2010-11-18 Jensen Ole T Biomedical implant surface topography
US8235998B2 (en) 2009-08-17 2012-08-07 Warsaw Orthopedic, Inc. Instruments and methods for in situ bending of an elongate spinal implant
KR101137991B1 (en) 2009-09-30 2012-04-20 전남대학교산학협력단 Fabrication and manufacturing method of image based patient specific spinal implant
TWI397397B (en) 2009-10-21 2013-06-01 Univ Chang Gung Method of manufacturing guide device
US8819591B2 (en) 2009-10-30 2014-08-26 Accuray Incorporated Treatment planning in a virtual environment
US8540719B2 (en) 2010-02-09 2013-09-24 Aesculap Implant Systems, Llc Percutaneous rod insertion system and method
EP2538885A1 (en) 2010-02-26 2013-01-02 spontech spine intelligence group AG Computer program for spine mobility simulation and spine simulation method
US20110245871A1 (en) 2010-04-06 2011-10-06 Williams Lytton A Crosslink element and bender for spine surgery procedures
US9839486B2 (en) 2010-04-14 2017-12-12 Smith & Nephew, Inc. Systems and methods for patient-based computer assisted surgical procedures
WO2011131223A1 (en) 2010-04-19 2011-10-27 Brainlab Ag Data processing and transferring method relating to the placement of surgical implants
US8842893B2 (en) 2010-04-30 2014-09-23 Medtronic Navigation, Inc. Method and apparatus for image-based navigation
US8607603B2 (en) 2010-04-30 2013-12-17 Warsaw Orthopedic, Inc. Systems, devices and methods for multi-dimensional bending of an elongate member
US8298242B2 (en) 2010-04-30 2012-10-30 Warsaw Orthopedic, Inc. Systems, devices and methods for bending an elongate member
US8625869B2 (en) * 2010-05-21 2014-01-07 Siemens Medical Solutions Usa, Inc. Visualization of medical image data with localized enhancement
US20120178069A1 (en) 2010-06-15 2012-07-12 Mckenzie Frederic D Surgical Procedure Planning and Training Tool
US8870889B2 (en) 2010-06-29 2014-10-28 George Frey Patient matching surgical guide and method for using the same
KR101859932B1 (en) 2010-06-29 2018-05-21 조지 프레이 Patient matching surgical guide and method for using the same
CA2801475C (en) 2010-07-08 2019-05-21 Synthes Usa, Llc Advanced bone marker and custom implants
US9014835B2 (en) 2010-08-25 2015-04-21 Siemens Aktiengesellschaft Semi-automatic customization of plates for internal fracture fixation
US8770006B2 (en) 2010-08-26 2014-07-08 Globus Medical, Inc. Compound hinged rod bender
WO2012058355A1 (en) 2010-10-29 2012-05-03 The Cleveland Clinic Foundation System of preoperative planning and provision of patient-specific surgical aids
WO2012061452A1 (en) 2010-11-02 2012-05-10 Siemens Medical Solutions Usa, Inc. Automatic image-based calculation of a geometric feature
WO2012062464A1 (en) 2010-11-10 2012-05-18 Spontech Spine Intelligence Group Ag Spine fixation installation system
BE1019572A5 (en) 2010-11-10 2012-08-07 Materialise Nv OPTIMIZED METHODS FOR THE PRODUCTION OF PATIENT-SPECIFIC MEDICAL TOOLS.
WO2012074803A1 (en) 2010-11-29 2012-06-07 Javier Pereiro De Lamo Method and system for the treatment of spinal deformities
EP3150113A1 (en) 2010-12-13 2017-04-05 Ortho Kinematics, Inc. Methods, systems and devices for clinical data reporting and surgical navigation
US20120186411A1 (en) 2011-01-25 2012-07-26 Sebstian Lodahi Automated surgical rod cutter and bender including a power-base, assembly for rod cutting, and assembly for rod bending
WO2012112694A2 (en) 2011-02-15 2012-08-23 Conformis, Inc. Medeling, analyzing and using anatomical data for patient-adapted implants. designs, tools and surgical procedures
CN107133444B (en) 2011-02-25 2021-12-24 科瑞恩公司 Modeling method, computing device and computer-readable storage medium for alignment of an orthopaedic implant for a joint of a patient
US9788905B2 (en) 2011-03-30 2017-10-17 Surgical Theater LLC Method and system for simulating surgical procedures
US9003859B2 (en) 2011-04-01 2015-04-14 University of Alaska Anchorage Bending instrument and methods of using same
US8830233B2 (en) 2011-04-28 2014-09-09 Howmedica Osteonics Corp. Surgical case planning platform
EP3656355A1 (en) 2011-05-06 2020-05-27 Zimmer, Inc. Patient-specific manufacturing of porous metal prostheses
EP2522295A1 (en) 2011-05-10 2012-11-14 Loran S.r.l. Vitual platform for pre-surgery simulation and relative bio-mechanic validation of prothesis surgery of the lumbo-sacral area of the human spine
CA2835618C (en) 2011-05-11 2021-02-23 The Cleveland Clinic Foundation Generating patient specific instruments for use as surgical aids
EP2706942A1 (en) 2011-05-12 2014-03-19 Materialise N.V. Methods and devices for validating the position of patient-specific devices
US8931521B2 (en) 2011-06-10 2015-01-13 Pfw Aerospace Ag Bent thermoplastic pipe
US8870879B2 (en) 2011-06-16 2014-10-28 Industrial Technology Research Institute Minimally invasive spinal stabilization method
EP2734140B1 (en) 2011-07-20 2020-12-09 Smith&Nephew, Inc. Systems and methods for optimizing fit of an implant to anatomy
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US20130072982A1 (en) 2011-09-19 2013-03-21 Peter Melott Simonson Spinal assembly load gauge
WO2013041618A1 (en) 2011-09-20 2013-03-28 Materialise N.V. Multifunctional patient - specific guides
US9084635B2 (en) 2011-10-07 2015-07-21 Regents Of The University Of Minnesota Intraoperative spinal stabilization
US8459090B2 (en) 2011-10-13 2013-06-11 Warsaw Orthopedic, Inc. Rod benders and methods of use
CN103987342B (en) 2011-10-14 2016-05-04 康复米斯公司 Be used for the method and system of identification, evaluation, modeling and the reparation of joint replacement anatomical structure difference
US20130110174A1 (en) 2011-10-31 2013-05-02 Warsaw Orthopedic, Inc. Methods for installing a vertebral construct
US9526535B2 (en) 2011-11-07 2016-12-27 Morgan Packard Lorio Methods and apparatuses for delivering a rod to a plurality of pedicle screws
CA3082418C (en) 2011-12-05 2024-01-16 Dignity Health Surgical rod bending system and method
CN103999129B (en) 2011-12-14 2017-04-05 斯泰克欧洲控股一有限责任公司 For generating the technology of bone plate designs
CN104271076B (en) 2011-12-23 2017-05-31 物化股份有限公司 Service precision maps with stability analysis to design the system and method with generating device
US20150025548A1 (en) 2012-03-08 2015-01-22 Neutar, Llc Patient and Procedure Customized Fixation and Targeting Devices for Stereotactic Frames
WO2013134584A1 (en) 2012-03-08 2013-09-12 Hugomed Llc 3d design and fabrication system for implants
FR2988583B1 (en) 2012-04-02 2014-03-14 Safe Orthopaedics CAM BENDER
US8888821B2 (en) 2012-04-05 2014-11-18 Warsaw Orthopedic, Inc. Spinal implant measuring system and method
JP5932468B2 (en) 2012-04-27 2016-06-08 メドトロニックソファモアダネック株式会社 Bender coupling mechanism and vendor equipment
US20130296954A1 (en) 2012-05-02 2013-11-07 Warsaw Orthopedic, Inc. Surgical tool for bending a rod
EP2849665B1 (en) 2012-05-14 2018-02-21 Synthes GmbH Cutting tool for polymer implant
US20130345757A1 (en) 2012-06-22 2013-12-26 Shawn D. Stad Image Guided Intra-Operative Contouring Aid
US8843229B2 (en) 2012-07-20 2014-09-23 Biomet Manufacturing, Llc Metallic structures having porous regions from imaged bone at pre-defined anatomic locations
US20150173804A1 (en) 2012-07-24 2015-06-25 CARBOFIX IN ORTHOPEDICS LLC a corporation Spine system and kit
EP2892452B1 (en) 2012-09-04 2018-08-15 Sanpera Trigueros, Ignacio System for a global three-dimensional correction of the curvatures of the spine
US9839463B2 (en) 2012-09-06 2017-12-12 Stryker European Holdings I, Llc Instrument for use in bending surgical devices
US9411939B2 (en) 2012-09-12 2016-08-09 DePuy Synthes Products, Inc. Method for producing patient-specific plate
US20140076883A1 (en) 2012-09-20 2014-03-20 Vladimir Brailovski Apparatus and method for per-operative modification of medical device stiffness
WO2014048448A1 (en) 2012-09-25 2014-04-03 Brainlab Ag Modular navigation reference
DE102012111385B4 (en) 2012-11-23 2018-05-03 Diers Engineering Gmbh Determining the spatial position and orientation of the vertebral bodies of the spine
CN202982181U (en) 2012-12-03 2013-06-12 中国人民解放军第二军医大学 Bend rod device
WO2014088801A1 (en) 2012-12-05 2014-06-12 Dignity Health Surgical rod bending system and method
WO2014107144A1 (en) 2013-01-03 2014-07-10 Warsaw Orthopedic, Inc. Surgical implant bending system and method
US10779751B2 (en) 2013-01-25 2020-09-22 Medtronic Navigation, Inc. System and process of utilizing image data to place a member

Also Published As

Publication number Publication date
US11207132B2 (en) 2021-12-28
US20170143426A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
US20220071709A1 (en) Systems and methods for performing spinal surgery
US11272987B2 (en) Surgical spinal correction
US11357579B2 (en) Systems and methods for planning, performing, and assessing spinal correction during surgery
US11376045B2 (en) Systems and methods for planning, performing, and assessing spinal correction during surgery
US9848922B2 (en) Systems and methods for performing spine surgery
US10881481B2 (en) Systems and methods for performing spine surgery

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: NUVASIVE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ISAACS, ROBERT E.;SCHOLL, THOMAS;BARNES, JEFFREY;AND OTHERS;SIGNING DATES FROM 20140820 TO 20140908;REEL/FRAME:059831/0173