US20220038038A1 - Method for determining the magnetic flux of an electric machine - Google Patents

Method for determining the magnetic flux of an electric machine Download PDF

Info

Publication number
US20220038038A1
US20220038038A1 US17/278,506 US201917278506A US2022038038A1 US 20220038038 A1 US20220038038 A1 US 20220038038A1 US 201917278506 A US201917278506 A US 201917278506A US 2022038038 A1 US2022038038 A1 US 2022038038A1
Authority
US
United States
Prior art keywords
magnetic flux
model
electric machine
kalman filter
dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/278,506
Other versions
US11557997B2 (en
Inventor
Hoai-Nam NGUYEN
Gianluca Zito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of US20220038038A1 publication Critical patent/US20220038038A1/en
Assigned to IFP Energies Nouvelles reassignment IFP Energies Nouvelles ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NGUYEN, Hoai-Nam, ZITO, Gianluca
Application granted granted Critical
Publication of US11557997B2 publication Critical patent/US11557997B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • H03H21/0025Particular filtering methods
    • H03H21/0029Particular filtering methods based on statistics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • H03H21/0025Particular filtering methods
    • H03H21/0029Particular filtering methods based on statistics
    • H03H21/003KALMAN filters

Definitions

  • the present invention relates to the field of control of electric machines, in particular control of salient-pole synchronous electric machines. These electric machines find applications notably in the field of motor vehicles.
  • an electric machine comprises a rotor (mobile part) and a stator (stationary part).
  • the rotor is usually housed in the stator.
  • the stator has an annular shape and it is housed within a tubular support to which it is fastened.
  • the stator comprises magnetic flux generators, generally electric windings. These windings are fed by a plurality (conventionally three) of electric phases in order to generate a rotating magnetic field. Furthermore, depending on the type of electric machine, notably for salient-pole synchronous electric machines, the rotor can comprise permanent magnets.
  • an electric current flows through the windings so as to generate the magnetic field required to rotate the rotor.
  • the direct torque control method is one of the most effective control strategies, enabling torque control in steady regime as well as transient regime, in particular for salient-pole synchronous electric machines. Furthermore, this control method is easier to implement than a field-oriented control method. Besides, this method requires less information relative to the electric machine, and no current control loop is necessary, which notably allows to solve the delay problem linked with this current control loop.
  • Patent application FR-3,035,755 describes a method of controlling an electric machine based on an estimation of the magnetic flux obtained by an observer and a discrete extended Kalman algorithm.
  • the modelling process used in this method is not very robust against parameter variations, notably because the magnetic flux is indirectly estimated since it requires calculating the currents.
  • the model described in this patent application does not take account of the non-linearity of the inductances (magnetic saturation).
  • the discrete extended Kalman algorithm does not allow variability over time of the system. Indeed, the extended Kalman filter only takes into account the non-linearity linked with the presence of speed in the equations.
  • the present invention relates to a method of determining the magnetic flux of an electric machine, based on measurements of currents and voltages in the phases of the electric machine, on a dynamic model of the magnetic flux and on an adaptive Kalman filter.
  • the dynamic model of the magnetic flux provides a precise (taking account of the variability over time of the system) and robust model of the magnetic flux.
  • the magnetic flux is directly determined.
  • the adaptive Kalman filter allows adaptation of the noise covariance matrix according to the rotational speed of the electric machine.
  • the filter is efficient over a wide operating range of the electric machine.
  • the adaptive Kalman filter is robust against magnetic flux variations of the rotor and the inductance.
  • the invention also relates to a method and to a system for controlling an electric machine using the method of determining the magnetic flux.
  • the invention relates to a method of determining the magnetic flux of an electric machine, said electric machine comprising a rotor, a stator, said stator comprising windings connected to a plurality of electric phases. The following steps are carried out for this method:
  • said mechanical rotational speed is determined by means of a phase-locked loop PLL method.
  • said dynamic magnetic flux model (MOD) is written:
  • said adaptive Kalman filter is applied by carrying out the following steps:
  • said adaptive Kalman filter algorithm is applied by carrying out the following steps:
  • said electric machine is a salient-pole synchronous electric machine.
  • the invention relates to a method for controlling an electric machine comprising the following steps:
  • said electric machine is controlled (CON) according to a method providing direct control of the torque of the electric machine implemented from said magnetic flux.
  • the invention relates to a system for controlling an electric machine, comprising control means for implementing the control method according to one of the above features.
  • FIG. 1 illustrates the steps of the method according to an embodiment of the invention
  • FIGS. 2 and 3 show the values, in Park's reference frame, of the magnetic flux of the electric machine as a function of the current.
  • the present invention relates to a method of determining, in real time, the magnetic flux of an electric machine.
  • the electric machine comprises a rotor and a stator, the stator being equipped with windings connected to several electric phases, for example three electric phases for generating a magnetic field enabling rotation of the rotor.
  • FIG. 1 schematically describes, by way of non-limitative example, the steps of the method according to an embodiment of the invention.
  • the method of determining the magnetic flux comprises the following steps:
  • Steps 1) to 3) are independent and they can be carried out in this order, in a different order or simultaneously.
  • Step 4) allows to determine magnetic flux ⁇ of the electric machine.
  • the invention relates to a method of controlling an electric machine.
  • a control method comprises steps 1) to 4) described above and an electric machine control step (CTRL) 5).
  • This control step 5 is an optional step. Indeed, the magnetic flux can be used in a different manner, notably for electric machine fault diagnosis.
  • Steps 1 to 5 are described in detail in the rest of the description hereafter.
  • mechanical rotational speed of the rotor, corresponding to the rotational speed of the rotor of the electric machine in relation to the stator
  • magnetic flux intensity of the rotor magnet, considered for the method according to the invention, in a nominal case, for a temperature of 20° C.
  • R(t) resistance of the electric machine windings
  • L d direct inductance of said electric machine, it is a known parameter of the electric machine (manufacturer data or experimentally obtained data),
  • L q quadrature inductance of said electric machine, it is a known parameter of the electric machine (manufacturer data or experimentally obtained data),
  • a d matrix of the discretized state representation
  • the estimated values are denoted by a hat (circumflex accent).
  • the mean values are indicated by an overline above the variable.
  • the time derivatives are indicated by a dot.
  • the currents and the voltages in the phases of the electric machine are measured in this step.
  • This step consists in determining the electrical rotational speed of the rotor.
  • the mechanical rotational speed of the rotor can be estimated using any method known to the person skilled in the art.
  • the mechanical rotational speed can be estimated from a phase-locked loop (PLL) type method.
  • the method of estimating the mechanical rotational speed can be as described in patent application FR-2,984,637.
  • the mechanical rotational speed of the rotor can be measured by means of a speed sensor arranged on the electric machine.
  • the electrical rotational speed can be directly determined.
  • a dynamic model of the magnetic flux is constructed in this step.
  • the dynamic magnetic flux model connects the magnetic flux to the current, to the voltage in the electric phases of the electric machine and to the electrical rotational speed of the rotor.
  • the model is referred to as dynamic because it is a function of the rotational speed.
  • the dynamic magnetic flux model is a state representation of the electric machine. It is reminded that, in systems theory (and automation), a state representation allows a dynamic system to be modelled in matrix form, using state variables. This representation may be linear or not, continuous or discrete. The representation allows to determine the internal state and the outputs of the system at any future time if the state at the initial time and the behaviour of the input variables that influence the system are known.
  • ⁇ ⁇ ( t ) [ ⁇ d ⁇ ( t ) - R ⁇ ( t ) ⁇ i d ⁇ ( t ) ⁇ q ⁇ ( t ) - R ⁇ ( t ) ⁇ i q ⁇ ( t ) ]
  • FIGS. 2 and 3 show examples of functions ⁇ d and ⁇ q as a function of currents i d and i q for a given application. It can be noted that, while function ⁇ d is a relatively linear function in relation to i d , this is not the case for function ⁇ q . Thus, the problem of estimating the magnetic flux of the electric machine becomes more complex, all the more so since functions ⁇ d and ⁇ q are also a function of the mechanical angle of the rotor.
  • a solution to this complex problem could consist in mapping the magnetic flux quantities ⁇ d and ⁇ q .
  • This solution requires a high storage capacity and a large number of experimental measurements.
  • the magnetic flux of the rotor varies with temperature.
  • the model described above is therefore complex to implement.
  • This model has the advantage of being accurate without being memory and computational time consuming, which facilitates its implementation in an adaptive Kalman filter and possibly in an electric machine control method.
  • magnetic flux ⁇ of the rotor can be considered in a nominal case where a temperature of 20° C. is considered.
  • f ⁇ ( i d ⁇ ( t ) ) ⁇ L qs ⁇ i q ⁇ ( t ) - b qs , if ⁇ ⁇ i q ⁇ ( t ) ⁇ - i qm , L q ⁇ i q ⁇ ( t ) , if ⁇ - i qm ⁇ i q ⁇ ( t ) ⁇ i qm , L qs ⁇ i q ⁇ ( t ) + b qs if ⁇ ⁇ i qm ⁇ i q ⁇ ( t )
  • the magnetic flux of the electric machine is determined in this step.
  • An adaptive Kalman filter is therefore applied to the dynamic model constructed in step 3), to the voltage and current measurements obtained in step 1) and to the electrical rotational speed of the rotor obtained in step 2).
  • Application of the Kalman filter allows a state observer to be obtained.
  • the adaptive Kalman filter provides adaptation of the noise covariance matrix as a function of the rotational speed of the electric machine.
  • the filter is efficient over a wide operating range of the electric machine.
  • the adaptive Kalman filter is robust against magnetic flux variations of the rotor and the inductance.
  • a state observer or a state estimator, is, in systems theory and automation, an extension of a model represented as a state representation. When the state of the system is not measurable, an observer allowing the state to be reconstructed from a model is constructed.
  • the adaptive Kalman filter can be applied by carrying out the following steps:
  • the dynamic model of the magnetic flux is modified so as to take account of the uncertainties of the model e(t) and the measurement noise ⁇ (t).
  • the modified model can be written:
  • matrix A is a function of speed, itself a function of time, it is not possible to determine matrices A d and B d analytically.
  • matrices A d and B d can be obtained by means of a Taylor series.
  • matrices A d and B d can be determined by means of a 3 rd order Taylor series.
  • matrices A d and B d can be written:
  • a d [ 1 0 0 1 ] + T s ⁇ [ 0 ⁇ e - ⁇ e 0 ] + T s 2 2 ⁇ [ 0 ⁇ e - ⁇ e 0 ] 2 + T s 3 6 ⁇ [ 0 ⁇ e - ⁇ e 0 ] 3
  • ⁇ B d T s ⁇ [ 1 0 0 1 ] + T s 2 2 ⁇ [ 0 ⁇ e - ⁇ e 0 ] + T s 3 6 ⁇ [ 0 ⁇ e - ⁇ e 0 ] 2 + T s 4 24 ⁇ [ 0 ⁇ e - ⁇ e 0 ] 3
  • Cost function J provides a guide for selecting matrices P 0 , R and Q, with the following conditions:
  • Q can be selected as:
  • hypotheses In order to solve the minimization problem by means of the adaptive Kalman fitter, the below hypotheses can be adopted. These hypotheses mainly concern a mathematical interpretation of matrices P 0 , R and Q.
  • the magnetic flux of the electric machine can be determined.
  • the adaptive Kalman filter approach can be summarized as follows:
  • the output is determined by carrying out the following steps:
  • ⁇ x ⁇ ⁇ ( k ⁇ k - 1 ) A d ⁇ x ⁇ ⁇ ( k - 1 ⁇ k - 1 ) + B d ⁇ u ⁇ ( k - 1 )
  • ⁇ ⁇ ⁇ d ⁇ ( k ) x ⁇ 1 ⁇ ( k ⁇ k )
  • ⁇ ⁇ q ⁇ ( k ) x ⁇ 2 ⁇ ( k ⁇ k )
  • subscript 1 denotes the first term of vector x and subscript 2 denotes the second term of vector x.
  • This step is optional.
  • the invention also relates to a method for real-time control of a synchronous electric machine, wherein the following steps are carried out:
  • an electric machine control system can comprise electric machine control means including means of determining the magnetic flux of the electric machine and means of controlling the torque of the electric machine.
  • the means of determining the magnetic flux determine the magnetic flux of the electric machine from the current and voltage measurements, i.e. the currents and voltages of each of the three phases of the electric machine.
  • the torque control means apply voltages at the terminals of the electric machine as a function of the magnetic flux so as to ensure a torque setpoint for the electric machine.
  • the control system can be a controller comprising computer means.
  • This control method and system can be used for an electric machine on board a vehicle, notably an electric or hybrid motor vehicle.
  • a vehicle notably an electric or hybrid motor vehicle.
  • the control system described is not limited to this application and it is suitable for all electric machine applications.
  • the electric machine is a salient-pole synchronous electric machine.
  • the method is particularly well-suited to this type of machine, on the one hand, because the dynamic model of the electric machine is quite representative of this type of electric machine, and on the other hand because determination of the magnetic flux enables control of such an electric machine, notably through direct control of the torque.

Abstract

The present invention relates to a method of determining the magnetic flux φ of an electric machine, based on measurements (MES) of currents and voltages in the phases of the electric machine, on a dynamic model (MOD) of the magnetic flux and on an adaptive Kalman filter (KAL).

Description

    FIELD OF THE INVENTION
  • The present invention relates to the field of control of electric machines, in particular control of salient-pole synchronous electric machines. These electric machines find applications notably in the field of motor vehicles.
  • Conventionally, an electric machine comprises a rotor (mobile part) and a stator (stationary part). The rotor is usually housed in the stator. Generally, the stator has an annular shape and it is housed within a tubular support to which it is fastened.
  • The stator comprises magnetic flux generators, generally electric windings. These windings are fed by a plurality (conventionally three) of electric phases in order to generate a rotating magnetic field. Furthermore, depending on the type of electric machine, notably for salient-pole synchronous electric machines, the rotor can comprise permanent magnets.
  • During operation of such an electric machine, an electric current flows through the windings so as to generate the magnetic field required to rotate the rotor.
  • BACKGROUND OF THE INVENTION
  • There are several types of control for such electric machines. It is notably well known that the direct torque control method is one of the most effective control strategies, enabling torque control in steady regime as well as transient regime, in particular for salient-pole synchronous electric machines. Furthermore, this control method is easier to implement than a field-oriented control method. Besides, this method requires less information relative to the electric machine, and no current control loop is necessary, which notably allows to solve the delay problem linked with this current control loop.
  • However, the drawback of this control method is that it is based on the magnetic flux signal of the electric machine, whereas this quantity cannot be directly measured while the electric machine is operating. The magnetic flux then needs to be estimated, for example by means of an observer using the other measurable quantities. The document: Mohamad Koteich. “Flux estimation algorithms for electric drives: a comparative study”, in: Renewable Energies for Developing Countries (REDEC), 2016, 3rd International Conference, IEEE, 2016, pp. 1-6 (cit. on p. 5) reviews a certain number of methods of determining the magnetic flux.
  • Most methods of the prior art require knowledge of the resistance, the magnetic flux of the rotor and the inductance. However, while the resistance can be considered as known, the exact value of the magnetic flux of the rotor remains unknown, notably because it depends on the temperature of the rotor, which cannot be directly measured. Besides, in the presence of magnetic saturation, the inductance is a non-linear function of the current. Therefore, the problem of estimating the magnetic flux of the electric machine is non-trivial, which involves complexity and/or imprecision in estimations.
  • Patent application FR-3,035,755 describes a method of controlling an electric machine based on an estimation of the magnetic flux obtained by an observer and a discrete extended Kalman algorithm. The modelling process used in this method is not very robust against parameter variations, notably because the magnetic flux is indirectly estimated since it requires calculating the currents. Furthermore, the model described in this patent application does not take account of the non-linearity of the inductances (magnetic saturation). Besides, the discrete extended Kalman algorithm does not allow variability over time of the system. Indeed, the extended Kalman filter only takes into account the non-linearity linked with the presence of speed in the equations.
  • In order to overcome these drawbacks, the present invention relates to a method of determining the magnetic flux of an electric machine, based on measurements of currents and voltages in the phases of the electric machine, on a dynamic model of the magnetic flux and on an adaptive Kalman filter. The dynamic model of the magnetic flux provides a precise (taking account of the variability over time of the system) and robust model of the magnetic flux. Thus, the magnetic flux is directly determined. The adaptive Kalman filter allows adaptation of the noise covariance matrix according to the rotational speed of the electric machine. Thus, the filter is efficient over a wide operating range of the electric machine. Moreover, the adaptive Kalman filter is robust against magnetic flux variations of the rotor and the inductance.
  • The invention also relates to a method and to a system for controlling an electric machine using the method of determining the magnetic flux.
  • SUMMARY OF THE INVENTION
  • The invention relates to a method of determining the magnetic flux of an electric machine, said electric machine comprising a rotor, a stator, said stator comprising windings connected to a plurality of electric phases. The following steps are carried out for this method:
  • a) measuring a current and a voltage in said phases of said electric machine,
  • b) determining the electrical rotational speed of said rotor, notably as a function of the mechanical rotational speed of said rotor,
  • c) constructing a dynamic model of said magnetic flux of said electric machine, said dynamic model of said magnetic flux connecting said magnetic flux to the current and to the voltage of the phases of the electric machine, and to said electrical rotational speed of said rotor, and
  • d) determining said magnetic flux φ by applying an adaptive Kalman filter to said dynamic magnetic flux model, said dynamic magnetic flux model being applied to said current and voltage measurements and to said determined electrical rotational speed.
  • According to an embodiment, said electrical rotational speed ωe of said rotor is determined with a formula of the type ωe=pω, with p the pole pair number of the electric machine and ω the mechanical rotational speed of said rotor.
  • Advantageously, said mechanical rotational speed is determined by means of a phase-locked loop PLL method.
  • According to an implementation, said dynamic magnetic flux model (MOD) is written:
  • φ d ( t ) = L d i d ( t ) + 3 2 Φ , φ q ( t ) = { L qs i q ( t ) - b qs , if i q ( t ) - i qm , L q i q ( t ) , if - i qm i q ( t ) i qm , L qs i q ( t ) + b qs if i qm i q ( t )
  • with φ the magnetic flux of the electric machine, i the current, Φ the rotor flux, L the inductances of said electric machine, Lqs, bqs coefficients taking account of the saturation effect, d and q the axes in Park's reference frame, and iqm the quadrature current value for which the magnetic flux is a linear function of the quadrature current.
  • According to an aspect, said adaptive Kalman filter is applied by carrying out the following steps:
  • i) modifying said dynamic magnetic flux model by integrating uncertainties in said model and a measurement noise,
  • ii) discretizing said modified dynamic magnetic flux model, and
  • iii) applying an adaptive Kalman filter algorithm to said modified and discretized model.
  • According to a feature, said adaptive Kalman filter algorithm is applied by carrying out the following steps:
  • (1) initiating k=0, the state vector {circumflex over (x)}(0) and the state of the covariance matrix P(0|0)=P0,
  • (2) applying the time update and measurement update equations in order to obtain {circumflex over (x)}(k|k) and P(k|k):
  • { x ^ ( k k - 1 ) = A d x ^ ( k - 1 k - 1 ) + B d υ ( k - 1 ) P ( k k - 1 ) = A d P ( k - 1 k - 1 ) A d T + B d Q e B d T , { K ( k ) = P ( k k - 1 ) ( P ( k k - 1 ) + R ) - 1 x ^ ( k k ) = x ^ ( k k - 1 ) + K ( k ) ( x ( k ) - x ^ ( k k - 1 ) ) P ( k k ) = ( I - K ( k ) ) P ( k - 1 ) .
  • (3) determining said magnetic flux φ estimated at time k by means of the formulas:
  • { φ ^ d ( k ) = x ^ 1 ( k k ) φ ^ q ( k ) = x ^ 2 ( k k ) ,
  • with k the discretized time, A_d, B_d state realization matrices, P the covariance matrix of the state vector, R a calibration matrix, K the Kalman filter gain and Q_ϵ an adjustment parameter.
  • Advantageously, said electric machine is a salient-pole synchronous electric machine.
  • Furthermore, the invention relates to a method for controlling an electric machine comprising the following steps:
  • a) determining a magnetic flux φ of said electric machine by means of the method of determining said magnetic flux according to one of the above features, and
  • b) controlling (CON) said electric machine by means of said determined magnetic flux.
  • Advantageously, said electric machine is controlled (CON) according to a method providing direct control of the torque of the electric machine implemented from said magnetic flux.
  • Moreover, the invention relates to a system for controlling an electric machine, comprising control means for implementing the control method according to one of the above features.
  • BRIEF DESCRIPTION OF THE FIGURES
  • Other features and advantages of the method according to the invention will be clear from reading the description hereafter of embodiments given by way of non-limitative example, with reference to the accompanying figures wherein:
  • FIG. 1 illustrates the steps of the method according to an embodiment of the invention,
  • FIGS. 2 and 3 show the values, in Park's reference frame, of the magnetic flux of the electric machine as a function of the current.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention relates to a method of determining, in real time, the magnetic flux of an electric machine. The electric machine comprises a rotor and a stator, the stator being equipped with windings connected to several electric phases, for example three electric phases for generating a magnetic field enabling rotation of the rotor.
  • FIG. 1 schematically describes, by way of non-limitative example, the steps of the method according to an embodiment of the invention. The method of determining the magnetic flux comprises the following steps:
  • 1) Measurement of currents and voltages (MES)
  • 2) Determination of the electrical rotational speed (VIT)
  • 3) Construction of the dynamic magnetic flux model (MOD)
  • 4) Application of the adaptive Kalman filter (KAL)
  • Steps 1) to 3) are independent and they can be carried out in this order, in a different order or simultaneously.
  • Step 4) allows to determine magnetic flux φ of the electric machine.
  • Furthermore, the invention relates to a method of controlling an electric machine. Such a control method comprises steps 1) to 4) described above and an electric machine control step (CTRL) 5).
  • This control step 5) is an optional step. Indeed, the magnetic flux can be used in a different manner, notably for electric machine fault diagnosis.
  • Steps 1 to 5) are described in detail in the rest of the description hereafter.
  • Notations:
  • The following notations are used in the description:
  • v: voltages at the phase terminals of the electric machine,
  • i: currents circulating in the phases of the electric machine,
  • iqm: quadrature current value for which the magnetic flux is a linear function of the quadrature current,
  • ω: mechanical rotational speed of the rotor, corresponding to the rotational speed of the rotor of the electric machine in relation to the stator,
  • ωe: electrical rotational speed of the rotor,
  • Φ: magnetic flux intensity of the rotor magnet, considered for the method according to the invention, in a nominal case, for a temperature of 20° C.,
  • R(t): resistance of the electric machine windings, it is a known parameter that can be obtained experimentally,
  • Ld: direct inductance of said electric machine, it is a known parameter of the electric machine (manufacturer data or experimentally obtained data),
  • Lq: quadrature inductance of said electric machine, it is a known parameter of the electric machine (manufacturer data or experimentally obtained data),
  • Lqs: inductance taking account of the saturation phenomenon (manufacturer data or experimentally obtained data),
  • p: pole pair number of the electric machine,
  • Figure US20220038038A1-20220203-P00999
    : magnetic flux of the electric machine,
  • A: matrix of the state representation
  • A = ( 0 ω e ( t ) - ω e ( t ) 0 ) .
  • B: identity matrix
  • B = ( 1 0 0 1 ) .
  • f: function of the state representation,
  • bqs: scalar coefficient taking account of the saturation phenomenon, this value con be obtained experimentally,
  • ∪: vector of the state representation data,
  • x = ( φ d φ q )
  • state vector of the state representation, corresponding to the non-measurable state,
  • ϵ: unmodified dynamics;
  • η: measurement noise,
  • Ts: sampling period,
  • k: discretized time,
  • Ad: matrix of the discretized state representation,
  • Bd: matrix of the discretized state representation,
  • J: cost function minimized by the Kalman filter,
  • P: covariance matrix of the state vector,
  • P0, Q, R: calibration matrices,
  • Qϵ: adjustment parameter,
  • K: Kalman filter gain.
  • The estimated values are denoted by a hat (circumflex accent). The mean values are indicated by an overline above the variable. The time derivatives are indicated by a dot. The notations bearing subscripts d (direct) or q (quadrature) mean that the quantities are expressed in Park's reference frame. Besides, the initial state values are given with a 0 (t or k=0).
  • 1) Measurement of Currents and Voltages
  • The currents and the voltages in the phases of the electric machine are measured in this step.
  • These measurements can be performed by voltage and current sensors.
  • 2) Determination of the Electrical Rotational Speed of the Rotor
  • This step consists in determining the electrical rotational speed of the rotor.
  • According to an embodiment of the invention, the electrical rotational speed of the rotor can be determined from the mechanical rotational speed of the rotor, by means of the formula: ωe=pω.
  • According to an implementation of this embodiment, the mechanical rotational speed of the rotor can be estimated using any method known to the person skilled in the art. For example, the mechanical rotational speed can be estimated from a phase-locked loop (PLL) type method. In a variant, the method of estimating the mechanical rotational speed can be as described in patent application FR-2,984,637.
  • Alternatively, the mechanical rotational speed of the rotor can be measured by means of a speed sensor arranged on the electric machine.
  • In a variant, the electrical rotational speed can be directly determined.
  • 3) Construction of the Dynamic Magnetic Flux Model
  • A dynamic model of the magnetic flux is constructed in this step. The dynamic magnetic flux model connects the magnetic flux to the current, to the voltage in the electric phases of the electric machine and to the electrical rotational speed of the rotor. The model is referred to as dynamic because it is a function of the rotational speed.
  • The dynamic magnetic flux model is a state representation of the electric machine. It is reminded that, in systems theory (and automation), a state representation allows a dynamic system to be modelled in matrix form, using state variables. This representation may be linear or not, continuous or discrete. The representation allows to determine the internal state and the outputs of the system at any future time if the state at the initial time and the behaviour of the input variables that influence the system are known.
  • In Park's reference frame (d, q), the dynamic magnetic flux model can be expressed by the following differential equations:
  • { φ . d ( t ) = - R ( t ) i d ( t ) + ω e ( t ) φ q ( t ) + υ d ( t ) φ . q ( t ) = - R ( t ) i q ( t ) - ω e ( t ) φ d ( t ) + υ q ( t ) ,
  • When writing these differential equations in vector form, we obtain:
  • [ φ . d ( t ) φ . q ( t ) ] = [ 0 ω e ( t ) - ω e ( t ) 0 ] [ φ d ( t ) φ q ( t ) ] + [ υ d ( t ) - R ( t ) i d ( t ) υ q ( t ) - R ( t ) i q ( t ) ]
  • or, in an equivalent manner:

  • {dot over (x)}(t)=A(t)x(t)+Bu(t)
  • with
  • x ( t ) = [ φ d ( t ) φ q ( t ) ]
  • the non-measurable state and
  • υ ( t ) = [ υ d ( t ) - R ( t ) i d ( t ) υ q ( t ) - R ( t ) i q ( t ) ]
  • the model input.
  • According to this equation, it is clear that the equation of state of the magnetic flux of the electric machine can be described by a linear model over time. However, the equation of state of the magnetic flux is a highly non-linear function of currents id and iq, and of magnetic flux Φ of the rotor. We can then write:
  • { φ d ( t ) = f d ( i q ( t ) , i q ( t ) ) + 3 2 Φ ( t ) φ q ( t ) = f q ( i q ( t ) , i q ( t ) )
  • FIGS. 2 and 3 show examples of functions ƒd and ƒq as a function of currents id and iq for a given application. It can be noted that, while function ƒd is a relatively linear function in relation to id, this is not the case for function ƒq. Thus, the problem of estimating the magnetic flux of the electric machine becomes more complex, all the more so since functions ƒd and ƒq are also a function of the mechanical angle of the rotor.
  • A solution to this complex problem could consist in mapping the magnetic flux quantities φd and φq. This solution requires a high storage capacity and a large number of experimental measurements. Besides, the magnetic flux of the rotor varies with temperature. The model described above is therefore complex to implement.
  • According to an embodiment of the invention, it is possible to construct a dynamic magnetic flux model simple to implement while remaining accurate, and the simplified model can be defined by the following equations:
  • { φ d ( t ) = L d i d ( t ) + 3 2 Φ , φ q ( t ) = { L qs i q ( t ) - b qs , if i q ( t ) - i qm , L q i q ( t ) , if - i qm i q ( t ) i qm , L qs i q ( t ) + b qs if i qm i q ( t )
  • This model has the advantage of being accurate without being memory and computational time consuming, which facilitates its implementation in an adaptive Kalman filter and possibly in an electric machine control method.
  • According to an implementation of this embodiment, magnetic flux Φ of the rotor can be considered in a nominal case where a temperature of 20° C. is considered.
  • For this embodiment, the equation of state can be written as follows:
  • x . ( t ) = A ( t ) x ( t ) + Bu ( t ) x ( t ) = [ L d i d ( t ) + 3 2 Φ f ( i d ( t ) ) ]
  • with:
  • f ( i d ( t ) ) = { L qs i q ( t ) - b qs , if i q ( t ) - i qm , L q i q ( t ) , if - i qm i q ( t ) i qm , L qs i q ( t ) + b qs if i qm i q ( t )
  • 4) Application of the Adaptive Kalman Filter
  • The magnetic flux of the electric machine is determined in this step. An adaptive Kalman filter is therefore applied to the dynamic model constructed in step 3), to the voltage and current measurements obtained in step 1) and to the electrical rotational speed of the rotor obtained in step 2). Application of the Kalman filter allows a state observer to be obtained. The adaptive Kalman filter provides adaptation of the noise covariance matrix as a function of the rotational speed of the electric machine. Thus, the filter is efficient over a wide operating range of the electric machine. Besides, the adaptive Kalman filter is robust against magnetic flux variations of the rotor and the inductance.
  • It is reminded that a state observer, or a state estimator, is, in systems theory and automation, an extension of a model represented as a state representation. When the state of the system is not measurable, an observer allowing the state to be reconstructed from a model is constructed.
  • According to an embodiment of the invention, the adaptive Kalman filter can be applied by carrying out the following steps:
      • modifying the dynamic magnetic flux model by integrating unmodelled dynamics and a measurement noise,
      • discretizing the modified dynamic magnetic flux model, and
      • applying an adaptive Kalman filter algorithm to the modified and discretized dynamic model.
  • According to an example of this embodiment, the various steps described hereafter can be carried out.
  • The dynamic model of the magnetic flux is modified so as to take account of the uncertainties of the model e(t) and the measurement noise η(t). The modified model can be written:
  • { x . ( t ) = A ( t ) x ( t ) + Bu ( t ) + ϵ ( t ) x ( t ) = [ L d i d ( t ) + 3 2 Φ f ( i d ( t ) ) ] + η ( t )
  • It is thus possible to obtain a more realistic magnetic flux model.
  • This model is then discretized for application of the Kalman filter. A sampling period Ts is therefore considered. The following equations can then be written:
  • { x ( k ) = A d ( k - 1 ) x ( k - 1 ) + B d ( k - 1 ) u ( k - 1 ) + B d ( k - 1 ) ϵ ( k - 1 ) x ( t ) = [ L d i d ( k ) + 3 2 Φ f ( i d ( k ) ) ] + η ( k )
  • with:
  • { A d ( k - 1 ) = e TeA ( t ) , B d ( k - 1 ) = T s 0 e τ A ( τ ) Bd τ
  • Given that matrix A is a function of speed, itself a function of time, it is not possible to determine matrices Ad and Bd analytically.
  • According to an aspect of this embodiment, matrices Ad and Bd can be obtained by means of a Taylor series. Preferably, for efficiency purposes, matrices Ad and Bd can be determined by means of a 3rd order Taylor series. In this case, matrices Ad and Bd can be written:
  • A d = [ 1 0 0 1 ] + T s [ 0 ω e - ω e 0 ] + T s 2 2 [ 0 ω e - ω e 0 ] 2 + T s 3 6 [ 0 ω e - ω e 0 ] 3 , B d = T s [ 1 0 0 1 ] + T s 2 2 [ 0 ω e - ω e 0 ] + T s 3 6 [ 0 ω e - ω e 0 ] 2 + T s 4 24 [ 0 ω e - ω e 0 ] 3
  • Finally, an adaptive Kalman filter algorithm is applied.
  • We then put:

  • ζ(k)=B dϵ(k;
  • One way of determining the unknown state vector x is to take into account the information ζ(k) and η(k) in the adoptive Kalman filter. In practice, this adaptive Kalman filter provides a solution to the minimization problem described below:
  • min x ( k ) J ( k )
  • with:
  • J ( k ) = ( x ( 0 ) - x _ ( 0 ) ) T P 0 - 1 ( x ( 0 ) - x _ ( 0 ) ) + j = 1 k ( ζ ( j - 1 ) T Q - 1 ζ ( k - 1 ) + η ( j ) T R - 1 η ( j ) ) ζ ( k - 1 ) = x ( k ) - A d ( k - 1 ) x ( k - 1 ) - B d u ( k - 1 ) η ( k ) = x ( k ) - [ L d i d ( k ) + 3 2 Φ f ( i d ( k ) ) ]
  • Cost function J provides a guide for selecting matrices P0, R and Q, with the following conditions:
  • 1. If the initial state x(k) at the time k=0 is known, i.e. {acute over (x)}(0)≈x(0) then the values of matrix P0 relatively small. Otherwise, the values of matrix P0 are relatively great.
  • 2. If there is much measurement noise, then the values of matrix R are relatively small. Otherwise, the values of matrix R are relatively great.
  • Furthermore, Q can be selected as:

  • Q=B d Q e B d T
  • with Qe an adjustment parameter. This relation implies that matrix Q is a function of the rotational speed of the rotor.
  • In order to solve the minimization problem by means of the adaptive Kalman fitter, the below hypotheses can be adopted. These hypotheses mainly concern a mathematical interpretation of matrices P0, R and Q.
      • initial state x(0) is a random vector that is not correlated with noises ζ(k) and η(k),
      • initial state x(0) has a known mean {tilde over (x)}(0) and a covariance defined by:

  • P 0 =E[(x(0)− x (0))(x(0)− x (0))T]
  • where E denotes the expected value,
      • ζ(k) and η(k) are not correlated, and they are white noises with zero mean, with covariance matrices Q and R respectively, in other words:
  • E [ ζ ( k ) ζ ( j ) T ] = { Q , if k = j , 0 , if k j E [ η ( k ) η ( j ) T ] = { R , if k = j , 0 , if k j E [ ζ ( k ) η ( j ) T ] = 0 , for all k , j
  • It can be noted that this hypothesis also implies that Q and R are symmetric positive semidefinite matrices.
  • The following notations are also adopted:
      • {circumflex over (x)}(k|k−1) is the estimate of x(k) from the measurements up to the time k−1, i.e. x(k−1), x(k−2), . . . and u(k−1), u(k−2), . . .
      • {circumflex over (x)}(k|k) is the estimate of x(k) from the measurements up to the time k, i.e. x(k), x(k−1), . . . and u(k), u(k−1), . . .
      • P(k|k−1) is the covariance matrix of x(k) given x(k−1), x(k−2), . . . and u(k−1), u(k−2), . . .
      • P(k|k) is the covariance matrix of x(k) from the measurements up to the time k, i.e. x(k), x(k−1), . . . and u(k), u(k−1), . . .
  • The adaptive Kalman filter algorithm can then be summarized as follows, with a time update equation:
  • { x ^ ( k k - 1 ) = A d x ^ ( k - 1 k - 1 ) + B d u ( k - 1 ) , P ( k k - 1 ) = A d P ( k - 1 k - 1 ) A d T + B d Q c B d T
  • and a measurement update equation:
  • { K ( k ) = P ( k k - 1 ) ( P ( k k - 1 ) + R ) - 1 x ^ ( k k ) = x ^ ( k k - 1 ) + K ( k ) ( x ( k ) - x ^ ( k k - 1 ) ) P ( k k ) = ( I - K ( k ) ) P ( k k - 1 )
  • Thus, the magnetic flux of the electric machine can be determined.
  • According to an implementation of the invention, the adaptive Kalman filter approach can be summarized as follows:
  • 1. The input data estimated at the previous time, listed below, and parameters Q
    Figure US20220038038A1-20220203-P00999
    and R (covariance matrices) are used, and we determine:
  • x ( k ) = [ L d i d ( k ) + 3 2 Φ f ( i d ( k ) ) ] u ( k ) = [ v d ( t ) - R ( t ) i d ( t ) v q ( t ) - R ( t ) i q ( t ) ] x ^ ( k - 1 k - 1 ) P ( k - 1 k - 1 )
  • 2. The output is determined by carrying out the following steps:
  • (1) initializing k=0, state vector {tilde over (x)}(0) and the state of the covariance matrix P(0|0)=P0,
  • (2) applying the time update and measurement update equations so as to obtain {circumflex over (x)}(k|k) and P(k|k):
  • { x ^ ( k k - 1 ) = A d x ^ ( k - 1 k - 1 ) + B d u ( k - 1 ) , P ( k k - 1 ) = A d P ( k - 1 k - 1 ) A d T + B d Q c B d T { K ( k ) = P ( k k - 1 ) ( P ( k k - 1 ) + R ) - 1 x ^ ( k k ) = x ^ ( k k - 1 ) + K ( k ) ( x ( k ) - x ^ ( k k - 1 ) ) P ( k k ) = ( I - K ( k ) ) P ( k k - 1 ) ,
  • (3) determining magnetic flux φ estimated at the time k with the formulas:
  • { φ ^ d ( k ) = x ^ 1 ( k k ) , φ ^ q ( k ) = x ^ 2 ( k k )
  • In these equations, subscript 1 denotes the first term of vector x and subscript 2 denotes the second term of vector x.
  • 5) Electric Machine Control
  • This step is optional.
  • The invention also relates to a method for real-time control of a synchronous electric machine, wherein the following steps are carried out:
      • determining the magnetic flux of the electric machine by means of the method (steps 1) to 4)) described above, and
      • controlling the torque of said synchronous machine as a function of the determined magnetic flux. This step can be carried out using any conventional means of controlling the electric machine that takes account of the magnetic flux. For example, control of the electric machine can be based on an effective direct torque control method, particularly suited to salient-pole synchronous electric machines.
  • Furthermore, the invention relates to a system for controlling a synchronous electric machine suited to applying the method as described above. Such an electric machine control system can comprise electric machine control means including means of determining the magnetic flux of the electric machine and means of controlling the torque of the electric machine. The means of determining the magnetic flux determine the magnetic flux of the electric machine from the current and voltage measurements, i.e. the currents and voltages of each of the three phases of the electric machine. The torque control means apply voltages at the terminals of the electric machine as a function of the magnetic flux so as to ensure a torque setpoint for the electric machine. Advantageously, the control system can be a controller comprising computer means.
  • This control method and system can be used for an electric machine on board a vehicle, notably an electric or hybrid motor vehicle. However, the control system described is not limited to this application and it is suitable for all electric machine applications.
  • According to an aspect, the electric machine is a salient-pole synchronous electric machine. Indeed, the method is particularly well-suited to this type of machine, on the one hand, because the dynamic model of the electric machine is quite representative of this type of electric machine, and on the other hand because determination of the magnetic flux enables control of such an electric machine, notably through direct control of the torque.
  • It is clear that the invention is not limited to only the embodiments of the recesses described above by way of example and that it encompasses multiple variants.

Claims (18)

11. A method of determining magnetic flux of an electric machine, the electric machine comprising a rotor, a stator, the stator comprising windings connected to electric phases, comprising steps of:
a) measuring a current and a voltage in the phases of the electric machine,
b) determining the electrical rotational speed of the rotor, as a function of mechanical rotational speed of the rotor;
c) constructing a dynamic model of the magnetic flux of the electric machine, the dynamic model of the magnetic flux connecting the magnetic flux to the current and to the voltage of the electric phases of the electric machine, and to the electrical rotational speed of the rotor; and
d) determining the magnetic flux φ by applying an adaptive Kalman filter to the dynamic magnetic flux model, the dynamic magnetic flux model being applied to the current and voltage measurements and to the determined electrical rotational speed.
12. A magnetic flux determination method as recited in claim 11, wherein the electrical rotational speed of the rotor is determined with a formula ωe=pω, with p being a pole pair number of the electric machine and co being the mechanical rotational speed of the rotor.
13. A magnetic flux determination method as claimed in claim 12, wherein the mechanical rotational speed is determined by use of a phase-locked loop method.
14. A magnetic flux determination method as claimed in claim 11, wherein the dynamic magnetic flux model is written as:
{ φ d ( t ) = L d i d ( t ) + 3 2 Φ , φ q ( t ) = { L qs i q ( t ) - b qs , if i q ( t ) - i qm , L q i q ( t ) , if - i qm i q ( t ) i qm , L qs i q ( t ) + b qs if i qm - i q ( t )
with φ being the magnetic flux of the electric machine, i being the current, Φ being the rotor flux, L being the inductances of the electric machine, Lqs, and bqs being coefficients accounting for saturation effect, d and q being the axes in Park's reference frame, and iqm being a quadrature current value for which the magnetic flux is a linear function of the quadrature current.
15. A magnetic flux determination method as claimed in claim 12, wherein the dynamic magnetic flux model is written as:
{ φ d ( t ) = L d i d ( t ) + 3 2 Φ , φ q ( t ) = { L qs i q ( t ) - b qs , if i q ( t ) - i qm , L q i q ( t ) , if - i qm i q ( t ) i qm , L qs i q ( t ) + b qs if i qm - i q ( t )
with φ being the magnetic flux of the electric machine, i being the current, Φ being the rotor flux, L being the inductances of the electric machine, Lqs, and bqs being coefficients accounting for saturation effect, d and q being the axes in Park's reference frame, and iqm being a quadrature current value for which the magnetic flux is a linear function of the quadrature current.
16. A magnetic flux determination method as claimed in claim 13, wherein the dynamic magnetic flux model is written as:
{ φ d ( t ) = L d i d ( t ) + 3 2 Φ , φ q ( t ) = { L qs i q ( t ) - b qs , if i q ( t ) - i qm , L q i q ( t ) , if - i qm i q ( t ) i qm , L qs i q ( t ) + b qs if i qm - i q ( t )
with φ being the magnetic flux of the electric machine, i being the current, Φ being the rotor flux, L being the inductances of the electric machine, Lqs, and bqs being coefficients accounting for saturation effect, d and q being the axes in Park's reference frame, and iqm being a quadrature current value for which the magnetic flux is a linear function of the quadrature current.
17. A magnetic flux determination method as claimed in claim 11, wherein the adaptive Kalman filter is applied by carrying out steps of:
i) modifying the dynamic magnetic flux model by integrating uncertainties in the model and a measurement noise;
ii) discretizing the modified dynamic magnetic flux model; and
iii) applying an adaptive Kalman filter algorithm to the modified and a discretized model.
18. A magnetic flux determination method as claimed in claim 12, wherein the adaptive Kalman filter is applied by carrying out steps of:
i) modifying the dynamic magnetic flux model by integrating uncertainties in the model and a measurement noise;
ii) discretizing the modified dynamic magnetic flux model; and
iii) applying an adaptive Kalman filter algorithm to the modified and a discretized model.
19. A magnetic flux determination method as claimed in claim 13, wherein the adaptive Kalman filter is applied by carrying out steps of:
i) modifying the dynamic magnetic flux model by integrating uncertainties in the model and a measurement noise;
ii) discretizing the modified dynamic magnetic flux model; and
iii) applying an adaptive Kalman filter algorithm to the modified and a discretized model.
20. A magnetic flux determination method as claimed in claim 14, wherein the adaptive Kalman filter is applied by carrying out steps of:
i) modifying the dynamic magnetic flux model by integrating uncertainties in the model and a measurement noise;
ii) discretizing the modified dynamic magnetic flux model; and
iii) applying an adaptive Kalman filter algorithm to the modified and a discretized model.
21. A magnetic flux determination method as claimed in claim 15, wherein the adaptive Kalman filter is applied by carrying out steps of:
i) modifying the dynamic magnetic flux model by integrating uncertainties in the model and a measurement noise;
ii) discretizing the modified dynamic magnetic flux model; and
iii) applying an adaptive Kalman filter algorithm to the modified and a discretized model.
22. A magnetic flux determination method as claimed in claim 16, wherein the adaptive Kalman filter is applied by carrying out steps of:
i) modifying the dynamic magnetic flux model by integrating uncertainties in the model and a measurement noise;
ii) discretizing the modified dynamic magnetic flux model; and
iii) applying an adaptive Kalman filter algorithm to the modified and a discretized model.
23. A magnetic flux determination method as claimed in claim 17, wherein the adaptive Kalman filter algorithm is applied by carrying out steps of:
(1) initializing k=0, state vector {circumflex over (x)}(0) and a state of the covariance matrix P(0|0)=P0;
(2) applying a time update and measurement update equations to obtain {circumflex over (x)}(k|k) and P(k|k):
{ x ^ ( k k - 1 ) = A d x ^ ( k - 1 k - 1 ) + B d u ( k - 1 ) , P ( k k - 1 ) = A d P ( k - 1 k - 1 ) A d T + B d Q t B d T { K ( k ) = P ( k k - 1 ) ( P ( k k - 1 ) + R ) - 1 x ^ ( k k ) = x ^ ( k k - 1 ) + K ( k ) ( x ( k ) - x ^ ( k k - 1 ) ) , P ( k k ) = ( I - K ( k ) ) P ( k k - 1 )
(3) determining the magnetic flux φ estimated at time k by means of the formulas:
{ φ ^ d ( k ) = x ^ 1 ( k k ) , φ ^ q ( k ) = x ^ 2 ( k k )
with k being discretized time, A_d, B_d being state realization matrices, P being a covariance matrix of the state vector, R being a calibration matrix, K being the Kalman filter gain and Q_ϵ being an adjustment parameter.
24. A magnetic flux determination method as claimed in claim 11, wherein the electric machine is a salient-pole synchronous electric machine.
25. A method for controlling an electric machine, comprising steps of:
a) determining a magnetic flux of the electric machine by use of the method of determining the magnetic flux as claimed in claim 11, and
b) controlling the electric machine by use of the determined magnetic flux.
26. A control method as claimed in claim 25, wherein the electric machine is controlled according to a method providing direct control of torque of the electric machine implemented from the magnetic flux.
27. A system for controlling an electric machine, comprising a control for implementing a control method as claimed in claim 25.
28. A system for controlling an electric machine, comprising a control for implementing a control method as claimed in claim 26.
US17/278,506 2018-09-20 2019-09-13 Method for determining the magnetic flux of an electric machine Active 2039-10-27 US11557997B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR18/58.548 2018-09-20
FR1858548A FR3086473B1 (en) 2018-09-20 2018-09-20 METHOD OF DETERMINING THE MAGNETIC FLOW OF AN ELECTRIC MACHINE
PCT/EP2019/074552 WO2020058131A1 (en) 2018-09-20 2019-09-13 Method for determining the magnetic flux of an electrical machine

Publications (2)

Publication Number Publication Date
US20220038038A1 true US20220038038A1 (en) 2022-02-03
US11557997B2 US11557997B2 (en) 2023-01-17

Family

ID=65685498

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/278,506 Active 2039-10-27 US11557997B2 (en) 2018-09-20 2019-09-13 Method for determining the magnetic flux of an electric machine

Country Status (5)

Country Link
US (1) US11557997B2 (en)
EP (1) EP3853994A1 (en)
CN (1) CN112740538A (en)
FR (1) FR3086473B1 (en)
WO (1) WO2020058131A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3122298A1 (en) * 2021-04-26 2022-10-28 IFP Energies Nouvelles Method for determining the torque of an electrical machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818192A (en) * 1995-08-04 1998-10-06 The Boeing Company Starting of synchronous machine without rotor position of speed measurement
US20170179863A1 (en) * 2015-12-21 2017-06-22 Zf Friedrichshafen Ag Arrangement and method for monitoring a psm-machine
US20180069499A1 (en) * 2015-03-24 2018-03-08 Wobben Properties Gmbh Method for controlling a synchronous generator of a gearless wind energy turbine
US10218301B1 (en) * 2018-01-09 2019-02-26 Mitsubishi Electric Research Laboratories, Inc. System and method for speed sensorless motor drives

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006009643D1 (en) * 2006-08-03 2009-11-19 St Microelectronics Srl A system for estimating the state of a system and associated apparatus for determining the position and speed of a brushless motor
KR101549283B1 (en) * 2011-10-12 2015-09-01 엘에스산전 주식회사 Parameter estimating apparatus for permanent magnet synchronous motor driving system
FR2984637B1 (en) 2011-12-20 2013-11-29 IFP Energies Nouvelles METHOD FOR DETERMINING THE POSITION AND SPEED OF A ROTOR OF A SYNCHRONOUS ELECTRIC MACHINE
US9831812B2 (en) * 2015-02-27 2017-11-28 Nutech Ventures Direct torque control of AC electric machines
FR3035755B1 (en) 2015-04-30 2018-04-27 Renault S.A.S METHOD FOR CONTROLLING A PERMANENT MAGNET SYNCHRONOUS ELECTRIC MACHINE FOR A MOTOR VEHICLE.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818192A (en) * 1995-08-04 1998-10-06 The Boeing Company Starting of synchronous machine without rotor position of speed measurement
US20180069499A1 (en) * 2015-03-24 2018-03-08 Wobben Properties Gmbh Method for controlling a synchronous generator of a gearless wind energy turbine
US20170179863A1 (en) * 2015-12-21 2017-06-22 Zf Friedrichshafen Ag Arrangement and method for monitoring a psm-machine
US10218301B1 (en) * 2018-01-09 2019-02-26 Mitsubishi Electric Research Laboratories, Inc. System and method for speed sensorless motor drives

Also Published As

Publication number Publication date
WO2020058131A1 (en) 2020-03-26
US11557997B2 (en) 2023-01-17
FR3086473A1 (en) 2020-03-27
EP3853994A1 (en) 2021-07-28
CN112740538A (en) 2021-04-30
FR3086473B1 (en) 2020-10-02

Similar Documents

Publication Publication Date Title
US6433506B1 (en) Sensorless control system for induction motor employing direct torque and flux regulation
US8497655B2 (en) Method and apparatus for estimating rotor position in a sensorless synchronous motor
CN103825525B (en) A kind of permagnetic synchronous motor without sensor speed estimation method of improvement
US9985564B2 (en) Flux estimation for fault tolerant control of PMSM machines for EPS
EP2961058B1 (en) Decoupling current control utilizing direct plant modification in electric power steering system
US8400088B2 (en) Sensorless control of salient-pole machines
EP2706659A1 (en) System for correcting an estimated position of a rotor of an electrical machine
CN103825524A (en) Offline identification method for basic electric appliance parameters of permanent-magnet synchronous motor
US10291160B1 (en) Method for operating a synchronous motor
Nie et al. Deadbeat-direct torque and flux control for wound field synchronous machines
CN103580576A (en) Torque ripple reduction of multiple harmonic components
Jung et al. Sliding mode observer for sensorless control of IPMSM drives
EP1493225B1 (en) System and method for controlling a permanent magnet electric motor
US9441943B2 (en) Method of determining the position and the speed of a rotor in a synchronous electric machine using state observers
US20220038038A1 (en) Method for determining the magnetic flux of an electric machine
CN109194224B (en) Permanent magnet synchronous motor sensorless control method based on extended state observer
US20200127588A1 (en) Symmetric control of an asymmetric ac motor via a flux regulator operating based on a targeted time constant versus sampling period ratio
US20180287536A1 (en) Method for controlling a synchronous electric machine with a wound rotor
Vazifehdan et al. Sensorless vector control of induction machines via sliding mode control based model reference adaptive system
US8947032B2 (en) System and method for estimating the position of a wound rotor synchronous machine
CN112003521B (en) Surface-mounted permanent magnet synchronous motor current prediction control method
Ciornei et al. Multi-level models for a light electric vehicle propulsion system using EMR organisation
CN109842337B (en) Flux linkage difference processing method and motor control device
EP3012962A1 (en) Method for controlling a three-phase synchronous electric machine with a wound rotor
CN111049457A (en) Current mode control using motor inverse decoupling in electric power steering system

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: IFP ENERGIES NOUVELLES, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NGUYEN, HOAI-NAM;ZITO, GIANLUCA;SIGNING DATES FROM 20210819 TO 20211205;REEL/FRAME:058917/0205

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE