US20220034621A1 - Firearms Suppressor Assembly - Google Patents
Firearms Suppressor Assembly Download PDFInfo
- Publication number
- US20220034621A1 US20220034621A1 US17/501,255 US202117501255A US2022034621A1 US 20220034621 A1 US20220034621 A1 US 20220034621A1 US 202117501255 A US202117501255 A US 202117501255A US 2022034621 A1 US2022034621 A1 US 2022034621A1
- Authority
- US
- United States
- Prior art keywords
- barrel
- assembly
- suppressor
- firearms
- rail
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41A—FUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
- F41A21/00—Barrels; Gun tubes; Muzzle attachments; Barrel mounting means
- F41A21/30—Silencers
Definitions
- Examples described herein relate to a firearms suppressor assembly often used for reducing the sound emanating from a gun barrel during the firing of a projectile.
- Firearms suppressors are utilized to reduce sound emanating from a barrel of a fired weapon. They are usually either welded onto a barrel or screwed into place. In many areas of the world, the use of suppressors is important to reduce noise pollution, hearing damage, and the like.
- FIG. 1 is a side view of the muzzle end of a firearm barrel, in accordance with an embodiment.
- FIG. 2 is a cutaway side view of a firearm suppressor and its components, in accordance with an embodiment.
- FIG. 3 is a cutaway side view illustrating the alignment between the barrel and the suppressor, in accordance with an embodiment.
- FIG. 4A is cutaway side view of the suppressor preparing to couple with the barrel, in accordance with an embodiment.
- FIG. 4B is cutaway side view of the suppressor coupled with the barrel, in accordance with an embodiment.
- FIG. 5 is a cutaway view of the barrel housing end of the firearms suppressor, in accordance with an embodiment.
- FIG. 6 is a front view of the muzzle end of the firearms suppressor, in accordance with an embodiment.
- FIG. 7 is a side view of a heat shield covering a portion of the firearms suppressor, in accordance with an embodiment.
- barrel 100 is a carbon fiber 110 wrapped design.
- Barrel 100 has a front end 101 , e.g., a discharge end, a projectile discharge end, etc. That is, the end from which the fired projectile will exit.
- Barrel 100 also has a rear end 199 , e.g., the end which attaches to the weapon chamber a point from which the projectile will begin traveling down barrel 100 after it has been ejected from the casing.
- Barrel 100 includes a bore 105 , and at least one barrel muzzle brake port 120 at a muzzle end 101 of barrel 100 , at least one machined rail 115 behind the barrel muzzle brake port 120 , and a barrel gasket channel 140 between the at least one integrated muzzle brake port 120 and the at least one machine rail 115 of barrel 100 .
- Barrel 100 may optionally include an alignment and caliber designating bore tab 130 coupled to the barrel.
- machined rail 115 includes teeth 116 for providing coupling capabilities. Although teeth are shown, other methods of coupling may be used by machined rail 115 .
- barrel muzzle brake port 120 opens through a radial portion of the barrel end assembly. That is, it passes through only one side of the cylindrical barrel, and not completely through both sides of the barrel. Barrel muzzle brake port 120 has a forward angle orientation and opens completely through a portion of the barrel from the bore outward. The forward angle orientation allows the gas discharge from a fired round to exit the barrel through the barrel muzzle brake port 120 while continuing toward the muzzle.
- the barrel muzzle brake ports are located equally on either side of barrel 100 for stability while the firearm is fired.
- the barrel muzzle brake ports 120 may be provided above the center line of barrel 100 to provide for reduced rise during recoil. In one embodiment, there is more than one barrel muzzle brake port 120 .
- ports are shown in FIG. 1 , that number is also exemplary.
- the specific angle of said ports may be different based on optimized gas flow of different calibers. It should be appreciated that embodiments may have more or fewer and larger or smaller and different angles of ports. The use of four in the illustrations is for purposes of clarity.
- At least one toothed, machined rail 115 is astern of the at least one integrated muzzle brake port 120 .
- a plurality of toothed, machined rails are used both for suppressor retention and for suppressor barrel orientation purposes as will be described in further detail in the discussion of FIGS. 3 and 4A-4B .
- the integrated barrel end assembly including the at least one machined rail 115 is integrally formed with (e.g., formed as part of) the barrel during a barrel machining process. For example, using a computer numerical controlled machine during the barrel manufacturing process.
- a separate barrel end assembly including at least one integrated barrel muzzle end attachment rails 115 , at least one muzzle brake port 120 , barrel gasket channel 140 and an indexing and caliber designating bore tab 130 is attached (e.g., coupled) to the discharge end of the barrel using a coupling system from the group of attachment methods, such as e.g., threaded, pinned, welded or clamped.
- Suppressor assembly 200 has a forward end 201 , e.g., the same end from which the fired projectile will be exiting the barrel.
- Suppressor assembly 200 is removably coupled with barrel 100 and includes a blast chamber 209 for receiving a bullet and a gas discharge from a fired round, an indexed baffle stack 210 , at least one toothed, machined rail receiver 215 , at least one suppressor muzzle brake port 220 , a suppressor gasket channel 240 , a longitudinal baffle 251 , and an optional indexing and caliber designating channel 230 .
- baffle stack 210 arranged circumferentially about blast chamber 209 of suppressor assembly 200 .
- the baffle stack 210 may be an indexed baffle stack.
- baffle stack 210 includes a titanium linear cone design for sound reduction.
- baffle stack 210 includes an Inconel initial 1-2 blast baffle to reduce or eliminate sparking normally experienced with full titanium baffle stacks.
- baffle stack 210 is removable for different design baffles, includes monocore inserts optimized for specific calibers, or the like. As such, the design allows for several different options for optimizing baffles for different caliber rounds, from fixed baffles to modifiable baffles made of several different materials.
- At least one toothed, machined rail receiver 215 is located at a distal end of suppressor assembly 200 , and is removably coupled with the at least one toothed, machined rail 115 of the barrel when suppressor assembly 200 is mounted on barrel 100 as shown in more detail in FIG. 4B .
- the at least one toothed, machined rail has a first plurality of teeth and the at least one machined rail receiver has a second plurality of teeth coupled with a spring 216 .
- spring 216 provides inward pressure on the second plurality of the teeth of the machine rail receiver 215 such that the first plurality of teeth engages with the second plurality of teeth when suppressor assembly 200 is mounted on the barrel.
- the teeth will act as a ratcheting mechanism to help guide suppressor assembly 200 into full and complete joinder with barrel 100 .
- toothed, machined rail(s) 115 and toothed, machined rail receiver(s) 215 are shown, the actual number of tooted, machined rail(s) 115 and toothed, machined rail receiver(s) 215 may be different.
- the number and orientation of toothed, machined rail(s) 115 and toothed, machined rail receiver(s) 215 are determined such that suppressor assembly 200 can securely fit only in a single orientation with respect to barrel 100 .
- a gasket fits into the suppressor gasket channel 240 and the barrel gasket channel 140 to seal the portion of the suppressor to the rear of the suppressor gasket channel 240 from the gas discharge moving through the portion of the suppressor to the front of the suppressor gasket channel 240 .
- the at least one suppressor muzzle brake port 220 opening is through a first internal wall of suppressor assembly 200 and is designed to align with the at least one barrel muzzle brake port 120 when suppressor assembly 200 is mounted on barrel 100 .
- the vertically aligned, forward angled integrated muzzle brake 120 / 220 design vectors expelled gasses through matching internal port 220 in suppressor assembly 200 and into longitudinal baffle 251 will reduce muzzle rise.
- Longitudinal baffle 251 receives a portion of the gas discharge from the at least one suppressor muzzle brake port 220 .
- longitudinal baffle 251 includes at least a three leg longitudinal run about the outermost periphery of suppressor assembly 200 .
- the first leg has openings to receive the gas discharge from the at least one suppressor muzzle brake port 220 and direct it toward a front of suppressor assembly 200 .
- the second leg of the run is parallel to, but in an outer more position than the first leg. The second leg receives the gas discharge from the first leg at the front of suppressor assembly 200 and directs it toward a back of suppressor assembly 200 .
- the third, or outermost leg receives the gas discharge from at least the second leg at the rear of suppressor assembly 200 (e.g., by isolator 245 ) and directs it toward the plurality of expulsion ports 610 at the front of suppressor assembly 200 .
- longitudinal baffle 251 triples a travel distance of the gasses resulting in increased cooling efficiency (similar to the effects of a longer suppressor).
- wall thickness of tubular longitudinal baffles 251 decreases from inner to outer, reducing weight.
- the wall thickness of the third leg is less than the wall thickness of the second leg, and the wall thickness of the second leg is less than the wall thickness of the first leg.
- Outer run of longitudinal baffle has directional vanes 252 to impart optimized directional flow, further reduce gas speed, and direct the gasses to expulsion ports 610 which are shown in detail of FIG. 6 .
- the directional vanes 252 are spiral.
- the pluralities of directional vanes 252 run along an inner wall.
- the pluralities of directional vanes 252 run along an outer wall.
- the pluralities of directional vanes 252 run along both the inner wall and the outer wall.
- Indexing and caliber designating channel 230 is a channel within suppressor assembly 200 , into which the indexing and caliber designating bore tab 130 is configured to slide down when suppressor assembly 200 is placed on barrel 100 .
- FIG. 3 a cutaway side view illustrating the alignment between the barrel and the suppressor is shown in accordance with an embodiment.
- the reflex design of suppressor assembly 200 over barrel 100 allows for significant increase in internal volume of suppressor assembly 200 without significantly increasing overall length of weapon with suppressor assembly 200 attached.
- Alignment 315 illustrates the alignment between the toothed machined rail receiver 215 and the toothed machined rail 115 .
- Alignment 320 a - 320 n illustrates the alignment between suppressor muzzle brake port 220 and barrel muzzle brake port 120 .
- Alignment 340 illustrates the alignment between suppressor gasket channel 240 and barrel gasket channel 140 .
- FIG. 4A cutaway side view of suppressor assembly 200 preparing to couple with barrel 100 , via suppressor assembly 200 moving in direction 410 , is shown in accordance with an embodiment.
- suppressor assembly 200 can only go on one way and the orientation between suppressor assembly 200 and barrel 100 is fixed even if suppressor assembly 200 is removed and then reattached. Further, a tight tolerance between machined rail receiver 215 toothed valleys to barrel 100 toothed machined rails 115 eliminates rotational movement of suppressor assembly 200 .
- Indexing and caliber designating bore tab 130 is used to ensure the proper suppressor is fitted to the appropriate caliber weapon and may be used in conjunction with indexing and caliber designating channel 230 to ensure proper orientation of suppressor assembly 200 with respect to barrel 100 .
- Indexing and caliber designating bore tab 130 and indexing and caliber designating channel 230 are also designed to ensure that the right suppressor size only fits on the appropriate caliber gun.
- the barrel 100 suppressor assembly 200 design allows for standardized barrel muzzle brake diameter which means the standard suppressor assembly 200 designs can be utilized across a plethora of caliber sizes.
- one embodiment allows for interchangeability of larger caliber suppressors on smaller caliber rifles if needed (i.e.: 0.300 WM or 0.308 suppressor on a 5.56 mm rifle).
- the interchangeability should only be in one direction, e.g., from large caliber suppressor assembly 200 to smaller caliber weapons and not vice-versa.
- indexing and caliber designating bore tab 130 on a large caliber weapon is larger than indexing and caliber designating bore tab 130 on a smaller caliber weapon; and by making the indexing and caliber designating channel 230 width in relation to the size of the indexing and caliber designating bore tab 130 per caliber.
- the indexing and caliber designating bore tab 130 to indexing and caliber designating channel 230 relationships will ensure that a smaller caliber suppressor assembly 200 cannot be accidentally placed onto a larger caliber rifles. Moreover, in one embodiment, this may be further addressed by removing the indexing and caliber designating channel 230 internal to the suppressor assembly 200 on the smallest caliber suppressor assembly 200 .
- FIG. 4B cutaway side view of the suppressor coupled with the barrel is shown in accordance with an embodiment.
- the muzzle brake port design in barrel 100 vectors expelled gasses through matching internal ports in suppressor assembly 200 and into longitudinal baffle 251 .
- Using the muzzle brake ports 120 and 220 will reduce muzzle rise as the directed gas will provide a down force as it impacts with the outside wall of suppressor assembly 200 .
- a linear toothed Quick Detach (QD) with shielded release button 205 is provided on a top rear of suppressor assembly 200 .
- QD Quick Detach
- a release button 205 is shown, the release could be a lever, tab, and the like.
- the QD segment is fully isolated from blast chamber 209 and gas expansion voids/baffles thereby eliminating issues that arise from carbon build up in ratcheting design suppressor QD's and screw on suppressor designs.
- release button 205 reduces chances of accidental release of suppressor.
- the QD also includes at least one locking lug 555 behind the at least one machine rail receiver 215 .
- Locking lug 555 is configured to rotate behind the at least one machine rail 115 when the at least one machine rail 115 is completely inserted into the at least one machine rail receiver 215 , locking suppressor assembly 200 to barrel 100 .
- the quick release (e.g., release button 205 ) is mechanically coupled with the locking lug 555 , the quick release is configured to rotate locking lug 555 out from behind the at least one machine rail 115 such that suppressor assembly 200 can be removed from barrel 100 .
- expulsion ports 610 on front end 625 of suppressor assembly 200 are located from the 4 o'clock position around the top to the 8 o'clock position.
- a plurality of upward angled expulsion ports 610 are located approximately between an 8 o'clock position around a top of the suppressor in a clockwise layout to approximately a 4 o'clock position.
- the angled vertical upward and forward facing runs allow for reduced felt recoil, reduced cyclic rate, reduced barrel rise, and reduced signature from decreasing or even eliminating downward exiting gasses disturbing soil under the muzzle end of the suppressor, reduced toxic, irritating gasses forced back into a shooters face.
- optional heat shield 710 may be made out of any material that will help to dissipate heat from the side of suppressor assembly 200 instead of rising straight up directly above suppressor assembly 200 .
- the associated heat mirage that could interfere with the image seen by sights or optics mounted on top of the firearm would be reduced.
- the sight or optic is mounted atop the firearm, then heat that radiates off of suppressor assembly 200 would provide a heat mirage. The heat mirage would change the sighting picture.
- optional heat shield 710 is made from a carbon fiber material or other heat resistant material.
- the optional heat shield 710 attaches to a top portion of the suppressor and extends over the rear and front of suppressor assembly 200 . In one embodiment, the optional heat shield 710 attaches to a top portion of the suppressor and extends only over one of the rear or front of suppressor assembly 200 .
- One embodiment further incorporates heat ports 720 to vector heat through rising path of least resistance to vent heat away to sides vice directly up in front of scope field of view. Although a number of different heat ports 720 configurations are shown, it should be appreciated that there may be none or any number of heat ports 720 and the heat ports may be of any number of different shapes and sizes. The number and shape of the few different heat port shapes shown in FIG. 7 is provided for purposes of clarity.
- expulsion ports 610 of FIG. 6 are used to vector the hot gasses into the heat shield 710 for dissipation and redirection to reduce mirage when the optional heat shield 710 is utilized.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
- Portable Nailing Machines And Staplers (AREA)
Abstract
A firearms suppressor assembly is disclosed. The firearms suppressor assembly includes a blast chamber for receiving a bullet and a gas discharge from a fired round. The firearms suppressor has at least one machine rail receiver to removably couple with the at least one machine rail of the barrel when the suppressor is mounted on the barrel. The firearms suppressor also has at least one suppressor muzzle brake port opening through a first internal wall of the suppressor. The firearms suppressor having a longitudinal baffle having a multiple leg longitudinal run about the outermost periphery of the suppressor, the longitudinal baffle receiving a portion of the gas discharge from the at least one suppressor muzzle brake port and direct it toward a plurality of expulsion ports at a front of the suppressor.
Description
- CROSS-REFERENCE TO RELATED APPLICATIONS (DIVISIONAL)
- This application is a Divisional Application of and the benefit of co-pending U.S. patent application Ser. No. 15/920,366 filed on Mar. 13, 2018, entitled “FIREARMS SUPPRESSOR ASSEMBLY” by inventor George Nicholas Hartwell, the disclosure of which is hereby incorporated by reference in its entirety.
- Examples described herein relate to a firearms suppressor assembly often used for reducing the sound emanating from a gun barrel during the firing of a projectile.
- Firearms suppressors are utilized to reduce sound emanating from a barrel of a fired weapon. They are usually either welded onto a barrel or screwed into place. In many areas of the world, the use of suppressors is important to reduce noise pollution, hearing damage, and the like.
- The accompanying drawings, which are incorporated in and form a part of this specification, illustrate various embodiments and, together with the Description of Embodiments, serve to explain principles discussed below. The drawings referred to in this brief description should not be understood as being drawn to scale unless specifically noted.
-
FIG. 1 is a side view of the muzzle end of a firearm barrel, in accordance with an embodiment. -
FIG. 2 is a cutaway side view of a firearm suppressor and its components, in accordance with an embodiment. -
FIG. 3 is a cutaway side view illustrating the alignment between the barrel and the suppressor, in accordance with an embodiment. -
FIG. 4A is cutaway side view of the suppressor preparing to couple with the barrel, in accordance with an embodiment. -
FIG. 4B is cutaway side view of the suppressor coupled with the barrel, in accordance with an embodiment. -
FIG. 5 is a cutaway view of the barrel housing end of the firearms suppressor, in accordance with an embodiment. -
FIG. 6 is a front view of the muzzle end of the firearms suppressor, in accordance with an embodiment. -
FIG. 7 is a side view of a heat shield covering a portion of the firearms suppressor, in accordance with an embodiment. - Reference will now be made in detail to embodiments of the subject matter, examples of which are illustrated in the accompanying drawings. While the subject matter discussed herein will be described in conjunction with various embodiments, it will be understood that they are not intended to limit the subject matter to these embodiments. On the contrary, the presented embodiments are intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the various embodiments as defined by the appended claims. Furthermore, in the Description, numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present subject matter. However, embodiments may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the described embodiments.
- In the following discussion, a number of different views of the parts and components are shown in the firearms suppressor assembly. Although a number of parts and components are discussed herein, it should be appreciated that different embodiments may include different parts, equivalent parts, replacement parts, different parts groupings, a combination of parts into a single part, dissemination of a single part into a plurality of parts, and the like. Moreover, although illustrative embodiments have been described in detail herein with reference to the accompanying drawings, variations to specific embodiments and details are encompassed by this disclosure. It is intended that the scope of embodiments described herein be defined by claims and their equivalents.
- With reference now to
FIG. 1 , a side view of the muzzle end of a firearm barrel 100 (or barrel assembly) is shown in accordance with an embodiment. In one embodiment,barrel 100 is acarbon fiber 110 wrapped design.Barrel 100 has afront end 101, e.g., a discharge end, a projectile discharge end, etc. That is, the end from which the fired projectile will exit.Barrel 100 also has arear end 199, e.g., the end which attaches to the weapon chamber a point from which the projectile will begin traveling downbarrel 100 after it has been ejected from the casing. -
Barrel 100 includes abore 105, and at least one barrelmuzzle brake port 120 at amuzzle end 101 ofbarrel 100, at least one machinedrail 115 behind the barrelmuzzle brake port 120, and abarrel gasket channel 140 between the at least one integratedmuzzle brake port 120 and the at least onemachine rail 115 ofbarrel 100.Barrel 100 may optionally include an alignment and caliber designatingbore tab 130 coupled to the barrel. In one embodiment,machined rail 115 includesteeth 116 for providing coupling capabilities. Although teeth are shown, other methods of coupling may be used bymachined rail 115. - In one embodiment, barrel
muzzle brake port 120 opens through a radial portion of the barrel end assembly. That is, it passes through only one side of the cylindrical barrel, and not completely through both sides of the barrel. Barrelmuzzle brake port 120 has a forward angle orientation and opens completely through a portion of the barrel from the bore outward. The forward angle orientation allows the gas discharge from a fired round to exit the barrel through the barrelmuzzle brake port 120 while continuing toward the muzzle. In one embodiment, the barrel muzzle brake ports are located equally on either side ofbarrel 100 for stability while the firearm is fired. In one embodiment, the barrelmuzzle brake ports 120 may be provided above the center line ofbarrel 100 to provide for reduced rise during recoil. In one embodiment, there is more than one barrelmuzzle brake port 120. However, although four ports are shown inFIG. 1 , that number is also exemplary. The specific angle of said ports may be different based on optimized gas flow of different calibers. It should be appreciated that embodiments may have more or fewer and larger or smaller and different angles of ports. The use of four in the illustrations is for purposes of clarity. - At least one toothed, machined
rail 115 is astern of the at least one integratedmuzzle brake port 120. In one embodiment a plurality of toothed, machined rails are used both for suppressor retention and for suppressor barrel orientation purposes as will be described in further detail in the discussion ofFIGS. 3 and 4A-4B . In one embodiment, the integrated barrel end assembly including the at least one machinedrail 115 is integrally formed with (e.g., formed as part of) the barrel during a barrel machining process. For example, using a computer numerical controlled machine during the barrel manufacturing process. - In another embodiment, a separate barrel end assembly is manufactured including at least one integrated barrel muzzle
end attachment rails 115, at least onemuzzle brake port 120,barrel gasket channel 140 and an indexing and caliber designatingbore tab 130 is attached (e.g., coupled) to the discharge end of the barrel using a coupling system from the group of attachment methods, such as e.g., threaded, pinned, welded or clamped. - Referring now to
FIG. 2 , a cutaway side view of a firearm suppressor assembly and its components is shown in accordance with an embodiment. Embodiments described herein incorporate multiple signature reduction technologies while increasing the efficient performance of the firearms suppressor.Suppressor assembly 200 has aforward end 201, e.g., the same end from which the fired projectile will be exiting the barrel.Suppressor assembly 200 is removably coupled withbarrel 100 and includes ablast chamber 209 for receiving a bullet and a gas discharge from a fired round, an indexedbaffle stack 210, at least one toothed, machinedrail receiver 215, at least one suppressormuzzle brake port 220, asuppressor gasket channel 240, alongitudinal baffle 251, and an optional indexing andcaliber designating channel 230. - Indexed
baffle stack 210 arranged circumferentially aboutblast chamber 209 ofsuppressor assembly 200. In one embodiment, thebaffle stack 210 may be an indexed baffle stack. In one embodiment,baffle stack 210 includes a titanium linear cone design for sound reduction. In one embodiment,baffle stack 210 includes an Inconel initial 1-2 blast baffle to reduce or eliminate sparking normally experienced with full titanium baffle stacks. In one embodiment,baffle stack 210 is removable for different design baffles, includes monocore inserts optimized for specific calibers, or the like. As such, the design allows for several different options for optimizing baffles for different caliber rounds, from fixed baffles to modifiable baffles made of several different materials. - At least one toothed, machined
rail receiver 215 is located at a distal end ofsuppressor assembly 200, and is removably coupled with the at least one toothed, machinedrail 115 of the barrel whensuppressor assembly 200 is mounted onbarrel 100 as shown in more detail inFIG. 4B . In one embodiment, the at least one toothed, machined rail has a first plurality of teeth and the at least one machined rail receiver has a second plurality of teeth coupled with aspring 216. In one embodiment,spring 216 provides inward pressure on the second plurality of the teeth of themachine rail receiver 215 such that the first plurality of teeth engages with the second plurality of teeth whensuppressor assembly 200 is mounted on the barrel. For example, the teeth will act as a ratcheting mechanism to help guidesuppressor assembly 200 into full and complete joinder withbarrel 100. - Although a number of toothed, machined rail(s) 115 and toothed, machined rail receiver(s) 215 are shown, the actual number of tooted, machined rail(s) 115 and toothed, machined rail receiver(s) 215 may be different. In one embodiment, as discussed in detail herein, the number and orientation of toothed, machined rail(s) 115 and toothed, machined rail receiver(s) 215 are determined such that
suppressor assembly 200 can securely fit only in a single orientation with respect tobarrel 100. - In one embodiment, a gasket fits into the
suppressor gasket channel 240 and thebarrel gasket channel 140 to seal the portion of the suppressor to the rear of thesuppressor gasket channel 240 from the gas discharge moving through the portion of the suppressor to the front of thesuppressor gasket channel 240. - The at least one suppressor
muzzle brake port 220 opening is through a first internal wall ofsuppressor assembly 200 and is designed to align with the at least one barrelmuzzle brake port 120 whensuppressor assembly 200 is mounted onbarrel 100. In general, the vertically aligned, forward angled integratedmuzzle brake 120/220 design vectors expelled gasses through matchinginternal port 220 insuppressor assembly 200 and intolongitudinal baffle 251 will reduce muzzle rise. -
Longitudinal baffle 251 receives a portion of the gas discharge from the at least one suppressormuzzle brake port 220. In one embodiment,longitudinal baffle 251 includes at least a three leg longitudinal run about the outermost periphery ofsuppressor assembly 200. The first leg has openings to receive the gas discharge from the at least one suppressormuzzle brake port 220 and direct it toward a front ofsuppressor assembly 200. The second leg of the run is parallel to, but in an outer more position than the first leg. The second leg receives the gas discharge from the first leg at the front ofsuppressor assembly 200 and directs it toward a back ofsuppressor assembly 200. The third, or outermost leg receives the gas discharge from at least the second leg at the rear of suppressor assembly 200 (e.g., by isolator 245) and directs it toward the plurality ofexpulsion ports 610 at the front ofsuppressor assembly 200. - In other words, by combining the increased volume provided by
longitudinal baffle 251 with the full length and circumferential design, the increased internal dwell time of the hot gasses allows for both increased expansion and cooling of the hot discharge gasses, thus decreasing both audible signature of the fired round and reduced weapon bolt cyclic rate. In one embodiment,longitudinal baffle 251 triples a travel distance of the gasses resulting in increased cooling efficiency (similar to the effects of a longer suppressor). - In one embodiment, wall thickness of tubular
longitudinal baffles 251 decreases from inner to outer, reducing weight. In other words, the wall thickness of the third leg is less than the wall thickness of the second leg, and the wall thickness of the second leg is less than the wall thickness of the first leg. - Outer run of longitudinal baffle has
directional vanes 252 to impart optimized directional flow, further reduce gas speed, and direct the gasses toexpulsion ports 610 which are shown in detail ofFIG. 6 . In one embodiment, thedirectional vanes 252 are spiral. In one embodiment, the pluralities ofdirectional vanes 252 run along an inner wall. In another embodiment, the pluralities ofdirectional vanes 252 run along an outer wall. In yet another embodiment, the pluralities ofdirectional vanes 252 run along both the inner wall and the outer wall. - Indexing and
caliber designating channel 230 is a channel withinsuppressor assembly 200, into which the indexing and caliber designatingbore tab 130 is configured to slide down whensuppressor assembly 200 is placed onbarrel 100. - With reference now to
FIG. 3 , a cutaway side view illustrating the alignment between the barrel and the suppressor is shown in accordance with an embodiment. The reflex design ofsuppressor assembly 200 overbarrel 100 allows for significant increase in internal volume ofsuppressor assembly 200 without significantly increasing overall length of weapon withsuppressor assembly 200 attached. -
Alignment 315 illustrates the alignment between the toothed machinedrail receiver 215 and the toothedmachined rail 115. Alignment 320 a-320 n illustrates the alignment between suppressormuzzle brake port 220 and barrelmuzzle brake port 120.Alignment 340 illustrates the alignment betweensuppressor gasket channel 240 andbarrel gasket channel 140. - Referring now to
FIG. 4A , cutaway side view ofsuppressor assembly 200 preparing to couple withbarrel 100, viasuppressor assembly 200 moving indirection 410, is shown in accordance with an embodiment. As shown inFIG. 4A , the linear aligned, indexed (only goes on one way) toothed machinedrails 115 and optional indexing and caliber designatingbore tab 130 on bottom. Toothed machinedrails 115 allow for quick detach connection internal to rear of suppressor body. - In other words, since the machined
rails 115 only allowsuppressor assembly 200 to be installed in a single orientation, the proper orientation ofsuppressor assembly 200 with respect tobarrel 100 is ensured thereby eliminating the variable of indexing issues that cause point of impact shift. E.g.,suppressor assembly 200 can only go on one way and the orientation betweensuppressor assembly 200 andbarrel 100 is fixed even ifsuppressor assembly 200 is removed and then reattached. Further, a tight tolerance between machinedrail receiver 215 toothed valleys tobarrel 100 toothedmachined rails 115 eliminates rotational movement ofsuppressor assembly 200. - Indexing and caliber designating
bore tab 130 is used to ensure the proper suppressor is fitted to the appropriate caliber weapon and may be used in conjunction with indexing andcaliber designating channel 230 to ensure proper orientation ofsuppressor assembly 200 with respect tobarrel 100. - Indexing and caliber designating
bore tab 130 and indexing andcaliber designating channel 230 are also designed to ensure that the right suppressor size only fits on the appropriate caliber gun. For example, thebarrel 100suppressor assembly 200 design allows for standardized barrel muzzle brake diameter which means thestandard suppressor assembly 200 designs can be utilized across a plethora of caliber sizes. In so doing, one embodiment allows for interchangeability of larger caliber suppressors on smaller caliber rifles if needed (i.e.: 0.300 WM or 0.308 suppressor on a 5.56 mm rifle). However, because of the difference in bore diameter, the interchangeability should only be in one direction, e.g., from largecaliber suppressor assembly 200 to smaller caliber weapons and not vice-versa. - By ensuring that indexing and caliber designating
bore tab 130 on a large caliber weapon is larger than indexing and caliber designatingbore tab 130 on a smaller caliber weapon; and by making the indexing andcaliber designating channel 230 width in relation to the size of the indexing and caliber designatingbore tab 130 per caliber. The indexing and caliber designatingbore tab 130 to indexing andcaliber designating channel 230 relationships will ensure that a smallercaliber suppressor assembly 200 cannot be accidentally placed onto a larger caliber rifles. Moreover, in one embodiment, this may be further addressed by removing the indexing andcaliber designating channel 230 internal to thesuppressor assembly 200 on the smallestcaliber suppressor assembly 200. - With reference now to
FIG. 4B , cutaway side view of the suppressor coupled with the barrel is shown in accordance with an embodiment. As shown inFIG. 4B , the muzzle brake port design inbarrel 100 vectors expelled gasses through matching internal ports insuppressor assembly 200 and intolongitudinal baffle 251. Using themuzzle brake ports suppressor assembly 200. - With reference now to
FIG. 5 , acutaway view 525 of the barrel housing end of the firearms suppressor is shown in accordance with an embodiment. A linear toothed Quick Detach (QD) with shieldedrelease button 205 is provided on a top rear ofsuppressor assembly 200. Although arelease button 205 is shown, the release could be a lever, tab, and the like. The QD segment is fully isolated fromblast chamber 209 and gas expansion voids/baffles thereby eliminating issues that arise from carbon build up in ratcheting design suppressor QD's and screw on suppressor designs. In general,release button 205 reduces chances of accidental release of suppressor. - The QD also includes at least one locking
lug 555 behind the at least onemachine rail receiver 215. Lockinglug 555 is configured to rotate behind the at least onemachine rail 115 when the at least onemachine rail 115 is completely inserted into the at least onemachine rail receiver 215, lockingsuppressor assembly 200 tobarrel 100. - The quick release (e.g., release button 205) is mechanically coupled with the locking
lug 555, the quick release is configured to rotate lockinglug 555 out from behind the at least onemachine rail 115 such thatsuppressor assembly 200 can be removed frombarrel 100. - Referring now to
FIG. 6 , a front view of themuzzle 601 end of the firearms suppressor is shown in accordance with an embodiment. In one embodiment,expulsion ports 610 onfront end 625 ofsuppressor assembly 200 are located from the 4 o'clock position around the top to the 8 o'clock position. In one embodiment, a plurality of upwardangled expulsion ports 610 are located approximately between an 8 o'clock position around a top of the suppressor in a clockwise layout to approximately a 4 o'clock position. The angled vertical upward and forward facing runs allow for reduced felt recoil, reduced cyclic rate, reduced barrel rise, and reduced signature from decreasing or even eliminating downward exiting gasses disturbing soil under the muzzle end of the suppressor, reduced toxic, irritating gasses forced back into a shooters face. - Referring now to
FIG. 7 , a side view of anoptional heat shield 710 covering a portion of the firearms suppressor is shown in accordance with an embodiment. In general,optional heat shield 710 may be made out of any material that will help to dissipate heat from the side ofsuppressor assembly 200 instead of rising straight up directly abovesuppressor assembly 200. For example, by reducing the heat dissipating from directly abovesuppressor assembly 200, the associated heat mirage that could interfere with the image seen by sights or optics mounted on top of the firearm would be reduced. For example, if the sight or optic is mounted atop the firearm, then heat that radiates off ofsuppressor assembly 200 would provide a heat mirage. The heat mirage would change the sighting picture. By moving the heat mirage to the side instead of directly abovesuppressor assembly 200, the top mounted sights or optics would not be affected by the heat mirage. In one embodiment,optional heat shield 710 is made from a carbon fiber material or other heat resistant material. - In one embodiment, the
optional heat shield 710 attaches to a top portion of the suppressor and extends over the rear and front ofsuppressor assembly 200. In one embodiment, theoptional heat shield 710 attaches to a top portion of the suppressor and extends only over one of the rear or front ofsuppressor assembly 200. One embodiment further incorporatesheat ports 720 to vector heat through rising path of least resistance to vent heat away to sides vice directly up in front of scope field of view. Although a number ofdifferent heat ports 720 configurations are shown, it should be appreciated that there may be none or any number ofheat ports 720 and the heat ports may be of any number of different shapes and sizes. The number and shape of the few different heat port shapes shown inFIG. 7 is provided for purposes of clarity. - In one embodiment,
expulsion ports 610 ofFIG. 6 are used to vector the hot gasses into theheat shield 710 for dissipation and redirection to reduce mirage when theoptional heat shield 710 is utilized. - The foregoing Description is not intended to be exhaustive or to limit the embodiments to the precise form described. Instead, example embodiments in this Description have been presented in order to enable persons of skill in the art to make and use embodiments of the described subject matter. Moreover, various embodiments have been described in various combinations. However, any two or more embodiments may be combined. Although some embodiments have been described in a language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed by way of illustration and as example forms of implementing the claims and their equivalents.
Claims (20)
1. A firearms suppressor assembly comprising:
a barrel end assembly comprising:
at least one integrated muzzle brake port offset from a projectile discharge end of said barrel end assembly;
at least one rail oriented such that said at least one integrated muzzle brake port is positioned between said at least one rail and said projectile discharge end of said barrel end assembly; and
a suppressor comprising:
at least one rail receiver to removably couple with said at least one rail.
2. The firearms suppressor assembly of claim 1 wherein said barrel end assembly is formed as part of a barrel at a barrel manufacture process.
3. The firearms suppressor assembly of claim 1 wherein said barrel end assembly is fixedly coupled with said projectile discharge end of a barrel.
4. The firearms suppressor assembly of claim 3 wherein said barrel end assembly is fixedly coupled with said projectile discharge end of said barrel with a weld.
5. The firearms suppressor assembly of claim 1 wherein said barrel end assembly is removably coupleable with said projectile discharge end of a barrel.
6. The firearms suppressor assembly of claim 5 wherein said barrel end assembly is removably coupleable with said projectile discharge end of said barrel via a coupling system from a group consisting of: a thread, a clamp, and a pin.
7. The firearms suppressor assembly of claim 1 , wherein said at least one rail further comprises:
a first plurality of teeth.
8. The firearms suppressor assembly of claim 7 , wherein said at least one rail further comprises:
a second plurality of teeth coupled with a spring, said spring configured to provide an inward pressure on said second plurality of said teeth, said first plurality of teeth configured to engage with said second plurality of teeth when said suppressor is mounted on said barrel end assembly.
9. The firearms suppressor assembly of claim 1 wherein said at least one integrated muzzle brake port opens through a radial portion of said barrel end assembly.
10. A firearms suppressor assembly comprising:
a barrel end assembly comprising:
at least one integrated muzzle brake port offset from a projectile discharge end of said barrel end assembly;
at least one machined rail oriented such that said at least one integrated muzzle brake port is positioned between said at least one machined rail and said projectile discharge end of said barrel end assembly; and
a suppressor comprising:
at least one machined rail receiver to removably couple with said at least one machined rail.
11. The firearms suppressor assembly of claim 10 wherein said barrel end assembly is formed as part of a barrel at a barrel manufacture process.
12. The firearms suppressor assembly of claim 10 wherein said barrel end assembly is fixedly coupled with said projectile discharge end of a barrel.
13. The firearms suppressor assembly of claim 10 wherein said barrel end assembly is removably coupleable with said projectile discharge end of a barrel.
14. The firearms suppressor assembly of claim 13 wherein said barrel end assembly is removably coupleable with said projectile discharge end of said barrel via a coupling system from a group consisting of: a thread, a clamp, and a pin.
15. The firearms suppressor assembly of claim 10 , wherein said at least one machined rail further comprises:
a first plurality of teeth; and
a second plurality of teeth coupled with a spring, said spring configured to provide an inward pressure on said second plurality of said teeth, said first plurality of teeth configured to engage with said second plurality of teeth when said suppressor is mounted on said barrel end assembly.
16. The firearms suppressor assembly of claim 10 wherein said at least one integrated muzzle brake port opens through a radial portion of said barrel end assembly.
17. A firearms suppressor assembly comprising:
a barrel end assembly comprising:
at least one integrated muzzle brake port offset from a projectile discharge end of said barrel end assembly, said at least one integrated muzzle brake port to open through a radial portion of said barrel end assembly;
at least one rail oriented such that said at least one integrated muzzle brake port is positioned between said at least one rail and said projectile discharge end of said barrel end assembly, said at least one rail comprising:
a first plurality of teeth; and
a second plurality of teeth coupled with a spring, said spring configured to provide an inward pressure on said second plurality of said teeth; and
a suppressor comprising:
at least one rail receiver to removably couple with said at least one rail, wherein said first plurality of teeth configured to engage with said second plurality of teeth when said suppressor is mounted on said barrel end assembly.
18. The firearms suppressor assembly of claim 17 wherein said barrel end assembly is formed as part of a barrel at a barrel manufacture process.
19. The firearms suppressor assembly of claim 17 wherein said barrel end assembly is fixedly coupled with said projectile discharge end of a barrel.
20. The firearms suppressor assembly of claim 17 wherein said barrel end assembly is removably coupleable with said projectile discharge end of a barrel via a coupling system from a group consisting of: a thread, a clamp, and a pin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/501,255 US20220034621A1 (en) | 2018-03-13 | 2021-10-14 | Firearms Suppressor Assembly |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/920,366 US11187484B2 (en) | 2018-03-13 | 2018-03-13 | Firearms suppressor assembly |
US17/501,255 US20220034621A1 (en) | 2018-03-13 | 2021-10-14 | Firearms Suppressor Assembly |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/920,366 Division US11187484B2 (en) | 2018-03-13 | 2018-03-13 | Firearms suppressor assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220034621A1 true US20220034621A1 (en) | 2022-02-03 |
Family
ID=67905330
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/920,366 Active US11187484B2 (en) | 2018-03-13 | 2018-03-13 | Firearms suppressor assembly |
US17/501,295 Abandoned US20220205753A1 (en) | 2018-03-13 | 2021-10-14 | Firearms suppressor assembly |
US17/501,255 Abandoned US20220034621A1 (en) | 2018-03-13 | 2021-10-14 | Firearms Suppressor Assembly |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/920,366 Active US11187484B2 (en) | 2018-03-13 | 2018-03-13 | Firearms suppressor assembly |
US17/501,295 Abandoned US20220205753A1 (en) | 2018-03-13 | 2021-10-14 | Firearms suppressor assembly |
Country Status (1)
Country | Link |
---|---|
US (3) | US11187484B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10480886B2 (en) * | 2017-01-20 | 2019-11-19 | Gladius Suppressor Company, LLC | Suppressor design |
US11187484B2 (en) * | 2018-03-13 | 2021-11-30 | George Nicholas HARTWELL | Firearms suppressor assembly |
US10690432B2 (en) * | 2019-01-11 | 2020-06-23 | Kevin C. Campbell | Sound suppressing gun barrel |
US11668540B2 (en) * | 2020-01-16 | 2023-06-06 | Rfph, Llc | Heat dissipating firearm suppressor |
USD955524S1 (en) | 2020-02-20 | 2022-06-21 | Rfph, Llc | Firearm suppressor |
US20220276016A1 (en) * | 2021-02-26 | 2022-09-01 | Surefire, Llc | Firearm sound suppressor with peripheral venting |
WO2023150311A2 (en) * | 2022-02-03 | 2023-08-10 | Blast Analytics And Mitigation, Inc. | Filtered barrel accessories for mitigation of environmental pollutants and physical hazards during weapons systems use |
US11680764B1 (en) * | 2022-04-22 | 2023-06-20 | Polaris Capital Corporation | Reverse flow firearm suppressor |
WO2024192423A1 (en) * | 2023-03-15 | 2024-09-19 | Brace Neal John | Guard for firearm muzzle attachments |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5559302A (en) * | 1995-08-31 | 1996-09-24 | Gsl Technology, Inc. | Bayonet type coupling for firearms |
US7661349B1 (en) * | 2006-11-01 | 2010-02-16 | Advanced Armament Corp., Llc | Multifunctional firearm muzzle attachment system primarily for attaching a noise suppressor to a firearm |
US20100139145A1 (en) * | 2007-02-28 | 2010-06-10 | Kevin Tyson Brittingham | Redundant latch suppressor mount |
US20120180623A1 (en) * | 2010-12-16 | 2012-07-19 | Graham Ii Henry L | Systems methods and devices for attaching a suppressor to a firearm |
US8763510B2 (en) * | 2009-06-11 | 2014-07-01 | Surefire, Llc | Blank safety device and firearm adapter |
US20140237881A1 (en) * | 2013-02-27 | 2014-08-28 | Allan Joseph Mack | Firearm Suppressor Mounting Device |
US20150001001A1 (en) * | 2012-12-21 | 2015-01-01 | Bert John WILSON | Suppressors and their methods of manufacture |
US20150226506A1 (en) * | 2012-01-16 | 2015-08-13 | Silencerco, Llc | Firearm noise suppressor system |
US20150253098A1 (en) * | 2013-08-16 | 2015-09-10 | Travis Russell | System and method for attaching a sound suppressor to a firearm |
US20160123689A1 (en) * | 2013-05-29 | 2016-05-05 | Hiromi Maeda | Muzzle brake and firearm |
US20160161203A1 (en) * | 2012-12-21 | 2016-06-09 | Bert John WILSON | Suppressors and their methods of manufacture |
US9513078B1 (en) * | 2016-05-17 | 2016-12-06 | Precision Tooling Products, LLC | Quick mount firearm barrel accessory |
US20170205176A1 (en) * | 2016-01-20 | 2017-07-20 | Jon David Whitson | Suppressor mounting device |
US9739560B1 (en) * | 2015-02-24 | 2017-08-22 | Davinci Arms, Llc | System, method and apparatus for attaching an accessory to a firearm |
US20180058791A1 (en) * | 2016-08-31 | 2018-03-01 | Mark C. LaRue | Firearm noise and flash suppressor having ratcheted collet locking mechanism |
US20190072354A1 (en) * | 2017-04-27 | 2019-03-07 | Darryl S. Lee | Firearm Suppressor Adapter for Firearm Rails |
US10533819B2 (en) * | 2017-03-23 | 2020-01-14 | Gerald R. Thomas | Suppressor for firearms |
US20210199401A1 (en) * | 2016-03-25 | 2021-07-01 | Todd A. Magee | Silencer mount |
US11187484B2 (en) * | 2018-03-13 | 2021-11-30 | George Nicholas HARTWELL | Firearms suppressor assembly |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4291610A (en) * | 1977-12-05 | 1981-09-29 | Shimon Waiser | Silencer for firearms |
US7676976B2 (en) * | 2003-11-06 | 2010-03-16 | Surefire, Llc | Systems for attaching a noise suppressor to a firearm |
US8424441B2 (en) * | 2009-08-20 | 2013-04-23 | Advanced Armament Corp. | Firearm suppressor booster system |
US8770084B2 (en) * | 2011-01-05 | 2014-07-08 | Nicholas E. Young | Suppressor assembly for firearms |
US8844422B1 (en) * | 2011-09-16 | 2014-09-30 | Ut-Battelle, Llc | Suppressor for reducing the muzzle blast and flash of a firearm |
US9080829B1 (en) * | 2011-12-14 | 2015-07-14 | Innovator Enterprises, Inc. | Stabilizer brake for firearm |
US10480883B2 (en) * | 2013-12-05 | 2019-11-19 | Ra Brands, L.L.C. | Silencer with improved mount |
US9658010B1 (en) * | 2014-10-13 | 2017-05-23 | Paul Oglesby | Heat shielding and thermal venting system |
US9746267B2 (en) * | 2015-01-16 | 2017-08-29 | R A Brands, L.L.C. | Modular silencer |
US10345069B2 (en) * | 2015-10-27 | 2019-07-09 | Hailey Ordnance Company | Firearm suppressor |
US9500427B1 (en) * | 2015-10-29 | 2016-11-22 | Mark C. LaRue | Firearm sound and flash suppressor having low pressure discharge |
US10712114B2 (en) * | 2015-12-01 | 2020-07-14 | Magpul Industries Corp. | Suppressor cover assembly and method |
US10107581B2 (en) * | 2016-01-17 | 2018-10-23 | Ascendance International LLC | Firearm suppression device |
US10393463B1 (en) * | 2018-04-03 | 2019-08-27 | Oss Suppressors Llc | Self-tightening suppressor mount and system |
-
2018
- 2018-03-13 US US15/920,366 patent/US11187484B2/en active Active
-
2021
- 2021-10-14 US US17/501,295 patent/US20220205753A1/en not_active Abandoned
- 2021-10-14 US US17/501,255 patent/US20220034621A1/en not_active Abandoned
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5559302A (en) * | 1995-08-31 | 1996-09-24 | Gsl Technology, Inc. | Bayonet type coupling for firearms |
US7661349B1 (en) * | 2006-11-01 | 2010-02-16 | Advanced Armament Corp., Llc | Multifunctional firearm muzzle attachment system primarily for attaching a noise suppressor to a firearm |
US20100139145A1 (en) * | 2007-02-28 | 2010-06-10 | Kevin Tyson Brittingham | Redundant latch suppressor mount |
US8763510B2 (en) * | 2009-06-11 | 2014-07-01 | Surefire, Llc | Blank safety device and firearm adapter |
US20120180623A1 (en) * | 2010-12-16 | 2012-07-19 | Graham Ii Henry L | Systems methods and devices for attaching a suppressor to a firearm |
US20150226506A1 (en) * | 2012-01-16 | 2015-08-13 | Silencerco, Llc | Firearm noise suppressor system |
US20160161203A1 (en) * | 2012-12-21 | 2016-06-09 | Bert John WILSON | Suppressors and their methods of manufacture |
US20150001001A1 (en) * | 2012-12-21 | 2015-01-01 | Bert John WILSON | Suppressors and their methods of manufacture |
US20140237881A1 (en) * | 2013-02-27 | 2014-08-28 | Allan Joseph Mack | Firearm Suppressor Mounting Device |
US20160123689A1 (en) * | 2013-05-29 | 2016-05-05 | Hiromi Maeda | Muzzle brake and firearm |
US20150253098A1 (en) * | 2013-08-16 | 2015-09-10 | Travis Russell | System and method for attaching a sound suppressor to a firearm |
US9739560B1 (en) * | 2015-02-24 | 2017-08-22 | Davinci Arms, Llc | System, method and apparatus for attaching an accessory to a firearm |
US20170205176A1 (en) * | 2016-01-20 | 2017-07-20 | Jon David Whitson | Suppressor mounting device |
US20210199401A1 (en) * | 2016-03-25 | 2021-07-01 | Todd A. Magee | Silencer mount |
US9513078B1 (en) * | 2016-05-17 | 2016-12-06 | Precision Tooling Products, LLC | Quick mount firearm barrel accessory |
US20180058791A1 (en) * | 2016-08-31 | 2018-03-01 | Mark C. LaRue | Firearm noise and flash suppressor having ratcheted collet locking mechanism |
US10533819B2 (en) * | 2017-03-23 | 2020-01-14 | Gerald R. Thomas | Suppressor for firearms |
US20190072354A1 (en) * | 2017-04-27 | 2019-03-07 | Darryl S. Lee | Firearm Suppressor Adapter for Firearm Rails |
US11187484B2 (en) * | 2018-03-13 | 2021-11-30 | George Nicholas HARTWELL | Firearms suppressor assembly |
Also Published As
Publication number | Publication date |
---|---|
US20220205753A1 (en) | 2022-06-30 |
US20190285375A1 (en) | 2019-09-19 |
US11187484B2 (en) | 2021-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220034621A1 (en) | Firearms Suppressor Assembly | |
US12104869B2 (en) | Weapon barrel having integrated suppressor | |
US11828557B2 (en) | Suppressor | |
US9482483B2 (en) | Firearm with integrated suppressor | |
US11933566B2 (en) | Ported baffle firearm suppressor | |
US6575074B1 (en) | Omega firearms suppressor | |
US9377263B1 (en) | Muzzle brake concussion reducing device for firearms and associated muzzle brakes and compensators | |
US10323896B2 (en) | Flash redirecting recoil compensator | |
US20160018179A1 (en) | Suppressor with configurable baffles | |
US20150090105A1 (en) | Firearm Receiver Having an Integral Suppressor Assembly | |
US9335119B2 (en) | Sighting apparatus for use with a firearm that discharges ammunition having multiple projectiles | |
US10126083B2 (en) | Firearm suppressor and method of operation | |
US10018440B2 (en) | Small caliber suppressor | |
US20210310761A1 (en) | Muzzle brake and a muzzle brake system | |
US11662172B2 (en) | Integrated barrel and muzzle device system | |
US12055356B2 (en) | Modular firearm muzzle device | |
US8683728B2 (en) | Barrel safety device | |
US11604042B1 (en) | Silencer for multi barrel weapon systems | |
US10036605B1 (en) | Adjustable muzzle device | |
US20240044600A1 (en) | Firearm suppressor | |
US20230288164A1 (en) | Quick coupling muzzle booster and surpressor adaptor system for locked breech pistols and pistol caliber carbines | |
RU2783549C1 (en) | Closed hyperboloid muzzle brake compensator | |
BR202020021743U2 (en) | Multi-caliber firearm noise suppressor | |
NZ611493A (en) | An Improved Adjustable Muzzle brake for a Rifle | |
NZ611493B (en) | An Improved Adjustable Muzzle brake for a Rifle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |