US20220032524A1 - Method for the production of extruded filaments with conductive elements - Google Patents

Method for the production of extruded filaments with conductive elements Download PDF

Info

Publication number
US20220032524A1
US20220032524A1 US17/298,926 US201817298926A US2022032524A1 US 20220032524 A1 US20220032524 A1 US 20220032524A1 US 201817298926 A US201817298926 A US 201817298926A US 2022032524 A1 US2022032524 A1 US 2022032524A1
Authority
US
United States
Prior art keywords
wires
extruded
filament
pair
thermoregulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/298,926
Inventor
Tiziano Capelletti
Simone Maccagnan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exgineering SA
Original Assignee
Exgineering SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exgineering SA filed Critical Exgineering SA
Assigned to EXGINEERING SA reassignment EXGINEERING SA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAPELLETTI, TIZIANO, MACCAGNAN, SIMONE
Publication of US20220032524A1 publication Critical patent/US20220032524A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/156Coating two or more articles simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/157Coating linked inserts, e.g. chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • B29C48/2883Feeding the extrusion material to the extruder in solid form, e.g. powder or granules of preformed parts, e.g. inserts fed and transported generally uninfluenced through the extruder or inserts fed directly to the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/34Cross-head annular extrusion nozzles, i.e. for simultaneously receiving moulding material and the preform to be coated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L53/00Heating of pipes or pipe systems; Cooling of pipes or pipe systems
    • F16L53/30Heating of pipes or pipe systems
    • F16L53/35Ohmic-resistance heating
    • F16L53/38Ohmic-resistance heating using elongate electric heating elements, e.g. wires or ribbons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/54Heating elements having the shape of rods or tubes flexible
    • H05B3/56Heating cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/54Heating elements having the shape of rods or tubes flexible
    • H05B3/56Heating cables
    • H05B3/565Heating cables flat cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/08Transition metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Definitions

  • the present invention relates to the sector of the processes for manufacturing extruded materials.
  • the present invention relates to a method and a device for the production of filaments capable of being thermoregulated, specifically suitable for being used to manufacture spiraled pipes capable of being thermoregulated.
  • these filaments can be used as a support for tubular structures, simply by winding, preferably following a spiral path, around them.
  • the application of the filaments to the structure of a pipe increases its resistance to crushing, leaving its wall flexible enough to allow short-radius curves without it breaking or bending.
  • thermoregulating the volume inside these pipes so as to allow actions on the temperature of the fluids flowing within it modifying it.
  • the pipes capable of being thermoregulated of the known type exploit the Joule effect to adjust the temperature of the fluid being flown inside them or can still be based, suitably providing two sufficiently diversified conductive materials, on the exploitation of the Peltier effect or of the Seebeck effect, for example, to measure a temperature.
  • These pipes have a conductor, typically made in the form of a pair of wires of conductive material positioned within the central lumen of the pipe or in its wall.
  • the wire could be positioned anywhere but, since the purpose is to heat the internal volume, the greatest effectiveness is achieved if this conductor has the lowest possible insulating mass between itself and the volume to be heated.
  • the conductor is made by a pair of wires concurring to make a circuit inside which a current flow flows in turn generating, on the basis of the characteristic resistance of the selected conductive material, the so-called Joule effect with subsequent heat dissipation.
  • the wires are inserted into the molten polymer flow which will form the pipe during its formation and then be joined by a secondary process.
  • the insertion of the wire directly inside the pipe can cause problems, as the wire is in direct contact with the fluid flowing inside the pipe.
  • the application of the filament externally to the pipe in addition to decreasing its efficiency, introduces the further problem of permanently constraining it to the same, thus introducing an additional process step (assembly) which goes against the productivity of the method in the industrial sector.
  • the prior art envisages introducing into the market pipes with no electrical connection, leaving to the end user the task of realizing it.
  • the technical task underlying the present invention is to propose a method and a device for extruding filaments capable of being thermoregulated that overcomes at least some of the drawbacks of the known art mentioned above.
  • the specified technical task and the objects specified are substantially achieved by a method and a device for the extrusion of filaments capable of being thermoregulated (as well as, in functional and procedural coordination, by a method and device for the production of articles containing such filaments capable of being thermoregulated) comprising the characteristics techniques set out in one or more of the appended claims.
  • a method for the production of filaments capable of being thermoregulated which essentially comprises the steps of:
  • the method can also include the following additional steps:
  • the pair of wires is twisted so as to present at least one mutual contact point arranged to electrically connect them.
  • a mixing thereof is carried out with an electrically conductive additive in powder form, and during the step of generating at least one coupling portion, the filament is locally compressed so as to compact the additive until the same assumes a density being sufficient to generate an electrical contact between the wires.
  • the material to be extruded is composed of an additive for a percentage in the range between 25% and 35%.
  • the disclosed method overcomes the drawbacks of the prior art, providing a simple and efficient method for producing a filament capable of being thermoregulated having therein a closed circuit which allows the passage of current and therefore the occurrence of the Joule effect.
  • the filament can be immediately used for the realization of a product, without it being necessary for the end user to make any changes in order to make it operational and usable.
  • the present invention also relates to a method for the production of spiraled pipes capable of being thermoregulated which comprises the steps of:
  • the steps of extruding an elongated tape and extruding a filament capable of being thermoregulated are performed simultaneously.
  • the steps of winding the tape and the filament are performed simultaneously.
  • the disclosed method of production of spiraled pipes capable of being thermoregulated allows to realize pipes capable of thermoregulating the volume therein by exploiting the Joule effect, without the heating element coming into contact with the fluid flowing through the pipe and without requiring the end user to undertake preparatory work aimed at making the pipe operative.
  • the present invention also relates to an extrusion head comprising:
  • the first nozzle is associated with the insertion device so as to extrude the material to be extruded around the pair of wires exiting the extrusion head by completely winding them.
  • wires belonging to the pair (B) were suitably insulated, they can be inserted in different relative positions with respect to the material to be extruded, or in different geometric/topological positions of a given co-extruded article suitably formed (for example, under a “strap” and inside the passage lumen of a spiraled article or in any case provided with a main cylindrical body provided with axial or helical ribs inside it or on the outside, or inside the strap, between the strap and the so-called “rib” or even inside the rib or possibly outside the rib itself).
  • the first nozzle and the insertion device are coaxial.
  • the first nozzle is arranged around the insertion device.
  • the first nozzle has a circular extrusion profile which is circumferential to the insertion device.
  • the delivering seats are movable in rotation about an axis being parallel to the extrusion direction so as to cause a twisting of the wires exiting the extrusion head.
  • the dispensing seats are movable along a transverse path to the extrusion direction so as to cause a twisting—or more generally an intersection (or an “intersection with contact” if desired)—of the wires exiting the extrusion head.
  • the extrusion head comprises a compression device configured to act on the filament capable of being thermoregulated exiting the extrusion nozzle by compressing it locally.
  • the extrusion head may also include a second nozzle which can be connected to at least one propeller to receive from it a material to be extruded and configured to extrude an elongated tape having opposite side edges.
  • the first nozzle and the second nozzle are coupled to define an extrusion nozzle having a first portion suitable for extruding the filament capable of being thermoregulated and a second portion suitable for extruding the tape.
  • the extrusion head may also include a spindle configured to promote a winding of the elongated tape and of the filament capable of being thermoregulated in such a way that the opposite side edges overlap to form an area of helical junction realizing a tubular body and of said filament capable of being thermoregulated around the tubular body.
  • FIG. 1 schematically shows a view of an extrusion head during the production of a spiraled pipe capable of being thermoregulated
  • FIGS. 2A-2E show cross-sectional views with respect to an extrusion direction of some production steps of the spiraled pipe capable of being thermoregulated
  • FIGS. 3A-3E show cross-sectional views with respect to an extrusion direction of some production steps of the spiraled pipe capable of being thermoregulated according to a further embodiment
  • FIGS. 4A-4C show cross-sectional views with respect to an extrusion direction of some production steps of the spiraled pipe capable of being thermoregulated according to a further embodiment.
  • FIGS. 5A-5F show cross-sectional views with respect to an extrusion direction of some production steps of the spiraled pipe capable of being thermoregulated according to a further embodiment
  • FIGS. 6A-6F show cross-sectional views with respect to an extrusion direction of some production steps of the spiraled pipe capable of being thermoregulated according a further embodiment.
  • the present invention relates to a method for the production of filaments “A”, in particular of the type capable of being thermoregulated.
  • thermoregulated means that the filament “A” has characteristics and structure allowing the heat generation in a controlled manner.
  • the method of the present invention provides to feed a material to be extruded to an extrusion head 1 which will be disclosed in greater detail below.
  • the generic term “material to be extruded” refers to any known material suitable to be used in the field of extrusion processes, for example plastics, polymers or other materials which present at the same time characteristics of electrical insulation.
  • the material to be extruded is then extruded promoting, at the same time, the escape of the pair of wires “B” from the extrusion head 1 , in such a way that the material to be extruded forms the filament “A” around a pair of wires “B” by completely winding them.
  • the wires “B” turn out to be (in an exemplifying but of course non-limiting embodiment according to the present invention) completely immersed and enclosed within the filament “A”.
  • the wires “B” are fed to the extrusion head 1 independently of one another and will respectively represent two distinct branches of the electric circuit to be produced inside the filament “A” in order to allow the passage of current.
  • the circuit is then closed by realizing the at least one coupling portion “Y”, wherein an electrical connection is generated between the two wires “B”, which allows the transmission of charge carriers, and therefore the passage of current, between the two.
  • the generation of the electrical contact portion provides the twisting of the pair of wires “B” so as to realize at least one mutual contact point arranged to electrically connect them.
  • the position of the wires “B” inside the filament “A” is changed during extrusion so that the wires “B” are progressively brought closer until they come into mutual contact in correspondence with the coupling portions “Y”.
  • the generation of the coupling portion “Y” does not occur by the approach of the wires “B” to make a mutual contact, but by short-circuiting the two by a deformation of the filament “A”.
  • the step of feeding the material to be extruded to the extrusion head further provides to mix with it an electrically conductive additive “C” in powder form (or an electrically conductive polymer such as polyaniline or polyacetylene) in such a way that the additive “C” is dispersed within the filament.
  • an electrically conductive additive “C” in powder form or an electrically conductive polymer such as polyaniline or polyacetylene
  • in powder form means that the additive is in a granular or in any case discrete form, with grains of a size suitable for determining a homogeneous dispersion of the additive inside the matrix of the material to be extruded, once this is extruded to make the filament “A”.
  • the expression “granular form”, introduced above, is intended to mean a state of aggregation of the additive which has a plurality of solid corpuscles or in any case with an individual density comparable to the solid state: such corpuscles can then have the most disparate geometric configurations and/or the most disparate chemical compositions, such as leaves, needles, pipes, nanopipes and so on (such granules can then be made by way of example of, but not limited to, graphene, metal or carbon fibres and anything else depending on the needs of the moment).
  • the generation of the at least one coupling portion “Y” will then be obtained by compressing a portion of the filament in such a way as to compact the additive “C” until an electrical contact is generated between the wires “B”.
  • the additive “C” dispersed within the filament “A” does not have per se a sufficient density to allow the passage of charge carriers, however, as a result of compression, the particles of the additive “C” are compacted by approaching until obtaining a volumetric density being sufficient to allow locally a flow of charge carriers, thus short-circuiting the two wires “B” in correspondence of the coupling portion “Y” where the compression occurred.
  • the material to be extruded has a percentage of additive “C” therein in the range between 25% and 35%, so as to guarantee a sufficient quantity of additive “C” for the generation of electrical contact between the wires “B” following the compression, without compromising at the same time the mechanical and structural characteristics.
  • the filament “A”, produced by the present invention thus allows to control an amount of heat generated by the Joule effect from the flowing of an electric current inside the wires “B” producing a closed circuit, thanks to the arrangement of the coupling portions which are precisely designed to generate an electrical contact of the pair of wires “B”.
  • thermocouple By implementing, with the present method, an embodiment of a co-extruded article wherein the two wires of the pair “B” are of different metals (for example: copper and constantan, nickel and chromium, platinum and rhodium, and anything else depending on the needs of the moment), it is advantageously possible to create a thermocouple.
  • thermoregulator device wherein, the current with consequent generation of the Joule effect circulates in the first pair of wires, and wherein the second pair of wires acts as a regulator/selector on the passage of the same current.
  • the present invention also relates to a method for the production of a spiraled pipe capable of being thermoregulated, that is to say pipes which allow to accurately adjust the temperature of the fluid that flowing inside them, providing more or less heat generable by the Joule effect, varying the characteristics of the electric current flowing therein.
  • the method provides the extrusion of an elongated tape “D” having opposite side edges.
  • the tape “D” is then wound up according to a helical or spiral path, so that the opposite side edges overlap to form an area of helical junction.
  • the pipe is formed by winding the extruded tape “D” along a spiral path, so as to obtain an at least partial overlap of the opposite side edges of the tape “D” which are then constrained to each other.
  • the realization of the area of helical junction i.e. that portion of the tubular body wherein the opposite side edges of the tape “D” are overlapped and mutually constrained, is preferably carried out when the extruded material is still not completely cooled and solidified, so as to allow that the opposite side edges are welded together.
  • the method also provides for extruding a filament “A” capable of being thermoregulated according to the above description.
  • the filament “A” is then coupled to the tubular body by winding it helically around it, preferably by overlapping it on the area of helical junction.
  • the wire is placed directly in contact with the tubular body and is permanently connected thereto, so that it can transmit by conduction the heat generated by the dissipation of the electric power generated therein by the passage of current inside the circuit defined by the pair of wires “B”.
  • the extrusion of the filaments “D” and “A” is carried out simultaneously.
  • winding steps can be carried out simultaneously even if the extrusion steps are carried out separately, i.e. It is possible to realize the spiraled pipe capable of being thermoregulated by simultaneously winding the tape “D” and the filament “A” to realize the pipe, even if these components have been extruded at different times.
  • the present invention also relates to an extrusion head.
  • the numerical reference 1 generically indicates an extrusion head configured for the production of a filament “A” capable of being thermoregulated starting from a material to be extruded.
  • the extrusion head disclosed herein is particularly suitable for carrying out the above-disclosed method and comprises a first nozzle 2 and an insertion device 3 .
  • the first nozzle 2 can be connected to at least one propeller of the known type (not shown in the attached figures) which receives the material to be extruded from a tank, a hopper or any other container suitable for storing a material to be extruded and feeding it to the extrusion head 1 .
  • the first nozzle 2 is then fed by at least one propeller and is configured to generate the filament “A” along an extrusion direction “X”.
  • the insertion device 3 is instead configured to receive in feed a pair of wires “B” in electrically conductive material, such as for example copper or other suitable conductive metals and has a pair of delivering seats arranged to deliver respective wires “B” exiting from the extrusion head 1 .
  • the wires “B” are fed to the insertion device 3 , and in particular they are passed through respective delivering seats which allow it to be transferred to the extrusion head 1 , in particular along the extrusion direction “X”.
  • the extrusion nozzle 2 is associated with the insertion device 3 , in such a way that the material to be extruded is processed realizing the filament “A” around the pair of wires “B” completely winding them.
  • the extrusion nozzle 2 and the insertion device 3 are coaxial, preferably the extrusion nozzle 2 has a circular profile arranged around the insertion device 3 .
  • the delivering seats are movable in rotation about an axis being parallel to the extrusion direction “X” so as to cause a twisting of the wires exiting the extrusion head.
  • the delivering seats are movable along a transverse direction to the extrusion direction “X” so as to cause a twisting of the wires exiting the extrusion head.
  • the delivering seats move alternately between respective starting and ending positions, wherein the starting position of a seat corresponds to the arrival position of the other seat and vice versa.
  • the extrusion head 1 comprises a compression device 4 configured to act on the filament “A” capable of being thermoregulated exiting the extrusion nozzle 2 by compressing it locally.
  • this embodiment can be advantageously used when the material to be extruded is mixed with an electrically conductive additive “C” in a percentage in the range between 25% and 35%, so that the compression generated by the compression device 4 allows to thicken the additive “C” until the coupling portion “Y” is generated by placing the two wires “B” in electrical connection.
  • the extrusion head 1 of the present invention can also be arranged for the realization of a spiraled pipe capable of being thermoregulated, in particular according to the above-outlined method.
  • the extrusion head 1 includes a second nozzle 5 which can be connected to at least one propeller to receive from it a material to be extruded and configured to extrude an elongated tape “D” having opposite side edges.
  • the first nozzle 2 and the second nozzle 5 can be made by means of a single element having an extrusion profile suitable for simultaneously producing the filament “A 2 ” capable of being thermoregulated and the tape “D”.
  • first nozzle 2 and the second nozzle 5 can be fed and operated by means of the same propeller.
  • the extrusion head may also include a rotating spindle configured to promote a helical winding of the elongated tape “D” and of the filament capable of being thermoregulated in such a way that the opposite side edges overlap to form an area of helical junction realizing a tubular body. Consequently, the filament “A” capable of being thermoregulated will be wounded around the tubular body.
  • the extrusion head 1 of the present invention allows to produce filaments “A” capable of being thermoregulated and/or spiraled pipes capable of being thermoregulated wherein the electric circuit designed to generate the Joule effect is completely formed and integral to the structure of the realized product, therefore without requiring further processing steps by the end user.
  • the present invention allows to realize both the “filaments” suitably connected from the electrical and/or circuit point of view, and a wide range of articles (including these filaments capable of being thermoregulated) which for example can be profiles (extruded), pipes, straps or tapes.
  • the invention allows to place the wires/filaments between elements which are combined in different ways with the structure of the articles: for example, in the case of realization of a “spiraled” product the filaments can be arbitrarily positioned between the helical thickening that composes the “rib” of the spiraled article and the below cylindrical body (and no longer only “inside” the helical thickening, as occurs in the production methods of known art), or even in the cylindrical body of the spiraled article or even under the latter (this last embodiment variant can be implemented by taking advantage of the crushing “from below” enforceable to all that is co-extruded during the implementation of the method itself).
  • twisting and therefore of “bridging” or short-circuiting the wire—is obtained through different types of physical phenomena that can be exploited during the co-extrusion according to the present method: for example, in is possible to take advantage of the friction between the forming element (i.e. the spindle of the co-extruder) and the material, for example polymeric material, which is deposited thereon and then welded with the next coil in an embodiment of a spiraled article.
  • the forming element i.e. the spindle of the co-extruder
  • material for example polymeric material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Resistance Heating (AREA)
  • Wire Processing (AREA)

Abstract

A method for the production of filaments (A) capable of being thermoregulated includes the steps of: —feeding a material to be extruded and a pair of wires (B) in electrically conductive material to an extrusion head (1); —extruding the material to be extruded and, at the same time, promoting the escape of the pair of wires (B) from the extrusion head (1) in such a way that the material to be extruded winds the pair of wires (B); —during the extrusion, generating at least a coupling portion (Y) of the filament (A), wherein the pair of wires (B) is electrically connected.

Description

    TECHNICAL FIELD
  • The present invention relates to the sector of the processes for manufacturing extruded materials.
  • In particular, the present invention relates to a method and a device for the production of filaments capable of being thermoregulated, specifically suitable for being used to manufacture spiraled pipes capable of being thermoregulated.
  • STATE OF THE ART
  • In the industrial sector of extrusion processes, it is common practice to use suitable materials, for example polymeric materials, to manufacture plastic filaments that can therefore be used in a wide range of products.
  • For example, these filaments can be used as a support for tubular structures, simply by winding, preferably following a spiral path, around them.
  • The application of the filaments to the structure of a pipe increases its resistance to crushing, leaving its wall flexible enough to allow short-radius curves without it breaking or bending.
  • The versatility of this type of pipes is highlighted by its applicability in a wide range of different fields such as construction, industrial plants, medical devices, heating systems, home appliances and so on.
  • Many applications, however, require or are enhanced by the possibility of thermoregulating the volume inside these pipes so as to allow actions on the temperature of the fluids flowing within it modifying it.
  • Consider, for example, the case where the pipe is adapted to carry fluids inside an industrial plant: it may be useful or even necessary to be able to accurately regulate the temperature at which this fluid is fed to the production process in which it must be used.
  • In particular, the pipes capable of being thermoregulated of the known type exploit the Joule effect to adjust the temperature of the fluid being flown inside them or can still be based, suitably providing two sufficiently diversified conductive materials, on the exploitation of the Peltier effect or of the Seebeck effect, for example, to measure a temperature.
  • These pipes have a conductor, typically made in the form of a pair of wires of conductive material positioned within the central lumen of the pipe or in its wall.
  • The wire could be positioned anywhere but, since the purpose is to heat the internal volume, the greatest effectiveness is achieved if this conductor has the lowest possible insulating mass between itself and the volume to be heated.
  • In particular, the conductor is made by a pair of wires concurring to make a circuit inside which a current flow flows in turn generating, on the basis of the characteristic resistance of the selected conductive material, the so-called Joule effect with subsequent heat dissipation.
  • This principle works only in case of presence of a closed circuit inside which the current flow can flow, for this purpose it is therefore necessary that the wires inserted inside the pipe are electrically connected to one of the two common ends and fed to the other end by an electron flow moved by a potential difference between the two.
  • In some cases, it is provided to insert a wire being folded inside the central lumen, rather than wrapping the folded wire around the pipe itself, as close as possible to the central lumen.
  • In other cases, the wires are inserted into the molten polymer flow which will form the pipe during its formation and then be joined by a secondary process.
  • However, the solutions highlighted by the prior art present intrinsic drawbacks making inefficient the production processes of pipes capable of being thermoregulated.
  • In particular, the insertion of the wire directly inside the pipe can cause problems, as the wire is in direct contact with the fluid flowing inside the pipe.
  • Alternatively, the application of the filament externally to the pipe, in addition to decreasing its efficiency, introduces the further problem of permanently constraining it to the same, thus introducing an additional process step (assembly) which goes against the productivity of the method in the industrial sector.
  • If, on the other hand, the conductor is immersed in the side walls of the pipe, the prior art envisages introducing into the market pipes with no electrical connection, leaving to the end user the task of realizing it.
  • Object of the Invention
  • In this context, the technical task underlying the present invention is to propose a method and a device for extruding filaments capable of being thermoregulated that overcomes at least some of the drawbacks of the known art mentioned above.
  • In particular, it is an object of the present invention to provide a method and device for the extrusion of filaments capable of being thermoregulated able to optimize the production process, in particular when used for the realization of spiraled pipes capable of thermoregulating the volume therein by exploiting the Joule effect.
  • The specified technical task and the objects specified are substantially achieved by a method and a device for the extrusion of filaments capable of being thermoregulated (as well as, in functional and procedural coordination, by a method and device for the production of articles containing such filaments capable of being thermoregulated) comprising the characteristics techniques set out in one or more of the appended claims. According to the present invention, a method is shown for the production of filaments capable of being thermoregulated which essentially comprises the steps of:
      • feeding a material to be extruded and a pair of wires in electrically conductive material to an extrusion head;
      • extruding the material to be extruded and, at the same time, promoting the escape of the pair of wires from the extrusion head in such a way that the material to be extruded winds the pair of wires;
      • during the extrusion, generating at least a coupling portion of the filament, wherein the pair of wires is electrically connected.
  • Operationally, the method can also include the following additional steps:
      • extruding, preferably in the axial and/or periodic direction (i.e. along the co-extrusion axis and/or at predetermined axial intervals), the pair of wires (B) outside the material to be extruded;
      • cyclically repeating all just-mentioned steps, so as to define at least two co-extruded articles made respectively in each cycle of cyclically repeated steps; and
      • defining and/or leaving an axial gap between two articles being successively co-extruded one after the other in successive cycles, said axial gap being sufficient for a cutting operation suitable to separate said two co-extruded articles not to interrupt a circuit created by said coupling portion (Y) of the filament (A), wherein said pair of wires (B) is electrically connected.
  • Preferably, during the step of generating at least one coupling portion, the pair of wires is twisted so as to present at least one mutual contact point arranged to electrically connect them.
  • Alternatively, during the step of feeding at least one material to be extruded, a mixing thereof is carried out with an electrically conductive additive in powder form, and during the step of generating at least one coupling portion, the filament is locally compressed so as to compact the additive until the same assumes a density being sufficient to generate an electrical contact between the wires.
  • Preferably, after the mixing step, the material to be extruded is composed of an additive for a percentage in the range between 25% and 35%.
  • Advantageously, the disclosed method overcomes the drawbacks of the prior art, providing a simple and efficient method for producing a filament capable of being thermoregulated having therein a closed circuit which allows the passage of current and therefore the occurrence of the Joule effect.
  • In this way, the filament can be immediately used for the realization of a product, without it being necessary for the end user to make any changes in order to make it operational and usable.
  • The present invention also relates to a method for the production of spiraled pipes capable of being thermoregulated which comprises the steps of:
      • extruding an elongated tape having opposite side edges;
      • winding the elongated tape in a helical manner such that the opposite side edges overlap, steadily constraining said opposite side edges to realize a helical junction area realizing a tubular body;
      • extruding a filament capable of being thermoregulated according to one or more of the preceding claims;
      • winding the filament capable of being thermoregulated around the tubular body, preferably overlapping it on the helical junction area.
  • Preferably, the steps of extruding an elongated tape and extruding a filament capable of being thermoregulated are performed simultaneously.
  • Preferably, the steps of winding the tape and the filament are performed simultaneously.
  • Advantageously, the disclosed method of production of spiraled pipes capable of being thermoregulated allows to realize pipes capable of thermoregulating the volume therein by exploiting the Joule effect, without the heating element coming into contact with the fluid flowing through the pipe and without requiring the end user to undertake preparatory work aimed at making the pipe operative.
  • The present invention also relates to an extrusion head comprising:
      • a first nozzle which can be connected to at least one propeller, in order to receive from it a material to be extruded; the first nozzle is configured to extrude the material along an extrusion direction;
      • an insertion device configured to receive in feed a pair of wires in electrically conductive material and having a pair of delivering seats arranged to deliver respective wires along the extrusion direction.
  • Preferably, the first nozzle is associated with the insertion device so as to extrude the material to be extruded around the pair of wires exiting the extrusion head by completely winding them.
  • Alternatively to the aforementioned embodiment, it can also be noted that if one or both of the wires belonging to the pair (B) were suitably insulated, they can be inserted in different relative positions with respect to the material to be extruded, or in different geometric/topological positions of a given co-extruded article suitably formed (for example, under a “strap” and inside the passage lumen of a spiraled article or in any case provided with a main cylindrical body provided with axial or helical ribs inside it or on the outside, or inside the strap, between the strap and the so-called “rib” or even inside the rib or possibly outside the rib itself).
  • Preferably the first nozzle and the insertion device are coaxial.
  • Even more preferably, the first nozzle is arranged around the insertion device.
  • In particular, the first nozzle has a circular extrusion profile which is circumferential to the insertion device.
  • Preferably, the delivering seats are movable in rotation about an axis being parallel to the extrusion direction so as to cause a twisting of the wires exiting the extrusion head.
  • Alternatively, the dispensing seats are movable along a transverse path to the extrusion direction so as to cause a twisting—or more generally an intersection (or an “intersection with contact” if desired)—of the wires exiting the extrusion head.
  • Preferably, the extrusion head comprises a compression device configured to act on the filament capable of being thermoregulated exiting the extrusion nozzle by compressing it locally.
  • The extrusion head may also include a second nozzle which can be connected to at least one propeller to receive from it a material to be extruded and configured to extrude an elongated tape having opposite side edges.
  • Preferably, the first nozzle and the second nozzle are coupled to define an extrusion nozzle having a first portion suitable for extruding the filament capable of being thermoregulated and a second portion suitable for extruding the tape.
  • The extrusion head may also include a spindle configured to promote a winding of the elongated tape and of the filament capable of being thermoregulated in such a way that the opposite side edges overlap to form an area of helical junction realizing a tubular body and of said filament capable of being thermoregulated around the tubular body.
  • Further characteristics and advantages of the present invention will become more apparent from the description of an exemplary, but not exclusive, and therefore non-limiting preferred production of a method and device for extruding filaments capable of being thermoregulated, as illustrated in the appended drawings, wherein:
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 schematically shows a view of an extrusion head during the production of a spiraled pipe capable of being thermoregulated;
  • FIGS. 2A-2E show cross-sectional views with respect to an extrusion direction of some production steps of the spiraled pipe capable of being thermoregulated;
  • FIGS. 3A-3E show cross-sectional views with respect to an extrusion direction of some production steps of the spiraled pipe capable of being thermoregulated according to a further embodiment;
  • FIGS. 4A-4C show cross-sectional views with respect to an extrusion direction of some production steps of the spiraled pipe capable of being thermoregulated according to a further embodiment.
  • FIGS. 5A-5F show cross-sectional views with respect to an extrusion direction of some production steps of the spiraled pipe capable of being thermoregulated according to a further embodiment;
  • FIGS. 6A-6F show cross-sectional views with respect to an extrusion direction of some production steps of the spiraled pipe capable of being thermoregulated according a further embodiment.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
  • The present invention relates to a method for the production of filaments “A”, in particular of the type capable of being thermoregulated.
  • The term “capable of being thermoregulated” means that the filament “A” has characteristics and structure allowing the heat generation in a controlled manner.
  • In particular, this result is obtained thanks to the presence inside the filament “A” of an electrically conductive material, which is capable of generating heat due to the Joule effect.
  • That is to say that it is possible to vary a heat emitted by the filament capable of being thermoregulated by varying the electric current flowing inside it, so as to control the amount of power dissipated by the Joule effect.
  • In particular, the method of the present invention provides to feed a material to be extruded to an extrusion head 1 which will be disclosed in greater detail below.
  • For the purposes of the present description, the generic term “material to be extruded” refers to any known material suitable to be used in the field of extrusion processes, for example plastics, polymers or other materials which present at the same time characteristics of electrical insulation.
  • At the same time, a pair of wires “B” of electrically conductive material is fed to the same extrusion head 1.
  • The material to be extruded is then extruded promoting, at the same time, the escape of the pair of wires “B” from the extrusion head 1, in such a way that the material to be extruded forms the filament “A” around a pair of wires “B” by completely winding them.
  • In other words, the wires “B” turn out to be (in an exemplifying but of course non-limiting embodiment according to the present invention) completely immersed and enclosed within the filament “A”.
  • During the extrusion process, it is provided at least one coupling portion “Y” of the filament “A” wherein said pair of wires “B” is electrically connected.
  • In other words, the wires “B” are fed to the extrusion head 1 independently of one another and will respectively represent two distinct branches of the electric circuit to be produced inside the filament “A” in order to allow the passage of current.
  • During the extrusion, the circuit is then closed by realizing the at least one coupling portion “Y”, wherein an electrical connection is generated between the two wires “B”, which allows the transmission of charge carriers, and therefore the passage of current, between the two.
  • According to a first possible embodiment, shown in FIG. 1 and with greater detail in FIGS. 2A-2E and FIGS. 3A-3E, the generation of the electrical contact portion provides the twisting of the pair of wires “B” so as to realize at least one mutual contact point arranged to electrically connect them.
  • In other words, according to this embodiment, the position of the wires “B” inside the filament “A” is changed during extrusion so that the wires “B” are progressively brought closer until they come into mutual contact in correspondence with the coupling portions “Y”.
  • Alternatively, according to a further possible embodiment, shown schematically in FIGS. 4A-4C, the generation of the coupling portion “Y” does not occur by the approach of the wires “B” to make a mutual contact, but by short-circuiting the two by a deformation of the filament “A”.
  • In particular, according to this embodiment, the step of feeding the material to be extruded to the extrusion head further provides to mix with it an electrically conductive additive “C” in powder form (or an electrically conductive polymer such as polyaniline or polyacetylene) in such a way that the additive “C” is dispersed within the filament.
  • The term “in powder form” means that the additive is in a granular or in any case discrete form, with grains of a size suitable for determining a homogeneous dispersion of the additive inside the matrix of the material to be extruded, once this is extruded to make the filament “A”.
  • It should be noted that the expression “granular form”, introduced above, is intended to mean a state of aggregation of the additive which has a plurality of solid corpuscles or in any case with an individual density comparable to the solid state: such corpuscles can then have the most disparate geometric configurations and/or the most disparate chemical compositions, such as leaves, needles, pipes, nanopipes and so on (such granules can then be made by way of example of, but not limited to, graphene, metal or carbon fibres and anything else depending on the needs of the moment).
  • The generation of the at least one coupling portion “Y” will then be obtained by compressing a portion of the filament in such a way as to compact the additive “C” until an electrical contact is generated between the wires “B”.
  • In other words, the additive “C” dispersed within the filament “A” does not have per se a sufficient density to allow the passage of charge carriers, however, as a result of compression, the particles of the additive “C” are compacted by approaching until obtaining a volumetric density being sufficient to allow locally a flow of charge carriers, thus short-circuiting the two wires “B” in correspondence of the coupling portion “Y” where the compression occurred.
  • Preferably, the material to be extruded has a percentage of additive “C” therein in the range between 25% and 35%, so as to guarantee a sufficient quantity of additive “C” for the generation of electrical contact between the wires “B” following the compression, without compromising at the same time the mechanical and structural characteristics.
  • The filament “A”, produced by the present invention, thus allows to control an amount of heat generated by the Joule effect from the flowing of an electric current inside the wires “B” producing a closed circuit, thanks to the arrangement of the coupling portions which are precisely designed to generate an electrical contact of the pair of wires “B”.
  • It is worth noting that by implementing, with the present method, an embodiment of a co-extruded article wherein the two wires of the pair “B” are of different metals (for example: copper and constantan, nickel and chromium, platinum and rhodium, and anything else depending on the needs of the moment), it is advantageously possible to create a thermocouple. In addition, the combination (by means of the co-extrusion) of a first pair of wires of the same conductive metal and of a second pair of wires which are metallically different from one another, together with an operative step of giving suitable coupling of these pairs at an electrical/circuit level, would allow to obtain a closed-loop thermoregulator device (wherein, the current with consequent generation of the Joule effect circulates in the first pair of wires, and wherein the second pair of wires acts as a regulator/selector on the passage of the same current).
  • The present invention also relates to a method for the production of a spiraled pipe capable of being thermoregulated, that is to say pipes which allow to accurately adjust the temperature of the fluid that flowing inside them, providing more or less heat generable by the Joule effect, varying the characteristics of the electric current flowing therein.
  • In particular, the method provides the extrusion of an elongated tape “D” having opposite side edges.
  • The tape “D” is then wound up according to a helical or spiral path, so that the opposite side edges overlap to form an area of helical junction.
  • In this way a tubular body is made.
  • In other words, the pipe is formed by winding the extruded tape “D” along a spiral path, so as to obtain an at least partial overlap of the opposite side edges of the tape “D” which are then constrained to each other.
  • The realization of the area of helical junction, i.e. that portion of the tubular body wherein the opposite side edges of the tape “D” are overlapped and mutually constrained, is preferably carried out when the extruded material is still not completely cooled and solidified, so as to allow that the opposite side edges are welded together.
  • The method also provides for extruding a filament “A” capable of being thermoregulated according to the above description.
  • That is to say that it is extruded a filament “A” having therein a pair of electrically conductive wires “B” and at least a coupling portion “Y” suitable for generating an electrical contact between the two wires “B” of the pair.
  • The filament “A” is then coupled to the tubular body by winding it helically around it, preferably by overlapping it on the area of helical junction.
  • In this way, the wire is placed directly in contact with the tubular body and is permanently connected thereto, so that it can transmit by conduction the heat generated by the dissipation of the electric power generated therein by the passage of current inside the circuit defined by the pair of wires “B”.
  • Advantageously, by overlapping and constraining the filament “A” to the area of junction, it is possible to further tighten the coupling generated between the opposite side edges which define the area of junction itself, making more resistant the spiral pipe capable of being thermoregulated.
  • According to a preferred embodiment, the extrusion of the filaments “D” and “A” is carried out simultaneously.
  • In other words, it is possible to realize at the same time, preferably by means of a same extrusion head, both the filaments “D” and “A”.
  • In the same way, it is possible to simultaneously execute the winding step of the tape “D” to make the tubular body and the winding step of the filament “A” around it simultaneously.
  • It is observed that the winding steps can be carried out simultaneously even if the extrusion steps are carried out separately, i.e. It is possible to realize the spiraled pipe capable of being thermoregulated by simultaneously winding the tape “D” and the filament “A” to realize the pipe, even if these components have been extruded at different times.
  • The present invention also relates to an extrusion head.
  • In FIG. 1, the numerical reference 1 generically indicates an extrusion head configured for the production of a filament “A” capable of being thermoregulated starting from a material to be extruded.
  • The extrusion head disclosed herein is particularly suitable for carrying out the above-disclosed method and comprises a first nozzle 2 and an insertion device 3.
  • The first nozzle 2 can be connected to at least one propeller of the known type (not shown in the attached figures) which receives the material to be extruded from a tank, a hopper or any other container suitable for storing a material to be extruded and feeding it to the extrusion head 1.
  • The first nozzle 2 is then fed by at least one propeller and is configured to generate the filament “A” along an extrusion direction “X”.
  • The insertion device 3 is instead configured to receive in feed a pair of wires “B” in electrically conductive material, such as for example copper or other suitable conductive metals and has a pair of delivering seats arranged to deliver respective wires “B” exiting from the extrusion head 1.
  • In other words, the wires “B” are fed to the insertion device 3, and in particular they are passed through respective delivering seats which allow it to be transferred to the extrusion head 1, in particular along the extrusion direction “X”.
  • The extrusion nozzle 2 is associated with the insertion device 3, in such a way that the material to be extruded is processed realizing the filament “A” around the pair of wires “B” completely winding them.
  • In particular, the extrusion nozzle 2 and the insertion device 3 are coaxial, preferably the extrusion nozzle 2 has a circular profile arranged around the insertion device 3.
  • According to a first embodiment, some configurations of use of which are shown in FIGS. 2A-2E, the delivering seats are movable in rotation about an axis being parallel to the extrusion direction “X” so as to cause a twisting of the wires exiting the extrusion head.
  • In other words, it is possible to rotate the delivering seats while simultaneously executing the extrusion aimed at making the filament “A”.
  • The tension to which the wires “B” are subjected and the consequent friction with the extruded material not yet completely solidified exiting from the extrusion head 1, allow to firmly fix the contact point of the two wires “B” in the coupling portion “Y”, where it is thought to be provided according to the technical specifications of the filament “A2” to be produced.
  • Alternatively, as shown in FIGS. 3A-3E, the delivering seats are movable along a transverse direction to the extrusion direction “X” so as to cause a twisting of the wires exiting the extrusion head.
  • In other words, the delivering seats move alternately between respective starting and ending positions, wherein the starting position of a seat corresponds to the arrival position of the other seat and vice versa.
  • According to this embodiment, it is therefore present an intermediate position, wherein the two delivering seats will substantially change position.
  • According to a further possible embodiment, shown schematically in FIGS. 4A-4C, the extrusion head 1 comprises a compression device 4 configured to act on the filament “A” capable of being thermoregulated exiting the extrusion nozzle 2 by compressing it locally.
  • In particular, this embodiment can be advantageously used when the material to be extruded is mixed with an electrically conductive additive “C” in a percentage in the range between 25% and 35%, so that the compression generated by the compression device 4 allows to thicken the additive “C” until the coupling portion “Y” is generated by placing the two wires “B” in electrical connection.
  • The extrusion head 1 of the present invention can also be arranged for the realization of a spiraled pipe capable of being thermoregulated, in particular according to the above-outlined method.
  • To this end, the extrusion head 1 includes a second nozzle 5 which can be connected to at least one propeller to receive from it a material to be extruded and configured to extrude an elongated tape “D” having opposite side edges.
  • Advantageously, the first nozzle 2 and the second nozzle 5 can be made by means of a single element having an extrusion profile suitable for simultaneously producing the filament “A2” capable of being thermoregulated and the tape “D”.
  • Likewise, the first nozzle 2 and the second nozzle 5 can be fed and operated by means of the same propeller.
  • The extrusion head may also include a rotating spindle configured to promote a helical winding of the elongated tape “D” and of the filament capable of being thermoregulated in such a way that the opposite side edges overlap to form an area of helical junction realizing a tubular body. Consequently, the filament “A” capable of being thermoregulated will be wounded around the tubular body.
  • Advantageously, the extrusion head 1 of the present invention allows to produce filaments “A” capable of being thermoregulated and/or spiraled pipes capable of being thermoregulated wherein the electric circuit designed to generate the Joule effect is completely formed and integral to the structure of the realized product, therefore without requiring further processing steps by the end user.
  • From the point of view of the advantages, it must therefore be observed that the present invention allows to realize both the “filaments” suitably connected from the electrical and/or circuit point of view, and a wide range of articles (including these filaments capable of being thermoregulated) which for example can be profiles (extruded), pipes, straps or tapes.
  • At the same time, the invention allows to place the wires/filaments between elements which are combined in different ways with the structure of the articles: for example, in the case of realization of a “spiraled” product the filaments can be arbitrarily positioned between the helical thickening that composes the “rib” of the spiraled article and the below cylindrical body (and no longer only “inside” the helical thickening, as occurs in the production methods of known art), or even in the cylindrical body of the spiraled article or even under the latter (this last embodiment variant can be implemented by taking advantage of the crushing “from below” enforceable to all that is co-extruded during the implementation of the method itself).
  • The considerable variability of configurations and/or relative positions between the material constituting the extruded body and the filaments ultimately allows to generate an important advantage, namely that of having the heating element closer to the content in transit through the article (e.g. a fluid to be heated which must pass through a tubular article produced according to the method of the invention).
  • Furthermore, it can be noted that the possibility of twisting—and therefore of “bridging” or short-circuiting the wire—is obtained through different types of physical phenomena that can be exploited during the co-extrusion according to the present method: for example, in is possible to take advantage of the friction between the forming element (i.e. the spindle of the co-extruder) and the material, for example polymeric material, which is deposited thereon and then welded with the next coil in an embodiment of a spiraled article.

Claims (15)

1. Method for the production of filaments (A) capable of being thermoregulated comprising the steps of:
feeding a material to be extruded to an extrusion head (1);
feeding a pair of wires (B) of electrically conductive material to said extrusion head (1);
extruding the material to be extruded and, at the same time, promoting the escape of the pair of wires (B) from the extrusion head (1) in such a way that the material to be extruded winds at least partially and at least locally said pair of wires (B);
generating, during the extrusion, at least a coupling portion (Y) of the filament (A) wherein pair of wires (B) is electrically connected, said coupling portion being preferably arranged internally to the material to be extruded.
2. Method according to claim 1, wherein it is further included a step of ejecting, preferably in an axial and/or periodic direction, at least a portion of the pair of wires (B) outside the material to be extruded.
3. Method according to claim 1, wherein it is also present a step of cyclically repeating all the steps of claim 1, said step of cyclically repeating being adapted to define at least two co-extruded articles made respectively in each cycle of steps.
4. Method according to claim 3, wherein it is also present a step of defining and/or leaving an axial gap between two articles being successively co-extruded one after the other in successive cycles, said axial gap being sufficient for a cutting operation suitable to separate said two co-extruded articles not to interrupt a circuit created by said coupling portion (Y) of the filament (A), wherein said pair of wires (B) is electrically connected.
5. Method according to claim 1, wherein said step of generating at least one coupling portion (Y) comprises a step of twisting the pair of wires (B) in such a way that said pair of wires (B) has at least one mutual contact point suitable to electrically connect them.
6. Method according to claim 1, wherein the step of feeding a material to be extruded comprises a step of mixing with said material to be extruded an electrically conductive additive (C) preferably in powder form, such that said additive (C) is dispersed inside the filament (A) and said step of generating at least one coupling portion (Y) comprises a step of compressing a portion of the filament (A) so as to compact the additive (C) increasing its volumetric density until generating an electrical contact between the wires (B).
7. Method according to claim 6, wherein after the step of mixing, the material to be extruded is composed of an additive (C) in a percentage in the range between 25% and 35%.
8. Method for the production of spiraled tubes capable of being thermoregulated comprising the steps of:
extruding an elongated tape (D) having opposite side edges;
winding said elongated tape (D) in such a way that the opposite side edges overlap, steadily constraining said opposite side edges to realize a helical junction area realizing a tubular body;
extruding a filament (A) capable of being thermoregulated according to the method according to claim 1;
winding said filament (A) capable of being thermoregulated around said tubular body, preferably overlapping said filament (A) capable of being thermoregulated on the area of helical junction.
9. Method according to claim 8, wherein the steps of extruding an elongated tape (D) and extruding a filament (A) capable of being thermoregulated are performed simultaneously and the steps of winding said tape (D) and winding said filament (A) are performed simultaneously.
10. Extrusion head comprising:
a first nozzle (2) that can be connected to at least one propeller to receive from said propeller a material to be extruded and configured to extrude said material along an extrusion direction (X);
an insertion device (3) configured to receive in feed a pair of wires (B) in electrically conductive material and having a pair of delivering seats arranged to deliver respective wires (B) along the extrusion direction (X);
said first nozzle (2) being associated with the insertion device (3) so as to extrude the material to be extruded around the pair of wires (B) exiting the extrusion head (1) by completely winding them.
11. Extrusion head according to claim 10, wherein the first nozzle (2) and the insertion device (3) are coaxial, preferably said first nozzle (2) being disposed circumferentially around the insertion device (3).
12. Extrusion head according to claim 10, wherein said delivering seats are movable in rotation about an axis being parallel to the extrusion direction (X) so as to cause a twisting of the wires (B) exiting the extrusion head (1).
13. Extrusion head according to claim 10, wherein said delivering seats are movable along a path being transverse to the extrusion direction (X) so as to define a twisting of the wires (B) exiting the extrusion head (1).
14. Extrusion head according to claim 10, further comprising a compression device (4) configured to act on the filament (A) capable of being thermoregulated exiting from the first nozzle (2) by compressing it locally.
15. Extrusion head according to claim 10, comprising:
a second nozzle (5) which can be connected to at least one propeller to receive from said propeller a material to be extruded and configured to extrude an elongated tape (D) having opposite side edges; and
a spindle configured to promote a winding of the elongated tape (D) and said filament (A) capable of being thermoregulated in such a way that said opposite side edges overlap to form an area of helical junction realizing a tubular body and of said filament (A) capable of being thermoregulated around the tubular body.
US17/298,926 2018-12-13 2018-12-13 Method for the production of extruded filaments with conductive elements Pending US20220032524A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2018/060001 WO2020121037A1 (en) 2018-12-13 2018-12-13 Method for the production of extruded filaments with conductive elements

Publications (1)

Publication Number Publication Date
US20220032524A1 true US20220032524A1 (en) 2022-02-03

Family

ID=65241270

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/298,926 Pending US20220032524A1 (en) 2018-12-13 2018-12-13 Method for the production of extruded filaments with conductive elements

Country Status (5)

Country Link
US (1) US20220032524A1 (en)
EP (2) EP4331807A3 (en)
JP (1) JP7289431B2 (en)
CN (1) CN113453867B (en)
WO (1) WO2020121037A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557403A (en) * 1969-01-21 1971-01-26 Jerome H Lemelson Composite extrusion apparatus and method
US6318061B1 (en) * 1997-08-08 2001-11-20 Siemens Aktiengesellschaft Method and apparatus for producing a cable
US20070125301A1 (en) * 2005-12-01 2007-06-07 Xixian Zhou System and die for forming a continuous filament reinforced structural plastic profile by pultrusion/coextrusion

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2105812A (en) * 1935-08-29 1938-01-18 Wingfoot Corp Bead wire die
US3935369A (en) * 1973-11-02 1976-01-27 Western Electric Company, Inc. Methods of manufacturing an insulated conductor and product produced thereby
US4250400A (en) * 1979-11-19 1981-02-10 The Scott & Fetzer Company Flexible temperature self regulating heating cable
US4345368A (en) * 1980-09-18 1982-08-24 Thermon Manufacturing Co. Parallel-type heating cable and method of making same
JPH08255673A (en) * 1995-03-17 1996-10-01 Sekisui Plastics Co Ltd Heater
JPH08255672A (en) * 1995-03-17 1996-10-01 Sekisui Plastics Co Ltd Heater
JPH0963752A (en) * 1995-08-25 1997-03-07 Sekisui Plastics Co Ltd Plane heater
DE19931993A1 (en) * 1999-07-09 2001-01-11 Coronet Werke Gmbh Method and device for producing bristles
DE10355073A1 (en) * 2003-11-24 2005-06-09 Krah Ag Apparatus and method for producing winding tubes
KR20130016554A (en) * 2011-08-08 2013-02-18 이동원 Temperature sensing heater wire with electric-magnetic wave cancel
DE102012208020A1 (en) * 2012-05-14 2013-11-14 Evonik Industries Ag Method for producing a heatable tube
JP2015095385A (en) * 2013-11-13 2015-05-18 日星電気株式会社 Belt heater
CN103660305B (en) * 2013-12-12 2015-09-02 北京化工大学 A kind of heavy caliber PVC dynamic molding method and device
PL3512694T3 (en) * 2016-09-14 2022-09-19 Prysmian S.P.A. Process and apparatus for the manufacturing of a figure-of-eight cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557403A (en) * 1969-01-21 1971-01-26 Jerome H Lemelson Composite extrusion apparatus and method
US6318061B1 (en) * 1997-08-08 2001-11-20 Siemens Aktiengesellschaft Method and apparatus for producing a cable
US20070125301A1 (en) * 2005-12-01 2007-06-07 Xixian Zhou System and die for forming a continuous filament reinforced structural plastic profile by pultrusion/coextrusion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
English Translation of KR 10-1756119, July 26, 2017. (Year: 2017) *

Also Published As

Publication number Publication date
EP4331807A2 (en) 2024-03-06
CN113453867B (en) 2023-06-30
CN113453867A (en) 2021-09-28
JP7289431B2 (en) 2023-06-12
EP4331807A3 (en) 2024-05-15
JP2022519160A (en) 2022-03-22
EP3894176A1 (en) 2021-10-20
WO2020121037A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
US8450667B2 (en) Flexible, electrically heatable hose
US6069997A (en) Hot pipe and apparatus for producing same
JP5922593B2 (en) Extrusion equipment
JP5070613B2 (en) Electrical conduction device
CN105305733A (en) Manufacturing method for segment coil
CN104024760B (en) Dielectric line and its manufacture method can be heated by being included in the assembling of the outside dielectric line for being provided with least two heating element heaters
EP3285039B1 (en) Heat exchangers with multiple flow channels
NL8303131A (en) FLEXIBLE ELECTRIC HEATING OR TEMPERATURE MEASUREMENT ELEMENT CUT TO LENGTH.
CN105392608B (en) For the method by extrusion foams and the extrusion device for producing foams
US20220032524A1 (en) Method for the production of extruded filaments with conductive elements
US20190118471A1 (en) Extrusion assembly for an additive manufacturing system
US11480284B2 (en) Heated media line
JP2016004707A (en) Twisted wire and production method of twisted wire
CN107210096A (en) Coaxial cable and medical cable
US7612292B1 (en) Current lead using rutherford cable
CN111279435B (en) Carbon nanotube coated wire
WO2016085848A1 (en) Extruder die plate for reduced strand surging
JPS5857052B2 (en) spiral wire support
CN202071310U (en) Differential three-conical screw extruder with three screws triangularly arranged
US12013191B2 (en) Coiled spring
KR100965290B1 (en) Method for producing spiral supporting equipment
CN200997166Y (en) Linear temperature-sensing element for linear fire detecter
US1039717A (en) High-frequency electrical conductor.
CN107283793A (en) A kind of plastic extrusion apparatus of easily controllable temperature
CN102275285A (en) Differential conical three-screw extruder with screws arranged triangularly

Legal Events

Date Code Title Description
AS Assignment

Owner name: EXGINEERING SA, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CAPELLETTI, TIZIANO;MACCAGNAN, SIMONE;REEL/FRAME:057145/0465

Effective date: 20210728

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED