US20220015489A1 - Concussion resistent smart helmet - Google Patents

Concussion resistent smart helmet Download PDF

Info

Publication number
US20220015489A1
US20220015489A1 US16/927,990 US202016927990A US2022015489A1 US 20220015489 A1 US20220015489 A1 US 20220015489A1 US 202016927990 A US202016927990 A US 202016927990A US 2022015489 A1 US2022015489 A1 US 2022015489A1
Authority
US
United States
Prior art keywords
helmet
layer
shell
absorbing layer
concussion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/927,990
Inventor
Peter L. Levy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US16/927,990 priority Critical patent/US20220015489A1/en
Publication of US20220015489A1 publication Critical patent/US20220015489A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/06Impact-absorbing shells, e.g. of crash helmets
    • A42B3/062Impact-absorbing shells, e.g. of crash helmets with reinforcing means
    • A42B3/063Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures
    • A42B3/064Impact-absorbing shells, e.g. of crash helmets with reinforcing means using layered structures with relative movement between layers
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/0406Accessories for helmets
    • A42B3/0433Detecting, signalling or lighting devices
    • A42B3/046Means for detecting hazards or accidents
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/06Impact-absorbing shells, e.g. of crash helmets
    • A42B3/067Impact-absorbing shells, e.g. of crash helmets with damage indication means

Definitions

  • the field of the present invention relates generally to head impact protection helmets, and in particular to helmets having capabilities to reconfigure rotational forces to helmet peripheries away from the head impacted as well as replace damaged absorbing layers quickly for helmet reuse.
  • a helmet typically includes a hard outer shell and one or more energy absorbing layers.
  • the outer shell is designed to distribute forces over the shell area to distribute the energy over a greater volume of the energy absorbing layers. These usually have a compressible material that absorbs impact energy by distorting and absorbing the impact using the resilient and/or compressible properties of the material or by crushing and absorbing energy by material fracture.
  • Conventional helmets are primarily designed to manage direct or normal forces to a helmet and are less effective at managing shear or rotational forces.
  • Various solutions intended to manage rotational motions have been developed and proposed, such as providing a slippery surface material to cover the helmet thereby decreasing friction between the surface of the helmet and the impacting object.
  • Other solutions include the use of low friction layer between the helmet shell and an inner head-gripping member, or a layer that consists of a gel, liquid or other soft material between the shell and liner, or other layers of materials, to allow the outer shell to rotate and/or slide horizontally independent of the liner or the user's head.
  • Some consumer helmets prevent some injury via lightweight yet rigid insulating foam called Expanded Polystyrene, or EPS. Crashing on a bicycle and hitting ones head into something rigid, the foam reduces the amount of energy that would enter the skull by deflecting and redistributing that impact away from any one area of the skull. The more that the direction and magnitude of the impact is redistributed and reduced, the more likely the impact will be spread over a larger area when it impacts the skull. In some instances, this protection does a good job of preventing cracks to the skull that could be sustained during a fall or play.
  • EPS Expanded Polystyrene
  • EPS Styrofoam-like, EPS, helmets are far from good enough for several reasons. Often they are meant to be used once per large impact as in the event of a crash, the outer shell cracks, and the EPS foam takes that crushing blow by deforming and absorbing the force, thereby reducing the impact to the skull. Further, the foam inside is either incapable of bouncing back, or it's impossible to tell the extent of its damage. Often one protective blow to the head is all the helmet can take before it is useless protection against future concussions.
  • EPS helmets mainly absorb energy in a helmet's normal direction, or directly on. But that leaves the tangent component direction free to cause most of the damage in concussions. What is often the case, is that the head turns and pivots and its this rotational-style concussion that poses the most danger.
  • cerebrospinal fluid which is typically the brain's natural protection, shifts and allows the head to jostle around unprotected, irritating and potentially damaging the delicate nerves inside.
  • MIPS rotation energy reducing technology
  • the MIPS technology teaches a shell layer that acts as a human body's natural cerebrospinal fluid. Rather than reducing the impact of direct or normal force, as the foam helmets do, MIPS works to redirect the impact of rotational forces from angled impacts. MIPS is essentially a thin liner. When placed between it and the helmet's hard shell, it creates a low friction layer which allows the helmet to slide back and forth just like your body's natural fluid cushioning.
  • impacts causing head rotation can be far more damaging to the brain than direct, normal to the head, collisions.
  • Repeated helmet impacts reach a certain high energy impact, and friction starts to build between the MIPS layer and the EPS layers in the helmet such that resistance in the layers is unable to deflect that rotational energy anymore.
  • impacts continue, and sufficient friction builds, the layers bind up, and too much energy starts to reach the brain.
  • the present invention discloses a concussion resistant smart helmet with a perforated outer shell and perforated regions or openings is disclosed.
  • the outer is shell coupled to helmet edges adjacent to a neck or shoulders for transferring loads away from the wearer's head.
  • An inner shell is coupled to the helmet edges adjacent to a neck or shoulders and rigidly coupled to the outer shell at the edges.
  • a layer of independently slidable freely in all directions tiles are snuggly fitted between the inner and outer shells with the tiles protruding the outer shell perforated regions proving sliding stops and the tiles having polygonal shape commensurate with margins to each tile accommodating outer shell protrusion region.
  • the slidable tiles have spring-like material spacers separating them but allowing for transferring any tangential component forces from impacts to travel from tile to tile.
  • An restorable energy absorbing layer is snuggle coupled between the inner shell and a helmet wearer's head such that external force impacts to the helmet are decoupled to normal and tangential components in the helmet layers, tangential component forces are redirected to the helmet edges and the normal component forces are distributed and absorbed by the absorbing layer.
  • the absorbing inner layer boundary is fitted with 3D force sensors and wifi logic for recording all impacts reaching the head.
  • FIG. 1 shows a concussion resistant helmet sliding tile outer layer in an embodiment of the invention
  • FIG. 2 illustrates a concussion resistant helmet bearing slider outer layer in an embodiment of the invention
  • FIG. 3 displays detailed aspects of layers of a concussion resistant helmet in an embodiment of the invention
  • FIG. 4 shows detailed aspects of removable-installable absorption layers of a concussion resistant helmet in an embodiment of the invention
  • FIG. 5 illustrates damage management of replaceable absorption layers of a concussion resistant helmet in an embodiment of the invention
  • the concussion resistant smart helmet disclosed herein addresses the above needs and concerns in the following manner.
  • an object of the invention is to provide concussion resistant smart helmet by decoupling the normal and tangential component force impacts and manage them separately.
  • Another object of the invention is to provide an impact decoupling mechanism to redirect tangential component forces from external helmet impacts to helmet edges for absorption by neck or shoulder pads.
  • a still further object of the invention is to provide a removable replaceable energy absorbing layer.
  • the present invention discloses several embodiments for making a concussion resistant smart helmet.
  • FIG. 1 shows a concussion resistant helmet 101 sliding tile outer layer 115 in an embodiment of the invention.
  • a perforated outer hard shell 105 of the outer layer 115 with perforated regions or openings 107 in outer layer 115 coupled to helmet edges 103 adjacent to a neck or shoulders is shown and snuggly fitting the tiles against the outer hard shell 105 .
  • a base outer shell 103 of outer shell layer 115 is rigidly coupled to the helmet edges 103 adjacent to a neck or shoulders and rigidly coupled to the outer hard shell 105 at the helmet edges 103 .
  • the slidable tiles 109 are adjacent to spring-like material 111 spacing the locally movable tiles apart for movably transferring any tangential component forces from impacts anywhere on the helmet exterior to the helmet edges.
  • An additional and restorable energy absorbing layer lies between the outer base shell 103 and a helmet wearer's head.
  • Face protection 113 may or may not be present but it would act in the same way transferring impact loads into the normal 121 and tangential component forces by deflection 119 . or glancing blow.
  • FIG. 2 illustrates a concussion resistant helmet bearing slider outer layer in an embodiment of the invention.
  • a slider bearing 203 tile 205 populates an outer shell regions 207 coupled to helmet edges 213 is shown adjacent to a neck or shoulders.
  • An inner layer shell(s) is coupled 209 211 to the helmet edges adjacent to a neck or shoulders and rigidly coupled to the outer shell at the edges 213 .
  • the outer bearing populated layer provides and independently slidable freely in all directions provides a head shield from any tangential impacts by redirecting those components to the helmet edges. Any normal component impacts are distributed in and across a restorable adjacent snuggly fitted absorbing layer(s) 209 211 .
  • the restorable energy absorbing layer(s) 209 211 may have embedded sensors and diminish any helmet blows to wearer's head.
  • Helmet concussion resistance is designed into an embodiment of the invention of a smart helmet by decoupling the normal and tangential component force impacts by the outer layers slidable property of deflecting tangential force components away from a helmet users head, thus removing any potential rotational energy from reaching the head.
  • FIG. 3 shows detailed aspects of layers of a concussion repellant and resistant helmet layer in an embodiment of the invention.
  • An outer layer 311 301 has movable tiles or platelets 309 with affixed rolling bearing 302 , the platelets have spring-like components 303 surrounding the platelet 309 and allowing 360° constrained movement on the bearing 302 rotational surface and also within the outer layer 307 volume 305 .
  • the tiles 309 remain somewhat local to the outer layer 307 perforations 308 or openings retaining the tiles 302 locally.
  • a network of tiles 302 populating the outer layer 301 311 allow that impact force components are decoupled, with the tangential component diverted to adjacent tiles and normal component force is absorbed by the spring-like components 303 and further downstream by an absorber layer(s) 313 .
  • a slidable tile or platelet 309 can be made of plastic, composite, graphite coating, graphene-titanium, graphene layers, synthetics, metal and combinations.
  • the spring-like interstitial material 303 is made from materials including but not limited to rubber, foam, composites, elastic synthetic and combinations.
  • a liner 313 bounding an absorbing layer 314 can have smart sensors 321 for recording forces affecting the head. The sensors will be 3D force or acieration sensors 315 with memory 317 , wifi logic 318 and power 319 .
  • FIG. 4 shows detailed aspects of removable-installable absorption layer 401 of a concussion resistant helmet in an embodiment of the invention.
  • Normal or direct force impacts are decoupled by the external layer 404 and outer layer shell 407 redirected to an impact absorption layer 402 405 between an external layer 404 and user.
  • an absorption layer 402 405 suffers damage in its ability to deform further to absorb direct impact energy and must be replace or recycled. The damage will come from crushed fluidic bearings 417 with deformable—breaching sphere outer layers 419 or from the crushing of honey comb or other cellular structured 413 material absorbent layer 405 413 .
  • the absorbent layer 405 402 413 are removable-replaceable having hard edge boundaries, coupled to the helmet base at a snap-on or screw-on edge 403 415 .
  • the helmet base will have rigid hard shell layers 411 made from plastic, composite, graphite grid, graphene-titanium, graphene layers, spongy interior, other synthetic material and combinations, the base to snuggly fit but removable-replaceable absorbing layers 413 402 405 as shown.
  • FIG. 5 illustrates absorption layer 501 damage management of a concussion resistant helmet in an embodiment of the invention.
  • An absorbing layer top 503 and side or base 505 are snap or screw coupled at a snug fit edge 509 between the top 503 and base 505 absorbing layer 501 providing for replacement of damaged absorbent layer 503 505 .
  • an absorbent layer base 505 is rotatably coupled to a helmets neck/shoulder edge 507 .
  • the top 503 of the absorbent layer can be of deformable energy absorbing material and structure previously mentioned.
  • the absorption layer is expected to absorb impacts through physical deformation of its material and structure.
  • Absorbing material can be made of combination of Styrofoam, honey comb, FOAM, composites, plastic-rubber, fluidic spheres and is replaceable when called for by removing a damaged absorption layer and replacing it with an undamaged absorbing layer.
  • the 3D force sensor 510 logic measuring, recording and storing the actual brain reaching impacts can have limits set to inform wearers when the helmet has been compromised.
  • Replacing the absorbent layer at end of life is managed through sensor(s) 510 517 securely affixed in the absorber layer lining adjacent to user, such that impact magnitudes reaching the user are recorded and a time history 511 of impacts can be read from wireless devices from sensor 517 stored memory 519 and wifi logic 521 transmission, powered by rechargeable power 523 .

Abstract

A concussion resistant smart helmet is disclosed having outer construction to redirect all tangential component force impacts to the helmet edges and away from user, reduce, redistribute and absorb normal component force impact. The absorbing layer is recyclable and contains sensor and logic for recording impact forces transmitted to helmet interior boundary.

Description

    BACKGROUND Field
  • The field of the present invention relates generally to head impact protection helmets, and in particular to helmets having capabilities to reconfigure rotational forces to helmet peripheries away from the head impacted as well as replace damaged absorbing layers quickly for helmet reuse.
  • Background of the Invention
  • The primary purpose of a helmet is to protect the user's head. A helmet typically includes a hard outer shell and one or more energy absorbing layers. The outer shell is designed to distribute forces over the shell area to distribute the energy over a greater volume of the energy absorbing layers. These usually have a compressible material that absorbs impact energy by distorting and absorbing the impact using the resilient and/or compressible properties of the material or by crushing and absorbing energy by material fracture.
  • Conventional helmets are primarily designed to manage direct or normal forces to a helmet and are less effective at managing shear or rotational forces. Various solutions intended to manage rotational motions have been developed and proposed, such as providing a slippery surface material to cover the helmet thereby decreasing friction between the surface of the helmet and the impacting object. Other solutions include the use of low friction layer between the helmet shell and an inner head-gripping member, or a layer that consists of a gel, liquid or other soft material between the shell and liner, or other layers of materials, to allow the outer shell to rotate and/or slide horizontally independent of the liner or the user's head.
  • There are many helmet designs as head injures abound in many different activities and uses requiring the safety of perhaps different helmet designs. Taking a spill, hit or flying object to the brain on the street or playground can be a life changing injury.
  • Some consumer helmets prevent some injury via lightweight yet rigid insulating foam called Expanded Polystyrene, or EPS. Crashing on a bicycle and hitting ones head into something rigid, the foam reduces the amount of energy that would enter the skull by deflecting and redistributing that impact away from any one area of the skull. The more that the direction and magnitude of the impact is redistributed and reduced, the more likely the impact will be spread over a larger area when it impacts the skull. In some instances, this protection does a good job of preventing cracks to the skull that could be sustained during a fall or play.
  • But Styrofoam-like, EPS, helmets are far from good enough for several reasons. Often they are meant to be used once per large impact as in the event of a crash, the outer shell cracks, and the EPS foam takes that crushing blow by deforming and absorbing the force, thereby reducing the impact to the skull. Further, the foam inside is either incapable of bouncing back, or it's impossible to tell the extent of its damage. Often one protective blow to the head is all the helmet can take before it is useless protection against future concussions.
  • In more recent years, researchers have also found that simply distributing energy at the point of impact is not the most ideal way to prevent a concussion. EPS helmets mainly absorb energy in a helmet's normal direction, or directly on. But that leaves the tangent component direction free to cause most of the damage in concussions. What is often the case, is that the head turns and pivots and its this rotational-style concussion that poses the most danger. Inside the brain, cerebrospinal fluid which is typically the brain's natural protection, shifts and allows the head to jostle around unprotected, irritating and potentially damaging the delicate nerves inside.
  • In the last few decades researchers have begun to better understand head injuries, particularly concussions, but only the most recent prior art designs contain designs and methods for absorbing rotational energy from an impact, which is largely responsible for dangerous concussions. What is needed are helmet designs that can absorb energy continuously with accommodation for material absorption deformation. What is needed are helmet devices that repel the impact of rotation or divert its force away from adding rotational energy to the brain.
  • One example of a rotation energy reducing technology is MIPS, an acronym for multi-directional impact protection system. The MIPS technology teaches a shell layer that acts as a human body's natural cerebrospinal fluid. Rather than reducing the impact of direct or normal force, as the foam helmets do, MIPS works to redirect the impact of rotational forces from angled impacts. MIPS is essentially a thin liner. When placed between it and the helmet's hard shell, it creates a low friction layer which allows the helmet to slide back and forth just like your body's natural fluid cushioning.
  • As some researchers found, impacts causing head rotation can be far more damaging to the brain than direct, normal to the head, collisions. Repeated helmet impacts reach a certain high energy impact, and friction starts to build between the MIPS layer and the EPS layers in the helmet such that resistance in the layers is unable to deflect that rotational energy anymore. As impacts continue, and sufficient friction builds, the layers bind up, and too much energy starts to reach the brain.
  • What is needed are designs that prevents friction from building by transferring the energy rotationally as it starts to build up to another structure which bypasses the head altogether. What is needed are more effective ways for reusing helmets with damaged EPS foam, useless at preventing concussions from head collisions whether on the street, field or on the playground.
  • SUMMARY
  • The present invention discloses a concussion resistant smart helmet with a perforated outer shell and perforated regions or openings is disclosed. The outer is shell coupled to helmet edges adjacent to a neck or shoulders for transferring loads away from the wearer's head. An inner shell is coupled to the helmet edges adjacent to a neck or shoulders and rigidly coupled to the outer shell at the edges. A layer of independently slidable freely in all directions tiles are snuggly fitted between the inner and outer shells with the tiles protruding the outer shell perforated regions proving sliding stops and the tiles having polygonal shape commensurate with margins to each tile accommodating outer shell protrusion region. The slidable tiles have spring-like material spacers separating them but allowing for transferring any tangential component forces from impacts to travel from tile to tile. An restorable energy absorbing layer is snuggle coupled between the inner shell and a helmet wearer's head such that external force impacts to the helmet are decoupled to normal and tangential components in the helmet layers, tangential component forces are redirected to the helmet edges and the normal component forces are distributed and absorbed by the absorbing layer. The absorbing inner layer boundary is fitted with 3D force sensors and wifi logic for recording all impacts reaching the head.
  • BRIEF DESCRIPTION OF DRAWINGS
  • Specific embodiments of the invention will be described in detail with reference to the following figures.
  • FIG. 1 shows a concussion resistant helmet sliding tile outer layer in an embodiment of the invention
  • FIG. 2 illustrates a concussion resistant helmet bearing slider outer layer in an embodiment of the invention
  • FIG. 3 displays detailed aspects of layers of a concussion resistant helmet in an embodiment of the invention
  • FIG. 4 shows detailed aspects of removable-installable absorption layers of a concussion resistant helmet in an embodiment of the invention
  • FIG. 5 illustrates damage management of replaceable absorption layers of a concussion resistant helmet in an embodiment of the invention
  • DETAILED DESCRIPTION
  • In the following detailed description of embodiments of the invention, numerous specific details are set forth in order to provide a more thorough understanding of the invention. However, it will be apparent to one of ordinary skill in the art that the invention may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description.
  • Objects and Advantages
  • The concussion resistant smart helmet disclosed herein addresses the above needs and concerns in the following manner.
  • It is, therefore, an object of the invention is to provide concussion resistant smart helmet by decoupling the normal and tangential component force impacts and manage them separately.
  • Another object of the invention is to provide an impact decoupling mechanism to redirect tangential component forces from external helmet impacts to helmet edges for absorption by neck or shoulder pads.
  • A still further object of the invention is to provide a removable replaceable energy absorbing layer.
  • It is an objective of the invention to create a smart helmet, one capable of recording impacts and notification of absorption layer replacement.
  • It is yet another object of the invention to record all absorption layer normal force impacts for magnitude of and cumulative concussive force history.
  • The present invention discloses several embodiments for making a concussion resistant smart helmet.
  • FIG. 1 shows a concussion resistant helmet 101 sliding tile outer layer 115 in an embodiment of the invention. A perforated outer hard shell 105 of the outer layer 115 with perforated regions or openings 107 in outer layer 115 coupled to helmet edges 103 adjacent to a neck or shoulders is shown and snuggly fitting the tiles against the outer hard shell 105. A base outer shell 103 of outer shell layer 115 is rigidly coupled to the helmet edges 103 adjacent to a neck or shoulders and rigidly coupled to the outer hard shell 105 at the helmet edges 103. A layer of independently slidable freely in all directions tiles 109 snuggly fitted between the base 103 and hard outer shells 105, tiles 109 protruding the outer hard shell 105 perforated regions 107 having polygonal shape commensurate with margins 107 of each tile 109 accommodating a hard outer shell protrusion region 107. The slidable tiles 109 are adjacent to spring-like material 111 spacing the locally movable tiles apart for movably transferring any tangential component forces from impacts anywhere on the helmet exterior to the helmet edges. An additional and restorable energy absorbing layer lies between the outer base shell 103 and a helmet wearer's head. Thereby external force 117 impacts to the helmet are decoupled to a helmet normal 121 and tangential components 119 in the helmet layers, tangential component 119 forces are redirected to the helmet edges 103 by the sliding tiles or platelets and the normal component forces are distributed and absorbed by an absorbing layer below. Face protection 113 may or may not be present but it would act in the same way transferring impact loads into the normal 121 and tangential component forces by deflection 119. or glancing blow.
  • FIG. 2 illustrates a concussion resistant helmet bearing slider outer layer in an embodiment of the invention. A slider bearing 203 tile 205 populates an outer shell regions 207 coupled to helmet edges 213 is shown adjacent to a neck or shoulders. An inner layer shell(s) is coupled 209 211 to the helmet edges adjacent to a neck or shoulders and rigidly coupled to the outer shell at the edges 213. The outer bearing populated layer provides and independently slidable freely in all directions provides a head shield from any tangential impacts by redirecting those components to the helmet edges. Any normal component impacts are distributed in and across a restorable adjacent snuggly fitted absorbing layer(s) 209 211. The restorable energy absorbing layer(s) 209 211 may have embedded sensors and diminish any helmet blows to wearer's head.
  • Helmet concussion resistance is designed into an embodiment of the invention of a smart helmet by decoupling the normal and tangential component force impacts by the outer layers slidable property of deflecting tangential force components away from a helmet users head, thus removing any potential rotational energy from reaching the head.
  • Layer composition is of major concern along with structural mechanics. Graphene is the strongest material ever tested. Materials testing have shown that graphene showed a greater ability to distribute force from an impact than any known material, ten times that of steel per unit weight. Therefore it is a very good candidate for materials used for making the outer layer tougher and lighter than conventional helmet materials used, providing added strength against very high impact loads which would otherwise penetrate the outer layer and cause damage in the normal component of the force.
  • FIG. 3 shows detailed aspects of layers of a concussion repellant and resistant helmet layer in an embodiment of the invention. An outer layer 311 301 has movable tiles or platelets 309 with affixed rolling bearing 302, the platelets have spring-like components 303 surrounding the platelet 309 and allowing 360° constrained movement on the bearing 302 rotational surface and also within the outer layer 307 volume 305. The tiles 309 remain somewhat local to the outer layer 307 perforations 308 or openings retaining the tiles 302 locally. A network of tiles 302 populating the outer layer 301 311 allow that impact force components are decoupled, with the tangential component diverted to adjacent tiles and normal component force is absorbed by the spring-like components 303 and further downstream by an absorber layer(s) 313.
  • A slidable tile or platelet 309 can be made of plastic, composite, graphite coating, graphene-titanium, graphene layers, synthetics, metal and combinations. The spring-like interstitial material 303 is made from materials including but not limited to rubber, foam, composites, elastic synthetic and combinations. In some embodiments a liner 313 bounding an absorbing layer 314 can have smart sensors 321 for recording forces affecting the head. The sensors will be 3D force or acieration sensors 315 with memory 317, wifi logic 318 and power 319.
  • FIG. 4 shows detailed aspects of removable-installable absorption layer 401 of a concussion resistant helmet in an embodiment of the invention. Normal or direct force impacts are decoupled by the external layer 404 and outer layer shell 407 redirected to an impact absorption layer 402 405 between an external layer 404 and user. But with continued use, an absorption layer 402 405 suffers damage in its ability to deform further to absorb direct impact energy and must be replace or recycled. The damage will come from crushed fluidic bearings 417 with deformable—breaching sphere outer layers 419 or from the crushing of honey comb or other cellular structured 413 material absorbent layer 405 413. The absorbent layer 405 402 413 are removable-replaceable having hard edge boundaries, coupled to the helmet base at a snap-on or screw-on edge 403 415. The helmet base will have rigid hard shell layers 411 made from plastic, composite, graphite grid, graphene-titanium, graphene layers, spongy interior, other synthetic material and combinations, the base to snuggly fit but removable-replaceable absorbing layers 413 402 405 as shown.
  • FIG. 5 illustrates absorption layer 501 damage management of a concussion resistant helmet in an embodiment of the invention.
  • An absorbing layer top 503 and side or base 505 are snap or screw coupled at a snug fit edge 509 between the top 503 and base 505 absorbing layer 501 providing for replacement of damaged absorbent layer 503 505. In an embodiment of the invention an absorbent layer base 505 is rotatably coupled to a helmets neck/shoulder edge 507. The top 503 of the absorbent layer can be of deformable energy absorbing material and structure previously mentioned.
  • Through the course of its life, the absorption layer is expected to absorb impacts through physical deformation of its material and structure. Absorbing material can be made of combination of Styrofoam, honey comb, FOAM, composites, plastic-rubber, fluidic spheres and is replaceable when called for by removing a damaged absorption layer and replacing it with an undamaged absorbing layer. The 3D force sensor 510 logic measuring, recording and storing the actual brain reaching impacts can have limits set to inform wearers when the helmet has been compromised.
  • Replacing the absorbent layer at end of life is managed through sensor(s) 510 517 securely affixed in the absorber layer lining adjacent to user, such that impact magnitudes reaching the user are recorded and a time history 511 of impacts can be read from wireless devices from sensor 517 stored memory 519 and wifi logic 521 transmission, powered by rechargeable power 523. In replaceable absorbent layers embodiments there may be at least one 3D force or 3D accelerometer sensor 517 coupled to electrical power 523, memory 519 and wifi 521 logic for digitally recording helmet individual and cumulative impact forces reaching the bottom of the absorbing layer 503.
  • Therefore, while the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this invention, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Other aspects of the invention will be apparent from the following description and the appended claims.

Claims (12)

What is claimed is:
1. A concussion resistant smart helmet comprising:
a helmet with a perforated outer hard shell on an outer helmet layer with perforated regions or openings, hard shell the exterior of an outer layer and coupled to helmet edges adjacent to a neck or shoulders;
an inner layer snuggly fitting within the outer layer, layers coupled to the helmet edges adjacent to a neck or shoulders and replaceably coupled to the helmet;
a layer of independently slidable freely in all direction tiles snuggly fitted in the outer layer between the outer hard shell and outer layer shell base, tiles protruding the outer shell perforated regions and having polygonal shape commensurate with margins to each tile accommodating outer hard base shell protrusion region;
the slidable tiles with spring-like material spacers for transferring any tangential component forces from impacted tile to tile to edge helmet tangential force component transfer, and
a removable-replaceable energy absorbing layer between an inner shell liner and a helmet wearer's head,
whereby external force impacts to the helmet are decoupled to normal and tangential components in the helmet layers, tangential component forces are redirected to the helmet edges and the normal component forces are distributed and absorbed by the absorbing layer.
2. The concussion resistant smart helmet of claim 1, wherein the helmet outer and inner shell material comes from a set of material including plastic, composite, graphite, graphene-titanium, graphene layers, metal and elastic plastic.
3. The concussion resistant smart helmet of claim 1 wherein the slidable tile interstitial material is made from a set of materials including rubber, foam, and elastic synthetic.
4. The concussion resistant smart helmet of claim 1 further comprising an absorbing layer removable coupled at circumferential edge for decoupling from the helmet whereby damaged absorbing material can be removed and replaced with undamaged absorbing layer material.
5. The concussion resistant smart helmet of claim 1 further comprising a smart absorbing layer with liner having at least one 3D force or 3D accelerometer sensor coupled to power, memory and wifi logic for digitally recording helmet individual and cumulative impact forces reaching the bottom of the absorbing layer.
6. The concussion resistant smart helmet of claim 1 further comprising an absorbing layer made from a set of energy absorbing materials including honey comb, Styrofoam, Expanded Polystyrene, EPS, graphene-titanium, graphene layers, composites and combinations.
7. A method for a concussion resistant smart helmet comprising the steps of:
providing a helmet with a perforated outer hard shell on an outer helmet layer with perforated regions or openings, hard shell the exterior of an outer layer and coupled to helmet edges adjacent to a neck or shoulders;
providing the helmet with an inner layer snuggly fitting within the outer layer, layers coupled to the helmet edges adjacent to a neck or shoulders and replaceably coupled to the helmet;
placing a layer of independently slidable freely in all direction tiles snuggly fitted in the outer layer between the outer hard shell and outer layer shell base, tiles protruding the outer shell perforated regions and having polygonal shape commensurate with margins to each tile accommodating outer hard base shell protrusion region;
spacing the slidable tiles with spring-like material spacers for transferring any tangential component forces from impacted tile to tile to edge helmet tangential force component transfer, and
inserting removable-replaceable energy absorbing layer between an inner shell liner and a helmet wearer's head,
whereby external force impacts to the helmet are decoupled to normal and tangential components in the helmet layers, tangential component forces are redirected to the helmet edges and the normal component forces are distributed and absorbed by the absorbing layer.
8. A method for a concussion resistant smart helmet as in claim 7 further comprising the steps of having the helmet outer and inner shell material made from a set of material including plastic, composite, graphene-titanium, graphene layers, metal and elastic plastic.
9. A method for a concussion resistant smart helmet as in claim 7 further comprising the steps of having slidable tile interstitial material made from a set of materials including rubber, foam, and elastic synthetic.
10. A method for a concussion resistant smart helmet as in claim 7 further comprising the steps of making absorbing layer removable coupled at circumferential edge for decoupling from the helmet whereby damaged absorbing material can be removed and replaced with undamaged absorbing layer material.
11. A method for a concussion resistant smart helmet as in claim 7 further comprising the steps of making a smart absorbing layer with liner having at least one 3D force or 3D accelerometer sensor coupled to power, memory and wifi logic for digitally recording helmet individual and cumulative impact forces reaching the bottom of the absorbing layer.
12. A method for a concussion resistant smart helmet as in claim 7 further comprising the steps of having an absorbing layer made from a set of energy absorbing materials including honey comb, Styrofoam, Expanded Polystyrene, EPS, graphite, composites, graphene layers and combinations.
US16/927,990 2020-07-14 2020-07-14 Concussion resistent smart helmet Abandoned US20220015489A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/927,990 US20220015489A1 (en) 2020-07-14 2020-07-14 Concussion resistent smart helmet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/927,990 US20220015489A1 (en) 2020-07-14 2020-07-14 Concussion resistent smart helmet

Publications (1)

Publication Number Publication Date
US20220015489A1 true US20220015489A1 (en) 2022-01-20

Family

ID=79291672

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/927,990 Abandoned US20220015489A1 (en) 2020-07-14 2020-07-14 Concussion resistent smart helmet

Country Status (1)

Country Link
US (1) US20220015489A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220248791A1 (en) * 2021-02-07 2022-08-11 Alivia Gallo Protective head gear with sensors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724681A (en) * 1996-11-22 1998-03-10 Sykes; Bob Shock-absorbing helmet cover
US9820525B2 (en) * 2011-02-09 2017-11-21 6D Helmets, Llc Helmet omnidirectional energy management systems
US20180343953A1 (en) * 2017-06-06 2018-12-06 Kranos Ip Corporation Helmet with floating shell plates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724681A (en) * 1996-11-22 1998-03-10 Sykes; Bob Shock-absorbing helmet cover
US9820525B2 (en) * 2011-02-09 2017-11-21 6D Helmets, Llc Helmet omnidirectional energy management systems
US20180343953A1 (en) * 2017-06-06 2018-12-06 Kranos Ip Corporation Helmet with floating shell plates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220248791A1 (en) * 2021-02-07 2022-08-11 Alivia Gallo Protective head gear with sensors

Similar Documents

Publication Publication Date Title
US6314586B1 (en) Supplemental protective pad for a sports helmet
CA2850636C (en) Head protection for reducing linear acceleration
US11033797B2 (en) Football helmet having improved impact absorption
US10238950B2 (en) Impact absorption padding for contact sports helmets
EP3590374B1 (en) Pendulum impact damping system
US9603408B2 (en) Football helmet having improved impact absorption
US9820522B2 (en) Shock wave mitigating helmets
US7832023B2 (en) Protective headgear with improved shell construction
US9289021B2 (en) Shear reduction mechanism
US20160021965A1 (en) Multi-layer safety helmet assembly
EP2822410B1 (en) Helmet
US9370216B2 (en) Safety helmet
EP3422887B1 (en) Helmet with a protective liner
US20140109304A1 (en) Intelligent protective gear bracing mechanism
EP2734071A1 (en) Biomechanics aware protective gear
US20220015489A1 (en) Concussion resistent smart helmet
US20150257472A1 (en) Helmet
US20210106090A1 (en) Concussion reducing/energy transferring helmet and shoulder system
US20180064198A1 (en) Helmet
US20180242675A1 (en) Helmet
GB2557748A (en) Helmet
CA2869063A1 (en) Helmet pads

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION