US20220005108A1 - Ad Hoc Item Geo Temporal Location and Allocation Apparatuses, Methods and Systems - Google Patents
Ad Hoc Item Geo Temporal Location and Allocation Apparatuses, Methods and Systems Download PDFInfo
- Publication number
- US20220005108A1 US20220005108A1 US17/396,755 US202117396755A US2022005108A1 US 20220005108 A1 US20220005108 A1 US 20220005108A1 US 202117396755 A US202117396755 A US 202117396755A US 2022005108 A1 US2022005108 A1 US 2022005108A1
- Authority
- US
- United States
- Prior art keywords
- geographical
- processor
- seating
- temporal
- item
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002123 temporal effect Effects 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000004891 communication Methods 0.000 claims abstract description 56
- 238000013507 mapping Methods 0.000 claims abstract description 37
- 239000002131 composite material Substances 0.000 claims abstract description 29
- 238000012545 processing Methods 0.000 claims abstract description 25
- 230000000694 effects Effects 0.000 claims description 23
- 230000003993 interaction Effects 0.000 claims description 13
- 235000013361 beverage Nutrition 0.000 claims description 5
- 230000001052 transient effect Effects 0.000 claims 7
- 235000012054 meals Nutrition 0.000 claims 4
- 235000011888 snacks Nutrition 0.000 claims 4
- 239000000047 product Substances 0.000 description 102
- 238000010586 diagram Methods 0.000 description 34
- 230000002093 peripheral effect Effects 0.000 description 15
- 230000007246 mechanism Effects 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 11
- 230000004044 response Effects 0.000 description 11
- 238000012546 transfer Methods 0.000 description 10
- 238000013515 script Methods 0.000 description 9
- 238000011161 development Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 238000012552 review Methods 0.000 description 5
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 241001275944 Misgurnus anguillicaudatus Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000010267 cellular communication Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 235000014510 cooky Nutrition 0.000 description 2
- 238000013478 data encryption standard Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000001983 electron spin resonance imaging Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- FMFKNGWZEQOWNK-UHFFFAOYSA-N 1-butoxypropan-2-yl 2-(2,4,5-trichlorophenoxy)propanoate Chemical compound CCCCOCC(C)OC(=O)C(C)OC1=CC(Cl)=C(Cl)C=C1Cl FMFKNGWZEQOWNK-UHFFFAOYSA-N 0.000 description 1
- 241000010972 Ballerus ballerus Species 0.000 description 1
- 102100026816 DNA-dependent metalloprotease SPRTN Human genes 0.000 description 1
- 101710175461 DNA-dependent metalloprotease SPRTN Proteins 0.000 description 1
- 241000272183 Geococcyx californianus Species 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241001025261 Neoraja caerulea Species 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000011021 lapis lazuli Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910000103 lithium hydride Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 230000000475 sunscreen effect Effects 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0641—Shopping interfaces
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/29—Geographical information databases
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9537—Spatial or temporal dependent retrieval, e.g. spatiotemporal queries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/02—Reservations, e.g. for tickets, services or events
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0633—Lists, e.g. purchase orders, compilation or processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
- G06F3/0482—Interaction with lists of selectable items, e.g. menus
Definitions
- the present innovations generally address geo-location and inventory allocation, and more particularly, include Ad Hoc Item Geo Temporal Location and Allocation Apparatuses, Methods and Systems.
- Global positioning systems include satellites and receiving devices which can ascertain their position on the globe based on measuring signals received from satellites, cell towers, WiFi and other signal sources.
- Services such as Apple and Google maps exist that include satellite mappings of global terrain, and are a collection of mapping imagery.
- FIG. 1 shows a block diagram illustrating user interface embodiments of the GeoTemp
- FIG. 2 shows a logic flow diagram illustrating embodiments of a map region component for the GeoTemp
- FIG. 3 shows a screenshot diagram illustrating embodiments of a booking for the GeoTemp
- FIGS. 4 and 5 show a screenshot diagram illustrating embodiments of a booking for the GeoTemp
- FIGS. 6 and 7 show screenshot diagrams illustrating embodiments of a moving orders the GeoTemp
- FIG. 8 shows a screenshot diagram illustrating embodiments of an online order for the GeoTemp
- FIG. 9 shows a screenshot diagram illustrating embodiments to reopen an order for the GeoTemp
- FIG. 10 shows a datagraph diagram illustrating embodiments of a layout booking for the GeoTemp
- FIG. 11 shows a logic flow diagram illustrating embodiments of a location order component for the GeoTemp
- FIG. 12 shows a screenshot diagram illustrating embodiments of item product ordering an order for the GeoTemp
- FIG. 13 shows a datagraph diagram illustrating embodiments of a product item ordering for the GeoTemp
- FIG. 14 shows a logic flow diagram illustrating embodiments of a location order component for the GeoTemp
- FIG. 15 shows a block diagram illustrating embodiments of the GeoTemp
- FIG. 16 shows a block diagram illustrating embodiments of the GeoTemp
- FIG. 17 shows a block diagram illustrating embodiments of the GeoTemp
- FIG. 18 shows screenshot diagrams illustrating embodiments of the GeoTemp
- FIG. 19 shows a block diagram illustrating embodiments of a GeoTemp controller
- APPENDICES 1-5 illustrate embodiments of the GeoTemp.
- GeoTemp transforms user requested area ( 202 ), user layout request ( 1102 ), user request for product items ( 1402 ), layout, section, unit/item position, zone, user item selection inputs, via GeoTemp components (e.g., GeoTemp 1935 , GeoTemp Layout Define 1941 , item layout 1942 , item allocation 1943 , map region 1944 , map imagery retrieval 1945 , location order 1946 , product item order component 1947 , etc. components), into location map ( 230 ), layout position ( 1135 ), booking ( 1026 ), goods services dispatch ( 1326 , 1430 ), item reservation, item directions, inventory request, inventory delivery outputs.
- GeoTemp components in various embodiments, implement advantageous features as set forth below.
- FIG. 1 shows a block diagram illustrating user interface embodiments of the GeoTemp.
- a mobile device 105 may display a map region 110 , e.g., Google Maps API call into a display view area, and in the example shown, a zoom in close up area of a beach area. With a selection of, in this case an resort, property a bounding box is drawn along the beach area 115 indicating a potential area of interest to make reservations of beach space.
- the map screen may be overlaid showing seating layout for the beach area, which is retrieved from a database for that specific locale, and is overlaid on the beach area to illustrate that locations seating capacity and general arrangement 120 within the selections bounding box 115 .
- colors for the seating arrangement dots may provide feedback for currently occupied seating (e.g., with red colored dots) and those that are available (e.g., green dots) for a given time span, and where a time span scroller widget may be provided to scrub through different times and visually inspect for seating availability.
- a user may then bring up the next seating arrangement screen 132 , where users can zoom into a particular section of the seating arrangement, e.g., either through the original selection touch area 120 and move further through sections by selecting form the column selection buttons 126 .
- the layout screen can provide feedback of the current area they are looking at 130 , and provide search and other options 128 , 132 for ordering and finding items of interest.
- widgets allow the user to see availability for the seating area across time.
- the user may make one or more selections for seating in the area grid 122 and move on to reserve the seating area(s) for a desired time.
- FIG. 2 shows a logic flow diagram illustrating embodiments of a map region component for the GeoTemp.
- the map region component may be instantiated 201 upon demand, periodically, and/or continuously.
- a user inquiry about a specified area e.g., tap on a mobile device screen, GPS based current location, etc.
- a user inquiry about a specified area e.g., tap on a mobile device screen, GPS based current location, etc.
- the component may be instantiated and then operate with no user requested region, and instead, run through a queue of all, e.g., resort, delineated areas for analysis; for example, a list of all resorts may be fed to the map region component as an input map request queue (for example, a list of all US resorts with addresses) and the map region component may continuously process this list refining reserveable areas within such resorts.
- the client may provide the following example map region request 202 , substantially in the form of a HTTP(S) POST message including XML-formatted data, as provided below:
- the map region component 244 , 1944 of FIG. 19 may parse for location, map area region (e.g., region zoom), map date (e.g., for example the year of map satellite imagery used that might have been last viewed and/or cached on the mobile device), etc. and use that to form a request retrieve a map region imagery 203 .
- map area region e.g., region zoom
- map date e.g., for example the year of map satellite imagery used that might have been last viewed and/or cached on the mobile device
- the initial map request already described may be reused with an added digital certificate identifying the map region component and forwarding that to a map imagery retrieval component 245 , 1945 .
- the imagery retrieval component may be integrated into the map region component, while in an alternative embodiment, a 3 rd party imagery API such as Google Maps API call.
- the imagery retrieval component 245 may then perform a lookup for the requested area's map imagery 205 , and generate and provide the requested imagery as an image frame 207 to the map region component 244 , which will receive the image frame data 210 .
- the map region component 244 may then obtain that input representing geospatial features defining a beach region area 215 .
- GPS points circumscribing a region may have been provided (e.g., with measurements from a sight bounding a seating area, a human delineating the bounding region through inspection of a map region and drawing a bounding region providing points for the bounding region, a machine learning engine inspecting beach regions looking for seating and generating a bounding region, etc.). These may be stored in the GeoTemp database and retrieved for a specified region.
- the image region datastructure 207 , 210 substantially in the form of a HTTP(S) POST message including JSON-formatted data, is provided below:
- the request for map retrieval 203 , 205 substantially in the form of PHP/SQL commands is provided below:
- the map region component may then obtain information defining physical product placement within the bound region 220 . Similarly to the geospatial bounding region 215 , this information may be retrieved as assets from a GeoTemp database and laid out within the geospatial bounding region. In one embodiment, hand tuned asset layout templates may be used, in another embodiment, assets are distributed across the bounding region automatically (e.g., alphabetical order, expense, ranking/weights, etc.). Examples of the physical placement data may be seen in Appendices 1-3.
- the map region component may then generate a product layout interface compositing the above 225.
- the composite may be generated via Google Maps API with a request for the location coordinates, and placing markers representing the product placements (e.g., where the markers may be custom markers).
- a composite user interface may be achieved as seen in Appendices 1-3 from the structure (layout.json), as follows:
- maps are rendered using ESRI and its ArcGIS suite, using their imaging library and basemaps, and separately, GeoTemp may render from its data, via Javascript, to HTML and CSS, and overlay that atop ESRI's platform; however, it should be noted that many other mapping APIs and imaging libraries may also be used.
- the client may provide the following example map region request 202 , substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided in Appendix 1. This may be provided to a client device 286 for user interface display 230 .
- FIG. 3 shows a screenshot diagram illustrating embodiments of a booking for the GeoTemp.
- a user may interact with GeoTemp. It should be noted that in one embodiment, the user may be an end user wishing to purchase, e.g., resort products, but in an alternative embodiment, the end user may be staff at the resort (e.g., concierge, staff, waiter, etc.) or at a 3 rd party booking service. A user may select a resort, geographic region, address, etc. initial desired destination 305 . GeoTemp may then provide a user with various products available for purchase, rent, etc. for the user's selection(s) 310 .
- a given selection e.g., beach set
- current availability of various sets may be shown 315 and the user may engage with such a product (e.g., tapping the “+” mark) and then selecting a time range for use of a product 320 , 325 , and may repeat this for different products and different time spans placing each in a cart 330 for checkout 335 with an option of provide additional notes 340 and obtaining an order receipt visually and by other means (e.g., text, email, etc.) 345 , 350 .
- other means e.g., text, email, etc.
- the user may go back to review booked products 355 , and tap on a product to view its placement 360 (e.g., this may also be viewed prior to booking), and engage with various options (e.g., viewing order details, moving single item, move a booking, reopen the order, etc.) 365 and review the order 370 .
- various options e.g., viewing order details, moving single item, move a booking, reopen the order, etc.
- FIGS. 4 and 5 show a screenshot diagram illustrating embodiments of a booking for the GeoTemp.
- a user may be presented with a login screen 405 (e.g., via mobile application, web browser interface, etc.) and upon providing login credentials 410 , may be presented with recent order summaries 415 .
- the user may begin looking for a play to reserve 420 , and in this case, start by reviewing and picking areas for which they would like to reserve product 425 , 430 , and time ranges 435 , 440 .
- the user may provide details about the order (e.g., in this case, a waiter aiding in the dispensing of the products and services may note the particular purchasing customer is a good tipper, which would be saved and reviewable for this order and future orders for the customer) 505 .
- the order may then be executed 510 and receipt options engaged 515 .
- orders placed may be sorted by order, by destination, and/or other sort option 520 520 , 530 .
- the user may then continue reviewing purchase options, inspect their cart 530 , review their reservations locations 535 , etc.
- FIGS. 6 and 7 show screenshot diagrams illustrating embodiments of a moving orders the GeoTemp.
- a user brings up their current order 605 and selects 607 one of the order items that they wish to move and bring up an options menu 610 and then are allowed to select a new position 620 resulting in the new positioning 625 .
- the user could have also cancelled an order at position B 3 if desired 630 .
- FIG. 7 is a user interface example of a move across a single day, where a user starts with a current order screen for products at a setting 705 .
- the user selects a product (e.g., a beach set at position A 8 on the layout grid) 707 , and engages the options menu (e.g., by long pressing on the seat, or selecting one of the option menus 708 , etc.) and bringing up the order move option menu 710 .
- a product e.g., a beach set at position A 8 on the layout grid
- options menu e.g., by long pressing on the seat, or selecting one of the option menus 708 , etc.
- bringing up the order move option menu 710 Upon making a selection for an order move 710 , the user is then provided a chart in which they may select a new seating position 720 , and then an chart updating the move (e.g., from A 8 to A 7 ) 725 . Also, the user may cancel a current order, e.g., cancelling the order at B 4 730 .
- FIG. 8 shows a screenshot diagram illustrating embodiments of an online order for the GeoTemp.
- a user may initially visit a ordering website 805 and search for and select a particular, e.g., resort, location 810 .
- the user may explore information about the location 815 , such as beach facilities 820 , and explore products and services available at the location 825 (e.g., beach sets, food, activities (e.g., bonfires, para-sailing, jet skiing, surfing, etc.), beverages, etc.) and make selections of interest 830 including date ranges 835 , quantity 840 , and move on to make further selections of other products 845 .
- location 815 such as beach facilities 820
- products and services available at the location 825 e.g., beach sets, food, activities (e.g., bonfires, para-sailing, jet skiing, surfing, etc.), beverages, etc.) and make selections of interest 830 including date ranges 835 , quantity 840 , and move on to make further
- the user may enter their account and payment information 850 or otherwise provide their login credentials 852 .
- they Upon supplying their login account information 855 they will also be provided with an order summer 857 .
- the user will also be provided with an interface showing the layout of their product purchases 860 and be provided with the option to make adjustments 865 , as has already been discussed.
- An order receipt may then be displayed 870 .
- FIG. 9 shows a screenshot diagram illustrating embodiments to reopen an order for the GeoTemp.
- FIG. 10 shows a datagraph diagram illustrating embodiments of a layout booking for the GeoTemp.
- a user may engage with an ordering device (e.g., a mobile device, a point of sale terminal, a computer, etc.) 1010 having loaded the GeoTemp user interface (as has already been discussed in previous user interface Figures).
- the user device may then issue a position booking request 1021 to a GeoTemp server 1035 .
- the client may provide the following example position booking request 1021 , substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided below:
- the GeoTemp server 1035 may provide the message for processing to a location order component (e.g., See FIGS. 11 and 1946 of FIG. 19 ). The GeoTemp server 1035 will then generate and provide a product layout request 1022 to the map imagery retrieval component 1045 , 245 of FIG. 2, 1945 of FIG. 19 and/or GeoTemp database 1919 of FIG. 19 .
- the client may provide the following example Product bookings on layout request 1022 , substantially in the form of PHP/SQL commands as provided below:
- the map imagery retrieval component 1045 may then return layout data 1023 for the user's 1010 layout booking request 1021 to the GeoTemp server 1035 , substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided in Appendix 2, which may be further provided back to the user device 1010 , 1024 for further display and user interface and booking interaction(s) and/or product selection(s); or alternatively may be processed with product updates for the return layout 1024 , substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided in Appendix 3.
- the user device 1010 may then provide a product booking request 1025 to the GeoTemp server 1035 , substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided in Appendix 4.
- the GeoTemp server may then use the product booking request 1025 to effect storing the booking of product, substantially in the form of PHP/SQL commands as provided below:
- FIG. 11 shows a logic flow diagram illustrating embodiments of a location order component for the GeoTemp.
- the location order component may be instantiated 1101 upon demand, periodically, and/or continuously.
- a user 1186 layout request 1102 (e.g., see 1021 of FIG. 10 ) may be received by the location order component on the GeoTemp server 1144 , which may then generate a query for layout position booking 1103 (e.g., see 1022 of FIG. 10 ), and the map region component 1145 , 1945 of FIG. 19 may retrieve the requested query results.
- the layout may then be retrieved 1105 and prepared to be provided as a user interface layout for further selections 1107 (e.g., see 1023 of FIG.
- the GeoTemp server 1144 may then provide the interface to the user 1110 (e.g., see 1024 of FIG. 10 ) for display and interaction 1115 on the client device 1186 where the user may then make further product selections 1120 (e.g., see FIGS. 1, 3-9 ). These selections and booking requests are confirmed to be available 1125 when provided to the GeoTemp server 1144 and confirmed (e.g., See 1025 of FIG. 10 ) 1130 . If the bookings are not available 1125 , flow may commence to an error handler, terminate, and/or restart the process 1101 . Upon confirmation 1130 , the customer requested positions may be assigned and then stored at the server 1135 (e.g., see 1026 of FIG. 10 ).
- FIG. 12 shows a screenshot diagram illustrating embodiments of item product ordering an order for the GeoTemp.
- the user may make a selection for a seating section 1205 area and select their seats 1210 and/or interact with already reserved seating; e.g., the user may reopen their order as already discussed and/or otherwise interact with their location purchase order as has already been discussed in earlier user interface figures.
- the user may bring up options for reserved seating and order additional goods and/or services for those reserved seats, e.g., for drinks 1215 , 1220 , and or other services through selections, including the times of delivery of such goods and services.
- FIG. 13 shows a datagraph diagram illustrating embodiments of a product item ordering for the GeoTemp.
- a user may engage with an ordering device (e.g., a mobile device, a point of sale terminal, a computer, etc.) 1310 having loaded the GeoTemp user interface (as has already been discussed in previous user interface Figures, e.g., FIG. 12 ).
- the user device 1310 provides a user input device location request for items available for the location 1321 to a product items order component (e.g., see FIG. 14 for more detail) instantiated on the GeoTemp server 1335 receives the request and makes a product items request for the position 1322 to the map imagery retrieval component 1345 , 245 of FIG. 2, 1945 of FIG.
- a product items order component e.g., see FIG. 14 for more detail
- GeoTemp server 1335 may then return available product items for the requested (e.g., seating) position 1323 back to the GeoTemp server 1335 , which may then provide a user interface for product item selections 1324 back to the user device 1310 .
- this may take a form similar to what was already discussed for layout selection 1021 , 1035 , 1022 , 1023 , 1024 .
- layout information is already established, and instead a refined user position request 1321 is provided to the GeoTemp server 1335 , substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided below:
- This position layout information may be provided as a product items request for the specified position 1322 , substantially in the same form 1321 and whereby a query for the location and product availability at the location is made 1322 (e.g., see query at 1022 of FIG. 10 ).
- a query for the location and product availability at the location is made 1322 (e.g., see query at 1022 of FIG. 10 ).
- the query for retrieval of the product request for a given position 1321 substantially in the form of PHP/SQL commands is provided below:
- the query for retrieval of the product request for a given position 1321 substantially in the form of Ruby commands is provided below:
- the available product items for the position response 1323 may then result from the query, substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided below:
- the above 1323 response may be reformatted and composited into a return user interface as has already been discussed 1024 of FIG. 10 .
- the provided user interface of products available for selections for the seating location 1324 are provided to the user device 1310 where the user makes selections for desired items 1325 , substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided below:
- the selection request 1325 may be forwarded 1326 a , 1326 b to product vendor(s)' system(s) 1351 a , 1351 b .
- the greater textual information of the order may be provided for the user selections 1325 when the vendor's system has not be configured to work with GeoTemp.
- the order may be sent via SMS, email, direct to application, etc.
- the vendors' systems are configured to take the selections input 1325 directly.
- an identifier to the customer identifier and/or order identifier is provided so that each vendor may separately charge the customer for selected items.
- the order datastructure 1325 , 1326 a , 1326 b substantially in the form of a HTTP(S) POST message including JSON-formatted data, is provided in Appendix 5.
- FIG. 14 shows a logic flow diagram illustrating embodiments of a location order component for the GeoTemp.
- the location order component may be instantiated 1401 upon demand, periodically, and/or continuously.
- a user 1486 request for product items available for their location position 1402 (e.g., see 1321 of FIG. 13 ) may be received by the location order component on the GeoTemp server 1444 , which may then generate a query for layout position booking 1403 (e.g., see 1322 of FIG. 13 ), and the map region component 1445 , 1945 of FIG. 19 may retrieve the requested query results. In one embodiment this may be achieved based on user input and location data via a query 1322 of FIG. 13 .
- the query results of the product items available for the location position 1405 may then be retrieved 1405 and prepared to be provided as a user interface layout for further selections 1407 (e.g., see 1323 of FIG. 13 ), and the GeoTemp server 1444 may then provide the interface to the user 1410 (e.g., see 1324 of FIG. 13 ) for display and interaction 1415 on the client device 1486 where the user may then make further product selections 1420 (e.g., see FIGS. 12, 1, 3-9 ).
- These selections for item requests 1420 are then provided 1125 to the GeoTemp server 1444 , where the GeoTemp server 1144 confirms availability of the goods and services requested (e.g., See 1323 , 1326 a , 1326 b of FIG. 13 ) 1427 .
- the customer requested product items may be sent as orders to outside vendors for fulfillment 1430 (e.g., see 1351 a , 1351 b of FIG. 13 ).
- FIG. 15 shows a block diagram illustrating embodiments of the GeoTemp.
- FIG. 15 shows a Beach Type Definition 1501 :
- FIG. 15 goes on to show Seating Layout Definition (ALL Beach Types) 1550 :
- FIG. 16 shows a block diagram illustrating embodiments of the GeoTemp.
- FIG. 16 shows a Seat Selection (ALL Accessible Beach Types) 1601 :
- FIG. 16 shows a Vendor Dispatch (ALL Accessible Beach Types) 1650 :
- FIG. 17 shows a block diagram illustrating embodiments of the GeoTemp.
- FIG. 17 shows a Camera Guidance (Accessible but Unmanaged Beaches) 1701 :
- FIG. 17 shows a beach area for GeoTemp layout 1720 .
- GeoTemp layout establishes datastructures that allow for object map placement, inventory allocation, temporal allocation, etc. It includes the following mechanisms.
- GeoTemp defines the number of sections into which the beach area should be subdivided, the count of seating inventory to be allocated to each section and the position of each seat to be placed within.
- the configuration of seating positions will change based on seasonality and past performance. Any type of placeable product can be contained within a seating position, thus a layout can contain different seating types.
- the hierarchical structure of this definition includes:
- Examples include and are illustrated 1750 :
- FIG. 18 shows screenshot diagrams illustrating embodiments of the GeoTemp.
- An interface for selecting a seat 1801 , 1820 from the definition above is provided to the consumer.
- a related point-of-sale interface is provided to vendors.
- This interface is dynamic, meaning that it changes over time to reflect the seating layout and availability and corresponds one to one with the definition above. This interface allows for booking any number of seating positions for any number of units of time as defined by the seating type's availability.
- the color-coded states include:
- FIG. 18 shows product item (e.g., from available inventory) ordering interfaces 1840 , 1860 .
- a system and interface allows users to order products from vendors to be delivered to a seating position is provided. Users are able to browse and order products from this interface. Products are displayed to users based in whole or part on the following variables.
- a notification to the vendor indicating the need for product delivery is sent.
- Directions to the point of address or property are provided by a third-party direction provider (e.g. Google Maps, Apple Maps, etc.). Beyond this point, directions are informed by our mapping, defined landmarks (e.g. beach access point, booked seating position) and the customer's device sensors, if available.
- the client may provide the following example layout message, substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided below:
- a LayoutUnitPosition message may include the following:
- a LayoutZon message may include the following:
- FIG. 19 shows a block diagram illustrating embodiments of a GeoTemp controller.
- the GeoTemp controller 1901 may serve to aggregate, process, store, search, serve, identify, instruct, generate, match, and/or facilitate interactions with a computer through geo-location and inventory allocation technologies, and/or other related data.
- processors 1903 may be referred to as central processing units (CPU).
- CPUs 1903 may be referred to as central processing units (CPU).
- CPUs 1903 may be referred to as central processing units (CPU).
- CPUs 1903 may be referred to as central processing units (CPU).
- CPUs 1903 may be referred to as central processing units (CPU).
- CPUs use communicative circuits to pass binary encoded signals acting as instructions to enable various operations.
- These instructions may be operational and/or data instructions containing and/or referencing other instructions and data in various processor accessible and operable areas of memory 1929 (e.g., registers, cache memory, random access memory, etc.).
- Such communicative instructions may be stored and/or transmitted in batches (e.g., batches of instructions) as programs and/or data components to facilitate desired operations.
- These stored instruction codes may engage the CPU circuit components and other motherboard and/or system components to perform desired operations.
- One type of program is a computer operating system, which, may be executed by CPU on a computer; the operating system enables and facilitates users to access and operate computer information technology and resources.
- Some resources that may be employed in information technology systems include: input and output mechanisms through which data may pass into and out of a computer; memory storage into which data may be saved; and processors by which information may be processed.
- These information technology systems may be used to collect data for later retrieval, analysis, and manipulation, which may be facilitated through a database program.
- These information technology systems provide interfaces that allow users to access and operate various system components.
- the GeoTemp controller 1901 may be connected to and/or communicate with entities such as, but not limited to: one or more users from peripheral devices 1912 (e.g., user input devices 1911 ); an optional cryptographic processor device 1928 ; and/or a communications network 1913 .
- Networks are commonly thought to comprise the interconnection and interoperation of clients, servers, and intermediary nodes in a graph topology.
- server refers generally to a computer, other device, program, or combination thereof that processes and responds to the requests of remote users across a communications network. Servers serve their information to requesting “clients.”
- client refers generally to a computer, program, other device, user and/or combination thereof that is capable of processing and making requests and obtaining and processing any responses from servers across a communications network.
- a computer, other device, program, or combination thereof that facilitates, processes information and requests, and/or furthers the passage of information from a source user to a destination user is commonly referred to as a “node.”
- Networks are generally thought to facilitate the transfer of information from source points to destinations.
- a node specifically tasked with furthering the passage of information from a source to a destination is commonly called a “router.”
- There are many forms of networks such as Local Area Networks (LANs), Pico networks, Wide Area Networks (WANs), Wireless Networks (WLANs), etc.
- LANs Local Area Networks
- WANs Wide Area Networks
- WLANs Wireless Networks
- the Internet is generally accepted as being an interconnection of a multitude of networks whereby remote clients and servers may access and interoperate with one another.
- the GeoTemp controller 1901 may be based on computer systems that may comprise, but are not limited to, components such as: a computer systemization 1902 connected to memory 1929 .
- a computer systemization 1902 may comprise a clock 1930 , central processing unit (“CPU(s)” and/or “processor(s)” (these terms are used interchangeable throughout the disclosure unless noted to the contrary)) 1903 , a memory 1929 (e.g., a read only memory (ROM) 1906 , a random access memory (RAM) 1905 , etc.), and/or an interface bus 1907 , and most frequently, although not necessarily, are all interconnected and/or communicating through a system bus 1904 on one or more (mother)board(s) 1902 having conductive and/or otherwise transportive circuit pathways through which instructions (e.g., binary encoded signals) may travel to effectuate communications, operations, storage, etc.
- CPU(s)” and/or “processor(s)” (these terms are used interchangeable throughout the disclosure unless noted to the contrary)) 1903
- a memory 1929 e.g., a read only memory (ROM) 1906 , a random access memory (RAM) 1905 , etc.
- the computer systemization may be connected to a power source 1986 ; e.g., optionally the power source may be internal.
- a cryptographic processor 1926 may be connected to the system bus.
- the cryptographic processor, transceivers (e.g., ICs) 1974 , and/or sensor array (e.g., accelerometer, altimeter, ambient light, barometer, global positioning system (GPS) (thereby allowing GeoTemp controller to determine its location), gyroscope, magnetometer, pedometer, proximity, ultra-violet sensor, etc.) 1973 may be connected as either internal and/or external peripheral devices 1912 via the interface bus I/O 1908 (not pictured) and/or directly via the interface bus 1907 .
- GPS global positioning system
- the transceivers may be connected to antenna(s) 1975 , thereby effectuating wireless transmission and reception of various communication and/or sensor protocols; for example the antenna(s) may connect to various transceiver chipsets (depending on deployment needs), including: Broadcom BCM4329FKUBG transceiver chip (e.g., providing 802.11n, Bluetooth 2.1+EDR, FM, etc.); a Broadcom BCM4752 GPS receiver with accelerometer, altimeter, GPS, gyroscope, magnetometer; a Broadcom BCM4335 transceiver chip (e.g., providing 2G, 3G, and 4G long-term evolution (LTE) cellular communications; 802.11ac, Bluetooth 4.0 low energy (LE) (e.g., beacon features)); a Broadcom BCM43341 transceiver chip (e.g., providing 2G, 3G and 4G LTE cellular communications; 802.11 g/, Bluetooth 4.0, near field communication (NFC), FM radio); an
- the system clock typically has a crystal oscillator and generates a base signal through the computer systemization's circuit pathways.
- the clock is typically coupled to the system bus and various clock multipliers that will increase or decrease the base operating frequency for other components interconnected in the computer systemization.
- the clock and various components in a computer systemization drive signals embodying information throughout the system.
- Such transmission and reception of instructions embodying information throughout a computer systemization may be commonly referred to as communications.
- These communicative instructions may further be transmitted, received, and the cause of return and/or reply communications beyond the instant computer systemization to: communications networks, input devices, other computer systemizations, peripheral devices, and/or the like. It should be understood that in alternative embodiments, any of the above components may be connected directly to one another, connected to the CPU, and/or organized in numerous variations employed as exemplified by various computer systems.
- the CPU comprises at least one high-speed data processor adequate to execute program components for executing user and/or system-generated requests.
- the CPU is often packaged in a number of formats varying from large supercomputer(s) and mainframe(s) computers, down to mini computers, servers, desktop computers, laptops, thin clients (e.g., Chromebooks), netbooks, tablets (e.g., Android, iPads, and Windows tablets, etc.), mobile smartphones (e.g., Android, iPhones, Nokia, Palm and Windows phones, etc.), wearable device(s) (e.g., watches, glasses, goggles (e.g., Google Glass), etc.), and/or the like.
- thin clients e.g., Chromebooks
- netbooks e.g., tablets
- tablets e.g., Android, iPads, and Windows tablets, etc.
- mobile smartphones e.g., Android, iPhones, Nokia, Palm and Windows phones, etc.
- wearable device(s) e.g., watches, glasses, goggles (e
- processors themselves will incorporate various specialized processing units, such as, but not limited to: integrated system (bus) controllers, memory management control units, floating point units, and even specialized processing sub-units like graphics processing units, digital signal processing units, and/or the like.
- processors may include internal fast access addressable memory, and be capable of mapping and addressing memory 1929 beyond the processor itself; internal memory may include, but is not limited to: fast registers, various levels of cache memory (e.g., level 1, 2, 3, etc.), RAM, etc.
- the processor may access this memory through the use of a memory address space that is accessible via instruction address, which the processor can construct and decode allowing it to access a circuit path to a specific memory address space having a memory state.
- the CPU may be a microprocessor such as: AMD's Athlon, Duron and/or Opteron; Apple's A series of processors (e.g., A5, A6, A7, A8, etc.); ARM's application, embedded and secure processors; IBM and/or Motorola's DragonBall and PowerPC; IBM's and Sony's Cell processor; Intel's 80X86 series (e.g., 80386, 80486), Pentium, Celeron, Core (2) Duo, i series (e.g., i3, i5, i7, etc.), Itanium, Xeon, and/or XScale; Motorola's 680X0 series (e.g., 68020, 68030, 68040, etc.); and/or the like processor(s).
- AMD's Athlon, Duron and/or Opteron Apple's A series of processors (e.g., A5, A6, A7, A8, etc.); ARM's application, embedded and
- the CPU interacts with memory through instruction passing through conductive and/or transportive conduits (e.g., (printed) electronic and/or optic circuits) to execute stored instructions (i.e., program code) according to conventional data processing techniques.
- instruction passing facilitates communication within the GeoTemp controller and beyond through various interfaces.
- distributed processors e.g., see Distributed GeoTemp below
- mainframe multi-core
- parallel e.g., parallel
- super-computer architectures may similarly be employed.
- smaller mobile devices e.g., Personal Digital Assistants (PDAs)
- PDAs Personal Digital Assistants
- features of the GeoTemp may be achieved by implementing a microcontroller such as CAST's R8051XC2 microcontroller; Intel's MCS 51 (i.e., 8051 microcontroller); and/or the like.
- some feature implementations may rely on embedded components, such as: Application-Specific Integrated Circuit (“ASIC”), Digital Signal Processing (“DSP”), Field Programmable Gate Array (“FPGA”), and/or the like embedded technology.
- ASIC Application-Specific Integrated Circuit
- DSP Digital Signal Processing
- FPGA Field Programmable Gate Array
- any of the GeoTemp component collection (distributed or otherwise) and/or features may be implemented via the microprocessor and/or via embedded components; e.g., via ASIC, coprocessor, DSP, FPGA, and/or the like.
- some implementations of the GeoTemp may be implemented with embedded components that are configured and used to achieve a variety of features or signal processing.
- the embedded components may include software solutions, hardware solutions, and/or some combination of both hardware/software solutions.
- GeoTemp features discussed herein may be achieved through implementing FPGAs, which are a semiconductor devices containing programmable logic components called “logic blocks”, and programmable interconnects, such as the high performance FPGA Virtex series and/or the low cost Spartan series manufactured by Xilinx.
- Logic blocks and interconnects can be programmed by the customer or designer, after the FPGA is manufactured, to implement any of the GeoTemp features.
- a hierarchy of programmable interconnects allow logic blocks to be interconnected as needed by the GeoTemp system designer/administrator, somewhat like a one-chip programmable breadboard.
- An FPGA's logic blocks can be programmed to perform the operation of basic logic gates such as AND, and XOR, or more complex combinational operators such as decoders or mathematical operations.
- the logic blocks also include memory elements, which may be circuit flip-flops or more complete blocks of memory.
- the GeoTemp may be developed on regular FPGAs and then migrated into a fixed version that more resembles ASIC implementations. Alternate or coordinating implementations may migrate GeoTemp controller features to a final ASIC instead of or in addition to FPGAs. Depending on the implementation all of the aforementioned embedded components and microprocessors may be considered the “CPU” and/or “processor” for the GeoTemp.
- the power source 1986 may be of any standard form for powering small electronic circuit board devices such as the following power cells: alkaline, lithium hydride, lithium ion, lithium polymer, nickel cadmium, solar cells, and/or the like. Other types of AC or DC power sources may be used as well. In the case of solar cells, in one embodiment, the case provides an aperture through which the solar cell may capture photonic energy.
- the power cell 1986 is connected to at least one of the interconnected subsequent components of the GeoTemp thereby providing an electric current to all subsequent components.
- the power source 1986 is connected to the system bus component 1904 .
- an outside power source 1986 is provided through a connection across the I/O 1908 interface. For example, a USB and/or IEEE 1394 connection carries both data and power across the connection and is therefore a suitable source of power.
- Interface bus(ses) 1907 may accept, connect, and/or communicate to a number of interface adapters, conventionally although not necessarily in the form of adapter cards, such as but not limited to: input output interfaces (I/O) 1908 , storage interfaces 1909 , network interfaces 1910 , and/or the like.
- cryptographic processor interfaces 1927 similarly may be connected to the interface bus.
- the interface bus provides for the communications of interface adapters with one another as well as with other components of the computer systemization.
- Interface adapters are adapted for a compatible interface bus.
- Interface adapters conventionally connect to the interface bus via a slot architecture.
- Conventional slot architectures may be employed, such as, but not limited to: Accelerated Graphics Port (AGP), Card Bus, (Extended) Industry Standard Architecture ((E)ISA), Micro Channel Architecture (MCA), NuBus, Peripheral Component Interconnect (Extended) (PCI(X)), PCI Express, Personal Computer Memory Card International Association (PCMCIA), and/or the like.
- AGP Accelerated Graphics Port
- Card Bus Card Bus
- E Industry Standard Architecture
- MCA Micro Channel Architecture
- NuBus NuBus
- PCI(X) Peripheral Component Interconnect Express
- PCMCIA Personal Computer Memory Card International Association
- Storage interfaces 1909 may accept, communicate, and/or connect to a number of storage devices such as, but not limited to: storage devices 1914 , removable disc devices, and/or the like.
- Storage interfaces may employ connection protocols such as, but not limited to: (Ultra) (Serial) Advanced Technology Attachment (Packet Interface) ((Ultra) (Serial) ATA(PI)), (Enhanced) Integrated Drive Electronics ((E)IDE), Institute of Electrical and Electronics Engineers (IEEE) 1394, fiber channel, Small Computer Systems Interface (SCSI), Universal Serial Bus (USB), and/or the like.
- connection protocols such as, but not limited to: (Ultra) (Serial) Advanced Technology Attachment (Packet Interface) ((Ultra) (Serial) ATA(PI)), (Enhanced) Integrated Drive Electronics ((E)IDE), Institute of Electrical and Electronics Engineers (IEEE) 1394, fiber channel, Small Computer Systems Interface (SCSI), Universal Serial Bus (USB), and/or the like.
- Network interfaces 1910 may accept, communicate, and/or connect to a communications network 1913 .
- the GeoTemp controller is accessible through remote clients 1933 b (e.g., computers with web browsers) by users 1933 a .
- Network interfaces may employ connection protocols such as, but not limited to: direct connect, Ethernet (thick, thin, twisted pair 10/100/1000/10000 Base T, and/or the like), Token Ring, wireless connection such as IEEE 802.11a-x, and/or the like.
- connection protocols such as, but not limited to: direct connect, Ethernet (thick, thin, twisted pair 10/100/1000/10000 Base T, and/or the like), Token Ring, wireless connection such as IEEE 802.11a-x, and/or the like.
- distributed network controllers e.g., see Distributed GeoTemp below
- architectures may similarly be employed to pool, load balance, and/or otherwise decrease/increase the communicative bandwidth required by the GeoTemp controller.
- a communications network may be any one and/or the combination of the following: a direct interconnection; the Internet; Interplanetary Internet (e.g., Coherent File Distribution Protocol (CFDP), Space Communications Protocol Specifications (SCPS), etc.); a Local Area Network (LAN); a Metropolitan Area Network (MAN); an Operating Missions as Nodes on the Internet (OMNI); a secured custom connection; a Wide Area Network (WAN); a wireless network (e.g., employing protocols such as, but not limited to a cellular, WiFi, Wireless Application Protocol (WAP), I-mode, and/or the like); and/or the like.
- a network interface may be regarded as a specialized form of an input output interface.
- multiple network interfaces 1910 may be used to engage with various communications network types 1913 . For example, multiple network interfaces may be employed to allow for the communication over broadcast, multicast, and/or unicast networks.
- I/O 1908 may accept, communicate, and/or connect to user, peripheral devices 1912 (e.g., input devices 1911 ), cryptographic processor devices 1928 , and/or the like.
- I/O may employ connection protocols such as, but not limited to: audio: analog, digital, monaural, RCA, stereo, and/or the like; data: Apple Desktop Bus (ADB), IEEE 1394a-b, serial, universal serial bus (USB); infrared; joystick; keyboard; midi; optical; PC AT; PS/2; parallel; radio; touch interfaces: capacitive, optical, resistive, etc.
- ADB Apple Desktop Bus
- USB universal serial bus
- video interface Apple Desktop Connector (ADC), BNC, coaxial, component, composite, digital, Digital Visual Interface (DVI), (mini) displayport, high-definition multimedia interface (HDMI), RCA, RF antennae, S-Video, VGA, and/or the like; wireless transceivers: 802.11a/ac/b/g/n/x; Bluetooth; cellular (e.g., code division multiple access (CDMA), high speed packet access (HSPA(+)), high-speed downlink packet access (HSDPA), global system for mobile communications (GSM), long term evolution (LTE), WiMax, etc.); and/or the like.
- CDMA code division multiple access
- HSPA(+) high speed packet access
- HSDPA high-speed downlink packet access
- GSM global system for mobile communications
- LTE long term evolution
- WiMax WiMax
- One typical output device may include a video display, which typically comprises a Cathode Ray Tube (CRT) or Liquid Crystal Display (LCD) based monitor with an interface (e.g., DVI circuitry and cable) that accepts signals from a video interface, may be used.
- the video interface composites information generated by a computer systemization and generates video signals based on the composited information in a video memory frame.
- Another output device is a television set, which accepts signals from a video interface.
- the video interface provides the composited video information through a video connection interface that accepts a video display interface (e.g., an RCA composite video connector accepting an RCA composite video cable; a DVI connector accepting a DVI display cable, etc.).
- Peripheral devices 1912 may be connected and/or communicate to I/O and/or other facilities of the like such as network interfaces, storage interfaces, directly to the interface bus, system bus, the CPU, and/or the like. Peripheral devices may be external, internal and/or part of the GeoTemp controller.
- Peripheral devices may include: antenna, audio devices (e.g., line-in, line-out, microphone input, speakers, etc.), cameras (e.g., gesture (e.g., Microsoft Kinect) detection, motion detection, still, video, webcam, etc.), dongles (e.g., for copy protection, ensuring secure transactions with a digital signature, and/or the like), external processors (for added capabilities; e.g., crypto devices 528 ), force-feedback devices (e.g., vibrating motors), infrared (IR) transceiver, network interfaces, printers, scanners, sensors/sensor arrays and peripheral extensions (e.g., ambient light, GPS, gyroscopes, proximity, temperature, etc.), storage devices, transceivers (e.g., cellular, GPS, etc.), video devices (e.g., goggles, monitors, etc.), video sources, visors, and/or the like. Peripheral devices often include types of input devices (e.
- User input devices 1911 often are a type of peripheral device 512 (see above) and may include: card readers, dongles, finger print readers, gloves, graphics tablets, joysticks, keyboards, microphones, mouse (mice), remote controls, security/biometric devices (e.g., fingerprint reader, iris reader, retina reader, etc.), touch screens (e.g., capacitive, resistive, etc.), trackballs, trackpads, styluses, and/or the like.
- card readers dongles, finger print readers, gloves, graphics tablets, joysticks, keyboards, microphones, mouse (mice), remote controls, security/biometric devices (e.g., fingerprint reader, iris reader, retina reader, etc.), touch screens (e.g., capacitive, resistive, etc.), trackballs, trackpads, styluses, and/or the like.
- GeoTemp controller may be embodied as an embedded, dedicated, and/or monitor-less (i.e., headless) device, wherein access would be provided over a network interface connection.
- Cryptographic units such as, but not limited to, microcontrollers, processors 1926 , interfaces 1927 , and/or devices 1928 may be attached, and/or communicate with the GeoTemp controller.
- a MC68HC16 microcontroller manufactured by Motorola Inc., may be used for and/or within cryptographic units.
- the MC68HC16 microcontroller utilizes a 16-bit multiply-and-accumulate instruction in the 16 MHz configuration and requires less than one second to perform a 512-bit RSA private key operation.
- Cryptographic units support the authentication of communications from interacting agents, as well as allowing for anonymous transactions.
- Cryptographic units may also be configured as part of the CPU. Equivalent microcontrollers and/or processors may also be used.
- Typical commercially available specialized cryptographic processors include: Broadcom's CryptoNetX and other Security Processors; nCipher's nShield; SafeNet's Luna PCI (e.g., 7100) series; Semaphore Communications' 40 MHz Roadrunner 184; Sun's Cryptographic Accelerators (e.g., Accelerator 6000 PCIe Board, Accelerator 500 Daughtercard); Via Nano Processor (e.g., L2100, L2200, U2400) line, which is capable of performing 500+MB/s of cryptographic instructions; VLSI Technology's 33 MHz 6868; and/or the like.
- Broadcom's CryptoNetX and other Security Processors include: Broadcom's CryptoNetX and other Security Processors; nCipher's nShield; SafeNet's Luna PCI (e.g., 7100) series; Semaphore Communications' 40 MHz Roadrunner 184; Sun's Cryptographic Accelerators (e.g
- any mechanization and/or embodiment allowing a processor to affect the storage and/or retrieval of information is regarded as memory 1929 .
- memory is a fungible technology and resource, thus, any number of memory embodiments may be employed in lieu of or in concert with one another.
- the GeoTemp controller and/or a computer systemization may employ various forms of memory 1929 .
- a computer systemization may be configured wherein the operation of on-chip CPU memory (e.g., registers), RAM, ROM, and any other storage devices are provided by a paper punch tape or paper punch card mechanism; however, such an embodiment would result in an extremely slow rate of operation.
- memory 1929 will include ROM 1906 , RAM 1905 , and a storage device 1914 .
- a storage device 1914 may be any conventional computer system storage. Storage devices may include: an array of devices (e.g., Redundant Array of Independent Disks (RAID)); a drum; a (fixed and/or removable) magnetic disk drive; a magneto-optical drive; an optical drive (i.e., Blueray, CD ROM/RAM/Recordable (R)/ReWritable (RW), DVD R/RW, HD DVD R/RW etc.); RAM drives; solid state memory devices (USB memory, solid state drives (SSD), etc.); other processor-readable storage mediums; and/or other devices of the like.
- RAID Redundant Array of Independent Disks
- the memory 1929 may contain a collection of program and/or database components and/or data such as, but not limited to: operating system component(s) 1915 (operating system); information server component(s) 1916 (information server); user interface is component(s) 1917 (user interface); Web browser component(s) 1918 (Web browser); database(s) 1919 ; mail server component(s) 1921 ; mail client component(s) 1922 ; cryptographic server component(s) 1920 (cryptographic server); the GeoTemp component(s) 1935 ; the GeoTemp component 1935 including the following components: GeoTemp Layout Define 1941 (e.g., see FIGS. 15, 16 ), item layout component 1942 (e.g., see FIGS. 15, 16 , etc.), item allocation component 1943 (e.g., see FIGS.
- map region component 1944 e.g., see FIG. 2 , etc.
- map imagery retrieval component 1945 e.g., See FIG. 2 , etc.
- location order component 1946 e.g., see FIG. 11 , etc.
- product item order component 1947 e.g., see FIG. 14 , etc.
- components may be stored and accessed from the storage devices and/or from storage devices accessible through an interface bus.
- non-conventional program components such as those in the component collection, typically, are stored in a local storage device 1914 , they may also be loaded and/or stored in memory such as: peripheral devices, RAM, remote storage facilities through a communications network, ROM, various forms of memory, and/or the like.
- the operating system component 1915 is an executable program component facilitating the operation of the GeoTemp controller.
- the operating system facilitates access of I/O, network interfaces, peripheral devices, storage devices, and/or the like.
- the operating system may be a highly fault tolerant, scalable, and secure system such as: Apple's Macintosh OS X (Server); AT&T Plan 9; Be OS; Blackberry's QNX; Google's Chrome; Microsoft's Windows 7/8; Unix and Unix-like system distributions (such as AT&T's UNIX; Berkley Software Distribution (BSD) variations such as FreeBSD, NetBSD, OpenBSD, and/or the like; Linux distributions such as Red Hat, Ubuntu, and/or the like); and/or the like operating systems.
- Apple's Macintosh OS X Server
- AT&T Plan 9 Be OS
- Blackberry's QNX Google's Chrome
- Microsoft's Windows 7/8 Unix and Unix-like system distributions
- BSD Berk
- more limited and/or less secure operating systems also may be employed such as Apple Macintosh OS, IBM OS/2, Microsoft DOS, Microsoft Windows 2000/2003/3.1/95/98/CE/Millennium/Mobile/NT/Vista/XP (Server), Palm OS, and/or the like.
- mobile operating systems may be used, such as: Apple's iOS; China Operating System COS; Google's Android; Microsoft Windows RT/Phone; Palm's WebOS; Samsung/Intel's Tizen; and/or the like.
- An operating system may communicate to and/or with other components in a component collection, including itself, and/or the like. Most frequently, the operating system communicates with other program components, user interfaces, and/or the like.
- the operating system may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
- the operating system once executed by the CPU, may enable the interaction with communications networks, data, I/O, peripheral devices, program components, memory, user input devices, and/or the like.
- the operating system may provide communications protocols that allow the GeoTemp controller to communicate with other entities through a communications network 1913 .
- Various communication protocols may be used by the GeoTemp controller as a subcarrier transport mechanism for interaction, such as, but not limited to: multicast, TCP/IP, UDP, unicast, and/or the like.
- An information server component 1916 is a stored program component that is executed by a CPU.
- the information server may be a conventional Internet information server such as, but not limited to Apache Software Foundation's Apache, Microsoft's Internet Information Server, and/or the like.
- the information server may allow for the execution of program components through facilities such as Active Server Page (ASP), ActiveX, (ANSI) (Objective-) C (++), C# and/or .NET, Common Gateway Interface (CGI) scripts, dynamic (D) hypertext markup language (HTML), FLASH, Java, JavaScript, Practical Extraction Report Language (PERL), Hypertext Pre-Processor (PHP), pipes, Python, wireless application protocol (WAP), WebObjects, and/or the like.
- ASP Active Server Page
- ActiveX ActiveX
- ANSI Objective-
- C++ C#
- CGI Common Gateway Interface
- CGI Common Gateway Interface
- D hypertext markup language
- FLASH Java
- JavaScript JavaScript
- PROL Practical Extraction Report Language
- PGP Hyper
- the information server may support secure communications protocols such as, but not limited to, File Transfer Protocol (FTP); HyperText Transfer Protocol (HTTP); Secure Hypertext Transfer Protocol (HTTPS), Secure Socket Layer (SSL), messaging protocols (e.g., America Online (AOL) Instant Messenger (AIM), Application Exchange (APEX), ICQ, Internet Relay Chat (IRC), Microsoft Network (MSN) Messenger Service, Presence and Instant Messaging Protocol (PRIM), Internet Engineering Task Force's (IETF's) Session Initiation Protocol (SIP), SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE), open XML-based Extensible Messaging and Presence Protocol (XMPP) (i.e., Jabber or Open Mobile Alliance's (OMA's) Instant Messaging and Presence Service (IMPS)), Yahoo!
- FTP File Transfer Protocol
- HTTP HyperText Transfer Protocol
- HTTPS Secure Hypertext Transfer Protocol
- SSL Secure Socket Layer
- messaging protocols e.g., America Online (A
- the information server provides results in the form of Web pages to Web browsers, and allows for the manipulated generation of the Web pages through interaction with other program components.
- DNS Domain Name System
- a request such as http://123.124.125.126/myInformation.html might have the IP portion of the request “123.124.125.126” resolved by a DNS server to an information server at that IP address; that information server might in turn further parse the http request for the “/myInformation.html” portion of the request and resolve it to a location in memory containing the information “myInformation.html.”
- other information serving protocols may be employed across various ports, e.g., FTP communications across port 21, and/or the like.
- An information server may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the information server communicates with the GeoTemp database 1919 , operating systems, other program components, user interfaces, Web browsers, and/or the like.
- Access to the GeoTemp database may be achieved through a number of database bridge mechanisms such as through scripting languages as enumerated below (e.g., CGI) and through inter-application communication channels as enumerated below (e.g., CORBA, WebObjects, etc.). Any data requests through a Web browser are parsed through the bridge mechanism into appropriate grammars as required by the GeoTemp.
- the information server would provide a Web form accessible by a Web browser. Entries made into supplied fields in the Web form are tagged as having been entered into the particular fields, and parsed as such. The entered terms are then passed along with the field tags, which act to instruct the parser to generate queries directed to appropriate tables and/or fields.
- the parser may generate queries in standard SQL by instantiating a search string with the proper join/select commands based on the tagged text entries, wherein the resulting command is provided over the bridge mechanism to the GeoTemp as a query.
- the results are passed over the bridge mechanism, and may be parsed for formatting and generation of a new results Web page by the bridge mechanism. Such a new results Web page is then provided to the information server, which may supply it to the requesting Web browser.
- an information server may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
- Computer interfaces in some respects are similar to automobile operation interfaces.
- Automobile operation interface elements such as steering wheels, gearshifts, and speedometers facilitate the access, operation, and display of automobile resources, and status.
- Computer interaction interface elements such as buttons, check boxes, cursors, menus, scrollers, and windows (collectively and commonly referred to as widgets) similarly facilitate the access, capabilities, operation, and display of data and computer hardware and operating system resources, and status. Operation interfaces are commonly called user interfaces.
- GUIs Graphical user interfaces
- KDE K Desktop Environment
- GNOME GNU Network Object Model Environment
- web interface libraries e.g., ActiveX, AJAX, (D)HTML, FLASH, Java, JavaScript, etc.
- interface libraries such as, but not limited to, Dojo, jQuery(UI), MooTools, Prototype, script.aculo.us, SWFObject, Yahoo! User Interface, any of which may be used and) provide a baseline and means of accessing and displaying information graphically to users.
- a user interface component 1917 is a stored program component that is executed by a CPU.
- the user interface may be a conventional graphic user interface as provided by, with, and/or atop operating systems and/or operating environments such as already discussed.
- the user interface may allow for the display, execution, interaction, manipulation, and/or operation of program components and/or system facilities through textual and/or graphical facilities.
- the user interface provides a facility through which users may affect, interact, and/or operate a computer system.
- a user interface may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the user interface communicates with operating systems, other program components, and/or the like.
- the user interface may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
- a Web browser component 1918 is a stored program component that is executed by a CPU.
- the Web browser may be a conventional hypertext viewing application such as Apple's (mobile) Safari, Google's Chrome, Microsoft Internet Explorer, Mozilla's Firefox, Netscape Navigator, and/or the like. Secure Web browsing may be supplied with 128 bit (or greater) encryption by way of HTTPS, SSL, and/or the like.
- Web browsers allowing for the execution of program components through facilities such as ActiveX, AJAX, (D)HTML, FLASH, Java, JavaScript, web browser plug-in APIs (e.g., FireFox, Safari Plug-in, and/or the like APIs), and/or the like.
- Web browsers and like information access tools may be integrated into PDAs, cellular telephones, and/or other mobile devices.
- a Web browser may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the Web browser communicates with information servers, operating systems, integrated program components (e.g., plug-ins), and/or the like; e.g., it may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
- a combined application may be developed to perform similar operations of both. The combined application would similarly affect the obtaining and the provision of information to users, user agents, and/or the like from the GeoTemp enabled nodes.
- the combined application may be nugatory on systems employing standard Web browsers.
- a mail server component 1921 is a stored program component that is executed by a CPU 1903 .
- the mail server may be a conventional Internet mail server such as, but not limited to: dovecot, Courier IMAP, Cyrus IMAP, Maildir, Microsoft Exchange, sendmail, and/or the is like.
- the mail server may allow for the execution of program components through facilities such as ASP, ActiveX, (ANSI) (Objective-) C (++), C# and/or .NET, CGI scripts, Java, JavaScript, PERL, PHP, pipes, Python, WebObjects, and/or the like.
- the mail server may support communications protocols such as, but not limited to: Internet message access protocol (IMAP), Messaging Application Programming Interface (MAPI)/Microsoft Exchange, post office protocol (POP3), simple mail transfer protocol (SMTP), and/or the like.
- IMAP Internet message access protocol
- MAPI Messaging Application Programming Interface
- PMP3 post office protocol
- SMTP simple mail transfer protocol
- the mail server can route, forward, and process incoming and outgoing mail messages that have been sent, relayed and/or otherwise traversing through and/or to the GeoTemp.
- the mail server component may be distributed out to mail service providing entities such as Google's cloud services (e.g., Gmail and notifications may alternatively be provided via messenger services such as AOL's Instant Messenger, Apple's iMessage, Google Messenger, SnapChat, etc.).
- Access to the GeoTemp mail may be achieved through a number of APIs offered by the individual Web server components and/or the operating system.
- a mail server may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, information, and/or responses.
- a mail client component 1922 is a stored program component that is executed by a CPU 1903 .
- the mail client may be a conventional mail viewing application such as Apple Mail, Microsoft Entourage, Microsoft Outlook, Microsoft Outlook Express, Mozilla, Thunderbird, and/or the like.
- Mail clients may support a number of transfer protocols, such as: IMAP, Microsoft Exchange, POP3, SMTP, and/or the like.
- a mail client may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the mail client communicates with mail servers, operating systems, other mail clients, and/or the like; e.g., it may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, information, and/or responses.
- the mail client provides a facility to compose and transmit electronic mail messages.
- a cryptographic server component 1920 is a stored program component that is executed by a CPU 1903 , cryptographic processor 1926 , cryptographic processor interface 1927 , cryptographic processor device 1928 , and/or the like.
- Cryptographic processor interfaces will allow for expedition of encryption and/or decryption requests by the cryptographic component; however, the cryptographic component, alternatively, may run on a conventional CPU.
- the cryptographic component allows for the encryption and/or decryption of provided data.
- the cryptographic component allows for both symmetric and asymmetric (e.g., Pretty Good Protection (PGP)) encryption and/or decryption.
- PGP Pretty Good Protection
- the cryptographic component may employ cryptographic techniques such as, but not limited to: digital certificates (e.g., X.509 authentication framework), digital signatures, dual signatures, enveloping, password access protection, public key management, and/or the like.
- the cryptographic component will facilitate numerous (encryption and/or decryption) security protocols such as, but not limited to: checksum, Data Encryption Standard (DES), Elliptical Curve Encryption (ECC), International Data Encryption Algorithm (IDEA), Message Digest 5 (MD5, which is a one way hash operation), passwords, Rivest Cipher (RC5), Rijndael, RSA (which is an Internet encryption and authentication system that uses an algorithm developed in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman), Secure Hash Algorithm (SHA), Secure Socket Layer (SSL), Secure Hypertext Transfer Protocol (HTTPS), Transport Layer Security (TLS), and/or the like.
- DES Data Encryption
- the GeoTemp may encrypt all incoming and/or outgoing communications and may serve as node within a virtual private network (VPN) with a wider communications network.
- the cryptographic component facilitates the process of “security authorization” whereby access to a resource is inhibited by a security protocol wherein the cryptographic component effects authorized access to the secured resource.
- the cryptographic component may provide unique identifiers of content, e.g., employing and MD5 hash to obtain a unique signature for an digital audio file.
- a cryptographic component may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like.
- the cryptographic component supports encryption schemes allowing for the secure transmission of information across a communications network to enable the GeoTemp component to engage in secure transactions if so desired.
- the cryptographic component facilitates the secure accessing of resources on the GeoTemp and facilitates the access of secured resources on remote systems; i.e., it may act as a client and/or server of secured resources.
- the cryptographic component communicates with information servers, operating systems, other program components, and/or the like.
- the cryptographic component may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
- the GeoTemp database component 1919 may be embodied in a database and its stored data.
- the database is a stored program component, which is executed by the CPU; the stored program component portion configuring the CPU to process the stored data.
- the database may be a conventional, fault tolerant, relational, scalable, secure database such as MySQL, Oracle, Sybase, etc. may be used. Additionally, optimized fast memory and distributed databases such as IBM's Netezza, MongoDB's MongoDB, opensource Hadoop, opensource VoltDB, SAP's Hana, etc.
- Relational databases are an extension of a flat file. Relational databases consist of a series of related tables. The tables are interconnected via a key field.
- the key fields act as dimensional pivot points for combining information from various tables. Relationships generally identify links maintained between tables by matching primary keys. Primary keys represent fields that uniquely identify the rows of a table in a relational database. Alternative key fields may be used from any of the fields having unique value sets, and in some alternatives, even non-unique values in combinations with other fields. More precisely, they uniquely identify rows of a table on the “one” side of a one-to-many relationship.
- GeoTemp database may be implemented using various standard data-structures, such as an array, hash, (linked) list, struct, structured text file (e.g., XML), table, and/or the like. Such data-structures may be stored in memory and/or in (structured) files.
- an object-oriented database may be used, such as Frontier, ObjectStore, Poet, Zope, and/or the like.
- Object databases can include a number of object collections that are grouped and/or linked together by common attributes; they may be related to other object collections by some common attributes. Object-oriented databases perform similarly to relational databases with the exception that objects are not just pieces of data but may have other types of capabilities encapsulated within a given object.
- GeoTemp database 1919 may be integrated into another component such as the GeoTemp component 1935 .
- the database may be implemented as a mix of data structures, objects, and relational structures. Databases may be consolidated and/or distributed in countless variations (e.g., see Distributed GeoTemp below). Portions of databases, e.g., tables, may be exported and/or imported and thus decentralized and/or integrated.
- the database component 1919 includes several tables 1919 a - 1 :
- An accounts table 1919 a includes fields such as, but not limited to: an accountID, accountOwnerID, accountContactID, assetIDs, deviceIDs, paymentIDs, transactionIDs, userIDs, accountType (e.g., agent, entity (e.g., corporate, non-profit, partnership, etc.), individual, etc.), accountCreationDate, accountUpdateDate, accountName, accountNumber, routingNumber, linkWalletsID, accountPrioritAccaountRatio, accountAddress, accountState, accountZIPcode, accountCountry, accountEmail, accountPhone, accountAuthKey, accountIPaddress, accountURLAccessCode, accountPortNo, accountAuthorizationCode, accountAccessPrivileges, accountPreferences, accountRestrictions, and/or the like;
- accountType e.g., agent, entity (e.g., corporate, non-profit, partnership, etc.), individual, etc.)
- accountCreationDate e.g., accountUpdateDate,
- a users table 1919 b includes fields such as, but not limited to: a userID, userSSN, taxID, userContactID, accountID, assetIDs, deviceIDs, paymentIDs, transactionIDs, userType (e.g., agent, entity (e.g., corporate, non-profit, partnership, etc.), individual, etc.), namePrefix, firstName, middleName, lastName, nameSuffix, DateOfBirth, userAge, userName, userEmail, userSocialAccountID, contactType, contactRelationship, userPhone, userAddress, userCity, userState, userZIPCode, userCountry, userAuthorizationCode, userAccessPrivilges, userPreferences, userRestrictions, and/or the like (the user table may support and/or track multiple entity accounts on a GeoTemp);
- userType e.g., agent, entity (e.g., corporate, non-profit, partnership, etc.), individual, etc.)
- namePrefix e.g., entity
- An devices table 1919 c includes fields such as, but not limited to: deviceID, sensorIDs, accountID, assetIDs, paymentIDs, deviceType, deviceName, deviceManufacturer, deviceModel, deviceVersion, deviceSerialNo, deviceIPaddress, deviceMACaddress, device_ECID, deviceUUID, deviceLocation, deviceCertificate, deviceOS, appIDs, deviceResources, deviceSession, authKey, deviceSecureKey, walletAppInstalledFlag, deviceAccessPrivileges, devicePreferences, deviceRestrictions, hardware_config, software_config, storage_location, sensor_value, pin_reading, data_length, channel_requirement, sensor_name, sensor_model_no, sensor_manufacturer, sensor_type, sensor_serial_number, sensor_power_requirement, device_power_requirement, location, sensor_associated_tool, sensor_dimensions, device_dimensions, sensor_communications_type,
- An apps table 1919 d includes fields such as, but not limited to: appID, appName, appType, appDependencies, accountID, deviceIDs, transactionID, userID, appStoreAuthKey, appStoreAccountID, appStoreIPaddress, appStoreURLaccessCode, appStorePortNo, appAccessPrivileges, appPreferences, appRestrictions, portNum, access_API_call linked_wallets_list, and/or the like;
- An assets table 1919 e includes fields such as, but not limited to: assetID, accountID, userID, distributorAccountID, distributorPaymentID, distributorOnwerlD, assetOwnerID, assetType, assetSourceDeviceID, assetSourceDeviceType, assetSourceDeviceName, assetSourceDistributionChannelID, assetSourceDistributionChannelType, assetSourceDistributionChannelName, assetTargetChannelID, assetTargetChannelType, assetTargetChannelName, assetName, assetSeriesName, assetSeriesSeason, assetSeriesEpisode, assetCode, assetQuantity, assetCost, assetPrice, assetValue, assetManufactuer, assetModelNo, assetSerialNo, assetLocation, assetAddress, assetState, assetZIPcode, assetState, assetCountry, assetEmail, assetIPaddress, assetURLaccessCode, assetOwnerAccountID, subscriptionIDs, assetAuthroizationCode, assetAccessPri
- a payments table 1919 f includes fields such as, but not limited to: paymentID, accountID, userID, couponID, couponValue, couponConditions, couponExpiration, paymentType, paymentAccountNo, paymentAccountName, paymentAccountAuthorizationCodes, paymentExpirationDate, paymentCCV, paymentRoutingNo, paymentRoutingType, paymentAddress, paymentState, paymentZIPcode, paymentCountry, paymentEmail, paymentAuthKey, paymentIPaddress, paymentURLaccessCode, paymentPortNo, paymentAccessPrivileges, paymentPreferences, payementRestrictions, and/or the like;
- An transactions table 1919 g includes fields such as, but not limited to: transactionID, accountID, assetIDs, deviceIDs, paymentIDs, transactionIDs, userID, merchantID, transactionType, transactionDate, transactionTime, transactionAmount, transactionQuantity, transactionDetails, productsList, productType, productTitle, productsSummary, productParamsList, transactionNo, transactionAccessPrivileges, transactionPreferences, transactionRestrictions, merchantAuthKey, merchantAuthCode, and/or the like;
- An merchants table 1919 h includes fields such as, but not limited to: merchantID, merchantTaxID, merchanteName, merchantContactUserID, accountID, issuerID, acquirerID, merchantEmail, merchantAddress, merchantState, merchantZIPcode, merchantCountry, merchantAuthKey, merchantIPaddress, portNum, merchantURLaccessCode, merchantPortNo, merchantAccessPrivileges, merchantPreferences, merchantRestrictions, and/or the like;
- An ads table 1919 i includes fields such as, but not limited to: adID, advertiserID, adMerchantID, adNetworkID, adName, adTags, advertiserName, adSponsor, adTime, adGeo, adAttributes, adFormat, adProduct, adText, adMedia, adMedialD, adChannelID, adTagTime, adAudioSignature, adHash, adTemplateID, adTemplateData, adSourceID, adSourceName, adSourceServerIP, adSourceURL, adSourceSecurityProtocol, adSourceFTP, adAuthKey, adAccessPrivileges, adPreferences, adRestrictions, adNetworkXchangeID, adNetworkXchangeName, adNetworkX
- An map imagery table 1919 j includes fields such as, but not limited to: mapID, longitudeValue, latitudeValue, boundingRegionArrayValues, locationName, resortName, locationAddress, resortID, mapVersion, mapType, mapServer, mapBoundingRegion, mapZoom, mapDateTime, regionLayoutID, assetID, merchantID, deviceID, userID, accountID, impressionID, impressionOS, impressionTimeStamp, impressionGeo, impressionAction, impressionType, impressionPublisherID, impressionPublisherURL, and/or the like;
- An map boundaries table 1919 k includes fields such as, but not limited to: mapBoundryID, regionLatVal, regionLonVal, regionRadius, regionBoundingArrayValues, regionDateTime, regionLayoutID, mapID, assetID, merchantID, deviceID, userID, accountID, impressionID, impressionOS, impressionTimeStamp, impressionGeo, impressionAction, impressionType, impressionPublisherID, impressionPublisherURL, and/or the like;
- An location layout table 19191 includes fields such as, but not limited to: regionLayoutID, layoutLatVal, layoutLonVal, layoutRadius, layoutBoundingArrayValues, layoutXgridVal, layoutYgridVal, layoutTimeVal, layoutDateTime, mapBoundryID, mapID, assetID, merchantID, deviceID, userID, accountID, impressionID, impressionOS, impressionTimeStamp, impressionGeo, impressionAction, impressionType, impressionPublisherID, impressionPublisherURL, and/or the like.
- the GeoTemp database may interact with other database systems. For example, employing a distributed database system, queries and data access by search GeoTemp component may treat the combination of the GeoTemp database, an integrated data security layer database as a single database entity (e.g., see Distributed GeoTemp below).
- user programs may contain various user interface primitives, which may serve to update the GeoTemp.
- various accounts may require custom database tables depending upon the environments and the types of clients the GeoTemp may need to serve. It should be noted that any unique fields may be designated as a key field throughout.
- these tables have been decentralized into their own databases and their respective database controllers (i.e., individual database controllers for each of the above tables). Employing standard data processing techniques, one may further distribute the databases over several computer systemizations and/or storage devices. Similarly, configurations of the decentralized database controllers may be varied by consolidating and/or distributing the various database components 1919 a - 1 .
- the GeoTemp may be configured to keep track of various settings, inputs, and parameters via database controllers.
- the GeoTemp database may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the GeoTemp database communicates with the GeoTemp component, other program components, and/or the like. The database may contain, retain, and provide information regarding other nodes and data.
- the GeoTemp component 1935 is a stored program component that is executed by a CPU.
- the GeoTemp component incorporates any and/or all combinations of the aspects of the GeoTemp that was discussed in the previous figures.
- the GeoTemp affects accessing, obtaining and the provision of information, services, transactions, and/or the like across various communications networks.
- the features and embodiments of the GeoTemp discussed herein increase network efficiency by reducing data transfer requirements the use of more efficient data structures and mechanisms for their transfer and storage. As a consequence, more data may be transferred in less time, and latencies with regard to transactions, are also reduced.
- GeoTemp In many cases, such reduction in storage, transfer time, bandwidth requirements, latencies, etc., will reduce the capacity and structural infrastructure requirements to support the GeoTemp's features and facilities, and in many cases reduce the costs, energy consumption/requirements, and extend the life of GeoTemp's underlying infrastructure; this has the added benefit of making the GeoTemp more reliable.
- many of the features and mechanisms are designed to be easier for users to use and access, thereby broadening the audience that may enjoy/employ and exploit the feature sets of the GeoTemp; such ease of use also helps to increase the reliability of the GeoTemp.
- the feature sets include heightened security as noted via the Cryptographic components 1920 , 1926 , 1928 and throughout, making access to the features and data more reliable and secure
- the GeoTemp transforms user requested area ( 202 ), user layout request ( 1102 ), user request for product items ( 1402 ), layout, section, unit/item position, zone, user item selection inputs, via GeoTemp components (e.g., GeoTemp 1935 , GeoTemp Layout Define 1941 , item layout 1942 , item allocation 1943 , map region 1944 , map imagery retrieval 1945 , location order 1946 , product item order component 1947 ), into location map ( 230 ), layout position ( 1135 ), booking ( 1026 ), goods services dispatch ( 1326 , 1430 ), item reservation, item directions, inventory request, inventory delivery outputs.
- GeoTemp components e.g., GeoTemp 1935 , GeoTemp Layout Define 1941 , item layout 1942 , item allocation 1943 , map region 1944 , map imagery retrieval 1945 , location order 1946 , product item order component 1947 ), into location map ( 230 ), layout position ( 1135 ), booking ( 1026 ), goods services dispatch ( 1326 , 1430 ), item reservation, item directions, inventory request
- the GeoTemp component enabling access of information between nodes may be developed by employing standard development tools and languages such as, but not limited to: Apache components, Assembly, ActiveX, binary executables, (ANSI) (Objective-) C (++), C#and/or .NET, database adapters, CGI scripts, Java, JavaScript, mapping tools, procedural and object oriented development tools, PERL, PHP, Python, shell scripts, SQL commands, web application server extensions, web development environments and libraries (e.g., Microsoft's ActiveX; Adobe AIR, FLEX & FLASH; AJAX; (D)HTML; Dojo, Java; JavaScript; jQuery(UI); MooTools; Prototype; script.aculo.us; Simple Object Access Protocol (SOAP); SWFObject; Yahoo!
- Apache components Assembly, ActiveX, binary executables, (ANSI) (Objective-) C (++), C#and/or .NET
- database adapters CGI scripts
- Java JavaScript
- mapping tools procedural and object
- the GeoTemp server employs a cryptographic server to encrypt and decrypt communications.
- the GeoTemp component may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the GeoTemp component communicates with the GeoTemp database, operating systems, other program components, and/or the like.
- the GeoTemp may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
- GeoTemp node controller components may be combined, consolidated, and/or distributed in any number of ways to facilitate development and/or deployment.
- component collection may be combined in any number of ways to facilitate deployment and/or development. To accomplish this, one may integrate the components into a common code base or in a facility that can dynamically load the components on demand in an integrated fashion.
- a combination of hardware may be distributed within a location, within a region and/or globally where logical access to a controller may be abstracted as a singular node, yet where a multitude of private, semiprivate and publically accessible node controllers (e.g., via dispersed data centers) are coordinated to serve requests (e.g., providing private cloud, semi-private cloud, and public cloud computing resources) and allowing for the serving of such requests in discrete regions (e.g., isolated, local, regional, national, global cloud access).
- requests e.g., providing private cloud, semi-private cloud, and public cloud computing resources
- the component collection may be consolidated and/or distributed in countless variations through standard data processing and/or development techniques. Multiple instances of any one of the program components in the program component collection may be instantiated on a single node, and/or across numerous nodes to improve performance through load-balancing and/or data-processing techniques. Furthermore, single instances may also be distributed across multiple controllers and/or storage devices; e.g., databases. All program component instances and controllers working in concert may do so through standard data processing communication techniques.
- GeoTemp controller The configuration of the GeoTemp controller will depend on the context of system deployment. Factors such as, but not limited to, the budget, capacity, location, and/or use of the underlying hardware resources may affect deployment requirements and configuration. Regardless of if the configuration results in more consolidated and/or integrated program components, results in a more distributed series of program components, and/or results in some combination between a consolidated and distributed configuration, data may be communicated, obtained, and/or provided. Instances of components consolidated into a common code base from the program component collection may communicate, obtain, and/or provide data. This may be accomplished through intra-application data processing communication techniques such as, but not limited to: data referencing (e.g., pointers), internal messaging, object instance variable communication, shared memory space, variable passing, and/or the like. For example, cloud services such as Amazon Data Services, Microsoft Azure, Hewlett Packard Helion, IBM Cloud services allow for GeoTemp controller and/or GeoTemp component collections to be hosted in full or partially for varying degrees of scale.
- data referencing e
- API Application Program Interfaces
- DCOM Component Object Model
- D Distributed
- CORBA Common Object Request Broker Architecture
- JSON JavaScript Object Notation
- RMI Remote Method Invocation
- SOAP SOAP
- a grammar may be developed by using development tools such as lex, yacc, XML, and/or the like, which allow for grammar generation and parsing capabilities, which in turn may form the basis of communication messages within and between components.
- a grammar may be arranged to recognize the tokens of an HTTP post command, e.g.:
- Value1 is discerned as being a parameter because “http://” is part of the grammar syntax, and what follows is considered part of the post value.
- a variable “Value1” may be inserted into an “http://” post command and then sent.
- the grammar syntax itself may be presented as structured data that is interpreted and/or otherwise used to generate the parsing mechanism (e.g., a syntax description text file as processed by lex, yacc, etc.). Also, once the parsing mechanism is generated and/or instantiated, it itself may process and/or parse structured data such as, but not limited to: character (e.g., tab) delineated text, HTML, structured text streams, XML, and/or the like structured data.
- character e.g., tab
- inter-application data processing protocols themselves may have integrated and/or readily available parsers (e.g., JSON, SOAP, and/or like parsers) that may be employed to parse (e.g., communications) data.
- parsing grammar may be used beyond message parsing, but may also be used to parse: databases, data collections, data stores, structured data, and/or the like. Again, the desired configuration will depend upon the context, environment, and requirements of system deployment.
- the GeoTemp controller may be executing a PHP script implementing a Secure Sockets Layer (“SSL”) socket server via the information server, which listens to incoming communications on a server port to which a client may send data, e.g., data encoded in JSON format.
- the PHP script may read the incoming message from the client device, parse the received JSON-encoded text data to extract information from the JSON-encoded text data into PHP script variables, and store the data (e.g., client identifying information, etc.) and/or extracted information in a relational database accessible using the Structured Query Language (“SQL”).
- SQL Structured Query Language
- Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should not be construed to limit embodiments, and instead, again, are offered for convenience of description of orientation. These relative descriptors are for convenience of description only and do not require that any embodiments be constructed or operated in a particular orientation unless explicitly indicated as such.
- GeoTemp may be implemented that enable a great deal of flexibility and customization.
- aspects of the GeoTemp may be adapted for beaches, seats, stadiums, generalized items.
- various embodiments and discussions of the GeoTemp have included geo-location and inventory allocation, however, it is to be understood that the embodiments described herein may be readily configured and/or customized for a wide variety of other applications and/or implementations.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Finance (AREA)
- Accounting & Taxation (AREA)
- Databases & Information Systems (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Tourism & Hospitality (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Entrepreneurship & Innovation (AREA)
- Human Resources & Organizations (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Remote Sensing (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Transfer Between Computers (AREA)
Abstract
The Ad Hoc Item Geo Temporal Location and Allocation Apparatuses, Methods and Systems (“GeoTemp”) transforms user requested area (202), user layout request (1102), user request for product items (1402), layout, section, unit/item position, zone, user item selection inputs via GeoTemp components into location map (230), layout position (1135), booking (1026), goods services dispatch (1326, 1430), item reservation, item directions, inventory request, inventory delivery outputs. The GeoTemp includes an ad hoc geographical and temporal mapping and item allocation apparatus, comprising: a memory and a component collection in the memory. The GeoTemp further includes a processor disposed in communication with the memory, and configured to issue a plurality of processing instructions from the component collection stored in the memory, wherein the processor issues instructions from the component collection, stored in the memory. It includes instructions to obtain geographical layout message, and composite a geo-temporal map including asset items allocated within the confines defined by the geographical layout message. The GeoTemp also includes instructions to obtain an asset selection message from a user, allocate a selected asset for the user, update inventory availability accounting for the selected asset, and provide updated composite geo-temporal map including updated inventory availability.
Description
- This application for letters patent disclosure document describes inventive aspects that include various novel innovations (hereinafter “disclosure”) and contains material that is subject to copyright, mask work, and/or other intellectual property protection. The respective owners of such intellectual property have no objection to the facsimile reproduction of the disclosure by anyone as it appears in published Patent Office file/records, but otherwise reserve all rights.
- Applicant hereby claims benefit to priority under 35 USC § 119 as a non-provisional conversion of: U.S. provisional patent application Ser. No. 62/360,454, filed Jul. 10, 2016, entitled “Ad Hoc Item Geo Temporal Location and Allocation Apparatuses, Methods and Systems”, (attorney docket no. Beachy0001PV).
- The entire contents of the aforementioned applications are herein expressly incorporated by reference.
- The present innovations generally address geo-location and inventory allocation, and more particularly, include Ad Hoc Item Geo Temporal Location and Allocation Apparatuses, Methods and Systems.
- However, in order to develop a reader's understanding of the innovations, disclosures have been compiled into a single description to illustrate and clarify how aspects of these innovations operate independently, interoperate as between individual innovations, and/or cooperate collectively. The application goes on to further describe the interrelations and synergies as between the various innovations; all of which is to further compliance with 35 U.S.C. § 112.
- Global positioning systems include satellites and receiving devices which can ascertain their position on the globe based on measuring signals received from satellites, cell towers, WiFi and other signal sources. Services such as Apple and Google maps exist that include satellite mappings of global terrain, and are a collection of mapping imagery.
- Appendices and/or drawings illustrating various, non-limiting, example, innovative aspects of the Ad Hoc Item Geo Temporal Location and Allocation Apparatuses, Methods and Systems (hereinafter “GeoTemp”) disclosure, include:
-
FIG. 1 shows a block diagram illustrating user interface embodiments of the GeoTemp; -
FIG. 2 shows a logic flow diagram illustrating embodiments of a map region component for the GeoTemp; -
FIG. 3 shows a screenshot diagram illustrating embodiments of a booking for the GeoTemp; -
FIGS. 4 and 5 show a screenshot diagram illustrating embodiments of a booking for the GeoTemp; -
FIGS. 6 and 7 show screenshot diagrams illustrating embodiments of a moving orders the GeoTemp; -
FIG. 8 shows a screenshot diagram illustrating embodiments of an online order for the GeoTemp; -
FIG. 9 shows a screenshot diagram illustrating embodiments to reopen an order for the GeoTemp; -
FIG. 10 shows a datagraph diagram illustrating embodiments of a layout booking for the GeoTemp; -
FIG. 11 shows a logic flow diagram illustrating embodiments of a location order component for the GeoTemp; -
FIG. 12 shows a screenshot diagram illustrating embodiments of item product ordering an order for the GeoTemp; -
FIG. 13 shows a datagraph diagram illustrating embodiments of a product item ordering for the GeoTemp; -
FIG. 14 shows a logic flow diagram illustrating embodiments of a location order component for the GeoTemp; -
FIG. 15 shows a block diagram illustrating embodiments of the GeoTemp; -
FIG. 16 shows a block diagram illustrating embodiments of the GeoTemp; -
FIG. 17 shows a block diagram illustrating embodiments of the GeoTemp; -
FIG. 18 shows screenshot diagrams illustrating embodiments of the GeoTemp; -
FIG. 19 shows a block diagram illustrating embodiments of a GeoTemp controller; and - APPENDICES 1-5 illustrate embodiments of the GeoTemp.
- Generally, the leading number of each citation number within the drawings indicates the figure in which that citation number is introduced and/or detailed. As such, a detailed discussion of citation number 101 would be found and/or introduced in
FIG. 1 .Citation number 201 is introduced inFIG. 2 , etc. Any citation and/or reference numbers are not necessarily sequences but rather just example orders that may be rearranged and other orders are contemplated. - The Ad Hoc Item Geo Temporal Location and Allocation Apparatuses, Methods and Systems (hereinafter “GeoTemp”) transforms user requested area (202), user layout request (1102), user request for product items (1402), layout, section, unit/item position, zone, user item selection inputs, via GeoTemp components (e.g.,
GeoTemp 1935, GeoTemp Layout Define 1941, item layout 1942, item allocation 1943, map region 1944, map imagery retrieval 1945,location order 1946, productitem order component 1947, etc. components), into location map (230), layout position (1135), booking (1026), goods services dispatch (1326, 1430), item reservation, item directions, inventory request, inventory delivery outputs. The GeoTemp components, in various embodiments, implement advantageous features as set forth below. - While GPS and mapping solutions exist, they are incapable of accounting for changes that are relatively small in scale both geographically and temporally. For example, if the maps are updated once every 3 years, changes made in between updates are lost.
-
FIG. 1 shows a block diagram illustrating user interface embodiments of the GeoTemp. Amobile device 105 may display amap region 110, e.g., Google Maps API call into a display view area, and in the example shown, a zoom in close up area of a beach area. With a selection of, in this case an resort, property a bounding box is drawn along thebeach area 115 indicating a potential area of interest to make reservations of beach space. Moving to the next screen, the map screen may be overlaid showing seating layout for the beach area, which is retrieved from a database for that specific locale, and is overlaid on the beach area to illustrate that locations seating capacity andgeneral arrangement 120 within theselections bounding box 115. In one embodiment, colors for the seating arrangement dots may provide feedback for currently occupied seating (e.g., with red colored dots) and those that are available (e.g., green dots) for a given time span, and where a time span scroller widget may be provided to scrub through different times and visually inspect for seating availability. By selecting the seating arrangement bounding box, a user may then bring up the nextseating arrangement screen 132, where users can zoom into a particular section of the seating arrangement, e.g., either through the originalselection touch area 120 and move further through sections by selecting form thecolumn selection buttons 126. The layout screen can provide feedback of the current area they are looking at 130, and provide search andother options down menu 124, allow the user to see availability for the seating area across time. The user may make one or more selections for seating in thearea grid 122 and move on to reserve the seating area(s) for a desired time. -
FIG. 2 shows a logic flow diagram illustrating embodiments of a map region component for the GeoTemp. The map region component may be instantiated 201 upon demand, periodically, and/or continuously. In one example embodiment, a user inquiry about a specified area (e.g., tap on a mobile device screen, GPS based current location, etc.) 202 may be the cause forinstantiation 201, or may interact with the already instantiated map region component. Also, the component may be instantiated and then operate with no user requested region, and instead, run through a queue of all, e.g., resort, delineated areas for analysis; for example, a list of all resorts may be fed to the map region component as an input map request queue (for example, a list of all US resorts with addresses) and the map region component may continuously process this list refining reserveable areas within such resorts. In one embodiment, the client may provide the following example map region request 202, substantially in the form of a HTTP(S) POST message including XML-formatted data, as provided below: -
POST /authrequest.php HTTP/1.1 Host: www.server.com Content Type: Application/XML Content Length: 667 <?XML version = ″1.0″ encoding = ″UTF-8″?> <map_request> <timestamp>2020-12-31 23:59:59</timestamp> <user_accounts_details> <user_account_credentials> <user_name>JohnDaDoeDoeDoooe@gmail.com</account_name> <password>abc123</password> //OPTIONAL <cookie>cookieID</cookie> //OPTIONAL <digital_cert_link>www.mydigitalcertificate.com/ JohnDoeDaDoeDoe@gmail.com/mycertifcate.dc</digital_cert_link> //OPTIONAL <digital_certificate>_DATA_</digital_certificate> </user_account_credentials> </user_accounts_details> <client_details> //iOS Client with App and Webkit //it should be noted that although several client details //sections are provided to show example variants of client //sources, further messages will include only on to save //space <client_IP>10.0.0.123</client_IP> <user_agent_string>Mozilla/5.0 (iPhone; CPU iPhone OS 7_1_1 like Mac OS X) AppleWebKit/537.51.2 (KHTML, like Gecko) Version/7.0 Mobile/11D201 Safari/9537.53</user_agent_string> <client_product_type>iPhone6,1</client_product_type> <client_serial_number>DNXXX1X1XXXX</client_serial_number> <client_UDID>3XXXXXXXXXXXXXXXXXXXXXXXXD</client_UDID> <client_OS>iOS</client_OS> <client_OS_version>7.1.1</client_OS_version> <client_app_type>app with webkit</client_app_type> <app_installed_flag>true</app_installed_flag> <app_name>GeoTemp.app</app_name> <app_version>1.0 </app_version> <app_webkit_name>Mobile Safari</client_webkit_name> <client_version>537.51.2</client_version> </client_details> <client_details> //iOS Client with Webbrowser <client_IP>10.0.0.123</client_IP> <user_agent_string>Mozilla/5.0 (iPhone; CPU iPhone OS 7_1_1 like Mac OS X) AppleWebKit/537.51.2 (KHTML, like Gecko) Version/7.0 Mobile/11D201 Safari/9537.53</user_agent_string> <client_product_type>iPhone6,1</client_product_type> <client_serial_number>DNXXX1X1XXXX</client_serial_number> <client_UDID>3XXXXXXXXXXXXXXXXXXXXXXXXD</client_UDID> <client_OS>iOS</client_OS> <client_OS_version>7.1.1</client_OS_version> <client_app_type>web browser</client_app_type> <client_name>Mobile Safari</client_name> <client_version>9537.53</client_version> </client_details> <client_details> //Android Client with Webbrowser <client_IP>10.0.0.123</client_IP> <user_agent_string>Mozilla/5.0 (Linux; U; Android 4.0.4; en-us; Nexus S Build/IMM76D) AppleWebKit/534.30 (KHTML, like Gecko) Version/4.0 Mobile Safari/534.30</user_agent_string> <client_product_type>Nexus S</client_product_type> <client_serial_number>YXXXXXXXXZ</client_serial_number> <client_UDID>FXXXXXXXXX XXXX XXXX XXXX XXXXXXXXXXXXX</client_UDID> <client_OS>Android</client_OS> <client_OS_version>4.0.4</client_OS_version> <client_app_type>web browser</client_app_type> <client_name>Mobile Safari</client_name> <client_version>534.30</client_version> </client_details> <client_details> //Mac Desktop with Webbrowser <client_IP>10.0.0.123</client_IP> <user_agent_string>Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3) AppleWebKit/537.75.14 (KHTML, like Gecko) Version/7.0.3 Safari/537.75.14</user_agent_string> <client_product_type>MacPro5,1</client_product_type> <client_serial_number>YXXXXXXXXZ</client_serial_number> <client_UDID>FXXXXXXXXX XXXX XXXX XXXX XXXXXXXXXXXXX</client_UDID> <client_OS>Mac OS X</client_OS> <client_OS_version>10.9.3</client_OS_version> <client_app_type>web browser</client_app_type> <client_name>Mobile Safari</client_name> <client_version>537.75.14</client_version> </client_details> <initial_request> <map_area> <string name=″lastPosition″>someString=</string> <int name=″deviceTag″ value=″123456″/> <long name=″locationReportingIntentTimstamp″ value =″123456789″/> <float name=″lastAccuracy″ value=″148.0″/> <boolean name=″locationHistoryEnabled″ value=″true″/> <long name=″lastTimestamp″ value=″123456789″/> <long name=″lastIntentProcessedTimestamp″ value=″123456789″/> </map_area> <zoom_level> <value_factor>3.4</value_factor> </zoom_level> <map_date>2014</map_date> <reserve_date>2018.12.31</reserve_date> <reserve_time>22.30.00</reserve_time> </initial_request> </map_request> - Upon receiving the map request 202 from a
user client 286, feed of resort areas, etc. for processing at the GeoTempserver 244, themap region component 244, 1944 ofFIG. 19 may parse for location, map area region (e.g., region zoom), map date (e.g., for example the year of map satellite imagery used that might have been last viewed and/or cached on the mobile device), etc. and use that to form a request retrieve amap region imagery 203. In one example, the initial map request already described may be reused with an added digital certificate identifying the map region component and forwarding that to a mapimagery retrieval component 245, 1945. In one embodiment, the imagery retrieval component may be integrated into the map region component, while in an alternative embodiment, a 3rd party imagery API such as Google Maps API call. Theimagery retrieval component 245 may then perform a lookup for the requested area'smap imagery 205, and generate and provide the requested imagery as animage frame 207 to themap region component 244, which will receive theimage frame data 210. Themap region component 244 may then obtain that input representing geospatial features defining abeach region area 215. For example, in one embodiment, for a given location/resort, GPS points circumscribing a region may have been provided (e.g., with measurements from a sight bounding a seating area, a human delineating the bounding region through inspection of a map region and drawing a bounding region providing points for the bounding region, a machine learning engine inspecting beach regions looking for seating and generating a bounding region, etc.). These may be stored in the GeoTemp database and retrieved for a specified region. In one embodiment, the image region datastructure 207, 210, substantially in the form of a HTTP(S) POST message including JSON-formatted data, is provided below: -
// service area { ″id″: 5, ″owner_id″: 10, ″active″: true, ″label″: ″A″, ″center″: { ″type″: ″Point″, ″coordinates″: [ −87.0728126877702, 30.3629073985083 ] }, ″geo_json″: { ″type″: ″Polygon″, ″coordinates″: [ [ [ −86.8611717224121, 30.3794654778933 ], [ −86.8735313415527, 30.4114479862807 ], [ −87.2031211853027, 30.3628778331081 ], [ −87.2951316833496, 30.3320647426591 ], [ −87.2580528259277, 30.3142835475307 ], [ −86.8611717224121, 30.3794654778933 ] ] ] } } - In one embodiment, the request for
map retrieval -
<?PHP header(′Content Type: text/plain′); // service areas for coordinates query SELECT ″service_areas″.* FROM ″service_areas″ WHERE ″service_areas″.″deleted″ = false AND ″service_areas″.″active″ = true AND (ST_Intersects(service_areas.geog,ST_GeographyFromText(′SRID=4326;POINT (- 84.0 35.0)′))) - The map region component may then obtain information defining physical product placement within the bound
region 220. Similarly to thegeospatial bounding region 215, this information may be retrieved as assets from a GeoTemp database and laid out within the geospatial bounding region. In one embodiment, hand tuned asset layout templates may be used, in another embodiment, assets are distributed across the bounding region automatically (e.g., alphabetical order, expense, ranking/weights, etc.). Examples of the physical placement data may be seen in Appendices 1-3. - Upon obtaining the
image frame 210, thegeospatial bounding region 215 and the assets for theregion 220, the map region component may then generate a product layout interface compositing the above 225. In one embodiment, the composite may be generated via Google Maps API with a request for the location coordinates, and placing markers representing the product placements (e.g., where the markers may be custom markers). Alternatively, a composite user interface may be achieved as seen in Appendices 1-3 from the structure (layout.json), as follows: - For each section in the array labeled layout_sections, instruction to draw a section indicator labeled with the attribute layout_section.name is issued. For each position in the array labeled layout_unit_positions with the layout_section array, if the position inventory_unit attribute is populated, an instruction draw a shape determined by the position product.shape attribute (in examples this is either “circle” or “square”) or by the position.icon path is issued. In one embodiment, spacing between position elements may be fixed to an amount determined by the client. If the position inventory_unit attribute is not set, this should be taken to be an empty space which should, on screen, take up as much space as a populate position. In one embodiment, maps are rendered using ESRI and its ArcGIS suite, using their imaging library and basemaps, and separately, GeoTemp may render from its data, via Javascript, to HTML and CSS, and overlay that atop ESRI's platform; however, it should be noted that many other mapping APIs and imaging libraries may also be used.
- In one embodiment, the client may provide the following example map region request 202, substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided in
Appendix 1. This may be provided to aclient device 286 foruser interface display 230. -
FIG. 3 shows a screenshot diagram illustrating embodiments of a booking for the GeoTemp. A user may interact with GeoTemp. It should be noted that in one embodiment, the user may be an end user wishing to purchase, e.g., resort products, but in an alternative embodiment, the end user may be staff at the resort (e.g., concierge, staff, waiter, etc.) or at a 3rd party booking service. A user may select a resort, geographic region, address, etc. initial desireddestination 305. GeoTemp may then provide a user with various products available for purchase, rent, etc. for the user's selection(s) 310. For a given selection (e.g., beach set) current availability of various sets may be shown 315 and the user may engage with such a product (e.g., tapping the “+” mark) and then selecting a time range for use of aproduct cart 330 forcheckout 335 with an option of provideadditional notes 340 and obtaining an order receipt visually and by other means (e.g., text, email, etc.) 345, 350. The user may go back to review bookedproducts 355, and tap on a product to view its placement 360 (e.g., this may also be viewed prior to booking), and engage with various options (e.g., viewing order details, moving single item, move a booking, reopen the order, etc.) 365 and review theorder 370. -
FIGS. 4 and 5 show a screenshot diagram illustrating embodiments of a booking for the GeoTemp. Initially a user may be presented with a login screen 405 (e.g., via mobile application, web browser interface, etc.) and upon providing login credentials 410, may be presented withrecent order summaries 415. As already discussed, the user may begin looking for a play to reserve 420, and in this case, start by reviewing and picking areas for which they would like to reserveproduct cart 445 and have the cart status reflected on the item (e.g., beach set) reservation chart (e.g., with reserved items in the cart but not yet purchased highlighted visually (e.g., by orange color) forinspection 450. Thereafter they may proceed with order review of thecart 455, provide payment details (e.g., credit card credentials) 460,cash sales FIG. 5 , the user may provide details about the order (e.g., in this case, a waiter aiding in the dispensing of the products and services may note the particular purchasing customer is a good tipper, which would be saved and reviewable for this order and future orders for the customer) 505. The order may then be executed 510 and receipt options engaged 515. In one embodiment, orders placed may be sorted by order, by destination, and/orother sort option 520 520, 530. The user may then continue reviewing purchase options, inspect theircart 530, review theirreservations locations 535, etc. -
FIGS. 6 and 7 show screenshot diagrams illustrating embodiments of a moving orders the GeoTemp. Here a user brings up theircurrent order 605 and selects 607 one of the order items that they wish to move and bring up anoptions menu 610 and then are allowed to select anew position 620 resulting in thenew positioning 625. The user could have also cancelled an order at position B3 if desired 630. Moving toFIG. 7 , is a user interface example of a move across a single day, where a user starts with a current order screen for products at a setting 705. The user selects a product (e.g., a beach set at position A8 on the layout grid) 707, and engages the options menu (e.g., by long pressing on the seat, or selecting one of theoption menus 708, etc.) and bringing up the ordermove option menu 710. Upon making a selection for anorder move 710, the user is then provided a chart in which they may select anew seating position 720, and then an chart updating the move (e.g., from A8 to A7) 725. Also, the user may cancel a current order, e.g., cancelling the order atB4 730. -
FIG. 8 shows a screenshot diagram illustrating embodiments of an online order for the GeoTemp. A user may initially visit aordering website 805 and search for and select a particular, e.g., resort,location 810. Upon selecting a location, the user may explore information about thelocation 815, such asbeach facilities 820, and explore products and services available at the location 825 (e.g., beach sets, food, activities (e.g., bonfires, para-sailing, jet skiing, surfing, etc.), beverages, etc.) and make selections ofinterest 830 including date ranges 835,quantity 840, and move on to make further selections ofother products 845. If the user does not currently have an account, they may enter their account and payment information 850 or otherwise provide theirlogin credentials 852. Upon supplying theirlogin account information 855 they will also be provided with anorder summer 857. The user will also be provided with an interface showing the layout of theirproduct purchases 860 and be provided with the option to makeadjustments 865, as has already been discussed. An order receipt may then be displayed 870. -
FIG. 9 shows a screenshot diagram illustrating embodiments to reopen an order for the GeoTemp. Here examines their current order at thelayout screen 905 and selected anoption menu 910 to reopen and order, and in this case the user may deletevarious orders A8 920 orB4 925, or otherwise move or edit their order as has already been discussed. -
FIG. 10 shows a datagraph diagram illustrating embodiments of a layout booking for the GeoTemp. Initially, a user may engage with an ordering device (e.g., a mobile device, a point of sale terminal, a computer, etc.) 1010 having loaded the GeoTemp user interface (as has already been discussed in previous user interface Figures). The user device may then issue aposition booking request 1021 to aGeoTemp server 1035. In one embodiment, the client may provide the following exampleposition booking request 1021, substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided below: -
{ ″order_token″: ″9838d30de9751a18527fe38263979e36″, ″bookings″: { ″event_instance_ids″: 425456, 425457, 425458, 425459, 425460 ], ″layout_unit_position_id″: ″26828″, ″inventory_unit_id″: ″3″ ] }, { ″event_instance_ids″: [ 425456, 425457, 425458, 425459, 425460 ], ″layout_unit_position_id″: ″26829″, ″inventory_unit_id″: [ ″4″ ] } ], ″destination_id″: 3, ″product_id″: 3 } - Upon obtaining the position
booking request message 1021, theGeoTemp server 1035 may provide the message for processing to a location order component (e.g., SeeFIGS. 11 and 1946 ofFIG. 19 ). TheGeoTemp server 1035 will then generate and provide aproduct layout request 1022 to the mapimagery retrieval component FIG. 2, 1945 ofFIG. 19 and/orGeoTemp database 1919 ofFIG. 19 . In one embodiment, the client may provide the following example Product bookings onlayout request 1022, substantially in the form of PHP/SQL commands as provided below: - A product bookings on layout request:
-
<?PHP header( ′Content-Type: text/plain′ ) ; // bookings_on SELECT * FROM ( SELECT event_instances.id AS event_instance_id, event_instances.starts_at AS starts_at, event_instances.ends_at AS ends_at, products.id AS product_id, inventory_units.id AS inventory_unit_id, layouts.id AS layout_id, layout_sections.name AS section_name, layout_unit_positions.id AS layout_unit_position_id, layout_unit_positions.position_y AS unit_y, layout_sections.position_x AS section_x, layout_unit_positions.position_x AS unit_x FROM inventory_units JOIN products ON products.id = inventory_units.product_id JOIN schedules ON schedules.schedulable_type = ′Beachy::Model::Product′ AND schedules.schedulable_id = products.id JOIN events ON events.schedule_id = schedules.id AND events.deleted = false JOIN event_instances ON event_instances.event_id = events.id AND event_instances.deleted = false JOIN mapped_areas ON mapped_areas.destination_id = ? JOIN layouts ON layouts.mapped_area_id = mapped_areas.id JOIN layout_sections ON layout_sections.layout_id = layouts.id AND layout_sections.id IS NOT NULL JOIN layout_unit_positions ON layout_unit_positions.layout_section_id = layout_sections.id AND layout_unit_positions.inventory_unit_id = inventory_units.id WHERE products.id = ? AND inventory_units.deleted = false AND event_instances.id IN ( ? ) AND inventory_units.id NOT IN ( ? ) AND ( event_instances.starts_at BETWEEN layouts.active_on AND ( layouts.active_on + interval ′1 day′ − interval ′1′ second′ ) ) AND date_trunc( ′day′, event_instances.starts_at) = date_trunc( ′day′, layouts.active_on) %s AND inventory_units.id NOT IN ( SELECT inventory_unit_id FROM rental_periods WHERE rental_periods.event_instance_id = event_instances.id AND rental_periods.deleted = false AND rental_periods.state IN ( ′reserved′, ′active′ ) ) ORDER BY unit_y, section_x, unit_x, event_instance_id ) q LIMIT %s ?> - Or a bookings off layout request:
-
<?PHP header( ′Content-Type: text/plain′ ) ; // bookings_off SELECT event_instances.id AS event_instance_id, event_instances.starts_at AS starts_at, event_instances.ends_at AS ends_at, products.id AS product_id, inventory_units.id AS inventory_unit_id FROM inventory_units JOIN products ON products.id = inventory_units.product_id JOIN schedules ON schedules.schedulable_type = ′Beachy::Model::Product′ AND schedules.schedulable_id = products.id JOIN events ON events.schedule_id = schedules.id AND events.deleted = false JOIN event_instances ON event_instances.event_id = events.id AND event_instances.deleted = false WHERE products.id = ? AND event_instances.id IN ( ? ) AND inventory_units.deleted = false AND inventory_units.id NOT IN ( ? ) %s AND inventory_units.id NOT IN ( SELECT inventory_unit_id FROM rental_periods WHERE rental_periods.event_instance_id = event_instances.id AND rental_periods.deleted = false AND rental_periods.state IN ( ′reserved′, ′active′ ) ) ORDER BY event_instances.starts_at, inventory_unit_id ?> - The map
imagery retrieval component 1045 may then returnlayout data 1023 for the user's 1010layout booking request 1021 to theGeoTemp server 1035, substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided inAppendix 2, which may be further provided back to theuser device return layout 1024, substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided inAppendix 3. Upon obtaining further user interface selections as already discussed in previous user interface figures, theuser device 1010 may then provide aproduct booking request 1025 to theGeoTemp server 1035, substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided inAppendix 4. The GeoTemp server may then use theproduct booking request 1025 to effect storing the booking of product, substantially in the form of PHP/SQL commands as provided below: -
<?PHP header( ′Content-Type: text/plain′ ); // bookings for unit position SELECT DISTINCT ON (event_instance_id) * FROM ( SELECT rental_periods.id AS rental_period_id, event_instances.id AS event_instance_id, event_instances.starts_at AS starts_at, event_instances.ends_at AS ends_at, products.id AS product_id, inventory_units.id AS inventory_unit_id, layouts.id AS layout_id, layout_sections.name AS section_name, layout_unit_positions.id AS layout_unit_position_id, layout_sections.position_x AS section_x, layout_unit_positions.position_y AS unit_y, layout_unit_positions.position_x AS unit_x FROM layout_unit_positions JOIN layout_sections ON layout_sections.id = layout_unit_positions.layout_section_id JOIN layouts ON layouts.id = layout_sections.layout_id JOIN inventory_units ON inventory_units.id = layout_unit_positions.inventory_unit_id AND inventory_units.deleted = false JOIN products ON products.id = inventory_units.product_id JOIN schedules ON schedules.schedulable_type = ′Beachy::Model::Product′ AND schedules.schedulable_id = products.id JOIN events ON events.schedule_id = schedules.id AND events.deleted = false JOIN event_instances ON event_instances.event_id = events.id AND event_instances.deleted = false JOIN mapped_areas ON layouts.mapped_area_id = mapped_areas.id AND mapped_areas.destination_id = ? LEFT JOIN rental_periods ON rental_periods.layout_unit_position_id = layout_unit_positions.id AND rental_periods.event_instance_id = event_instances.id AND rental_periods.state IN ( ′reserved′, ′active′ ) AND rental_periods.deleted = false WHERE event_instances.id IN ( ? ) AND layout_sections.position_x = ? AND layout_unit_positions.position_x = ? AND layout_unit_positions.position_y = ? AND ( event_instances.starts_at BETWEEN layouts.active_on AND ( layouts.active_on + interval ′1 day′ − interval ′1 second′ ) ) AND date_trunc( ′day′, event_instances.starts_at) = date_trunc( ′day′, layouts.active_on) ) q WHERE rental_period_id IS NULL ?> -
FIG. 11 shows a logic flow diagram illustrating embodiments of a location order component for the GeoTemp. The location order component may be instantiated 1101 upon demand, periodically, and/or continuously. In one example embodiment, auser 1186 layout request 1102 (e.g., see 1021 ofFIG. 10 ) may be received by the location order component on theGeoTemp server 1144, which may then generate a query for layout position booking 1103 (e.g., see 1022 ofFIG. 10 ), and themap region component 1145, 1945 ofFIG. 19 may retrieve the requested query results. The layout may then be retrieved 1105 and prepared to be provided as a user interface layout for further selections 1107 (e.g., see 1023 ofFIG. 10 ), and theGeoTemp server 1144 may then provide the interface to the user 1110 (e.g., see 1024 ofFIG. 10 ) for display andinteraction 1115 on theclient device 1186 where the user may then make further product selections 1120 (e.g., seeFIGS. 1, 3-9 ). These selections and booking requests are confirmed to be available 1125 when provided to theGeoTemp server 1144 and confirmed (e.g.,See 1025 ofFIG. 10 ) 1130. If the bookings are not available 1125, flow may commence to an error handler, terminate, and/or restart theprocess 1101. Uponconfirmation 1130, the customer requested positions may be assigned and then stored at the server 1135 (e.g., see 1026 ofFIG. 10 ). -
FIG. 12 shows a screenshot diagram illustrating embodiments of item product ordering an order for the GeoTemp. The user may make a selection for aseating section 1205 area and select theirseats 1210 and/or interact with already reserved seating; e.g., the user may reopen their order as already discussed and/or otherwise interact with their location purchase order as has already been discussed in earlier user interface figures. Once a seating area has been obtained, the user may bring up options for reserved seating and order additional goods and/or services for those reserved seats, e.g., fordrinks -
FIG. 13 shows a datagraph diagram illustrating embodiments of a product item ordering for the GeoTemp. Initially, a user may engage with an ordering device (e.g., a mobile device, a point of sale terminal, a computer, etc.) 1310 having loaded the GeoTemp user interface (as has already been discussed in previous user interface Figures, e.g.,FIG. 12 ). Theuser device 1310 provides a user input device location request for items available for the location 1321 to a product items order component (e.g., seeFIG. 14 for more detail) instantiated on theGeoTemp server 1335 receives the request and makes a product items request for theposition 1322 to the mapimagery retrieval component FIG. 2, 1945 ofFIG. 19 , which may then return available product items for the requested (e.g., seating)position 1323 back to theGeoTemp server 1335, which may then provide a user interface forproduct item selections 1324 back to theuser device 1310. In one embodiment this may take a form similar to what was already discussed forlayout selection GeoTemp server 1335, substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided below: -
{ ″customer_id″: 1, ″layout_id″: 1, ″layout_section_id″: 1, ″position_id″: 1 } - This position layout information may be provided as a product items request for the specified
position 1322, substantially in the same form 1321 and whereby a query for the location and product availability at the location is made 1322 (e.g., see query at 1022 ofFIG. 10 ). In one embodiment, the query for retrieval of the product request for a given position 1321, substantially in the form of PHP/SQL commands is provided below: -
SELECT owner_id, category_id | | ′-′ | | case is_rental when true then 1 else 0 end AS ″key″, array_to_string(array_agg(product_id), ′,′) AS product_ids FROM ( SELECT t.product_id, t.category_id, t.owner_id, t. distance, t.is_rental, CASE t.is_rental WHEN true THEN (inventory_unit_count * event_instance_count) − rental_period_count ELSE inventory_unit_count END AS availability FROM ( SELECT products.id AS product_id, products.category_id, products.is_rental, owners.id AS owner_id, COUNT(DISTINCT inventory_units.id) AS inventory_unit_count, COUNT(DISTINCT event_instances.id) AS event_instance_count, COUNT(DISTINCT rental_periods.id) AS rental_period_count, ST_Distance( ST_GeomFromText(?, 4326), service_areas.center::geometry ) AS distance FROM service_areas JOIN owners ON owners.id = service_areas.owner_id AND owners.deleted = false JOIN products ON products.owner_id = owners.id AND products.deleted = false JOIN categories ON categories.id = products.category_id JOIN inventory_units ON inventory_units.product_id = products.id AND inventory_units.deleted = false LEFT OUTER JOIN schedules ON schedules.schedulable_type = ′Beachy::Model::Product′ AND schedules.deleted = false AND schedules.schedulable_id = products.id AND products.is_rental IS true LEFT OUTER JOIN events ON events.schedule_id = schedules.id AND events.deleted = false LEFT OUTER JOIN event_instances ON event_instances.event_id = events.id AND event_instances.deleted = false AND products.is_rental IS true AND event_instances.starts_at >= ? AND event_instances.ends_at <= ? LEFT OUTER JOIN rental_periods ON rental_periods.inventory_unit_id = inventory_units.id AND rental_periods.deleted = false AND rental_periods.event_instance_id = event_instances.id AND rental_periods.state ! = ′new′ WHERE service_areas.deleted = false AND service_areas.id IN ( ? ) GROUP BY products.id, products.category_id, owners.id, service_areas.center HAVING CASE products.is_rental WHEN true THEN ( COUNT(DISTINCT inventory_units.id) * COUNT(DISTINCT event_instances.id) ) − COUNT(DISTINCT rental_periods.id) ELSE COUNT(DISTINCT inventory_units.id) END > 0 ) t ORDER BY distance ASC ) t2 GROUP BY owner_id, category_id, is_rental, distance ORDER BY distance ASC - In one embodiment, the query for retrieval of the product request for a given position 1321, substantially in the form of Ruby commands is provided below:
-
# frozen_string_literal: true require ′beachy/queries/generic_query′ module Beachy module Queries class ServiceAreaProductsQuery < GenericQuery default_relation ServiceArea # What this query does: # # For the given parameters (service_areas, date range, origin) # # 1. Find the owners within the service areas with +will_deliver+ set # to true. # 2. Find the products belonging to those owners, grouped by category # so that no two products in the same category from different owners # is returned. The caveat here is if, given two products from different # owners one is for rent and the other for sale, then both will be # returned. # 3. Only return products with availability during the given date range. # 4. Order owner products by distance from the given origin so that # the owner closest to the user is afforded priority. QUERY = load_sql(′service_area_products′).freeze def find_each(service_areas, lat, lng, start_date, end_date) ids = service_areas.map(&:id) point = Geography.fetch_point(lat, lng) result = execute(QUERY, point, start_date, end_date, ids).to_a select_products(result) end private def select_products(result) keys = Set.new result.flat_map do |row| next unless keys.add?(row[′key′]) Product.find(row[′product_ids′]) end.compact end end end end - The available product items for the
position response 1323 may then result from the query, substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided below: -
[ { ″product_id″: 1, ″vendor_id″: 1, ″name″: ″Old Fashioned″, ″price″: { ″cents″: 1200, ″fractional″: 1200, ″symbol″: ″$″, ″currency″: { ″iso_code″: ″USD″, ″subunit″: ″Cent″, ″subunit_to_unit″: 100, ″thousands_separator″: ″,″, ″decimal_mark″: ″.″ } } }, { ″product_id″: 2, ″vendor_id″: 2, ″name″: ″Sunscreen″, ″price″: { ″cents″: 800, ″fractional″: 800, ″symbol″: ″$″, ″currency″: { ″iso_code″: ″USD″, ″subunit″: ″Cent″, ″subunit_to_unit″: 100, ″thousands_separator″: ″,″, ″decimal_mark″: ″.″ } } } ] - In an alternative embodiment, the above 1323 response may be reformatted and composited into a return user interface as has already been discussed 1024 of
FIG. 10 . As such the provided user interface of products available for selections for theseating location 1324 are provided to theuser device 1310 where the user makes selections for desireditems 1325, substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided below: -
{ ″order_token″: ″59ba1d19858d4f7b23aa3bbae1ed9671″, ″products″: [ { ″position_id″: 1, ″product_id″: 1, ″quantity″: 1 }, { ″position_id″: 1, ″product_id″: 2, ″quantity″: 1 } ] } - The
selection request 1325 may be forwarded 1326 a, 1326 b to product vendor(s)' system(s) 1351 a, 1351 b. In one embodiment, the greater textual information of the order may be provided for theuser selections 1325 when the vendor's system has not be configured to work with GeoTemp. In one embodiment, the order may be sent via SMS, email, direct to application, etc. In another embodiment, the vendors' systems are configured to take theselections input 1325 directly. In yet another embodiment, an identifier to the customer identifier and/or order identifier is provided so that each vendor may separately charge the customer for selected items. In one embodiment, theorder datastructure Appendix 5. -
FIG. 14 shows a logic flow diagram illustrating embodiments of a location order component for the GeoTemp. The location order component may be instantiated 1401 upon demand, periodically, and/or continuously. In one example embodiment, auser 1486 request for product items available for their location position 1402 (e.g., see 1321 ofFIG. 13 ) may be received by the location order component on theGeoTemp server 1444, which may then generate a query for layout position booking 1403 (e.g., see 1322 ofFIG. 13 ), and themap region component 1445, 1945 ofFIG. 19 may retrieve the requested query results. In one embodiment this may be achieved based on user input and location data via aquery 1322 ofFIG. 13 . The query results of the product items available for the location position 1405 may then be retrieved 1405 and prepared to be provided as a user interface layout for further selections 1407 (e.g., see 1323 ofFIG. 13 ), and theGeoTemp server 1444 may then provide the interface to the user 1410 (e.g., see 1324 ofFIG. 13 ) for display andinteraction 1415 on theclient device 1486 where the user may then make further product selections 1420 (e.g., seeFIGS. 12, 1, 3-9 ). These selections foritem requests 1420 are then provided 1125 to theGeoTemp server 1444, where theGeoTemp server 1144 confirms availability of the goods and services requested (e.g.,See FIG. 13 ) 1427. Uponconfirmation 1427, the customer requested product items may be sent as orders to outside vendors for fulfillment 1430 (e.g., see 1351 a, 1351 b ofFIG. 13 ). -
FIG. 15 shows a block diagram illustrating embodiments of the GeoTemp.FIG. 15 shows a Beach Type Definition 1501: - 1) Municipality
- 59.1. a. Congested
- 59.2. b. Uncongested
- 2) Private Residence
- 3) Resort/Community
-
- 61.1. a. Non-partner
- 61.2. b. Unmanaged
- 61.3. c. Managed
-
FIG. 15 goes on to show Seating Layout Definition (ALL Beach Types) 1550: - A: Resort/Beach Owner
-
- 63.1. b1:
Access 1 - 63.2. b2:
Access 2 - 63.3. x,y: Grid Area
- 63.1. b1:
-
FIG. 16 shows a block diagram illustrating embodiments of the GeoTemp.FIG. 16 shows a Seat Selection (ALL Accessible Beach Types) 1601: -
- 64.1. a: Seating available for booking on device
- 64.2. b: Seating display corresponds to availability (can change by date/time) c: Seating is displayed on device
- 64.3. d: Seats (a) map to grid position
- 64.4. e: Seating layout maps to grid
-
FIG. 16 shows a Vendor Dispatch (ALL Accessible Beach Types) 1650: -
- 65.1. a: Products available for sale
- 65.2. b: Products are displayed on device
- 65.3. c: At purchase, vendor is selected
- 65.4. d: Vendor is dispatched to grid position e: Mapped landmarks inform directions
- f: GPS provides accuracy to directions
-
FIG. 17 shows a block diagram illustrating embodiments of the GeoTemp.FIG. 17 shows a Camera Guidance (Accessible but Unmanaged Beaches) 1701: -
- 66.1. 1) Seating layout displayed from statistically driven model
- 66.2. 2) Further guidance given by “context pic” as seen above
-
FIG. 17 shows a beach area forGeoTemp layout 1720. GeoTemp layout establishes datastructures that allow for object map placement, inventory allocation, temporal allocation, etc. It includes the following mechanisms. - 1. draw bounds of beach from water line (or regulatory line) to property boundary
- 2. determine associated property owner and/or contracted service provider
- 3. mark access point coordinates and access type (public, restricted)
- Given the variables
-
- 71.1. seating type and size
- 71.2. available beach area
- 71.3. geographic area
- 71.4. date
- 71.5. beach seating history
- 71.6. related beach seating history
- GeoTemp defines the number of sections into which the beach area should be subdivided, the count of seating inventory to be allocated to each section and the position of each seat to be placed within. The configuration of seating positions will change based on seasonality and past performance. Any type of placeable product can be contained within a seating position, thus a layout can contain different seating types. The hierarchical structure of this definition includes:
-
- Layout—Defines the serviceable beach area
- Section—Defines an area comprising grouping of seating positions
- Position—Defines an area within which to place a seat of some type
- Zone—Defines an area within a section comprising some number of positions,
- indicative of higher or lower demand and/or desirability
- Examples include and are illustrated 1750:
-
- 73.1. Given a beach area of 100 meters by 30 meters
- 73.2. And a seating type that covers 10 square meters, including space between
- 4 73.3. And a geographic area being northwest Florida
- 73.4. And a date during peak season
- 73.5. Then we determine the optimal arrangement being 2 sections of 15 positions
- 73.6. And the number of rows per section is 3
- 73.7. And the number of columns per row is 5
- 73.8. And the total number of positions is 30
- 73.9. Given a beach area of 100 meters by 30 meters
- 73.10. And a seating type that covers 10 square meters, including space between
- 13 73.11. And a geographic area being northwest Florida
- 73.12. And prior beach history for this date expects low demand
- 73.13. Then we determine the optimal arrangement being 2 sections of 10 positions
- 73.14. And the number of rows per section is 2
- 73.15. And the number of columns per row is 5
- 73.16. And the total number of positions is 20
-
FIG. 18 shows screenshot diagrams illustrating embodiments of the GeoTemp. - An interface for selecting a
seat - Seating positions are color-coded to provide an indication of that position's availability to the user. The color-coded states include:
-
- 76.1. 1. unavailable for the date/time range desired
- 4 76.2. 2. available for the entirety of the date/time range desired
- 76.3. 3. Available for part, but not the entirety, of the date/time range desired
- Upon a user booking a seating position during a date/time range, that position is marked in the system as unavailable for booking.
-
FIG. 18 shows product item (e.g., from available inventory) orderinginterfaces -
- 78.1. • Distance from the vendor dispatch point to the user's seating position
- 78.2. • Vendor inventory count
- 78.3. • Vendor customer service rating
- 78.4. • Vendor server or driver availability
- Post-purchase, a notification to the vendor indicating the need for product delivery is sent. Directions to the point of address or property are provided by a third-party direction provider (e.g. Google Maps, Apple Maps, etc.). Beyond this point, directions are informed by our mapping, defined landmarks (e.g. beach access point, booked seating position) and the customer's device sensors, if available.
- In one embodiment, the client may provide the following example layout message, substantially in the form of a HTTP(S) POST message including JSON-formatted data, as provided below:
-
property type desc id Integer The primary key of the layout destination_ Integer The ID of the destination id for this layout destination DestinationEntity The destination applicable for this layout oceart_ String The ocean facing direction direction of this layout destination_ String The destination facing direction direction for this layout default boolean The default layout for this destination - An example layout datastructure follows:
-
{ ″id″: 1, ″destination_id″: 1, ″destination″: { ″id″: 1, ″owner_id″: 1, ″destination_type″: ″string″, ″name″: ″string″, ″slug″: ″string″, ″description″: ″string″, ″lat″: 1.0, ″lng″: 1.0, ″city″: ″string″, ″state_name″: ″string″, ″image_path″: ″string″, ″image_url″: ″string″, ″active″: true, ″distance″: 1, ″owner″: { ″id″: 1, ″name″: ″string″, ″image_path″: ″string″, ″image_url″: ″string″, ″address″: ″string″, ″pusher_channel_name″: ″string″, ″opens_at″: ″string″, ″closes_at″: ″string″, ″created_at″: ″2016-07-08T15:36:40+00:00″, ″updated_at″: ″2016-07-08T15:36:40+00:00″ }, ″meta″: { }, ″time_zone″: { ″name″: ″string″ }, ″address″: { ″id″: 1, ″user_id″: 1, ″address_type″: ″string″, ″first_name″: ″string″, ″last_name″: ″string″, ″address1″: ″string″, ″address2″: ″string″, ″city″: ″string″, ″state_name″: ″string″, ″zip_code″: ″string″, ″country″: ″string″, ″phone″: ″string″, ″created_at″: ″2016-07-08T15:36:40+00:00″ } }, ″ocean_direction″: ″string″, ″destination_direction″: ″string″, ″default″: true } - A LayoutUnitPosition message may include the following:
-
{ ″id″: 1, ″position_x″: 1, ″position_y″: 1, ″layout_section_id″: 1, ″layout_section″: { ″id″: 1, ″layout_id″: 1, ″layout″: { ″id″: 1, ″destination_id″: 1, ″destination″: { ″id″: 1, ″owner_id″: 1, ″destination_type″: ″string″, ″name″: ″string″, ″slug″: ″string″, ″description″: ″string″, ″lat″: 1.0, ″lng″: 1.0, ″city″: ″string″, ″state_name″: ″string″, ″image_path″: ″string″, ″image_url″: ″string″, ″active″: true, ″distance″: 1, ″owner″: { ″id″: 1, ″name″: ″string″, ″image_path″: ″string″, ″image_url″: ″string″, ″address″: ″string″, ″pusher_channel_name″: ″string″, ″opens_at″: ″string″, ″closes_at″: ″string″, ″created_at″: ″2016-07-08T15:36:40+00:00″, ″updated_at″: ″2016-07-08T15:36:40+00:00″ }, ″meta″: { }, ″time_zone″: { ″name″: ″string″ }, ″address″: { ″id″: 1, ″user_id″: 1, ″address_type″: ″string″, ″first_name″: ″string″, ″last_name″: ″string″, ″address1″: ″string″, ″address2″: ″string″, ″city″: ″string″, ″state_name″: ″string″, ″zip_code″: ″string″, ″country″: ″string″, ″phone″: ″string″, ″created_at″: ″2016-07-08T15:36:40+00:00″ } }, ″ocean_direction″: ″string″, ″destination_direction″: ″string″, ″default″: true }, ″row_number″: 1 } } - A LayoutZon message may include the following:
-
property type desc id Integer The primary key of the layout zone layout_section_ Integer The ID of the layout section id for this zone layout_section LayoutSectionEntity The layout section applicable to this zone zone_type String The type of zone top_left_corner object The coordinates of the top left for this zone corner of the bounding box bottom_right_ object The coordinates of the bottom corner right corner of the bounding box for this zone - An example layout zone datastructure follows:
-
{ ″id″:1, ″layout_section_id″: 1, ″layout_section″: { ″id″: 1, ″layout_id″: 1, ″layout″: { ″id″: 1, ″destination_id″: 1, ″destination″: { ″id″: 1, ″owner_id″: 1, ″destination_type″: ″string″, ″name″: ″string″, ″slug″: ″string″, ″description″: ″string″, ″lat″: 1.0, ″lng″: 1.0, ″city″: ″string″, ″state_name″: ″string″, ″image_path″: ″string″, ″image_url″: ″string″, ″active″: true, ″distance″: 1, ″owner″: { ″id″: 1, ″name″: ″string″, ″image_path″: ″string″, ″image_url″: ″string″, ″address″: ″string″, ″pusher_channel_name″: ″string″, ″opens_at″: ″string″, ″closes_at″: ″string″, ″created_at″: ″2016-07-08T15:36:40+00:00″, ″updated_at″: ″2016-07-08T15:36:40+00:00″ }, ″meta″: { }, ″time_zone″: { ″name″: ″string″ }, ″address″: { ″id″: 1, ″user_id″: 1, ″address_type″: ″string″, ″first_name″: ″string″, ″last_name″: ″string″, ″address1″: ″string″, ″address2″: ″string″, ″city″: ″string″, ″state_name″: ″string″, ″zip_code″: ″string″, ″country″: ″string″, ″phone″: ″string″, ″created_at″: ″2016-07-08T15:36:40+00:00″ } }, ″ocean_direction″: ″string″, ″destination_direction″: ″string″, ″default″: true }, ″row_number″: 1 }, ″zone_type″: ″string″, ″top_left_corner″: { }, ″bottom_right_corner″: { } } -
FIG. 19 shows a block diagram illustrating embodiments of a GeoTemp controller. In this embodiment, theGeoTemp controller 1901 may serve to aggregate, process, store, search, serve, identify, instruct, generate, match, and/or facilitate interactions with a computer through geo-location and inventory allocation technologies, and/or other related data. - Typically, users, which may be people and/or other systems, may engage information technology systems (e.g., computers) to facilitate information processing. In turn, computers employ processors to process information;
such processors 1903 may be referred to as central processing units (CPU). One form of processor is referred to as a microprocessor. CPUs use communicative circuits to pass binary encoded signals acting as instructions to enable various operations. These instructions may be operational and/or data instructions containing and/or referencing other instructions and data in various processor accessible and operable areas of memory 1929 (e.g., registers, cache memory, random access memory, etc.). Such communicative instructions may be stored and/or transmitted in batches (e.g., batches of instructions) as programs and/or data components to facilitate desired operations. These stored instruction codes, e.g., programs, may engage the CPU circuit components and other motherboard and/or system components to perform desired operations. One type of program is a computer operating system, which, may be executed by CPU on a computer; the operating system enables and facilitates users to access and operate computer information technology and resources. Some resources that may be employed in information technology systems include: input and output mechanisms through which data may pass into and out of a computer; memory storage into which data may be saved; and processors by which information may be processed. These information technology systems may be used to collect data for later retrieval, analysis, and manipulation, which may be facilitated through a database program. These information technology systems provide interfaces that allow users to access and operate various system components. - In one embodiment, the
GeoTemp controller 1901 may be connected to and/or communicate with entities such as, but not limited to: one or more users from peripheral devices 1912 (e.g., user input devices 1911); an optionalcryptographic processor device 1928; and/or a communications network 1913. - Networks are commonly thought to comprise the interconnection and interoperation of clients, servers, and intermediary nodes in a graph topology. It should be noted that the term “server” as used throughout this application refers generally to a computer, other device, program, or combination thereof that processes and responds to the requests of remote users across a communications network. Servers serve their information to requesting “clients.” The term “client” as used herein refers generally to a computer, program, other device, user and/or combination thereof that is capable of processing and making requests and obtaining and processing any responses from servers across a communications network. A computer, other device, program, or combination thereof that facilitates, processes information and requests, and/or furthers the passage of information from a source user to a destination user is commonly referred to as a “node.” Networks are generally thought to facilitate the transfer of information from source points to destinations. A node specifically tasked with furthering the passage of information from a source to a destination is commonly called a “router.” There are many forms of networks such as Local Area Networks (LANs), Pico networks, Wide Area Networks (WANs), Wireless Networks (WLANs), etc. For example, the Internet is generally accepted as being an interconnection of a multitude of networks whereby remote clients and servers may access and interoperate with one another.
- The
GeoTemp controller 1901 may be based on computer systems that may comprise, but are not limited to, components such as: acomputer systemization 1902 connected to memory 1929. - A
computer systemization 1902 may comprise aclock 1930, central processing unit (“CPU(s)” and/or “processor(s)” (these terms are used interchangeable throughout the disclosure unless noted to the contrary)) 1903, a memory 1929 (e.g., a read only memory (ROM) 1906, a random access memory (RAM) 1905, etc.), and/or aninterface bus 1907, and most frequently, although not necessarily, are all interconnected and/or communicating through asystem bus 1904 on one or more (mother)board(s) 1902 having conductive and/or otherwise transportive circuit pathways through which instructions (e.g., binary encoded signals) may travel to effectuate communications, operations, storage, etc. The computer systemization may be connected to apower source 1986; e.g., optionally the power source may be internal. Optionally, acryptographic processor 1926 may be connected to the system bus. In another embodiment, the cryptographic processor, transceivers (e.g., ICs) 1974, and/or sensor array (e.g., accelerometer, altimeter, ambient light, barometer, global positioning system (GPS) (thereby allowing GeoTemp controller to determine its location), gyroscope, magnetometer, pedometer, proximity, ultra-violet sensor, etc.) 1973 may be connected as either internal and/or external peripheral devices 1912 via the interface bus I/O 1908 (not pictured) and/or directly via theinterface bus 1907. In turn, the transceivers may be connected to antenna(s) 1975, thereby effectuating wireless transmission and reception of various communication and/or sensor protocols; for example the antenna(s) may connect to various transceiver chipsets (depending on deployment needs), including: Broadcom BCM4329FKUBG transceiver chip (e.g., providing 802.11n, Bluetooth 2.1+EDR, FM, etc.); a Broadcom BCM4752 GPS receiver with accelerometer, altimeter, GPS, gyroscope, magnetometer; a Broadcom BCM4335 transceiver chip (e.g., providing 2G, 3G, and 4G long-term evolution (LTE) cellular communications; 802.11ac, Bluetooth 4.0 low energy (LE) (e.g., beacon features)); a Broadcom BCM43341 transceiver chip (e.g., providing 2G, 3G and 4G LTE cellular communications; 802.11 g/, Bluetooth 4.0, near field communication (NFC), FM radio); an Infineon Technologies X-Gold 618-PMB9800 transceiver chip (e.g., providing 2G/3G HSDPA/HSUPA communications); a MediaTek MT6620 transceiver chip (e.g., providing 802.11a/ac/b/g/n, Bluetooth 4.0 LE, FM, GPS; a Lapis Semiconductor ML8511 UV sensor; a maxim integrated MAX44000 ambient light and infrared proximity sensor; a Texas Instruments WiLink WL1283 transceiver chip (e.g., providing 802.11n, Bluetooth 3.0, FM, GPS); and/or the like. The system clock typically has a crystal oscillator and generates a base signal through the computer systemization's circuit pathways. The clock is typically coupled to the system bus and various clock multipliers that will increase or decrease the base operating frequency for other components interconnected in the computer systemization. The clock and various components in a computer systemization drive signals embodying information throughout the system. Such transmission and reception of instructions embodying information throughout a computer systemization may be commonly referred to as communications. These communicative instructions may further be transmitted, received, and the cause of return and/or reply communications beyond the instant computer systemization to: communications networks, input devices, other computer systemizations, peripheral devices, and/or the like. It should be understood that in alternative embodiments, any of the above components may be connected directly to one another, connected to the CPU, and/or organized in numerous variations employed as exemplified by various computer systems. - The CPU comprises at least one high-speed data processor adequate to execute program components for executing user and/or system-generated requests. The CPU is often packaged in a number of formats varying from large supercomputer(s) and mainframe(s) computers, down to mini computers, servers, desktop computers, laptops, thin clients (e.g., Chromebooks), netbooks, tablets (e.g., Android, iPads, and Windows tablets, etc.), mobile smartphones (e.g., Android, iPhones, Nokia, Palm and Windows phones, etc.), wearable device(s) (e.g., watches, glasses, goggles (e.g., Google Glass), etc.), and/or the like. Often, the processors themselves will incorporate various specialized processing units, such as, but not limited to: integrated system (bus) controllers, memory management control units, floating point units, and even specialized processing sub-units like graphics processing units, digital signal processing units, and/or the like. Additionally, processors may include internal fast access addressable memory, and be capable of mapping and addressing memory 1929 beyond the processor itself; internal memory may include, but is not limited to: fast registers, various levels of cache memory (e.g.,
level - Depending on the particular implementation, features of the GeoTemp may be achieved by implementing a microcontroller such as CAST's R8051XC2 microcontroller; Intel's MCS 51 (i.e., 8051 microcontroller); and/or the like. Also, to implement certain features of the GeoTemp, some feature implementations may rely on embedded components, such as: Application-Specific Integrated Circuit (“ASIC”), Digital Signal Processing (“DSP”), Field Programmable Gate Array (“FPGA”), and/or the like embedded technology. For example, any of the GeoTemp component collection (distributed or otherwise) and/or features may be implemented via the microprocessor and/or via embedded components; e.g., via ASIC, coprocessor, DSP, FPGA, and/or the like. Alternately, some implementations of the GeoTemp may be implemented with embedded components that are configured and used to achieve a variety of features or signal processing.
- Depending on the particular implementation, the embedded components may include software solutions, hardware solutions, and/or some combination of both hardware/software solutions. For example, GeoTemp features discussed herein may be achieved through implementing FPGAs, which are a semiconductor devices containing programmable logic components called “logic blocks”, and programmable interconnects, such as the high performance FPGA Virtex series and/or the low cost Spartan series manufactured by Xilinx. Logic blocks and interconnects can be programmed by the customer or designer, after the FPGA is manufactured, to implement any of the GeoTemp features. A hierarchy of programmable interconnects allow logic blocks to be interconnected as needed by the GeoTemp system designer/administrator, somewhat like a one-chip programmable breadboard. An FPGA's logic blocks can be programmed to perform the operation of basic logic gates such as AND, and XOR, or more complex combinational operators such as decoders or mathematical operations. In most FPGAs, the logic blocks also include memory elements, which may be circuit flip-flops or more complete blocks of memory. In some circumstances, the GeoTemp may be developed on regular FPGAs and then migrated into a fixed version that more resembles ASIC implementations. Alternate or coordinating implementations may migrate GeoTemp controller features to a final ASIC instead of or in addition to FPGAs. Depending on the implementation all of the aforementioned embedded components and microprocessors may be considered the “CPU” and/or “processor” for the GeoTemp.
- The
power source 1986 may be of any standard form for powering small electronic circuit board devices such as the following power cells: alkaline, lithium hydride, lithium ion, lithium polymer, nickel cadmium, solar cells, and/or the like. Other types of AC or DC power sources may be used as well. In the case of solar cells, in one embodiment, the case provides an aperture through which the solar cell may capture photonic energy. Thepower cell 1986 is connected to at least one of the interconnected subsequent components of the GeoTemp thereby providing an electric current to all subsequent components. In one example, thepower source 1986 is connected to thesystem bus component 1904. In an alternative embodiment, anoutside power source 1986 is provided through a connection across the I/O 1908 interface. For example, a USB and/or IEEE 1394 connection carries both data and power across the connection and is therefore a suitable source of power. - Interface bus(ses) 1907 may accept, connect, and/or communicate to a number of interface adapters, conventionally although not necessarily in the form of adapter cards, such as but not limited to: input output interfaces (I/O) 1908,
storage interfaces 1909,network interfaces 1910, and/or the like. Optionally,cryptographic processor interfaces 1927 similarly may be connected to the interface bus. The interface bus provides for the communications of interface adapters with one another as well as with other components of the computer systemization. Interface adapters are adapted for a compatible interface bus. Interface adapters conventionally connect to the interface bus via a slot architecture. Conventional slot architectures may be employed, such as, but not limited to: Accelerated Graphics Port (AGP), Card Bus, (Extended) Industry Standard Architecture ((E)ISA), Micro Channel Architecture (MCA), NuBus, Peripheral Component Interconnect (Extended) (PCI(X)), PCI Express, Personal Computer Memory Card International Association (PCMCIA), and/or the like. -
Storage interfaces 1909 may accept, communicate, and/or connect to a number of storage devices such as, but not limited to:storage devices 1914, removable disc devices, and/or the like. Storage interfaces may employ connection protocols such as, but not limited to: (Ultra) (Serial) Advanced Technology Attachment (Packet Interface) ((Ultra) (Serial) ATA(PI)), (Enhanced) Integrated Drive Electronics ((E)IDE), Institute of Electrical and Electronics Engineers (IEEE) 1394, fiber channel, Small Computer Systems Interface (SCSI), Universal Serial Bus (USB), and/or the like. -
Network interfaces 1910 may accept, communicate, and/or connect to a communications network 1913. Through a communications network 1913, the GeoTemp controller is accessible through remote clients 1933 b (e.g., computers with web browsers) by users 1933 a. Network interfaces may employ connection protocols such as, but not limited to: direct connect, Ethernet (thick, thin,twisted pair 10/100/1000/10000 Base T, and/or the like), Token Ring, wireless connection such as IEEE 802.11a-x, and/or the like. Should processing requirements dictate a greater amount speed and/or capacity, distributed network controllers (e.g., see Distributed GeoTemp below), architectures may similarly be employed to pool, load balance, and/or otherwise decrease/increase the communicative bandwidth required by the GeoTemp controller. A communications network may be any one and/or the combination of the following: a direct interconnection; the Internet; Interplanetary Internet (e.g., Coherent File Distribution Protocol (CFDP), Space Communications Protocol Specifications (SCPS), etc.); a Local Area Network (LAN); a Metropolitan Area Network (MAN); an Operating Missions as Nodes on the Internet (OMNI); a secured custom connection; a Wide Area Network (WAN); a wireless network (e.g., employing protocols such as, but not limited to a cellular, WiFi, Wireless Application Protocol (WAP), I-mode, and/or the like); and/or the like. A network interface may be regarded as a specialized form of an input output interface. Further,multiple network interfaces 1910 may be used to engage with various communications network types 1913. For example, multiple network interfaces may be employed to allow for the communication over broadcast, multicast, and/or unicast networks. - Input Output interfaces (I/O) 1908 may accept, communicate, and/or connect to user, peripheral devices 1912 (e.g., input devices 1911),
cryptographic processor devices 1928, and/or the like. I/O may employ connection protocols such as, but not limited to: audio: analog, digital, monaural, RCA, stereo, and/or the like; data: Apple Desktop Bus (ADB), IEEE 1394a-b, serial, universal serial bus (USB); infrared; joystick; keyboard; midi; optical; PC AT; PS/2; parallel; radio; touch interfaces: capacitive, optical, resistive, etc. displays; video interface: Apple Desktop Connector (ADC), BNC, coaxial, component, composite, digital, Digital Visual Interface (DVI), (mini) displayport, high-definition multimedia interface (HDMI), RCA, RF antennae, S-Video, VGA, and/or the like; wireless transceivers: 802.11a/ac/b/g/n/x; Bluetooth; cellular (e.g., code division multiple access (CDMA), high speed packet access (HSPA(+)), high-speed downlink packet access (HSDPA), global system for mobile communications (GSM), long term evolution (LTE), WiMax, etc.); and/or the like. One typical output device may include a video display, which typically comprises a Cathode Ray Tube (CRT) or Liquid Crystal Display (LCD) based monitor with an interface (e.g., DVI circuitry and cable) that accepts signals from a video interface, may be used. The video interface composites information generated by a computer systemization and generates video signals based on the composited information in a video memory frame. Another output device is a television set, which accepts signals from a video interface. Typically, the video interface provides the composited video information through a video connection interface that accepts a video display interface (e.g., an RCA composite video connector accepting an RCA composite video cable; a DVI connector accepting a DVI display cable, etc.). - Peripheral devices 1912 may be connected and/or communicate to I/O and/or other facilities of the like such as network interfaces, storage interfaces, directly to the interface bus, system bus, the CPU, and/or the like. Peripheral devices may be external, internal and/or part of the GeoTemp controller. Peripheral devices may include: antenna, audio devices (e.g., line-in, line-out, microphone input, speakers, etc.), cameras (e.g., gesture (e.g., Microsoft Kinect) detection, motion detection, still, video, webcam, etc.), dongles (e.g., for copy protection, ensuring secure transactions with a digital signature, and/or the like), external processors (for added capabilities; e.g., crypto devices 528), force-feedback devices (e.g., vibrating motors), infrared (IR) transceiver, network interfaces, printers, scanners, sensors/sensor arrays and peripheral extensions (e.g., ambient light, GPS, gyroscopes, proximity, temperature, etc.), storage devices, transceivers (e.g., cellular, GPS, etc.), video devices (e.g., goggles, monitors, etc.), video sources, visors, and/or the like. Peripheral devices often include types of input devices (e.g., cameras).
- User input devices 1911 often are a type of peripheral device 512 (see above) and may include: card readers, dongles, finger print readers, gloves, graphics tablets, joysticks, keyboards, microphones, mouse (mice), remote controls, security/biometric devices (e.g., fingerprint reader, iris reader, retina reader, etc.), touch screens (e.g., capacitive, resistive, etc.), trackballs, trackpads, styluses, and/or the like.
- It should be noted that although user input devices and peripheral devices may be employed, the GeoTemp controller may be embodied as an embedded, dedicated, and/or monitor-less (i.e., headless) device, wherein access would be provided over a network interface connection.
- Cryptographic units such as, but not limited to, microcontrollers,
processors 1926,interfaces 1927, and/ordevices 1928 may be attached, and/or communicate with the GeoTemp controller. A MC68HC16 microcontroller, manufactured by Motorola Inc., may be used for and/or within cryptographic units. The MC68HC16 microcontroller utilizes a 16-bit multiply-and-accumulate instruction in the 16 MHz configuration and requires less than one second to perform a 512-bit RSA private key operation. Cryptographic units support the authentication of communications from interacting agents, as well as allowing for anonymous transactions. Cryptographic units may also be configured as part of the CPU. Equivalent microcontrollers and/or processors may also be used. Other commercially available specialized cryptographic processors include: Broadcom's CryptoNetX and other Security Processors; nCipher's nShield; SafeNet's Luna PCI (e.g., 7100) series; Semaphore Communications' 40 MHz Roadrunner 184; Sun's Cryptographic Accelerators (e.g., Accelerator 6000 PCIe Board, Accelerator 500 Daughtercard); Via Nano Processor (e.g., L2100, L2200, U2400) line, which is capable of performing 500+MB/s of cryptographic instructions; VLSI Technology's 33 MHz 6868; and/or the like. - Generally, any mechanization and/or embodiment allowing a processor to affect the storage and/or retrieval of information is regarded as memory 1929. However, memory is a fungible technology and resource, thus, any number of memory embodiments may be employed in lieu of or in concert with one another. It is to be understood that the GeoTemp controller and/or a computer systemization may employ various forms of memory 1929. For example, a computer systemization may be configured wherein the operation of on-chip CPU memory (e.g., registers), RAM, ROM, and any other storage devices are provided by a paper punch tape or paper punch card mechanism; however, such an embodiment would result in an extremely slow rate of operation. In a typical configuration, memory 1929 will include
ROM 1906,RAM 1905, and astorage device 1914. Astorage device 1914 may be any conventional computer system storage. Storage devices may include: an array of devices (e.g., Redundant Array of Independent Disks (RAID)); a drum; a (fixed and/or removable) magnetic disk drive; a magneto-optical drive; an optical drive (i.e., Blueray, CD ROM/RAM/Recordable (R)/ReWritable (RW), DVD R/RW, HD DVD R/RW etc.); RAM drives; solid state memory devices (USB memory, solid state drives (SSD), etc.); other processor-readable storage mediums; and/or other devices of the like. Thus, a computer systemization generally requires and makes use of memory. - The memory 1929 may contain a collection of program and/or database components and/or data such as, but not limited to: operating system component(s) 1915 (operating system); information server component(s) 1916 (information server); user interface is component(s) 1917 (user interface); Web browser component(s) 1918 (Web browser); database(s) 1919; mail server component(s) 1921; mail client component(s) 1922; cryptographic server component(s) 1920 (cryptographic server); the GeoTemp component(s) 1935; the GeoTemp component 1935 including the following components: GeoTemp Layout Define 1941 (e.g., see
FIGS. 15, 16 ), item layout component 1942 (e.g., seeFIGS. 15, 16 , etc.), item allocation component 1943 (e.g., seeFIGS. 16, 17, 18 , etc.), map region component 1944 (e.g., seeFIG. 2 , etc.), map imagery retrieval component 1945 (e.g., SeeFIG. 2 , etc.), location order component 1946 (e.g., seeFIG. 11 , etc.), product item order component 1947 (e.g., seeFIG. 14 , etc.), and/or the like (i.e., collectively a component collection). These components may be stored and accessed from the storage devices and/or from storage devices accessible through an interface bus. Although non-conventional program components such as those in the component collection, typically, are stored in alocal storage device 1914, they may also be loaded and/or stored in memory such as: peripheral devices, RAM, remote storage facilities through a communications network, ROM, various forms of memory, and/or the like. - The
operating system component 1915 is an executable program component facilitating the operation of the GeoTemp controller. Typically, the operating system facilitates access of I/O, network interfaces, peripheral devices, storage devices, and/or the like. The operating system may be a highly fault tolerant, scalable, and secure system such as: Apple's Macintosh OS X (Server);AT&T Plan 9; Be OS; Blackberry's QNX; Google's Chrome; Microsoft'sWindows 7/8; Unix and Unix-like system distributions (such as AT&T's UNIX; Berkley Software Distribution (BSD) variations such as FreeBSD, NetBSD, OpenBSD, and/or the like; Linux distributions such as Red Hat, Ubuntu, and/or the like); and/or the like operating systems. However, more limited and/or less secure operating systems also may be employed such as Apple Macintosh OS, IBM OS/2, Microsoft DOS, Microsoft Windows 2000/2003/3.1/95/98/CE/Millennium/Mobile/NT/Vista/XP (Server), Palm OS, and/or the like. Additionally, for robust mobile deployment applications, mobile operating systems may be used, such as: Apple's iOS; China Operating System COS; Google's Android; Microsoft Windows RT/Phone; Palm's WebOS; Samsung/Intel's Tizen; and/or the like. An operating system may communicate to and/or with other components in a component collection, including itself, and/or the like. Most frequently, the operating system communicates with other program components, user interfaces, and/or the like. For example, the operating system may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses. The operating system, once executed by the CPU, may enable the interaction with communications networks, data, I/O, peripheral devices, program components, memory, user input devices, and/or the like. The operating system may provide communications protocols that allow the GeoTemp controller to communicate with other entities through a communications network 1913. Various communication protocols may be used by the GeoTemp controller as a subcarrier transport mechanism for interaction, such as, but not limited to: multicast, TCP/IP, UDP, unicast, and/or the like. - An
information server component 1916 is a stored program component that is executed by a CPU. The information server may be a conventional Internet information server such as, but not limited to Apache Software Foundation's Apache, Microsoft's Internet Information Server, and/or the like. The information server may allow for the execution of program components through facilities such as Active Server Page (ASP), ActiveX, (ANSI) (Objective-) C (++), C# and/or .NET, Common Gateway Interface (CGI) scripts, dynamic (D) hypertext markup language (HTML), FLASH, Java, JavaScript, Practical Extraction Report Language (PERL), Hypertext Pre-Processor (PHP), pipes, Python, wireless application protocol (WAP), WebObjects, and/or the like. The information server may support secure communications protocols such as, but not limited to, File Transfer Protocol (FTP); HyperText Transfer Protocol (HTTP); Secure Hypertext Transfer Protocol (HTTPS), Secure Socket Layer (SSL), messaging protocols (e.g., America Online (AOL) Instant Messenger (AIM), Application Exchange (APEX), ICQ, Internet Relay Chat (IRC), Microsoft Network (MSN) Messenger Service, Presence and Instant Messaging Protocol (PRIM), Internet Engineering Task Force's (IETF's) Session Initiation Protocol (SIP), SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE), open XML-based Extensible Messaging and Presence Protocol (XMPP) (i.e., Jabber or Open Mobile Alliance's (OMA's) Instant Messaging and Presence Service (IMPS)), Yahoo! Instant Messenger Service, and/or the like. The information server provides results in the form of Web pages to Web browsers, and allows for the manipulated generation of the Web pages through interaction with other program components. After a Domain Name System (DNS) resolution portion of an HTTP request is resolved to a particular information server, the information server resolves requests for information at specified locations on the GeoTemp controller based on the remainder of the HTTP request. For example, a request such as http://123.124.125.126/myInformation.html might have the IP portion of the request “123.124.125.126” resolved by a DNS server to an information server at that IP address; that information server might in turn further parse the http request for the “/myInformation.html” portion of the request and resolve it to a location in memory containing the information “myInformation.html.” Additionally, other information serving protocols may be employed across various ports, e.g., FTP communications across port 21, and/or the like. An information server may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the information server communicates with theGeoTemp database 1919, operating systems, other program components, user interfaces, Web browsers, and/or the like. - Access to the GeoTemp database may be achieved through a number of database bridge mechanisms such as through scripting languages as enumerated below (e.g., CGI) and through inter-application communication channels as enumerated below (e.g., CORBA, WebObjects, etc.). Any data requests through a Web browser are parsed through the bridge mechanism into appropriate grammars as required by the GeoTemp. In one embodiment, the information server would provide a Web form accessible by a Web browser. Entries made into supplied fields in the Web form are tagged as having been entered into the particular fields, and parsed as such. The entered terms are then passed along with the field tags, which act to instruct the parser to generate queries directed to appropriate tables and/or fields. In one embodiment, the parser may generate queries in standard SQL by instantiating a search string with the proper join/select commands based on the tagged text entries, wherein the resulting command is provided over the bridge mechanism to the GeoTemp as a query. Upon generating query results from the query, the results are passed over the bridge mechanism, and may be parsed for formatting and generation of a new results Web page by the bridge mechanism. Such a new results Web page is then provided to the information server, which may supply it to the requesting Web browser.
- Also, an information server may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
- Computer interfaces in some respects are similar to automobile operation interfaces. Automobile operation interface elements such as steering wheels, gearshifts, and speedometers facilitate the access, operation, and display of automobile resources, and status. Computer interaction interface elements such as buttons, check boxes, cursors, menus, scrollers, and windows (collectively and commonly referred to as widgets) similarly facilitate the access, capabilities, operation, and display of data and computer hardware and operating system resources, and status. Operation interfaces are commonly called user interfaces. Graphical user interfaces (GUIs) such as the Apple's iOS, Macintosh Operating System's Aqua; IBM's OS/2; Google's Chrome (e.g., and other webbrowser/cloud based client OSs); Microsoft's Windows varied UIs 2000/2003/3.1/95/98/CE/Millenium/Mobile/NT/Vista/XP (Server) (i.e., Aero, Surface, etc.); Unix's X-Windows (e.g., which may include additional Unix graphic interface libraries and layers such as K Desktop Environment (KDE), mythTV and GNU Network Object Model Environment (GNOME)), web interface libraries (e.g., ActiveX, AJAX, (D)HTML, FLASH, Java, JavaScript, etc. interface libraries such as, but not limited to, Dojo, jQuery(UI), MooTools, Prototype, script.aculo.us, SWFObject, Yahoo! User Interface, any of which may be used and) provide a baseline and means of accessing and displaying information graphically to users.
- A user interface component 1917 is a stored program component that is executed by a CPU. The user interface may be a conventional graphic user interface as provided by, with, and/or atop operating systems and/or operating environments such as already discussed. The user interface may allow for the display, execution, interaction, manipulation, and/or operation of program components and/or system facilities through textual and/or graphical facilities. The user interface provides a facility through which users may affect, interact, and/or operate a computer system. A user interface may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the user interface communicates with operating systems, other program components, and/or the like. The user interface may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
- A
Web browser component 1918 is a stored program component that is executed by a CPU. The Web browser may be a conventional hypertext viewing application such as Apple's (mobile) Safari, Google's Chrome, Microsoft Internet Explorer, Mozilla's Firefox, Netscape Navigator, and/or the like. Secure Web browsing may be supplied with 128 bit (or greater) encryption by way of HTTPS, SSL, and/or the like. Web browsers allowing for the execution of program components through facilities such as ActiveX, AJAX, (D)HTML, FLASH, Java, JavaScript, web browser plug-in APIs (e.g., FireFox, Safari Plug-in, and/or the like APIs), and/or the like. Web browsers and like information access tools may be integrated into PDAs, cellular telephones, and/or other mobile devices. A Web browser may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the Web browser communicates with information servers, operating systems, integrated program components (e.g., plug-ins), and/or the like; e.g., it may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses. Also, in place of a Web browser and information server, a combined application may be developed to perform similar operations of both. The combined application would similarly affect the obtaining and the provision of information to users, user agents, and/or the like from the GeoTemp enabled nodes. The combined application may be nugatory on systems employing standard Web browsers. - A
mail server component 1921 is a stored program component that is executed by aCPU 1903. The mail server may be a conventional Internet mail server such as, but not limited to: dovecot, Courier IMAP, Cyrus IMAP, Maildir, Microsoft Exchange, sendmail, and/or the is like. The mail server may allow for the execution of program components through facilities such as ASP, ActiveX, (ANSI) (Objective-) C (++), C# and/or .NET, CGI scripts, Java, JavaScript, PERL, PHP, pipes, Python, WebObjects, and/or the like. The mail server may support communications protocols such as, but not limited to: Internet message access protocol (IMAP), Messaging Application Programming Interface (MAPI)/Microsoft Exchange, post office protocol (POP3), simple mail transfer protocol (SMTP), and/or the like. The mail server can route, forward, and process incoming and outgoing mail messages that have been sent, relayed and/or otherwise traversing through and/or to the GeoTemp. Alternatively, the mail server component may be distributed out to mail service providing entities such as Google's cloud services (e.g., Gmail and notifications may alternatively be provided via messenger services such as AOL's Instant Messenger, Apple's iMessage, Google Messenger, SnapChat, etc.). - Access to the GeoTemp mail may be achieved through a number of APIs offered by the individual Web server components and/or the operating system.
- Also, a mail server may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, information, and/or responses.
- A
mail client component 1922 is a stored program component that is executed by aCPU 1903. The mail client may be a conventional mail viewing application such as Apple Mail, Microsoft Entourage, Microsoft Outlook, Microsoft Outlook Express, Mozilla, Thunderbird, and/or the like. Mail clients may support a number of transfer protocols, such as: IMAP, Microsoft Exchange, POP3, SMTP, and/or the like. A mail client may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the mail client communicates with mail servers, operating systems, other mail clients, and/or the like; e.g., it may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, information, and/or responses. Generally, the mail client provides a facility to compose and transmit electronic mail messages. - A
cryptographic server component 1920 is a stored program component that is executed by aCPU 1903,cryptographic processor 1926,cryptographic processor interface 1927,cryptographic processor device 1928, and/or the like. Cryptographic processor interfaces will allow for expedition of encryption and/or decryption requests by the cryptographic component; however, the cryptographic component, alternatively, may run on a conventional CPU. The cryptographic component allows for the encryption and/or decryption of provided data. The cryptographic component allows for both symmetric and asymmetric (e.g., Pretty Good Protection (PGP)) encryption and/or decryption. The cryptographic component may employ cryptographic techniques such as, but not limited to: digital certificates (e.g., X.509 authentication framework), digital signatures, dual signatures, enveloping, password access protection, public key management, and/or the like. The cryptographic component will facilitate numerous (encryption and/or decryption) security protocols such as, but not limited to: checksum, Data Encryption Standard (DES), Elliptical Curve Encryption (ECC), International Data Encryption Algorithm (IDEA), Message Digest 5 (MD5, which is a one way hash operation), passwords, Rivest Cipher (RC5), Rijndael, RSA (which is an Internet encryption and authentication system that uses an algorithm developed in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman), Secure Hash Algorithm (SHA), Secure Socket Layer (SSL), Secure Hypertext Transfer Protocol (HTTPS), Transport Layer Security (TLS), and/or the like. Employing such encryption security protocols, the GeoTemp may encrypt all incoming and/or outgoing communications and may serve as node within a virtual private network (VPN) with a wider communications network. The cryptographic component facilitates the process of “security authorization” whereby access to a resource is inhibited by a security protocol wherein the cryptographic component effects authorized access to the secured resource. In addition, the cryptographic component may provide unique identifiers of content, e.g., employing and MD5 hash to obtain a unique signature for an digital audio file. A cryptographic component may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. The cryptographic component supports encryption schemes allowing for the secure transmission of information across a communications network to enable the GeoTemp component to engage in secure transactions if so desired. The cryptographic component facilitates the secure accessing of resources on the GeoTemp and facilitates the access of secured resources on remote systems; i.e., it may act as a client and/or server of secured resources. Most frequently, the cryptographic component communicates with information servers, operating systems, other program components, and/or the like. The cryptographic component may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses. - The
GeoTemp database component 1919 may be embodied in a database and its stored data. The database is a stored program component, which is executed by the CPU; the stored program component portion configuring the CPU to process the stored data. The database may be a conventional, fault tolerant, relational, scalable, secure database such as MySQL, Oracle, Sybase, etc. may be used. Additionally, optimized fast memory and distributed databases such as IBM's Netezza, MongoDB's MongoDB, opensource Hadoop, opensource VoltDB, SAP's Hana, etc. Relational databases are an extension of a flat file. Relational databases consist of a series of related tables. The tables are interconnected via a key field. Use of the key field allows the combination of the tables by indexing against the key field; i.e., the key fields act as dimensional pivot points for combining information from various tables. Relationships generally identify links maintained between tables by matching primary keys. Primary keys represent fields that uniquely identify the rows of a table in a relational database. Alternative key fields may be used from any of the fields having unique value sets, and in some alternatives, even non-unique values in combinations with other fields. More precisely, they uniquely identify rows of a table on the “one” side of a one-to-many relationship. - Alternatively, the GeoTemp database may be implemented using various standard data-structures, such as an array, hash, (linked) list, struct, structured text file (e.g., XML), table, and/or the like. Such data-structures may be stored in memory and/or in (structured) files. In another alternative, an object-oriented database may be used, such as Frontier, ObjectStore, Poet, Zope, and/or the like. Object databases can include a number of object collections that are grouped and/or linked together by common attributes; they may be related to other object collections by some common attributes. Object-oriented databases perform similarly to relational databases with the exception that objects are not just pieces of data but may have other types of capabilities encapsulated within a given object. If the GeoTemp database is implemented as a data-structure, the use of the
GeoTemp database 1919 may be integrated into another component such as theGeoTemp component 1935. Also, the database may be implemented as a mix of data structures, objects, and relational structures. Databases may be consolidated and/or distributed in countless variations (e.g., see Distributed GeoTemp below). Portions of databases, e.g., tables, may be exported and/or imported and thus decentralized and/or integrated. - In one embodiment, the
database component 1919 includes several tables 1919 a-1: - An accounts table 1919 a includes fields such as, but not limited to: an accountID, accountOwnerID, accountContactID, assetIDs, deviceIDs, paymentIDs, transactionIDs, userIDs, accountType (e.g., agent, entity (e.g., corporate, non-profit, partnership, etc.), individual, etc.), accountCreationDate, accountUpdateDate, accountName, accountNumber, routingNumber, linkWalletsID, accountPrioritAccaountRatio, accountAddress, accountState, accountZIPcode, accountCountry, accountEmail, accountPhone, accountAuthKey, accountIPaddress, accountURLAccessCode, accountPortNo, accountAuthorizationCode, accountAccessPrivileges, accountPreferences, accountRestrictions, and/or the like;
- A users table 1919 b includes fields such as, but not limited to: a userID, userSSN, taxID, userContactID, accountID, assetIDs, deviceIDs, paymentIDs, transactionIDs, userType (e.g., agent, entity (e.g., corporate, non-profit, partnership, etc.), individual, etc.), namePrefix, firstName, middleName, lastName, nameSuffix, DateOfBirth, userAge, userName, userEmail, userSocialAccountID, contactType, contactRelationship, userPhone, userAddress, userCity, userState, userZIPCode, userCountry, userAuthorizationCode, userAccessPrivilges, userPreferences, userRestrictions, and/or the like (the user table may support and/or track multiple entity accounts on a GeoTemp);
- An devices table 1919 c includes fields such as, but not limited to: deviceID, sensorIDs, accountID, assetIDs, paymentIDs, deviceType, deviceName, deviceManufacturer, deviceModel, deviceVersion, deviceSerialNo, deviceIPaddress, deviceMACaddress, device_ECID, deviceUUID, deviceLocation, deviceCertificate, deviceOS, appIDs, deviceResources, deviceSession, authKey, deviceSecureKey, walletAppInstalledFlag, deviceAccessPrivileges, devicePreferences, deviceRestrictions, hardware_config, software_config, storage_location, sensor_value, pin_reading, data_length, channel_requirement, sensor_name, sensor_model_no, sensor_manufacturer, sensor_type, sensor_serial_number, sensor_power_requirement, device_power_requirement, location, sensor_associated_tool, sensor_dimensions, device_dimensions, sensor_communications_type, device_communications_type, power_percentage, power_condition, temperature_setting, speed_adjust, hold_duration, part_actuation, and/or the like. Device table may, in some embodiments, include fields corresponding to one or more Bluetooth profiles, such as those published at https://www.bluetooth.org/en-us/specification/adopted-specifications, and/or other device specifications, and/or the like;
- An apps table 1919 d includes fields such as, but not limited to: appID, appName, appType, appDependencies, accountID, deviceIDs, transactionID, userID, appStoreAuthKey, appStoreAccountID, appStoreIPaddress, appStoreURLaccessCode, appStorePortNo, appAccessPrivileges, appPreferences, appRestrictions, portNum, access_API_call linked_wallets_list, and/or the like;
- An assets table 1919 e includes fields such as, but not limited to: assetID, accountID, userID, distributorAccountID, distributorPaymentID, distributorOnwerlD, assetOwnerID, assetType, assetSourceDeviceID, assetSourceDeviceType, assetSourceDeviceName, assetSourceDistributionChannelID, assetSourceDistributionChannelType, assetSourceDistributionChannelName, assetTargetChannelID, assetTargetChannelType, assetTargetChannelName, assetName, assetSeriesName, assetSeriesSeason, assetSeriesEpisode, assetCode, assetQuantity, assetCost, assetPrice, assetValue, assetManufactuer, assetModelNo, assetSerialNo, assetLocation, assetAddress, assetState, assetZIPcode, assetState, assetCountry, assetEmail, assetIPaddress, assetURLaccessCode, assetOwnerAccountID, subscriptionIDs, assetAuthroizationCode, assetAccessPrivileges, assetPreferences, assetRestrictions, assetAPI, assetAPIconnectionAddress, and/or the like;
- A payments table 1919 f includes fields such as, but not limited to: paymentID, accountID, userID, couponID, couponValue, couponConditions, couponExpiration, paymentType, paymentAccountNo, paymentAccountName, paymentAccountAuthorizationCodes, paymentExpirationDate, paymentCCV, paymentRoutingNo, paymentRoutingType, paymentAddress, paymentState, paymentZIPcode, paymentCountry, paymentEmail, paymentAuthKey, paymentIPaddress, paymentURLaccessCode, paymentPortNo, paymentAccessPrivileges, paymentPreferences, payementRestrictions, and/or the like;
- An transactions table 1919 g includes fields such as, but not limited to: transactionID, accountID, assetIDs, deviceIDs, paymentIDs, transactionIDs, userID, merchantID, transactionType, transactionDate, transactionTime, transactionAmount, transactionQuantity, transactionDetails, productsList, productType, productTitle, productsSummary, productParamsList, transactionNo, transactionAccessPrivileges, transactionPreferences, transactionRestrictions, merchantAuthKey, merchantAuthCode, and/or the like;
- An merchants table 1919 h includes fields such as, but not limited to: merchantID, merchantTaxID, merchanteName, merchantContactUserID, accountID, issuerID, acquirerID, merchantEmail, merchantAddress, merchantState, merchantZIPcode, merchantCountry, merchantAuthKey, merchantIPaddress, portNum, merchantURLaccessCode, merchantPortNo, merchantAccessPrivileges, merchantPreferences, merchantRestrictions, and/or the like;
- An ads table 1919 i includes fields such as, but not limited to: adID, advertiserID, adMerchantID, adNetworkID, adName, adTags, advertiserName, adSponsor, adTime, adGeo, adAttributes, adFormat, adProduct, adText, adMedia, adMedialD, adChannelID, adTagTime, adAudioSignature, adHash, adTemplateID, adTemplateData, adSourceID, adSourceName, adSourceServerIP, adSourceURL, adSourceSecurityProtocol, adSourceFTP, adAuthKey, adAccessPrivileges, adPreferences, adRestrictions, adNetworkXchangeID, adNetworkXchangeName, adNetworkXchangeCost, adNetworkXchangeMetricType (e.g., CPA, CPC, CPM, CTR, etc.), adNetworkXchangeMetricValue, adNetworkXchangeServer, adNetworkXchangePortNumber, publisherID, publisherAddress, publisherURL, publisherTag, publisherIndustry, publisherName, publisherDescription, siteDomain, siteURL, siteContent, siteTag, siteContext, sitelmpression, siteVisits, siteHeadline, sitePage, siteAdPrice, sitePlacement, sitePosition, bidID, bidExchange, bidOS, bidTarget, bidTimestamp, bidPrice, bidImpressionID, bidType, bidScore, adType (e.g., mobile, desktop, wearable, largescreen, interstitial, etc.), assetID, merchantID, deviceID, userID, accountlD, impressionID, impressionOS, impressionTimeStamp, impressionGeo, impressionAction, impressionType, impressionPublisherID, impressionPublisherURL, and/or the like;
- An map imagery table 1919 j includes fields such as, but not limited to: mapID, longitudeValue, latitudeValue, boundingRegionArrayValues, locationName, resortName, locationAddress, resortID, mapVersion, mapType, mapServer, mapBoundingRegion, mapZoom, mapDateTime, regionLayoutID, assetID, merchantID, deviceID, userID, accountID, impressionID, impressionOS, impressionTimeStamp, impressionGeo, impressionAction, impressionType, impressionPublisherID, impressionPublisherURL, and/or the like;
- An map boundaries table 1919 k includes fields such as, but not limited to: mapBoundryID, regionLatVal, regionLonVal, regionRadius, regionBoundingArrayValues, regionDateTime, regionLayoutID, mapID, assetID, merchantID, deviceID, userID, accountID, impressionID, impressionOS, impressionTimeStamp, impressionGeo, impressionAction, impressionType, impressionPublisherID, impressionPublisherURL, and/or the like;
- An location layout table 19191 includes fields such as, but not limited to: regionLayoutID, layoutLatVal, layoutLonVal, layoutRadius, layoutBoundingArrayValues, layoutXgridVal, layoutYgridVal, layoutTimeVal, layoutDateTime, mapBoundryID, mapID, assetID, merchantID, deviceID, userID, accountID, impressionID, impressionOS, impressionTimeStamp, impressionGeo, impressionAction, impressionType, impressionPublisherID, impressionPublisherURL, and/or the like.
- In one embodiment, the GeoTemp database may interact with other database systems. For example, employing a distributed database system, queries and data access by search GeoTemp component may treat the combination of the GeoTemp database, an integrated data security layer database as a single database entity (e.g., see Distributed GeoTemp below).
- In one embodiment, user programs may contain various user interface primitives, which may serve to update the GeoTemp. Also, various accounts may require custom database tables depending upon the environments and the types of clients the GeoTemp may need to serve. It should be noted that any unique fields may be designated as a key field throughout. In an alternative embodiment, these tables have been decentralized into their own databases and their respective database controllers (i.e., individual database controllers for each of the above tables). Employing standard data processing techniques, one may further distribute the databases over several computer systemizations and/or storage devices. Similarly, configurations of the decentralized database controllers may be varied by consolidating and/or distributing the
various database components 1919 a-1. The GeoTemp may be configured to keep track of various settings, inputs, and parameters via database controllers. - The GeoTemp database may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the GeoTemp database communicates with the GeoTemp component, other program components, and/or the like. The database may contain, retain, and provide information regarding other nodes and data.
- The
GeoTemp component 1935 is a stored program component that is executed by a CPU. In one embodiment, the GeoTemp component incorporates any and/or all combinations of the aspects of the GeoTemp that was discussed in the previous figures. As such, the GeoTemp affects accessing, obtaining and the provision of information, services, transactions, and/or the like across various communications networks. The features and embodiments of the GeoTemp discussed herein increase network efficiency by reducing data transfer requirements the use of more efficient data structures and mechanisms for their transfer and storage. As a consequence, more data may be transferred in less time, and latencies with regard to transactions, are also reduced. In many cases, such reduction in storage, transfer time, bandwidth requirements, latencies, etc., will reduce the capacity and structural infrastructure requirements to support the GeoTemp's features and facilities, and in many cases reduce the costs, energy consumption/requirements, and extend the life of GeoTemp's underlying infrastructure; this has the added benefit of making the GeoTemp more reliable. Similarly, many of the features and mechanisms are designed to be easier for users to use and access, thereby broadening the audience that may enjoy/employ and exploit the feature sets of the GeoTemp; such ease of use also helps to increase the reliability of the GeoTemp. In addition, the feature sets include heightened security as noted via theCryptographic components - The GeoTemp transforms user requested area (202), user layout request (1102), user request for product items (1402), layout, section, unit/item position, zone, user item selection inputs, via GeoTemp components (e.g.,
GeoTemp 1935, GeoTemp Layout Define 1941, item layout 1942, item allocation 1943, map region 1944, map imagery retrieval 1945,location order 1946, product item order component 1947), into location map (230), layout position (1135), booking (1026), goods services dispatch (1326, 1430), item reservation, item directions, inventory request, inventory delivery outputs. - The GeoTemp component enabling access of information between nodes may be developed by employing standard development tools and languages such as, but not limited to: Apache components, Assembly, ActiveX, binary executables, (ANSI) (Objective-) C (++), C#and/or .NET, database adapters, CGI scripts, Java, JavaScript, mapping tools, procedural and object oriented development tools, PERL, PHP, Python, shell scripts, SQL commands, web application server extensions, web development environments and libraries (e.g., Microsoft's ActiveX; Adobe AIR, FLEX & FLASH; AJAX; (D)HTML; Dojo, Java; JavaScript; jQuery(UI); MooTools; Prototype; script.aculo.us; Simple Object Access Protocol (SOAP); SWFObject; Yahoo! User Interface; and/or the like), WebObjects, and/or the like. In one embodiment, the GeoTemp server employs a cryptographic server to encrypt and decrypt communications. The GeoTemp component may communicate to and/or with other components in a component collection, including itself, and/or facilities of the like. Most frequently, the GeoTemp component communicates with the GeoTemp database, operating systems, other program components, and/or the like. The GeoTemp may contain, communicate, generate, obtain, and/or provide program component, system, user, and/or data communications, requests, and/or responses.
- The structure and/or operation of any of the GeoTemp node controller components may be combined, consolidated, and/or distributed in any number of ways to facilitate development and/or deployment. Similarly, the component collection may be combined in any number of ways to facilitate deployment and/or development. To accomplish this, one may integrate the components into a common code base or in a facility that can dynamically load the components on demand in an integrated fashion. As such a combination of hardware may be distributed within a location, within a region and/or globally where logical access to a controller may be abstracted as a singular node, yet where a multitude of private, semiprivate and publically accessible node controllers (e.g., via dispersed data centers) are coordinated to serve requests (e.g., providing private cloud, semi-private cloud, and public cloud computing resources) and allowing for the serving of such requests in discrete regions (e.g., isolated, local, regional, national, global cloud access).
- The component collection may be consolidated and/or distributed in countless variations through standard data processing and/or development techniques. Multiple instances of any one of the program components in the program component collection may be instantiated on a single node, and/or across numerous nodes to improve performance through load-balancing and/or data-processing techniques. Furthermore, single instances may also be distributed across multiple controllers and/or storage devices; e.g., databases. All program component instances and controllers working in concert may do so through standard data processing communication techniques.
- The configuration of the GeoTemp controller will depend on the context of system deployment. Factors such as, but not limited to, the budget, capacity, location, and/or use of the underlying hardware resources may affect deployment requirements and configuration. Regardless of if the configuration results in more consolidated and/or integrated program components, results in a more distributed series of program components, and/or results in some combination between a consolidated and distributed configuration, data may be communicated, obtained, and/or provided. Instances of components consolidated into a common code base from the program component collection may communicate, obtain, and/or provide data. This may be accomplished through intra-application data processing communication techniques such as, but not limited to: data referencing (e.g., pointers), internal messaging, object instance variable communication, shared memory space, variable passing, and/or the like. For example, cloud services such as Amazon Data Services, Microsoft Azure, Hewlett Packard Helion, IBM Cloud services allow for GeoTemp controller and/or GeoTemp component collections to be hosted in full or partially for varying degrees of scale.
- If component collection components are discrete, separate, and/or external to one another, then communicating, obtaining, and/or providing data with and/or to other component components may be accomplished through inter-application data processing communication techniques such as, but not limited to: Application Program Interfaces (API) information passage; (distributed) Component Object Model ((D)COM), (Distributed) Object Linking and Embedding ((D)OLE), and/or the like), Common Object Request Broker Architecture (CORBA), Jini local and remote application program interfaces, JavaScript Object Notation (JSON), Remote Method Invocation (RMI), SOAP, process pipes, shared files, and/or the like. Messages sent between discrete component components for inter-application communication or within memory spaces of a singular component for intra-application communication may be facilitated through the creation and parsing of a grammar. A grammar may be developed by using development tools such as lex, yacc, XML, and/or the like, which allow for grammar generation and parsing capabilities, which in turn may form the basis of communication messages within and between components.
- For example, a grammar may be arranged to recognize the tokens of an HTTP post command, e.g.:
-
- w3c -post http:// . . . Value1
- where Value1 is discerned as being a parameter because “http://” is part of the grammar syntax, and what follows is considered part of the post value. Similarly, with such a grammar, a variable “Value1” may be inserted into an “http://” post command and then sent. The grammar syntax itself may be presented as structured data that is interpreted and/or otherwise used to generate the parsing mechanism (e.g., a syntax description text file as processed by lex, yacc, etc.). Also, once the parsing mechanism is generated and/or instantiated, it itself may process and/or parse structured data such as, but not limited to: character (e.g., tab) delineated text, HTML, structured text streams, XML, and/or the like structured data. In another embodiment, inter-application data processing protocols themselves may have integrated and/or readily available parsers (e.g., JSON, SOAP, and/or like parsers) that may be employed to parse (e.g., communications) data. Further, the parsing grammar may be used beyond message parsing, but may also be used to parse: databases, data collections, data stores, structured data, and/or the like. Again, the desired configuration will depend upon the context, environment, and requirements of system deployment.
- For example, in some implementations, the GeoTemp controller may be executing a PHP script implementing a Secure Sockets Layer (“SSL”) socket server via the information server, which listens to incoming communications on a server port to which a client may send data, e.g., data encoded in JSON format. Upon identifying an incoming communication, the PHP script may read the incoming message from the client device, parse the received JSON-encoded text data to extract information from the JSON-encoded text data into PHP script variables, and store the data (e.g., client identifying information, etc.) and/or extracted information in a relational database accessible using the Structured Query Language (“SQL”). An exemplary listing, written substantially in the form of PHP/SQL commands, to accept JSON-encoded input data from a client device via a SSL connection, parse the data to extract variables, and store the data to a database, is provided below:
-
<?PHP header( ′Content-Type: text/plain′ ); // set ip address and port to listen to for incoming data $address = ′192.168.0.100′; $port = 255; // create a server-side SSL socket, listen for/accept incoming communication $sock = socket_create(AF_INET, SOCK_STREAM, 0); socket_bind($sock, $address, $port) or die(′Could not bind to address′); socket_listen($sock); $client = socket_accept($sock); // read input data from client device in 1024 byte blocks until end of message do { $input = ″″; $input = socket_read($client, 1024); $data .= $input; } while($input != ″″); // parse data to extract variables $obj = json_decode($data, true); // store input data in a database mysql_connect(″201.408.185.132″,$DBserver,$password); // access database server mysql_select(″CLIENT_DB.SQL″); // select database to append mysql_query(″INSERT INTO UserTable (transmission) VALUES ($data)″); // add data to UserTable table in a CLIENT database mysql_close(″CLIENT_DB.SQL″); // close connection to database ?> - Also, the following resources may be used to provide example embodiments regarding SOAP parser implementation:
-
http://www.xav.com/perl/site/lib/SOAP/Parser.html http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/ index.jsp?topic=/com.ibm.I BMDI.doc/referenceguide295.htm
and other parser implementations: -
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/ index.jsp?topic=/com.ibm.I BMDI.doc/referenceguide259.htm
all of which are hereby expressly incorporated by reference. - In order to address various issues and advance the art, the entirety of this application for Ad Hoc Item Geo Temporal Location and Allocation Apparatuses, Methods and Systems (including the Cover Page, Title, Headings, Field, Background, Summary, Brief Description of the Drawings, Detailed Description, Claims, Abstract, Figures, Appendices, and otherwise) shows, by way of illustration, various embodiments in which the claimed innovations may be practiced. The advantages and features of the application are of a representative sample of embodiments only, and are not exhaustive and/or exclusive. They are presented only to assist in understanding and teach the claimed principles. It should be understood that they are not representative of all claimed innovations. As such, certain aspects of the disclosure have not been discussed herein. That alternate embodiments may not have been presented for a specific portion of the innovations or that further undescribed alternate embodiments may be available for a portion is not to be considered a disclaimer of those alternate embodiments. It will be appreciated that many of those undescribed embodiments incorporate the same principles of the innovations and others are equivalent. Thus, it is to be understood that other embodiments may be utilized and functional, logical, operational, organizational, structural and/or topological modifications may be made without departing from the scope and/or spirit of the disclosure. As such, all examples and/or embodiments are deemed to be non-limiting throughout this disclosure. Further and to the extent any financial and/or investment examples are included, such examples are for illustrative purpose(s) only, and are not, nor should they be interpreted, as investment advice. Also, no inference should be drawn regarding those embodiments discussed herein relative to those not discussed herein other than it is as such for purposes of reducing space and repetition. For instance, it is to be understood that the logical and/or topological structure of any combination of any program components (a component collection), other components, data flow order, logic flow order, and/or any present feature sets as described in the figures and/or throughout are not limited to a fixed operating order and/or arrangement, but rather, any disclosed order is exemplary and all equivalents, regardless of order, are contemplated by the disclosure. Similarly, descriptions of embodiments disclosed throughout this disclosure, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of described embodiments. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should not be construed to limit embodiments, and instead, again, are offered for convenience of description of orientation. These relative descriptors are for convenience of description only and do not require that any embodiments be constructed or operated in a particular orientation unless explicitly indicated as such. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar may refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. Furthermore, it is to be understood that such features are not limited to serial execution, but rather, any number of threads, processes, services, servers, and/or the like that may execute asynchronously, concurrently, in parallel, simultaneously, synchronously, and/or the like are contemplated by the disclosure. As such, some of these features may be mutually contradictory, in that they cannot be simultaneously present in a single embodiment. Similarly, some features are applicable to one aspect of the innovations, and inapplicable to others. In addition, the disclosure includes other innovations not presently claimed. Applicant reserves all rights in those presently unclaimed innovations including the right to claim such innovations, file additional applications, continuations, continuations in part, divisions, and/or the like thereof. As such, it should be understood that advantages, embodiments, examples, functional, features, logical, operational, organizational, structural, topological, and/or other aspects of the disclosure are not to be considered limitations on the disclosure as defined by the claims or limitations on equivalents to the claims. It is to be understood that, depending on the particular needs and/or characteristics of a GeoTemp individual and/or enterprise user, database configuration and/or relational model, data type, data transmission and/or network framework, syntax structure, and/or the like, various embodiments of the GeoTemp, may be implemented that enable a great deal of flexibility and customization. For example, aspects of the GeoTemp may be adapted for beaches, seats, stadiums, generalized items. While various embodiments and discussions of the GeoTemp have included geo-location and inventory allocation, however, it is to be understood that the embodiments described herein may be readily configured and/or customized for a wide variety of other applications and/or implementations.
Claims (31)
1. An ad hoc geographical and temporal mapping and item allocation apparatus, comprising:
a memory;
a component collection in the memory, including:
a processor disposed in communication with the memory, and configured to issue a plurality of processing instructions from the component collection stored in the memory,
wherein the processor issues instructions from the component collection, stored in the memory, to:
obtain geographical layout message,
wherein the geographical layout message includes: an initial bounding region definition with associated geographical position coordinates, an initial temporal state, an initial section region, an initial zone, an initial asset item, a destination bounding region definition with associated geographical position coordinates, a temporal duration, a destination section region, a destination zone, a destination asset item;
composite a geo-temporal map including asset items allocated within the confines defined by the geographical layout message;
obtain an asset selection message from a user,
wherein the asset selection message includes an asset item identifier;
allocate a selected asset for the user;
update inventory availability accounting for the selected asset;
provide updated composite geo-temporal map including updated inventory availability.
2. The apparatus of claim 1 , further, comprising: generating a charge to the user for allocation of the asset.
3. The apparatus of claim 1 , further, comprising: providing gps coordinates for the allocated asset.
4. A geographical and temporal mapping and item allocation apparatus, comprising:
a memory;
a component collection in the memory, including:
a processor disposed in communication with the memory, and configured to issue a plurality of processing instructions from the component collection stored in the memory,
wherein the processor issues instructions from the component collection, stored in the memory, to:
receive a venue indicator;
receive a seating bounding region with associated geographical position coordinates;
receive a selection from a user to participate in activities within the seating bounding region;
generate a database query to retrieve a seating activity layout template for the selected seating bounding region;
composite the retrieved seating activity layout template with the selected seating bounding region.
5. The geographical and temporal mapping and item allocation apparatus of claim 4 , wherein the processor further issues instructions from the component collection, stored in the memory, to:
interact with items within the retrieved seating activity layout template.
6. The geographical and temporal mapping and item allocation apparatus of claim 5 , wherein the processor further issues instructions from the component collection, stored in the memory, to:
obtain a selection for an item in the retrieved seating activity layout template, indicative of a desire to reserve a spot having X-Y coordinates and temporal stay coordinates.
7. The geographical and temporal mapping and item allocation apparatus of claim 6 , wherein the processor further issues instructions from the component collection, stored in the memory, to:
obtain a selection for additional products and services to be provided in the reserved spot at a specified temporal coordinate.
8. The geographical and temporal mapping and item allocation apparatus of claim 4 , wherein the processor further issues instructions from the component collection, stored in the memory, to:
obtain an initial composite of the seating boundary region;
load a grid associated with the initial composite to produce a second composite;
select a portion of the second composite for finer selection of a region for further interaction by a user.
9. The geographical and temporal mapping and item allocation apparatus of claim 4 , wherein the processor further issues instructions from the component collection, stored in the memory, to:
obtain a selection for additional products and services to be provided in the reserved spot at a specified temporal coordinate, wherein the additional products include at least one of: a lounge chair, a beach chair, and a beach umbrella.
10. The geographical and temporal mapping and item allocation apparatus of claim 4 , wherein the processor further issues instructions from the component collection, stored in the memory, to:
obtain a selection for additional products and services to be provided in the reserved spot at a specified temporal coordinate, wherein the additional services include receiving suncare products, beverages, snacks and meals.
11. A geographical and temporal mapping and item allocation system, comprising:
memory means; and
component collection means in the memory means to issue instructions to:
receive a venue indicator;
receive a seating bounding region with associated geographical position coordinates;
receive a selection from a user to participate in activities within the seating bounding region;
generate a database query to retrieve a seating activity layout template for the selected seating bounding region;
composite the retrieved seating activity layout template with the selected seating bounding region.
12. The geographical and temporal mapping and item allocation system of claim 11 , wherein the component means further issues instructions to:
interact with items within the retrieved seating activity layout template.
13. The geographical and temporal mapping and item allocation system of claim 11 , wherein the component means further issues instructions to:
obtain a selection for an item in the retrieved seating activity layout template, indicative of a desire to reserve a spot having X-Y coordinates and temporal stay coordinates.
14. The geographical and temporal mapping and item allocation system of claim 11 , wherein the component means further issues instructions to:
obtain a selection for additional products and services to be provided in the reserved spot at a specified temporal coordinate.
15. The geographical and temporal mapping and item allocation system of claim 11 , wherein the component means further issues instructions to:
obtain an initial composite of the seating boundary region;
load a grid associated with the initial composite to produce a second composite;
select a portion of the second composite for finer selection of a region for further interaction by a user.
16. The geographical and temporal mapping and item allocation system of claim 14 , wherein the component means further issues instructions to:
obtain a selection for additional products and services to be provided in the reserved spot at a specified temporal coordinate, wherein the additional products include at least one of: a lounge chair, a beach chair, and a beach umbrella.
17. The geographical and temporal mapping and item allocation system of claim 14 , wherein the component means further issues instructions to:
obtain a selection for additional products and services to be provided in the reserved spot at a specified temporal coordinate, wherein the additional services include receiving suncare products, beverages, snacks and meals.
18. A processor-readable geographical and temporal mapping and item allocation non-transient medium storing processor-executable components, the components, comprising:
a component collection stored in the medium, includes processor-issuable instructions to:
receive a venue indicator;
receive a seating bounding region with associated geographical position coordinates;
receive a selection from a user to participate in activities within the seating bounding region;
generate a database query to retrieve a seating activity layout template for the selected seating bounding region;
composite the retrieved seating activity layout template with the selected seating bounding region.
19. The processor-readable geographical and temporal mapping and item allocation non-transient medium storing processor-executable components of claim 18 , wherein the component collection further issues instructions to:
s interact with items within the retrieved seating activity layout template.
20. The processor-readable geographical and temporal mapping and item allocation non-transient medium storing processor-executable components of claim 18 , wherein the component collection further issues instructions to:
obtain a selection for an item in the retrieved seating activity layout template, indicative of a desire to reserve a spot having X-Y coordinates and temporal stay coordinates.
21. The processor-readable geographical and temporal mapping and item allocation non-transient medium storing processor-executable components of claim 18 , wherein the component collection further issues instructions to:
obtain a selection for additional products and services to be provided in the reserved spot at a specified temporal coordinate.
22. The processor-readable geographical and temporal mapping and item allocation non-transient medium storing processor-executable components of claim 18 , wherein the component collection further issues instructions to:
obtain an initial composite of the seating boundary region;
load a grid associated with the initial composite to produce a second composite;
select a portion of the second composite for finer selection of a region for further interaction by a user.
23. The processor-readable geographical and temporal mapping and item allocation non-transient medium storing processor-executable components of claim 21 , wherein the component collection further issues instructions to:
obtain a selection for additional products and services to be provided in the reserved spot at a specified temporal coordinate, wherein the additional products include at least one of: a lounge chair, a beach chair, and a beach umbrella.
24. The processor-readable geographical and temporal mapping and item allocation non-transient medium storing processor-executable components of claim 21 , wherein the component collection further issues instructions to:
obtain a selection for additional products and services to be provided in the reserved spot at a specified temporal coordinate, wherein the additional services include receiving suncare products, beverages, snacks and meals.
25. A processor-implemented geographical and temporal mapping and item allocation method, comprising:
receiving, via a processor, a venue indicator;
receiving, via the processor, a seating bounding region with associated geographical position coordinates;
receiving via the processor, a selection from a user to participate in activities within the seating bounding region;
generating, via the processor, a database query to retrieve a seating activity layout template for the selected seating bounding region;
compositing, via the processor, the retrieved seating activity layout template with the selected seating bounding region.
26. The geographical and temporal mapping and item allocation method of claim 25 , further comprising:
interacting, via the processor, with items within the retrieved seating activity layout template.
27. The geographical and temporal mapping and item allocation method of claim 25 , further comprising:
obtaining, via the processor, a selection for an item in the retrieved seating activity layout template, indicative of a desire to reserve a spot having X-Y coordinates and temporal stay coordinates.
28. The geographical and temporal mapping and item allocation method of claim 27 , further comprising:
obtaining, via the processor, a selection for additional products and services to be provided in the reserved spot at a specified temporal coordinate.
29. The geographical and temporal mapping and item allocation method of claim 25 , further comprising:
obtaining, via the processor, an initial composite of the seating boundary region;
loading, via the processor, a grid associated with the initial composite to produce a second composite;
selecting, via the processor, a portion of the second composite for finer selection of a region for further interaction by a user.
30. The geographical and temporal mapping and item allocation method of claim 25 , further comprising:
obtaining, via the processor, a selection for additional products and services to be provided in the reserved spot at a specified temporal coordinate, wherein the additional products include at least one of: a lounge chair, a beach chair, and a beach umbrella.
31. The geographical and temporal mapping and item allocation method of claim 25 , further comprising:
obtaining, via the processor, a selection for additional products and services to be provided in the reserved spot at a specified temporal coordinate, wherein the additional services include receiving suncare products, beverages, snacks and meals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/396,755 US20220005108A1 (en) | 2016-07-10 | 2021-08-08 | Ad Hoc Item Geo Temporal Location and Allocation Apparatuses, Methods and Systems |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662360454P | 2016-07-10 | 2016-07-10 | |
US15/645,934 US11107150B2 (en) | 2016-07-10 | 2017-07-10 | Ad Hoc item Geo temporal location and allocation apparatuses, methods and systems |
US17/396,755 US20220005108A1 (en) | 2016-07-10 | 2021-08-08 | Ad Hoc Item Geo Temporal Location and Allocation Apparatuses, Methods and Systems |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/645,934 Continuation US11107150B2 (en) | 2016-07-10 | 2017-07-10 | Ad Hoc item Geo temporal location and allocation apparatuses, methods and systems |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220005108A1 true US20220005108A1 (en) | 2022-01-06 |
Family
ID=60911052
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/645,934 Active 2039-03-09 US11107150B2 (en) | 2016-07-10 | 2017-07-10 | Ad Hoc item Geo temporal location and allocation apparatuses, methods and systems |
US17/396,755 Pending US20220005108A1 (en) | 2016-07-10 | 2021-08-08 | Ad Hoc Item Geo Temporal Location and Allocation Apparatuses, Methods and Systems |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/645,934 Active 2039-03-09 US11107150B2 (en) | 2016-07-10 | 2017-07-10 | Ad Hoc item Geo temporal location and allocation apparatuses, methods and systems |
Country Status (2)
Country | Link |
---|---|
US (2) | US11107150B2 (en) |
WO (1) | WO2018013496A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10922279B1 (en) | 2016-12-30 | 2021-02-16 | Groupon, Inc. | Server for ingesting and updating renderable data objects from a flat file server |
USD871428S1 (en) * | 2017-01-23 | 2019-12-31 | Tixtrack, Inc. | Display panel or portion thereof with graphical user interface |
US20190012615A1 (en) * | 2017-07-10 | 2019-01-10 | Broker Genius, Inc. | System and Apparatus for the Display and Selection of Listings and Splits |
EP3842977A4 (en) * | 2018-08-21 | 2022-04-06 | Matsunaga, Chikara | System and method for assisting usage of usage object |
US11689707B2 (en) * | 2018-09-20 | 2023-06-27 | Shoppertrak Rct Llc | Techniques for calibrating a stereoscopic camera in a device |
US11087103B2 (en) | 2019-07-02 | 2021-08-10 | Target Brands, Inc. | Adaptive spatial granularity based on system performance |
CN116051005B (en) * | 2023-03-31 | 2023-07-21 | 深圳市渐近线科技有限公司 | Product management method and system in intelligent warehouse system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2896815A1 (en) * | 2012-12-31 | 2014-07-03 | Stubhub, Inc. | Enhanced two-dimensional seat map |
US20140195277A1 (en) * | 2013-01-05 | 2014-07-10 | Stanley H. Kim | Systems and methods for generating dynamic seating charts |
US20150356501A1 (en) * | 2014-06-09 | 2015-12-10 | Clowd Lab LLC | Delivery to mobile devices |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070112511A1 (en) * | 2005-11-17 | 2007-05-17 | Digital Cyclone, Inc. | Mobile geo-temporal information manager |
US7450003B2 (en) * | 2006-02-24 | 2008-11-11 | Yahoo! Inc. | User-defined private maps |
US7417547B2 (en) * | 2006-03-02 | 2008-08-26 | International Business Machines Corporation | Dynamic inventory management of deployed assets |
US8504512B2 (en) * | 2009-12-02 | 2013-08-06 | Microsoft Corporation | Identifying geospatial patterns from device data |
US8749549B2 (en) * | 2011-06-10 | 2014-06-10 | Schlumberger Technology Corporation | Prospect assessment and play chance mapping tools |
US8566866B1 (en) * | 2012-05-09 | 2013-10-22 | Bluefin Labs, Inc. | Web identity to social media identity correlation |
-
2017
- 2017-07-10 WO PCT/US2017/041412 patent/WO2018013496A1/en active Application Filing
- 2017-07-10 US US15/645,934 patent/US11107150B2/en active Active
-
2021
- 2021-08-08 US US17/396,755 patent/US20220005108A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2896815A1 (en) * | 2012-12-31 | 2014-07-03 | Stubhub, Inc. | Enhanced two-dimensional seat map |
CA2896815C (en) * | 2012-12-31 | 2023-03-28 | Stubhub, Inc. | Enhanced two-dimensional seat map |
US20140195277A1 (en) * | 2013-01-05 | 2014-07-10 | Stanley H. Kim | Systems and methods for generating dynamic seating charts |
US20150356501A1 (en) * | 2014-06-09 | 2015-12-10 | Clowd Lab LLC | Delivery to mobile devices |
Also Published As
Publication number | Publication date |
---|---|
WO2018013496A1 (en) | 2018-01-18 |
US11107150B2 (en) | 2021-08-31 |
US20180012290A1 (en) | 2018-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220005108A1 (en) | Ad Hoc Item Geo Temporal Location and Allocation Apparatuses, Methods and Systems | |
US10659547B2 (en) | Actionable notifications apparatuses, methods and systems | |
US20150356610A1 (en) | Realtime Realworld and Online Activity Correlation and Inventory Management Apparatuses, Methods and Systems | |
US10262148B2 (en) | Secure dynamic page content and layouts apparatuses, methods and systems | |
US9953378B2 (en) | Social checkout widget generation and integration apparatuses, methods and systems | |
US11004064B2 (en) | Dynamic checkout button apparatuses, methods and systems | |
US20130212487A1 (en) | Dynamic Page Content and Layouts Apparatuses, Methods and Systems | |
US20140164167A1 (en) | Commerce facilitation apparatuses, methods and systems | |
US20110264582A1 (en) | Direct bill payment apparatuses, methods and systems | |
US9898735B2 (en) | Dynamic checkout button apparatuses, methods and systems | |
US11308227B2 (en) | Secure dynamic page content and layouts apparatuses, methods and systems | |
US20210035033A1 (en) | Automated best rate guarantee | |
US20200019584A1 (en) | Supra Boundary Web Compositor Apparatuses, Methods and Systems | |
US20180276702A1 (en) | Eco Advantage Mediation Apparatuses, Methods and Systems | |
US20150170186A1 (en) | Eco Advantage Mediation Apparatuses, Methods and Systems | |
US11354443B2 (en) | System and method for providing customizable property management services enabling increased transparency and communication | |
EP2852929A2 (en) | Eco advantage mediation apparatuses, methods and systems | |
US20180129983A1 (en) | Rewards system for rewarding users for booking lodging | |
EP3146481A1 (en) | Automated best rate guarantee |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |