US20210408550A1 - Protective layers in lithium-ion electrochemical cells and associated electrodes and methods - Google Patents

Protective layers in lithium-ion electrochemical cells and associated electrodes and methods Download PDF

Info

Publication number
US20210408550A1
US20210408550A1 US17/344,128 US202117344128A US2021408550A1 US 20210408550 A1 US20210408550 A1 US 20210408550A1 US 202117344128 A US202117344128 A US 202117344128A US 2021408550 A1 US2021408550 A1 US 2021408550A1
Authority
US
United States
Prior art keywords
lithium
ion
less
conductive layer
electrochemical cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/344,128
Inventor
Zhaohui Liao
Chariclea Scordilis-Kelley
Tracy Earl Kelley
Michael G. Laramie
Yuriy V. Mikhaylik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sion Power Corp
Original Assignee
Sion Power Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sion Power Corp filed Critical Sion Power Corp
Priority to US17/344,128 priority Critical patent/US20210408550A1/en
Publication of US20210408550A1 publication Critical patent/US20210408550A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Lithium-ion electrochemical cells are a family of electrochemical cells in which lithium ions are transported between an anode and a cathode during charge and discharge.
  • Typical lithium-ion electrochemical cells include a lithium intercalation compound-based cathode paired with a carbon-comprising anode such as graphite.
  • a lithium intercalation electrode comprises a layer comprising an electroactive material (i.e., an electroactive layer), wherein the electroactive material is a lithium intercalation compound.
  • the electrode also includes an inorganic lithium-ion-conductive layer disposed on a surface of the layer comprising the electroactive material.
  • the lithium intercalation electrode comprises a layer comprising an electroactive material.
  • the electroactive material is a lithium intercalation compound.
  • an inorganic lithium-ion-conductive layer is integrated with the layer comprising the electroactive material.
  • the lithium-ion-conductive layer has a thickness of at least 0.1 microns.
  • a method of fabricating a lithium intercalation electrode comprises depositing an inorganic lithium-ion-conductive layer on a layer comprising an electroactive material.
  • the electroactive material is a lithium intercalation compound.
  • an electrochemical cell comprises a first, lithium intercalation electrode including a layer comprising an electroactive material, and an inorganic lithium-ion-conductive layer integrated with the layer comprising the electroactive material.
  • the inorganic lithium-ion-conductive layer may comprise lithium.
  • the electrochemical cell also includes a second electrode and an electrolyte. At least a portion of the first lithium intercalation electrode is in contact with the electrolyte.
  • a method comprises cycling an electrochemical cell comprising a first, lithium intercalation electrode including a layer comprising an electroactive material, and an inorganic lithium-ion-conductive layer integrated with the layer comprising the electroactive material.
  • the inorganic lithium-ion-conductive layer may comprise lithium.
  • the electrochemical cell also includes a second electrode. The method involves substantially inhibiting a species decomposed from the first, lithium intercalation electrode, or a species decomposed from the electrolyte, from residing at the second electrode.
  • an electrode in another aspect, is described.
  • the electrode comprises a layer comprising an electroactive material.
  • at least a portion of the electroactive material is in direct contact with an electrolyte and/or the layer is porous and/or the layer comprises a plurality of particles of the electroactive material.
  • the first electrode comprises an inorganic lithium-ion-conductive layer integrated with the layer comprising the electroactive material.
  • a method of fabricating an electrode comprises depositing an inorganic lithium-ion-conductive layer on a layer comprising an electroactive material.
  • the layer comprising the electroactive material is porous and/or comprises a plurality of particles.
  • the inorganic lithium-ion-conductive layer comprises lithium.
  • FIG. 1 is a cross-sectional schematic illustration of an electrode, according to some embodiments.
  • FIG. 2 is a cross-sectional schematic illustration of an electrode, according to some embodiments.
  • FIGS. 3A-3B are cross-sectional schematic illustrations of an electrochemical cell, according to some embodiments, comprising: (A) a lithium-ion-conductive layer integrated with a first electroactive-material-containing layer; and (B) a lithium-ion-conductive layer integrated with a second, different electroactive-material-containing layer;
  • FIG. 4 is a cross-sectional schematic illustration of an electrochemical cell comprising a first lithium-ion-conductive layer integrated with a first electroactive-material-containing layer and a second lithium-ion-conductive layer integrated with a second electroactive-material-containing layer, according to some embodiments;
  • FIG. 5 is a cross-sectional schematic illustration of an electrochemical cell comprising first and second electroactive-material-containing layers, a lithium-ion-conductive layer, a separator, and first and second substrates, according to some embodiments;
  • FIG. 6 is a cross-sectional schematic illustration of an electrochemical cell comprising first and second electroactive-material-containing layers, first and second lithium-ion-conductive layers, a separator, and first and second substrates, according to some embodiments;
  • FIG. 7 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a graphite anode and a lithium oxide-coated lithium iron phosphate (LFP) cathode, according to some embodiments;
  • LFP lithium oxide-coated lithium iron phosphate
  • FIGS. 8A-8B are scanning electron microscope (SEM) images of a cross-sectional view of a lithium oxide-coated LFP cathode, according to some embodiments: (A) before cycling; and (B) after 70 cycles (initial 5 cycles at room temperature, then at 50° C.);
  • FIGS. 9A-B are energy-dispersive spectroscopy (EDS) spectra of a graphite anode after 70 cycles in: (A) a graphite/LFP control cell; and (B) a graphite/Li 2 O-coated LFP cell;
  • EDS energy-dispersive spectroscopy
  • FIG. 10 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a graphite anode and an LFP cathode with a 0.5 ⁇ m-thick lithium oxysulfide coating, according to some embodiments; where the electrochemical cells were cycled at room temperature for the first 5 cycles, then cycled at 50° C.
  • FIG. 11 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a graphite anode and an LFP cathode with a 0.5 ⁇ m-thick lithium oxysulfide coating, according to some embodiments, where the electrochemical cells were cycled at room temperature for the first 5 cycles, stored at full charge in a 60° C. oven for 1 week, then cycled at room temperature for an additional 5 cycles;
  • FIG. 12 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a 2 ⁇ m-thick lithium oxide layer on a graphite anode, according to some embodiments, where the electrochemical cells were cycled at room temperature for the first 5 cycles, stored at full charge in a 60° C. oven for 1 week, then cycled at room temperature for an additional 5 cycles;
  • FIG. 13 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising, according to some embodiments, a 2 ⁇ m-thick lithium oxide layer on a graphite anode and a 2 ⁇ m-thick lithium oxide layer on an LFP cathode, according to some embodiments, where the electrochemical cells were cycled at room temperature for the first 5 cycles, stored at full charge in a 60° C. oven for 1 week, then cycled at room temperature for an additional 5 cycles;
  • FIG. 14 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a 2 ⁇ m-thick lithium oxide layer on a graphite anode and a 2 ⁇ m-thick lithium oxide layer on a lithium nickel manganese cobalt oxide (“NMC” or “NCM”) cathode, according to some embodiments, where the electrochemical cells were cycled at room temperature for the first 5 cycles, stored at full charge in a 60° C. oven for 1 week, then cycled at room temperature for an additional 5 cycles;
  • NMC nickel manganese cobalt oxide
  • FIG. 15 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a graphite anode and an LFP cathode, a graphite anode and an LFP cathode coated with a 0.5 ⁇ m-thick layer of lithium oxysulfide, and a graphite anode and an LFP cathode coated with a 1 ⁇ m-thick layer of lithium oxysulfide, according to some embodiments, where the electrochemical cells were cycled at room temperature for the first 5 cycles, then cycled at 50° C.
  • FIG. 16 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a graphite anode and an LFP cathode coated with a 1 ⁇ m-thick layer of lithium oxysulfide, according to some embodiments, where the electrochemical cells were cycled at room temperature for the first 5 cycles, stored at full charge in a 60° C. oven for 1 week, then cycled at room temperature for an additional 5 cycles;
  • FIG. 17 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a graphite anode coated with a 1 ⁇ m-thick layer of lithium oxysulfide and an LFP cathode, according to some embodiments, where the electrochemical cells were cycled at room temperature for the first 5 cycles, stored at full charge in a 60° C. oven for 1 week, then cycled at room temperature for an additional 5 cycles
  • FIG. 18A is an SEM image of an uncoated NCM cathode, according to some embodiments.
  • FIG. 18B is an SEM image of an NCM cathode coated with a 1 ⁇ m-thick layer of lithium oxide, according to some embodiments.
  • FIG. 19 is, according to some embodiments, an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a graphite anode and an NCM cathode coated with a 1 ⁇ m-thick layer of lithium oxide, where the electrochemical cells were cycled at room temperature for the first 5 cycles, then cycled at 50° C.
  • FIG. 20A is an EDS spectrum and SEM image (inset) of a graphite anode from an electrochemical cell comprising an uncoated NCM cathode after 179 cycles (initial 5 cycles at room temperature, then at 50° C.), according to some embodiments;
  • FIG. 20B is an EDS spectrum and SEM image (inset) of a graphite anode from an electrochemical cell comprising a lithium-oxide-coated NCM cathode after 191 cycles (initial 5 cycles at room temperature, then at 50° C.), according to some embodiments;
  • FIG. 21A is, according to some embodiments, an SEM image of a top-down view of a substantially continuous lithium-ion-conductive layer.
  • FIG. 21B is, according to some embodiments, an SEM image of a top-down view of a substantially porous lithium-ion-conductive layer.
  • Lithium-ion electrochemical cells and associated electrodes and methods, are generally described. Certain embodiments are related to the recognition that a protective lithium-ion-conductive layer can be positioned between a positive electrode (e.g., a cathode) and a negative electrode (e.g., an anode) within a lithium-ion electrochemical cell to inhibit the transportation of electrochemical byproducts (e.g., side reaction byproducts, dissolution/leaching products) between the positive electrode and the negative electrode.
  • a positive electrode e.g., a cathode
  • a negative electrode e.g., an anode
  • the performance of lithium-ion electrochemical cells can be inhibited by a number of mechanisms.
  • active lithium can be lost due to side reactions of the lithium with the electrolyte.
  • the electrolyte can decompose at the cathode and/or anode of the electrochemical cell, which can lead to increased cell impedance.
  • electrolyte decomposition can result in deleterious acidic byproducts, such as hydrofluoric acid (HF).
  • HF hydrofluoric acid
  • non-lithium metal cations within the lithium-ion cathode can be dissolved and subsequently reduced to metallic clusters at the anode, which can degrade the passivation layer on the anode and further lead to detrimental side reactions of lithium with the electrolyte. Loss of non-lithium metal cations can also lead to changes in the lithium-ion cathode structure and/or loss of active material in the cathode.
  • a lithium-ion-conductive material e.g., an inorganic lithium-ion-conductive material such as a lithium-ion-conductive ceramic
  • a lithium-ion-conductive material e.g., an inorganic lithium-ion-conductive material such as a lithium-ion-conductive ceramic
  • a lithium-ion-conductive layer may inhibit transport of certain deleterious electrochemical cell byproducts or species between electrodes by, for example, neutralizing and/or mitigating the byproducts or species.
  • hydrolysis of certain lithium salts e.g., LiPF 6
  • HF hydrofluoric acid
  • the presence of a lithium-ion-conductive material in the electrochemical cell may act as an acid trap, neutralizing the HF, and/or may act as a water vapor trap, mitigating hydrolysis by reacting with water and reducing the amount of water available for hydrolysis of lithium salts.
  • a lithium-ion-conductive layer may inhibit transport of certain deleterious electrochemical cell byproducts or species between electrodes by physically impeding transport of the byproducts.
  • a lithium-ion-conductive layer may provide a physical barrier that is impermeable to certain electrochemical cell byproducts (e.g., non-lithium metal cations). Other mechanisms for inhibiting transport of certain deleterious electrochemical cell byproducts or species are also possible.
  • the lithium-ion-conductive layer can be integrated with a porous and/or particulate electroactive material-containing layer.
  • the lithium-ion-conductive layers incorporated into such electrodes can, in some embodiments, be made sufficiently thin, yet effective for inhibiting or reducing the rate of transport of byproducts or species, and with sufficient ion conductivity to effectively transport lithium ions across the layer.
  • FIG. 1 is an exemplary cross-sectional schematic illustration of electrode 100 , according to certain embodiments.
  • electrode 100 comprises electroactive-material-containing layer (also referred to as “electroactive material layer”) 102 and lithium-ion-conductive layer 104 .
  • electroactive-material-containing layer also referred to as “electroactive material layer”
  • lithium-ion-conductive layer 104 is integrated with electroactive-material-containing layer 102 .
  • lithium-ion-conductive layer 104 is “integrated with” electroactive-material-containing layer 102 if the two layers are coupled (directly or indirectly) such that they cannot be separated without damaging at least one of the two layers or damaging one or more intervening layers positioned between the two layers.
  • electroactive-material-containing layer 102 is positioned adjacent lithium-ion-conductive layer 104 .
  • electroactive-material-containing layer 102 is in direct physical contact with lithium-ion-conductive layer 104 .
  • one or more intervening layers are positioned between electroactive-material-containing layer 102 and lithium-ion-conductive layer 104 .
  • an intervening layer positioned between electroactive-material-containing layer 102 and lithium-ion-conductive layer 104 may provide a surface that is relatively smoother than the surface of electroactive-material-containing layer 102 .
  • a smoother surface in order to enhance deposition of lithium-ion-conductive layer 104 on electroactive-material-containing layer 102 (e.g., a smoother surface may allow lithium-ion-conductive layer 104 to be deposited in a more continuous manner, potentially increasing the smoothness and/or reducing the number of defects in lithium-ion-conductive layer 104 ).
  • a non-limiting example of an intervening layer that may be appropriate for providing a smoother surface for deposition of lithium-ion-conductive layer 104 is a polymer layer.
  • Suitable polymers include, but are not limited to, polyvinylidene fluoride, polyvinylidene fluoride-hexafluropropylene copolymer, polyethers, polyethylene oxides, polypropylene oxides, polyimides, polyphosphazenes, polyacrylonitriles, polysiloxanes, derivatives of the foregoing, copolymers of the foregoing, crosslinked and network structures of the foregoing, and blends of the foregoing.
  • an intervening layer that may be used to provide a smoother surface is a layer comprising particles (e.g., nanoparticles) of the electroactive material and/or additives of electroactive-material-containing layer 102 , where the particles of the intervening layer have a mean maximum cross-sectional dimension that is smaller than the particles of electroactive-material-containing layer 102 .
  • particles e.g., nanoparticles
  • the intervening layer have a mean maximum cross-sectional dimension that is smaller than the particles of electroactive-material-containing layer 102 .
  • non-planar arrangements, arrangements with proportions of materials different than those shown, and other alternative arrangements are useful in connection with the present invention.
  • a layer when a layer is referred to as being (e.g., disposed) “on,” “on top of,” or “adjacent” another layer, it can be directly on, on top of, or adjacent the layer, or an intervening layer may also be present.
  • a layer that is “directly on,” “directly adjacent,” or “in contact with” another layer means that no intervening layer is present.
  • a layer that is positioned “between” two layers may be directly between the two layers such that no intervening layer is present, or an intervening layer may be present.
  • the lithium-ion-conductive layer comprises an inorganic material.
  • the lithium-ion-conductive layer comprises a ceramic material.
  • the ceramic material may have a crystalline, polycrystalline, partially crystalline, or amorphous structure. Suitable ceramic materials include, but are not limited to, oxides, carbonates, nitrides, carbides, sulfides, oxysulfides, and/or oxynitrides of metals and/or metalloids.
  • the ceramic material comprises lithium.
  • Non-limiting examples of suitable ceramic materials comprising lithium include lithium oxides (e.g., Li 2 O, LiO, LiO 2 , LiRO 2 , where R is scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and/or lutetium), lithium carbonate (Li 2 CO 3 ), lithium nitrides (e.g., Li 3 N), lithium oxysulfide, lithium oxynitride, lithium garnet-type oxides (e.g., Li 7 La 3 Zr 2 O 12 ), Li 10 GeP 2 S 12 , lithium phosphorus oxynitride, lithium silicosulfide, lithium germanosulfide, lithium lanthanum oxides, lithium titanium oxides, lithium borosul
  • the ceramic material comprises a lithium oxide, a lithium nitride, or a lithium oxysulfide.
  • the ceramic includes a carbonate and/or a carbide.
  • the lithium-ion-conductive layer comprises or is formed of a mixture of an oxide, a carbonate, and in some cases, a carbide.
  • the material may include lithium oxide, lithium carbonate, and/or lithium carbide. Other materials are also possible.
  • the lithium-ion-conductive layer is selected to be non-electroactive (e.g., the layer does not participate in lithium intercalation processes or lithium conversion reactions). Additionally, in some embodiments, the lithium-ion-conductive layer is selected to substantially impede the passage of certain species such as certain non-lithium ions. For example, the lithium-ion-conductive layer may provide a physical barrier that is impermeable to certain non-lithium ions, neutralize and/or mitigate the ions, or otherwise prevent or reduce the rate of passage of the ions through the lithium-ion-conductive layer.
  • the lithium-ion-conductive layer may substantially impede or reduce the rate of passage, from the cathode to the anode and/or across the lithium-ion-conductive layer, of certain ions such as certain non-lithium metal cations (e.g., metal cations that do not include Lit) resulting from dissolution and/or leaching of the cathode.
  • the lithium-ion-conductive layer is generally selected to be conductive to lithium ions (e.g., the lithium-ion-conductive layer allows passage of lithium ions between the anode and the cathode, permitting the lithium-ion electrochemical cell to function).
  • Electrochemical impedance spectroscopy EIS
  • the lithium-ion-conductive layer may be placed between two electrodes, and resistance may be measured over a range of frequencies from 100,000 Hz to 0.01 Hz at an amplitude of 5 mV.
  • the lithium ion conductivity of the lithium-ion-conductive layer may then be calculated from the measured resistance values.
  • the lithium-ion-conductive layer has a lithium ion conductivity greater than or equal to about 10 ⁇ 8 S/cm, greater than or equal to about 10 ⁇ 7 S/cm, greater than or equal to about 10 ⁇ 6 S/cm, greater than or equal to about 10 ⁇ 5 S/cm, greater than or equal to about 10 ⁇ 4 S/cm, greater than or equal to about 10 ⁇ 3 S/cm, greater than or equal to about 10 ⁇ 2 S/cm, greater than or equal to about 10 ⁇ 1 S/cm, or greater than or equal to about 1 S/cm.
  • the lithium-ion-conductive layer has a lithium ion conductivity of less than or equal to about 1 S/cm, less than or equal to about 10 ⁇ 1 S/cm, less than or equal to about 10 ⁇ 2 S/cm, less than or equal to about 10 ⁇ 3 S/cm, less than or equal to about 10 ⁇ 4 S/cm, less than or equal to about 10 ⁇ 5 S/cm, less than or equal to about 10 ⁇ 6 S/cm, less than or equal to about 10 ⁇ 7 S/cm, or less than or equal to about 10 ⁇ 8 S/cm. Combinations of the above-referenced ranges are also possible.
  • the lithium-ion-conductive layer is substantially continuous.
  • the lithium-ion-conductive layer may be substantially free of pores, gaps, defects, or discontinuities, e.g., across the thickness of the layer.
  • FIG. 21A shows a scanning electron microscope (SEM) image of a top-down view of an exemplary substantially continuous lithium-ion-conductive layer.
  • the lithium-ion-conductive layer is substantially free of discontinuities (e.g., holes, pores or defects) that are larger than about 1000 nm, about 500 nm, about 100 nm, about 50 nm, about 10 nm, about 5 nm, about 1 nm, about 0.5 nm, about 0.1 nm, about 0.05 nm, or about 0.01 nm.
  • discontinuities within the lithium-ion-conductive layer (such as those within one or more of the size ranges noted above) occupy less than about 5%, less than about 1%, or less than about 0.1% of the external geometric surface area of the lithium-ion-conductive layer.
  • the “external geometric surface area” refers to the surface area of the external geometric surface of the lithium-ion-conductive layer.
  • the “external geometric surface” of the lithium-ion-conductive layer refers to the surface defining the outer boundaries of the layer when analyzed at substantially the same scale as the maximum cross-sectional dimension of the layer.
  • the external geometric surface of a layer does not include the internal surfaces, such as the surfaces defined by pores within a porous layer.
  • the lithium-ion-conductive layer is substantially porous (e.g., the layer comprises a plurality of pores).
  • the term “pore” generally refers to a conduit, void, or passageway, at least a portion of which is surrounded by the medium in which the pore is formed.
  • voids within a material that are completely surrounded by the material are not considered pores within the context herein.
  • the porous lithium-ion-conductive layer comprises a plurality of particles.
  • pores may include both interparticle pores (i.e., those pores defined between particles when they are packed together, e.g., interstices) and intraparticle pores (i.e., those pores lying within the envelopes of individual particles).
  • the lithium-ion-conductive layer comprises particles (e.g., particles of lithium-ion-conductive material)
  • the particles may have any suitable shape.
  • at least a portion of the particles may have a substantially elongated (e.g., columnar) shape.
  • the columnar structures have a shape and/or configuration resembling the structures shown in Thornton et al, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, Journal of Vacuum Science & Technology 11, 666 (1974), which is incorporated herein by reference in its entirety for all purposes.
  • pores may include both intercolumnar pores and intracolumnar pores.
  • at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 99%, or about 100% of the particles of the porous lithium-ion-conductive layer are columnar structures.
  • less than about 100%, less than or equal to about 90%, less than or equal to about 80%, less than or equal to about 70%, less than or equal to 60%, less than or equal to about 50%, less than or equal to 40%, less than or equal to about 30%, less than or equal to 20%, or less than or equal to about 10% of the particles are columnar structures. Combinations of the above-referenced ranges are also possible.
  • FIG. 21B shows an SEM image of a top-down view of an exemplary substantially porous lithium-ion-conductive layer comprising a plurality of columnar structures.
  • the particles of a layer may also have any other suitable shape (e.g., substantially spherical, substantially elliptical, irregular).
  • the particles may have any suitable cross-sectional shape, such as, for example, circular, elliptical, polygonal (e.g., triangular, rectangular, etc.), irregular, and the like.
  • the lithium-ion-conductive layer comprises particles (e.g., particles of lithium-ion-conductive material)
  • the particles may have any suitable size.
  • the particles have a mean maximum dimension (e.g., length) of about 10 micrometers ( ⁇ m) or less, about 5 ⁇ m or less, about 2 ⁇ m or less, about 1.5 ⁇ m or less, about 1 ⁇ m or less, about 500 nanometers (nm) or less, about 100 nm or less, about 50 nm or less, about 20 nm or less, or about 10 nm or less.
  • the particles have a mean maximum dimension of at least about 10 nm, at least about 20 nm, at least about 50 nm, at least about 100 nm, at least about 500 nm, at least about 1 ⁇ m, at least about 1.5 ⁇ m, at least about 2 ⁇ m, at least about 5 ⁇ m, or at least about 10 ⁇ m. Combinations of the above-noted ranges are also possible.
  • the “maximum dimension” of a particle refers to the largest distance between two opposed boundaries of an individual particle that can be measured (e.g., length, diameter).
  • the “mean maximum dimension” of a plurality of particles refers to the number average of the maximum dimensions of the plurality of particles (e.g., where n is at least 20).
  • the particles can be at least partially fused together with other particles.
  • Fused particles generally refers to the physical joining of two or more particles such that they form a single particle.
  • the volume occupied by a single particle e.g., the entire volume within the outer surface of the particle
  • the term “fused” does not refer to particles that simply contact one another at one or more surfaces, but particles wherein at least a portion of the original surface of each individual particle can no longer be discerned from the other particle.
  • the particles are fused such that at least a portion of the plurality of particles form a continuous pathway across the layer (e.g., between a first surface of the layer and a second surface of the layer).
  • a continuous pathway may include, for example, an ionically-conductive pathway from a first surface to a second, opposing surface of the layer in which there are substantially no gaps, breakages, or discontinuities in the pathway.
  • fused particles across a layer may form a continuous pathway
  • a pathway including packed, unfused particles would have gaps or discontinuities between the particles that would not render the pathway continuous.
  • the layer includes a plurality of such continuous pathways across the layer.
  • At least 10 vol %, at least 30 vol %, at least 50 vol %, or at least 70 vol % of the layer comprises one or more continuous pathways comprising fused particles (e.g., which may comprise an ionically conductive material).
  • fused particles e.g., which may comprise an ionically conductive material.
  • less than or equal to about 100 vol %, less than or equal to about 90 vol %, less than or equal to about 70 vol %, less than or equal to about 50 vol %, less than or equal to about 30 vol %, less than or equal to about 10 vol %, or less than or equal to about 5 vol % of the second layer comprises one or more continuous pathways comprising fused particles.
  • the layer comprises one or more continuous pathways comprising fused particles.
  • the layer consists essentially of fused particles (e.g., the layer comprises substantially no unfused particles). In other aspects, substantially all of the particles are unfused.
  • the particles of the lithium-ion-conductive layer have a mean maximum cross-sectional dimension (e.g., diameter, width) of about 5 ⁇ m or less, about 2 ⁇ m or less, about 1.5 ⁇ m or less, about 1 ⁇ m or less, about 500 nm or less, about 100 nm or less, about 50 nm or less, about 20 nm or less, about 10 nm or less, about 5 nm or less, about 2 nm or less, or about 1 nm or less.
  • a mean maximum cross-sectional dimension e.g., diameter, width
  • the particles of the lithium-ion-conductive layer have a mean maximum cross-sectional dimension (e.g., diameter, width) of at least about 1 nm, at least about 2 nm, at least about 5 nm, at least about 10 nm, at least about 20 nm, at least about 50 nm, at least about 100 nm, at least about 500 nm, at least about 1 ⁇ m, at least about 1.5 ⁇ m, at least about 2 ⁇ m, at least about 5 ⁇ m, or at least about 10 ⁇ m. Combinations of the above-noted ranges are also possible.
  • the “maximum cross-sectional dimension” of a particle refers to the largest distance between two opposed boundaries of an individual particle that can be measured in a plane orthogonal to the axis along which the maximum dimension of the particle can be measured.
  • the “mean maximum cross-sectional dimension” of a plurality of particles refers to the number average of the maximum cross-sectional dimensions of the plurality of particles (e.g., where n is at least 20).
  • the maximum dimensions and/or maximum cross-sectional dimensions of individual particles may be determined through analysis of scanning electron microscope (SEM) images of the particles.
  • SEM scanning electron microscope
  • a first cross-sectional plane of an electrochemical cell at a depth halfway through the thickness of the electrochemical cell may be imaged using SEM.
  • the mean maximum cross-sectional dimension of the particles may be determined.
  • a backscatter detector and/or an energy-dispersive spectroscopy (EDS) detector may be used to facilitate identification of lithium-ion-conductive material particles (e.g., as distinguished from particles of additives that may be present).
  • the particles should be considered separately when determining the maximum cross-sectional dimensions. The measurement could be performed by establishing boundaries between each of the agglomerated particles, and measuring the maximum cross-sectional dimension of the hypothetical, individuated particles that result from establishing such boundaries. The distribution of maximum cross-sectional dimensions and particle volumes could also be determined by one of ordinary skill in the art using SEM analysis.
  • the mean maximum cross-sectional dimension of the plurality of particles may be obtained by calculating the arithmetic mean of the maximum cross-sectional dimensions of the particles.
  • a second cross-sectional plane that is orthogonal to the first cross-sectional plane and is halfway through the length or width of the electrochemical cell may be imaged using SEM.
  • the mean maximum dimension of the particles may be determined through analysis of the resultant images. In some embodiments, at least 20 measurements may be used to calculate an average value.
  • At least a portion of the particles (e.g., columnar structures) of the lithium-ion-conductive layer may be substantially aligned.
  • the plurality of particles comprises a plurality of columnar structures
  • at least a portion of the columnar structures may be substantially vertically aligned.
  • a columnar structure of a lithium-ion-conductive layer in an electrochemical cell comprising an anode and a cathode is “vertically aligned” if an angle between the axis along which the maximum dimension (e.g., length) of the columnar structure can be measured (e.g., a longitudinal axis) and the axis running from the anode to the cathode is about 45° or less.
  • the angle may be determined, for example, through SEM image analysis.
  • At least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 99%, or about 100% of the particles of the lithium-ion-conductive layer are substantially aligned.
  • less than about 100%, less than or equal to about 90%, less than or equal to about 80%, less than or equal to about 70%, less than or equal to about 60%, less than or equal to about 50%, less than or equal to about 40%, less than or equal to about 30%, less than or equal to about 20%, or less than or equal to about 10% of the particles of the lithium-ion-conductive layer are substantially aligned.
  • At least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 99%, or about 100% of the particles of the lithium-ion-conductive layer are substantially vertically aligned.
  • the lithium-ion-conductive layer comprises pores
  • some or all of the pores of a porous lithium-ion-conductive layer can be filled by a fluid (e.g., an electrolyte).
  • a fluid e.g., an electrolyte
  • at least some of the pores of the lithium-ion-conductive layer are filled with an electrolyte that is a liquid, a gel, a solid polymer, and/or a solid inorganic compound.
  • at least a portion of the porous lithium-ion-conductive layer is permeable to a fluid (e.g., an electrolyte).
  • the porous lithium-ion-conductive layer may have any suitable porosity.
  • the porous lithium-ion-conductive layer may have a porosity of up to about 1%, up to about 2%, up to about 5%, up to about 10%, up to about 15%, up to about 20%, up to about 25%, up to about 30%, up to about 40%, up to about 50%, up to about 60%, or up to about 70% (where the percentages indicate void volume within the porous lithium-ion-conductive layer).
  • the porous lithium-ion-conductive layer has a porosity of at least about 1% by volume, at least about 2% by volume, at least about 5% by volume, at least about 10% by volume, at least about 15% by volume, at least about 20% by volume, at least about 25% by volume, at least about 30% by volume, at least about 40% by volume, at least about 50% by volume, at least about 60% by volume, or at least about 70% by volume. Combinations of the above-noted ranges are also possible.
  • the pores of the lithium-ion-conductive layer may have any suitable size and shape.
  • the pores may comprise any suitable cross-sectional shape such as, for example, circular, elliptical, polygonal (e.g., rectangular, triangular, etc.), irregular, and the like.
  • the porous lithium-ion-conductive layer has an average pore size of about 1 ⁇ m or less, about 500 nm or less, about 200 nm or less, about 100 nm or less, about 50 nm or less, about 20 nm or less, about 10 nm or less, about 5 nm or less, about 2 nm or less, or about 1 nm or less.
  • the porous lithium-ion-conductive layer has an average pore size of at least about 1 nm, at least about 2 nm, at least about 5 nm, at least about 10 nm, at least about 20 nm, at least about 50 nm, at least about 100 nm, at least about 200 nm, at least about 500 nm, or at least about 1 ⁇ m. Combinations of the above-noted ranges are also possible.
  • One of ordinary skill in the art would be capable of calculating the porosity, pore size distribution and the average pore size of the plurality of pores within a layer using mercury intrusion porosimetry, as described in ASTM standard D4284-92, which is incorporated herein by reference in its entirety.
  • ASTM standard D4284-92 can be used to produce a distribution of pore sizes plotted as the cumulative intruded pore volume as a function of pore diameter.
  • the porous lithium-ion-conductive layer may comprise pores with relatively uniform maximum cross-sectional dimensions. Without wishing to be bound by any theory, such uniformity may be useful in maintaining relatively consistent structural stability throughout the bulk of the porous lithium-ion-conductive layer.
  • the ability to control the pore size to within a relatively narrow range can allow one to incorporate a large number of pores that are large enough to allow for fluid penetration (e.g., electrolyte penetration) while maintaining sufficiently small pores to preserve structural stability of the porous lithium-ion-conductive layer.
  • the distribution of pore sizes within the porous lithium-ion-conductive layer can have a standard deviation of less than about 50%, less than about 25%, less than about 20%, less than about 10%, less than about 5%, less than about 2%, or less than about 1% of the mean maximum cross-sectional dimension of the plurality of pores. In some embodiments, the distribution of pore sizes within the porous lithium-ion-conductive layer can have a standard deviation of at least about 1%, at least about 2%, at least about 5%, at least about 10%, at least about 20%, at least about 25%, or at least about 50% of the mean maximum cross-sectional dimension of the plurality of pores. Combinations of the above-referenced ranges are also possible. Standard deviation (lower-case sigma) is given its normal meaning in the art, and can be calculated as:
  • D i is the maximum cross-sectional dimension of pore i
  • D avg is the number average of the maximum cross-sectional dimensions of the plurality of pores
  • n is the number of pores.
  • the lithium-ion-conductive layer is formed from a unitary material.
  • a unitary material may refer to one that is processed such that any individual particles used to form the material cease to be readily separable as individual particles.
  • a unitary material may be formed through a vapor deposition process and/or an aerosol deposition process in some embodiments under certain deposition conditions.
  • the lithium-ion-conductive layer (e.g., a substantially continuous lithium-ion-conductive layer or a substantially porous lithium-ion-conductive layer) may be deposited by any suitable method, including, but not limited to, sputtering (e.g., diode sputtering, direct current (DC) magnetron sputtering, radio frequency (RF) sputtering, RF magnetron sputtering, pulsed sputtering, dual magnetron sputtering, alternating current (AC) sputtering, mid frequency (MF) sputtering, reactive sputtering), electron beam evaporation, vacuum thermal evaporation, laser ablation, chemical vapor deposition (CVD), thermal evaporation (e.g., resistive, inductive, radiation, and electron beam heating), plasma-enhanced chemical vacuum deposition (PECVD), laser-enhanced chemical vapor deposition, aerosol deposition, ion plating,
  • the lithium-ion-conductive layer may be substantially smooth. In certain embodiments, increased smoothness of the lithium-ion-conductive layer may result in enhanced performance of the lithium-ion electrochemical cell, e.g., under certain operating conditions. Accordingly, the lithium-ion-conductive layer may have a relatively low surface roughness. In other embodiments, however, the lithium-ion-conductive layer may be substantially rough. Accordingly, the lithium-ion-conductive layer may have a relatively high surface roughness.
  • a surface roughness profile of the lithium-ion-conductive layer may be obtained using a profilometer (e.g., a contact profilometer, an optical profilometer). From the surface roughness profile, certain measures of surface roughness, including R z (e.g., the average of the ten lowest valleys subtracted from the average of the ten highest peaks), R a (e.g., arithmetic mean surface roughness), and R q (e.g., root mean square surface roughness), may be obtained.
  • R z e.g., the average of the ten lowest valleys subtracted from the average of the ten highest peaks
  • R a e.g., arithmetic mean surface roughness
  • R q e.g., root mean square surface roughness
  • the lithium-ion-conductive layer has a surface roughness R z of about 20 ⁇ m or less, about 15 ⁇ m or less, about 10 ⁇ m or less, about 5 ⁇ m or less, about 2 ⁇ m or less, about 1 ⁇ m or less, about 500 nm or less, about 200 nm or less, about 100 nm or less, about 50 nm or less, about 20 nm or less, or about 10 nm or less.
  • the lithium-ion-conductive layer has a surface roughness R z of about 10 nm or more, about 20 nm or more, about 50 nm or more, about 100 nm or more, about 200 nm or more, about 500 nm or more, about 1 ⁇ m or more, about 2 ⁇ m or more, about 5 ⁇ m or more, about 10 ⁇ m or more, about 15 ⁇ m or more, or about 20 ⁇ m or more. Combinations of the above-noted ranges are also possible.
  • Arithmetic mean surface roughness R a may be calculated as follows:
  • the lithium-ion-conductive layer has an arithmetic mean surface roughness R a of about 20 ⁇ m or less, about 15 ⁇ m or less, about 10 ⁇ m or less, about 5 ⁇ m or less, about 2 ⁇ m or less, about 1 ⁇ m or less, about 500 nm or less, about 200 nm or less, about 100 nm or less, about 50 nm or less, about 20 nm or less, or about 10 nm or less.
  • the lithium-ion-conductive layer has an arithmetic mean surface roughness R a of about 10 nm or more, about 20 nm or more, about 50 nm or more, about 100 nm or more, about 200 nm or more, about 500 nm or more, about 1 ⁇ m or more, about 2 ⁇ m or more, about 5 ⁇ m or more, about 10 ⁇ m or more, about 15 ⁇ m or more, or about 20 ⁇ m or more. Combinations of the above-noted ranges are also possible.
  • RMS surface roughness R q may be calculated as follows:
  • the lithium-ion-conductive layer has a root mean square surface roughness R q of about 20 ⁇ m or less, about 15 ⁇ m or less, about 10 ⁇ m or less, about 5 ⁇ m or less, about 2 ⁇ m or less, about 1 ⁇ m or less, about 500 nm or less, about 200 nm or less, about 100 nm or less, about 50 nm or less, about 20 nm or less, or about 10 nm or less.
  • the lithium-ion-conductive layer has a root mean square surface roughness R q of about 10 nm or more, about 20 nm or more, about 50 nm or more, about 100 nm or more, about 200 nm or more, about 500 nm or more, about 1 ⁇ m or more, about 2 ⁇ m or more, about 5 ⁇ m or more, about 10 ⁇ m or more, about 15 ⁇ m or more, or about 20 ⁇ m or more. Combinations of the above-noted ranges are also possible.
  • the lithium-ion-conductive layer may be characterized by a thickness (e.g., a largest dimension measured from a first end of the layer to a second end of the layer in a direction parallel to the axis running from the anode to the cathode).
  • the lithium-ion-conductive layer may be relatively thin (e.g., the thickness may be relatively small compared to the other two dimensions of the layer).
  • the lithium-ion-conductive layer has a thickness of about 10 ⁇ m or less, about 5 ⁇ m or less, about 2 ⁇ m or less, about 1.5 ⁇ m or less, about 1 ⁇ m or less, about 0.5 ⁇ m or less, or about 0.1 ⁇ m.
  • the lithium-ion-conductive layer has a thickness of about 0.1 ⁇ m or more, about 0.2 ⁇ m or more, about 0.3 ⁇ m or more, about 0.5 ⁇ m or more, about 0.7 ⁇ m or more, about 1 ⁇ m or more, about 1.5 ⁇ m or more, about 2 ⁇ m or more, about 5 ⁇ m or more, or about 10 ⁇ m. Combinations of the above-noted ranges are also possible.
  • the lithium-ion-conductive layer is substantially uniform in thickness.
  • the percent difference between the largest and smallest measurements of thickness of the lithium-ion-conductive layer may be less than about 80%, less than about 50%, less than about 20%, less than about 10%, less than about 5%, or less than about 1%.
  • the lithium-ion-conductive layer is relatively basic.
  • the lithium-ion-conductive layer may comprise a material that is selected from species that can donate electron pairs (e.g., a Lewis base).
  • suitable electron-donating materials include, but are not limited to, lithium oxides (e.g., Li 2 O, LiO, LiO 2 , LiRO 2 , where R is scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and/or lutetium), lithium carbonate (Li 2 CO 3 ), lithium nitrides (e.g., Li 3 N), lithium oxysulfide, lithium oxynitride, lithium garnet-type oxides (e.g., Li 7 La 3 Zr 2 O 12 ).
  • 1 mole of a material of the lithium-ion-conductive layer may neutralize 1 mole of an acid (e.g., HF).
  • an acid e.g., HF
  • the lithium-ion-conductive layer may be relatively basic (e.g., comprising a Lewis base), in some embodiments, because a basic material may be capable of at least partially neutralizing deleterious acidic byproducts that result from certain side reactions.
  • hydrolysis of certain components of an electrolyte such as lithium salts (e.g., LiPF 6 ) in a lithium-ion electrochemical cell may result in acidic byproducts, such as HF.
  • the presence of a lithium-ion-conductive layer in the electrochemical cell may, in certain embodiments, neutralize at least a portion of any HF that may form.
  • the electrode may further comprise a layer comprising an electroactive material, such as a material that is capable of participating in a lithium intercalation process (e.g., a material in which lithium ions can reversibly be inserted and extracted) and/or a material that is capable of chemically reacting with lithium (e.g., a material that can participate in a lithium conversion reaction).
  • an electroactive material such as a material that is capable of participating in a lithium intercalation process (e.g., a material in which lithium ions can reversibly be inserted and extracted) and/or a material that is capable of chemically reacting with lithium (e.g., a material that can participate in a lithium conversion reaction).
  • an electrode comprising an electroactive material that is capable of participating in a lithium intercalation process is referred to as a “lithium intercalation electrode.”
  • An electrode comprising an electroactive material that is capable of participating in a lithium conversion reaction is referred to as a “lithium conversion electrode.”
  • the electrode comprising the lithium-ion-conductive layer integrated with the electroactive material layer is a cathode.
  • a cathode for use in a lithium-ion electrochemical cell generally refers to an electrode from which a lithium ion is liberated during charge and into which the lithium ion is integrated (e.g., intercalated, chemically bonded) during discharge.
  • the electroactive material of the cathode comprises a lithium intercalation compound (e.g., a compound that is capable of reversibly inserting lithium ions at lattice sites and/or interstitial sites).
  • the electroactive material of the cathode comprises a layered oxide.
  • a layered oxide generally refers to an oxide having a lamellar structure (e.g., a plurality of sheets, or layers, stacked upon each other).
  • suitable layered oxides include lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganese oxide (LiMnO 2 ).
  • the layered oxide is lithium nickel manganese cobalt oxide (LiNi x Mn y Co z O 2 , also referred to as “NMC” or “NCM”).
  • NMC lithium nickel manganese cobalt oxide
  • the sum of x, y, and z is 1.
  • a non-limiting example of a suitable NMC compound is LiNi 1/3 Mn 1/3 Co 1/3 O 2 .
  • the layered oxide is lithium nickel cobalt aluminum oxide (LiNi x Co y Al z O 2 , also referred to as “NCA”).
  • the sum of x, y, and z is 1.
  • a non-limiting example of a suitable NCA compound is LiNi 0.8 Co 0.15 Al 0.05 O 2 .
  • the electroactive material of the cathode is a transition metal polyanion oxide (e.g., a compound comprising a transition metal, an oxygen, and/or an anion having a charge with an absolute value greater than 1).
  • a suitable transition metal polyanion oxide is lithium iron phosphate (LiFePO 4 , also referred to as “LFP”).
  • Another non-limiting example of a suitable transition metal polyanion oxide is lithium manganese iron phosphate (LiMn x Fe 1-x PO 4 , also referred to as “LMFP”).
  • a non-limiting example of a suitable LMFP compound is LiMn 0.8 Fe 0.2 PO 4 .
  • the electroactive material of the cathode is a spinel (e.g., a compound having the structure AB 2 O 4 , where A can be Li, Mg, Fe, Mn, Zn, Cu, Ni, Ti, or Si, and B can be Al, Fe, Cr, Mn, or V).
  • a non-limiting example of a suitable spinel is lithium manganese oxide (LiMn 2 O 4 , also referred to as “LMO”).
  • LMO lithium manganese nickel oxide
  • LMNO lithium manganese nickel oxide
  • a non-limiting example of a suitable LMNO compound is LiNi 0.5 Mn 1.5 O 4 .
  • the electroactive material of the cathode comprises Li 1.14 Mn 0.42 Ni 0.25 Co 0.29 O 2 (“HC-MNC”), lithium carbonate (Li 2 CO 3 ), lithium carbides (e.g., Li 2 C 2 , Li 4 C, Li 6 C 2 , Li 8 C 3 , Li 6 C 3 , Li 4 C 3 , Li 4 C 5 ), vanadium oxides (e.g., V 2 O 5 , V 2 O 3 , V 6 O 13 ), and/or vanadium phosphates (e.g., lithium vanadium phosphates, such as Li 3 V 2 (PO 4 ) 3 ), or any combination thereof.
  • HC-MNC Li 1.14 Mn 0.42 Ni 0.25 Co 0.29 O 2
  • Li 2 CO 3 lithium carbides
  • the electroactive material of the cathode comprises a conversion compound.
  • the cathode may be a lithium conversion electrode/cathode. It has been recognized that a cathode comprising a conversion compound may have a relatively large specific capacity. Without wishing to be bound by a particular theory, a relatively large specific capacity may be achieved by utilizing all possible oxidation states of a compound through a conversion reaction in which more than one electron transfer takes place per transition metal (e.g., compared to 0.1-1 electron transfer in intercalation compounds).
  • Suitable conversion compounds include, but are not limited to, transition metal oxides (e.g., Co 3 O 4 ), transition metal hydrides, transition metal sulfides, transition metal nitrides, and transition metal fluorides (e.g., CuF 2 , FeF 2 , FeF 3 ).
  • a transition metal generally refers to an element whose atom has a partially filled d sub-shell (e.g., Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Rf, Db, Sg, Bh, Hs).
  • the electroactive material of the cathode may be doped with one or more dopants to alter the electrical properties (e.g., electrical conductivity) of the electroactive material.
  • suitable dopants include aluminum, niobium, silver, and zirconium.
  • the electrode comprising the lithium-ion-conductive layer integrated with the electroactive material layer is an anode.
  • the electroactive-material-containing layer which may have a lithium-ion-conductive layer associated therewith, may comprise a plurality of particles of the electroactive material.
  • FIG. 2 is a cross-sectional schematic illustration of exemplary electrode 200 , according to certain embodiments.
  • electrode 200 comprises lithium-ion-conductive layer 206 and plurality of particles 202 comprising an electroactive material.
  • pores 204 may form in the interstices between particles 202 .
  • at least a portion of the plurality of particles have a coating (e.g., to prevent dissolution of the active material).
  • the coating may be electronically conductive.
  • Non-limiting examples of suitable materials for the coating include carbon and carbon-containing materials.
  • the plurality of particles comprising the electroactive material may be combined with a binder and one or more additives to form a mixture (e.g., a slurry). The mixture may then be coated on a substrate and/or a current collector and subsequently dried.
  • the binder comprises one or more polymers (e.g., styrene butadiene copolymer, polyvinylidene fluoride (PVDF)).
  • PVDF polyvinylidene fluoride
  • additives may be selected to enhance the performance of the electrode.
  • an additive may increase electronic conductivity.
  • suitable additives include, but are not limited to, carbon-containing materials such as carbon black.
  • lithium-ion-conductive layer 206 forms a layer on one side or surface (e.g., a single side or surface) of the layer comprising the particles of electroactive material (i.e., the electroactive layer). That is, the inorganic lithium-ion-conductive layer may be disposed on a side or surface of the layer comprising the electroactive material. The lithium-ion-conductive layer may coat (form a coating) a side or surface of the electroactive layer. In some such embodiments, the lithium-ion-conductive layer may be integrated with a side or surface of the electroactive layer.
  • the lithium-ion-conductive material may be absent from the solid interior portions and/or the opposing side/surface of the electroactive layer.
  • a portion e.g., the portion of the particles of the electroactive material at the surface of the layer, but not all of the particles of the electroactive material, are coated with the lithium-ion-conductive material/layer.
  • At least a portion e.g., at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, and/or less than 100%, less than or equal to 95%, less than or equal to 90%, e.g., by weight
  • the particles of electroactive material in the electroactive layer e.g., the particles on the opposing side/surface of the electroactive layer and/or the particles in the interior of the layer
  • the particles of electroactive material in the electroactive layer are uncoated with the lithium-ion-conductive material (a coating of lithium-ion-conductive material may be absent from such particles).
  • a second lithium-ion-conductive layer may be formed on the opposing side or surface of the layer comprising the particles of electroactive material. Similar to the embodiment involving a single layer of lithium-ion-conductive material, the lithium-ion-conductive material may be absent from the solid, interior portions of the electroactive layer.
  • These embodiments may be formed by, for example, forming the electroactive layer (e.g., from a slurry of the electroactive particles or by another suitable process), followed by depositing the lithium-ion-conductive layer on the electroactive layer after the electroactive layer has been formed. Such a method contrasts with coating individual electroactive particles of electroactive material prior to the particles forming the electroactive layer.
  • the particles comprising the electroactive material may be of any suitable shape or size.
  • the particles may be spherical, ellipsoidal, cylindrical, or prismatic (e.g., a triangular prism, a rectangular prism, etc.), or may have an irregular shape.
  • the plurality of particles has a mean maximum cross-sectional dimension of about 50 ⁇ m or less, about 25 ⁇ m or less, about 20 ⁇ m or less, about 15 ⁇ m or less, about 10 ⁇ m or less, about 5 ⁇ m or less, about 1 ⁇ m or less, about 500 nm or less, about 200 nm or less, about 100 nm or less, about 90 nm or less, about 80 nm or less, about 70 nm or less, about 60 nm or less, about 50 nm or less, about 40 nm or less, about 30 nm or less, about 20 nm or less, about 10 nm or less, about 5 nm or less, or about 1 nm.
  • the plurality of particles has a mean maximum cross-sectional dimension of at least about 1 nm, at least about 5 nm, at least about 10 nm, at least about 20 nm, at least about 30 nm, at least about 40 nm, at least about 50 nm, at least about 60 nm, at least about 70 nm, at least about 80 nm, at least about 90 nm, at least about 100 nm, at least about 200 nm, at least about 500 nm, at least about 1 ⁇ m, at least about 5 ⁇ m, at least about 10 ⁇ m, at least about 15 ⁇ m, at least about 20 ⁇ m, at least about 25 ⁇ m, or at least about 50 ⁇ m. Combinations of the above-noted ranges are also possible.
  • the mean maximum cross-sectional dimension may be determined using SEM and/or EDS analysis, as described above.
  • the layer comprising the electroactive material may be porous (e.g., the layer may comprise a plurality of pores). It should be understood that, in cases where the electroactive-material-containing layer comprises an agglomeration of particles, pores include both the interparticle pores (i.e., those pores defined between particles when they are packed together, e.g. interstices) and intraparticle pores (i.e., those pores lying within the envelopes of the individual particles).
  • the porous electroactive-material-containing layer may have any suitable porosity.
  • the porous electroactive-material-containing layer may have a porosity of up to about 10%, up to about 15%, up to about 20%, up to about 25%, up to about 30%, up to about 40%, up to about 50%, up to about 60%, or up to about 70% (where the percentages indicate void volume within the porous electroactive-material-containing layer).
  • the porous electroactive-material-containing layer has a porosity of at least about 10% by volume, at least about 15% by volume, at least about 20% by volume, at least about 25% by volume, at least about 30% by volume, at least about 40% by volume, at least about 50% by volume, at least about 60% by volume, or at least about 70% by volume. Combinations of the above-noted ranges are also possible.
  • the pores of the electroactive-material-containing layer may have any suitable size and shape.
  • the pores may comprise any suitable cross-sectional shape such as, for example, circular, elliptical, polygonal (e.g., rectangular, triangular, etc.), irregular, and the like.
  • the porous electroactive-material-containing layer may have an average pore size of less than about 300 micrometers, for example, less than about 100 micrometers, between about 0.5 micrometer and about 300 micrometers, between about 50 micrometers and about 200 micrometers, or between about 100 micrometers and about 200 micrometers.
  • some or all of the porosity can be filled by electrolyte.
  • the pores of the electroactive-material-containing layer are filled with an electrolyte that is a liquid, a gel, a solid polymer, and/or a solid inorganic compound.
  • an electrolyte that is a liquid, a gel, a solid polymer, and/or a solid inorganic compound.
  • the porous electroactive-material-containing layer may comprise pores with relatively uniform maximum cross-sectional dimensions (e.g., diameters). Not wishing to be bound by any theory, such uniformity may be useful in maintaining relatively consistent structural stability throughout the bulk of the porous layer.
  • the ability to control the pore size to within a relatively narrow range can allow one to incorporate a large number of pores that are large enough to allow for fluid penetration (e.g., electrolyte penetration) while maintaining sufficiently small pores to preserve structural stability of the porous electroactive-material-containing layer.
  • the distribution of pore sizes within the porous electroactive-material-containing layer can have a standard deviation of less than about 50%, less than about 25%, less than about 10%, less than about 5%, less than about 2%, or less than about 1% of the mean maximum cross-sectional dimension of the plurality of pores.
  • an electroactive material layer described herein which may have a lithium-ion-conductive layer associated therewith, is substantially non-porous.
  • FIG. 3A shows an exemplary cross-sectional schematic illustration of electrochemical cell 300 comprising cathode 102 , anode 106 , separator 108 positioned between cathode 102 and anode 106 , and lithium-ion-conductive layer 104 positioned between cathode 102 and separator 108 .
  • lithium-ion-conductive layer 104 is positioned adjacent cathode 102 .
  • lithium-ion-conductive layer 104 may be in direct physical contact with cathode 102 .
  • lithium-ion-conductive layer 104 is integrated with cathode 102 .
  • the lithium-ion-conductive layer can be positioned adjacent the anode.
  • lithium-ion-conductive layer 104 is positioned adjacent anode 106 .
  • lithium-ion-conductive layer 104 may be in direct physical contact with anode 106 .
  • lithium-ion-conductive layer 104 is integrated with anode 106 .
  • an electrochemical cell may comprise a first lithium-ion-conductive layer integrated with a cathode and a second lithium-ion-conductive layer integrated with an anode.
  • FIG. 4 shows an exemplary cross-sectional schematic illustration of electrochemical cell 400 comprising cathode 102 integrated with first lithium-ion-conductive layer 104 and anode 106 integrated with second lithium-ion-conductive layer 110 .
  • separator layer 108 is positioned between first lithium-ion-conductive layer 104 and second lithium-ion-conductive layer 110 .
  • first lithium-ion-conductive layer 104 and second lithium-ion-conductive layer 110 may comprise the same material (e.g., ceramic material).
  • first lithium-ion-conductive layer 104 and second lithium-ion-conductive layer 110 may comprise different materials (e.g., a first ceramic material and a second, different ceramic material).
  • the electrochemical cell further comprises additional components, such as an electrolyte, one or more substrates, and/or one or more current collectors.
  • FIG. 5 shows an exemplary cross-sectional schematic illustration of electrochemical cell 500 comprising cathode 102 , lithium-ion-conductive layer 104 , anode 106 , separator 108 , first substrate and/or current collector 112 , and second substrate and/or current collector 114 .
  • electrochemical cell 500 may comprise a separator 108 positioned between cathode 102 and anode 106 .
  • separator 108 may comprise an electrolyte, as discussed in further detail below.
  • FIG. 5 shows an exemplary cross-sectional schematic illustration of electrochemical cell 500 comprising cathode 102 , lithium-ion-conductive layer 104 , anode 106 , separator 108 , first substrate and/or current collector 112 , and second substrate and/or current collector 114 .
  • electrochemical cell 500 may comprise a separator 108
  • lithium-ion-conductive layer 104 is positioned between cathode 102 and separator/electrolyte 108 . In some cases, lithium-ion-conductive layer 104 is positioned between anode 102 and separator/electrolyte 108 . In some cases, electrochemical cell 500 further comprises first substrate 112 . First substrate 112 may be positioned adjacent to cathode 102 . As shown in FIG. 5 , in some embodiments, substrate 112 is in direct physical contact with cathode 102 . In some embodiments, one or more intervening layers may be positioned between substrate 112 and cathode 102 .
  • substrate 112 may comprise a metal (e.g., aluminum), and substrate 112 may act as a current collector for cathode 102 .
  • electrochemical cell further comprises second substrate 114 . As shown in FIG. 5 , in some embodiments, second substrate 114 is in direct physical contact with anode 106 . In certain cases, second substrate 114 may comprise a metal (e.g., copper), and second substrate 114 may act as a current collector for anode 106 . In some embodiments, one or more intervening layers may be positioned between second substrate 114 and anode 106 .
  • an electrochemical cell comprises an electrolyte, a separator, first and second substrates and/or current collectors, a first lithium-ion-conductive layer integrated with a cathode, and a second lithium-ion-conductive layer integrated with an anode.
  • FIG. 6 shows an exemplary cross-sectional schematic illustration of electrochemical cell 600 comprising cathode 102 , first lithium-ion-conductive layer 104 , anode 106 , second lithium-ion-conductive layer 110 , separator 108 , first substrate and/or current collector 112 , and second substrate and/or current collector 114 .
  • second lithium-ion-conductive layer 110 which is integrated with anode 106 , is positioned between anode 106 and separator 108 .
  • the electrolyte of an electrochemical cell is generally positioned between the anode and the cathode, providing an ionic path between the anode and the cathode (e.g., the electrolyte is generally capable of conducting lithium ions).
  • the electrolyte may comprise any liquid, solid, or gel material capable of storing and transporting lithium ions.
  • the electrolyte is electronically non-conductive to prevent short circuiting between the anode and the cathode.
  • the anode is an electrode from which a lithium ion is liberated during discharge and into which the lithium ion is integrated (e.g., intercalated) during charge.
  • the electroactive material of the anode is a lithium intercalation compound (e.g., a compound that is capable of reversibly inserting lithium ions at lattice sites and/or interstitial sites).
  • the electroactive material of the anode comprises carbon.
  • the electroactive material of the anode is or comprises a graphitic material (e.g., graphite).
  • a graphitic material generally refers to a material that comprises a plurality of layers of graphene (e.g., layers comprising carbon atoms arranged in a hexagonal lattice). Adjacent graphene layers are typically attracted to each other via van der Waals forces, although covalent bonds may be present between one or more sheets in some cases.
  • the carbon-comprising electroactive material of the anode is or comprises coke (e.g., petroleum coke).
  • the electrochemical material of the anode comprises silicon, lithium, and/or any alloys of combinations thereof.
  • the electroactive material of the anode comprises lithium titanate (Li 4 Ti 5 O 12 , also referred to as “LTO”), tin-cobalt oxide, or any combinations thereof.
  • the anode (e.g., a first electrode, a second electrode) comprises lithium (e.g., lithium metal), such as lithium foil, lithium deposited onto a conductive substrate, and lithium alloys (e.g., lithium-aluminum alloys and lithium-tin alloys).
  • lithium e.g., lithium metal
  • lithium alloys e.g., lithium-aluminum alloys and lithium-tin alloys.
  • Lithium can be contained as one film or as several films, optionally separated by a protective structure/material such as a ceramic material or an ion conductive material described herein.
  • Suitable lithium alloys for use in the aspects described herein can include alloys of lithium and aluminum, magnesium, silicium (silicon), indium, and/or tin.
  • a protective structure may include a protective layer such as an ion conductive layer, which may help to inhibit a species in the electrolyte from contacting the electroactive material of the anode.
  • the ion-conductive material may be selected to be conductive to particular ions such as metal ions.
  • the ion-conductive material may be conductive to lithium ions or other alkali metal ions, according to some embodiments.
  • the ion-conductive material may comprise an inorganic material such as a ceramic and/or a glass conductive to metal ions.
  • Suitable glasses include, but are not limited to, those that may be characterized as containing a “modifier” portion and a “network” portion, as known in the art.
  • the modifier may include a metal oxide of the metal ion conductive in the glass.
  • the network portion may include a metal chalcogenide such as, for example, a metal oxide or sulfide.
  • the ion-conductive material may comprise or be a polymeric material.
  • Combinations of ion conductive materials and ion conductive material layers within a protective structure are also possible (e.g., a first ion conductive layer that comprises a ceramic and a second ion conductive layer that comprises a polymer).
  • the protective layer for the anode may be substantially impermeable (e.g., to the electrolyte used with the electrochemical cell including the anode).
  • the ion-conductive material may comprise a material selected from the group consisting of lithium nitrides, lithium silicates, lithium borates, lithium aluminates, lithium phosphates, lithium phosphorus oxynitrides, lithium silicosulfides, lithium germanosulfides, lithium oxides (e.g., Li 2 O, LiO, LiO 2 , LiRO 2 , where R is a rare earth metal), lithium lanthanum oxides, lithium titanium oxides, lithium borosulfides, lithium aluminosulfides, and lithium phosphosulfides, oxysulfides, and combinations thereof.
  • lithium nitrides lithium silicates, lithium borates, lithium aluminates, lithium phosphates, lithium phosphorus oxynitrides, lithium silicosulfides, lithium germanosulfides, lithium oxides (e.g., Li 2 O, LiO, LiO 2 , LiRO 2 , where R is a rare earth metal
  • the ion-conductive material may comprise Al 2 O 3 , ZrO 2 , SiO 2 , CeO 2 , and/or Al 2 TiO 5 .
  • the selection of the ion-conductive material will be dependent on a number of factors including, but not limited to, the properties of electrolyte and the anode and cathode used in the cell.
  • Examples of classes of polymers that may be suitable for use in a protective structure include, but are not limited to, polyamines (e.g., poly(ethylene imine) and polypropylene imine (PPI)); polyamides (e.g., polyamide (Nylon), poly( ⁇ -caprolactam) (Nylon 6), poly(hexamethylene adipamide) (Nylon 66)), polyimides (e.g., polyimide, polynitrile, and poly(pyromellitimide-1,4-diphenyl ether) (Kapton)); vinyl polymers (e.g., polyacrylamide, poly(2-vinyl pyridine), poly(N-vinylpyrrolidone), poly(methylcyanoacrylate), poly(ethylcyanoacrylate), poly(butylcyanoacrylate), poly(isobutylcyanoacrylate), poly(vinyl acetate), poly (vinyl alcohol), poly(vinyl chloride), poly(vinyl chloride), poly(
  • the polymer may be selected from the group consisting of polyvinyl alcohol, polyisobutylene, epoxy, polyethylene, polypropylene, polytetrafluoroethylene, and combinations thereof.
  • the mechanical and electronic properties (e.g., conductivity, resistivity) of these polymers are known.
  • At least a portion of the anode and/or a portion of the cathode are in direct physical contact with the electrolyte.
  • at least a portion of the electroactive material of the anode and/or a portion of the electroactive material of the cathode are in direct physical contact with the electrolyte.
  • the electrolyte may be in contact with the electroactive material of the anode and/or the electroactive material of the cathode to facilitate transport of Li ions across the electrode in the electrochemical cell.
  • the electrolyte resides in pores or interstices of the electrode.
  • the electrolyte can be in direct physical contact with a lithium species of an electrode.
  • the electrolyte is in contact (e.g., direct physical contact) with two or more sides of the anode and/or the cathode.
  • the electrolyte may be a liquid that surrounds two or more sides of the anode and/or the cathode.
  • the electrochemical cell is a pouch cell, and the anode and cathode are positioned within a pouch filled with an electrolyte (e.g., a liquid electrolyte) that surrounds two or more sides of the anode and/or cathode.
  • the second electrode e.g., anode
  • the second electrode may include a protective layer (e.g. a substantially impermeable layer) that substantially inhibits direct contact of the electrode with the electrolyte.
  • the protective layer may be in direct physical contact with the electrolyte instead of the electroactive material of the electrode, though minor imperfections (e.g., defects) in the protective layer may cause indirect contact of the electrolyte with the electroactive material (e.g., via the protective layer) in some embodiments.
  • the electrolyte comprises an organic solvent.
  • suitable organic solvents include, but are not limited to, dimethyl carbonate, diethyl carbonate, ethyl-methyl carbonate, ethylene carbonate, and propylene carbonate.
  • the electrolyte comprises one or more solid polymers.
  • useful gel polymer electrolytes include, but are not limited to, those comprising one or more polymers selected from the group consisting of polyethylene oxides, polypropylene oxides, polyacrylonitriles, polysiloxanes, polyimides, polyphosphazenes, polyethers, sulfonated polyimides, perfluorinated membranes (NAFION resins), polydivinyl polyethylene glycols, polyethylene glycol diacrylates, polyethylene glycol dimethacrylates, derivatives of the foregoing, copolymers of the foregoing, crosslinked and network structures of the foregoing, and blends of the foregoing, and optionally, one or more plasticizers.
  • polymers selected from the group consisting of polyethylene oxides, polypropylene oxides, polyacrylonitriles, polysiloxanes, polyimides, polyphosphazenes, polyethers, sulfonated polyimides, perfluorinated membranes (NAFION resins), polydivin
  • useful solid polymer electrolytes include, but are not limited to, those comprising one or more polymers selected from the group consisting of polyethers, polyethylene oxides, polypropylene oxides, polyimides, polyphosphazenes, polyacrylonitriles, polysiloxanes, derivatives of the foregoing, copolymers of the foregoing, crosslinked and network structures of the foregoing, and blends of the foregoing.
  • the electrolyte further comprises a lithium salt.
  • Non-limiting examples of suitable lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate monohydrate (LiAsF 6 ), lithium triflate (LiCF 3 SO 3 ), LiN(SO 2 CF 3 ) 2 , and LiC(SO 2 (CF 3 ) 3 .
  • the electrolyte has a relatively high lithium ion conductivity. In some embodiments, the electrolyte has a lithium ion conductivity of at least about 10 ⁇ 5 S/cm, at least about 10 ⁇ 4 S/cm, at least about 10 ⁇ 3 S/cm, at least about 10 ⁇ 2 S/cm, at least about 10 ⁇ 1 S/cm, or at least about 1 S/cm.
  • the electrolyte has a lithium ion conductivity in the range of about 10 ⁇ 5 S/cm to about 10 4 S/cm, about 10 ⁇ 5 S/cm to about 10 ⁇ 3 S/cm, about 10 ⁇ 5 S/cm to about 10 ⁇ 2 S/cm, about 10 ⁇ 5 S/cm to about 10 ⁇ 1 S/cm, about 10 ⁇ 5 S/cm to about 1 S/cm, about 10 4 S/cm to about 10 ⁇ 3 S/cm, about 10 4 S/cm to about 10 ⁇ 2 S/cm, about 10 ⁇ 4 S/cm to about 10 ⁇ 1 S/cm, about 10 ⁇ 4 S/cm to about 1 S/cm, about 10 ⁇ 3 S/cm to about 10 ⁇ 2 S/cm, about 10 ⁇ 3 S/cm to about 10 ⁇ 1 S/cm, about 10 ⁇ 3 S/cm to about 1 S/cm, or about 10 ⁇ 2 S/cm,
  • the electrolyte may optionally further comprise additives.
  • the additives may, for example, reduce impedance of the anode and/or cathode, and/or promote the formation of films.
  • suitable additives include vinylene carbonate, vinyl ethylene carbonate, CO 2 , SO 2 , ethylene sulfite, and any combination thereof.
  • the separator of an electrochemical cell (e.g., separator 108 of electrochemical cell 400 in FIG. 4 ) is generally positioned between the anode and the cathode.
  • the separator may be a solid non-electronically conductive or electrically insulating material.
  • the separator may separate or insulate the anode and the cathode from each other, preventing short circuiting, while permitting the transport of ions between the anode and the cathode.
  • the separator may be porous (e.g., the separator may comprise a plurality of pores). In certain cases, the porous separator may be permeable to the electrolyte.
  • the pores of the separator may be partially or substantially filled with electrolyte.
  • Separators may be supplied as porous free standing films which are interleaved with the anodes and the cathodes during the fabrication of cells.
  • the porous separator layer may be applied directly to the surface of one of the electrodes, for example, as described in PCT Publication No. WO 99/33125 to Carlson et al. and in U.S. Pat. No. 5,194,341 to Bagley et al.
  • separator materials are known in the art.
  • suitable solid porous separator materials include, but are not limited to, polyolefins, such as, for example, polyethylenes (e.g., SETELATM made by Tonen Chemical Corp) and polypropylenes, glass fiber filter papers, and ceramic materials.
  • the separator comprises a microporous polyethylene film.
  • separators and separator materials suitable for use in this invention are those comprising a microporous xerogel layer, for example, a microporous pseudo-boehmite layer, which may be provided either as a free standing film or by a direct coating application on one of the electrodes, as described in U.S. Pat. Nos. 6,153,337 and 6,306,545 by Carlson et al. of the common assignee. Solid electrolytes and gel electrolytes may also function as a separator in addition to their electrolyte function.
  • separator materials include, but are not limited to, polyolefins (e.g., polyethylenes, poly(butene-1), poly(n-pentene-2), polypropylene, polytetrafluoroethylene), polyamines (e.g., poly(ethylene imine) and polypropylene imine (PPI)); polyamides (e.g., polyamide (Nylon), poly( ⁇ -caprolactam) (Nylon 6), poly(hexamethylene adipamide) (Nylon 66)), polyimides (e.g., polyimide, polynitrile, and poly(pyromellitimide-1,4-diphenyl ether) (Kapton®) (NOMEX®) (KEVLAR®)); polyether ether ketone (PEEK); vinyl polymers (e.g., polyacrylamide, poly(2-vinyl pyridine), poly(N-vinylpyrrolidone), poly(methylcyanoacrylate), poly(ethylcyano
  • the polymer may be selected from poly(n-pentene-2), polypropylene, polytetrafluoroethylene, polyamides (e.g., polyamide (Nylon), poly( ⁇ -caprolactam) (Nylon 6), poly(hexamethylene adipamide) (Nylon 66)), polyimides (e.g., polynitrile, and poly(pyromellitimide-1,4-diphenyl ether) (Kapton®) (NOMEX®) (KEVLAR®)), polyether ether ketone (PEEK), and combinations thereof.
  • polyamides e.g., polyamide (Nylon), poly( ⁇ -caprolactam) (Nylon 6), poly(hexamethylene adipamide) (Nylon 66)
  • polyimides e.g., polynitrile, and poly(pyromellitimide-1,4-diphenyl ether) (Kapton®) (NOMEX®) (KEVLAR®)
  • PEEK poly
  • the electrochemical cell may have any suitable shape.
  • the electrochemical cell is cylindrical (e.g., a sandwich of cathode, separator, and anode rolled into a single spool).
  • the electrochemical cell is prismatic.
  • the electrochemical cell is a pouch cell.
  • the anode and cathode of the electrochemical cell may be sealed within a pouch formed from a polymer film, and the pouch may be filled with an electrolyte (e.g., a liquid electrolyte).
  • Metal tabs e.g., Ni, Al
  • a typical electrochemical cell also would include, of course, current collectors, external circuitry, a housing structure, and the like.
  • the energy storage devices described herein may be capable of achieving enhanced performance.
  • certain of the electrochemical cells incorporating lithium-ion-conductive layers may have reduced capacity fade rate (e.g., loss of capacity per cycle) relative to electrochemical cells lacking such lithium-ion-conductive layers but otherwise including the same components.
  • the electrochemical cell capacity decreases by less than about 5% per charge and discharge cycle, less than about 2% per charge and discharge cycle, less than about 1% per charge and discharge cycle, less than about 0.8% per charge and discharge cycle, less than about 0.6% per charge and discharge cycle, less than about 0.4% per charge and discharge cycle, less than about 0.2% per charge and discharge cycle, or less than about 0.1% per charge and discharge cycle over at least about 2, at least about 10, at least about 20, at least about 30, at least about 50, at least about 75, at least about 100, at least about 125, or at least about 135 cycles subsequent to a first charge and discharge cycle at a temperature of at least about 25° C., at least about 40° C., or at least about 60° C.
  • the electrochemical cell capacity decreases by more than about 0.1% per charge and discharge cycle, more than about 0.2% per charge and discharge cycle, more than about 0.4% per charge and discharge cycle, more than about 0.6% per charge and discharge cycle, more than about 0.8% per charge and discharge cycle, more than about 1% per charge and discharge cycle, more than about 2% per charge and discharge cycle, or more than about 5% per charge and discharge cycle. Combinations of the above-noted ranges are also possible. Capacity fade rate may be determined by measuring capacity during each cycle of charge and discharge.
  • an electrochemical cell comprising a lithium-ion-conductive layer may exhibit a capacity fade rate that is at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 50%, at least about 75%, or at least about 100% lower than the capacity fade rate of an equivalent electrochemical cell that does not comprise a lithium-ion-conductive layer but otherwise includes the same components.
  • the electrochemical cells described herein may exhibit relatively high capacities after repeated cycling of the cell. For example, in some embodiments, after alternately discharging and charging the cell five times, the cell exhibits at least about 50%, at least about 80%, at least about 90%, or at least about 95% of the cell's initial capacity at the end of the fifth cycle. In some cases, after alternately discharging and charging the cell ten times, the cell exhibits at least about 50%, at least about 80%, at least about 90%, or at least about 95% of the cell's initial capacity at the end of the tenth cycle.
  • the cell after alternately discharging and charging the cell twenty-five times, the cell exhibits at least about 50%, at least about 80%, at least about 90%, or at least about 95% of the cell's initial capacity at the end of the twenty-fifth cycle.
  • Some lithium-ion electrochemical cells may be susceptible to self-discharge (e.g., discharge of the electrochemical cell (e.g., loss of capacity during storage of the electrochemical cell).
  • the rate of self-discharge of certain of the electrochemical cells described herein may be reduced relative to electrochemical cells lacking lithium-ion-conductive layers but otherwise including the same components.
  • the self-discharge rate of the electrochemical cell may be about 90% or less, about 80% or less, about 70% or less, about 60% or less, about 50% or less, about 40% or less, about 30% or less, about 20% or less, or about 10% or less per week at 60° C.
  • the self-discharge rate of the electrochemical cell may be about 10% or more, about 20% or more, about 30% or more, about 40% or more, about 50% or more, about 60% or more, about 70% or more, about 80% or more, or about 90% or more per week at 60° C. In some embodiments, the self-discharge rate of the electrochemical cell may be about 90% or less, about 80% or less, about 70% or less, about 60% or less, about 50% or less, about 40% or less, about 30% or less, about 20% or less, or about 10% or less per week at room temperature (e.g., about 25° C.).
  • the self-discharge rate of the electrochemical cell may be about 10% or more, about 20% or more, about 30% or more, about 40% or more, about 50% or more, about 60% or more, about 70% or more, about 80% or more, or about 90% or more per week at room temperature (e.g., about 25° C.). Combinations of the above-noted ranges are also possible.
  • an electrochemical cell comprising a lithium-ion-conductive layer may exhibit a self-discharge rate that is at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 50%, at least about 75%, or at least about 100% lower than the self-discharge rate of an equivalent electrochemical cell that does not comprise a lithium-ion-conductive layer but otherwise includes the same components.
  • an electrochemical cell comprising a lithium-ion-conductive layer may exhibit a self-discharge rate that is less than about 100%, less than about 75%, less than about 50%, less than about 20%, less than about 20%, less than about 10%, less than about 5%, or less than about 1% lower than the self-discharge rate of an equivalent electrochemical cell that does not comprise a lithium-ion-conductive layer but otherwise includes the same components. Combinations of the above-noted ranges are also possible.
  • an electrochemical cell comprising a lithium-ion-conductive layer may experience a reduction in irreversible capacity loss during storage and/or after the initial discharge after storage. In some embodiments, the electrochemical cell may experience a reduction in irreversible capacity loss upon subsequent discharges as well (e.g., after recharging at room temperature or elevated temperatures such as 50 degrees Celsius, or other elevated temperatures described herein).
  • the electrochemical cell may experience a reduction in irreversible capacity loss or at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, or at least 50% during storage, after initial discharge, or after the 2 nd , 3 rd , 4 th , 5 th , 6 th , 7 th , 8 th , 9 th , or 10 th discharge of the electrochemical cell compared to that performed using a similar electrochemical cell including similar components and amounts, but without the lithium-ion-conductive layer (i.e., all other factors being equal).
  • the reduction in irreversible capacity loss may be less than or equal to 80%, less than or equal to 60%, less than or equal to 40%, less than or equal to 20%, or less than or equal to 10% during storage, after initial discharge, or after the 2 nd , 3 rd , 4 th , 5 th , 6 th , 7 th , 8 th , 9 th , or 10 th discharge of the electrochemical cell compared to that performed using a similar electrochemical cell but without the lithium-ion-conductive layer, all other factors being equal. Combinations of the above-referenced ranges are also possible.
  • an electrochemical cell comprising a lithium-ion-conductive layer may experience a reduced rate of impedance increase relative to electrochemical cells that do not comprise a lithium-ion-conductive layer but otherwise include the same components in the same amounts (i.e., all other factors being equal).
  • an electrochemical cell comprising a lithium-ion-conductive layer may have a rate of impedance increase that is at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 50%, at least about 75%, or at least about 100% lower than the rate of impedance increase of an equivalent electrochemical cell that does not comprise a lithium-ion-conductive layer but otherwise includes the same components.
  • an electrochemical cell comprising a lithium-ion-conductive layer may have a rate of impedance increase that is less than about 100%, less than about 75%, less than about 50%, less than about 20%, less than about 20%, less than about 10%, less than about 5%, or less than about 1% lower than the rate of impedance increase of an equivalent electrochemical cell that does not comprise a lithium-ion-conductive layer but otherwise includes the same components. Combinations of the above-noted ranges are also possible.
  • an electrochemical cell comprises a first electrode (e.g., a lithium-intercalation electrode) comprising a lithium-ion-conductive layer, a second electrode (e.g., an intercalation electrode, a lithium metal electrode), and an electrolyte
  • a first electrode e.g., a lithium-intercalation electrode
  • a second electrode e.g., an intercalation electrode, a lithium metal electrode
  • an electrolyte no species decomposed from the first electrode or the electrolyte resides at the second electrode after the electrochemical cell has undergone at least about 10 cycles, at least about 25 cycles, at least about 50 cycles, at least about 75 cycles, at least about 100 cycles, at least about 125 cycles, at least about 150 cycles, at least about 175 cycles, at least about 200 cycles, at least about 250 cycles, or at least about 300 cycles.
  • no species decomposed from the first electrode or the electrolyte resides at the second electrode after the electrochemical cell has undergone less than or equal to about 300 cycles, less than or equal to about 250 cycles, less than or equal to about 200 cycles, less than or equal to about 175 cycles, less than or equal to about 150 cycles, less than or equal to about 125 cycles, less than or equal to about 100 cycles, less than or equal to about 75 cycles, less than or equal to about 50 cycles, less than or equal to about 25 cycles, or less than or equal to about 10 cycles. Combinations of the above-noted ranges are also possible. Species residing at the second electrode may be detected, for example, through energy dispersive spectroscopy (EDS).
  • EDS energy dispersive spectroscopy
  • Some embodiments may include electrochemical devices in which the application of an anisotropic force is used to enhance the performance of the device.
  • Application of force to the electrochemical cell may improve the cycling lifetime and performance of the cell.
  • Any of the electrode properties (e.g., porosities, average pore size, etc.) and/or performance metrics outlined above may be achieved, alone or in combination with each other, while an anisotropic force is applied to the electrochemical cell (e.g., during charge and/or discharge of the cell).
  • the magnitude of the anisotropic force may lie within any of the ranges mentioned below.
  • the anisotropic force applied to the energy storage device comprises a component normal to the active surface of an electrode of the energy storage device (e.g., the anode of a lithium-ion electrochemical cell).
  • the force may comprise an anisotropic force with a component normal to the surface at the point at which the force is applied.
  • the force may comprise an anisotropic force with a component normal to a plane that is tangent to the curved surface at the point at which the force is applied.
  • an anisotropic force with a component normal to the active surface of the anode is applied during at least one period of time during charge and/or discharge of the electrochemical cell.
  • the force may be applied continuously, over one period of time, or over multiple periods of time that may vary in duration and/or frequency.
  • the anisotropic force may be applied, in some cases, at one or more pre-determined locations, optionally distributed over the active surface of one or both electrodes. In some embodiments, the anisotropic force is applied uniformly over the active surface of an electrode.
  • anisotropic force is given its ordinary meaning in the art and means a force that is not equal in all directions.
  • a force equal in all directions is, for example, internal pressure of a fluid or material within the fluid or material, such as internal gas pressure of an object.
  • forces not equal in all directions include forces directed in a particular direction, such as the force on a table applied by an object on the table via gravity.
  • Another example of an anisotropic force includes a force applied by a band arranged around a perimeter of an object.
  • a rubber band or turnbuckle can apply forces around a perimeter of an object around which it is wrapped.
  • the band may not apply any direct force on any part of the exterior surface of the object not in contact with the band.
  • the band when the band is expanded along a first axis to a greater extent than a second axis, the band can apply a larger force in the direction parallel to the first axis than the force applied parallel to the second axis.
  • a force with a “component normal” to a surface for example an active surface of an electrode, is given its ordinary meaning as would be understood by those of ordinary skill in the art and includes, for example, a force which at least in part exerts itself in a direction substantially perpendicular to the surface.
  • an anisotropic force with a component normal to the active surface of an electrode is applied, during at least one period of time during charge and/or discharge of the electrochemical cell.
  • the component of the anisotropic force normal to the electrode active surface may, for example, define a pressure of at least about 5, at least about 10, at least about 25, at least about 50, at least about 75, at least about 100, at least about 120, at least about 150, at least about 175, at least about 200, at least about 225, or at least about 250 Newtons per square centimeter.
  • the component of the anisotropic force normal to the electrode active surface may, for example, define a pressure of less than about 250, less than about 225, less than about 200, less than about 150, less than about 120, less than about 100, less than about 50, less than about 25, or less than about 10 Newtons per square centimeter.
  • the component of the anisotropic force normal to the anode active surface is may define a pressure of between about 5 and about 150 Newtons per square centimeter, between about 50 and about 120 Newtons per square centimeter, between about 70 and about 100 Newtons per square centimeter, between about 80 and about 110 Newtons per square centimeter, between about 5 and about 250 Newtons per square centimeter, between about 50 and about 250 Newtons per square centimeter, between about 80 and about 250 Newtons per square centimeter, between about 90 and about 250 Newtons per square centimeter, or between about 100 and about 250 Newtons per square centimeter.
  • forces and pressures are generally described herein in units of Newtons and Newtons per unit area, respectively, forces and pressures can also be expressed in units of kilograms-force and kilograms-force per unit area, respectively.
  • forces and pressures can also be expressed in units of kilograms-force and kilograms-force per unit area, respectively.
  • kilogram-force-based units One of ordinary skill in the art will be familiar with kilogram-force-based units, and will understand that 1 kilogram-force (kgf) is equivalent to about 9.8 Newtons.
  • a method comprises cycling an electrochemical cell comprising a first electrode (e.g., a lithium intercalation electrode, a lithium conversion electrode), a second electrode, and an electrolyte.
  • the first electrode comprises a layer comprising an electroactive material integrated with an inorganic lithium-ion-conductive layer.
  • the method comprises cycling the electrochemical cell at a temperature of at least about 20 degrees Celsius, at least about 25 degrees Celsius, at least about 30 degrees Celsius, at least about 35 degrees Celsius, at least about 40 degrees Celsius, at least about 45 degrees Celsius, at least about 50 degrees Celsius, at least about 55 degrees Celsius, or at least about 60 degrees Celsius, at least 65 degrees Celsius.
  • the method comprises cycling the electrochemical cell at a temperature of less than or equal to about 70 degrees Celsius, less than or equal to about 65 degrees Celsius, less than or equal to about 60 degrees Celsius, less than or equal to about 55 degrees Celsius, less than or equal to about 50 degrees Celsius, less than or equal to about 45 degrees Celsius, less than or equal to about 40 degrees Celsius, less than or equal to about 35 degrees Celsius, less than or equal to about 30 degrees Celsius, less than or equal to about 25 degrees Celsius, or less than or equal to about 20 degrees Celsius. Combinations of the above-referenced ranges are also possible.
  • the method comprises cycling the electrochemical cell with an end-of-charge voltage of at least about 4.2 V, at least about 4.3 V, at least about 4.4 V, or at least about 4.5 V, at least about 4.6 V, at least about 4.7 V, at least about 4.8 V, or at least about 4.9 V. In some embodiments, the method comprises cycling the electrochemical cell with an end-of-charge voltage of about 5.0 V or less, about 4.9 V or less, about 4.8 V or less, about 4.7 V or less, about 4.6 V or less, about 4.5 V or less, about 4.4 V or less, about 4.3 V or less, or about 4.2 V or less. Combinations of the above-referenced ranges are also possible.
  • the electrochemical cell is cycled for at least about 10 cycles, at least about 25 cycles, at least about 50 cycles, at least about 75 cycles, at least about 100 cycles, at least about 125 cycles, at least about 150 cycles, at least about 175 cycles, at least about 200 cycles, at least about 250 cycles, or at least about 300 cycles.
  • the electrochemical cell is cycled for less than or equal to about 300 cycles, less than or equal to about 250 cycles, less than or equal to about 200 cycles, less than or equal to about 175 cycles, less than or equal to about 150 cycles, less than or equal to about 125 cycles, less than or equal to about 100 cycles, less than or equal to about 75 cycles, less than or equal to about 50 cycles, less than or equal to about 25 cycles, or less than or equal to about 10 cycles. Combinations of the above-noted ranges are also possible.
  • a method comprises substantially inhibiting a species decomposed from the first electrode, or a species decomposed from the electrolyte, from residing at the second electrode. In some embodiments, the method comprises substantially inhibiting the species from depositing on the second electrode.
  • the method comprises inhibiting a species decomposed from the first electrode or from the electrolyte from residing at the second electrode at a temperature of at least about 20 degrees Celsius, at least about 25 degrees Celsius, at least about 30 degrees Celsius, at least about 35 degrees Celsius, at least about 40 degrees Celsius, at least about 45 degrees Celsius, or at least about 50 degrees Celsius.
  • the method comprises inhibiting a species decomposed from the first electrode or from the electrolyte from residing at the second electrode at a temperature of less than or equal to about 50 degrees Celsius, less than or equal to about 45 degrees Celsius, less than or equal to about 40 degrees Celsius, less than or equal to about 35 degrees Celsius, less than or equal to about 30 degrees Celsius, less than or equal to about 25 degrees Celsius, or less than or equal to about 20 degrees Celsius. Combinations of the above-noted ranges are also possible.
  • the method comprises the step of depositing a lithium-ion-conductive layer on an electroactive-material-containing layer.
  • the depositing step may be performed using any suitable method, including, but not limited to, electron beam evaporation, chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), laser-enhanced chemical vapor deposition, thermal evaporation (including, but not limited to, resistive, inductive, radiation, and electron beam heating), aerosol deposition, sputtering (including, but not limited to, diode, DC magnetron, RF, RF magnetron, pulsed, dual magnetron, AC, MF, and reactive), laser ablation, ion plating, cathodic arc, and jet vapor deposition.
  • CVD chemical vapor deposition
  • PECVD plasma-enhanced chemical vapor deposition
  • laser-enhanced chemical vapor deposition including, but not limited to, resistive, inductive, radiation, and electron beam heating
  • the technique used may depend on a variety of factors, including the type of material being deposited, the thickness of the layer, and the underlying layer on which the lithium-ion-conductive layer is deposited.
  • aerosol deposition may be utilized to deposit a lithium-ion-conductive layer comprising ceramics having a crystalline structure, such as Li 10 GeP 2 S 12 and/or Li 7 La 3 Zr 2 O 12 .
  • methods described herein further comprise exposing at least a portion of the anode and/or the cathode to the electrolyte. In some embodiments, methods described herein further comprise exposing at least a portion of the electroactive material of the anode and/or the electroactive material of the cathode to the electrolyte.
  • This example describes the fabrication and testing of electrochemical cells comprising an anode, a cathode coated with a lithium-ion-conductive ceramic, and a porous separator positioned between the anode and the cathode.
  • the anode was graphite, and a 10 ⁇ m Cu foil acted as a substrate and current collector.
  • the porous separator was a 25 ⁇ m-thick layer of polyolefin (Celgard 2325).
  • the cathode was lithium iron phosphate (LFP) coated on an aluminum substrate.
  • the cathode had a capacity of about 1.21 mAh/cm 2 .
  • Lithium oxide was coated on the LFP cathode by vacuum deposition, in which oxygen-containing gas was reacted with lithium vapor.
  • PVDF was used as a binder.
  • the above components were assembled in a single-layer cell, with the separator positioned between the anode and the cathode, and the cell components were placed in a foil pouch.
  • the total active cathode surface area was 16.574 cm 2 .
  • 0.3 mL of LP30 electrolyte 44.1% dimethyl carbonate, 44.1% ethylene carbonate, 11.8% lithium hexafluorophosphate was added to the foil pouch, and the cell package was then vacuum sealed. The cell was allowed to soak with the electrolyte for 24 hours unrestrained, and then 10 kg/cm 2 pressure was applied. The cell was cycled under the 10 kg/cm 2 pressure.
  • Charge and discharge cycling was performed at standard C/8 (2.5 mA) and C/5 rates (4 mA), respectively, with a charge cutoff voltage of 4.2 V followed by taper at 4.2 V to 0.5 mA, and a discharge cutoff voltage of 2.5 V.
  • the cell was cycled at room temperature for 5 cycles. From the 6 th cycle, the cell was cycled at 50° C.
  • FIG. 8A shows an SEM image of the cross-sectional view of the lithium oxide-coated LFP cathode before cycling
  • FIG. 8B shows an SEM image of the cathode after approximately 70 cycles. From FIGS. 8A-8B , it appears that the lithium oxide ceramic coating remained intact after approximately 70 cycles.
  • This comparative example describes the fabrication and testing of control cells comprising an uncoated graphite anode and an uncoated LFP cathode.
  • the materials and procedures presented in Example 1 were used and followed, except the LFP cathode was not coated with a lithium-ion-conductive ceramic material.
  • FIG. 7 shows that the discharge capacity fade rate at 50° C. cycling temperature for the electrochemical cells from Example 1 ( 702 ) was considerably improved compared to the rate for the electrochemical cells from Comparative Example 1 ( 704 ).
  • FIGS. 9A-9B show energy-dispersive spectroscopy (EDS) spectra of the graphite anode from an electrochemical cell of Comparative Example 1 ( 9 A) and an electrochemical cell of Example 1 ( 9 B). Although there was no notable difference in morphology between the control cell and ceramic-coated LFP cell, as indicated by SEM ( FIG. 8 ), EDS detected Fe on the graphite anode of the control cell, while Fe was absent on the graphite anode from the ceramic-coated LFP cell. This result suggests lithium oxide inhibited the Fe dissolution from LFP and subsequent reduction on the graphite anode, and therefore improved the capacity fade rate.
  • EDS energy-dispersive spectroscopy
  • This example describes the fabrication and testing of electrochemical cells comprising an oxysulfide-coated LFP cathode.
  • Example 1 The materials and procedures presented in Example 1 were used and followed, except the LFP cathode was coated with oxysulfide instead of lithium oxide. A 0.5 ⁇ m-thick coating of oxysulfide ceramic was sputtered on LFP electrodes.
  • FIG. 10 shows improved discharge capacity fade rate in the cells containing oxysulfide-coated LFP ( 1000 ) relative to the control cells of Comparative Example 1 ( 1020 ).
  • This example describes the fabrication and testing of electrochemical cells comprising a lithium oxide-coated LFP cathode.
  • a 2 ⁇ m-thick lithium oxide layer was vacuum deposited on LFP electrodes.
  • the cells were built in the same manner as in Example 1 and cycled at room temperature for 5 cycles.
  • the fully charged cells were stored at 60° C. for a week and then cycled at room temperature.
  • the control cells with regular LFP cathodes were built and cycled/stored the same way.
  • 100% self-discharge was observed from the control cells of Comparative Example 1 ( 1120 ).
  • cell self-discharge was reduced to 56% ( 1100 ).
  • This example describes the fabrication and testing of electrochemical cells comprising a lithium oxide-coated anode.
  • a 2 ⁇ m-thick lithium oxide layer was vacuum deposited on graphite electrodes.
  • the cells were built in the same manner as in Example 1 and cycled at room temperature for 5 cycles.
  • the fully charged cells were stored at 60° C. for a week and then further cycled at room temperature.
  • 100% self-discharge was observed from the control cells of Comparative Example 1 ( 1220 ).
  • cell self-discharge was reduced to 91% ( 1200 ).
  • This example describes the fabrication and testing of electrochemical cells comprising a lithium oxide-coated graphite anode and a lithium oxide-coated LFP cathode.
  • a 2 ⁇ m layer of lithium oxide was vacuum deposited on graphite electrodes and on LFP electrodes.
  • the cells using oxide-coated graphite and oxide-coated LFP were built in the same manner as in Example 1 and cycled at room temperature for 5 cycles.
  • the fully charged cells were then stored at 60° C. for a week and then further cycled at room temperature.
  • 100% self-discharge was observed from the control cells of Comparative Example 1 ( 1320 ).
  • cell self-discharge was reduced to 55% ( 1300 ).
  • This example describes the fabrication and testing of electrochemical cells comprising a lithium oxide-coated anode and a lithium oxide-coated NMC cathode.
  • a 2 ⁇ m layer of lithium oxide was vacuum deposited on graphite electrodes and on NMC electrodes.
  • the cells using oxide-coated graphite and oxide-coated NMC were built in the same manner as in Example 1. Charge and discharge cycling was performed at standard C/8 (3.3 mA) and C/5 rates (5.2 mA), respectively, with a charge cutoff voltage of 4.2 V and a discharge cutoff voltage of 3.2 V. The cells were cycled at room temperature for 5 cycles. The fully charged cells were stored at 60° C. for a week and then further cycled at room temperature. Control cells with regular graphite and NMC electrodes were built and cycled/stored the same way. As shown in FIG. 14 , 41% self-discharge was observed from the control cells ( 1420 ). In the presence of lithium oxide ceramic coating on both graphite and NMC, cell self-discharge was reduced to 30% ( 1400 ).
  • This example describes the fabrication and testing of electrochemical cells comprising an oxysulfide-coated LFP cathode.
  • FIG. 15 shows improved discharge capacity fade rate in the cells containing oxysulfide-coated LFP relative to the control cells with uncoated LFP. Furthermore, from FIG. 15 , it can be seen that a 1 ⁇ m oxysulfide coating ( 1500 ) improved the capacity fade rate more than those containing a 0.5 ⁇ m oxysulfide coating ( 1520 ) or those not containing a coating ( 1540 ).
  • This example describes the fabrication and testing of electrochemical cells comprising an oxysulfide-coated LFP cathode.
  • a 1 ⁇ m layer of electron-beamed oxysulfide ceramic was coated on LFP electrodes as the protective Li-ion conducting ceramic.
  • the cells were built in the same manner and cycled at room temperature for 5 cycles.
  • the fully charged cells were stored at 60° C. for a week and then further cycled at room temperature.
  • the control cells with regular graphite and LFP electrodes were built and cycled/stored the same way.
  • 100% self-discharge was observed from the control cells ( 1620 ).
  • cell self-discharge was reduced to 78% ( 1600 ).
  • This example describes the fabrication and testing of electrochemical cells comprising an oxysulfide-coated graphite anode.
  • a 1 ⁇ m layer of electron-beamed lithium oxysulfide was vacuum deposited on graphite electrodes.
  • the cells were built in the same manner and cycled at room temperature for 5 cycles.
  • the fully charged cells were stored at 60° C. for a week and then further cycled at room temperature.
  • the control cells with regular graphite and LFP electrodes were built and cycled/stored the same way.
  • 100% self-discharge was observed from the control cells ( 1720 ).
  • cell self-discharge was reduced to 84% ( 1700 ).
  • This example describes the fabrication and testing of electrochemical cells comprising a graphite anode and an NCM cathode coated with a substantially porous lithium oxide layer.
  • FIG. 18A shows an SEM image of an uncoated NCM cathode. A 1 ⁇ m-thick lithium oxide layer was coated on the NCM cathode by vacuum deposition as a protective lithium-ion-conductive ceramic layer.
  • FIG. 18B shows an SEM image of the NCM cathode with the lithium oxide ceramic coating. From FIG. 18B , it can be seen that the lithium oxide ceramic coating is porous.
  • the electrochemical cells included an LP30 electrolyte composed of 44.1% dimethyl carbonate, 44.1% ethylene carbonate, 11.8% lithium hexafluorophosphate.
  • FIG. 19 shows improved discharge capacity fade rate in the electrochemical cells comprising the lithium-oxide-coated NCM cathode ( 1900 ) relative to control electrochemical cells with the uncoated NCM cathode ( 1910 ).
  • FIGS. 20A-20B show EDS spectra and SEM images (inset) of the graphite anode from an electrochemical cell with an uncoated NCM electrode after 179 cycles ( FIG. 20A ) and an electrochemical cell with a lithium-oxide-coated NCM electrode after 191 cycles ( FIG. 20B ). From the EDS spectra in FIGS. 20A-20B , it can be seen that EDS detected Mn on the graphite anode of the cell with the uncoated NCM electrode but not on the graphite anode of the cell with the lithium-oxide-coated NCM electrode.
  • porous lithium oxide coating on the NCM cathode inhibited Mn corrosion from the NCM cathode and its subsequent reduction on the graphite anode. This may also have improved the capacity fade rate of the electrochemical cell with the lithium-oxide-coated NCM cathode.
  • a reference to “A and/or B,” when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A without B (optionally including elements other than B); in another embodiment, to B without A (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
  • the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements.
  • This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified.
  • “at least one of A and B” can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.

Abstract

Protective layers in lithium-ion electrochemical cells, and associated electrodes and methods, are generally described. The protective layers may comprise lithium-ion-conductive inorganic ceramic materials, such as lithium oxide, lithium nitride, and/or lithium oxysulfide. The resulting lithium-ion electrochemical cells may exhibit enhanced performance, including reduced capacity fade rates and reduced self-discharge rates.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 14/848,659, filed Sep. 9, 2015, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 62/048,228, filed Sep. 9, 2014, each of which is incorporated herein by reference in its entirety for all purposes.
  • TECHNICAL FIELD
  • Protective layers in lithium-ion electrochemical cells, and associated electrodes and methods, are generally described.
  • BACKGROUND
  • Lithium-ion electrochemical cells (also sometimes referred to as lithium-ion batteries) are a family of electrochemical cells in which lithium ions are transported between an anode and a cathode during charge and discharge. Typical lithium-ion electrochemical cells include a lithium intercalation compound-based cathode paired with a carbon-comprising anode such as graphite. There has been considerable interest in recent years in developing high-energy-density lithium-ion electrochemical cells, especially in consumer electronics, vehicle, and aerospace applications. However, the performance of lithium-ion electrochemical cells can be inhibited due to adverse interactions between battery components such as the electrodes and the electrolyte.
  • Accordingly, improved lithium-ion electrochemical cells are desirable.
  • SUMMARY
  • Protective layers in lithium-ion electrochemical cells, and associated electrodes and methods, are generally described. The subject matter of the present invention involves, in some cases, interrelated products, alternative solutions to a particular problem, and/or a plurality of different uses of one or more systems and/or articles.
  • In one aspect, a lithium intercalation electrode is described. According to some embodiments, the lithium intercalation electrode comprises a layer comprising an electroactive material (i.e., an electroactive layer), wherein the electroactive material is a lithium intercalation compound. The electrode also includes an inorganic lithium-ion-conductive layer disposed on a surface of the layer comprising the electroactive material.
  • According to some embodiments, the lithium intercalation electrode comprises a layer comprising an electroactive material. In certain embodiments, the electroactive material is a lithium intercalation compound. In some embodiments, an inorganic lithium-ion-conductive layer is integrated with the layer comprising the electroactive material. The lithium-ion-conductive layer has a thickness of at least 0.1 microns.
  • In another aspect, a method of fabricating a lithium intercalation electrode is described. In some embodiments, the method comprises depositing an inorganic lithium-ion-conductive layer on a layer comprising an electroactive material. In certain cases, the electroactive material is a lithium intercalation compound.
  • In another aspect, an electrochemical cell is provided. In some embodiments, the electrochemical cell comprises a first, lithium intercalation electrode including a layer comprising an electroactive material, and an inorganic lithium-ion-conductive layer integrated with the layer comprising the electroactive material. The inorganic lithium-ion-conductive layer may comprise lithium. The electrochemical cell also includes a second electrode and an electrolyte. At least a portion of the first lithium intercalation electrode is in contact with the electrolyte.
  • In another aspect, a method is provided. The method comprises cycling an electrochemical cell comprising a first, lithium intercalation electrode including a layer comprising an electroactive material, and an inorganic lithium-ion-conductive layer integrated with the layer comprising the electroactive material. The inorganic lithium-ion-conductive layer may comprise lithium. The electrochemical cell also includes a second electrode. The method involves substantially inhibiting a species decomposed from the first, lithium intercalation electrode, or a species decomposed from the electrolyte, from residing at the second electrode.
  • In another aspect, an electrode is described. In some embodiments, the electrode comprises a layer comprising an electroactive material. In certain cases, at least a portion of the electroactive material is in direct contact with an electrolyte and/or the layer is porous and/or the layer comprises a plurality of particles of the electroactive material. In some embodiments, the first electrode comprises an inorganic lithium-ion-conductive layer integrated with the layer comprising the electroactive material.
  • In another aspect, a method of fabricating an electrode is described. In some embodiments, the method comprises depositing an inorganic lithium-ion-conductive layer on a layer comprising an electroactive material. In certain cases, the layer comprising the electroactive material is porous and/or comprises a plurality of particles. In some embodiments, the inorganic lithium-ion-conductive layer comprises lithium.
  • Other advantages and novel features of the present invention will become apparent from the following detailed description of various non-limiting embodiments of the invention when considered in conjunction with the accompanying figures. In cases where the present specification and a document incorporated by reference include conflicting and/or inconsistent disclosure, the present specification shall control.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Non-limiting embodiments of the present invention will be described by way of example with reference to the accompanying figures, which are schematic and are not intended to be drawn to scale. In the figures, each identical or nearly identical component illustrated is typically represented by a single numeral. For purposes of clarity, not every component is labeled in every figure, nor is every component of each embodiment of the invention shown where illustration is not necessary to allow those of ordinary skill in the art to understand the invention. In the figures:
  • FIG. 1 is a cross-sectional schematic illustration of an electrode, according to some embodiments;
  • FIG. 2 is a cross-sectional schematic illustration of an electrode, according to some embodiments;
  • FIGS. 3A-3B are cross-sectional schematic illustrations of an electrochemical cell, according to some embodiments, comprising: (A) a lithium-ion-conductive layer integrated with a first electroactive-material-containing layer; and (B) a lithium-ion-conductive layer integrated with a second, different electroactive-material-containing layer;
  • FIG. 4 is a cross-sectional schematic illustration of an electrochemical cell comprising a first lithium-ion-conductive layer integrated with a first electroactive-material-containing layer and a second lithium-ion-conductive layer integrated with a second electroactive-material-containing layer, according to some embodiments;
  • FIG. 5 is a cross-sectional schematic illustration of an electrochemical cell comprising first and second electroactive-material-containing layers, a lithium-ion-conductive layer, a separator, and first and second substrates, according to some embodiments;
  • FIG. 6 is a cross-sectional schematic illustration of an electrochemical cell comprising first and second electroactive-material-containing layers, first and second lithium-ion-conductive layers, a separator, and first and second substrates, according to some embodiments;
  • FIG. 7 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a graphite anode and a lithium oxide-coated lithium iron phosphate (LFP) cathode, according to some embodiments;
  • FIGS. 8A-8B are scanning electron microscope (SEM) images of a cross-sectional view of a lithium oxide-coated LFP cathode, according to some embodiments: (A) before cycling; and (B) after 70 cycles (initial 5 cycles at room temperature, then at 50° C.);
  • FIGS. 9A-B are energy-dispersive spectroscopy (EDS) spectra of a graphite anode after 70 cycles in: (A) a graphite/LFP control cell; and (B) a graphite/Li2O-coated LFP cell;
  • FIG. 10 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a graphite anode and an LFP cathode with a 0.5 μm-thick lithium oxysulfide coating, according to some embodiments; where the electrochemical cells were cycled at room temperature for the first 5 cycles, then cycled at 50° C.
  • FIG. 11 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a graphite anode and an LFP cathode with a 0.5 μm-thick lithium oxysulfide coating, according to some embodiments, where the electrochemical cells were cycled at room temperature for the first 5 cycles, stored at full charge in a 60° C. oven for 1 week, then cycled at room temperature for an additional 5 cycles;
  • FIG. 12 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a 2 μm-thick lithium oxide layer on a graphite anode, according to some embodiments, where the electrochemical cells were cycled at room temperature for the first 5 cycles, stored at full charge in a 60° C. oven for 1 week, then cycled at room temperature for an additional 5 cycles;
  • FIG. 13 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising, according to some embodiments, a 2 μm-thick lithium oxide layer on a graphite anode and a 2 μm-thick lithium oxide layer on an LFP cathode, according to some embodiments, where the electrochemical cells were cycled at room temperature for the first 5 cycles, stored at full charge in a 60° C. oven for 1 week, then cycled at room temperature for an additional 5 cycles;
  • FIG. 14 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a 2 μm-thick lithium oxide layer on a graphite anode and a 2 μm-thick lithium oxide layer on a lithium nickel manganese cobalt oxide (“NMC” or “NCM”) cathode, according to some embodiments, where the electrochemical cells were cycled at room temperature for the first 5 cycles, stored at full charge in a 60° C. oven for 1 week, then cycled at room temperature for an additional 5 cycles;
  • FIG. 15 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a graphite anode and an LFP cathode, a graphite anode and an LFP cathode coated with a 0.5 μm-thick layer of lithium oxysulfide, and a graphite anode and an LFP cathode coated with a 1 μm-thick layer of lithium oxysulfide, according to some embodiments, where the electrochemical cells were cycled at room temperature for the first 5 cycles, then cycled at 50° C.
  • FIG. 16 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a graphite anode and an LFP cathode coated with a 1 μm-thick layer of lithium oxysulfide, according to some embodiments, where the electrochemical cells were cycled at room temperature for the first 5 cycles, stored at full charge in a 60° C. oven for 1 week, then cycled at room temperature for an additional 5 cycles;
  • FIG. 17 is an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a graphite anode coated with a 1 μm-thick layer of lithium oxysulfide and an LFP cathode, according to some embodiments, where the electrochemical cells were cycled at room temperature for the first 5 cycles, stored at full charge in a 60° C. oven for 1 week, then cycled at room temperature for an additional 5 cycles
  • FIG. 18A is an SEM image of an uncoated NCM cathode, according to some embodiments;
  • FIG. 18B is an SEM image of an NCM cathode coated with a 1 μm-thick layer of lithium oxide, according to some embodiments;
  • FIG. 19 is, according to some embodiments, an exemplary plot of discharge capacity as a function of cycle for electrochemical cells comprising a graphite anode and an NCM cathode coated with a 1 μm-thick layer of lithium oxide, where the electrochemical cells were cycled at room temperature for the first 5 cycles, then cycled at 50° C. FIG. 20A is an EDS spectrum and SEM image (inset) of a graphite anode from an electrochemical cell comprising an uncoated NCM cathode after 179 cycles (initial 5 cycles at room temperature, then at 50° C.), according to some embodiments;
  • FIG. 20B is an EDS spectrum and SEM image (inset) of a graphite anode from an electrochemical cell comprising a lithium-oxide-coated NCM cathode after 191 cycles (initial 5 cycles at room temperature, then at 50° C.), according to some embodiments;
  • FIG. 21A is, according to some embodiments, an SEM image of a top-down view of a substantially continuous lithium-ion-conductive layer; and
  • FIG. 21B is, according to some embodiments, an SEM image of a top-down view of a substantially porous lithium-ion-conductive layer.
  • DETAILED DESCRIPTION
  • Lithium-ion electrochemical cells, and associated electrodes and methods, are generally described. Certain embodiments are related to the recognition that a protective lithium-ion-conductive layer can be positioned between a positive electrode (e.g., a cathode) and a negative electrode (e.g., an anode) within a lithium-ion electrochemical cell to inhibit the transportation of electrochemical byproducts (e.g., side reaction byproducts, dissolution/leaching products) between the positive electrode and the negative electrode.
  • The performance of lithium-ion electrochemical cells can be inhibited by a number of mechanisms. For example, in certain lithium-ion electrochemical cells, active lithium can be lost due to side reactions of the lithium with the electrolyte. In some cases, the electrolyte can decompose at the cathode and/or anode of the electrochemical cell, which can lead to increased cell impedance. In certain cases, electrolyte decomposition can result in deleterious acidic byproducts, such as hydrofluoric acid (HF). In some instances, non-lithium metal cations within the lithium-ion cathode can be dissolved and subsequently reduced to metallic clusters at the anode, which can degrade the passivation layer on the anode and further lead to detrimental side reactions of lithium with the electrolyte. Loss of non-lithium metal cations can also lead to changes in the lithium-ion cathode structure and/or loss of active material in the cathode.
  • It has been discovered, according to certain embodiments of the present invention, that positioning a lithium-ion-conductive material (e.g., an inorganic lithium-ion-conductive material such as a lithium-ion-conductive ceramic) between the anode and the cathode of a lithium-ion electrochemical cell can reduce the degree to which electrochemical cell byproducts or other undesirable species are transported between the electrodes of the lithium-ion electrochemical cell. It is believed that, by inhibiting the transport of such byproducts or species between the electrodes of the electrochemical cell, the structures of the electrodes are better maintained, less electrolyte is lost or decomposed, and/or less active lithium is lost within the electrochemical cell, thus enhancing cell performance (e.g., increasing cycle life).
  • According to some embodiments, a lithium-ion-conductive layer may inhibit transport of certain deleterious electrochemical cell byproducts or species between electrodes by, for example, neutralizing and/or mitigating the byproducts or species. For example, in some electrochemical cells, hydrolysis of certain lithium salts (e.g., LiPF6) in an electrolyte may result in hydrofluoric acid (HF) production. The presence of a lithium-ion-conductive material in the electrochemical cell may act as an acid trap, neutralizing the HF, and/or may act as a water vapor trap, mitigating hydrolysis by reacting with water and reducing the amount of water available for hydrolysis of lithium salts. In some embodiments, a lithium-ion-conductive layer may inhibit transport of certain deleterious electrochemical cell byproducts or species between electrodes by physically impeding transport of the byproducts. For example, in some electrochemical cells, a lithium-ion-conductive layer may provide a physical barrier that is impermeable to certain electrochemical cell byproducts (e.g., non-lithium metal cations). Other mechanisms for inhibiting transport of certain deleterious electrochemical cell byproducts or species are also possible.
  • According to certain embodiments, the lithium-ion-conductive layer can be integrated with a porous and/or particulate electroactive material-containing layer. The lithium-ion-conductive layers incorporated into such electrodes can, in some embodiments, be made sufficiently thin, yet effective for inhibiting or reducing the rate of transport of byproducts or species, and with sufficient ion conductivity to effectively transport lithium ions across the layer.
  • FIG. 1 is an exemplary cross-sectional schematic illustration of electrode 100, according to certain embodiments. In FIG. 1, electrode 100 comprises electroactive-material-containing layer (also referred to as “electroactive material layer”) 102 and lithium-ion-conductive layer 104. In some embodiments, lithium-ion-conductive layer 104 is integrated with electroactive-material-containing layer 102. As used herein, lithium-ion-conductive layer 104 is “integrated with” electroactive-material-containing layer 102 if the two layers are coupled (directly or indirectly) such that they cannot be separated without damaging at least one of the two layers or damaging one or more intervening layers positioned between the two layers. In some embodiments, electroactive-material-containing layer 102 is positioned adjacent lithium-ion-conductive layer 104. In certain cases, such as the embodiment illustrated in FIG. 1, electroactive-material-containing layer 102 is in direct physical contact with lithium-ion-conductive layer 104. However, in certain other embodiments, one or more intervening layers (not shown in FIG. 1) are positioned between electroactive-material-containing layer 102 and lithium-ion-conductive layer 104. For example, an intervening layer positioned between electroactive-material-containing layer 102 and lithium-ion-conductive layer 104 may provide a surface that is relatively smoother than the surface of electroactive-material-containing layer 102. It has been recognized that it may be advantageous, in certain embodiments, to provide a smoother surface in order to enhance deposition of lithium-ion-conductive layer 104 on electroactive-material-containing layer 102 (e.g., a smoother surface may allow lithium-ion-conductive layer 104 to be deposited in a more continuous manner, potentially increasing the smoothness and/or reducing the number of defects in lithium-ion-conductive layer 104). A non-limiting example of an intervening layer that may be appropriate for providing a smoother surface for deposition of lithium-ion-conductive layer 104 is a polymer layer. Suitable polymers include, but are not limited to, polyvinylidene fluoride, polyvinylidene fluoride-hexafluropropylene copolymer, polyethers, polyethylene oxides, polypropylene oxides, polyimides, polyphosphazenes, polyacrylonitriles, polysiloxanes, derivatives of the foregoing, copolymers of the foregoing, crosslinked and network structures of the foregoing, and blends of the foregoing. Another non-limiting example of an intervening layer that may be used to provide a smoother surface is a layer comprising particles (e.g., nanoparticles) of the electroactive material and/or additives of electroactive-material-containing layer 102, where the particles of the intervening layer have a mean maximum cross-sectional dimension that is smaller than the particles of electroactive-material-containing layer 102. Additionally, non-planar arrangements, arrangements with proportions of materials different than those shown, and other alternative arrangements are useful in connection with the present invention.
  • As used herein, when a layer is referred to as being (e.g., disposed) “on,” “on top of,” or “adjacent” another layer, it can be directly on, on top of, or adjacent the layer, or an intervening layer may also be present. A layer that is “directly on,” “directly adjacent,” or “in contact with” another layer means that no intervening layer is present. Likewise, a layer that is positioned “between” two layers may be directly between the two layers such that no intervening layer is present, or an intervening layer may be present.
  • In some embodiments, the lithium-ion-conductive layer comprises an inorganic material. For example, in certain cases, the lithium-ion-conductive layer comprises a ceramic material. The ceramic material may have a crystalline, polycrystalline, partially crystalline, or amorphous structure. Suitable ceramic materials include, but are not limited to, oxides, carbonates, nitrides, carbides, sulfides, oxysulfides, and/or oxynitrides of metals and/or metalloids. In some cases, the ceramic material comprises lithium. Non-limiting examples of suitable ceramic materials comprising lithium include lithium oxides (e.g., Li2O, LiO, LiO2, LiRO2, where R is scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and/or lutetium), lithium carbonate (Li2CO3), lithium nitrides (e.g., Li3N), lithium oxysulfide, lithium oxynitride, lithium garnet-type oxides (e.g., Li7La3Zr2O12), Li10GeP2S12, lithium phosphorus oxynitride, lithium silicosulfide, lithium germanosulfide, lithium lanthanum oxides, lithium titanium oxides, lithium borosulfide, lithium aluminosulfide, lithium phosphosulfide, lithium silicate, lithium borate, lithium aluminate, lithium phosphate, lithium halides, and combinations of the above. In certain cases, the ceramic material comprises a lithium oxide, a lithium nitride, or a lithium oxysulfide. In some embodiments, the ceramic includes a carbonate and/or a carbide. In some particular embodiments, the lithium-ion-conductive layer comprises or is formed of a mixture of an oxide, a carbonate, and in some cases, a carbide. For instance, the material may include lithium oxide, lithium carbonate, and/or lithium carbide. Other materials are also possible.
  • In many embodiments described herein, the lithium-ion-conductive layer is selected to be non-electroactive (e.g., the layer does not participate in lithium intercalation processes or lithium conversion reactions). Additionally, in some embodiments, the lithium-ion-conductive layer is selected to substantially impede the passage of certain species such as certain non-lithium ions. For example, the lithium-ion-conductive layer may provide a physical barrier that is impermeable to certain non-lithium ions, neutralize and/or mitigate the ions, or otherwise prevent or reduce the rate of passage of the ions through the lithium-ion-conductive layer. In certain embodiments, the lithium-ion-conductive layer may substantially impede or reduce the rate of passage, from the cathode to the anode and/or across the lithium-ion-conductive layer, of certain ions such as certain non-lithium metal cations (e.g., metal cations that do not include Lit) resulting from dissolution and/or leaching of the cathode. However, the lithium-ion-conductive layer is generally selected to be conductive to lithium ions (e.g., the lithium-ion-conductive layer allows passage of lithium ions between the anode and the cathode, permitting the lithium-ion electrochemical cell to function).
  • One method of determining lithium ion conductivity is electrochemical impedance spectroscopy (EIS). For example, the lithium-ion-conductive layer may be placed between two electrodes, and resistance may be measured over a range of frequencies from 100,000 Hz to 0.01 Hz at an amplitude of 5 mV. The lithium ion conductivity of the lithium-ion-conductive layer may then be calculated from the measured resistance values. In some embodiments, the lithium-ion-conductive layer has a lithium ion conductivity greater than or equal to about 10−8 S/cm, greater than or equal to about 10−7 S/cm, greater than or equal to about 10−6 S/cm, greater than or equal to about 10−5 S/cm, greater than or equal to about 10−4 S/cm, greater than or equal to about 10−3 S/cm, greater than or equal to about 10−2 S/cm, greater than or equal to about 10−1 S/cm, or greater than or equal to about 1 S/cm. In some embodiments, the lithium-ion-conductive layer has a lithium ion conductivity of less than or equal to about 1 S/cm, less than or equal to about 10−1 S/cm, less than or equal to about 10−2 S/cm, less than or equal to about 10−3 S/cm, less than or equal to about 10−4 S/cm, less than or equal to about 10−5 S/cm, less than or equal to about 10−6 S/cm, less than or equal to about 10−7 S/cm, or less than or equal to about 10−8 S/cm. Combinations of the above-referenced ranges are also possible.
  • In some embodiments, the lithium-ion-conductive layer is substantially continuous. For instance, the lithium-ion-conductive layer may be substantially free of pores, gaps, defects, or discontinuities, e.g., across the thickness of the layer. FIG. 21A shows a scanning electron microscope (SEM) image of a top-down view of an exemplary substantially continuous lithium-ion-conductive layer. In some cases, the lithium-ion-conductive layer is substantially free of discontinuities (e.g., holes, pores or defects) that are larger than about 1000 nm, about 500 nm, about 100 nm, about 50 nm, about 10 nm, about 5 nm, about 1 nm, about 0.5 nm, about 0.1 nm, about 0.05 nm, or about 0.01 nm. In certain embodiments, discontinuities within the lithium-ion-conductive layer (such as those within one or more of the size ranges noted above) occupy less than about 5%, less than about 1%, or less than about 0.1% of the external geometric surface area of the lithium-ion-conductive layer. As used herein, the “external geometric surface area” refers to the surface area of the external geometric surface of the lithium-ion-conductive layer. The “external geometric surface” of the lithium-ion-conductive layer refers to the surface defining the outer boundaries of the layer when analyzed at substantially the same scale as the maximum cross-sectional dimension of the layer. Generally, the external geometric surface of a layer does not include the internal surfaces, such as the surfaces defined by pores within a porous layer.
  • In some embodiments, the lithium-ion-conductive layer is substantially porous (e.g., the layer comprises a plurality of pores). The term “pore” generally refers to a conduit, void, or passageway, at least a portion of which is surrounded by the medium in which the pore is formed. Generally, voids within a material that are completely surrounded by the material (and, thus, not accessible from outside the material, e.g., closed cells) are not considered pores within the context herein.
  • In certain embodiments, the porous lithium-ion-conductive layer comprises a plurality of particles. In cases where the lithium-ion-conductive layer comprises a plurality of particles, pores may include both interparticle pores (i.e., those pores defined between particles when they are packed together, e.g., interstices) and intraparticle pores (i.e., those pores lying within the envelopes of individual particles).
  • In embodiments in which the lithium-ion-conductive layer comprises particles (e.g., particles of lithium-ion-conductive material), the particles may have any suitable shape. In some embodiments, at least a portion of the particles may have a substantially elongated (e.g., columnar) shape. In some cases, the columnar structures have a shape and/or configuration resembling the structures shown in Thornton et al, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, Journal of Vacuum Science & Technology 11, 666 (1974), which is incorporated herein by reference in its entirety for all purposes. In cases where the plurality of particles comprises a plurality of columnar structures, pores may include both intercolumnar pores and intracolumnar pores. In some embodiments, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 99%, or about 100% of the particles of the porous lithium-ion-conductive layer are columnar structures. In certain embodiments, less than about 100%, less than or equal to about 90%, less than or equal to about 80%, less than or equal to about 70%, less than or equal to 60%, less than or equal to about 50%, less than or equal to 40%, less than or equal to about 30%, less than or equal to 20%, or less than or equal to about 10% of the particles are columnar structures. Combinations of the above-referenced ranges are also possible.
  • FIG. 21B shows an SEM image of a top-down view of an exemplary substantially porous lithium-ion-conductive layer comprising a plurality of columnar structures. It should be appreciated, however, that the particles of a layer may also have any other suitable shape (e.g., substantially spherical, substantially elliptical, irregular). The particles may have any suitable cross-sectional shape, such as, for example, circular, elliptical, polygonal (e.g., triangular, rectangular, etc.), irregular, and the like.
  • In embodiments in which the lithium-ion-conductive layer comprises particles (e.g., particles of lithium-ion-conductive material), the particles may have any suitable size. In some embodiments, the particles have a mean maximum dimension (e.g., length) of about 10 micrometers (μm) or less, about 5 μm or less, about 2 μm or less, about 1.5 μm or less, about 1 μm or less, about 500 nanometers (nm) or less, about 100 nm or less, about 50 nm or less, about 20 nm or less, or about 10 nm or less. In some embodiments, the particles have a mean maximum dimension of at least about 10 nm, at least about 20 nm, at least about 50 nm, at least about 100 nm, at least about 500 nm, at least about 1 μm, at least about 1.5 μm, at least about 2 μm, at least about 5 μm, or at least about 10 μm. Combinations of the above-noted ranges are also possible. As used herein, the “maximum dimension” of a particle refers to the largest distance between two opposed boundaries of an individual particle that can be measured (e.g., length, diameter). The “mean maximum dimension” of a plurality of particles refers to the number average of the maximum dimensions of the plurality of particles (e.g., where n is at least 20).
  • In some embodiments, the particles (e.g., particles of lithium-ion-conductive material) can be at least partially fused together with other particles. Fused particles generally refers to the physical joining of two or more particles such that they form a single particle. For example, in some cases, the volume occupied by a single particle (e.g., the entire volume within the outer surface of the particle) prior to fusion is substantially equal to half the volume occupied by two fused particles. Those skilled in the art would understand that the term “fused” does not refer to particles that simply contact one another at one or more surfaces, but particles wherein at least a portion of the original surface of each individual particle can no longer be discerned from the other particle.
  • In some cases, the particles are fused such that at least a portion of the plurality of particles form a continuous pathway across the layer (e.g., between a first surface of the layer and a second surface of the layer). A continuous pathway may include, for example, an ionically-conductive pathway from a first surface to a second, opposing surface of the layer in which there are substantially no gaps, breakages, or discontinuities in the pathway. Whereas fused particles across a layer may form a continuous pathway, a pathway including packed, unfused particles would have gaps or discontinuities between the particles that would not render the pathway continuous. In certain aspects, the layer includes a plurality of such continuous pathways across the layer. In some aspects, at least 10 vol %, at least 30 vol %, at least 50 vol %, or at least 70 vol % of the layer comprises one or more continuous pathways comprising fused particles (e.g., which may comprise an ionically conductive material). In certain aspects, less than or equal to about 100 vol %, less than or equal to about 90 vol %, less than or equal to about 70 vol %, less than or equal to about 50 vol %, less than or equal to about 30 vol %, less than or equal to about 10 vol %, or less than or equal to about 5 vol % of the second layer comprises one or more continuous pathways comprising fused particles. Combinations of the above-referenced ranges are also possible (e.g., at least about 10 vol % and less than or equal to about 100 vol %). In some cases, 100 vol % of the layer comprises one or more continuous pathways comprising fused particles. In some aspects, the layer consists essentially of fused particles (e.g., the layer comprises substantially no unfused particles). In other aspects, substantially all of the particles are unfused.
  • In some embodiments, the particles of the lithium-ion-conductive layer have a mean maximum cross-sectional dimension (e.g., diameter, width) of about 5 μm or less, about 2 μm or less, about 1.5 μm or less, about 1 μm or less, about 500 nm or less, about 100 nm or less, about 50 nm or less, about 20 nm or less, about 10 nm or less, about 5 nm or less, about 2 nm or less, or about 1 nm or less. In some embodiments, the particles of the lithium-ion-conductive layer have a mean maximum cross-sectional dimension (e.g., diameter, width) of at least about 1 nm, at least about 2 nm, at least about 5 nm, at least about 10 nm, at least about 20 nm, at least about 50 nm, at least about 100 nm, at least about 500 nm, at least about 1 μm, at least about 1.5 μm, at least about 2 μm, at least about 5 μm, or at least about 10 μm. Combinations of the above-noted ranges are also possible. As used herein, the “maximum cross-sectional dimension” of a particle refers to the largest distance between two opposed boundaries of an individual particle that can be measured in a plane orthogonal to the axis along which the maximum dimension of the particle can be measured. The “mean maximum cross-sectional dimension” of a plurality of particles refers to the number average of the maximum cross-sectional dimensions of the plurality of particles (e.g., where n is at least 20).
  • One of ordinary skill in the art would be capable of calculating the mean maximum dimension and/or mean maximum cross-sectional dimension of the plurality of particles. For example, the maximum dimensions and/or maximum cross-sectional dimensions of individual particles may be determined through analysis of scanning electron microscope (SEM) images of the particles. In a non-limiting, illustrative example, a first cross-sectional plane of an electrochemical cell at a depth halfway through the thickness of the electrochemical cell may be imaged using SEM. Through analysis of the resultant images, the mean maximum cross-sectional dimension of the particles may be determined. In certain cases, a backscatter detector and/or an energy-dispersive spectroscopy (EDS) detector may be used to facilitate identification of lithium-ion-conductive material particles (e.g., as distinguished from particles of additives that may be present). In embodiments comprising agglomerated particles, the particles should be considered separately when determining the maximum cross-sectional dimensions. The measurement could be performed by establishing boundaries between each of the agglomerated particles, and measuring the maximum cross-sectional dimension of the hypothetical, individuated particles that result from establishing such boundaries. The distribution of maximum cross-sectional dimensions and particle volumes could also be determined by one of ordinary skill in the art using SEM analysis. The mean maximum cross-sectional dimension of the plurality of particles may be obtained by calculating the arithmetic mean of the maximum cross-sectional dimensions of the particles. In another non-limiting, illustrative example, a second cross-sectional plane that is orthogonal to the first cross-sectional plane and is halfway through the length or width of the electrochemical cell may be imaged using SEM. In some cases, the mean maximum dimension of the particles may be determined through analysis of the resultant images. In some embodiments, at least 20 measurements may be used to calculate an average value.
  • In some cases, at least a portion of the particles (e.g., columnar structures) of the lithium-ion-conductive layer may be substantially aligned. For example, in embodiments in which the plurality of particles comprises a plurality of columnar structures, at least a portion of the columnar structures may be substantially vertically aligned. As used herein, a columnar structure of a lithium-ion-conductive layer in an electrochemical cell comprising an anode and a cathode is “vertically aligned” if an angle between the axis along which the maximum dimension (e.g., length) of the columnar structure can be measured (e.g., a longitudinal axis) and the axis running from the anode to the cathode is about 45° or less. The angle may be determined, for example, through SEM image analysis. In some embodiments, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 99%, or about 100% of the particles of the lithium-ion-conductive layer are substantially aligned. In certain embodiments, less than about 100%, less than or equal to about 90%, less than or equal to about 80%, less than or equal to about 70%, less than or equal to about 60%, less than or equal to about 50%, less than or equal to about 40%, less than or equal to about 30%, less than or equal to about 20%, or less than or equal to about 10% of the particles of the lithium-ion-conductive layer are substantially aligned.
  • Combinations of the above-referenced ranges are also possible. In certain embodiments, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 99%, or about 100% of the particles of the lithium-ion-conductive layer are substantially vertically aligned. In certain embodiments, less than about 100%, less than or equal to about 90%, less than or equal to about 80%, less than or equal to about 70%, less than or equal to about 60%, less than or equal to about 50%, less than or equal to about 40%, less than or equal to about 30%, less than or equal to about 20%, or less than or equal to about 10% of the particles of the lithium-ion-conductive layer are substantially vertically aligned.
  • In some embodiments in which the lithium-ion-conductive layer comprises pores, some or all of the pores of a porous lithium-ion-conductive layer can be filled by a fluid (e.g., an electrolyte). In certain cases, at least some of the pores of the lithium-ion-conductive layer are filled with an electrolyte that is a liquid, a gel, a solid polymer, and/or a solid inorganic compound. According to certain embodiments, at least a portion of the porous lithium-ion-conductive layer is permeable to a fluid (e.g., an electrolyte).
  • The porous lithium-ion-conductive layer may have any suitable porosity. For example, the porous lithium-ion-conductive layer may have a porosity of up to about 1%, up to about 2%, up to about 5%, up to about 10%, up to about 15%, up to about 20%, up to about 25%, up to about 30%, up to about 40%, up to about 50%, up to about 60%, or up to about 70% (where the percentages indicate void volume within the porous lithium-ion-conductive layer). In some embodiments, the porous lithium-ion-conductive layer has a porosity of at least about 1% by volume, at least about 2% by volume, at least about 5% by volume, at least about 10% by volume, at least about 15% by volume, at least about 20% by volume, at least about 25% by volume, at least about 30% by volume, at least about 40% by volume, at least about 50% by volume, at least about 60% by volume, or at least about 70% by volume. Combinations of the above-noted ranges are also possible.
  • The pores of the lithium-ion-conductive layer may have any suitable size and shape. The pores may comprise any suitable cross-sectional shape such as, for example, circular, elliptical, polygonal (e.g., rectangular, triangular, etc.), irregular, and the like. In some cases, the porous lithium-ion-conductive layer has an average pore size of about 1 μm or less, about 500 nm or less, about 200 nm or less, about 100 nm or less, about 50 nm or less, about 20 nm or less, about 10 nm or less, about 5 nm or less, about 2 nm or less, or about 1 nm or less. In some cases, the porous lithium-ion-conductive layer has an average pore size of at least about 1 nm, at least about 2 nm, at least about 5 nm, at least about 10 nm, at least about 20 nm, at least about 50 nm, at least about 100 nm, at least about 200 nm, at least about 500 nm, or at least about 1 μm. Combinations of the above-noted ranges are also possible.
  • One of ordinary skill in the art would be capable of calculating the porosity, pore size distribution and the average pore size of the plurality of pores within a layer using mercury intrusion porosimetry, as described in ASTM standard D4284-92, which is incorporated herein by reference in its entirety. For example, the methods described in ASTM standard D4284-92 can be used to produce a distribution of pore sizes plotted as the cumulative intruded pore volume as a function of pore diameter. To calculate the percentage of the total pore volume within the sample that is occupied by pores within a given range of pore diameters, one would: (1) calculate the area under the curve that spans the given range over the x-axis, (2) divide the area calculated in step (1) by the total area under the curve, and (3) multiply by 100%. Average pore size can then be calculated from this information. Optionally, in cases where the layer includes pore sizes that lie outside the range of pore sizes that can be accurately measured using ASTM standard D4284-92, porosimetry measurements may be supplemented using BET surface analysis, as described, for example, in S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc., 1938, 60, 309, which is incorporated herein by reference in its entirety.
  • In some embodiments, the porous lithium-ion-conductive layer may comprise pores with relatively uniform maximum cross-sectional dimensions. Without wishing to be bound by any theory, such uniformity may be useful in maintaining relatively consistent structural stability throughout the bulk of the porous lithium-ion-conductive layer. In addition, the ability to control the pore size to within a relatively narrow range can allow one to incorporate a large number of pores that are large enough to allow for fluid penetration (e.g., electrolyte penetration) while maintaining sufficiently small pores to preserve structural stability of the porous lithium-ion-conductive layer. In some embodiments, the distribution of pore sizes within the porous lithium-ion-conductive layer can have a standard deviation of less than about 50%, less than about 25%, less than about 20%, less than about 10%, less than about 5%, less than about 2%, or less than about 1% of the mean maximum cross-sectional dimension of the plurality of pores. In some embodiments, the distribution of pore sizes within the porous lithium-ion-conductive layer can have a standard deviation of at least about 1%, at least about 2%, at least about 5%, at least about 10%, at least about 20%, at least about 25%, or at least about 50% of the mean maximum cross-sectional dimension of the plurality of pores. Combinations of the above-referenced ranges are also possible. Standard deviation (lower-case sigma) is given its normal meaning in the art, and can be calculated as:
  • σ = i = 1 n ( D i - D avg ) 2 n - 1 ( 1 )
  • wherein Di is the maximum cross-sectional dimension of pore i, Davg is the number average of the maximum cross-sectional dimensions of the plurality of pores, and n is the number of pores. The percentage comparisons between the standard deviation and the average pore size outlined above can be obtained by dividing the standard deviation by the average and multiplying by 100%.
  • In some cases, the lithium-ion-conductive layer is formed from a unitary material. A unitary material may refer to one that is processed such that any individual particles used to form the material cease to be readily separable as individual particles. For example, a unitary material may be formed through a vapor deposition process and/or an aerosol deposition process in some embodiments under certain deposition conditions.
  • In embodiments described herein, the lithium-ion-conductive layer (e.g., a substantially continuous lithium-ion-conductive layer or a substantially porous lithium-ion-conductive layer) may be deposited by any suitable method, including, but not limited to, sputtering (e.g., diode sputtering, direct current (DC) magnetron sputtering, radio frequency (RF) sputtering, RF magnetron sputtering, pulsed sputtering, dual magnetron sputtering, alternating current (AC) sputtering, mid frequency (MF) sputtering, reactive sputtering), electron beam evaporation, vacuum thermal evaporation, laser ablation, chemical vapor deposition (CVD), thermal evaporation (e.g., resistive, inductive, radiation, and electron beam heating), plasma-enhanced chemical vacuum deposition (PECVD), laser-enhanced chemical vapor deposition, aerosol deposition, ion plating, cathodic arc, and jet vapor deposition. The technique used may depend on a variety of factors, including the type of material being deposited, the thickness of the layer, and the underlying layer on which the lithium-ion-conductive layer is deposited.
  • In some embodiments, the lithium-ion-conductive layer may be substantially smooth. In certain embodiments, increased smoothness of the lithium-ion-conductive layer may result in enhanced performance of the lithium-ion electrochemical cell, e.g., under certain operating conditions. Accordingly, the lithium-ion-conductive layer may have a relatively low surface roughness. In other embodiments, however, the lithium-ion-conductive layer may be substantially rough. Accordingly, the lithium-ion-conductive layer may have a relatively high surface roughness.
  • Surface roughness may be quantified using any appropriate method. For example, in some cases, a surface roughness profile of the lithium-ion-conductive layer may be obtained using a profilometer (e.g., a contact profilometer, an optical profilometer). From the surface roughness profile, certain measures of surface roughness, including Rz (e.g., the average of the ten lowest valleys subtracted from the average of the ten highest peaks), Ra (e.g., arithmetic mean surface roughness), and Rq (e.g., root mean square surface roughness), may be obtained. Generally, the surface roughness of the lithium-ion-conductive layer is determined by examining the layer at a 5× magnification.
  • Surface roughness Rz may be calculated as follows:
  • 1 10 i = 1 10 R pi - R vi ( 2 )
  • where Rpi is the height of the ith highest peak and Rvi is the height of the ith lowest valley in a surface roughness profile. In some cases, the lithium-ion-conductive layer has a surface roughness Rz of about 20 μm or less, about 15 μm or less, about 10 μm or less, about 5 μm or less, about 2 μm or less, about 1 μm or less, about 500 nm or less, about 200 nm or less, about 100 nm or less, about 50 nm or less, about 20 nm or less, or about 10 nm or less. In some embodiments, the lithium-ion-conductive layer has a surface roughness Rz of about 10 nm or more, about 20 nm or more, about 50 nm or more, about 100 nm or more, about 200 nm or more, about 500 nm or more, about 1 μm or more, about 2 μm or more, about 5 μm or more, about 10 μm or more, about 15 μm or more, or about 20 μm or more. Combinations of the above-noted ranges are also possible.
  • Arithmetic mean surface roughness Ra may be calculated as follows:
  • 1 N i = 1 N R i ( 3 )
  • where Ri is the height at the ith point in a surface roughness profile and N is the number of points that were measured. In some cases, the lithium-ion-conductive layer has an arithmetic mean surface roughness Ra of about 20 μm or less, about 15 μm or less, about 10 μm or less, about 5 μm or less, about 2 μm or less, about 1 μm or less, about 500 nm or less, about 200 nm or less, about 100 nm or less, about 50 nm or less, about 20 nm or less, or about 10 nm or less. In certain embodiments, the lithium-ion-conductive layer has an arithmetic mean surface roughness Ra of about 10 nm or more, about 20 nm or more, about 50 nm or more, about 100 nm or more, about 200 nm or more, about 500 nm or more, about 1 μm or more, about 2 μm or more, about 5 μm or more, about 10 μm or more, about 15 μm or more, or about 20 μm or more. Combinations of the above-noted ranges are also possible.
  • RMS surface roughness Rq may be calculated as follows:
  • 1 N i = 1 N R i 2 ( 4 )
  • where Ri is the height at the ith point in a surface roughness profile and N is the number of points that were measured. In some cases, the lithium-ion-conductive layer has a root mean square surface roughness Rq of about 20 μm or less, about 15 μm or less, about 10 μm or less, about 5 μm or less, about 2 μm or less, about 1 μm or less, about 500 nm or less, about 200 nm or less, about 100 nm or less, about 50 nm or less, about 20 nm or less, or about 10 nm or less. In certain embodiments, the lithium-ion-conductive layer has a root mean square surface roughness Rq of about 10 nm or more, about 20 nm or more, about 50 nm or more, about 100 nm or more, about 200 nm or more, about 500 nm or more, about 1 μm or more, about 2 μm or more, about 5 μm or more, about 10 μm or more, about 15 μm or more, or about 20 μm or more. Combinations of the above-noted ranges are also possible.
  • In some embodiments, the lithium-ion-conductive layer may be characterized by a thickness (e.g., a largest dimension measured from a first end of the layer to a second end of the layer in a direction parallel to the axis running from the anode to the cathode). In some cases, the lithium-ion-conductive layer may be relatively thin (e.g., the thickness may be relatively small compared to the other two dimensions of the layer). In some cases, the lithium-ion-conductive layer has a thickness of about 10 μm or less, about 5 μm or less, about 2 μm or less, about 1.5 μm or less, about 1 μm or less, about 0.5 μm or less, or about 0.1 μm. Correspondingly, in certain embodiments, the lithium-ion-conductive layer has a thickness of about 0.1 μm or more, about 0.2 μm or more, about 0.3 μm or more, about 0.5 μm or more, about 0.7 μm or more, about 1 μm or more, about 1.5 μm or more, about 2 μm or more, about 5 μm or more, or about 10 μm. Combinations of the above-noted ranges are also possible. In certain cases, the lithium-ion-conductive layer is substantially uniform in thickness. For example, the percent difference between the largest and smallest measurements of thickness of the lithium-ion-conductive layer may be less than about 80%, less than about 50%, less than about 20%, less than about 10%, less than about 5%, or less than about 1%.
  • In some embodiments, the lithium-ion-conductive layer is relatively basic. For example, the lithium-ion-conductive layer may comprise a material that is selected from species that can donate electron pairs (e.g., a Lewis base). Examples of suitable electron-donating materials include, but are not limited to, lithium oxides (e.g., Li2O, LiO, LiO2, LiRO2, where R is scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and/or lutetium), lithium carbonate (Li2CO3), lithium nitrides (e.g., Li3N), lithium oxysulfide, lithium oxynitride, lithium garnet-type oxides (e.g., Li7La3Zr2O12), Li10GeP2S12, lithium phosphorus oxynitride, lithium silicosulfide, lithium germanosulfide, lithium lanthanum oxides, lithium titanium oxides, lithium borosulfide, lithium aluminosulfide, lithium phosphosulfide, lithium silicate, lithium borate, lithium aluminate, lithium phosphate, lithium halides, and combinations of the above. For example, in some embodiments, 1 mole of a material of the lithium-ion-conductive layer (e.g., Li2O) may neutralize 1 mole of an acid (e.g., HF). It has been recognized that it may be advantageous for the lithium-ion-conductive layer to be relatively basic (e.g., comprising a Lewis base), in some embodiments, because a basic material may be capable of at least partially neutralizing deleterious acidic byproducts that result from certain side reactions. For example, hydrolysis of certain components of an electrolyte such as lithium salts (e.g., LiPF6) in a lithium-ion electrochemical cell may result in acidic byproducts, such as HF. The presence of a lithium-ion-conductive layer in the electrochemical cell may, in certain embodiments, neutralize at least a portion of any HF that may form.
  • As shown in FIG. 1, the electrode may further comprise a layer comprising an electroactive material, such as a material that is capable of participating in a lithium intercalation process (e.g., a material in which lithium ions can reversibly be inserted and extracted) and/or a material that is capable of chemically reacting with lithium (e.g., a material that can participate in a lithium conversion reaction). An electrode comprising an electroactive material that is capable of participating in a lithium intercalation process is referred to as a “lithium intercalation electrode.” An electrode comprising an electroactive material that is capable of participating in a lithium conversion reaction is referred to as a “lithium conversion electrode.” In some embodiments, the electrode comprising the lithium-ion-conductive layer integrated with the electroactive material layer is a cathode. A cathode for use in a lithium-ion electrochemical cell generally refers to an electrode from which a lithium ion is liberated during charge and into which the lithium ion is integrated (e.g., intercalated, chemically bonded) during discharge.
  • In some embodiments, the electroactive material of the cathode comprises a lithium intercalation compound (e.g., a compound that is capable of reversibly inserting lithium ions at lattice sites and/or interstitial sites). In certain cases, the electroactive material of the cathode comprises a layered oxide. A layered oxide generally refers to an oxide having a lamellar structure (e.g., a plurality of sheets, or layers, stacked upon each other). Non-limiting examples of suitable layered oxides include lithium cobalt oxide (LiCoO2), lithium nickel oxide (LiNiO2), and lithium manganese oxide (LiMnO2). In some embodiments, the layered oxide is lithium nickel manganese cobalt oxide (LiNixMnyCozO2, also referred to as “NMC” or “NCM”). In some such embodiments, the sum of x, y, and z is 1. For example, a non-limiting example of a suitable NMC compound is LiNi1/3Mn1/3Co1/3O2. In some embodiments, the layered oxide is lithium nickel cobalt aluminum oxide (LiNixCoyAlzO2, also referred to as “NCA”). In some such embodiments, the sum of x, y, and z is 1. For example, a non-limiting example of a suitable NCA compound is LiNi0.8Co0.15Al0.05O2. In certain embodiments, the electroactive material of the cathode is a transition metal polyanion oxide (e.g., a compound comprising a transition metal, an oxygen, and/or an anion having a charge with an absolute value greater than 1). A non-limiting example of a suitable transition metal polyanion oxide is lithium iron phosphate (LiFePO4, also referred to as “LFP”). Another non-limiting example of a suitable transition metal polyanion oxide is lithium manganese iron phosphate (LiMnxFe1-xPO4, also referred to as “LMFP”). A non-limiting example of a suitable LMFP compound is LiMn0.8Fe0.2PO4. In some embodiments, the electroactive material of the cathode is a spinel (e.g., a compound having the structure AB2O4, where A can be Li, Mg, Fe, Mn, Zn, Cu, Ni, Ti, or Si, and B can be Al, Fe, Cr, Mn, or V). A non-limiting example of a suitable spinel is lithium manganese oxide (LiMn2O4, also referred to as “LMO”). Another non-limiting example is lithium manganese nickel oxide (LiNixM2-xO4, also referred to as “LMNO”). A non-limiting example of a suitable LMNO compound is LiNi0.5Mn1.5O4. In certain cases, the electroactive material of the cathode comprises Li1.14Mn0.42Ni0.25Co0.29O2 (“HC-MNC”), lithium carbonate (Li2CO3), lithium carbides (e.g., Li2C2, Li4C, Li6C2, Li8C3, Li6C3, Li4C3, Li4C5), vanadium oxides (e.g., V2O5, V2O3, V6O13), and/or vanadium phosphates (e.g., lithium vanadium phosphates, such as Li3V2(PO4)3), or any combination thereof.
  • In some embodiments, the electroactive material of the cathode comprises a conversion compound. For instance, the cathode may be a lithium conversion electrode/cathode. It has been recognized that a cathode comprising a conversion compound may have a relatively large specific capacity. Without wishing to be bound by a particular theory, a relatively large specific capacity may be achieved by utilizing all possible oxidation states of a compound through a conversion reaction in which more than one electron transfer takes place per transition metal (e.g., compared to 0.1-1 electron transfer in intercalation compounds). Suitable conversion compounds include, but are not limited to, transition metal oxides (e.g., Co3O4), transition metal hydrides, transition metal sulfides, transition metal nitrides, and transition metal fluorides (e.g., CuF2, FeF2, FeF3). A transition metal generally refers to an element whose atom has a partially filled d sub-shell (e.g., Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Rf, Db, Sg, Bh, Hs).
  • In some cases, the electroactive material of the cathode may be doped with one or more dopants to alter the electrical properties (e.g., electrical conductivity) of the electroactive material. Non-limiting examples of suitable dopants include aluminum, niobium, silver, and zirconium.
  • In some embodiments, the electrode comprising the lithium-ion-conductive layer integrated with the electroactive material layer is an anode.
  • In some cases, the electroactive-material-containing layer, which may have a lithium-ion-conductive layer associated therewith, may comprise a plurality of particles of the electroactive material. FIG. 2 is a cross-sectional schematic illustration of exemplary electrode 200, according to certain embodiments. In FIG. 2, electrode 200 comprises lithium-ion-conductive layer 206 and plurality of particles 202 comprising an electroactive material. In certain embodiments, such as the embodiment illustrated in FIG. 2, pores 204 may form in the interstices between particles 202. In some embodiments, at least a portion of the plurality of particles have a coating (e.g., to prevent dissolution of the active material). The coating may be electronically conductive. Non-limiting examples of suitable materials for the coating include carbon and carbon-containing materials. To form the electrode, the plurality of particles comprising the electroactive material may be combined with a binder and one or more additives to form a mixture (e.g., a slurry). The mixture may then be coated on a substrate and/or a current collector and subsequently dried. In certain embodiments, the binder comprises one or more polymers (e.g., styrene butadiene copolymer, polyvinylidene fluoride (PVDF)). In some cases, additives may be selected to enhance the performance of the electrode. For example, an additive may increase electronic conductivity. Examples of suitable additives include, but are not limited to, carbon-containing materials such as carbon black.
  • In one particular set of embodiments, and as shown illustratively in FIG. 2, lithium-ion-conductive layer 206 forms a layer on one side or surface (e.g., a single side or surface) of the layer comprising the particles of electroactive material (i.e., the electroactive layer). That is, the inorganic lithium-ion-conductive layer may be disposed on a side or surface of the layer comprising the electroactive material. The lithium-ion-conductive layer may coat (form a coating) a side or surface of the electroactive layer. In some such embodiments, the lithium-ion-conductive layer may be integrated with a side or surface of the electroactive layer. The lithium-ion-conductive material may be absent from the solid interior portions and/or the opposing side/surface of the electroactive layer. In such embodiments, a portion (e.g., the portion of the particles of the electroactive material at the surface of the layer), but not all of the particles of the electroactive material, are coated with the lithium-ion-conductive material/layer. For example, in some cases, at least a portion (e.g., at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, and/or less than 100%, less than or equal to 95%, less than or equal to 90%, e.g., by weight) of the particles of electroactive material in the electroactive layer (e.g., the particles on the opposing side/surface of the electroactive layer and/or the particles in the interior of the layer) are uncoated with the lithium-ion-conductive material (a coating of lithium-ion-conductive material may be absent from such particles). In other embodiments, a second lithium-ion-conductive layer may be formed on the opposing side or surface of the layer comprising the particles of electroactive material. Similar to the embodiment involving a single layer of lithium-ion-conductive material, the lithium-ion-conductive material may be absent from the solid, interior portions of the electroactive layer. These embodiments may be formed by, for example, forming the electroactive layer (e.g., from a slurry of the electroactive particles or by another suitable process), followed by depositing the lithium-ion-conductive layer on the electroactive layer after the electroactive layer has been formed. Such a method contrasts with coating individual electroactive particles of electroactive material prior to the particles forming the electroactive layer.
  • The particles comprising the electroactive material may be of any suitable shape or size. For example, the particles may be spherical, ellipsoidal, cylindrical, or prismatic (e.g., a triangular prism, a rectangular prism, etc.), or may have an irregular shape. In some embodiments, the plurality of particles has a mean maximum cross-sectional dimension of about 50 μm or less, about 25 μm or less, about 20 μm or less, about 15 μm or less, about 10 μm or less, about 5 μm or less, about 1 μm or less, about 500 nm or less, about 200 nm or less, about 100 nm or less, about 90 nm or less, about 80 nm or less, about 70 nm or less, about 60 nm or less, about 50 nm or less, about 40 nm or less, about 30 nm or less, about 20 nm or less, about 10 nm or less, about 5 nm or less, or about 1 nm. In some embodiments, the plurality of particles has a mean maximum cross-sectional dimension of at least about 1 nm, at least about 5 nm, at least about 10 nm, at least about 20 nm, at least about 30 nm, at least about 40 nm, at least about 50 nm, at least about 60 nm, at least about 70 nm, at least about 80 nm, at least about 90 nm, at least about 100 nm, at least about 200 nm, at least about 500 nm, at least about 1 μm, at least about 5 μm, at least about 10 μm, at least about 15 μm, at least about 20 μm, at least about 25 μm, or at least about 50 μm. Combinations of the above-noted ranges are also possible. The mean maximum cross-sectional dimension may be determined using SEM and/or EDS analysis, as described above.
  • In some cases, the layer comprising the electroactive material may be porous (e.g., the layer may comprise a plurality of pores). It should be understood that, in cases where the electroactive-material-containing layer comprises an agglomeration of particles, pores include both the interparticle pores (i.e., those pores defined between particles when they are packed together, e.g. interstices) and intraparticle pores (i.e., those pores lying within the envelopes of the individual particles).
  • The porous electroactive-material-containing layer may have any suitable porosity. For example, the porous electroactive-material-containing layer may have a porosity of up to about 10%, up to about 15%, up to about 20%, up to about 25%, up to about 30%, up to about 40%, up to about 50%, up to about 60%, or up to about 70% (where the percentages indicate void volume within the porous electroactive-material-containing layer). In some embodiments, the porous electroactive-material-containing layer has a porosity of at least about 10% by volume, at least about 15% by volume, at least about 20% by volume, at least about 25% by volume, at least about 30% by volume, at least about 40% by volume, at least about 50% by volume, at least about 60% by volume, or at least about 70% by volume. Combinations of the above-noted ranges are also possible.
  • The pores of the electroactive-material-containing layer may have any suitable size and shape. The pores may comprise any suitable cross-sectional shape such as, for example, circular, elliptical, polygonal (e.g., rectangular, triangular, etc.), irregular, and the like. In some cases, the porous electroactive-material-containing layer may have an average pore size of less than about 300 micrometers, for example, less than about 100 micrometers, between about 0.5 micrometer and about 300 micrometers, between about 50 micrometers and about 200 micrometers, or between about 100 micrometers and about 200 micrometers. In some embodiments, some or all of the porosity can be filled by electrolyte. In some cases, at least some of the pores of the electroactive-material-containing layer are filled with an electrolyte that is a liquid, a gel, a solid polymer, and/or a solid inorganic compound. As described above, one of ordinary skill in the art would be capable of calculating the pore size distribution and the average pore size of the plurality of pores within a layer using mercury intrusion porosimetry and/or BET surface analysis.
  • In some embodiments, the porous electroactive-material-containing layer may comprise pores with relatively uniform maximum cross-sectional dimensions (e.g., diameters). Not wishing to be bound by any theory, such uniformity may be useful in maintaining relatively consistent structural stability throughout the bulk of the porous layer. In addition, the ability to control the pore size to within a relatively narrow range can allow one to incorporate a large number of pores that are large enough to allow for fluid penetration (e.g., electrolyte penetration) while maintaining sufficiently small pores to preserve structural stability of the porous electroactive-material-containing layer. In some embodiments, the distribution of pore sizes within the porous electroactive-material-containing layer can have a standard deviation of less than about 50%, less than about 25%, less than about 10%, less than about 5%, less than about 2%, or less than about 1% of the mean maximum cross-sectional dimension of the plurality of pores.
  • In other embodiments, an electroactive material layer described herein, which may have a lithium-ion-conductive layer associated therewith, is substantially non-porous.
  • Certain embodiments are directed to an electrochemical cell. FIG. 3A shows an exemplary cross-sectional schematic illustration of electrochemical cell 300 comprising cathode 102, anode 106, separator 108 positioned between cathode 102 and anode 106, and lithium-ion-conductive layer 104 positioned between cathode 102 and separator 108. In certain cases, lithium-ion-conductive layer 104 is positioned adjacent cathode 102. As shown in FIG. 3A, lithium-ion-conductive layer 104 may be in direct physical contact with cathode 102. In some cases, lithium-ion-conductive layer 104 is integrated with cathode 102.
  • In some embodiments, the lithium-ion-conductive layer can be positioned adjacent the anode. For example, in certain cases, including the embodiment illustrated in FIG. 3B, lithium-ion-conductive layer 104 is positioned adjacent anode 106. As shown in FIG. 3B, lithium-ion-conductive layer 104 may be in direct physical contact with anode 106. In some embodiments, lithium-ion-conductive layer 104 is integrated with anode 106.
  • In some embodiments, an electrochemical cell may comprise a first lithium-ion-conductive layer integrated with a cathode and a second lithium-ion-conductive layer integrated with an anode. FIG. 4 shows an exemplary cross-sectional schematic illustration of electrochemical cell 400 comprising cathode 102 integrated with first lithium-ion-conductive layer 104 and anode 106 integrated with second lithium-ion-conductive layer 110. As shown in FIG. 4, separator layer 108 is positioned between first lithium-ion-conductive layer 104 and second lithium-ion-conductive layer 110. In certain embodiments, first lithium-ion-conductive layer 104 and second lithium-ion-conductive layer 110 may comprise the same material (e.g., ceramic material). In some cases, first lithium-ion-conductive layer 104 and second lithium-ion-conductive layer 110 may comprise different materials (e.g., a first ceramic material and a second, different ceramic material).
  • In some embodiments, the electrochemical cell further comprises additional components, such as an electrolyte, one or more substrates, and/or one or more current collectors. FIG. 5 shows an exemplary cross-sectional schematic illustration of electrochemical cell 500 comprising cathode 102, lithium-ion-conductive layer 104, anode 106, separator 108, first substrate and/or current collector 112, and second substrate and/or current collector 114. As shown in FIG. 5, electrochemical cell 500 may comprise a separator 108 positioned between cathode 102 and anode 106. In some cases, separator 108 may comprise an electrolyte, as discussed in further detail below. As shown in FIG. 5, in some cases, lithium-ion-conductive layer 104 is positioned between cathode 102 and separator/electrolyte 108. In some cases, lithium-ion-conductive layer 104 is positioned between anode 102 and separator/electrolyte 108. In some cases, electrochemical cell 500 further comprises first substrate 112. First substrate 112 may be positioned adjacent to cathode 102. As shown in FIG. 5, in some embodiments, substrate 112 is in direct physical contact with cathode 102. In some embodiments, one or more intervening layers may be positioned between substrate 112 and cathode 102. In certain cases, substrate 112 may comprise a metal (e.g., aluminum), and substrate 112 may act as a current collector for cathode 102. In some embodiments, electrochemical cell further comprises second substrate 114. As shown in FIG. 5, in some embodiments, second substrate 114 is in direct physical contact with anode 106. In certain cases, second substrate 114 may comprise a metal (e.g., copper), and second substrate 114 may act as a current collector for anode 106. In some embodiments, one or more intervening layers may be positioned between second substrate 114 and anode 106.
  • In some embodiments, an electrochemical cell comprises an electrolyte, a separator, first and second substrates and/or current collectors, a first lithium-ion-conductive layer integrated with a cathode, and a second lithium-ion-conductive layer integrated with an anode. FIG. 6 shows an exemplary cross-sectional schematic illustration of electrochemical cell 600 comprising cathode 102, first lithium-ion-conductive layer 104, anode 106, second lithium-ion-conductive layer 110, separator 108, first substrate and/or current collector 112, and second substrate and/or current collector 114. As shown in FIG. 6, second lithium-ion-conductive layer 110, which is integrated with anode 106, is positioned between anode 106 and separator 108.
  • The electrolyte of an electrochemical cell is generally positioned between the anode and the cathode, providing an ionic path between the anode and the cathode (e.g., the electrolyte is generally capable of conducting lithium ions). The electrolyte may comprise any liquid, solid, or gel material capable of storing and transporting lithium ions. Generally, the electrolyte is electronically non-conductive to prevent short circuiting between the anode and the cathode.
  • Any suitable anode can be included in an electrochemical cell described herein. In some embodiments, the anode is an electrode from which a lithium ion is liberated during discharge and into which the lithium ion is integrated (e.g., intercalated) during charge. In some embodiments, the electroactive material of the anode is a lithium intercalation compound (e.g., a compound that is capable of reversibly inserting lithium ions at lattice sites and/or interstitial sites). In some embodiments, the electroactive material of the anode comprises carbon. In certain cases, the electroactive material of the anode is or comprises a graphitic material (e.g., graphite). A graphitic material generally refers to a material that comprises a plurality of layers of graphene (e.g., layers comprising carbon atoms arranged in a hexagonal lattice). Adjacent graphene layers are typically attracted to each other via van der Waals forces, although covalent bonds may be present between one or more sheets in some cases. In some cases, the carbon-comprising electroactive material of the anode is or comprises coke (e.g., petroleum coke). In certain embodiments, the electrochemical material of the anode comprises silicon, lithium, and/or any alloys of combinations thereof. In certain embodiments, the electroactive material of the anode comprises lithium titanate (Li4Ti5O12, also referred to as “LTO”), tin-cobalt oxide, or any combinations thereof.
  • In some embodiments, the anode (e.g., a first electrode, a second electrode) comprises lithium (e.g., lithium metal), such as lithium foil, lithium deposited onto a conductive substrate, and lithium alloys (e.g., lithium-aluminum alloys and lithium-tin alloys). Lithium can be contained as one film or as several films, optionally separated by a protective structure/material such as a ceramic material or an ion conductive material described herein. Suitable lithium alloys for use in the aspects described herein can include alloys of lithium and aluminum, magnesium, silicium (silicon), indium, and/or tin.
  • A protective structure (e.g., for anode) may include a protective layer such as an ion conductive layer, which may help to inhibit a species in the electrolyte from contacting the electroactive material of the anode. In some embodiments, the ion-conductive material may be selected to be conductive to particular ions such as metal ions. The ion-conductive material may be conductive to lithium ions or other alkali metal ions, according to some embodiments. In some cases, the ion-conductive material may comprise an inorganic material such as a ceramic and/or a glass conductive to metal ions. Suitable glasses include, but are not limited to, those that may be characterized as containing a “modifier” portion and a “network” portion, as known in the art. The modifier may include a metal oxide of the metal ion conductive in the glass. The network portion may include a metal chalcogenide such as, for example, a metal oxide or sulfide. In other cases, the ion-conductive material may comprise or be a polymeric material. Combinations of ion conductive materials and ion conductive material layers within a protective structure are also possible (e.g., a first ion conductive layer that comprises a ceramic and a second ion conductive layer that comprises a polymer). The protective layer for the anode may be substantially impermeable (e.g., to the electrolyte used with the electrochemical cell including the anode).
  • In some embodiments, the ion-conductive material may comprise a material selected from the group consisting of lithium nitrides, lithium silicates, lithium borates, lithium aluminates, lithium phosphates, lithium phosphorus oxynitrides, lithium silicosulfides, lithium germanosulfides, lithium oxides (e.g., Li2O, LiO, LiO2, LiRO2, where R is a rare earth metal), lithium lanthanum oxides, lithium titanium oxides, lithium borosulfides, lithium aluminosulfides, and lithium phosphosulfides, oxysulfides, and combinations thereof. In some embodiments, the ion-conductive material may comprise Al2O3, ZrO2, SiO2, CeO2, and/or Al2TiO5. The selection of the ion-conductive material will be dependent on a number of factors including, but not limited to, the properties of electrolyte and the anode and cathode used in the cell.
  • Examples of classes of polymers that may be suitable for use in a protective structure (e.g., as a polymer layer) include, but are not limited to, polyamines (e.g., poly(ethylene imine) and polypropylene imine (PPI)); polyamides (e.g., polyamide (Nylon), poly(ϵ-caprolactam) (Nylon 6), poly(hexamethylene adipamide) (Nylon 66)), polyimides (e.g., polyimide, polynitrile, and poly(pyromellitimide-1,4-diphenyl ether) (Kapton)); vinyl polymers (e.g., polyacrylamide, poly(2-vinyl pyridine), poly(N-vinylpyrrolidone), poly(methylcyanoacrylate), poly(ethylcyanoacrylate), poly(butylcyanoacrylate), poly(isobutylcyanoacrylate), poly(vinyl acetate), poly (vinyl alcohol), poly(vinyl chloride), poly(vinyl fluoride), poly(2-vinyl pyridine), vinyl polymer, polychlorotrifluoro ethylene, and poly(isohexylcynaoacrylate)); polyacetals; polyolefins (e.g., poly(butene-1), poly(n-pentene-2), polypropylene, polytetrafluoroethylene); polyesters (e.g., polycarbonate, polybutylene terephthalate, polyhydroxybutyrate); polyethers (poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), poly(tetramethylene oxide) (PTMO)); vinylidene polymers (e.g., polyisobutylene, poly(methyl styrene), poly(methylmethacrylate) (PMMA), poly(vinylidene chloride), and poly(vinylidene fluoride)); polyaramides (e.g., poly(imino-1,3-phenylene iminoisophthaloyl) and poly(imino-1,4-phenylene iminoterephthaloyl)); polyheteroaromatic compounds (e.g., polybenzimidazole (PBI), polybenzobisoxazole (PBO) and polybenzobisthiazole (PBT)); polyheterocyclic compounds (e.g., polypyrrole); polyurethanes; phenolic polymers (e.g., phenol-formaldehyde); polyalkynes (e.g., polyacetylene); polydienes (e.g., 1,2-polybutadiene, cis or trans-1,4-polybutadiene); polysiloxanes (e.g., poly(dimethylsiloxane) (PDMS), poly(diethylsiloxane) (PDES), polydiphenylsiloxane (PDPS), and polymethylphenylsiloxane (PMPS)); and inorganic polymers (e.g., polyphosphazene, polyphosphonate, polysilanes, polysilazanes). In some embodiments, the polymer may be selected from the group consisting of polyvinyl alcohol, polyisobutylene, epoxy, polyethylene, polypropylene, polytetrafluoroethylene, and combinations thereof. The mechanical and electronic properties (e.g., conductivity, resistivity) of these polymers are known.
  • Other suitable materials and/or properties of the protective layer are described in U.S. Patent Publication No. 2010/0327811, filed Jul. 1, 2010 and published Dec. 30, 2010, entitled “Electrode Protection in Both Aqueous and Non-Aqueous Electromechanical Cells, Including Rechargeable Lithium Batteries,” which is incorporated herein by reference in its entirety for all purposes.
  • In certain embodiments, at least a portion of the anode and/or a portion of the cathode are in direct physical contact with the electrolyte. In certain embodiments, at least a portion of the electroactive material of the anode and/or a portion of the electroactive material of the cathode are in direct physical contact with the electrolyte. For example, the electrolyte may be in contact with the electroactive material of the anode and/or the electroactive material of the cathode to facilitate transport of Li ions across the electrode in the electrochemical cell. For example, in some embodiments the electrolyte resides in pores or interstices of the electrode. In some embodiments, the electrolyte can be in direct physical contact with a lithium species of an electrode. In some embodiments, the electrolyte is in contact (e.g., direct physical contact) with two or more sides of the anode and/or the cathode. According to certain embodiments, for example, the electrolyte may be a liquid that surrounds two or more sides of the anode and/or the cathode. In some embodiments, the electrochemical cell is a pouch cell, and the anode and cathode are positioned within a pouch filled with an electrolyte (e.g., a liquid electrolyte) that surrounds two or more sides of the anode and/or cathode.
  • In certain embodiments, at least a portion of one electrode (e.g., a cathode) but not a second electrode (e.g., an anode) is in direct physical contact with the electrolyte. For example, the second electrode (e.g., anode) may include a protective layer (e.g. a substantially impermeable layer) that substantially inhibits direct contact of the electrode with the electrolyte. The protective layer may be in direct physical contact with the electrolyte instead of the electroactive material of the electrode, though minor imperfections (e.g., defects) in the protective layer may cause indirect contact of the electrolyte with the electroactive material (e.g., via the protective layer) in some embodiments.
  • In certain embodiments, the electrolyte comprises an organic solvent. Examples of suitable organic solvents include, but are not limited to, dimethyl carbonate, diethyl carbonate, ethyl-methyl carbonate, ethylene carbonate, and propylene carbonate. In some embodiments, the electrolyte comprises one or more solid polymers. Examples of useful gel polymer electrolytes include, but are not limited to, those comprising one or more polymers selected from the group consisting of polyethylene oxides, polypropylene oxides, polyacrylonitriles, polysiloxanes, polyimides, polyphosphazenes, polyethers, sulfonated polyimides, perfluorinated membranes (NAFION resins), polydivinyl polyethylene glycols, polyethylene glycol diacrylates, polyethylene glycol dimethacrylates, derivatives of the foregoing, copolymers of the foregoing, crosslinked and network structures of the foregoing, and blends of the foregoing, and optionally, one or more plasticizers. Examples of useful solid polymer electrolytes include, but are not limited to, those comprising one or more polymers selected from the group consisting of polyethers, polyethylene oxides, polypropylene oxides, polyimides, polyphosphazenes, polyacrylonitriles, polysiloxanes, derivatives of the foregoing, copolymers of the foregoing, crosslinked and network structures of the foregoing, and blends of the foregoing. In some cases, the electrolyte further comprises a lithium salt. Non-limiting examples of suitable lithium salts include lithium hexafluorophosphate (LiPF6), lithium tetrafluoroborate (LiBF4), lithium perchlorate (LiClO4), lithium hexafluoroarsenate monohydrate (LiAsF6), lithium triflate (LiCF3SO3), LiN(SO2CF3)2, and LiC(SO2(CF3)3.
  • In some embodiments, the electrolyte has a relatively high lithium ion conductivity. In some embodiments, the electrolyte has a lithium ion conductivity of at least about 10−5 S/cm, at least about 10−4 S/cm, at least about 10−3 S/cm, at least about 10−2 S/cm, at least about 10−1 S/cm, or at least about 1 S/cm. In some embodiments, the electrolyte has a lithium ion conductivity in the range of about 10−5 S/cm to about 104 S/cm, about 10−5 S/cm to about 10−3 S/cm, about 10−5 S/cm to about 10−2 S/cm, about 10−5 S/cm to about 10−1 S/cm, about 10−5 S/cm to about 1 S/cm, about 104 S/cm to about 10−3 S/cm, about 104 S/cm to about 10−2 S/cm, about 10−4 S/cm to about 10−1 S/cm, about 10−4 S/cm to about 1 S/cm, about 10−3 S/cm to about 10−2 S/cm, about 10−3 S/cm to about 10−1 S/cm, about 10−3 S/cm to about 1 S/cm, or about 10−2 S/cm to about 1 S/cm. The lithium ion conductivity of the electrolyte may be measured using EIS, as described above.
  • In certain cases, the electrolyte may optionally further comprise additives. The additives may, for example, reduce impedance of the anode and/or cathode, and/or promote the formation of films. Non-limiting examples of suitable additives include vinylene carbonate, vinyl ethylene carbonate, CO2, SO2, ethylene sulfite, and any combination thereof.
  • The separator of an electrochemical cell (e.g., separator 108 of electrochemical cell 400 in FIG. 4) is generally positioned between the anode and the cathode. The separator may be a solid non-electronically conductive or electrically insulating material. In some cases, the separator may separate or insulate the anode and the cathode from each other, preventing short circuiting, while permitting the transport of ions between the anode and the cathode. In some embodiments, the separator may be porous (e.g., the separator may comprise a plurality of pores). In certain cases, the porous separator may be permeable to the electrolyte.
  • The pores of the separator may be partially or substantially filled with electrolyte. Separators may be supplied as porous free standing films which are interleaved with the anodes and the cathodes during the fabrication of cells. Alternatively, the porous separator layer may be applied directly to the surface of one of the electrodes, for example, as described in PCT Publication No. WO 99/33125 to Carlson et al. and in U.S. Pat. No. 5,194,341 to Bagley et al.
  • A variety of separator materials are known in the art. Examples of suitable solid porous separator materials include, but are not limited to, polyolefins, such as, for example, polyethylenes (e.g., SETELA™ made by Tonen Chemical Corp) and polypropylenes, glass fiber filter papers, and ceramic materials. For example, in some embodiments, the separator comprises a microporous polyethylene film. Further examples of separators and separator materials suitable for use in this invention are those comprising a microporous xerogel layer, for example, a microporous pseudo-boehmite layer, which may be provided either as a free standing film or by a direct coating application on one of the electrodes, as described in U.S. Pat. Nos. 6,153,337 and 6,306,545 by Carlson et al. of the common assignee. Solid electrolytes and gel electrolytes may also function as a separator in addition to their electrolyte function.
  • Examples of suitable separator materials include, but are not limited to, polyolefins (e.g., polyethylenes, poly(butene-1), poly(n-pentene-2), polypropylene, polytetrafluoroethylene), polyamines (e.g., poly(ethylene imine) and polypropylene imine (PPI)); polyamides (e.g., polyamide (Nylon), poly(ϵ-caprolactam) (Nylon 6), poly(hexamethylene adipamide) (Nylon 66)), polyimides (e.g., polyimide, polynitrile, and poly(pyromellitimide-1,4-diphenyl ether) (Kapton®) (NOMEX®) (KEVLAR®)); polyether ether ketone (PEEK); vinyl polymers (e.g., polyacrylamide, poly(2-vinyl pyridine), poly(N-vinylpyrrolidone), poly(methylcyanoacrylate), poly(ethylcyanoacrylate), poly(butylcyanoacrylate), poly(isobutylcyanoacrylate), poly(vinyl acetate), poly (vinyl alcohol), poly(vinyl chloride), poly(vinyl fluoride), poly(2-vinyl pyridine), vinyl polymer, polychlorotrifluoro ethylene, and poly(isohexylcynaoacrylate)); polyacetals; polyesters (e.g., polycarbonate, polybutylene terephthalate, polyhydroxybutyrate); polyethers (poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), poly(tetramethylene oxide) (PTMO)); vinylidene polymers (e.g., polyisobutylene, poly(methyl styrene), poly(methylmethacrylate) (PMMA), poly(vinylidene chloride), and poly(vinylidene fluoride)); polyaramides (e.g., poly(imino-1,3-phenylene iminoisophthaloyl) and poly(imino-1,4-phenylene iminoterephthaloyl)); polyheteroaromatic compounds (e.g., polybenzimidazole (PBI), polybenzobisoxazole (PBO) and polybenzobisthiazole (PBT)); polyheterocyclic compounds (e.g., polypyrrole); polyurethanes; phenolic polymers (e.g., phenol-formaldehyde); polyalkynes (e.g., polyacetylene); polydienes (e.g., 1,2-polybutadiene, cis or trans-1,4-polybutadiene); polysiloxanes (e.g., poly(dimethylsiloxane) (PDMS), poly(diethylsiloxane) (PDES), polydiphenylsiloxane (PDPS), and polymethylphenylsiloxane (PMPS)); and inorganic polymers (e.g., polyphosphazene, polyphosphonate, polysilanes, polysilazanes). In some embodiments, the polymer may be selected from poly(n-pentene-2), polypropylene, polytetrafluoroethylene, polyamides (e.g., polyamide (Nylon), poly(ϵ-caprolactam) (Nylon 6), poly(hexamethylene adipamide) (Nylon 66)), polyimides (e.g., polynitrile, and poly(pyromellitimide-1,4-diphenyl ether) (Kapton®) (NOMEX®) (KEVLAR®)), polyether ether ketone (PEEK), and combinations thereof.
  • The electrochemical cell may have any suitable shape. In some cases, the electrochemical cell is cylindrical (e.g., a sandwich of cathode, separator, and anode rolled into a single spool). In certain cases, the electrochemical cell is prismatic. In some embodiments, the electrochemical cell is a pouch cell. For example, the anode and cathode of the electrochemical cell may be sealed within a pouch formed from a polymer film, and the pouch may be filled with an electrolyte (e.g., a liquid electrolyte). Metal tabs (e.g., Ni, Al) may be attached to the anode and cathode for electrical connection to an external electrical circuit.
  • A typical electrochemical cell also would include, of course, current collectors, external circuitry, a housing structure, and the like. Those of ordinary skill in the art are well aware of the many arrangements that can be utilized with the general schematic arrangement as shown in the figures and described herein.
  • As noted elsewhere, the energy storage devices described herein may be capable of achieving enhanced performance. For example, certain of the electrochemical cells incorporating lithium-ion-conductive layers may have reduced capacity fade rate (e.g., loss of capacity per cycle) relative to electrochemical cells lacking such lithium-ion-conductive layers but otherwise including the same components. In some embodiments, the electrochemical cell capacity decreases by less than about 5% per charge and discharge cycle, less than about 2% per charge and discharge cycle, less than about 1% per charge and discharge cycle, less than about 0.8% per charge and discharge cycle, less than about 0.6% per charge and discharge cycle, less than about 0.4% per charge and discharge cycle, less than about 0.2% per charge and discharge cycle, or less than about 0.1% per charge and discharge cycle over at least about 2, at least about 10, at least about 20, at least about 30, at least about 50, at least about 75, at least about 100, at least about 125, or at least about 135 cycles subsequent to a first charge and discharge cycle at a temperature of at least about 25° C., at least about 40° C., or at least about 60° C. In some embodiments, the electrochemical cell capacity decreases by more than about 0.1% per charge and discharge cycle, more than about 0.2% per charge and discharge cycle, more than about 0.4% per charge and discharge cycle, more than about 0.6% per charge and discharge cycle, more than about 0.8% per charge and discharge cycle, more than about 1% per charge and discharge cycle, more than about 2% per charge and discharge cycle, or more than about 5% per charge and discharge cycle. Combinations of the above-noted ranges are also possible. Capacity fade rate may be determined by measuring capacity during each cycle of charge and discharge.
  • In some embodiments, an electrochemical cell comprising a lithium-ion-conductive layer may exhibit a capacity fade rate that is at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 50%, at least about 75%, or at least about 100% lower than the capacity fade rate of an equivalent electrochemical cell that does not comprise a lithium-ion-conductive layer but otherwise includes the same components.
  • In some embodiments, the electrochemical cells described herein may exhibit relatively high capacities after repeated cycling of the cell. For example, in some embodiments, after alternately discharging and charging the cell five times, the cell exhibits at least about 50%, at least about 80%, at least about 90%, or at least about 95% of the cell's initial capacity at the end of the fifth cycle. In some cases, after alternately discharging and charging the cell ten times, the cell exhibits at least about 50%, at least about 80%, at least about 90%, or at least about 95% of the cell's initial capacity at the end of the tenth cycle. In still further cases, after alternately discharging and charging the cell twenty-five times, the cell exhibits at least about 50%, at least about 80%, at least about 90%, or at least about 95% of the cell's initial capacity at the end of the twenty-fifth cycle.
  • Some lithium-ion electrochemical cells may be susceptible to self-discharge (e.g., discharge of the electrochemical cell (e.g., loss of capacity during storage of the electrochemical cell). In some cases, the rate of self-discharge of certain of the electrochemical cells described herein may be reduced relative to electrochemical cells lacking lithium-ion-conductive layers but otherwise including the same components. In certain cases, the self-discharge rate of the electrochemical cell may be about 90% or less, about 80% or less, about 70% or less, about 60% or less, about 50% or less, about 40% or less, about 30% or less, about 20% or less, or about 10% or less per week at 60° C. In certain embodiments, the self-discharge rate of the electrochemical cell may be about 10% or more, about 20% or more, about 30% or more, about 40% or more, about 50% or more, about 60% or more, about 70% or more, about 80% or more, or about 90% or more per week at 60° C. In some embodiments, the self-discharge rate of the electrochemical cell may be about 90% or less, about 80% or less, about 70% or less, about 60% or less, about 50% or less, about 40% or less, about 30% or less, about 20% or less, or about 10% or less per week at room temperature (e.g., about 25° C.). In some cases, the self-discharge rate of the electrochemical cell may be about 10% or more, about 20% or more, about 30% or more, about 40% or more, about 50% or more, about 60% or more, about 70% or more, about 80% or more, or about 90% or more per week at room temperature (e.g., about 25° C.). Combinations of the above-noted ranges are also possible.
  • In some embodiments, an electrochemical cell comprising a lithium-ion-conductive layer may exhibit a self-discharge rate that is at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 50%, at least about 75%, or at least about 100% lower than the self-discharge rate of an equivalent electrochemical cell that does not comprise a lithium-ion-conductive layer but otherwise includes the same components. Correspondingly, in certain cases, an electrochemical cell comprising a lithium-ion-conductive layer may exhibit a self-discharge rate that is less than about 100%, less than about 75%, less than about 50%, less than about 20%, less than about 20%, less than about 10%, less than about 5%, or less than about 1% lower than the self-discharge rate of an equivalent electrochemical cell that does not comprise a lithium-ion-conductive layer but otherwise includes the same components. Combinations of the above-noted ranges are also possible.
  • In certain embodiments, an electrochemical cell comprising a lithium-ion-conductive layer may experience a reduction in irreversible capacity loss during storage and/or after the initial discharge after storage. In some embodiments, the electrochemical cell may experience a reduction in irreversible capacity loss upon subsequent discharges as well (e.g., after recharging at room temperature or elevated temperatures such as 50 degrees Celsius, or other elevated temperatures described herein). For example, the electrochemical cell may experience a reduction in irreversible capacity loss or at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, or at least 50% during storage, after initial discharge, or after the 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, or 10th discharge of the electrochemical cell compared to that performed using a similar electrochemical cell including similar components and amounts, but without the lithium-ion-conductive layer (i.e., all other factors being equal). In some embodiments, the reduction in irreversible capacity loss may be less than or equal to 80%, less than or equal to 60%, less than or equal to 40%, less than or equal to 20%, or less than or equal to 10% during storage, after initial discharge, or after the 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, or 10th discharge of the electrochemical cell compared to that performed using a similar electrochemical cell but without the lithium-ion-conductive layer, all other factors being equal. Combinations of the above-referenced ranges are also possible.
  • In certain embodiments, an electrochemical cell comprising a lithium-ion-conductive layer may experience a reduced rate of impedance increase relative to electrochemical cells that do not comprise a lithium-ion-conductive layer but otherwise include the same components in the same amounts (i.e., all other factors being equal). In some embodiments, an electrochemical cell comprising a lithium-ion-conductive layer may have a rate of impedance increase that is at least about 1%, at least about 5%, at least about 10%, at least about 20%, at least about 50%, at least about 75%, or at least about 100% lower than the rate of impedance increase of an equivalent electrochemical cell that does not comprise a lithium-ion-conductive layer but otherwise includes the same components. In certain cases, an electrochemical cell comprising a lithium-ion-conductive layer may have a rate of impedance increase that is less than about 100%, less than about 75%, less than about 50%, less than about 20%, less than about 20%, less than about 10%, less than about 5%, or less than about 1% lower than the rate of impedance increase of an equivalent electrochemical cell that does not comprise a lithium-ion-conductive layer but otherwise includes the same components. Combinations of the above-noted ranges are also possible.
  • In certain embodiments in which an electrochemical cell comprises a first electrode (e.g., a lithium-intercalation electrode) comprising a lithium-ion-conductive layer, a second electrode (e.g., an intercalation electrode, a lithium metal electrode), and an electrolyte, no species decomposed from the first electrode or the electrolyte resides at the second electrode after the electrochemical cell has undergone at least about 10 cycles, at least about 25 cycles, at least about 50 cycles, at least about 75 cycles, at least about 100 cycles, at least about 125 cycles, at least about 150 cycles, at least about 175 cycles, at least about 200 cycles, at least about 250 cycles, or at least about 300 cycles. In some embodiments, no species decomposed from the first electrode or the electrolyte resides at the second electrode after the electrochemical cell has undergone less than or equal to about 300 cycles, less than or equal to about 250 cycles, less than or equal to about 200 cycles, less than or equal to about 175 cycles, less than or equal to about 150 cycles, less than or equal to about 125 cycles, less than or equal to about 100 cycles, less than or equal to about 75 cycles, less than or equal to about 50 cycles, less than or equal to about 25 cycles, or less than or equal to about 10 cycles. Combinations of the above-noted ranges are also possible. Species residing at the second electrode may be detected, for example, through energy dispersive spectroscopy (EDS).
  • Some embodiments may include electrochemical devices in which the application of an anisotropic force is used to enhance the performance of the device. Application of force to the electrochemical cell may improve the cycling lifetime and performance of the cell. Any of the electrode properties (e.g., porosities, average pore size, etc.) and/or performance metrics outlined above may be achieved, alone or in combination with each other, while an anisotropic force is applied to the electrochemical cell (e.g., during charge and/or discharge of the cell). The magnitude of the anisotropic force may lie within any of the ranges mentioned below.
  • In some embodiments, the anisotropic force applied to the energy storage device comprises a component normal to the active surface of an electrode of the energy storage device (e.g., the anode of a lithium-ion electrochemical cell). In the case of a planar surface, the force may comprise an anisotropic force with a component normal to the surface at the point at which the force is applied. In the case of a curved surface, for example, a concave surface or a convex surface, the force may comprise an anisotropic force with a component normal to a plane that is tangent to the curved surface at the point at which the force is applied. In some embodiments, an anisotropic force with a component normal to the active surface of the anode is applied during at least one period of time during charge and/or discharge of the electrochemical cell. In some embodiments, the force may be applied continuously, over one period of time, or over multiple periods of time that may vary in duration and/or frequency. The anisotropic force may be applied, in some cases, at one or more pre-determined locations, optionally distributed over the active surface of one or both electrodes. In some embodiments, the anisotropic force is applied uniformly over the active surface of an electrode.
  • An “anisotropic force” is given its ordinary meaning in the art and means a force that is not equal in all directions. A force equal in all directions is, for example, internal pressure of a fluid or material within the fluid or material, such as internal gas pressure of an object. Examples of forces not equal in all directions include forces directed in a particular direction, such as the force on a table applied by an object on the table via gravity. Another example of an anisotropic force includes a force applied by a band arranged around a perimeter of an object. For example, a rubber band or turnbuckle can apply forces around a perimeter of an object around which it is wrapped. However, the band may not apply any direct force on any part of the exterior surface of the object not in contact with the band. In addition, when the band is expanded along a first axis to a greater extent than a second axis, the band can apply a larger force in the direction parallel to the first axis than the force applied parallel to the second axis. A force with a “component normal” to a surface, for example an active surface of an electrode, is given its ordinary meaning as would be understood by those of ordinary skill in the art and includes, for example, a force which at least in part exerts itself in a direction substantially perpendicular to the surface.
  • In some embodiments, an anisotropic force with a component normal to the active surface of an electrode (e.g., a cathode) is applied, during at least one period of time during charge and/or discharge of the electrochemical cell. The component of the anisotropic force normal to the electrode active surface may, for example, define a pressure of at least about 5, at least about 10, at least about 25, at least about 50, at least about 75, at least about 100, at least about 120, at least about 150, at least about 175, at least about 200, at least about 225, or at least about 250 Newtons per square centimeter. In some embodiments, the component of the anisotropic force normal to the electrode active surface may, for example, define a pressure of less than about 250, less than about 225, less than about 200, less than about 150, less than about 120, less than about 100, less than about 50, less than about 25, or less than about 10 Newtons per square centimeter. In some cases, the component of the anisotropic force normal to the anode active surface is may define a pressure of between about 5 and about 150 Newtons per square centimeter, between about 50 and about 120 Newtons per square centimeter, between about 70 and about 100 Newtons per square centimeter, between about 80 and about 110 Newtons per square centimeter, between about 5 and about 250 Newtons per square centimeter, between about 50 and about 250 Newtons per square centimeter, between about 80 and about 250 Newtons per square centimeter, between about 90 and about 250 Newtons per square centimeter, or between about 100 and about 250 Newtons per square centimeter. While forces and pressures are generally described herein in units of Newtons and Newtons per unit area, respectively, forces and pressures can also be expressed in units of kilograms-force and kilograms-force per unit area, respectively. One of ordinary skill in the art will be familiar with kilogram-force-based units, and will understand that 1 kilogram-force (kgf) is equivalent to about 9.8 Newtons.
  • Some embodiments relate to methods involving one or more components described herein. In some embodiments, a method comprises cycling an electrochemical cell comprising a first electrode (e.g., a lithium intercalation electrode, a lithium conversion electrode), a second electrode, and an electrolyte. According to certain embodiments, the first electrode comprises a layer comprising an electroactive material integrated with an inorganic lithium-ion-conductive layer. Certain advantages described herein (e.g., increased cycle life, reducing electrolyte loss, inhibition of certain species from residing at an electrode) may be achieved during such cycling.
  • In some embodiments, the method comprises cycling the electrochemical cell at a temperature of at least about 20 degrees Celsius, at least about 25 degrees Celsius, at least about 30 degrees Celsius, at least about 35 degrees Celsius, at least about 40 degrees Celsius, at least about 45 degrees Celsius, at least about 50 degrees Celsius, at least about 55 degrees Celsius, or at least about 60 degrees Celsius, at least 65 degrees Celsius. In some embodiments, the method comprises cycling the electrochemical cell at a temperature of less than or equal to about 70 degrees Celsius, less than or equal to about 65 degrees Celsius, less than or equal to about 60 degrees Celsius, less than or equal to about 55 degrees Celsius, less than or equal to about 50 degrees Celsius, less than or equal to about 45 degrees Celsius, less than or equal to about 40 degrees Celsius, less than or equal to about 35 degrees Celsius, less than or equal to about 30 degrees Celsius, less than or equal to about 25 degrees Celsius, or less than or equal to about 20 degrees Celsius. Combinations of the above-referenced ranges are also possible.
  • In some embodiments, the method comprises cycling the electrochemical cell with an end-of-charge voltage of at least about 4.2 V, at least about 4.3 V, at least about 4.4 V, or at least about 4.5 V, at least about 4.6 V, at least about 4.7 V, at least about 4.8 V, or at least about 4.9 V. In some embodiments, the method comprises cycling the electrochemical cell with an end-of-charge voltage of about 5.0 V or less, about 4.9 V or less, about 4.8 V or less, about 4.7 V or less, about 4.6 V or less, about 4.5 V or less, about 4.4 V or less, about 4.3 V or less, or about 4.2 V or less. Combinations of the above-referenced ranges are also possible.
  • In certain embodiments, the electrochemical cell is cycled for at least about 10 cycles, at least about 25 cycles, at least about 50 cycles, at least about 75 cycles, at least about 100 cycles, at least about 125 cycles, at least about 150 cycles, at least about 175 cycles, at least about 200 cycles, at least about 250 cycles, or at least about 300 cycles. In some embodiments, the electrochemical cell is cycled for less than or equal to about 300 cycles, less than or equal to about 250 cycles, less than or equal to about 200 cycles, less than or equal to about 175 cycles, less than or equal to about 150 cycles, less than or equal to about 125 cycles, less than or equal to about 100 cycles, less than or equal to about 75 cycles, less than or equal to about 50 cycles, less than or equal to about 25 cycles, or less than or equal to about 10 cycles. Combinations of the above-noted ranges are also possible.
  • In some embodiments, a method comprises substantially inhibiting a species decomposed from the first electrode, or a species decomposed from the electrolyte, from residing at the second electrode. In some embodiments, the method comprises substantially inhibiting the species from depositing on the second electrode.
  • According to some embodiments, the method comprises inhibiting a species decomposed from the first electrode or from the electrolyte from residing at the second electrode at a temperature of at least about 20 degrees Celsius, at least about 25 degrees Celsius, at least about 30 degrees Celsius, at least about 35 degrees Celsius, at least about 40 degrees Celsius, at least about 45 degrees Celsius, or at least about 50 degrees Celsius. In some embodiments, the method comprises inhibiting a species decomposed from the first electrode or from the electrolyte from residing at the second electrode at a temperature of less than or equal to about 50 degrees Celsius, less than or equal to about 45 degrees Celsius, less than or equal to about 40 degrees Celsius, less than or equal to about 35 degrees Celsius, less than or equal to about 30 degrees Celsius, less than or equal to about 25 degrees Celsius, or less than or equal to about 20 degrees Celsius. Combinations of the above-noted ranges are also possible.
  • Some embodiments are directed to methods of fabricating electrodes and/or electrochemical cells. In some embodiments, the method comprises the step of depositing a lithium-ion-conductive layer on an electroactive-material-containing layer. The depositing step may be performed using any suitable method, including, but not limited to, electron beam evaporation, chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), laser-enhanced chemical vapor deposition, thermal evaporation (including, but not limited to, resistive, inductive, radiation, and electron beam heating), aerosol deposition, sputtering (including, but not limited to, diode, DC magnetron, RF, RF magnetron, pulsed, dual magnetron, AC, MF, and reactive), laser ablation, ion plating, cathodic arc, and jet vapor deposition. The technique used may depend on a variety of factors, including the type of material being deposited, the thickness of the layer, and the underlying layer on which the lithium-ion-conductive layer is deposited. For example, aerosol deposition may be utilized to deposit a lithium-ion-conductive layer comprising ceramics having a crystalline structure, such as Li10GeP2S12 and/or Li7La3Zr2O12.
  • In some embodiments, methods described herein further comprise exposing at least a portion of the anode and/or the cathode to the electrolyte. In some embodiments, methods described herein further comprise exposing at least a portion of the electroactive material of the anode and/or the electroactive material of the cathode to the electrolyte.
  • The following documents are incorporated herein by reference in their entireties for all purposes: U.S. Pat. No. 7,247,408, filed May 23, 2001, entitled “Lithium Anodes for Electrochemical Cells”; U.S. Pat. No. 5,648,187, filed Mar. 19, 1996, entitled “Stabilized Anode for Lithium-Polymer Batteries”; U.S. Pat. No. 5,961,672, filed Jul. 7, 1997, entitled “Stabilized Anode for Lithium-Polymer Batteries”; U.S. Pat. No. 5,919,587, filed May 21, 1997, entitled “Novel Composite Cathodes, Electrochemical Cells Comprising Novel Composite Cathodes, and Processes for Fabricating Same”; U.S. patent application Ser. No. 11/400,781, filed Apr. 6, 2006, published as U. S. Pub. No. 2007-0221265, and entitled “Rechargeable Lithium/Water, Lithium/Air Batteries”; International Patent Apl. Serial No.: PCT/US2008/009158, filed Jul. 29, 2008, published as International Pub. No. WO/2009017726, and entitled “Swelling Inhibition in Lithium Batteries”; U.S. patent application Ser. No. 12/312,764, filed May 26, 2009, published as U.S. Pub. No. 2010-0129699, and entitled “Separation of Electrolytes”; International Patent Apl. Serial No.: PCT/US2008/012042, filed Oct. 23, 2008, published as International Pub. No. WO/2009054987, and entitled “Primer for Battery Electrode”; U.S. patent application Ser. No. 12/069,335, filed Feb. 8, 2008, published as U.S. Pub. No. 2009-0200986, and entitled “Protective Circuit for Energy-Storage Device”; U.S. patent application Ser. No. 11/400,025, filed Apr. 6, 2006, published as U.S. Pub. No. 2007-0224502, and entitled “Electrode Protection in both Aqueous and Non-Aqueous Electrochemical Cells, including Rechargeable Lithium Batteries”; U.S. patent application Ser. No. 11/821,576, filed Jun. 22, 2007, published as U.S. Pub. No. 2008/0318128, and entitled “Lithium Alloy/Sulfur Batteries”; patent application Ser. No. 11/111,262, filed Apr. 20, 2005, published as U.S. Pub. No. 2006-0238203, and entitled “Lithium Sulfur Rechargeable Battery Fuel Gauge Systems and Methods”; U.S. patent application Ser. No. 11/728,197, filed Mar. 23, 2007, published as U.S. Pub. No. 2008-0187663, and entitled “Co-Flash Evaporation of Polymerizable Monomers and Non-Polymerizable Carrier Solvent/Salt Mixtures/Solutions”; International Patent Apl. Serial No.: PCT/US2008/010894, filed Sep. 19, 2008, published as International Pub. No. WO/2009042071, and entitled “Electrolyte Additives for Lithium Batteries and Related Methods”; International Patent Apl. Serial No.: PCT/US2009/000090, filed Jan. 8, 2009, published as International Pub. No. WO/2009/089018, and entitled “Porous Electrodes and Associated Methods”; U.S. patent application Ser. No. 12/535,328, filed Aug. 4, 2009, published as U.S. Pub. No. 2010/0035128, and entitled “Application of Force In Electrochemical Cells”; U.S. patent application Ser. No. 12/727,862, filed Mar. 19, 2010, entitled “Cathode for Lithium Battery”; U.S. patent application Ser. No. 12/471,095, filed May 22, 2009, entitled “Hermetic Sample Holder and Method for Performing Microanalysis Under Controlled Atmosphere Environment”; U.S. patent application Ser. No. 12/862,513, filed on Aug. 24, 2010, entitled “Release System for Electrochemical cells (which claims priority to Provisional Patent Apl. Ser. No. 61/236,322, filed Aug. 24, 2009, entitled “Release System for Electrochemical Cells”); U.S. patent application Ser. No. 13/216,559, filed on Aug. 24, 2011, published as U.S. Patent Publication No. 2012/0048729, entitled “Electrically Non-Conductive Materials for Electrochemical Cells;” U.S. Provisional Patent Apl. Ser. No. 61/376,554, filed on Aug. 24, 2010, entitled “Electrically Non-Conductive Materials for Electrochemical Cells;” U.S. patent application Ser. No. 12/862,528, filed on Aug. 24, 2010, published as U.S. Patent Publication No. 2011/0177398, entitled “Electrochemical Cell;” U.S. patent application Ser. No. 12/862,563, filed on Aug. 24, 2010, published as U.S. Pub. No. 2011/0070494, entitled “Electrochemical Cells Comprising Porous Structures Comprising Sulfur” [S1583.70029US00]; U.S. patent application Ser. No. 12/862,551, filed on Aug. 24, 2010, published as U.S. Pub. No. 2011/0070491, entitled “Electrochemical Cells Comprising Porous Structures Comprising Sulfur” [51583.70030US00]; U.S. patent application Ser. No. 12/862,576, filed on Aug. 24, 2010, published as U.S. Pub. No. 2011/0059361, entitled “Electrochemical Cells Comprising Porous Structures Comprising Sulfur” [51583.70031US00]; U.S. patent application Ser. No. 12/862,581, filed on Aug. 24, 2010, published as U.S. Pub. No. 2011/0076560, entitled “Electrochemical Cells Comprising Porous Structures Comprising Sulfur” [51583.70024US01]; U.S. patent application Ser. No. 13/240,113, filed on Sep. 22, 2011, published as U.S. Patent Pub. No. 2012/0070746, entitled “Low Electrolyte Electrochemical Cells”; U.S. Patent Apl. Ser. No. 61/385,343, filed on Sep. 22, 2010, entitled “Low Electrolyte Electrochemical Cells”; and U.S. patent application Ser. No. 13/033,419, filed Feb. 23, 2011, published as U.S. Patent Pub. No. 2011/0206992, entitled “Porous Structures for Energy Storage Devices” [51583.70034US00]; U.S. patent application Ser. No. 13/789,783, filed Mar. 9, 2012, published as U.S. Patent Pub. No. 2013/0252103, and entitled “Porous Support Structures, Electrodes Containing Same, and Associated Methods”; U.S. patent Pub. Ser. No. 13/644,933, filed Oct. 4, 2012, published as U.S. Patent Pub. No. 2013/0095380, and entitled “Electrode Structure and Method for Making the Same” [51583.70044US01]; U.S. patent application Ser. No. 14/150,156, filed Jan. 8, 2014, and entitled “Conductivity Control in Electrochemical Cells” [51583.70049US01]; U.S. patent application Ser. No. 13/833,377, filed Mar. 15, 2013, and entitled “Protective Structures for Electrodes” [51583.70051US00]; U.S. patent application Ser. No. 14/209,274, filed Mar. 13, 2014, published as U.S. Patent Pub. No. 2014/0272597 and entitled “Protected Electrode Structures and Methods” [S1583.70052US01]; U.S. patent application Ser. No. 14/150,196, published as U.S. Patent Pub. No. 2014/0193713, filed Jan. 8, 2014, entitled, “Passivation of Electrodes in Electrochemical Cells” [51583.70058US01]; U.S. patent application Ser. No. 14/552,608, published as U.S. Patent Apl. No.: 2015/0086837, filed Nov. 25, 2014, entitled “Ceramic/Polymer Matrix for Electrode Protection in Electrochemical Cells, including Rechargeable Lithium Batteries” [51583.70062US02]; U.S. patent application Ser. No. 14/455,230, published as U.S. Patent Pub. No. 2015/0044517, filed Aug. 8, 2014, and entitled “Self-Healing Electrode Protection in Electrochemical Cells” [51583.70064US01]; U.S. patent application Ser. No. 14/184,037, published as U.S. Patent Pub. No. 2015/0236322, filed Feb. 19, 2014, and entitled, “Electrode Protection Using Electrolyte-Inhibiting Ion Conductor” [S1583.70065US01]. All other patents and patent applications disclosed herein are also incorporated by reference in their entirety for all purposes.
  • The following examples are intended to illustrate certain embodiments of the present invention, but do not exemplify the full scope of the invention.
  • Example 1
  • This example describes the fabrication and testing of electrochemical cells comprising an anode, a cathode coated with a lithium-ion-conductive ceramic, and a porous separator positioned between the anode and the cathode.
  • In the electrochemical cell, the anode was graphite, and a 10 μm Cu foil acted as a substrate and current collector. The porous separator was a 25 μm-thick layer of polyolefin (Celgard 2325). The cathode was lithium iron phosphate (LFP) coated on an aluminum substrate. The cathode had a capacity of about 1.21 mAh/cm2. Lithium oxide was coated on the LFP cathode by vacuum deposition, in which oxygen-containing gas was reacted with lithium vapor. In both the anode and the cathode, PVDF was used as a binder.
  • The above components were assembled in a single-layer cell, with the separator positioned between the anode and the cathode, and the cell components were placed in a foil pouch. The total active cathode surface area was 16.574 cm2. 0.3 mL of LP30 electrolyte (44.1% dimethyl carbonate, 44.1% ethylene carbonate, 11.8% lithium hexafluorophosphate) was added to the foil pouch, and the cell package was then vacuum sealed. The cell was allowed to soak with the electrolyte for 24 hours unrestrained, and then 10 kg/cm2 pressure was applied. The cell was cycled under the 10 kg/cm2 pressure.
  • Charge and discharge cycling was performed at standard C/8 (2.5 mA) and C/5 rates (4 mA), respectively, with a charge cutoff voltage of 4.2 V followed by taper at 4.2 V to 0.5 mA, and a discharge cutoff voltage of 2.5 V. The cell was cycled at room temperature for 5 cycles. From the 6th cycle, the cell was cycled at 50° C.
  • FIG. 8A shows an SEM image of the cross-sectional view of the lithium oxide-coated LFP cathode before cycling, and FIG. 8B shows an SEM image of the cathode after approximately 70 cycles. From FIGS. 8A-8B, it appears that the lithium oxide ceramic coating remained intact after approximately 70 cycles.
  • Comparative Example 1
  • This comparative example describes the fabrication and testing of control cells comprising an uncoated graphite anode and an uncoated LFP cathode. The materials and procedures presented in Example 1 were used and followed, except the LFP cathode was not coated with a lithium-ion-conductive ceramic material.
  • FIG. 7 shows that the discharge capacity fade rate at 50° C. cycling temperature for the electrochemical cells from Example 1 (702) was considerably improved compared to the rate for the electrochemical cells from Comparative Example 1 (704). FIGS. 9A-9B show energy-dispersive spectroscopy (EDS) spectra of the graphite anode from an electrochemical cell of Comparative Example 1 (9A) and an electrochemical cell of Example 1 (9B). Although there was no notable difference in morphology between the control cell and ceramic-coated LFP cell, as indicated by SEM (FIG. 8), EDS detected Fe on the graphite anode of the control cell, while Fe was absent on the graphite anode from the ceramic-coated LFP cell. This result suggests lithium oxide inhibited the Fe dissolution from LFP and subsequent reduction on the graphite anode, and therefore improved the capacity fade rate.
  • Example 2
  • This example describes the fabrication and testing of electrochemical cells comprising an oxysulfide-coated LFP cathode.
  • The materials and procedures presented in Example 1 were used and followed, except the LFP cathode was coated with oxysulfide instead of lithium oxide. A 0.5 μm-thick coating of oxysulfide ceramic was sputtered on LFP electrodes. FIG. 10 shows improved discharge capacity fade rate in the cells containing oxysulfide-coated LFP (1000) relative to the control cells of Comparative Example 1 (1020).
  • Example 3
  • This example describes the fabrication and testing of electrochemical cells comprising a lithium oxide-coated LFP cathode.
  • A 2 μm-thick lithium oxide layer was vacuum deposited on LFP electrodes. The cells were built in the same manner as in Example 1 and cycled at room temperature for 5 cycles. The fully charged cells were stored at 60° C. for a week and then cycled at room temperature. The control cells with regular LFP cathodes were built and cycled/stored the same way. As shown in FIG. 11, 100% self-discharge was observed from the control cells of Comparative Example 1 (1120). In the presence of lithium oxide ceramic coating on the LFP cathodes, cell self-discharge was reduced to 56% (1100).
  • Example 4
  • This example describes the fabrication and testing of electrochemical cells comprising a lithium oxide-coated anode.
  • A 2 μm-thick lithium oxide layer was vacuum deposited on graphite electrodes. The cells were built in the same manner as in Example 1 and cycled at room temperature for 5 cycles. The fully charged cells were stored at 60° C. for a week and then further cycled at room temperature. As shown in FIG. 12, 100% self-discharge was observed from the control cells of Comparative Example 1 (1220). In the presence of lithium oxide ceramic coating on the graphite anode, cell self-discharge was reduced to 91% (1200).
  • Example 5
  • This example describes the fabrication and testing of electrochemical cells comprising a lithium oxide-coated graphite anode and a lithium oxide-coated LFP cathode.
  • A 2 μm layer of lithium oxide was vacuum deposited on graphite electrodes and on LFP electrodes. The cells using oxide-coated graphite and oxide-coated LFP were built in the same manner as in Example 1 and cycled at room temperature for 5 cycles. The fully charged cells were then stored at 60° C. for a week and then further cycled at room temperature. As shown in FIG. 13, 100% self-discharge was observed from the control cells of Comparative Example 1 (1320). In the presence of lithium oxide ceramic coating on both the graphite and LFP electrodes, cell self-discharge was reduced to 55% (1300).
  • Example 6
  • This example describes the fabrication and testing of electrochemical cells comprising a lithium oxide-coated anode and a lithium oxide-coated NMC cathode.
  • A 2 μm layer of lithium oxide was vacuum deposited on graphite electrodes and on NMC electrodes. The cells using oxide-coated graphite and oxide-coated NMC were built in the same manner as in Example 1. Charge and discharge cycling was performed at standard C/8 (3.3 mA) and C/5 rates (5.2 mA), respectively, with a charge cutoff voltage of 4.2 V and a discharge cutoff voltage of 3.2 V. The cells were cycled at room temperature for 5 cycles. The fully charged cells were stored at 60° C. for a week and then further cycled at room temperature. Control cells with regular graphite and NMC electrodes were built and cycled/stored the same way. As shown in FIG. 14, 41% self-discharge was observed from the control cells (1420). In the presence of lithium oxide ceramic coating on both graphite and NMC, cell self-discharge was reduced to 30% (1400).
  • Example 7
  • This example describes the fabrication and testing of electrochemical cells comprising an oxysulfide-coated LFP cathode.
  • A 1 μm layer of electron-beamed oxysulfide ceramic was coated on LFP electrodes as the protective Li-ion conducting ceramic. FIG. 15 shows improved discharge capacity fade rate in the cells containing oxysulfide-coated LFP relative to the control cells with uncoated LFP. Furthermore, from FIG. 15, it can be seen that a 1 μm oxysulfide coating (1500) improved the capacity fade rate more than those containing a 0.5 μm oxysulfide coating (1520) or those not containing a coating (1540).
  • Example 8
  • This example describes the fabrication and testing of electrochemical cells comprising an oxysulfide-coated LFP cathode.
  • A 1 μm layer of electron-beamed oxysulfide ceramic was coated on LFP electrodes as the protective Li-ion conducting ceramic. The cells were built in the same manner and cycled at room temperature for 5 cycles. The fully charged cells were stored at 60° C. for a week and then further cycled at room temperature. The control cells with regular graphite and LFP electrodes were built and cycled/stored the same way. As shown in FIG. 16, 100% self-discharge was observed from the control cells (1620). In the presence of a 1 μm lithium oxysulfide ceramic coating on LFP, cell self-discharge was reduced to 78% (1600).
  • Example 9
  • This example describes the fabrication and testing of electrochemical cells comprising an oxysulfide-coated graphite anode.
  • A 1 μm layer of electron-beamed lithium oxysulfide was vacuum deposited on graphite electrodes. The cells were built in the same manner and cycled at room temperature for 5 cycles. The fully charged cells were stored at 60° C. for a week and then further cycled at room temperature. The control cells with regular graphite and LFP electrodes were built and cycled/stored the same way. As shown in FIG. 17, 100% self-discharge was observed from the control cells (1720). In the presence of lithium oxysulfide ceramic coating on graphite, cell self-discharge was reduced to 84% (1700).
  • Example 10
  • This example describes the fabrication and testing of electrochemical cells comprising a graphite anode and an NCM cathode coated with a substantially porous lithium oxide layer.
  • FIG. 18A shows an SEM image of an uncoated NCM cathode. A 1 μm-thick lithium oxide layer was coated on the NCM cathode by vacuum deposition as a protective lithium-ion-conductive ceramic layer. FIG. 18B shows an SEM image of the NCM cathode with the lithium oxide ceramic coating. From FIG. 18B, it can be seen that the lithium oxide ceramic coating is porous.
  • The electrochemical cells included an LP30 electrolyte composed of 44.1% dimethyl carbonate, 44.1% ethylene carbonate, 11.8% lithium hexafluorophosphate.
  • The electrochemical cells were cycled at room temperature for 5 cycles and at 50° C. starting from the 6th cycle. FIG. 19 shows improved discharge capacity fade rate in the electrochemical cells comprising the lithium-oxide-coated NCM cathode (1900) relative to control electrochemical cells with the uncoated NCM cathode (1910).
  • FIGS. 20A-20B show EDS spectra and SEM images (inset) of the graphite anode from an electrochemical cell with an uncoated NCM electrode after 179 cycles (FIG. 20A) and an electrochemical cell with a lithium-oxide-coated NCM electrode after 191 cycles (FIG. 20B). From the EDS spectra in FIGS. 20A-20B, it can be seen that EDS detected Mn on the graphite anode of the cell with the uncoated NCM electrode but not on the graphite anode of the cell with the lithium-oxide-coated NCM electrode. This result suggests that the porous lithium oxide coating on the NCM cathode inhibited Mn corrosion from the NCM cathode and its subsequent reduction on the graphite anode. This may also have improved the capacity fade rate of the electrochemical cell with the lithium-oxide-coated NCM cathode.
  • While several embodiments of the present invention have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the functions and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the present invention. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the teachings of the present invention is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described and claimed. The present invention is directed to each individual feature, system, article, material, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, and/or methods, if such features, systems, articles, materials, and/or methods are not mutually inconsistent, is included within the scope of the present invention.
  • The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”
  • The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified unless clearly indicated to the contrary. Thus, as a non-limiting example, a reference to “A and/or B,” when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A without B (optionally including elements other than B); in another embodiment, to B without A (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
  • As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.
  • As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
  • In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.

Claims (21)

What is claimed is:
1. (canceled)
2. An electrochemical cell, comprising:
a first electrode, wherein the first electrode is a lithium intercalation electrode, and wherein the first electrode comprises:
a layer comprising a first electroactive material, wherein the first electroactive material is a lithium intercalation compound; and
an inorganic lithium-ion-conductive layer disposed on a surface of the layer comprising the first electroactive material, wherein the inorganic lithium-ion-conductive layer comprises particles that are substantially aligned;
a liquid electrolyte, wherein the liquid electrolyte is an organic electrolyte; and
a second electrode.
3. A method of fabricating an electrochemical cell, comprising:
depositing an inorganic lithium-ion-conductive layer on a layer comprising a first electroactive material to form a first electrode, wherein the first electroactive material is a lithium intercalation compound, wherein the inorganic lithium-ion-conductive layer comprises particles that are substantially aligned; and
assembling the first electrode with a liquid electrolyte and a second electrode.
4. The electrochemical cell of claim 2, wherein at least a portion of the first electroactive material is in direct contact with the liquid electrolyte.
5. The method of claim 3, wherein at least a portion of the first electroactive material is in direct contact with the liquid electrolyte.
6. The electrochemical cell of claim 2, wherein:
the inorganic lithium-ion-conductive layer comprises lithium; and
at least a portion of the first electrode is in contact with the electrolyte.
7. A method, comprising:
cycling the electrochemical cell of claim 3, wherein the inorganic lithium-ion-conductive layer comprises lithium; and
substantially inhibiting a species decomposed from the first electrode and/or a species decomposed from the electrolyte from residing at the second electrode.
8. The electrochemical cell of claim 2, wherein the inorganic lithium-ion-conductive layer has a thickness of at least 0.1 microns and at most 10 microns.
9. The electrochemical cell of claim 2, wherein the layer comprising the first electroactive material comprises a plurality of particles of the first electroactive material.
10. The electrochemical cell of claim 9, wherein at least a portion of the plurality of particles of the first electroactive material have a coating.
11. The electrochemical cell of claim 2, wherein the inorganic lithium-ion-conductive layer comprises a ceramic material.
12. The electrochemical cell of claim 11, wherein the ceramic material comprises lithium oxide, lithium nitride, lithium oxysulfide, Li10GeP2S12, and/or Li7La3Zr2O12.
13. The electrochemical cell of claim 2, wherein the inorganic lithium-ion-conductive layer has a surface roughness Rz of between 10 nm and 20 μm.
14. The electrochemical cell of claim 9, wherein the plurality of particles of the layer comprising the first electroactive material has a mean maximum cross-sectional dimension of between 1 nm and 15 μm.
15. The electrochemical cell of claim 2, wherein the layer comprising the first electroactive material has a porosity at least 10% by volume and less than 70% by volume.
16. The electrochemical cell of claim 2, wherein the first electrode is a cathode.
17. The electrochemical cell of claim 2, wherein the first electroactive material is a layered oxide, a transition metal polyanion oxide, and/or a spinel.
18. The electrochemical cell of claim 2, wherein the first electroactive material is lithium titanate, lithium cobalt oxide, lithium iron phosphate, lithium nickel oxide, lithium manganese oxide, lithium nickel cobalt aluminum oxide, and/or lithium nickel cobalt manganese oxide.
19. The electrochemical cell of claim 2, wherein a porosity of the inorganic lithium-ion-conductive layer is greater than or equal to 10% by volume and less than 30% by volume.
20. The electrochemical cell of claim 2, wherein the inorganic lithium-ion-conductive layer is a unitary material.
21. The electrochemical cell of claim 2, wherein a porosity of the inorganic lithium-ion-conductive layer is less than 5% by volume.
US17/344,128 2014-09-09 2021-06-10 Protective layers in lithium-ion electrochemical cells and associated electrodes and methods Abandoned US20210408550A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/344,128 US20210408550A1 (en) 2014-09-09 2021-06-10 Protective layers in lithium-ion electrochemical cells and associated electrodes and methods

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462048228P 2014-09-09 2014-09-09
US14/848,659 US11038178B2 (en) 2014-09-09 2015-09-09 Protective layers in lithium-ion electrochemical cells and associated electrodes and methods
US17/344,128 US20210408550A1 (en) 2014-09-09 2021-06-10 Protective layers in lithium-ion electrochemical cells and associated electrodes and methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/848,659 Continuation US11038178B2 (en) 2014-09-09 2015-09-09 Protective layers in lithium-ion electrochemical cells and associated electrodes and methods

Publications (1)

Publication Number Publication Date
US20210408550A1 true US20210408550A1 (en) 2021-12-30

Family

ID=55438347

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/848,659 Active US11038178B2 (en) 2014-09-09 2015-09-09 Protective layers in lithium-ion electrochemical cells and associated electrodes and methods
US17/344,128 Abandoned US20210408550A1 (en) 2014-09-09 2021-06-10 Protective layers in lithium-ion electrochemical cells and associated electrodes and methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/848,659 Active US11038178B2 (en) 2014-09-09 2015-09-09 Protective layers in lithium-ion electrochemical cells and associated electrodes and methods

Country Status (6)

Country Link
US (2) US11038178B2 (en)
EP (1) EP3192112A4 (en)
JP (1) JP6770952B2 (en)
KR (1) KR102563670B1 (en)
CN (1) CN107078277B (en)
WO (1) WO2016040461A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923495B2 (en) 2020-03-13 2024-03-05 Sion Power Corporation Application of pressure to electrochemical devices including deformable solids, and related systems

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671908B1 (en) 2009-08-24 2023-10-18 Sion Power Corporation Release system for electrochemical cells
EP2609646A1 (en) 2010-08-24 2013-07-03 Basf Se Electrolyte materials for use in electrochemical cells
US9577289B2 (en) 2012-12-17 2017-02-21 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
US10862105B2 (en) 2013-03-15 2020-12-08 Sion Power Corporation Protected electrode structures
KR102026508B1 (en) 2013-03-15 2019-09-27 시온 파워 코퍼레이션 Protected electrode structures and methods
US10490796B2 (en) 2014-02-19 2019-11-26 Sion Power Corporation Electrode protection using electrolyte-inhibiting ion conductor
WO2015126885A1 (en) 2014-02-19 2015-08-27 Basf Se Electrode protection using a composite comprising an electrolyte-inhibiting ion conductor
KR101579251B1 (en) * 2014-05-16 2015-12-22 동국대학교 산학협력단 Positive active material of lithium ion battery comprising lithium banadium zirconium phosphate and lithium ion battery comprising the same
CN107078277B (en) * 2014-09-09 2022-07-22 赛昂能源有限公司 Protective layer in lithium-ion electrochemical cells and related electrodes and methods
EP3298643B1 (en) 2015-05-21 2019-06-12 Basf Se Glass-ceramic electrolytes for lithium-sulfur batteries
US10320031B2 (en) 2015-11-13 2019-06-11 Sion Power Corporation Additives for electrochemical cells
US10128529B2 (en) * 2015-11-13 2018-11-13 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion secondary battery, fabricating method therof, and electronic device
WO2017091341A1 (en) 2015-11-24 2017-06-01 Sion Power Corporation Ionically conductive compounds and related uses
US10497968B2 (en) * 2016-01-04 2019-12-03 Global Graphene Group, Inc. Solid state electrolyte for lithium secondary battery
WO2017197299A1 (en) * 2016-05-12 2017-11-16 Navitas Systems, Llc Compositions and methods for electrode fabrication
US10991925B2 (en) 2016-06-21 2021-04-27 Sion Power Corporation Coatings for components of electrochemical cells
US10612152B2 (en) * 2016-11-18 2020-04-07 City University Of Hong Kong Method of fabricating nanoporous metal structure
EP3340346B1 (en) 2016-12-23 2022-02-16 Sion Power Corporation Protected electrode structure for electrochemical cells
US11024923B2 (en) 2017-03-09 2021-06-01 Sion Power Corporation Electrochemical cells comprising short-circuit resistant electronically insulating regions
WO2018170413A1 (en) 2017-03-17 2018-09-20 Sion Power Corporation Electrode edge protection in electrochemical cells
JP7080584B2 (en) 2017-03-17 2022-06-06 株式会社東芝 Rechargeable batteries, battery packs, and vehicles
US10868306B2 (en) 2017-05-19 2020-12-15 Sion Power Corporation Passivating agents for electrochemical cells
KR20200000446A (en) 2017-05-19 2020-01-02 시온 파워 코퍼레이션 Passivating agents for electrochemical cells
US11251501B2 (en) 2017-05-24 2022-02-15 Sion Power Corporation Lithium metal sulfide and lithium metal sulfide argyrodite ionically conductive compounds and related uses
US10608278B2 (en) 2017-06-09 2020-03-31 Sion Power Corporation In situ current collector
JP2020534647A (en) * 2017-09-15 2020-11-26 シオン・パワー・コーポレーション Protective layer for electrochemical cells
WO2019058702A1 (en) * 2017-09-25 2019-03-28 パナソニックIpマネジメント株式会社 Positive electrode for secondary batteries, secondary battery, and method for producing positive electrode for secondary batteries
KR102359649B1 (en) * 2017-11-30 2022-02-09 한국전자기술연구원 Graphene-current collecting integrated anode for lithium secondary battery and method for manufacturing the same
CN108376770A (en) * 2018-01-30 2018-08-07 南京红太阳新能源有限公司 The preparation method of anode material for lithium-ion batteries
US10910653B2 (en) * 2018-02-26 2021-02-02 Graphenix Development, Inc. Anodes for lithium-based energy storage devices
DE102018205483A1 (en) * 2018-04-11 2019-10-17 Bayerische Motoren Werke Aktiengesellschaft Solid electrolyte material
CN108565398A (en) * 2018-06-01 2018-09-21 哈尔滨工业大学 Cathode of lithium and preparation method thereof with inorganic protective coating
US11791469B2 (en) 2018-06-07 2023-10-17 Shenzhen Xworld Technology Limited Materials and methods for components of lithium batteries
KR20210037700A (en) 2018-07-31 2021-04-06 시온 파워 코퍼레이션 Multiplex Charge Discharge Battery Management System
DE102018221164A1 (en) * 2018-12-06 2020-06-10 Volkswagen Aktiengesellschaft Protective layer for a lithium metal anode of a solid state battery
JP2022516102A (en) 2018-12-27 2022-02-24 シオン・パワー・コーポレーション Electrochemical devices and related articles, components, configurations and methods
US11637353B2 (en) 2018-12-27 2023-04-25 Sion Power Corporation Electrodes, heaters, sensors, and associated articles and methods
US11322804B2 (en) 2018-12-27 2022-05-03 Sion Power Corporation Isolatable electrodes and associated articles and methods
CN111416103B (en) * 2019-01-08 2022-07-22 宁德新能源科技有限公司 Electrode with composite layer and protective layer of support structure for improving battery performance
CN114008851A (en) 2019-05-22 2022-02-01 赛昂能源有限公司 Electrically coupled electrodes and related articles and methods
US11710828B2 (en) 2019-05-22 2023-07-25 Sion Power Corporation Electrochemical devices including porous layers
US20210020944A1 (en) * 2019-07-16 2021-01-21 Lionano Se Inc. Electrodes for lithium-ion batteries and other applications
US20220285692A1 (en) * 2019-07-24 2022-09-08 Board Of Regents, The University Of Texas System Multilayered anode and associated methods and systems
US11056728B2 (en) 2019-10-31 2021-07-06 Sion Power Corporation System and method for operating a rechargeable electrochemical cell or battery
US11424492B2 (en) 2019-10-31 2022-08-23 Sion Power Corporation System and method for operating a rechargeable electrochemical cell or battery
US11824228B2 (en) 2019-11-19 2023-11-21 Sion Power Corporation Compression systems for batteries
US11791511B2 (en) 2019-11-19 2023-10-17 Sion Power Corporation Thermally insulating compressible components for battery packs
JP2023507160A (en) 2019-12-20 2023-02-21 シオン・パワー・コーポレーション lithium metal electrode
CN115039259A (en) * 2020-01-22 2022-09-09 新强能电池公司 Method of forming an electrochemical cell
JP2022015499A (en) * 2020-07-09 2022-01-21 キオクシア株式会社 Storage device
WO2022031579A1 (en) 2020-08-03 2022-02-10 Sion Power Corporation Electrochemical cell clamps and related methods
US11826861B1 (en) 2020-08-12 2023-11-28 Sion Power Corporation Joining systems, clamping fixtures, and related systems and methods
US20230317959A1 (en) 2020-09-04 2023-10-05 Sion Power Corporation Electrically conductive release layer
US11705554B2 (en) 2020-10-09 2023-07-18 Sion Power Corporation Electrochemical cells and/or components thereof comprising nitrogen-containing species, and methods of forming them
CN113381003B (en) * 2021-05-20 2022-09-06 浙江锋锂新能源科技有限公司 Method for modifying lithium metal surface by mixed gas in grading manner and lithium metal battery
KR102638598B1 (en) * 2021-08-02 2024-02-20 (주)디엔에프신소재 A battery comprising an electrode having a polysilazane cured film formed on its surface
CA3128220A1 (en) * 2021-08-13 2023-02-13 Nicolas DELAPORTE Modified surface electrodes, methods of preparation, and electrochemical uses
CN113708005B (en) * 2021-08-16 2022-10-14 电子科技大学 Lithium-intercalated MOF/graphene composite modified functional membrane and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090104532A1 (en) * 2007-10-19 2009-04-23 Sony Corporation Cathode active material, cathode, and non-aqueous electrolyte secondary battery
KR20090088637A (en) * 2008-02-15 2009-08-20 삼성에스디아이 주식회사 Electrode assembly and secondary battery having the same
US20130164624A1 (en) * 2011-12-23 2013-06-27 Kyeu-Yoon Sheem Positive active material and method of preparing same and rechargeable lithium battery including same
US20160099453A1 (en) * 2014-10-02 2016-04-07 Ford Global Technologies, Llc Composite Separator with Aligned Particles
US11038178B2 (en) * 2014-09-09 2021-06-15 Sion Power Corporation Protective layers in lithium-ion electrochemical cells and associated electrodes and methods

Family Cites Families (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321163A (en) 1978-11-21 1982-03-23 Max-Planck-Gesellschaft Lithium nitride of increased conductivity, method for its preparation, and its use
JPS5760669A (en) * 1980-09-29 1982-04-12 Hitachi Ltd Lithium oxide group non-crystal material and production thereof
DE3476667D1 (en) 1983-09-20 1989-03-16 Elf Aquitaine New derivatives of polycarbone sulfides, preparation and applications thereof, particularly in electrochemistry
FR2570882B1 (en) 1984-09-21 1986-12-05 Comp Generale Electricite POSITIVE ACTIVE MATERIAL BASED ON AN ELECTRONIC CONDUCTIVE POLYMER FOR AN ELECTROCHEMICAL GENERATOR
JPH0630246B2 (en) 1985-03-12 1994-04-20 日立マクセル株式会社 Button type lithium organic secondary battery
US4954371A (en) 1986-06-23 1990-09-04 Spectrum Control, Inc. Flash evaporation of monomer fluids
JPS63126156A (en) 1986-11-15 1988-05-30 Hitachi Maxell Ltd Lithium cell
US4832463A (en) 1987-09-08 1989-05-23 Tufts University Thin film ion conducting coating
US4833048A (en) 1988-03-31 1989-05-23 The United States Of America As Represented By The United States Department Of Energy Metal-sulfur type cell having improved positive electrode
US4865930A (en) 1988-10-27 1989-09-12 Hughes Aircraft Company Method for forming a gas-permeable and ion-permeable membrane
US4917974A (en) 1989-04-14 1990-04-17 The United States Of America As Represented By The Department Of Energy Lithium/organosulfur redox cell having protective solid electrolyte barrier formed on anode and method of making same
US5162175A (en) 1989-10-13 1992-11-10 Visco Steven J Cell for making secondary batteries
JP3030053B2 (en) 1990-05-22 2000-04-10 三洋電機株式会社 Rechargeable battery
US5324599A (en) 1991-01-29 1994-06-28 Matsushita Electric Industrial Co., Ltd. Reversible electrode material
US5194341A (en) 1991-12-03 1993-03-16 Bell Communications Research, Inc. Silica electrolyte element for secondary lithium battery
CA2068290C (en) 1992-05-08 1999-07-13 Michel Gauthier Electrical connecting on lithium anodes
JPH0630246A (en) 1992-07-13 1994-02-04 Nec Eng Ltd Summary image generating system
CA2110097C (en) 1992-11-30 2002-07-09 Soichiro Kawakami Secondary battery
US5441831A (en) 1992-12-17 1995-08-15 Associated Universities, Inc. Cells having cathodes containing polycarbon disulfide materials
JPH06251764A (en) 1993-02-22 1994-09-09 Fuji Elelctrochem Co Ltd Lithium secondary battery
US5342710A (en) 1993-03-30 1994-08-30 Valence Technology, Inc. Lakyer for stabilization of lithium anode
US5366829A (en) 1993-06-14 1994-11-22 Valence Technology, Inc. Method of forming an anode material for lithium-containing solid electrochemical cells
US5460905A (en) 1993-06-16 1995-10-24 Moltech Corporation High capacity cathodes for secondary cells
US5387479A (en) 1993-06-16 1995-02-07 Valence Technology, Inc. Electrodes for rechargeable lithium batteries
US5314765A (en) 1993-10-14 1994-05-24 Martin Marietta Energy Systems, Inc. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method
US5569520A (en) 1994-01-12 1996-10-29 Martin Marietta Energy Systems, Inc. Rechargeable lithium battery for use in applications requiring a low to high power output
US5538812A (en) 1994-02-04 1996-07-23 Moltech Corporation Electrolyte materials containing highly dissociated metal ion salts
US5648187A (en) 1994-02-16 1997-07-15 Moltech Corporation Stabilized anode for lithium-polymer batteries
US5961672A (en) 1994-02-16 1999-10-05 Moltech Corporation Stabilized anode for lithium-polymer batteries
US5532083A (en) 1994-07-26 1996-07-02 Mccullough; Francis P. Flexible carbon fiber electrode with low modulus and high electrical conductivity, battery employing the carbon fiber electrode, and method of manufacture
US5516598A (en) 1994-07-28 1996-05-14 Polyplus Battery Company, Inc. Secondary cell using organosulfur/metal charge transfer materials as positive electrode
US5434021A (en) 1994-08-12 1995-07-18 Arthur D. Little, Inc. Secondary electrolytic cell and electrolytic process
US6025094A (en) 1994-11-23 2000-02-15 Polyplus Battery Company, Inc. Protective coatings for negative electrodes
US6030720A (en) 1994-11-23 2000-02-29 Polyplus Battery Co., Inc. Liquid electrolyte lithium-sulfur batteries
EP0802898A1 (en) 1995-01-13 1997-10-29 Sri International Organic liquid electrolytes and plasticizers
US5723230A (en) 1995-02-27 1998-03-03 Yazaki Corporation Oligosulfide type electrode material and secondary battery containing such electrode material
AU5882896A (en) 1995-06-07 1996-12-30 Moltech Corporation Electroactive high storage capacity polyacetylene-co-polysul fur materials and electrolytic cells containing same
US5601947A (en) 1995-06-07 1997-02-11 Moltech Corporation Electroactive high storage capacity polycarbon-sulfide materials and electrolytic cells containing same
US5529860A (en) 1995-06-07 1996-06-25 Moltech Corporation Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
AU6242496A (en) 1995-06-28 1997-01-30 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
US5681615A (en) 1995-07-27 1997-10-28 Battelle Memorial Institute Vacuum flash evaporated polymer composites
US5792575A (en) 1995-09-11 1998-08-11 Yazaki Corporation Lithium sulfur secondary battery and elecrode material for a non-aqueous battery
JP3525403B2 (en) 1995-09-28 2004-05-10 矢崎総業株式会社 Electrode materials and secondary batteries
JP3555097B2 (en) 1995-09-28 2004-08-18 矢崎総業株式会社 Electrode materials and secondary batteries
US5716736A (en) 1995-10-06 1998-02-10 Midwest Research Institute Solid lithium-ion electrolyte
DE69637433T2 (en) 1995-11-15 2009-02-19 Asahi Kasei Emd Corporation HYBRID POLYMER COMPOUND ELECTROLYTE AND NON-ACID ELECTROCHEMICAL CELL
JP3180660B2 (en) 1996-04-12 2001-06-25 三菱マテリアル株式会社 Long metal tube inner surface plating method
US5919587A (en) 1996-05-22 1999-07-06 Moltech Corporation Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same
KR100378004B1 (en) 1997-06-10 2003-06-09 삼성에스디아이 주식회사 Glass-polymer composite electrolyte and method for producing the same
WO1999019534A1 (en) 1997-10-10 1999-04-22 Midwest Research Institute Plasma enhanced chemical vapor deposition (pecvd) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby
US6153337A (en) 1997-12-19 2000-11-28 Moltech Corporation Separators for electrochemical cells
US6201100B1 (en) 1997-12-19 2001-03-13 Moltech Corporation Electroactive, energy-storing, highly crosslinked, polysulfide-containing organic polymers and methods for making same
US6402795B1 (en) 1998-02-18 2002-06-11 Polyplus Battery Company, Inc. Plating metal negative electrodes under protective coatings
IL124007A (en) 1998-04-08 2001-08-26 Univ Ramot Long cycle-life alkali metal battery
US6214061B1 (en) 1998-05-01 2001-04-10 Polyplus Battery Company, Inc. Method for forming encapsulated lithium electrodes having glass protective layers
US6202591B1 (en) 1998-11-12 2001-03-20 Flex Products, Inc. Linear aperture deposition apparatus and coating process
TW439308B (en) 1998-12-16 2001-06-07 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6268695B1 (en) 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6277514B1 (en) 1998-12-17 2001-08-21 Moltech Corporation Protective coating for separators for electrochemical cells
US6194098B1 (en) 1998-12-17 2001-02-27 Moltech Corporation Protective coating for separators for electrochemical cells
US6225002B1 (en) 1999-02-05 2001-05-01 Polyplus Battery Company, Inc. Dioxolane as a proctector for lithium electrodes
US6849702B2 (en) 1999-02-26 2005-02-01 Robert W. Callahan Polymer matrix material
US6276355B1 (en) 1999-05-03 2001-08-21 Macro Energy-Tech, Inc. Cutting method and apparatus for sectioning multilayer electronic devices
DE19940069A1 (en) 1999-08-24 2001-03-08 Basf Ag Process for the electrochemical production of an alkali metal from an aqueous solution
US6413284B1 (en) 1999-11-01 2002-07-02 Polyplus Battery Company Encapsulated lithium alloy electrodes having barrier layers
US6413285B1 (en) 1999-11-01 2002-07-02 Polyplus Battery Company Layered arrangements of lithium electrodes
US7247408B2 (en) 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
US20110165471A9 (en) 1999-11-23 2011-07-07 Sion Power Corporation Protection of anodes for electrochemical cells
US7771870B2 (en) 2006-03-22 2010-08-10 Sion Power Corporation Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries
WO2001039303A1 (en) 1999-11-23 2001-05-31 Moltech Corporation Lithium anodes for electrochemical cells
US6328770B1 (en) 1999-11-23 2001-12-11 Valence Technology (Nevada), Inc. Method of making multi-layer electrochemical cell devices
US6797428B1 (en) 1999-11-23 2004-09-28 Moltech Corporation Lithium anodes for electrochemical cells
US6508921B1 (en) 2000-03-24 2003-01-21 Beckman Coulter, Inc. Lithium ion-selective electrode for clinical applications
US6432586B1 (en) * 2000-04-10 2002-08-13 Celgard Inc. Separator for a high energy rechargeable lithium battery
WO2001097304A1 (en) 2000-06-12 2001-12-20 Korea Institute Of Science And Technology Multi-layered lithium electrode, its preparation and lithium batteries comprising it
JP4626105B2 (en) 2000-08-28 2011-02-02 日産自動車株式会社 Lithium ion secondary battery
US20020071989A1 (en) 2000-12-08 2002-06-13 Verma Surrenda K. Packaging systems and methods for thin film solid state batteries
AUPR371401A0 (en) 2001-03-14 2001-04-12 Murray, Andrew Fraser Hamish Appliances for treating sleep apnoea
KR20020085422A (en) 2001-05-08 2002-11-16 엘지전자 주식회사 Optical axis controll apparatus for optical disc player
US6517968B2 (en) 2001-06-11 2003-02-11 Excellatron Solid State, Llc Thin lithium film battery
JP2002373643A (en) * 2001-06-14 2002-12-26 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP4415241B2 (en) 2001-07-31 2010-02-17 日本電気株式会社 Negative electrode for secondary battery, secondary battery using the same, and method for producing negative electrode
JP4997674B2 (en) 2001-09-03 2012-08-08 日本電気株式会社 Negative electrode for secondary battery and secondary battery
US6911280B1 (en) 2001-12-21 2005-06-28 Polyplus Battery Company Chemical protection of a lithium surface
US7204862B1 (en) 2002-01-10 2007-04-17 Excellatron Solid State, Llc Packaged thin film batteries and methods of packaging thin film batteries
JP4701579B2 (en) 2002-01-23 2011-06-15 日本電気株式会社 Negative electrode for secondary battery
GB2386126B (en) 2002-03-06 2006-03-08 Ceres Power Ltd Forming an impermeable sintered ceramic electrolyte layer on a metallic foil substrate for solid oxide fuel cell
JP4400019B2 (en) 2002-04-10 2010-01-20 日本電気株式会社 Non-aqueous electrolyte battery and method for producing the same
AU2003242383A1 (en) 2002-05-24 2003-12-12 Nec Corporation Negative electrode for secondary cell and secondary cell using the same
US6835493B2 (en) 2002-07-26 2004-12-28 Excellatron Solid State, Llc Thin film battery
JP4196398B2 (en) 2002-08-26 2008-12-17 日本電気株式会社 Non-aqueous electrolyte secondary battery
CN100380712C (en) 2002-10-15 2008-04-09 波利普拉斯电池有限公司 Ionically conductive membranes for protection of active metal anodes
US7645543B2 (en) 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
KR100467705B1 (en) * 2002-11-02 2005-01-24 삼성에스디아이 주식회사 Seperator having inorganic protective film and lithium battery using the same
JP2004362781A (en) * 2003-05-30 2004-12-24 Toshiba Corp Cathode active substance and nonaqueous electrolyte secondary battery
US6852139B2 (en) 2003-07-11 2005-02-08 Excellatron Solid State, Llc System and method of producing thin-film electrolyte
US6886240B2 (en) 2003-07-11 2005-05-03 Excellatron Solid State, Llc Apparatus for producing thin-film electrolyte
US20050051763A1 (en) 2003-09-05 2005-03-10 Helicon Research, L.L.C. Nanophase multilayer barrier and process
US7608178B2 (en) 2003-11-10 2009-10-27 Polyplus Battery Company Active metal electrolyzer
KR100953543B1 (en) 2003-12-01 2010-04-21 삼성에스디아이 주식회사 Lithium anode, process for preparing the same and lithium battery using the same
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
US7354680B2 (en) 2004-01-06 2008-04-08 Sion Power Corporation Electrolytes for lithium sulfur cells
US7691536B2 (en) 2004-02-20 2010-04-06 Excellatron Solid State, Llc Lithium oxygen batteries and method of producing same
US20080070087A1 (en) 2004-02-20 2008-03-20 Excellatron Solid State, Llc Non-volatile cathodes for lithium oxygen batteries and method of producing same
US7688075B2 (en) 2005-04-20 2010-03-30 Sion Power Corporation Lithium sulfur rechargeable battery fuel gauge systems and methods
US7776478B2 (en) 2005-07-15 2010-08-17 Cymbet Corporation Thin-film batteries with polymer and LiPON electrolyte layers and method
WO2007062220A2 (en) 2005-11-23 2007-05-31 Polyplus Battery Company Li/air non-aqueous batteries
WO2007075867A2 (en) 2005-12-19 2007-07-05 Polyplus Battery Company Composite solid electrolyte for protection of active metal anodes
KR100791791B1 (en) * 2006-03-10 2008-01-04 주식회사 엘지화학 Electrode having porous active coating layer, and manufacturing method thereof and electrochemical device containing the same
JP2009529768A (en) 2006-03-10 2009-08-20 エクセラトロン ソリッド ステート,エルエルシー Air battery and manufacturing method thereof
EP2102924B1 (en) 2006-12-04 2018-03-28 Sion Power Corporation Separation of electrolytes in lithium batteries
JP5093449B2 (en) 2007-01-09 2012-12-12 住友電気工業株式会社 Lithium battery
US8084102B2 (en) 2007-02-06 2011-12-27 Sion Power Corporation Methods for co-flash evaporation of polymerizable monomers and non-polymerizable carrier solvent/salt mixtures/solutions
KR100754746B1 (en) * 2007-03-07 2007-09-03 주식회사 엘지화학 Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same
JP2008262768A (en) * 2007-04-11 2008-10-30 Nec Tokin Corp Lithium ion secondary battery
US20080318128A1 (en) 2007-06-22 2008-12-25 Sion Power Corporation Lithium alloy/sulfur batteries
US20090035646A1 (en) 2007-07-31 2009-02-05 Sion Power Corporation Swelling inhibition in batteries
WO2009032313A1 (en) 2007-09-05 2009-03-12 Ceramatec, Inc. Lithium-sulfur battery with a substantially non- porous membrane and enhanced cathode utilization
JP5151692B2 (en) * 2007-09-11 2013-02-27 住友電気工業株式会社 Lithium battery
US20120070746A1 (en) 2007-09-21 2012-03-22 Sion Power Corporation Low electrolyte electrochemical cells
US20100239914A1 (en) 2009-03-19 2010-09-23 Sion Power Corporation Cathode for lithium battery
WO2009042071A2 (en) 2007-09-21 2009-04-02 Sion Power Corporation Electrolyte additives for lithium batteries and related methods
CN101884125B (en) 2007-10-26 2013-11-20 赛昂能源有限公司 Primer for battery electrode
WO2009081594A1 (en) * 2007-12-26 2009-07-02 Panasonic Corporation Nonaqueous electrolyte rechargeable battery
CN101939862B (en) 2008-01-08 2014-03-12 赛昂能源有限公司 Porous electrodes and associated methods
US8264205B2 (en) 2008-02-08 2012-09-11 Sion Power Corporation Circuit for charge and/or discharge protection in an energy-storage device
JP4849093B2 (en) * 2008-04-28 2011-12-28 トヨタ自動車株式会社 Resistive layer formation inhibiting coating layer coated positive electrode active material and all solid lithium secondary battery using the same
EP2669975A1 (en) 2008-08-05 2013-12-04 Sion Power Corporation Application of force in electrochemical cells
JP2010056027A (en) * 2008-08-29 2010-03-11 Ohara Inc Aqueous lithium secondary battery, and electrode for aqueous lithium secondary battery
JP4487219B1 (en) * 2008-12-26 2010-06-23 トヨタ自動車株式会社 Method for producing electrode for non-aqueous secondary battery
US8087309B2 (en) 2009-05-22 2012-01-03 Sion Power Corporation Hermetic sample holder and method for performing microanalysis under controlled atmosphere environment
EP3671908B1 (en) 2009-08-24 2023-10-18 Sion Power Corporation Release system for electrochemical cells
US20110206992A1 (en) 2009-08-28 2011-08-25 Sion Power Corporation Porous structures for energy storage devices
US20110070494A1 (en) 2009-08-28 2011-03-24 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
JP2013538429A (en) 2010-08-24 2013-10-10 シオン・パワー・コーポレーション Non-conductive materials for electrochemical cells
US20140023933A1 (en) * 2011-03-30 2014-01-23 Ohara Inc. Non-aqueous electrolyte secondary battery, and process for producing same
KR20120122674A (en) 2011-04-29 2012-11-07 삼성전자주식회사 Negative electrode for lithium secondary battery, method of preparing the same, and lithium secondary battery employing the same
EP2721665B1 (en) * 2011-06-17 2021-10-27 Sion Power Corporation Plating technique for electrode
CN103814472B (en) * 2011-09-30 2016-05-04 丰田自动车株式会社 All-solid-state battery and manufacture method thereof
WO2013055573A1 (en) 2011-10-13 2013-04-18 Sion Power Corporation Electrode structure and method for making the same
WO2013134655A1 (en) 2012-03-09 2013-09-12 Sion Power Corporation Porous support structures, electrodes containing same, and associated methods
KR20130107092A (en) * 2012-03-21 2013-10-01 삼성정밀화학 주식회사 Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
CN102637899A (en) * 2012-04-29 2012-08-15 上海贯裕能源科技有限公司 Lithium ion battery
WO2014110131A1 (en) 2013-01-08 2014-07-17 Sion Power Corporation Conductivity control in electrochemical cells
US9531009B2 (en) 2013-01-08 2016-12-27 Sion Power Corporation Passivation of electrodes in electrochemical cells
US20140272594A1 (en) 2013-03-15 2014-09-18 Sion Power Corporation Protective structures for electrodes
KR102026508B1 (en) 2013-03-15 2019-09-27 시온 파워 코퍼레이션 Protected electrode structures and methods
JP6116715B2 (en) 2013-07-03 2017-04-19 シオン・パワー・コーポレーション Ceramic / polymer matrix for electrode protection in electrochemical cells including rechargeable lithium batteries
KR102059238B1 (en) 2013-08-08 2019-12-24 시온 파워 코퍼레이션 Self-healing electrode protection in electrochemical cells
US10490796B2 (en) 2014-02-19 2019-11-26 Sion Power Corporation Electrode protection using electrolyte-inhibiting ion conductor
US9508976B2 (en) * 2015-01-09 2016-11-29 Applied Materials, Inc. Battery separator with dielectric coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090104532A1 (en) * 2007-10-19 2009-04-23 Sony Corporation Cathode active material, cathode, and non-aqueous electrolyte secondary battery
KR20090088637A (en) * 2008-02-15 2009-08-20 삼성에스디아이 주식회사 Electrode assembly and secondary battery having the same
US20130164624A1 (en) * 2011-12-23 2013-06-27 Kyeu-Yoon Sheem Positive active material and method of preparing same and rechargeable lithium battery including same
US11038178B2 (en) * 2014-09-09 2021-06-15 Sion Power Corporation Protective layers in lithium-ion electrochemical cells and associated electrodes and methods
US20160099453A1 (en) * 2014-10-02 2016-04-07 Ford Global Technologies, Llc Composite Separator with Aligned Particles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
www.espacenet.com machine translation of KR 10-2009-0088637A. (Year: 2009) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923495B2 (en) 2020-03-13 2024-03-05 Sion Power Corporation Application of pressure to electrochemical devices including deformable solids, and related systems

Also Published As

Publication number Publication date
US11038178B2 (en) 2021-06-15
EP3192112A1 (en) 2017-07-19
CN107078277A (en) 2017-08-18
KR20170048579A (en) 2017-05-08
WO2016040461A1 (en) 2016-03-17
CN107078277B (en) 2022-07-22
JP2017527970A (en) 2017-09-21
EP3192112A4 (en) 2018-04-11
JP6770952B2 (en) 2020-10-21
KR102563670B1 (en) 2023-08-03
US20160072132A1 (en) 2016-03-10

Similar Documents

Publication Publication Date Title
US20210408550A1 (en) Protective layers in lithium-ion electrochemical cells and associated electrodes and methods
US11688851B2 (en) Method of forming an anode structure with dielectric coating
US11024923B2 (en) Electrochemical cells comprising short-circuit resistant electronically insulating regions
US11631860B2 (en) Anodes for lithium-based energy storage devices
US9531009B2 (en) Passivation of electrodes in electrochemical cells
US9559348B2 (en) Conductivity control in electrochemical cells
US20170047590A1 (en) Electrochemical cells comprising fibril materials
EP3304617B1 (en) Battery separator with dielectric coating
US20200395585A1 (en) Lithium-coated separators and electrochemical cells comprising the same
CN111213266B (en) Rechargeable battery
US20240055647A1 (en) Lithium-containing electrochemical cells, electrochemical systems, and related methods
NL2032368B1 (en) High Cycle-life Lithium-ion Cells with Nano-structured Silicon Comprising Anodes
US20230112241A1 (en) High voltage lithium-containing electrochemical cells including magnesium-comprising protective layers and related methods
US20240097208A1 (en) Mixtures and/or layers comprising ceramic particles and a polymeric surfactant, and related articles and methods
WO2024010454A1 (en) High cycle-life lithium-ion cells with nano-structured silicon-comprising anodes

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION COUNTED, NOT YET MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION