US20210403410A1 - Ophthalmic formulation - Google Patents
Ophthalmic formulation Download PDFInfo
- Publication number
- US20210403410A1 US20210403410A1 US17/318,581 US202117318581A US2021403410A1 US 20210403410 A1 US20210403410 A1 US 20210403410A1 US 202117318581 A US202117318581 A US 202117318581A US 2021403410 A1 US2021403410 A1 US 2021403410A1
- Authority
- US
- United States
- Prior art keywords
- formula
- ophthalmic formulation
- acid
- branched
- linear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 104
- 238000009472 formulation Methods 0.000 title claims abstract description 90
- 150000001875 compounds Chemical class 0.000 claims abstract description 81
- 125000003342 alkenyl group Chemical group 0.000 claims abstract description 24
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 23
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 26
- 208000003556 Dry Eye Syndromes Diseases 0.000 claims description 22
- 206010013774 Dry eye Diseases 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 16
- 238000011282 treatment Methods 0.000 claims description 9
- 125000002669 linoleoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 5
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 125000002811 oleoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 3
- 150000002632 lipids Chemical class 0.000 description 66
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 43
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 24
- 239000000047 product Substances 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 23
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 23
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 23
- 239000005642 Oleic acid Substances 0.000 description 23
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 23
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 23
- JYTMDBGMUIAIQH-UHFFFAOYSA-N hexadecyl oleate Natural products CCCCCCCCCCCCCCCCOC(=O)CCCCCCCC=CCCCCCCCC JYTMDBGMUIAIQH-UHFFFAOYSA-N 0.000 description 21
- JYTMDBGMUIAIQH-ZPHPHTNESA-N palmityl oleate Chemical compound CCCCCCCCCCCCCCCCOC(=O)CCCCCCC\C=C/CCCCCCCC JYTMDBGMUIAIQH-ZPHPHTNESA-N 0.000 description 21
- 229910001868 water Inorganic materials 0.000 description 21
- 239000004164 Wax ester Substances 0.000 description 19
- 235000019386 wax ester Nutrition 0.000 description 19
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 18
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 15
- 239000000872 buffer Substances 0.000 description 13
- 239000012071 phase Substances 0.000 description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000010410 layer Substances 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 10
- 239000007764 o/w emulsion Substances 0.000 description 10
- 239000003755 preservative agent Substances 0.000 description 10
- 238000004809 thin layer chromatography Methods 0.000 description 10
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 239000000607 artificial tear Substances 0.000 description 9
- 239000003974 emollient agent Substances 0.000 description 9
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 9
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 9
- 239000002502 liposome Substances 0.000 description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 9
- UGAGPNKCDRTDHP-UHFFFAOYSA-N 16-hydroxyhexadecanoic acid Chemical compound OCCCCCCCCCCCCCCCC(O)=O UGAGPNKCDRTDHP-UHFFFAOYSA-N 0.000 description 8
- 239000003995 emulsifying agent Substances 0.000 description 8
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 239000000546 pharmaceutical excipient Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 230000007480 spreading Effects 0.000 description 8
- 238000003892 spreading Methods 0.000 description 8
- KOITVLVSMOBKGI-KTKRTIGZSA-N 16-hydroxyhexadecanoyl (Z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC(=O)CCCCCCCCCCCCCCCO KOITVLVSMOBKGI-KTKRTIGZSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 239000008186 active pharmaceutical agent Substances 0.000 description 7
- -1 as glycerin Chemical class 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 7
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 7
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 7
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 7
- 229920000053 polysorbate 80 Polymers 0.000 description 7
- 229940068968 polysorbate 80 Drugs 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- YJCJVMMDTBEITC-UHFFFAOYSA-N 10-hydroxycapric acid Chemical compound OCCCCCCCCCC(O)=O YJCJVMMDTBEITC-UHFFFAOYSA-N 0.000 description 6
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 0 [2*]C(=O)O[1*]OC=O Chemical compound [2*]C(=O)O[1*]OC=O 0.000 description 6
- XELZGAJCZANUQH-UHFFFAOYSA-N methyl 1-acetylthieno[3,2-c]pyrazole-5-carboxylate Chemical compound CC(=O)N1N=CC2=C1C=C(C(=O)OC)S2 XELZGAJCZANUQH-UHFFFAOYSA-N 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 235000002639 sodium chloride Nutrition 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- MLQBTMWHIOYKKC-KTKRTIGZSA-N (z)-octadec-9-enoyl chloride Chemical compound CCCCCCCC\C=C/CCCCCCCC(Cl)=O MLQBTMWHIOYKKC-KTKRTIGZSA-N 0.000 description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 5
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000000741 silica gel Substances 0.000 description 5
- 229910002027 silica gel Inorganic materials 0.000 description 5
- 229960001866 silicon dioxide Drugs 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 206010020852 Hypertonia Diseases 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- VJHCJDRQFCCTHL-UHFFFAOYSA-N acetic acid 2,3,4,5,6-pentahydroxyhexanal Chemical compound CC(O)=O.OCC(O)C(O)C(O)C(O)C=O VJHCJDRQFCCTHL-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 229950008138 carmellose Drugs 0.000 description 4
- 239000004359 castor oil Substances 0.000 description 4
- 235000019438 castor oil Nutrition 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 229960004132 diethyl ether Drugs 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000003889 eye drop Substances 0.000 description 4
- 210000000744 eyelid Anatomy 0.000 description 4
- 229960005150 glycerol Drugs 0.000 description 4
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 229940068984 polyvinyl alcohol Drugs 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 4
- 229960002218 sodium chlorite Drugs 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- FBWMYSQUTZRHAT-HZJYTTRNSA-N (9z,12z)-octadeca-9,12-dienoyl chloride Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(Cl)=O FBWMYSQUTZRHAT-HZJYTTRNSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229920002988 biodegradable polymer Polymers 0.000 description 3
- 239000004621 biodegradable polymer Substances 0.000 description 3
- 229940075509 carbomer 1342 Drugs 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 3
- 125000004185 ester group Chemical group 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- WTBAHSZERDXKKZ-UHFFFAOYSA-N octadecanoyl chloride Chemical compound CCCCCCCCCCCCCCCCCC(Cl)=O WTBAHSZERDXKKZ-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000003002 pH adjusting agent Substances 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 235000019271 petrolatum Nutrition 0.000 description 3
- 150000003904 phospholipids Chemical class 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229940069328 povidone Drugs 0.000 description 3
- 230000002335 preservative effect Effects 0.000 description 3
- 229960004063 propylene glycol Drugs 0.000 description 3
- 239000008213 purified water Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 3
- KUEDAAUECWBMLW-AATRIKPKSA-N (e)-n,n,n',n'-tetramethylbut-2-ene-1,4-diamine Chemical compound CN(C)C\C=C\CN(C)C KUEDAAUECWBMLW-AATRIKPKSA-N 0.000 description 2
- KJTGDTBDBDFAFO-UHFFFAOYSA-N 16-hydroxyhexadecanoyl (9Z,12Z)-octadeca-9,12-dienoate Chemical compound C(CCCCCCCC=C/CC=C/CCCCC)(=O)OC(CCCCCCCCCCCCCCCO)=O KJTGDTBDBDFAFO-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 2
- RXGSAYBOEDPICZ-UHFFFAOYSA-N 2-[6-[[amino-(diaminomethylideneamino)methylidene]amino]hexyl]-1-(diaminomethylidene)guanidine Chemical compound NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)N RXGSAYBOEDPICZ-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- UUFGOXJUPRNHBR-UHFFFAOYSA-N C(CCCCCCCCCCCCCCCCC)OC(CCCCCCCCCCCCCCCO)=O Chemical compound C(CCCCCCCCCCCCCCCCC)OC(CCCCCCCCCCCCCCCO)=O UUFGOXJUPRNHBR-UHFFFAOYSA-N 0.000 description 2
- DQGYLAULESRSQD-NKQMGJSZSA-N CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)CCCCCCCCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)CCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\CCCCCCCC(=O)CCCCCCCCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\CCCCCCCC(=O)CCCCCCCCCCOC=O.CCCCCCCC/C=C\CCCCCCCC(=O)CCCCCCCCCCCCCCCCOC=O.CCCCCCCC/C=C\CCCCCCCC(=O)CCCCCCCCCCOC=O.CCCCCCCCCCCCCCCCCC(=O)CCCCCCCCCCCCCCCCOC=O.CCCCCCCCCCCCCCCCCC(=O)CCCCCCCCCCOC=O Chemical compound CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)CCCCCCCCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)CCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\CCCCCCCC(=O)CCCCCCCCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\CCCCCCCC(=O)CCCCCCCCCCOC=O.CCCCCCCC/C=C\CCCCCCCC(=O)CCCCCCCCCCCCCCCCOC=O.CCCCCCCC/C=C\CCCCCCCC(=O)CCCCCCCCCCOC=O.CCCCCCCCCCCCCCCCCC(=O)CCCCCCCCCCCCCCCCOC=O.CCCCCCCCCCCCCCCCCC(=O)CCCCCCCCCCOC=O DQGYLAULESRSQD-NKQMGJSZSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 2
- 229930105110 Cyclosporin A Natural products 0.000 description 2
- 108010036949 Cyclosporine Proteins 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 239000007993 MOPS buffer Substances 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 229910021204 NaH2 PO4 Inorganic materials 0.000 description 2
- 239000004264 Petrolatum Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- KQBUOSNYEKEFSN-UHFFFAOYSA-M [Na].[Cl-].[Ag+] Chemical compound [Na].[Cl-].[Ag+] KQBUOSNYEKEFSN-UHFFFAOYSA-M 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- 230000004397 blinking Effects 0.000 description 2
- 229940085237 carbomer-980 Drugs 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 229960001777 castor oil Drugs 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- 238000005686 cross metathesis reaction Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 235000019800 disodium phosphate Nutrition 0.000 description 2
- 229910000397 disodium phosphate Inorganic materials 0.000 description 2
- 230000004064 dysfunction Effects 0.000 description 2
- 238000013265 extended release Methods 0.000 description 2
- 229940012356 eye drops Drugs 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 210000002175 goblet cell Anatomy 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 235000019388 lanolin Nutrition 0.000 description 2
- 229940059904 light mineral oil Drugs 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 210000004175 meibomian gland Anatomy 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 229940042472 mineral oil Drugs 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 229940056211 paraffin Drugs 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 229940066842 petrolatum Drugs 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 229960001922 sodium perborate Drugs 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 2
- 230000003019 stabilising effect Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- FQDIANVAWVHZIR-OWOJBTEDSA-N trans-1,4-Dichlorobutene Chemical compound ClC\C=C\CCl FQDIANVAWVHZIR-OWOJBTEDSA-N 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- MEHUJCGAYMDLEL-CABCVRRESA-N (9r,10s)-9,10,16-trihydroxyhexadecanoic acid Chemical compound OCCCCCC[C@H](O)[C@H](O)CCCCCCCC(O)=O MEHUJCGAYMDLEL-CABCVRRESA-N 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- AKEXREJPEFSHCT-UHFFFAOYSA-N 10-hydroxydecanoyl (9Z,12Z)-octadeca-9,12-dienoate Chemical compound C(CCCCCCCC=C/CC=C/CCCCC)(=O)OC(CCCCCCCCCO)=O AKEXREJPEFSHCT-UHFFFAOYSA-N 0.000 description 1
- UEGWWOVMHDARPA-UHFFFAOYSA-N 10-hydroxydecanoyl (Z)-octadec-9-enoate Chemical compound C(CCCCCCCC=C/CCCCCCCC)(=O)OC(CCCCCCCCCO)=O UEGWWOVMHDARPA-UHFFFAOYSA-N 0.000 description 1
- FZWBNHMXJMCXLU-UHFFFAOYSA-N 2,3,4,5-tetrahydroxy-6-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxyhexanal Chemical compound OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OCC(O)C(O)C(O)C(O)C=O)O1 FZWBNHMXJMCXLU-UHFFFAOYSA-N 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- OTVBPFDZISPCBB-UHFFFAOYSA-N CC(=O)Cl.O=COCO Chemical compound CC(=O)Cl.O=COCO OTVBPFDZISPCBB-UHFFFAOYSA-N 0.000 description 1
- XCQOXVBPZULLRW-TWTPXIKESA-N CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)CCCCCCCCCCCCCCCCOC=O Chemical compound CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)CCCCCCCCCCCCCCCCOC=O XCQOXVBPZULLRW-TWTPXIKESA-N 0.000 description 1
- NNSUXMWEEQVBLZ-XNBUYXLZSA-N CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)CCCCCCCCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)OCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\CCCCCCCC(=O)OCCCCCCCCCOC=O.CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCOC=O.CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCOC=O Chemical compound CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)CCCCCCCCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)OCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\CCCCCCCC(=O)OCCCCCCCCCOC=O.CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCOC=O.CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCOC=O NNSUXMWEEQVBLZ-XNBUYXLZSA-N 0.000 description 1
- AFUXGSMBTOUPKQ-ANGHJKTFSA-N CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)CCCCCCCCCCOC=O Chemical compound CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)CCCCCCCCCCOC=O AFUXGSMBTOUPKQ-ANGHJKTFSA-N 0.000 description 1
- TVILRJSOYYASEF-ZKXDMLJASA-N CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)OCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\CCCCCCCC(=O)OCCCCCCCCCOC=O.CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCOC=O.CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCOC=O Chemical compound CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)OCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\CCCCCCCC(=O)OCCCCCCCCCOC=O.CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCOC=O.CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCOC=O TVILRJSOYYASEF-ZKXDMLJASA-N 0.000 description 1
- CPTJHBKBZALDJZ-HZJYTTRNSA-N CCCCC/C=C\C/C=C\CCCCCCCC(=O)CCCCCCCCCCCCCCCCOC=O Chemical compound CCCCC/C=C\C/C=C\CCCCCCCC(=O)CCCCCCCCCCCCCCCCOC=O CPTJHBKBZALDJZ-HZJYTTRNSA-N 0.000 description 1
- OBTDITFPDOLJAZ-HZJYTTRNSA-N CCCCC/C=C\C/C=C\CCCCCCCC(=O)CCCCCCCCCCOC=O Chemical compound CCCCC/C=C\C/C=C\CCCCCCCC(=O)CCCCCCCCCCOC=O OBTDITFPDOLJAZ-HZJYTTRNSA-N 0.000 description 1
- QOMFZNADMJVTOP-XRHABHTOSA-N CCCCC/C=C\C/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\CCCCCCCC(=O)OCCCCCCCCCOC=O Chemical compound CCCCC/C=C\C/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCC/C=C\C/C=C\CCCCCCCC(=O)OCCCCCCCCCOC=O QOMFZNADMJVTOP-XRHABHTOSA-N 0.000 description 1
- DPWBBIDICAWWPB-KTKRTIGZSA-N CCCCCCCC/C=C\CCCCCCCC(=O)CCCCCCCCCCOC=O Chemical compound CCCCCCCC/C=C\CCCCCCCC(=O)CCCCCCCCCCOC=O DPWBBIDICAWWPB-KTKRTIGZSA-N 0.000 description 1
- HAPSSXNVHNQLLB-GOJQJELCSA-N CCCCCCCC/C=C\CCCCCCCC(=O)Cl.CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.ClC(Cl)Cl.O=C(O)CCCCCCCCCCCCCCCO Chemical compound CCCCCCCC/C=C\CCCCCCCC(=O)Cl.CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.ClC(Cl)Cl.O=C(O)CCCCCCCCCCCCCCCO HAPSSXNVHNQLLB-GOJQJELCSA-N 0.000 description 1
- VSQSBCSKUSGJCG-XUFLYGLBSA-N CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCC.CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCC(=O)O.CCCCCCCC/C=C\CCCCCCCOC=O Chemical compound CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCC.CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCC(=O)O.CCCCCCCC/C=C\CCCCCCCOC=O VSQSBCSKUSGJCG-XUFLYGLBSA-N 0.000 description 1
- ZHPDVDYXGJASTA-KTKRTIGZSA-N CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O Chemical compound CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O ZHPDVDYXGJASTA-KTKRTIGZSA-N 0.000 description 1
- NKYFQJFIKMJUQJ-KTKRTIGZSA-N CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCOC=O Chemical compound CCCCCCCC/C=C\CCCCCCCC(=O)OCCCCCCCCCOC=O NKYFQJFIKMJUQJ-KTKRTIGZSA-N 0.000 description 1
- LWRVPYVTPUFUPG-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCC(=O)CCCCCCCCCCCCCCCCOC=O Chemical compound CCCCCCCCCCCCCCCCCC(=O)CCCCCCCCCCCCCCCCOC=O LWRVPYVTPUFUPG-UHFFFAOYSA-N 0.000 description 1
- DFNGRZOTSCWOJR-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCC(=O)CCCCCCCCCCOC=O Chemical compound CCCCCCCCCCCCCCCCCC(=O)CCCCCCCCCCOC=O DFNGRZOTSCWOJR-UHFFFAOYSA-N 0.000 description 1
- XHLSJXFZQSGBOU-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCOC=O Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCOC=O.CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCOC=O XHLSJXFZQSGBOU-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 208000028006 Corneal injury Diseases 0.000 description 1
- 206010056476 Corneal irritation Diseases 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- MEHUJCGAYMDLEL-UHFFFAOYSA-N Ethyl-triacetylaleuritat Natural products OCCCCCCC(O)C(O)CCCCCCCC(O)=O MEHUJCGAYMDLEL-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 206010065062 Meibomian gland dysfunction Diseases 0.000 description 1
- 206010027137 Meibomianitis Diseases 0.000 description 1
- WEVJYWCGFGEKJJ-OPUJQOSKSA-N O=C(O)CCCCCCC/C=C/CCCCCCO.O=C(O)CCCCCCC/C=C\CCCCCCO.O=C(O)CCCCCCCC(O)C(O)CCCCCCO Chemical compound O=C(O)CCCCCCC/C=C/CCCCCCO.O=C(O)CCCCCCC/C=C\CCCCCCO.O=C(O)CCCCCCCC(O)C(O)CCCCCCO WEVJYWCGFGEKJJ-OPUJQOSKSA-N 0.000 description 1
- VPIOFQBNSUCYNK-UHFFFAOYSA-N OCCCCCCCCCCCCCC=CC(=O)O.OCCCCCCC=C/CCCCCCCC(=O)O Chemical compound OCCCCCCCCCCCCCC=CC(=O)O.OCCCCCCC=C/CCCCCCCC(=O)O VPIOFQBNSUCYNK-UHFFFAOYSA-N 0.000 description 1
- 241000586605 Parlatoria proteus Species 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 208000021386 Sjogren Syndrome Diseases 0.000 description 1
- 229920002385 Sodium hyaluronate Polymers 0.000 description 1
- 229920002807 Thiomer Polymers 0.000 description 1
- 206010047571 Visual impairment Diseases 0.000 description 1
- GDQHLDVYOKCEEY-UHFFFAOYSA-N [(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenyl] 10-hydroxydecanoate Chemical compound C(CCCC=C/CC=C/CC=C/CC=C/CCCCC)OC(=O)CCCCCCCCCO GDQHLDVYOKCEEY-UHFFFAOYSA-N 0.000 description 1
- AYUXZRXXCQWNOK-UHFFFAOYSA-N [(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenyl] 16-hydroxyhexadecanoate Chemical compound C(CCCC=C/CC=C/CC=C/CC=C/CCCCC)OC(CCCCCCCCCCCCCCCO)=O AYUXZRXXCQWNOK-UHFFFAOYSA-N 0.000 description 1
- ZVQOOHYFBIDMTQ-UHFFFAOYSA-N [methyl(oxido){1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-lambda(6)-sulfanylidene]cyanamide Chemical compound N#CN=S(C)(=O)C(C)C1=CC=C(C(F)(F)F)N=C1 ZVQOOHYFBIDMTQ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000002714 alpha-linolenoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])/C([H])=C([H])\C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])[H] 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229940031955 anhydrous lanolin Drugs 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 208000003464 asthenopia Diseases 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- LLSDKQJKOVVTOJ-UHFFFAOYSA-L calcium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ca+2] LLSDKQJKOVVTOJ-UHFFFAOYSA-L 0.000 description 1
- 229960001631 carbomer Drugs 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 150000001840 cholesterol esters Chemical class 0.000 description 1
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol group Chemical group [C@@H]1(CC[C@H]2[C@@H]3CC=C4C[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C)[C@H](C)CCCC(C)C HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- VQODGRNSFPNSQE-CXSFZGCWSA-N dexamethasone phosphate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COP(O)(O)=O)(O)[C@@]1(C)C[C@@H]2O VQODGRNSFPNSQE-CXSFZGCWSA-N 0.000 description 1
- 229960004833 dexamethasone phosphate Drugs 0.000 description 1
- 229960002086 dextran Drugs 0.000 description 1
- 229940119743 dextran 70 Drugs 0.000 description 1
- RNPXCFINMKSQPQ-UHFFFAOYSA-N dicetyl hydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCOP(O)(=O)OCCCCCCCCCCCCCCCC RNPXCFINMKSQPQ-UHFFFAOYSA-N 0.000 description 1
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical class CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical group 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- XQTWDDCIUJNLTR-CVHRZJFOSA-N doxycycline monohydrate Chemical compound O.O=C1C2=C(O)C=CC=C2[C@H](C)[C@@H]2C1=C(O)[C@]1(O)C(=O)C(C(N)=O)=C(O)[C@@H](N(C)C)[C@@H]1[C@H]2O XQTWDDCIUJNLTR-CVHRZJFOSA-N 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 201000004356 excessive tearing Diseases 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 229960001048 fluorometholone Drugs 0.000 description 1
- FAOZLTXFLGPHNG-KNAQIMQKSA-N fluorometholone Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@]2(F)[C@@H](O)C[C@]2(C)[C@@](O)(C(C)=O)CC[C@H]21 FAOZLTXFLGPHNG-KNAQIMQKSA-N 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 230000006589 gland dysfunction Effects 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229960003943 hypromellose Drugs 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000008384 inner phase Substances 0.000 description 1
- 230000030214 innervation Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 230000005722 itchiness Effects 0.000 description 1
- 239000013547 langmuir monolayer Substances 0.000 description 1
- 125000000400 lauroyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-M linolenate Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC([O-])=O DTOSIQBPPRVQHS-PDBXOOCHSA-M 0.000 description 1
- 229940040452 linolenate Drugs 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 229960003744 loteprednol etabonate Drugs 0.000 description 1
- DMKSVUSAATWOCU-HROMYWEYSA-N loteprednol etabonate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)OCCl)(OC(=O)OCC)[C@@]1(C)C[C@@H]2O DMKSVUSAATWOCU-HROMYWEYSA-N 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 230000003641 microbiacidal effect Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 229940124561 microbicide Drugs 0.000 description 1
- 239000002855 microbicide agent Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 230000008397 ocular pathology Effects 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- SSZBUIDZHHWXNJ-UHFFFAOYSA-N palmityl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCC SSZBUIDZHHWXNJ-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 238000011422 pharmacological therapy Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- KASDHRXLYQOAKZ-ZPSXYTITSA-N pimecrolimus Chemical compound C/C([C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@]2(O)O[C@@H]([C@H](C[C@H]2C)OC)[C@@H](OC)C[C@@H](C)C/C(C)=C/[C@H](C(C[C@H](O)[C@H]1C)=O)CC)=C\[C@@H]1CC[C@@H](Cl)[C@H](OC)C1 KASDHRXLYQOAKZ-ZPSXYTITSA-N 0.000 description 1
- 229960005330 pimecrolimus Drugs 0.000 description 1
- 229960000502 poloxamer Drugs 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229940068886 polyethylene glycol 300 Drugs 0.000 description 1
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 229940010747 sodium hyaluronate Drugs 0.000 description 1
- 229940083608 sodium hydroxide Drugs 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- YWIVKILSMZOHHF-QJZPQSOGSA-N sodium;(2s,3s,4s,5r,6r)-6-[(2s,3r,4r,5s,6r)-3-acetamido-2-[(2s,3s,4r,5r,6r)-6-[(2r,3r,4r,5s,6r)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2- Chemical compound [Na+].CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 YWIVKILSMZOHHF-QJZPQSOGSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 238000012859 sterile filling Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000004488 tear evaporation Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 150000004669 very long chain fatty acids Chemical class 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 125000002348 vinylic group Chemical group 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 108010057559 voclosporin Proteins 0.000 description 1
- BICRTLVBTLFLRD-PTWUADNWSA-N voclosporin Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C=C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O BICRTLVBTLFLRD-PTWUADNWSA-N 0.000 description 1
- 229960005289 voclosporin Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000003871 white petrolatum Substances 0.000 description 1
- 229940045860 white wax Drugs 0.000 description 1
- 229910009112 xH2O Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/20—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/52—Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
- C07C69/533—Monocarboxylic acid esters having only one carbon-to-carbon double bond
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/20—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
- A61K31/201—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having one or two double bonds, e.g. oleic, linoleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/20—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
- A61K31/202—Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/23—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
- A61K31/231—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms having one or two double bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/14—Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
- A61K47/38—Cellulose; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
- A61K9/0051—Ocular inserts, ocular implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/06—Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/08—Solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/04—Artificial tears; Irrigation solutions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/14—Preparation of carboxylic acid esters from carboxylic acid halides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/02—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
- C07C69/22—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/02—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
- C07C69/22—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety
- C07C69/24—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety esterified with monohydroxylic compounds
- C07C69/26—Synthetic waxes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/52—Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
- C07C69/533—Monocarboxylic acid esters having only one carbon-to-carbon double bond
- C07C69/58—Esters of straight chain acids with eighteen carbon atoms in the acid moiety
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/23—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/23—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
- A61K31/232—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms having three or more double bonds, e.g. etretinate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/32—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/02—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
- C07C69/22—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety
- C07C69/24—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety esterified with monohydroxylic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/52—Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
- C07C69/587—Monocarboxylic acid esters having at least two carbon-to-carbon double bonds
Definitions
- the present invention relates to ophthalmic formulations and to methods for treating dry eye.
- Ocular comfort requires the maintenance of a continuous film known as preocular tear film or lachrymal film on the ocular surface, and proper function of the lids to regularly re-spread the tear film before it breaks down.
- Dry eye also known as dysfunctional tear syndrome, is one of the most frequently encountered ocular morbidities and one of the most common disease conditions diagnosed by eye care practitioners. Dry eye has a wide range of signs, symptoms and underlying etiologies. Dry eye is a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance, and tear film instability with potential damage to the ocular surface. It is accompanied by increased osmolarity of the tear film and inflammation of the ocular surface. Dry eye can be caused by a multitude of causes, such as neural loop dysfunction, mucin deficiency (e.g.
- goblet cell deficiency or goblet cell dysfunction a malignant neoplasm originating from a malignant neoplasm originating from a malignant neoplasm originating from a malignant neoplasm originating from a malignant neoplasm originating from a malignant neoplasm originating from a malignant neoplasm originating from a malignant neoplasm originating from a malignant fibros, and fibrosis, and fibrosis, and fibrosis, and fibrosis, and fibroblast originating from a malignant neoplasm originating from a malignant neoplasm originating from a malignant neoplasm originating from a malignant neoplasm originating from a malignant neoplasm originating from a malignant neoplasm originating from a malignant neoplasm originating from a malignant neoplasm originating from a malignant neo
- the present invention provides the following items 1 to 24:
- An ophthalmic formulation comprising a compound of formula (I):
- R 1 is a linear or branched C 9 -C 33 alkyl or a linear or branched C 9 -C 33 alkenyl with 1 to 4 double bonds;
- R 2 is a linear or branched C 9 -C 19 alkyl or a linear or branched C 9 -C 19 alkenyl with 1 to 4 double bonds;
- An ophthalmic formulation according to item 1 wherein HOOC—R 1 -selected from the group consisting of: capryl (C10:0), lauryl (C12:0), myristyl (C14:0), palmityl (C16:0), stearyl (C18:0), oleoyl (C18:1), linoleoyl (w6) (C18:2), and linoleoyl (w3) (C18:3).
- R 2 is linear or branched C 17 alkyl or linear or branched C 17 alkenyl with 1 or 2 double bonds.
- An ophthalmic formulation according to item 1 wherein the compound of formula (I) is (O-oleoyl)-16-hydroxypalmitic acid.
- the ophthalmologically acceptable carrier is, or comprises, water.
- the ophthalmic formulation further comprises an ophthalmologically acceptable excipient.
- the ophthalmologically acceptable excipient is selected from the group consisting of demulcents, emollients, hypertonicity agents, preservatives, buffers and pH adjusting agents. 10.
- An ophthalmic formulation comprising a compound of formula (I) as defined in item 1, water, and an emulsifying agent.
- An ophthalmic formulation comprising a compound of formula (I) as defined in item 1, water, and one or more ophthalmologically acceptable excipients selected from the group consisting of polyethylene glycol, propylene glycol, glycerin, polyvinyl alcohol, povidone, polysorbate 80, hydroxypropyl methylcellulose, carmellose, 14.
- a method for the treatment of dry eye comprising topically administering to the eye of a subject in need thereof a therapeutically effective amount of an ophthalmic formulation according to any one of items 1 to 14.
- a method for the preparation of a compound of any one of items 17 to 23 comprising the following step: mixing a compound of the formula
- Ra is —(CH2)g- or —(CH2)w
- an acid chloride selected from stearoyl chloride, oleoyl chloride, linoleoyl chloride and arachinoyl chloride, in the absence of a solvent.
- FIGS. 1A-C show pressure/area curves for films of three wax esters and three compounds of formula (I) at 20° C. and 34° C.
- FIGS. 2A-D show pressure/time and pressure/area curves for meibomian lipids (25 uL).
- FIG. 2B shows pressure/time and pressure/area curves for a mixture of meibomian lipids with 3 uL of (O-oleoyI)-16-hydroxypalmitic acid.
- FIG. 2C shows pressure/area curves for a mixture of meibomian lipids 5 uL of (O-oleoyI)-10-hydroxycarpinic acid.
- FIG. 2D shows pressure/area curves for a mixture of meibomian lipids 5 uL of (O-oleoyI)-16-hydroxypalmitic acid.
- FIG. 3 shows pressure/area curves of a film of meibomian lipids alone from a patient with dry eye disease (top graph), and a film of the meibomian lipids with 3 ⁇ L of (O-oleoyl)-16-hydroxypalmitic acid (C16:0-C18:1) (bottom graph).
- FIG. 4 shows surface pressure/area curves for a film of 7.5 nmol (corresponding to 4 ⁇ g (O-acyl)-w-hydroxy fatty acid (OAHFA)) of (O-oleoyl)-16-hydroxypalmitic acid (top figure, left column), palmityl oleate (middle figure, left column), and oleic acid (bottom figure, left column) showing the first and fifth isocycles at 35° C. and the fifth isocycle after cooling to 20° C.
- the right column of FIG. 4 shows time-pressure analysis of the first four isocycles at 35° C. after spreading.
- FIG. 5 shows surface pressure/area curves for meibum (20 ⁇ g) containing 0.5% (w/w) fluorophore (top left), or meibum (20 ⁇ g) containing 0.5% (w/w) fluorophore mixed with 3.7 nmol of C16:0-C18:1 OAHFA (2 ⁇ g) (top right), 3.7 nmol palmityl oleate (bottom left), or 3.7 nmol oleic acid (bottom right), showing the first and fifth isocycles at 20° C., and the fifth isocycle after the trough was heated to 35° C.
- FIG. 6 shows micrographs of meibomian lipid films as of FIG. 5 .
- Micrographs comparing the appearance of pure meibomian lipid films (Row A) with meibomian lipids mixed with the OAHFA (Row B), palmityl oleate (Row C) or oleic acid (Row D) at 20° C.
- the surface pressure during compression of the film and the isocycle is given, e.g. 1.6 iso 1 means that the pressure was 1.6 mN/m during compression in isocycle 1.
- the present invention provides an ophthalmic formulation comprising a compound of formula (I):
- R 1 is a linear or branched C 9 -C 33 alkyl or a linear or branched C 9 -C 33 alkenyl with 1 to 4 double bonds
- R 2 is a linear or branched C 9 -C 19 alkyl or a linear or branched C 9 -C 19 alkenyl with 1 to 4 double bonds
- the inventors have surprisingly found that compounds of formula (I) can be used to prepare ophthalmic formulations that mimic the physico-chemical properties of tear lipids.
- the tear film keeps the surface of the eye moist, lubricated and free of foreign material during blinking, protects against pathogens while also providing an optimal visually transparent medium.
- the most superficial layer of the tear film is 15 nm-160 nm thick.
- Meibomian glands in the upper and lower lids secrete tear lipids that self-assemble to form the TFLL.
- This layer is an essential component of the tear film and believed to enhance the spread of tears across the ocular surface, retard evaporation, and stabilise the tear film by lowering surface tension and increasing tear film break-up time. Lipid layers that are too thin or too thick can lead to inadequate spreading of the tear film or lead to decreased tear film break-up time.
- meibomian lipids that has been correlated with poor structure or performance of the TFLL.
- Lipids derived from meibum are believed to form the outermost layer of tear film, which retards evaporation of water from the bulk of the tear film and from the ocular surface beneath it.
- Yet another function of meibum is to form a hydrophobic barrier along the margins of the eyelids to contain tear film at, and prevent it from leaking out of, the ocular surface area defined by the margins of the eyelids.
- These protective functions imply a very hydrophobic nature of meibum. Indeed, the major meibum components have been identified as various wax esters (WEs) and cholesteryl esters (CEs) with long-chain and very long-chain fatty acids.
- Triglycerides also form a significant class of compounds found in meibum, and there may be other acylglycerols present in minute amounts.
- the physical properties of the compounds of formula (I) resemble the physical properties of total meibomian lipids. Surprisingly and unexpectedly, this is in stark contrast to other lipids or lipid classes found in meibomian secretions.
- the compounds of formula (I) can be used to prepare ophthalmic formulations that mimic the physical properties of tear lipids.
- the films formed by compounds of formula (I), similar to meibomian lipid films, do not collapse under high pressure, and they unexpectedly increase their surface activity after cooling to 20° C. from 34° C. Further, similar to meibomian lipids but unlike wax esters, the compounds of formula (I) do not go off the aqueous surface, even under high pressures. Further, the compounds of formula (I) mix with lipids that are naturally found in tear lipids. The compounds of formula (I) also act to stabilise, and facilitate the spreading of, the tear film.
- the compounds of formula (I) are very surface active and, consequently, only small amounts are needed in the ophthalmic formulation of the present invention.
- the present invention also provides a method for the treatment of dry eye comprising administering to a patient in need thereof a therapeutically effective amount of an ophthalmic formulation of the present invention.
- the present invention also provides use of a compound of formula (I) in the manufacture of an ophthalmic formulation for the treatment of dry eye.
- the ophthalmic formulation of the present invention comprises a compound of formula (I):
- R 1 is a linear or branched C 9 -C 33 alkyl or a linear or branched C 9 -C 33 alkenyl with 1 to 4 double bonds;
- R 2 is a linear or branched C 9 -C 19 alkyl or a linear or branched C 9 -C 19 alkenyl with 1 to 4 double bonds;
- alkyl and alkenyl are sometimes used herein (in relation to R 2 in formula (I), R b , R 1 in Scheme 1 and R 2 in Scheme 1) to refer to a monovalent radical, and are sometimes used herein (in relation to R 1 in formula (I), and R a ) to refer to a divalent radical.
- a divalent alkyl is sometimes referred to as a “alkanediyl”, and a divalent alkenyl is sometimes referred to as a “alkenediyl”.
- R 1 is a linear or branched C 9 -C 33 alkanediyl, that is, a linear or branched saturated hydrocarbon radical comprising 9 to 33 carbons. In some embodiments, R 1 is a linear C 9 -C 33 alkanediyl. In some embodiments, R 1 is a linear or branched C 9 -C 33 alkenediyl with 1 to 4 double bonds, that is, a linear or branched hydrocarbon radical comprising 9 to 33 carbons, and having 1, 2, 3 or 4 double bonds and no triple bonds. In some embodiments, R 1 is a linear C 9 -C 33 alkenediyl with 1 to 4 double bonds.
- R 1 is a linear or branched C9-C 17 alkyl or a linear or branched C 9 -C 17 alkenyl with 1, 2 or 3 double bonds.
- R 1 is a linear or branched C 9 , C 10 , C 11 , C 12 , C 13 , C 14 , C 15 , C 15 , or C 17 alkyl, or a linear or branched C 9 , C 10 , C 11 , C 12 , C 13 , C 14 , C 15 , C 16 , or C 17 alkenyl with 1, 2 or 3 double bonds.
- HOOC—R 1 — is selected from the group consisting of: capryl (C10:0), lauryl (C12:0), myristyl (C14:0), palmityl (C16:0), stearyl (C18:0), oleoyl (C18:1), linoleoyl (w6) (C18:2), and linolenoyl (w3) (C18:3).
- R 2 is a linear or branched C 16 -C 19 alkyl or a linear or branched C 16 -C 19 alkenyl with 1,2,3 or 4 double bonds.
- R 2 is a linear or branched C 16 , C 17 , C 18 or C 19 alkyl, or a linear or branched C 16 , C 17 , or C 19 alkenyl with 1,2, or 3 double bond.
- R 2 is linear or branched C 17 alkyl or a linear or branched C 17 alkenyl with 1 or 2 double bonds.
- R 2 is linear or branched C 19 alkenyl with 4 double bonds.
- Examples of compounds of formula (I) include:
- a preferred compound of formula (I) is (O-oleoyl)-16-hydroxypalmitic acid. This compound is sometimes referred to as (O-oleoyl)-w-hydroxypalmitic acid.
- the compounds of formula (I) may be present in the ophthalmic formulation of the present invention in amounts ranging from about 0.001 wt % to about 20 wt %, e.g. about 0.01 wt % to about 1 wt %, about 0.1 wt % to about 10 wt %, about 0.1 wt % to about 5 wt %, about 1 wt % to about 5 wt %, or about 2 wt % to about 4 wt %.
- the compounds of formula (I) may be present in the ophthalmic formulation in an amount of 0.001 wt %, 0.002 wt %, 0.003 wt %, 0.004 wt %, 0.005 wt %, 0.006 wt %, 0.007 wt %, 0.008 wt %, 0.009 wt %, 0.01 wt %, 0.02 wt %, 0.03 wt %, 0.04 wt %, 0.05 wt %, 0.06 wt %, 0.07 wt %, 0.08 wt %, 0.09 wt %, 0.1 wt %, 0.2 wt %, 0.3 wt %, 0.4 wt %, 0.5 wt %, 0.6 wt %, 0.7 wt %, 0.8 wt %, 0.9 wt %, 1 wt %,
- the ophthalmic formulation is a sterile formulation.
- the ophthalmic formulation of the present invention comprises an ophthalmologically acceptable carrier.
- an “ophthalmologically acceptable carrier” is an ophthalmologically acceptable solvent, suspending agent or vehicle for delivering compounds of formula (I) to the eye of a subject.
- the carrier may be solid or liquid.
- the carrier is “ophthalmologically acceptable” in the sense that the carrier is suitable for administering to the eye without causing any or a substantial adverse reaction.
- the ophthalmologically acceptable carrier is, or comprises, water.
- the ophthalmic formulation is in the form of an eye drop or gel for application to the eye.
- the majority of the formulation is water.
- the formulation comprises greater than 50 wt % (e.g. greater than 60 wt %, 65 wt %, 70 wt %, 75 wt %, 80 wt %, 85 wt %, or 90 wt %), more typically greater than 95 wt %, water (e.g. 96 wt %, 97 wt %, 98 wt %, or 99 wt %).
- the ophthalmologically acceptable carrier is an oil-in-water emulsion, or an oil.
- the ophthalmic formulation may be in the form of a cream for application to the eye.
- the formulation may comprise greater than 10 wt %, more typically greater than 20 wt %, of an oleaginous ingredient.
- the carrier may be a biodegradable polymer, for example, for a biodegradable polymer ocular insert for extended release of the compound of formula (I) and optionally other compounds.
- the ophthalmic formulation typically further comprises one or more other ophthalmologically acceptable excipients.
- Excipients suitable for use in the ophthalmic formulation of the present invention include, for example, demulcents, emollients, hypertonicity agents, preservatives, buffers or pH adjusting agents.
- suitable excipients include:
- the ophthalmic formulation of the present invention may contain a preservative to inhibit microbial growth and extend the shelf-life of the formulation.
- Preservatives which may be used in the ophthalmic formulation of the present invention include, for example, benzalkonium chloride, sodium perborate, Oxyd (sodium chlorite 0.05%, hydrogen peroxide 0.01%), polyquarternium-1 (ethanol, 2,2′,2′′-nitrilotris-, polymer with 1,4-dichloro-2-butene and N,N,N′,N′-tetramethyl-2-butene-1,4-diamine), sodium silver chloride, hexamethylene biguanide, oxyborate, and Purite®.
- benzalkonium chloride sodium perborate
- Oxyd sodium chlorite 0.05%, hydrogen peroxide 0.01%
- polyquarternium-1 ethanol, 2,2′,2′′-nitrilotris-, polymer with 1,4-dichloro-2-butene and N,N,N′,N′-tetramethyl-2-butene-1,4-diamine
- Purite® sodium chlorite 0.005% m/v
- Purite® is a microbicide with a broad spectrum of antimicrobial activity and very low toxicity to mammalian cells.
- Purite® preserves a formulation during storage but ultimately, following exposure to light, dissociates into water, sodium ions, chloride ions, and oxygen. Because these substances are also found in natural tears, the risk of preservative-induced ocular irritation and corneal damage is minimized.
- Purite® has a long history of safe and effective use. This preservative has no adverse effect on epithelial cells in vitro or in vivo, and is less disruptive to cellular integrity than many other preservatives currently used.
- the ophthalmic formulation of the present invention may be prepared by any suitable means for preparing an ophthalmic formulation.
- Ophthalmic formulations are typically sterile and, therefore, the method may comprise a step of sterilising the ophthalmic formulation.
- the ophthalmic formulation is clear and has a refractive index similar to tears, a suitable pH (usually buffered around pH 7.5) to avoid severe corneal irritation, and free of microbes.
- Ophthalmic formulations typically have an osmolarity value close to 300 mosmol/L. Surface tension values close to or lower than the ones observed for the tear film are generally preferred.
- Formulations in the form of oil-in-water emulsions are effective in reducing tear evaporation, and thus useful in the management of evaporative dry eye.
- the ophthalmic formulation is an oil-in-water emulsion comprising a compound of formula (I), water, and optionally one or more emulsifying agents.
- the emulsifying agent is optional as the compounds of formula (I) can form emulsions in water without the use of an emulsifying agent.
- the ophthalmic formulation may also comprise one or more demulcents, emollients, hypertonicity agents, preservatives, buffers or pH adjusting agents as described above.
- the ophthalmic formulation comprises one or more demulcents.
- the oil-in-water emulsion may be a microemulsion, where the size of an inner phase is less than a micron.
- Emulsifying agents include, for example, lanolins, light mineral oil, mineral oil, paraffin, petrolatum, castor oil, as well as non-surfactant emulsifiers based on hydroxypropyl methyl cellulose, and crosslinked polymers of acrylic acid such as PemulenTM (carbomer 1342).
- PemulenTM polymeric emulsifiers are predominantly high molecular weight polyacrylic acid polymers which have a small lipophilic (oil-loving) portion in addition to a large, hydrophilic (water-loving) portion.
- This chemical structure allows these copolymers to function as primary emulsifiers which actually form oil-in-water emulsions, rather than as a secondary oil-in-water emulsion stabiliser.
- the lipophilic portion adsorbs at the oil-water interface, and the hydrophilic portion swells in the water forming a gel network around oil droplets to provide exceptional emulsion stability to a broad range of oils.
- An ophthalmic formulation of the present invention may, for example, be an oil-in-water emulsion comprising a compound of formula (I), purified water, castor oil, glycerin, polysorbate 80, carbomer 1342, and sodium hydroxide (to adjust the pH of the formulation to 7.4).
- the oil-in-water emulsion may be packaged in a single dose vial containing 0.4 ml.
- An exemplary ophthalmic formulation of the present invention is a formulation in the form of an oil-in-water emulsion comprising the following:
- the ophthalmic formulation is an oil-in-water emulsion comprising a compound of formula (I), water, and one of more ophthalmologically acceptable excipients selected from the group consisting of polyethylene glycol, propylene glycol, glycerin, polyvinyl alcohol, povidone, polysorbate 80, hydroxypropyl methylcellulose, carmellose, carbomer 980, sodium hyaluronate, dextran, and the like.
- ophthalmologically acceptable excipients selected from the group consisting of polyethylene glycol, propylene glycol, glycerin, polyvinyl alcohol, povidone, polysorbate 80, hydroxypropyl methylcellulose, carmellose, carbomer 980, sodium hyaluronate, dextran, and the like.
- An ophthalmic formulation of the present invention may, for example, comprise a compound of formula (I), water, hydroxypropyl methylcellulose, polysorbate 80, disodium phosphate and sodium chloride.
- the ophthalmic formulation may be packaged in a single dose vial containing 0.5 ml.
- Another exemplary ophthalmic formulation of the present invention is a formulation in the form of an oil-in-water emulsion comprising the following:
- Ophthalmic formulations of the present invention comprising an aqueous carrier may be used as an artificial tear and may be used to treat dry eye.
- the ophthalmic formulation is an artificial tear formulation.
- the ophthalmic formulation may also be used as a vehicle for delivering an active pharmaceutical ingredient to the eye of a patient.
- the ophthalmic formulation of the present invention may comprise an active pharmaceutical ingredient for treating, for example, a condition or disease of the eye.
- the active pharmaceutical ingredient may, for example, be an anti-inflammatory agent (e.g. a corticosteroid such as loteprednol etabonate, fluorometholone or dexamethasone phosphate), an anti-immune response agent (e.g. cyclosporine A, pimecrolimus and voclosporin), or an antibiotic (e.g. doxycycline).
- an anti-inflammatory agent e.g. a corticosteroid such as loteprednol etabonate, fluorometholone or dexamethasone phosphate
- an anti-immune response agent e.g. cyclosporine A, pimecrolimus and voclosporin
- an antibiotic e.g. doxycycline
- the ophthalmic formulation contains liposomes incorporating the active pharmaceutical ingredient.
- Liposomes can be employed to incorporate active pharmaceutical ingredients in the oily or in the hydrophilic phase of a formulation.
- the bioavailability of a drug administered by eye drops can be enhanced through the use of liposomes.
- Liposomes are artificially prepared vesicles composed mainly of phospholipids. A lipophilic drug will bind within the vesicle membranes, while a hydrophilic drug will become encapsulated within the aqueous phase in the interior of the liposome.
- liposomes can be positive, negative or neutral.
- Liposomes may be prepared from positive charged phospholipids.
- the vesicles are suspended in aqueous solutions with high viscosity polymers (e.g. hydroxyethylcellulose, methylcellulose, hydroxypropylmethylcellulose) and vinylic derivatives (e.g. polyvinylpirrolidone, polyvinyl alcohol) and their mixtures.
- High viscosity polymers e.g. hydroxyethylcellulose, methylcellulose, hydroxypropylmethylcellulose
- vinylic derivatives e.g. polyvinylpirrolidone, polyvinyl alcohol
- Neutral liposomes may be prepared from phosphatidylcholine associated with mucoadhesive polymers.
- the ophthalmic formulation of the present invention may be delivered to the patient in the form of an eye drop (in a single-dose or multi-dose dropper), ointment, gel, cream or biodegradable polymer ocular insert (designed for extended-release), or by ocular humidification (e.g. a multi-dose spray).
- the ophthalmic formulation of the present invention is typically administered to the eye in an amount to provide 5 to 10 microgram of the compound of formula (I) to the eye.
- the packaging of the ophthalmic formulation should correlate to the preserved or non-preserved nature of the solution.
- Packaging approaches such as form-fill-seal technology, which merges blow molding, sterile filling, and hermetic sealing into a single process, can be especially useful for packaging preservative- free formulations in unit dose containers.
- these single-dose containers are made of low-density polyethylene or polypropylene and incorporate a twist-off closure.
- the compounds of formula (I) may be prepared by methods known in the art for the synthesis of organic compounds.
- R a can be a linear or branched C 9 -C 33 alkyl or a linear or branched C 9 -C 33 alkenyl with 1 to 4 double bonds
- Rb can be a linear or branched C 9 -C 19 alkyl or a linear or branched C 9 -C 19 alkenyl with 1 to 4 double bonds.
- the starting material compounds are mixed in a molar ratio of about 1:1 in a suitable organic solvent (e.g. chloroform, tetrahydrofuran or dichloromethane) at room temperature overnight (about 12 hours).
- a suitable organic solvent e.g. chloroform, tetrahydrofuran or dichloromethane
- the present invention also provides a method for the preparation of the compounds of formula (I) comprising mixing the starting material compounds in a molar ratio of, for example, about 1:1 at a temperature of from about room temperature to about 60° C. overnight (e.g. about 12 hours).
- Long chain mono-unsaturated w-hydroxy fatty acids or their relevant esters for use as starting materials for the above method can, for example, be prepared via cross-metathesis reactions as shown in Scheme 1 below.
- R 1 and R 2 are alkyl groups.
- different chain lengths and positions of the double bonds can be achieved.
- Omega vinyl functionalised educts as outlined are preferable for this kind of synthesis to minimise undesired mixed cross-metathesis reactions.
- chain lengths up to C 30 are realisable with double bonds between ⁇ :13 to ⁇ :114.
- the saturated forms of the products in the above scheme can be produced by hydration.
- the free ⁇ -hydroxy fatty acids can be released by hydrolysis for use in the esterification reaction to form the compounds of formula (I).
- 16-Hydroxypalmitoleic acid (16-hydroxyhexadecenoic acid) can be synthesised from aleuritic acid via the available vicinal diol through a stereoselective elimination of its threo or erthyro form to the desired product in cis- or trans-form, as shown Scheme 2 below.
- variable can be equal to any integer value of the numerical range, including the end-points of the range.
- variable can be equal to any real value of the numerical range, including the end-points of the range.
- a variable which is described as having values between 0 and 2 can be 0, 1 or 2 for variables which are inherently discrete, and can be 0.0, 0.1, 0.01, 0.001, or any other real value, for variables which are inherently continuous.
- the formulations and methods of the present invention are intended for use with any subject that may experience the benefits of the formulations and methods of the invention.
- the subject is typically a mammal, more typically a human.
- the invention is not limited to the treatment of humans and is applicable to veterinary uses.
- the term “subject” or “subject in need thereof” includes humans as well as non-human animals, such as domesticated mammals including, without limitation, cats, dogs, and horses.
- terapéuticaally effective amount is used to denote treatments at dosages effective to achieve the therapeutic result sought.
- Oleoyl chloride (Sigma Aldrich product no. 367850); 16-hydroxyhexadecanoic acid (Sigma Aldrich product no. 177490); stearoyl chloride (Sigma product no. 171158); linoleoyl chloride (Sigma Aldrich product no. L-5753); 10-hydroxydeconoic acid (Sigma Aldrich product no. 379700); Silica gel 70-230 mesh 60 A (Sigma Aldrich product no. 112926-00-8); Silica gel (Sigma Aldrich product no. 28862); Sephadex LH-20 (Sigma Aldrich product no. 17-0090-01), GE Healthcare 17-0090-10.
- Chloroform, ethanol-free chloroform (Sigma Aldrich product no. 372978), methanol, n-hexane, diethylether (water-free), tetrahydrofuran (water-free), and acetic acid were all of analytic grade and purchased from Sigma Aldrich (Castle Hill, Australia).
- the chloroform used in the examples was either purchased in alcohol-free form (Sigma Aldrich product no. 372978), or was further purified prior to use by distillation to remove the stabiliser ethanol. Palmityl oleate and oleic acid were purchased from NuCheck (Elysian Minn., USA).
- TLC analysis mobile phase n-hexane:diethylether:acetic acid (80:20: 1), detection by iodine fume or charcoal stain using 5% vol/vol concentrated sulfuric acid in ethanol followed by heating the TLC plates to 150° C.
- TLC plates Silicagel 60 A F254, 0.2 mm on aluminum support (Sigma 2191293 or Riedel-deHaen 37360).
- Example 1 Synthesis and Purification of (0)-oleoyl- ⁇ -hydrooxypalmitic Acid (C16:0-C18:1)
- 16-Hydroxyhexadecanoic (6.5 mg, 2.3 ⁇ 10 ⁇ 5 mol) was dissolved in 500 ⁇ L CHCl 3 in a glass vial and oleoylchloride (18 5.6 ⁇ 10 ⁇ 5 mol) was added. The reaction mixture was stirred at room temperature for 24 hours and then loaded onto a 25 ⁇ 1 cm silica gel column equilibrated with CHCl 3 as the mobile phase. 1.5 ml fractions were collected and analysed by UVNIS absorption (200-300 nm). Positive fractions were then further analysed by TLC and FT-IR.
- Example 2 Synthesis and Purification of (O)-stearyl-16-hydroxypalmitic Acid (C16:0-C18:0) and (O)-stearyl-10-hydroxydeconic Acid (C10:0-C18:0)
- Example 4 Synthesis and Purification of (O-linoleoyl)-10-hydroxycaprinic Acid (C10:0-C18:2) and (O-linoleoyl)-16-hydroxypalmitic Acid (C16:0-C18:2)
- a buffer (NaCl: 6.63 g/L, KCI: 1.72 g/L, NaHCO 3 : 1.38 g/L, CaCl 2 .2H 2 O: 0.15 g/L, NaH 2 PO 4. .H 2 O: 0.10 g/L and MOPS: 4.18 g/L dissolved in MilliQ water) was added to a double barrier minitrough (Nima Technology Ltd, UK; Working surface area 15 cm 2 -80 cm 2 ).
- FIG. 1A shows pressure/area curve comparing dynamic surface pressure of film of wax ester (palmityl stearate wax ester (C16:0-C18:0) (25 uL applied to the trough) with its equivalent or similar compound (O-stearyl)-16-hydroxypalmitic acid (C16:0-C18:0) (5 uL applied to the trough) at 20° C. and 34° C.
- FIG. 1A shows pressure/area curve comparing dynamic surface pressure of film of wax ester (palmityl stearate wax ester (C16:0-C18:0) (25 uL applied to the trough) with its equivalent or similar compound (O-stearyl)-16-hydroxypalmitic acid (C16:0-C18:0) (5 uL applied to the trough) at 20° C. and 34° C.
- FIG. 1A shows pressure/area curve comparing dynamic surface pressure of film of wax ester (palmityl stearate wax ester (C16:0-C18:
- FIG. 1B shows pressure/area curve comparing dynamic surface pressure of film of wax ester palmitoyl oleate wax ester (C16:0-C18:1) (8 uL applied to the trough) with its equivalent or similar compound (O-oleoyl)-16-hydroxypalmitic acid (C16:0-C18:1) (5 uL applied to the trough) at 20° C. and 34° C.
- FIG. 1B shows pressure/area curve comparing dynamic surface pressure of film of wax ester palmitoyl oleate wax ester (C16:0-C18:1) (8 uL applied to the trough) with its equivalent or similar compound (O-oleoyl)-16-hydroxypalmitic acid (C16:0-C18:1) (5 uL applied to the trough) at 20° C. and 34° C.
- 1C shows pressure/area curve comparing dynamic surface pressure of film of wax ester (steroyl linolenate wax ester (C18:0-C18:3) (5 uL applied to the trough) with its equivalent or similar compound (O-linoleoyl)-16-hydroxypalmitic acid (C16:0-C18:2) (5 uL applied to the trough) at 20° C. and 34° C.
- a major difference observed is that the above films comprising the compound of formula (I) do not collapse whereas the wax esters do. This is indicated by the take-off moving to the left of the x-axis (indicating collapse), whereas the take-off for the compounds of formula (I) remains constant.
- This data also shows that the compounds of formula (I) are very surface active, i.e. a small amount has high surface activity.
- FIG. 2A-D shows pressure/time and pressure/area curves showing the dynamic surface pressure of films of meibomian lipids (25 ⁇ L) alone ( FIG. 2A ) and mixtures of meibomian lipids (20 ⁇ L) with different compounds of formula (I) ((O-oleoyl)- 16-hydroxypalmitic acid (C16:0-C18:1) (3 ⁇ L), FIG. 2B ; (O-oleoyl)-10-hydroxycaprinic acid (C10:0-C18:1) (5 ⁇ L), FIG. 2C ; and (O-stearyl)-16-hydroxypalmitic acid (C16:0-C18:0) (5 ⁇ L), ( FIG. 2D ).
- formula (I) ((O-oleoyl)- 16-hydroxypalmitic acid (C16:0-C18:1) (3 ⁇ L), FIG. 2B ; (O-oleoyl)-10-hydroxycaprinic acid (C10:0-C18:1) (5 ⁇
- the pressure/time curve for meibomian lipids alone indicates that it takes a long time for the lipids to stabilise on the surface (pressure increasing at each cycle).
- Adding a small amount of a compound of formula (I) causes fast stabilisation of the film (indicated on the pressure/time curve with the mixture having little change between isocycles) and the maximum surface pressures are much higher.
- Higher surface pressures (low surface tension) have been shown to be associated with a stable tear film. All of the different examples of the compounds of formula (I) interact readily with meibomian lipids and stabilise the films.
- FIG. 3 shows pressure/area curves showing the dynamic surface pressure of films of meibomian lipids alone from a patient with dry eye disease and mixtures of the meibomian lipids with a compound of formula (I) ((O-oleoyl)-16-hydroxypalmitic acid (C16:0-C18:1) (3 ⁇ L)).
- the compound of formula (I) increases the surface pressure, which is an advantage in dry eye, and causes an increase in hysteresis which means that the lipid layer has become more viscous indicating that it spreads more evenly and is more resistant to rapid changes.
- Freshly synthesised (O-oleoyl)- ⁇ -hydroxypalmitic acid (an example of a compound of formula (I)) was spread either alone or mixed with human meibum on a Langmuir trough on an artificial tear buffer. Pressure-area isocycle profiles were recorded and compared with those of palmityl oleate and oleic acid, alone or mixed with meibum. These measurements were accompanied by fluorescence microscopy of meibum mixed films during pressure-area isocycles.
- Omega-hydroxypalmitic acid (6.8 mg; 25 ⁇ mol) was mixed with oleoyl chloride (32.5 ⁇ mol) in a 1.5 ml glass vial and incubated overnight at 60° C. with continuous agitation based on the method described in Ranu et al. (Ranu B C, Dey S S, Hajra A, 2002, “Highly efficient acylation of alcohols, amines and thiols under solvent-free and catalyst-free conditions”, Green Chemistry, 5: 44-46, incorporated herein by reference). After incubation, partial purification was carried out using a silica gel column (70-230 mesh, 60 A at 30 ⁇ 1 cm) equilibrated with n-hexane: diethylether: acetic acid (4:1:0.05).
- reaction mixture was suspended in 500 ⁇ L of ethanol-free chloroform and applied in two lots to the column and developed with n-hexane: diethylether: acetic acid (4: 1:0.05) at a flow rate of 1 ml/min.
- Fractions (1 ml) were collected and analysed by FT-IR and TLC. TLC plates were treated with iodine or charred after treatment with sulfuric acid (5% in ethanol) for visualisation.
- Fractions containing the desired product were pooled, dried under nitrogen, resuspended in 200 ⁇ L pre-chilled chloroform: methanol: acetic acid (2:1:0.01) and further purified using a Sephadex LH-20 column (30 ⁇ 1 cm) equilibrated with the same solvent at a flow rate of 0.5 ml/min. Fractions of 1.5 ml were collected and analysed as described above and those containing pure product were pooled, dried and weighed. A stock solution of 1 mg/ml (1.86 mM) in chloroform was prepared and stored at ⁇ 20° C.
- the meibomian lipids were dried through vacuum concentration and centrifugation, and then reconstituted in chloroform spiked with 0.5% (w/w) of the fluorophore, 1-palmitoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino ]dodecanoyl]-sn-glycero-3-phosphatidylcholine] (NBD-DPPC) (Avanti Polar Lipids, Auspep Pty. Ltd (Tullamarine, Australia)) and stored at ⁇ 20° C. until used.
- NBD-DPPC 1-palmitoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino ]dodecanoyl]-sn-glycero-3-phosphatidylcholine]
- Films were formed by spreading 7.5 nmol of the lipids dissolved in chloroform onto the cleaned surface (air-buffer interface) of an artificial tear buffer (NaCl: 6.63 g/L, KCI: 1.72 g/L, NaHCO 3 : 1.38 g/L, CaCl2.2H20: 0.15 g/L, NaH 2 PO 4 xH 2 O: 0.10 g/L and MOPS: 4.18 g/L dissolved in ion exchange ultrapure water) in a double barrier 80 ml temperature-controlled (35° C.) Langmuir trough (Nima Technology Ltd, UK). After 5 isocycles were obtained, the temperature was lowered to 20° C. A Whilhelmy balance (Whatman No. 1 filter paper) was used to record surface pressure during isocycles (79 cm 2 -16 cm 2 at 10 cm 2 /min).
- FIG. 4 shows surface pressure/area curves for equimolar amounts of pure lipid films spread at 35° C. and then recordings after the same films were cooled to 20° C.
- the (O-oleoyl)- ⁇ -hydroxypalmitic acid was very surface active as indicated by its large take-off area and there was little change in its profile through repeated isocycles.
- For palmityl oleate there was a slow shift in the ⁇ -A curve to the left and an increase in maximum surface pressure ( ⁇ max) with increasing isocycles.
- ⁇ max maximum surface pressure
- the inventors have interpreted this as molecules leaving the surface and moving into the outer, non-polar lipid phase. This contrasts markedly with oleic acid, which both decreases in take-off and in ⁇ max as isocycles continue and there is no phase shift. This is indicative of molecules moving off the surface into the subphase. This could occur because either oleic acid is partly miscible in the artificial tear buffer, or micelles could form. Both are possible given that the critical micellar concentration of oleic acid is about 6 ⁇ M and energy is put into this system by compression.
- FIG. 5 shows surface pressure/area curves for meibum and meibum mixed with different lipids.
- Meibum containing fluorophore was spread on artificial tear buffer alone or pre-mixed with each of (O-oleoyl)- ⁇ -hydroxypalmitic acid, palmityl oleate, or oleic acid were spread at 20° C. on the trough. After five isocycles, the trough was heated to 35° C. and five more isocycles were carried out. Then the trough was cooled back to 20° C. and again five more isocycles were run.
- ⁇ max in the first isocycle after spreading the films at 20° C. was higher in the case of meibum mixed with (O-oleoyl)- ⁇ -hydroxypalmitic acid or oleic acid than for meibomian lipid films alone, whereas palmityl oleate did not influence this ( FIG. 5 ).
- Subsequent isocycles resulted in a small increase in ⁇ max for films of meibomian lipids plus (O-oleoyl)- ⁇ -hydroxypalmitic acid, but there was a marked increase in ⁇ max for the films of meibomian lipids plus palmityl oleate.
- FIG. 6 shows micrographs of meibomian lipid films. Micrographs comparing the appearance of pure meibomian lipid films (Row A) with meibomian lipids mixed with the (O-oleoyl)- ⁇ -hydroxypalmitic acid (Row B), palmityl oleate (Row C) or oleic acid (Row D) at 20° C.
- the surface pressure during compression of the film and the isocycle is given, e.g. 1.6 iso 1 means that the pressure was 1.6 mN/m during compression in isocycle 1.
- the last column shows the appearance of the films at 35° C. These dark regions were all oriented in approximately the same direction, which may indicate that the film was buckling or creasing in these areas ( FIG. 6 ). Although present, the spots were less pronounced after a number of isocycles and it appeared as if the dark spots had merged or had organized differently. At 35° C., the dark spots were present but appeared larger and at higher pressure some dark lines marbling the film could be seen.
- this feature of the (O-oleoyl)- ⁇ -hydroxypalmitic acid derived films and the ability to take up a normal (right angle) orientation from the surface would give these molecules the capacity to form a bridge between the aqueous and outer bulk layer.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Ophthalmology & Optometry (AREA)
- Emergency Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Inorganic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Preparation (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Disclosed herein is an ophthalmic formulation comprising a compound of formula (I) wherein le is a linear or branched C9-C33 alkyl or a linear or branched C9-C33 alkenyl with 1 to 4 double bonds; R2 is a linear or branched C9-C19 alkyl or a linear or branched C9-C19 alkenyl with 1 to 4 double bonds; and an ophthalmologically acceptable carrier.
Description
- This application is a continuation of U.S. patent application Ser. No. 16/515,387, filed Jul. 18, 2019, which is a continuation of U.S. patent application Ser. No. 14/367,836, filed Jun. 20, 2014, now U.S. Pat. No. 10,385,003, issued Aug. 20, 2019, which is a national stage application under 35 U.S.C. § 371 of PCT Application Serial No. PCT/AU2012/001595, filed Dec. 21, 2012, which claims the benefit of Australian Patent Application No. 2011905421, filed Dec. 23, 2011, the disclosures of which are hereby incorporated in their entireties herein by reference.
- The present invention relates to ophthalmic formulations and to methods for treating dry eye.
- Ocular comfort requires the maintenance of a continuous film known as preocular tear film or lachrymal film on the ocular surface, and proper function of the lids to regularly re-spread the tear film before it breaks down.
- Dry eye, also known as dysfunctional tear syndrome, is one of the most frequently encountered ocular morbidities and one of the most common disease conditions diagnosed by eye care practitioners. Dry eye has a wide range of signs, symptoms and underlying etiologies. Dry eye is a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance, and tear film instability with potential damage to the ocular surface. It is accompanied by increased osmolarity of the tear film and inflammation of the ocular surface. Dry eye can be caused by a multitude of causes, such as neural loop dysfunction, mucin deficiency (e.g. goblet cell deficiency or goblet cell dysfunction), primary or secondary inflammation, meibomitis, and lachrymal gland dysfunction as a result of, for example, autoimmune disease (e.g. Sjogren's disease), dysfunctional innervation and damage to the ocular glands.
- Excess evaporation of the tear film, usually caused by meibomian gland dysfunction or related lid disorder, is a major underlying feature of dry eye. As a result, symptoms include unpleasantness in the eyes, itchiness, redness, excessive tearing, discomfort after periods of eye strain, inflammation, and damage to the ocular surface.
- Management of dry eye has conventionally been achieved by use of lubricant eye drops to provide temporary symptomatic relief, surgical procedures such as punctal plugs, or, more recently, pharmacological therapy for underlying inflammation with cyclosporine A. Other pharmacological agents are currently in development, but initial therapy for most new patients with dry eye consists of artificial tear formulations. There are a number of different artificial tear formulations for medicinal purposes currently on the market. None of these formulations has the physico-chemical properties of real tears.
- It would be advantageous to provide an ophthalmic formulation which more closely mimics the physico-chemical properties of tear lipids.
- The present invention provides the following
items 1 to 24: - 1. An ophthalmic formulation comprising a compound of formula (I):
- wherein
- R1 is a linear or branched C9-C33 alkyl or a linear or branched C9-C33 alkenyl with 1 to 4 double bonds;
- R2 is a linear or branched C9-C19 alkyl or a linear or branched C9-C19 alkenyl with 1 to 4 double bonds;
- and an ophthalmologically acceptable carrier.
- 2. An ophthalmic formulation according to
item 1, wherein HOOC—R1-selected from the group consisting of: capryl (C10:0), lauryl (C12:0), myristyl (C14:0), palmityl (C16:0), stearyl (C18:0), oleoyl (C18:1), linoleoyl (w6) (C18:2), and linoleoyl (w3) (C18:3).
3. An ophthalmic formulation according toitem
4. An ophthalmic formulation according toitem
5. An ophthalmic formulation according to any one ofitems 1 to 4, wherein the compound of formula (I) is selected from the group consisting of: - 6. An ophthalmic formulation according to
item 1, wherein the compound of formula (I) is (O-oleoyl)-16-hydroxypalmitic acid.
7. An ophthalmic formulation according toitem 1, wherein the ophthalmologically acceptable carrier is, or comprises, water.
8. An ophthalmic formulation according to any one ofitems 1 to 7, wherein the ophthalmic formulation further comprises an ophthalmologically acceptable excipient.
9. An ophthalmic formulation according to item 8, wherein the ophthalmologically acceptable excipient is selected from the group consisting of demulcents, emollients, hypertonicity agents, preservatives, buffers and pH adjusting agents.
10. An ophthalmic formulation according to any one ofitems 1 to 9, wherein the ophthalmic formulation is an oil-in-water emulsion. - 11. An ophthalmic formulation according to any one of
items 1 to 10, wherein the ophthalmic formulation comprises liposomes. - 12. An ophthalmic formulation comprising a compound of formula (I) as defined in
item 1, water, and an emulsifying agent. - 13. An ophthalmic formulation comprising a compound of formula (I) as defined in
item 1, water, and one or more ophthalmologically acceptable excipients selected from the group consisting of polyethylene glycol, propylene glycol, glycerin, polyvinyl alcohol, povidone,polysorbate 80, hydroxypropyl methylcellulose, carmellose,
14. An ophthalmic formulation according to any one ofitems 1 to 13, further comprising an active pharmaceutical ingredient for treating a condition or disease of the eye. - 15. A method for the treatment of dry eye comprising topically administering to the eye of a subject in need thereof a therapeutically effective amount of an ophthalmic formulation according to any one of
items 1 to 14. - 16. Use of a compound of formula (I) as defined in
item 1 in the manufacture of an ophthalmic formulation for the treatment of dry eye.
17. A compound of the following formula: - 18. A compound of the following formula:
- 19. A compound of the following formula:
- 20. A compound of the following formula:
- 21. A compound of the following formula:
- 22. A compound of the following formula:
- 23. A compound of the following formula:
- 24. A method for the preparation of a compound of any one of items 17 to 23 comprising the following step: mixing a compound of the formula
-
HOOC—Ra—OH - wherein Ra is —(CH2)g- or —(CH2)w,
- with an acid chloride selected from stearoyl chloride, oleoyl chloride, linoleoyl chloride and arachinoyl chloride, in the absence of a solvent.
-
FIGS. 1A-C :FIGS. 1A-C show pressure/area curves for films of three wax esters and three compounds of formula (I) at 20° C. and 34° C. -
FIGS. 2A-D :FIG. 2A shows pressure/time and pressure/area curves for meibomian lipids (25 uL).FIG. 2B shows pressure/time and pressure/area curves for a mixture of meibomian lipids with 3 uL of (O-oleoyI)-16-hydroxypalmitic acid.FIG. 2C shows pressure/area curves for a mixture ofmeibomian lipids 5 uL of (O-oleoyI)-10-hydroxycarpinic acid.FIG. 2D shows pressure/area curves for a mixture ofmeibomian lipids 5 uL of (O-oleoyI)-16-hydroxypalmitic acid. -
FIG. 3 :FIG. 3 shows pressure/area curves of a film of meibomian lipids alone from a patient with dry eye disease (top graph), and a film of the meibomian lipids with 3 μL of (O-oleoyl)-16-hydroxypalmitic acid (C16:0-C18:1) (bottom graph). -
FIG. 4 :FIG. 4 shows surface pressure/area curves for a film of 7.5 nmol (corresponding to 4 μg (O-acyl)-w-hydroxy fatty acid (OAHFA)) of (O-oleoyl)-16-hydroxypalmitic acid (top figure, left column), palmityl oleate (middle figure, left column), and oleic acid (bottom figure, left column) showing the first and fifth isocycles at 35° C. and the fifth isocycle after cooling to 20° C. The right column ofFIG. 4 shows time-pressure analysis of the first four isocycles at 35° C. after spreading. -
FIG. 5 :FIG. 5 shows surface pressure/area curves for meibum (20 μg) containing 0.5% (w/w) fluorophore (top left), or meibum (20 μg) containing 0.5% (w/w) fluorophore mixed with 3.7 nmol of C16:0-C18:1 OAHFA (2 μg) (top right), 3.7 nmol palmityl oleate (bottom left), or 3.7 nmol oleic acid (bottom right), showing the first and fifth isocycles at 20° C., and the fifth isocycle after the trough was heated to 35° C. -
FIG. 6 :FIG. 6 shows micrographs of meibomian lipid films as ofFIG. 5 . Micrographs comparing the appearance of pure meibomian lipid films (Row A) with meibomian lipids mixed with the OAHFA (Row B), palmityl oleate (Row C) or oleic acid (Row D) at 20° C. In each box, the surface pressure during compression of the film and the isocycle is given, e.g. 1.6iso 1 means that the pressure was 1.6 mN/m during compression inisocycle 1. The last column shows the appearance of the films at 35° C. Scale=100 μm. - The present invention provides an ophthalmic formulation comprising a compound of formula (I):
- wherein
- R1 is a linear or branched C9-C33 alkyl or a linear or branched C9-C33 alkenyl with 1 to 4 double bonds;
R2 is a linear or branched C9-C19 alkyl or a linear or branched C9-C19 alkenyl with 1 to 4 double bonds; - and an ophthalmologically acceptable carrier.
- The inventors have surprisingly found that compounds of formula (I) can be used to prepare ophthalmic formulations that mimic the physico-chemical properties of tear lipids.
- The tear film keeps the surface of the eye moist, lubricated and free of foreign material during blinking, protects against pathogens while also providing an optimal visually transparent medium. The most superficial layer of the tear film, the tear film lipid layer (TFLL), is 15 nm-160 nm thick. Meibomian glands in the upper and lower lids secrete tear lipids that self-assemble to form the TFLL. This layer is an essential component of the tear film and believed to enhance the spread of tears across the ocular surface, retard evaporation, and stabilise the tear film by lowering surface tension and increasing tear film break-up time. Lipid layers that are too thin or too thick can lead to inadequate spreading of the tear film or lead to decreased tear film break-up time. Currently, there is no specific component of meibomian lipids that has been correlated with poor structure or performance of the TFLL.
- Moreover, the actual structure of the normal TFLL is unknown.
- Lipids derived from meibum are believed to form the outermost layer of tear film, which retards evaporation of water from the bulk of the tear film and from the ocular surface beneath it. Yet another function of meibum is to form a hydrophobic barrier along the margins of the eyelids to contain tear film at, and prevent it from leaking out of, the ocular surface area defined by the margins of the eyelids. These protective functions imply a very hydrophobic nature of meibum. Indeed, the major meibum components have been identified as various wax esters (WEs) and cholesteryl esters (CEs) with long-chain and very long-chain fatty acids.
- Triglycerides also form a significant class of compounds found in meibum, and there may be other acylglycerols present in minute amounts.
- The physical properties of the compounds of formula (I) resemble the physical properties of total meibomian lipids. Surprisingly and unexpectedly, this is in stark contrast to other lipids or lipid classes found in meibomian secretions. Thus, the compounds of formula (I) can be used to prepare ophthalmic formulations that mimic the physical properties of tear lipids.
- Advantageously, the films formed by compounds of formula (I), similar to meibomian lipid films, do not collapse under high pressure, and they unexpectedly increase their surface activity after cooling to 20° C. from 34° C. Further, similar to meibomian lipids but unlike wax esters, the compounds of formula (I) do not go off the aqueous surface, even under high pressures. Further, the compounds of formula (I) mix with lipids that are naturally found in tear lipids. The compounds of formula (I) also act to stabilise, and facilitate the spreading of, the tear film. The compounds of formula (I) are very surface active and, consequently, only small amounts are needed in the ophthalmic formulation of the present invention.
- The present invention also provides a method for the treatment of dry eye comprising administering to a patient in need thereof a therapeutically effective amount of an ophthalmic formulation of the present invention. The present invention also provides use of a compound of formula (I) in the manufacture of an ophthalmic formulation for the treatment of dry eye.
- The ophthalmic formulation of the present invention comprises a compound of formula (I):
- wherein
- R1 is a linear or branched C9-C33 alkyl or a linear or branched C9-C33 alkenyl with 1 to 4 double bonds;
- R2 is a linear or branched C9-C19 alkyl or a linear or branched C9-C19 alkenyl with 1 to 4 double bonds;
- and an ophthalmologically acceptable carrier.
- As will be apparent to a person skilled in the art, the terms “alkyl” and “alkenyl” are sometimes used herein (in relation to R2 in formula (I), Rb, R1 in
Scheme 1 and R2 in Scheme 1) to refer to a monovalent radical, and are sometimes used herein (in relation to R1 in formula (I), and Ra) to refer to a divalent radical. A divalent alkyl is sometimes referred to as a “alkanediyl”, and a divalent alkenyl is sometimes referred to as a “alkenediyl”. - In some embodiments, R1 is a linear or branched C9-C33 alkanediyl, that is, a linear or branched saturated hydrocarbon radical comprising 9 to 33 carbons. In some embodiments, R1 is a linear C9-C33 alkanediyl. In some embodiments, R1 is a linear or branched C9-C33 alkenediyl with 1 to 4 double bonds, that is, a linear or branched hydrocarbon radical comprising 9 to 33 carbons, and having 1, 2, 3 or 4 double bonds and no triple bonds. In some embodiments, R1 is a linear C9-C33 alkenediyl with 1 to 4 double bonds.
- In some embodiments, R1 is a linear or branched C9-C17 alkyl or a linear or branched C9-C17 alkenyl with 1, 2 or 3 double bonds. For example, in some embodiments, R1 is a linear or branched C9, C10, C11, C12, C13, C14, C15, C15, or C17 alkyl, or a linear or branched C9, C10, C11, C12, C13, C14, C15, C16, or C17 alkenyl with 1, 2 or 3 double bonds.
- In one embodiment of the invention, HOOC—R1— is selected from the group consisting of: capryl (C10:0), lauryl (C12:0), myristyl (C14:0), palmityl (C16:0), stearyl (C18:0), oleoyl (C18:1), linoleoyl (w6) (C18:2), and linolenoyl (w3) (C18:3).
- In one embodiment of the invention R2 is a linear or branched C16-C19 alkyl or a linear or branched C16-C19 alkenyl with 1,2,3 or 4 double bonds. For example, in some embodiments, R2 is a linear or branched C16, C17, C18 or C19 alkyl, or a linear or branched C16, C17, or C19 alkenyl with 1,2, or 3 double bond.
- In one embodiment of the invention, R2 is linear or branched C17 alkyl or a linear or branched C17 alkenyl with 1 or 2 double bonds.
- In one embodiment of the invention R2 is linear or branched C19 alkenyl with 4 double bonds.
- Examples of compounds of formula (I) include:
- A preferred compound of formula (I) is (O-oleoyl)-16-hydroxypalmitic acid. This compound is sometimes referred to as (O-oleoyl)-w-hydroxypalmitic acid.
- The compounds of formula (I) may be present in the ophthalmic formulation of the present invention in amounts ranging from about 0.001 wt % to about 20 wt %, e.g. about 0.01 wt % to about 1 wt %, about 0.1 wt % to about 10 wt %, about 0.1 wt % to about 5 wt %, about 1 wt % to about 5 wt %, or about 2 wt % to about 4 wt %. For example, the compounds of formula (I) may be present in the ophthalmic formulation in an amount of 0.001 wt %, 0.002 wt %, 0.003 wt %, 0.004 wt %, 0.005 wt %, 0.006 wt %, 0.007 wt %, 0.008 wt %, 0.009 wt %, 0.01 wt %, 0.02 wt %, 0.03 wt %, 0.04 wt %, 0.05 wt %, 0.06 wt %, 0.07 wt %, 0.08 wt %, 0.09 wt %, 0.1 wt %, 0.2 wt %, 0.3 wt %, 0.4 wt %, 0.5 wt %, 0.6 wt %, 0.7 wt %, 0.8 wt %, 0.9 wt %, 1 wt %, 2 wt %, 3 wt %, 4 wt %, 5 wt %, 6 wt %, 7 wt %, 8 wt %, 9 wt %, 10 wt %, 11 wt %, 12 wt %, 13 wt %, 14 wt %, 15 wt %, 16 wt %, 17 wt %, 18 wt %, 19 wt %, or 20 wt %.
- Typically, the ophthalmic formulation is a sterile formulation.
- The ophthalmic formulation of the present invention comprises an ophthalmologically acceptable carrier.
- As used herein, an “ophthalmologically acceptable carrier” is an ophthalmologically acceptable solvent, suspending agent or vehicle for delivering compounds of formula (I) to the eye of a subject. The carrier may be solid or liquid. The carrier is “ophthalmologically acceptable” in the sense that the carrier is suitable for administering to the eye without causing any or a substantial adverse reaction.
- Typically, the ophthalmologically acceptable carrier is, or comprises, water. Typically, the ophthalmic formulation is in the form of an eye drop or gel for application to the eye. Typically, the majority of the formulation is water. Typically, the formulation comprises greater than 50 wt % (e.g. greater than 60 wt %, 65 wt %, 70 wt %, 75 wt %, 80 wt %, 85 wt %, or 90 wt %), more typically greater than 95 wt %, water (e.g. 96 wt %, 97 wt %, 98 wt %, or 99 wt %).
- In some embodiments, the ophthalmologically acceptable carrier is an oil-in-water emulsion, or an oil. In such embodiments, the ophthalmic formulation may be in the form of a cream for application to the eye. In such embodiments, the formulation may comprise greater than 10 wt %, more typically greater than 20 wt %, of an oleaginous ingredient.
- In other embodiments, the carrier may be a biodegradable polymer, for example, for a biodegradable polymer ocular insert for extended release of the compound of formula (I) and optionally other compounds.
- The ophthalmic formulation typically further comprises one or more other ophthalmologically acceptable excipients.
- Excipients suitable for use in the ophthalmic formulation of the present invention include, for example, demulcents, emollients, hypertonicity agents, preservatives, buffers or pH adjusting agents. Examples of suitable excipients include:
-
-
- synthetic high molecular weight crosslinked polymers of acrylic acid (e.g. Carbomer 974 and Carbomer 980);
- cellulose derivatives (e.g. hydroxypropyl methylcellulose (“HPMC” or “hypromellose”), hydroxyethylcellulose, methylcellulose, carboxymethylcellulose (carmellose) or sodium carboxymethylcellulose (sodium carmellose));
- dextran (e.g. Dextran 70);
- gelatin;
- polyols (e.g. as glycerin, polyethylene glycol 300, polyethylene glycol 400,
polysorbate 80, and propylene glycol); - polyvinyl alcohol;
- povidone (polyvinylpyrrolidone);
- poloxamer; and
- hyaluronic acid (a polymer of disaccharides), or its sodium or potassium salt.
-
-
- lanolins (e.g. anhydrous lanolin);
- oleaginous ingredients (e.g. light mineral oil, mineral oil, paraffin, petrolatum, white ointment, white petrolatum, white wax and yellow wax); and
- castor oil.
-
-
- benzalkonium chloride;
- sodium perborate;
- Oxyd (sodium chlorite 0.05%, hydrogen peroxide 0.01%);
- polyquarternium-1 (ethanol, 2,2′,2″-nitrilotris-, polymer with 1,4-dichloro-2-butene and N,N,N′,N′-tetramethyl-2-butene-1,4-diamine);
- sodium silver chloride;
- hexamethylene biguanide;
- oxyborate; and
- Purite® (sodium chlorite 0.005% m/v).
-
-
- sodium chloride.
- The ophthalmic formulation of the present invention may contain a preservative to inhibit microbial growth and extend the shelf-life of the formulation.
- Preservatives which may be used in the ophthalmic formulation of the present invention include, for example, benzalkonium chloride, sodium perborate, Oxyd (sodium chlorite 0.05%, hydrogen peroxide 0.01%), polyquarternium-1 (ethanol, 2,2′,2″-nitrilotris-, polymer with 1,4-dichloro-2-butene and N,N,N′,N′-tetramethyl-2-butene-1,4-diamine), sodium silver chloride, hexamethylene biguanide, oxyborate, and Purite®. Purite® (sodium chlorite 0.005% m/v) is a microbicide with a broad spectrum of antimicrobial activity and very low toxicity to mammalian cells. Purite® preserves a formulation during storage but ultimately, following exposure to light, dissociates into water, sodium ions, chloride ions, and oxygen. Because these substances are also found in natural tears, the risk of preservative-induced ocular irritation and corneal damage is minimized. Purite® has a long history of safe and effective use. This preservative has no adverse effect on epithelial cells in vitro or in vivo, and is less disruptive to cellular integrity than many other preservatives currently used.
- The ophthalmic formulation of the present invention may be prepared by any suitable means for preparing an ophthalmic formulation. Ophthalmic formulations are typically sterile and, therefore, the method may comprise a step of sterilising the ophthalmic formulation. Preferably, the ophthalmic formulation is clear and has a refractive index similar to tears, a suitable pH (usually buffered around pH 7.5) to avoid severe corneal irritation, and free of microbes. Ophthalmic formulations typically have an osmolarity value close to 300 mosmol/L. Surface tension values close to or lower than the ones observed for the tear film are generally preferred.
- Formulations in the form of oil-in-water emulsions are effective in reducing tear evaporation, and thus useful in the management of evaporative dry eye.
- In one embodiment of the invention, the ophthalmic formulation is an oil-in-water emulsion comprising a compound of formula (I), water, and optionally one or more emulsifying agents. The emulsifying agent is optional as the compounds of formula (I) can form emulsions in water without the use of an emulsifying agent. The ophthalmic formulation may also comprise one or more demulcents, emollients, hypertonicity agents, preservatives, buffers or pH adjusting agents as described above. Preferably, the ophthalmic formulation comprises one or more demulcents. The oil-in-water emulsion may be a microemulsion, where the size of an inner phase is less than a micron.
- Emulsifying agents include, for example, lanolins, light mineral oil, mineral oil, paraffin, petrolatum, castor oil, as well as non-surfactant emulsifiers based on hydroxypropyl methyl cellulose, and crosslinked polymers of acrylic acid such as Pemulen™ (carbomer 1342).
- Pemulen™ polymeric emulsifiers are predominantly high molecular weight polyacrylic acid polymers which have a small lipophilic (oil-loving) portion in addition to a large, hydrophilic (water-loving) portion. This chemical structure allows these copolymers to function as primary emulsifiers which actually form oil-in-water emulsions, rather than as a secondary oil-in-water emulsion stabiliser. The lipophilic portion adsorbs at the oil-water interface, and the hydrophilic portion swells in the water forming a gel network around oil droplets to provide exceptional emulsion stability to a broad range of oils.
- An ophthalmic formulation of the present invention may, for example, be an oil-in-water emulsion comprising a compound of formula (I), purified water, castor oil, glycerin,
polysorbate 80, carbomer 1342, and sodium hydroxide (to adjust the pH of the formulation to 7.4). The oil-in-water emulsion may be packaged in a single dose vial containing 0.4 ml. - An exemplary ophthalmic formulation of the present invention is a formulation in the form of an oil-in-water emulsion comprising the following:
-
Compound of formula (I) 0.1 wt % Purified water >80 wt % castor oil 1 wt % to 10 wt % glycerin 0.2 wt % to 1 wt % polysorbate 80 0.2 wt % to 1 wt % carbomer 1342 0.1 wt % to 4 wt % sodium hydroxide <0.1 wt % sodium chloride 0.1 wt % to 2 wt % TOTAL 100 wt % - In another embodiment of the invention, the ophthalmic formulation is an oil-in-water emulsion comprising a compound of formula (I), water, and one of more ophthalmologically acceptable excipients selected from the group consisting of polyethylene glycol, propylene glycol, glycerin, polyvinyl alcohol, povidone,
polysorbate 80, hydroxypropyl methylcellulose, carmellose, carbomer 980, sodium hyaluronate, dextran, and the like. - An ophthalmic formulation of the present invention may, for example, comprise a compound of formula (I), water, hydroxypropyl methylcellulose,
polysorbate 80, disodium phosphate and sodium chloride. The ophthalmic formulation may be packaged in a single dose vial containing 0.5 ml. - Another exemplary ophthalmic formulation of the present invention is a formulation in the form of an oil-in-water emulsion comprising the following:
-
Compound of formula (I) 0.1 wt % Purified water >85 wt % hydroxypropyl methylcellulose 0.1 wt % to 4 wt % polysorbate 80 0.2 wt % to 1 wt % disodium phosphate 0.1 wt % sodium hydroxide <0.1 wt % sodium chloride 0.1 wt % to 2 wt % TOTAL 100 wt % - Ophthalmic formulations of the present invention comprising an aqueous carrier may be used as an artificial tear and may be used to treat dry eye. Thus, in some embodiments, the ophthalmic formulation is an artificial tear formulation. The ophthalmic formulation may also be used as a vehicle for delivering an active pharmaceutical ingredient to the eye of a patient.
- Thus, the ophthalmic formulation of the present invention may comprise an active pharmaceutical ingredient for treating, for example, a condition or disease of the eye. The active pharmaceutical ingredient may, for example, be an anti-inflammatory agent (e.g. a corticosteroid such as loteprednol etabonate, fluorometholone or dexamethasone phosphate), an anti-immune response agent (e.g. cyclosporine A, pimecrolimus and voclosporin), or an antibiotic (e.g. doxycycline).
- In one embodiment of the invention, the ophthalmic formulation contains liposomes incorporating the active pharmaceutical ingredient.
- Liposomes can be employed to incorporate active pharmaceutical ingredients in the oily or in the hydrophilic phase of a formulation. The bioavailability of a drug administered by eye drops can be enhanced through the use of liposomes. Liposomes are artificially prepared vesicles composed mainly of phospholipids. A lipophilic drug will bind within the vesicle membranes, while a hydrophilic drug will become encapsulated within the aqueous phase in the interior of the liposome.
- Depending on the charge of the phospholipids, liposomes can be positive, negative or neutral. Liposomes may be prepared from positive charged phospholipids. The vesicles are suspended in aqueous solutions with high viscosity polymers (e.g. hydroxyethylcellulose, methylcellulose, hydroxypropylmethylcellulose) and vinylic derivatives (e.g. polyvinylpirrolidone, polyvinyl alcohol) and their mixtures. Neutral liposomes may be prepared from phosphatidylcholine associated with mucoadhesive polymers.
- The ophthalmic formulation of the present invention may be delivered to the patient in the form of an eye drop (in a single-dose or multi-dose dropper), ointment, gel, cream or biodegradable polymer ocular insert (designed for extended-release), or by ocular humidification (e.g. a multi-dose spray).
- To treat dry eye, the ophthalmic formulation of the present invention is typically administered to the eye in an amount to provide 5 to 10 microgram of the compound of formula (I) to the eye.
- The packaging of the ophthalmic formulation should correlate to the preserved or non-preserved nature of the solution. Packaging approaches such as form-fill-seal technology, which merges blow molding, sterile filling, and hermetic sealing into a single process, can be especially useful for packaging preservative- free formulations in unit dose containers. Typically, these single-dose containers are made of low-density polyethylene or polypropylene and incorporate a twist-off closure.
- The compounds of formula (I) may be prepared by methods known in the art for the synthesis of organic compounds.
- For example, the following general method may be used to prepare compounds of formula (I):
- In the above formulae for the starting materials, Ra can be a linear or branched C9-C33 alkyl or a linear or branched C9-C33 alkenyl with 1 to 4 double bonds, and Rb can be a linear or branched C9-C19 alkyl or a linear or branched C9-C19 alkenyl with 1 to 4 double bonds. The starting material compounds are mixed in a molar ratio of about 1:1 in a suitable organic solvent (e.g. chloroform, tetrahydrofuran or dichloromethane) at room temperature overnight (about 12 hours).
- In the above method, no solvent is required if one of the starting materials is a liquid at the reaction conditions applied. Most acid chlorides are liquid at room temperature; accordingly, the use of a solvent can be omitted from the above method. Thus, the present invention also provides a method for the preparation of the compounds of formula (I) comprising mixing the starting material compounds in a molar ratio of, for example, about 1:1 at a temperature of from about room temperature to about 60° C. overnight (e.g. about 12 hours).
- Advantageously, circumventing the use of solvents avoids the use of quantitative amounts of base (HCl is released as a gas) and minimises water contamination; water can interfere with the reaction by destroying the acid chloride starting compound.
- The above method can, for example, be used to prepare the following compounds:
- Long chain mono-unsaturated w-hydroxy fatty acids or their relevant esters for use as starting materials for the above method can, for example, be prepared via cross-metathesis reactions as shown in
Scheme 1 below. InScheme 1 below, R1 and R2 are alkyl groups. Depending on the number of a and b, different chain lengths and positions of the double bonds can be achieved. Omega vinyl functionalised educts as outlined are preferable for this kind of synthesis to minimise undesired mixed cross-metathesis reactions. By using commercially available educts with double bonds at positions varying from Δ:13 to Δ:114, chain lengths up to C30 are realisable with double bonds between Δ:13 to Δ:114. - The saturated forms of the products in the above scheme can be produced by hydration.
- The free ω-hydroxy fatty acids can be released by hydrolysis for use in the esterification reaction to form the compounds of formula (I).
- 16-Hydroxypalmitoleic acid (16-hydroxyhexadecenoic acid) can be synthesised from aleuritic acid via the available vicinal diol through a stereoselective elimination of its threo or erthyro form to the desired product in cis- or trans-form, as shown
Scheme 2 below. - In the specification and the appended claims, singular forms, including the singular forms “a,” “an” and “the”, specifically also encompass the plural referents of the terms to which they refer unless the context clearly dictates otherwise. In addition, as used herein, unless specifically indicated otherwise, the word “or” is used in the “inclusive” sense of “and/or” and not the “exclusive” sense of “either/or”.
- As used herein, the recitation of a numerical range for a variable is intended to convey that the invention may be practiced with the variable equal to any of the values within that range. Thus, for a variable that is inherently discrete, the variable can be equal to any integer value of the numerical range, including the end-points of the range. Similarly, for a variable, which is inherently continuous, the variable can be equal to any real value of the numerical range, including the end-points of the range. As an example, a variable which is described as having values between 0 and 2, can be 0, 1 or 2 for variables which are inherently discrete, and can be 0.0, 0.1, 0.01, 0.001, or any other real value, for variables which are inherently continuous.
- The formulations and methods of the present invention are intended for use with any subject that may experience the benefits of the formulations and methods of the invention. The subject is typically a mammal, more typically a human. However, the invention is not limited to the treatment of humans and is applicable to veterinary uses. Thus, in accordance with the invention, the term “subject” or “subject in need thereof” includes humans as well as non-human animals, such as domesticated mammals including, without limitation, cats, dogs, and horses.
- The term “therapeutically effective amount” is used to denote treatments at dosages effective to achieve the therapeutic result sought.
- Reference is made hereinafter in detail to specific embodiments of the invention. While the invention is described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the invention to such specific embodiments. On the contrary, it is intended to cover alternatives, modifications, substitutions, variations and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
- Oleoyl chloride (Sigma Aldrich product no. 367850); 16-hydroxyhexadecanoic acid (Sigma Aldrich product no. 177490); stearoyl chloride (Sigma product no. 171158); linoleoyl chloride (Sigma Aldrich product no. L-5753); 10-hydroxydeconoic acid (Sigma Aldrich product no. 379700); Silica gel 70-230 mesh 60 A (Sigma Aldrich product no. 112926-00-8); Silica gel (Sigma Aldrich product no. 28862); Sephadex LH-20 (Sigma Aldrich product no. 17-0090-01), GE Healthcare 17-0090-10. Chloroform, ethanol-free chloroform (Sigma Aldrich product no. 372978), methanol, n-hexane, diethylether (water-free), tetrahydrofuran (water-free), and acetic acid were all of analytic grade and purchased from Sigma Aldrich (Castle Hill, Australia). The chloroform used in the examples was either purchased in alcohol-free form (Sigma Aldrich product no. 372978), or was further purified prior to use by distillation to remove the stabiliser ethanol. Palmityl oleate and oleic acid were purchased from NuCheck (Elysian Minn., USA).
- TLC analysis: mobile phase n-hexane:diethylether:acetic acid (80:20: 1), detection by iodine fume or charcoal stain using 5% vol/vol concentrated sulfuric acid in ethanol followed by heating the TLC plates to 150° C. TLC plates: Silicagel 60 A F254, 0.2 mm on aluminum support (Sigma 2191293 or Riedel-deHaen 37360).
- The physico-chemical properties of certain wax esters, meibomian lipids, and compounds of formula (I) alone or mixed with human meibum were characterized on a Langmuir-Blodgett minitrough by means of surface pressure-area (n-A) measurements.
-
- 16-Hydroxyhexadecanoic (6.5 mg, 2.3×10−5 mol) was dissolved in 500 μL CHCl3 in a glass vial and oleoylchloride (18 5.6×10−5 mol) was added. The reaction mixture was stirred at room temperature for 24 hours and then loaded onto a 25×1 cm silica gel column equilibrated with CHCl3 as the mobile phase. 1.5 ml fractions were collected and analysed by UVNIS absorption (200-300 nm). Positive fractions were then further analysed by TLC and FT-IR. Fractions containing the resultant compound of formula (I) (as evident by a band in TLC which represents a compound with two —C═O functions visible at around 1700 cm-1 in the FT-IR) were pooled and chloroform removed under a dry nitrogen stream. The residue was resuspended in about 1 ml of methanol and 250 μL was loaded onto a 25×1 cm Sephadex LH-20 column at a flow rate of 0.5 ml/min with methanol as the mobile phase. Fractions of 1.5 ml size were analyzed as described before and pure product was found in the first two UVNIS positive fractions. Finally the methanol was removed under a nitrogen stream and the product stored at −20° C. under nitrogen. In order to characterize its physico-chemical properties the product was resuspended in chloroform.
-
- Stearoyl chloride (30 μmol, 9.1 mg) and either 16-hydroxyhexadecanoic acid (8.4 mg) or 10-hydroxydecanoic acid (5.6 mg) were dissolved in water-free tetrahydrofuran (THF) (400 μL) in a closed 3 ml glass vial and the reaction mixture was stirred at room temperature for 24 hours. The crude product was crystallised by cooling the reaction mixture to −80° C., the supernatant was removed and the product washed with −80° C. pre-cooled THF (1 ml). Recrystallization in THF (400 μL) and washing with THF (1 ml) at −80° C. was repeated once. The resulting crude product was dissolved in as little methanol as possible (around 1.5 ml) and 500 μL was loaded onto a 25×1 cm Sephadex LH-20 column at a flow rate of 0.5 ml/min with methanol as the mobile phase. Fractions of 1.5 ml size were analyzed by UV-VIS spectroscopy, TLC, FT-IR and electrospray mass spectrometry. The pure product of either (O)-stearyl-16-hydroxypalmitic acid (C16:0-C18:0) or (I)-stearyl-10-hydroxydecanoic acid (C10:0-C18:0) was found in the first UVNIS positive fractions. Finally the methanol was removed under a nitrogen stream and the product stored at −20° C. under nitrogen.
-
- 10-Hydroxydecanoic acid (5.6 mg, 30 μmol) was dissolved in water-free THF (500 μL) and oleoyl chloride (19 μL, 60 μmol) was added. The reaction mixture was stirred over night (12 hours) in a closed 3 ml glass vial. The solvent was removed under nitrogen and 0.1 N sodium hydroxide solution (300 μL) was added and the suspension mixed for 10 minutes. Then 2 N hydrogen chloride solution (25 μL) was added and the suspension extracted twice with chloroform (500 μL). The chloroform phases were combined, dried under nitrogen and the crude product re-suspended in as little methanol as possible (around 2 ml). 500 μL was loaded onto a 25×1 cm Sephadex LH-20 column at a flow rate of 0.5 ml/min with methanol as the mobile phase. Fractions of 1.5 ml size were analyzed by UV-VIS spectroscopy, TLC and FT-IR. Fractions containing the product were pooled, dried under nitrogen and applied again to the same column. The pure product was finally identified by electrospray mass spectrometry, dried under nitrogen and stored at −20° C.
-
- Either 10-hydroxydecanoic acid (30 μmol, 5.6 mg) or 16-hydroxypalmitic acid (30 μmol, 8.1 mg) was dissolved in water-free THF (500 and linoleoyl chloride (33 μmol, 10 μL) was added. The reaction mixture was stirred overnight (12 hours) in a closed 3 ml glass vial. The solvent was removed under nitrogen and re-dissolved in chloroform (500 μL). A portion (250 μL) of each of these solutions was loaded onto a 25×1 cm Sephadex LH-20 column equilibrated with chloroform. Fractions of 1.5 ml size were collected at a flow rate of 1 ml/min and analyzed by UV-VIS spectroscopy, TLC and FT-IR. Fractions containing the product were dried under nitrogen and re-dissolved in chloroform to give a concentration of 1 mg/ml and stored at −20° C. The pure product was identified by electrospray mass spectrometry.
- Other compounds of formula (I), such as (O-arachidonyl)-10-hydroxycapric acid and (O-arachidonyl)-16-hydroxypalmitic acid, can be prepared in a similar manner to that described above.
- A buffer (NaCl: 6.63 g/L, KCI: 1.72 g/L, NaHCO3: 1.38 g/L, CaCl2.2H2O: 0.15 g/L, NaH2 PO4..H2O: 0.10 g/L and MOPS: 4.18 g/L dissolved in MilliQ water) was added to a double barrier minitrough (Nima Technology Ltd, UK; Working
surface area 15 cm2-80 cm2). Purified preparations of wax esters in chloroform (1 mg/ml), meibomian lipids in chloroform (1 mg/ml), and compounds of formula (I) in chloroform (ranging from 1.4 μmol to 0.1 μmol) alone or mixed with human meibum at different ratios, were spread on the surface (air-buffer interface) of the buffer subphase. Dynamic Π-A profiles of films at the air-buffer interface of the Langmuir trough were collected using software supplied by NIMA Technology. Surface pressure was monitored using a paper plate connected to a Wilhelmy balance. Compression and expansion cycles were conducted over an area (A) of 79 cm2-16 cm2 at a barrier rate of 15 cm2/min and at a temperature of 20° C. and 34° C. The results are shown inFIGS. 1 to 3 . -
FIG. 1A shows pressure/area curve comparing dynamic surface pressure of film of wax ester (palmityl stearate wax ester (C16:0-C18:0) (25 uL applied to the trough) with its equivalent or similar compound (O-stearyl)-16-hydroxypalmitic acid (C16:0-C18:0) (5 uL applied to the trough) at 20° C. and 34° C.FIG. 1B shows pressure/area curve comparing dynamic surface pressure of film of wax ester palmitoyl oleate wax ester (C16:0-C18:1) (8 uL applied to the trough) with its equivalent or similar compound (O-oleoyl)-16-hydroxypalmitic acid (C16:0-C18:1) (5 uL applied to the trough) at 20° C. and 34° C.FIG. 1C shows pressure/area curve comparing dynamic surface pressure of film of wax ester (steroyl linolenate wax ester (C18:0-C18:3) (5 uL applied to the trough) with its equivalent or similar compound (O-linoleoyl)-16-hydroxypalmitic acid (C16:0-C18:2) (5 uL applied to the trough) at 20° C. and 34° C. A major difference observed is that the above films comprising the compound of formula (I) do not collapse whereas the wax esters do. This is indicated by the take-off moving to the left of the x-axis (indicating collapse), whereas the take-off for the compounds of formula (I) remains constant. This data also shows that the compounds of formula (I) are very surface active, i.e. a small amount has high surface activity. -
FIG. 2A-D shows pressure/time and pressure/area curves showing the dynamic surface pressure of films of meibomian lipids (25 μL) alone (FIG. 2A ) and mixtures of meibomian lipids (20 μL) with different compounds of formula (I) ((O-oleoyl)- 16-hydroxypalmitic acid (C16:0-C18:1) (3 μL),FIG. 2B ; (O-oleoyl)-10-hydroxycaprinic acid (C10:0-C18:1) (5 μL),FIG. 2C ; and (O-stearyl)-16-hydroxypalmitic acid (C16:0-C18:0) (5 μL), (FIG. 2D ). The pressure/time curve for meibomian lipids alone indicates that it takes a long time for the lipids to stabilise on the surface (pressure increasing at each cycle). Adding a small amount of a compound of formula (I) causes fast stabilisation of the film (indicated on the pressure/time curve with the mixture having little change between isocycles) and the maximum surface pressures are much higher. Higher surface pressures (low surface tension) have been shown to be associated with a stable tear film. All of the different examples of the compounds of formula (I) interact readily with meibomian lipids and stabilise the films. -
FIG. 3 shows pressure/area curves showing the dynamic surface pressure of films of meibomian lipids alone from a patient with dry eye disease and mixtures of the meibomian lipids with a compound of formula (I) ((O-oleoyl)-16-hydroxypalmitic acid (C16:0-C18:1) (3 μL)). The compound of formula (I) increases the surface pressure, which is an advantage in dry eye, and causes an increase in hysteresis which means that the lipid layer has become more viscous indicating that it spreads more evenly and is more resistant to rapid changes. - To evaluate the role of a compound of formula (I) in tear films, (O-oleoyl)-ω-hydroxypalmitic acid was used as an example of a compound of formula (I) and compared with structurally-related palmityl oleate wax ester and oleic acid by employing a Langmuir trough.
- Freshly synthesised (O-oleoyl)-ω-hydroxypalmitic acid (an example of a compound of formula (I)) was spread either alone or mixed with human meibum on a Langmuir trough on an artificial tear buffer. Pressure-area isocycle profiles were recorded and compared with those of palmityl oleate and oleic acid, alone or mixed with meibum. These measurements were accompanied by fluorescence microscopy of meibum mixed films during pressure-area isocycles.
- As discussed below, it was found that pure films of (O-oleoyl)-ω-hydroxypalmitic acid are as surface active as oleic acid films, cover a much larger surface area than either palmityl oleate or oleic acid, and show a distinct biphasic pressure-area isocycle profile. All these properties can be explained by (O-oleoyl)-ω-hydroxypalmitic acid binding weakly to the aqueous surface via an ester group and strongly via a carboxyl group. Whereas palmityl oleate films arrange as multi-layered structures and oleic acid tends to disappear into the subphase, the (O-oleoyl)-ω-hydroxypalmitic acid molecules are maintained on the aqueous surface and show only a minor re-arrangement into multi-layered structures during repetitive pressure area isocycles. When mixed with meibum, similar features as for pure films were observed. In addition, meibum films mixed with (O-oleoyl)-ω-hydroxypalmitic acid appear very homogeneous, which is a feature not seen with the mixtures with palmityl oleate and oleic acid. (O-oleoyl)-ω-hydroxypalmitic acid was thus found to be a potent surfactant; this is property that is important in spreading and stabilising meibomian lipid films.
- The data presented below supports that compounds of formula (I) are potent surfactants which can facilitate spreading and stabilising meibomian lipid films.
- Omega-hydroxypalmitic acid (6.8 mg; 25 μmol) was mixed with oleoyl chloride (32.5 μmol) in a 1.5 ml glass vial and incubated overnight at 60° C. with continuous agitation based on the method described in Ranu et al. (Ranu B C, Dey S S, Hajra A, 2002, “Highly efficient acylation of alcohols, amines and thiols under solvent-free and catalyst-free conditions”, Green Chemistry, 5: 44-46, incorporated herein by reference). After incubation, partial purification was carried out using a silica gel column (70-230 mesh, 60 A at 30×1 cm) equilibrated with n-hexane: diethylether: acetic acid (4:1:0.05).
- The reaction mixture was suspended in 500 μL of ethanol-free chloroform and applied in two lots to the column and developed with n-hexane: diethylether: acetic acid (4: 1:0.05) at a flow rate of 1 ml/min. Fractions (1 ml) were collected and analysed by FT-IR and TLC. TLC plates were treated with iodine or charred after treatment with sulfuric acid (5% in ethanol) for visualisation. Fractions containing the desired product were pooled, dried under nitrogen, resuspended in 200 μL pre-chilled chloroform: methanol: acetic acid (2:1:0.01) and further purified using a Sephadex LH-20 column (30×1 cm) equilibrated with the same solvent at a flow rate of 0.5 ml/min. Fractions of 1.5 ml were collected and analysed as described above and those containing pure product were pooled, dried and weighed. A stock solution of 1 mg/ml (1.86 mM) in chloroform was prepared and stored at −20° C.
- Collection of meibomian lipids was in accordance with the Tenets of Helsinki. Human meibomian lipids were gently squeezed out of the meibomian glands of a single 56-year old male subject's lower eyelids by applying pressure to the eyelids using sterile cotton swabs on either side of the lid. Multiple collections were carried out and pooled to provide consistency in the experiments. The subject was devoid of any external signs or symptoms of ocular pathology including dry eye disease. The expressed lipids were harvested using a sterile stainless steel spatula and dissolved in chloroform. The meibomian lipids were dried through vacuum concentration and centrifugation, and then reconstituted in chloroform spiked with 0.5% (w/w) of the fluorophore, 1-palmitoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino ]dodecanoyl]-sn-glycero-3-phosphatidylcholine] (NBD-DPPC) (Avanti Polar Lipids, Auspep Pty. Ltd (Tullamarine, Australia)) and stored at −20° C. until used.
- The surface characteristics of (O-oleoyl)-ω-hydroxypalmitic acid were compared with palmityl oleate (a structurally similar wax ester) and oleic acid (which is equivalent to the fatty acid (amphiphilic) component of (O-oleoyl)-ω-hydroxypalmitic acid).
- Films were formed by spreading 7.5 nmol of the lipids dissolved in chloroform onto the cleaned surface (air-buffer interface) of an artificial tear buffer (NaCl: 6.63 g/L, KCI: 1.72 g/L, NaHCO3: 1.38 g/L, CaCl2.2H20: 0.15 g/L, NaH2 PO4 xH2O: 0.10 g/L and MOPS: 4.18 g/L dissolved in ion exchange ultrapure water) in a
double barrier 80 ml temperature-controlled (35° C.) Langmuir trough (Nima Technology Ltd, UK). After 5 isocycles were obtained, the temperature was lowered to 20° C. A Whilhelmy balance (Whatman No. 1 filter paper) was used to record surface pressure during isocycles (79 cm2-16 cm2 at 10 cm2/min). - The results were compared with mixtures with meibomian lipids. Human meibum (20 μg) was mixed with -10 mol% (O-oleoyl)-ω-hydroxypalmitic acid (2 μg) or with palmityl oleate (1.9 μg) or oleic acid (1.1 μg). These mixtures were spread at 20° C. and 5 isocycles carried out. The film was then heated to 35° C. for another 5 isocycles. The Ø-A curves were compared with those for pure meibomian lipid films. In some cases, meibomian lipids doped with 0.5% (w/w) NBD-DPPC were used in order to view the films microscopically.
-
FIG. 4 shows surface pressure/area curves for equimolar amounts of pure lipid films spread at 35° C. and then recordings after the same films were cooled to 20° C. - The (O-oleoyl)-ω-hydroxypalmitic acid was very surface active as indicated by its large take-off area and there was little change in its profile through repeated isocycles. For palmityl oleate, there was a slow shift in the Π-A curve to the left and an increase in maximum surface pressure (Πmax) with increasing isocycles. Without wishing to be bound by theory, the inventors have interpreted this as molecules leaving the surface and moving into the outer, non-polar lipid phase. This contrasts markedly with oleic acid, which both decreases in take-off and in Πmax as isocycles continue and there is no phase shift. This is indicative of molecules moving off the surface into the subphase. This could occur because either oleic acid is partly miscible in the artificial tear buffer, or micelles could form. Both are possible given that the critical micellar concentration of oleic acid is about 6 μM and energy is put into this system by compression.
- In general, meibomian films were very tolerant to the changes in their composition, indicated by the fact that the shapes of the different Π-A curves of mixed films were similar to those obtained from films of pure meibomian lipids (
FIG. 5 ).FIG. 5 shows surface pressure/area curves for meibum and meibum mixed with different lipids. Meibum containing fluorophore was spread on artificial tear buffer alone or pre-mixed with each of (O-oleoyl)-ω-hydroxypalmitic acid, palmityl oleate, or oleic acid were spread at 20° C. on the trough. After five isocycles, the trough was heated to 35° C. and five more isocycles were carried out. Then the trough was cooled back to 20° C. and again five more isocycles were run. - Πmax in the first isocycle after spreading the films at 20° C. was higher in the case of meibum mixed with (O-oleoyl)-ω-hydroxypalmitic acid or oleic acid than for meibomian lipid films alone, whereas palmityl oleate did not influence this (
FIG. 5 ). Subsequent isocycles resulted in a small increase in Πmax for films of meibomian lipids plus (O-oleoyl)-ω-hydroxypalmitic acid, but there was a marked increase in Πmax for the films of meibomian lipids plus palmityl oleate. The opposite occurred for films of meibomian lipids plus oleic acid, where Πmax decreased in subsequent isocycles (FIG. 5 ). After heating the films, for all mixtures the H-A curves became smoother and Πmax decreased, and upon cooling back to 20° C. all mixtures had higher Πmax than before heating, but retained the shape of the curve (not shown). This is similar for pure meibomian lipid films. - Microsopically, the appearance of the meibomian films plus (O-oleoyl)-ω-hydroxypalmitic acid was different from the others. In particular, regular dark spots appeared in the films, and at higher pressures there were also streaky dark regions (
FIG. 6 ).FIG. 6 shows micrographs of meibomian lipid films. Micrographs comparing the appearance of pure meibomian lipid films (Row A) with meibomian lipids mixed with the (O-oleoyl)-ω-hydroxypalmitic acid (Row B), palmityl oleate (Row C) or oleic acid (Row D) at 20° C. In each box, the surface pressure during compression of the film and the isocycle is given, e.g. 1.6iso 1 means that the pressure was 1.6 mN/m during compression inisocycle 1. The last column shows the appearance of the films at 35° C. These dark regions were all oriented in approximately the same direction, which may indicate that the film was buckling or creasing in these areas (FIG. 6 ). Although present, the spots were less pronounced after a number of isocycles and it appeared as if the dark spots had merged or had organized differently. At 35° C., the dark spots were present but appeared larger and at higher pressure some dark lines marbling the film could be seen. When cooled back to 20° C., at lower pressures, the film had a relatively even, but mottled, appearance and this mottling was more obvious at higher pressures. Films of meibomian lipids plus either palmityl oleate or oleic acid did not appear substantially different from pure meibomian lipid films (FIG. 6 ). They showed patchiness at low pressures and these patches decreased in size at higher pressures. Although not quantitatively verified, the darker patches appeared to be more prevalent in the mixed films of palmityl oleate and oleic acid than for pure meibomian lipid films. - Despite their structural similarity to the corresponding wax esters, the data indicates that (O-oleoyl)-ω-hydroxypalmitic acid is much more surface active. The structural nature of (O-oleoyl)-ω-hydroxypalmitic acid indicates that they may be able to serve both as a surfactant and a bridge between polar and non-polar phases.
- This surface activity of (O-oleoyl)-ω-hydroxypalmitic acid is most likely a result of both the free acid group (negatively charged at neutral pH) and the polar ester bond. For wax esters, interaction with the aqueous phase is confined to the polar ester group with the acyl chains pushed above the surface to form a V shape. As the molecules are pushed together further, some leave the interface to lie above the interfacial layer into a bulk top layer. This would account for the flattening of the Π-A curve at 25 cm2-28 cm2 (
FIG. 4 ) representing an area per molecule of about 60 A2 assuming the film is a monolayer up to this point. These molecules would rearrange to form a stable non-polar phase and hence would not return to the surface. This would also account for the shift in take-off to smaller surface areas in subsequent isocycles. Although it appears as though the same might be occurring for (O-oleoyl)-ω-hydroxypalmitic acid films due to the similar flattening of their Π-A curves, the inventors believe that this is not the case. Instead, without wishing to be bound by theory, it is proposed that the (O-oleoyl)-ω-hydroxypalmitic acid, as an example of a compound of formula (I), initially interacts with the surface strongly with the carboxyl group and weakly at the ester group. Effectively, this means that one of the alkyl chains would be anchored flat on the surface and the other would be free to move above the surface. This feature is consistent with the initial large surface area per molecule compared with the wax ester. As the surface area decreases, the flexible molecules are initially forced into a structure covering less volume. It is speculated, that at a critical pressure the contact of the ester bond at the surface would be lost and the whole molecule would tilt off the aqueous surface, but still remain attached through the carboxyl group. This would be consistent with the flattening of the H-A curve during compression and is also supported if one estimates the surface area per molecule on take-off: 82 A2 per molecule, for palmityl oleate films, and 131 A2 per molecule for a (O-oleoyl)-ω-hydroxypalmitic acid film. At still smaller surface areas, the (O-oleoyl)-ω-hydroxypalmitic acid film Π-A profile again becomes steeper, which is consistent with the (O-oleoyl)-ω-hydroxypalmitic acid molecules being attached to the surface at their carboxyl group and being compressed laterally, tilting the molecules vertically upwards relative to the surface. In any case, this feature of the (O-oleoyl)-ω-hydroxypalmitic acid derived films and the ability to take up a normal (right angle) orientation from the surface would give these molecules the capacity to form a bridge between the aqueous and outer bulk layer. - There was a marked similarity in appearance of the films seeded with palmityl oleate and oleic acid and meibomian lipid films alone there were no obvious structural changes that corresponded to the increase in Πmax for the palmityl oleate mixed film or for the decrease in Πmax for the oleic acid mixed film during the course of a number of isocycles. In contrast, there was a marked structural change to the films containing (O-oleoyl)-ω-hydroxypalmitic acid. The regularity of the size and spacing of the dark spots is reminiscent of liquid condensed phases reported in films of dipalmityl phosphate (Hiranita H, Nakamura S, Kawachi M, Courrier H M, Vandamme T F, Krafft M P,
Shibata 0, 2003, “Miscibility behavior of dipalmitoylphosphatidylcholine with a single-chain partially fluorinated amphiphile in Langmuir monolayers”, J. Coll. Inter. Sci. 265: 83-92). Also striking of the films containing the (O-oleoyl)-ω-hydroxypalmitic acid was a more even and homogenous appearance of these films compared with the other films. This could be due to the interaction of the surfactant with both the surface and the bulk hydrophobic phase. This would imply the absence of discretely definable layers in the film. Such an idea is indeed supported by the inventors' own observations that thinly spread meibum in its liquid expanded phase can be seen as a polar surfactant layer with a thickness of several molecules in length (5 nm) which is possibly made from (O-acyl)-ω-hydroxy fatty acid already mixed with significant amounts of non-polar component of the meibum, like cholesterol esters and wax esters. Since multilayered film structures based on non-polar molecules on top of a polar surface are energetically unstable and tend to form aggregates like lenses and droplets, one function of the compound of formula (I) (of which (O-oleoyl)-ω-hydroxypalmitic acid is a member) could be to stabilise this multilayered arrangement found for meibomian films and tears. - In conclusion, the data in this Example is consistent with compounds of formula (I) helping the meibomian film to maintain a balance between polar and non-polar layers of the TFLL, which in turn helps to stabilise/buffer the system during spreading and pressure stress such as blinking. Thus, compounds of formula (I) could be used in an artificial tear formulation to stabilize the disrupted tear film of patients suffering from dry eye and related ailments.
- In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word “comprise” or variations such as “comprises” or “comprising” is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.
Claims (8)
1.-24. (canceled)
25. An ophthalmic formulation comprising a compound of formula (I):
26. An ophthalmic formulation according to claim 25 , wherein HOOC—R1— is selected from the group consisting of: capryl (C10:0), lauryl (C12:0), myristyl (C14:0), palmityl (C16:0), stearyl (C18:0), oleoyl (C18:1), linoleoyl (ω6) (C18:2), and linoleoyl (ω3) (C18:3).
27. An ophthalmic formulation according to claim 26 , wherein R2 is linear or branched C17 alkyl or linear or branched C17 alkenyl with 1 or 2 double bonds.
28. An ophthalmic formulation according to claim 26 , wherein R2 is linear or branched C19 alkenyl with 4 double bonds.
30. A method for the treatment of dry eye comprising topically administering to the eye of a subject in need thereof a therapeutically effective amount of a compound according to claim 29 .
31. Use of a compound of formula (I) as defined in claim 25 in the manufacture of an ophthalmic formulation for the treatment of dry eye.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/318,581 US20210403410A1 (en) | 2011-12-23 | 2021-05-12 | Ophthalmic formulation |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2011905421A AU2011905421A0 (en) | 2011-12-23 | Ophthalmic Formulation | |
AU2011905421 | 2011-12-23 | ||
PCT/AU2012/001595 WO2013091020A2 (en) | 2011-12-23 | 2012-12-21 | Ophthalmic formulation |
US201414367836A | 2014-06-20 | 2014-06-20 | |
US16/515,387 US20200190015A1 (en) | 2011-12-23 | 2019-07-18 | Ophthalmic formulation |
US17/318,581 US20210403410A1 (en) | 2011-12-23 | 2021-05-12 | Ophthalmic formulation |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/515,387 Continuation US20200190015A1 (en) | 2011-12-23 | 2019-07-18 | Ophthalmic formulation |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/608,522 Continuation US20240368069A1 (en) | 2011-12-23 | 2024-03-18 | Ophthalmic formulation |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210403410A1 true US20210403410A1 (en) | 2021-12-30 |
Family
ID=48669621
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/367,836 Active US10385003B2 (en) | 2011-12-23 | 2012-12-21 | Ophthalmic formulation |
US16/515,387 Abandoned US20200190015A1 (en) | 2011-12-23 | 2019-07-18 | Ophthalmic formulation |
US17/318,581 Abandoned US20210403410A1 (en) | 2011-12-23 | 2021-05-12 | Ophthalmic formulation |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/367,836 Active US10385003B2 (en) | 2011-12-23 | 2012-12-21 | Ophthalmic formulation |
US16/515,387 Abandoned US20200190015A1 (en) | 2011-12-23 | 2019-07-18 | Ophthalmic formulation |
Country Status (21)
Country | Link |
---|---|
US (3) | US10385003B2 (en) |
EP (2) | EP2794550B1 (en) |
JP (1) | JP6087374B2 (en) |
KR (3) | KR102291754B1 (en) |
CN (1) | CN104271548B (en) |
AU (1) | AU2012318266B2 (en) |
BR (1) | BR112014015430B1 (en) |
CA (1) | CA2859997C (en) |
CO (1) | CO7101242A2 (en) |
DK (1) | DK2794550T3 (en) |
ES (1) | ES2716806T3 (en) |
HK (1) | HK1203480A1 (en) |
HU (1) | HUE042760T2 (en) |
MX (1) | MX364693B (en) |
PL (1) | PL2794550T3 (en) |
PT (1) | PT2794550T (en) |
RU (1) | RU2625301C2 (en) |
SI (1) | SI2794550T1 (en) |
TR (1) | TR201902752T4 (en) |
WO (1) | WO2013091020A2 (en) |
ZA (1) | ZA201404642B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112014015430B1 (en) * | 2011-12-23 | 2022-03-03 | Western Sydney University | Compounds, ophthalmic formulations and their uses |
EP3644966A4 (en) * | 2017-06-29 | 2021-03-24 | Advaite LLC | Treatment and diagnosis of ocular surface disorders |
NO345574B1 (en) * | 2018-06-19 | 2021-04-26 | Epax Norway As | Composition for treatment of dry eye disease and meibomianitis |
JP2024518350A (en) * | 2021-04-30 | 2024-05-01 | ヘルシンギン ユリオピスト | Specific combinations of lipids and related methods and uses |
CN115607534A (en) * | 2021-07-16 | 2023-01-17 | 云南拜奥泰克生物技术有限责任公司 | MLCT (MLCT computed tomography) substituted meibomian oil and preparation method thereof |
FI20225982A1 (en) * | 2022-11-02 | 2024-05-03 | Univ Helsinki | New formulations |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080312194A1 (en) * | 2007-02-28 | 2008-12-18 | Ousler Iii George W | Methods and compositions for normalizing meibomian gland secretions |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2855047B1 (en) * | 2003-05-19 | 2007-11-30 | Oreal | COMPOSITION COMPRISING A SPHINGOID BASE, AN ACTIVATOR OF THE 4-AND / OR 6-HYDROXYLASE PATHWAY AND A FATTY ACID, USE FOR ENHANCING THE BARRIER FUNCTION OF THE SKIN |
US8455016B2 (en) * | 2004-03-12 | 2013-06-04 | Melbj Holdings, Llc | Treatment for meibomian gland dysfunction or obstruction |
US8569367B2 (en) * | 2004-11-16 | 2013-10-29 | Allergan, Inc. | Ophthalmic compositions and methods for treating eyes |
IT1393419B1 (en) | 2009-03-19 | 2012-04-20 | Medivis S R L | OPHTHALMIC COMPOSITIONS OF OMEGA-3 AND OMEGA-6 POLYSATURATED FATTY ACIDS. |
BR112014015430B1 (en) | 2011-12-23 | 2022-03-03 | Western Sydney University | Compounds, ophthalmic formulations and their uses |
-
2012
- 2012-12-21 BR BR112014015430-9A patent/BR112014015430B1/en active IP Right Grant
- 2012-12-21 KR KR1020207004568A patent/KR102291754B1/en active IP Right Grant
- 2012-12-21 AU AU2012318266A patent/AU2012318266B2/en active Active
- 2012-12-21 ES ES12860686T patent/ES2716806T3/en active Active
- 2012-12-21 PT PT12860686T patent/PT2794550T/en unknown
- 2012-12-21 TR TR2019/02752T patent/TR201902752T4/en unknown
- 2012-12-21 SI SI201231543T patent/SI2794550T1/en unknown
- 2012-12-21 PL PL12860686T patent/PL2794550T3/en unknown
- 2012-12-21 KR KR1020147020528A patent/KR102080951B1/en active IP Right Grant
- 2012-12-21 EP EP12860686.0A patent/EP2794550B1/en active Active
- 2012-12-21 RU RU2014129437A patent/RU2625301C2/en active
- 2012-12-21 KR KR1020217025498A patent/KR20210104916A/en not_active Application Discontinuation
- 2012-12-21 US US14/367,836 patent/US10385003B2/en active Active
- 2012-12-21 MX MX2014007629A patent/MX364693B/en active IP Right Grant
- 2012-12-21 HU HUE12860686A patent/HUE042760T2/en unknown
- 2012-12-21 DK DK12860686.0T patent/DK2794550T3/en active
- 2012-12-21 JP JP2014547635A patent/JP6087374B2/en active Active
- 2012-12-21 EP EP18187476.9A patent/EP3459929A1/en active Pending
- 2012-12-21 WO PCT/AU2012/001595 patent/WO2013091020A2/en active Application Filing
- 2012-12-21 CA CA2859997A patent/CA2859997C/en active Active
- 2012-12-21 CN CN201280069966.XA patent/CN104271548B/en active Active
-
2014
- 2014-06-24 ZA ZA2014/04642A patent/ZA201404642B/en unknown
- 2014-07-22 CO CO14158909A patent/CO7101242A2/en unknown
-
2015
- 2015-04-22 HK HK15103880.0A patent/HK1203480A1/en unknown
-
2019
- 2019-07-18 US US16/515,387 patent/US20200190015A1/en not_active Abandoned
-
2021
- 2021-05-12 US US17/318,581 patent/US20210403410A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080312194A1 (en) * | 2007-02-28 | 2008-12-18 | Ousler Iii George W | Methods and compositions for normalizing meibomian gland secretions |
Non-Patent Citations (1)
Title |
---|
Lam et al (PLoS ONE, October 2011, 6(10), 1-13) (Year: 2011) * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210403410A1 (en) | Ophthalmic formulation | |
US10363314B2 (en) | Sprayable topical carrier and composition comprising phosphatidylcholine | |
US9089480B2 (en) | Anionic oil-in-water emulsions containing prostaglandins and uses thereof | |
US20240368069A1 (en) | Ophthalmic formulation | |
JP5722803B2 (en) | Cationic oil-in-water emulsions containing prostaglandins and their use | |
WO2020180249A1 (en) | Therapy for dry eye (de) and meibomian gland dysfunction (mgd) based on the replacement of o-acyl-ω-hydroxy fatty acids (oahfa) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |