US20210400235A1 - Proactive In-Call Content Recommendations for Assistant Systems - Google Patents
Proactive In-Call Content Recommendations for Assistant Systems Download PDFInfo
- Publication number
- US20210400235A1 US20210400235A1 US17/465,159 US202117465159A US2021400235A1 US 20210400235 A1 US20210400235 A1 US 20210400235A1 US 202117465159 A US202117465159 A US 202117465159A US 2021400235 A1 US2021400235 A1 US 2021400235A1
- Authority
- US
- United States
- Prior art keywords
- user
- particular embodiments
- client
- content items
- video call
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 claims abstract description 171
- 230000004044 response Effects 0.000 claims description 70
- 230000015654 memory Effects 0.000 claims description 47
- 238000003860 storage Methods 0.000 claims description 31
- 230000003993 interaction Effects 0.000 claims description 19
- 230000009471 action Effects 0.000 description 89
- 230000008569 process Effects 0.000 description 77
- 239000013598 vector Substances 0.000 description 60
- 239000003795 chemical substances by application Substances 0.000 description 48
- 238000004891 communication Methods 0.000 description 40
- 230000000875 corresponding effect Effects 0.000 description 38
- 230000006870 function Effects 0.000 description 36
- 238000012549 training Methods 0.000 description 18
- 238000001514 detection method Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 16
- 238000010801 machine learning Methods 0.000 description 13
- 230000000007 visual effect Effects 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 12
- 238000013528 artificial neural network Methods 0.000 description 10
- 230000033001 locomotion Effects 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 230000005236 sound signal Effects 0.000 description 10
- 230000004913 activation Effects 0.000 description 9
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 8
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 238000013475 authorization Methods 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 7
- 238000005457 optimization Methods 0.000 description 7
- 239000004984 smart glass Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000019771 cognition Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000000116 mitigating effect Effects 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 230000001073 episodic memory Effects 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 235000019580 granularity Nutrition 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000003058 natural language processing Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000003997 social interaction Effects 0.000 description 3
- 230000001755 vocal effect Effects 0.000 description 3
- 238000005352 clarification Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000012015 optical character recognition Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 238000013515 script Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000002939 conjugate gradient method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 235000013550 pizza Nutrition 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/14—Systems for two-way working
- H04N7/141—Systems for two-way working between two video terminals, e.g. videophone
- H04N7/147—Communication arrangements, e.g. identifying the communication as a video-communication, intermediate storage of the signals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9536—Search customisation based on social or collaborative filtering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/1066—Session management
- H04L65/1069—Session establishment or de-establishment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/1066—Session management
- H04L65/1083—In-session procedures
- H04L65/1089—In-session procedures by adding media; by removing media
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/40—Support for services or applications
- H04L65/401—Support for services or applications wherein the services involve a main real-time session and one or more additional parallel real-time or time sensitive sessions, e.g. white board sharing or spawning of a subconference
- H04L65/4015—Support for services or applications wherein the services involve a main real-time session and one or more additional parallel real-time or time sensitive sessions, e.g. white board sharing or spawning of a subconference where at least one of the additional parallel sessions is real time or time sensitive, e.g. white board sharing, collaboration or spawning of a subconference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/14—Systems for two-way working
- H04N7/15—Conference systems
- H04N7/152—Multipoint control units therefor
Definitions
- This disclosure generally relates to databases and file management within network environments, and in particular relates to hardware and software for smart assistant systems.
- An assistant system can provide information or services on behalf of a user based on a combination of user input, location awareness, and the ability to access information from a variety of online sources (such as weather conditions, traffic congestion, news, stock prices, user schedules, retail prices, etc.).
- the user input may include text (e.g., online chat), especially in an instant messaging application or other applications, voice, images, motion, or a combination of them.
- the assistant system may perform concierge-type services (e.g., making dinner reservations, purchasing event tickets, making travel arrangements) or provide information based on the user input.
- the assistant system may also perform management or data-handling tasks based on online information and events without user initiation or interaction.
- Examples of those tasks that may be performed by an assistant system may include schedule management (e.g., sending an alert to a dinner date that a user is running late due to traffic conditions, update schedules for both parties, and change the restaurant reservation time).
- schedule management e.g., sending an alert to a dinner date that a user is running late due to traffic conditions, update schedules for both parties, and change the restaurant reservation time.
- the assistant system may be enabled by the combination of computing devices, application programming interfaces (APIs), and the proliferation of applications on user devices.
- APIs application programming interfaces
- a social-networking system which may include a social-networking website, may enable its users (such as persons or organizations) to interact with it and with each other through it.
- the social-networking system may, with input from a user, create and store in the social-networking system a user profile associated with the user.
- the user profile may include demographic information, communication-channel information, and information on personal interests of the user.
- the social-networking system may also, with input from a user, create and store a record of relationships of the user with other users of the social-networking system, as well as provide services (e.g. profile/news feed posts, photo-sharing, event organization, messaging, games, or advertisements) to facilitate social interaction between or among users.
- services e.g. profile/news feed posts, photo-sharing, event organization, messaging, games, or advertisements
- the social-networking system may send over one or more networks content or messages related to its services to a mobile or other computing device of a user.
- a user may also install software applications on a mobile or other computing device of the user for accessing a user profile of the user and other data within the social-networking system.
- the social-networking system may generate a personalized set of content objects to display to a user, such as a newsfeed of aggregated stories of other users connected to the user.
- the assistant system may assist a user to obtain information or services.
- the assistant system may enable the user to interact with it with multi-modal user input (such as voice, text, image, video, motion) in stateful and multi-turn conversations to get assistance.
- multi-modal user input such as voice, text, image, video, motion
- the assistant system may support both audio (verbal) input and nonverbal input, such as vision, location, gesture, motion, or hybrid/multi-modal input.
- the assistant system may create and store a user profile comprising both personal and contextual information associated with the user.
- the assistant system may analyze the user input using natural-language understanding. The analysis may be based on the user profile of the user for more personalized and context-aware understanding.
- the assistant system may resolve entities associated with the user input based on the analysis.
- the assistant system may interact with different agents to obtain information or services that are associated with the resolved entities.
- the assistant system may generate a response for the user regarding the information or services by using natural-language generation.
- the assistant system may use dialog-management techniques to manage and advance the conversation flow with the user.
- the assistant system may further assist the user to effectively and efficiently digest the obtained information by summarizing the information.
- the assistant system may also assist the user to be more engaging with an online social network by providing tools that help the user interact with the online social network (e.g., creating posts, comments, messages).
- the assistant system may additionally assist the user to manage different tasks such as keeping track of events.
- the assistant system may proactively execute, without a user input, tasks that are relevant to user interests and preferences based on the user profile, at a time relevant for the user.
- the assistant system may check privacy settings to ensure that accessing a user's profile or other user information and executing different tasks are permitted subject to the user's privacy settings.
- the assistant system may assist the user via a hybrid architecture built upon both client-side processes and server-side processes.
- the client-side processes and the server-side processes may be two parallel workflows for processing a user input and providing assistance to the user.
- the client-side processes may be performed locally on a client system associated with a user.
- the server-side processes may be performed remotely on one or more computing systems.
- an arbitrator on the client system may coordinate receiving user input (e.g., an audio signal), determine whether to use a client-side process, a server-side process, or both, to respond to the user input, and analyze the processing results from each process.
- the arbitrator may instruct agents on the client-side or server-side to execute tasks associated with the user input based on the aforementioned analyses.
- the execution results may be further rendered as output to the client system.
- the assistant system may provide in-call experience enhancements in which content items, such as photos, videos, posts, etc., are proactively recommended to users during a video call.
- the assistant system may identify the users in the video call (subject to privacy settings) and automatically select content items that are relevant to the users and to the context of the call, which may be then be presented on the screens of one or more of the users.
- context may include factors such as a topic of a conversation within the call or the location or scenery behind users in the call, which may be identified subject to privacy settings.
- These content items may be proactively selected and presented by the assistant system based on a recommender module within the assistant architecture that determines the most relevant content items based on the user identifiers, context, and various parameters related to the call itself.
- a recommender module within the assistant architecture that determines the most relevant content items based on the user identifiers, context, and various parameters related to the call itself.
- Such recommendations may be handled by either the server-side and/or client-side processes of the assistant system, and the recommended content items may be selected from remote and/or local data stores (subject to access settings).
- the assistant system may establish a video call between multiple client systems and determine user identifiers of users associated with the video call. The assistant system may then determine whether to provide content recommendations during the video call based on a current context of that video call, and select one or more content items to recommend based on the determined user identifiers. Finally, in response to determining to provide content recommendations during the video call, the assistant system may send, while maintaining the video call between the client systems, a first content recommendation with the selected content items to one or more of the client systems.
- Video calls may lack a feeling of genuine social interaction, and users in the call may run out of topics to discuss or forget important topics relevant to a context of their conversation. Proactively providing content may thus guide and prolong a stalled conversation, and create a more social experience to the call.
- one technical challenge to this may include determining an appropriate time to present these content recommendations, as presenting them at an inopportune time may result in the content being unnoticed or ignored, or even distracting the users from a current topic of the conversation.
- a solution presented by embodiments disclosed herein to address this challenge may thus include monitoring the video call for particular context information that may be used to determine such an appropriate time through the use of a hybrid client-side and server-side assistant system.
- Another technical challenge may include determining appropriate users in the video call to actually deliver content recommendations to, as certain users may either not find the content recommendations helpful or may even ignore them altogether.
- a solution presented by embodiments disclosed herein to address this challenge may thus involve the selection of particular users based on various information ascertained during the call, such as the context information, privacy settings and user preferences, significant dates or subjects relating to the call, and previous interactions with various content items by one or more of the users.
- Certain embodiments disclosed herein may provide one or more technical advantages. As an example, presenting content recommendations at a particular appropriate time may guide and prolong a faltering conversation, and may further increase the likelihood that users will actively interact with recommended content. Similarly, presenting content recommendations to users with certain contexts and characteristics may attract their attention and thus increase user interaction with the content. Certain embodiments disclosed herein may provide none, some, or all of the above technical advantages. One or more other technical advantages may be readily apparent to one skilled in the art in view of the figures, descriptions, and claims of the present disclosure.
- Embodiments disclosed herein are only examples, and the scope of this disclosure is not limited to them. Particular embodiments may include all, some, or none of the components, elements, features, functions, operations, or steps of the embodiments disclosed herein.
- Embodiments according to the invention are in particular disclosed in the attached claims directed to a method, a storage medium, a system and a computer program product, wherein any feature mentioned in one claim category, e.g. method, can be claimed in another claim category, e.g. system, as well.
- the dependencies or references back in the attached claims are chosen for formal reasons only.
- any subject matter resulting from a deliberate reference back to any previous claims can be claimed as well, so that any combination of claims and the features thereof are disclosed and can be claimed regardless of the dependencies chosen in the attached claims.
- the subject-matter which can be claimed comprises not only the combinations of features as set out in the attached claims but also any other combination of features in the claims, wherein each feature mentioned in the claims can be combined with any other feature or combination of other features in the claims.
- any of the embodiments and features described or depicted herein can be claimed in a separate claim and/or in any combination with any embodiment or feature described or depicted herein or with any of the features of the attached claims.
- FIG. 1 illustrates an example network environment associated with an assistant system.
- FIG. 2 illustrates an example architecture of the assistant system.
- FIG. 3 illustrates an example diagram flow of server-side processes of the assistant system.
- FIG. 4 illustrates an example diagram flow of processing a user input by the assistant system.
- FIG. 5A illustrates an example video call between two users.
- FIG. 5B illustrates an example video call in which proactive content recommendations are presented to a first user.
- FIG. 6 illustrates an example method for providing proactive content recommendations during a video call.
- FIG. 7 illustrates an example method for determining whether to provide content recommendations based on a current context of the video call.
- FIG. 8A illustrates an example method for determining a current context of the video call based on a request sent from a client system of one of the users of the video call.
- FIG. 8B illustrates an example method for determining a current context of the video call by actively monitoring the video call, and then selecting particular users to receive content recommendations.
- FIG. 9 illustrates an example social graph.
- FIG. 10 illustrates an example view of an embedding space.
- FIG. 11 illustrates an example artificial neural network.
- FIG. 12 illustrates an example computer system.
- FIG. 1 illustrates an example network environment 100 associated with an assistant system.
- Network environment 100 includes a client system 130 , an assistant system 140 , a social-networking system 160 , and a third-party system 170 connected to each other by a network 110 .
- FIG. 1 illustrates a particular arrangement of a client system 130 , an assistant system 140 , a social-networking system 160 , a third-party system 170 , and a network 110
- this disclosure contemplates any suitable arrangement of a client system 130 , an assistant system 140 , a social-networking system 160 , a third-party system 170 , and a network 110 .
- two or more of a client system 130 , a social-networking system 160 , an assistant system 140 , and a third-party system 170 may be connected to each other directly, bypassing a network 110 .
- two or more of a client system 130 , an assistant system 140 , a social-networking system 160 , and a third-party system 170 may be physically or logically co-located with each other in whole or in part.
- network environment 100 may include multiple client systems 130 , assistant systems 140 , social-networking systems 160 , third-party systems 170 , and networks 110 .
- a network 110 may include any suitable network 110 .
- one or more portions of a network 110 may include an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a cellular telephone network, or a combination of two or more of these.
- a network 110 may include one or more networks 110 .
- Links 150 may connect a client system 130 , an assistant system 140 , a social-networking system 160 , and a third-party system 170 to a communication network 110 or to each other.
- This disclosure contemplates any suitable links 150 .
- one or more links 150 include one or more wireline (such as for example Digital Subscriber Line (DSL) or Data Over Cable Service Interface Specification (DOCSIS)), wireless (such as for example Wi-Fi or Worldwide Interoperability for Microwave Access (WiMAX)), or optical (such as for example Synchronous Optical Network (SONET) or Synchronous Digital Hierarchy (SDH)) links.
- wireline such as for example Digital Subscriber Line (DSL) or Data Over Cable Service Interface Specification (DOCSIS)
- wireless such as for example Wi-Fi or Worldwide Interoperability for Microwave Access (WiMAX)
- optical such as for example Synchronous Optical Network (SONET) or Synchronous Digital Hierarchy (SDH) links.
- SONET Synchronous Optical
- one or more links 150 each include an ad hoc network, an intranet, an extranet, a VPN, a LAN, a WLAN, a WAN, a WWAN, a MAN, a portion of the Internet, a portion of the PSTN, a cellular technology-based network, a satellite communications technology-based network, another link 150 , or a combination of two or more such links 150 .
- Links 150 need not necessarily be the same throughout a network environment 100 .
- One or more first links 150 may differ in one or more respects from one or more second links 150 .
- a client system 130 may be an electronic device including hardware, software, or embedded logic components or a combination of two or more such components and capable of carrying out the appropriate functionalities implemented or supported by a client system 130 .
- a client system 130 may include a computer system such as a desktop computer, notebook or laptop computer, netbook, a tablet computer, e-book reader, GPS device, camera, personal digital assistant (PDA), handheld electronic device, cellular telephone, smartphone, smart speaker, virtual reality (VR) headset, augment reality (AR) smart glasses, other suitable electronic device, or any suitable combination thereof.
- the client system 130 may be a smart assistant device. More information on smart assistant devices may be found in U.S.
- a client system 130 may enable a network user at a client system 130 to access a network 110 .
- a client system 130 may enable its user to communicate with other users at other client systems 130 .
- a client system 130 may include a web browser 132 , and may have one or more add-ons, plug-ins, or other extensions.
- a user at a client system 130 may enter a Uniform Resource Locator (URL) or other address directing a web browser 132 to a particular server (such as server 162 , or a server associated with a third-party system 170 ), and the web browser 132 may generate a Hyper Text Transfer Protocol (HTTP) request and communicate the HTTP request to server.
- the server may accept the HTTP request and communicate to a client system 130 one or more Hyper Text Markup Language (HTML) files responsive to the HTTP request.
- the client system 130 may render a web interface (e.g.
- a webpage based on the HTML files from the server for presentation to the user.
- This disclosure contemplates any suitable source files.
- a web interface may be rendered from HTML files, Extensible Hyper Text Markup Language (XHTML) files, or Extensible Markup Language (XML) files, according to particular needs. Such interfaces may also execute scripts, combinations of markup language and scripts, and the like.
- reference to a web interface encompasses one or more corresponding source files (which a browser may use to render the web interface) and vice versa, where appropriate.
- a client system 130 may include a social-networking application 134 installed on the client system 130 .
- a user at a client system 130 may use the social-networking application 134 to access on online social network.
- the user at the client system 130 may use the social-networking application 134 to communicate with the user's social connections (e.g., friends, followers, followed accounts, contacts, etc.).
- the user at the client system 130 may also use the social-networking application 134 to interact with a plurality of content objects (e.g., posts, news articles, ephemeral content, etc.) on the online social network.
- the user may browse trending topics and breaking news using the social-networking application 134 .
- a client system 130 may include an assistant application 136 .
- a user at a client system 130 may use the assistant application 136 to interact with the assistant system 140 .
- the assistant application 136 may comprise a stand-alone application.
- the assistant application 136 may be integrated into the social-networking application 134 or another suitable application (e.g., a messaging application).
- the assistant application 136 may be also integrated into the client system 130 , an assistant hardware device, or any other suitable hardware devices.
- the assistant application 136 may be accessed via the web browser 132 .
- the user may provide input via different modalities.
- the modalities may include audio, text, image, video, motion, orientation, etc.
- the assistant application 136 may communicate the user input to the assistant system 140 . Based on the user input, the assistant system 140 may generate responses. The assistant system 140 may send the generated responses to the assistant application 136 . The assistant application 136 may then present the responses to the user at the client system 130 . The presented responses may be based on different modalities such as audio, text, image, and video.
- the user may verbally ask the assistant application 136 about the traffic information (i.e., via an audio modality) by speaking into a microphone of the client system 130 . The assistant application 136 may then communicate the request to the assistant system 140 . The assistant system 140 may accordingly generate a response and send it back to the assistant application 136 .
- the assistant application 136 may further present the response to the user in text and/or images on a display of the client system 130 .
- an assistant system 140 may assist users to retrieve information from different sources.
- the assistant system 140 may also assist user to request services from different service providers.
- the assist system 140 may receive a user request for information or services via the assistant application 136 in the client system 130 .
- the assist system 140 may use natural-language understanding to analyze the user request based on user's profile and other relevant information.
- the result of the analysis may comprise different entities associated with an online social network.
- the assistant system 140 may then retrieve information or request services associated with these entities.
- the assistant system 140 may interact with the social-networking system 160 and/or third-party system 170 when retrieving information or requesting services for the user.
- the assistant system 140 may generate a personalized communication content for the user using natural-language generating techniques.
- the personalized communication content may comprise, for example, the retrieved information or the status of the requested services.
- the assistant system 140 may enable the user to interact with it regarding the information or services in a stateful and multi-turn conversation by using dialog-management techniques. The functionality of the assistant system 140 is described in more detail in the discussion of FIG. 2 below.
- the social-networking system 160 may be a network-addressable computing system that can host an online social network.
- the social-networking system 160 may generate, store, receive, and send social-networking data, such as, for example, user profile data, concept-profile data, social-graph information, or other suitable data related to the online social network.
- the social-networking system 160 may be accessed by the other components of network environment 100 either directly or via a network 110 .
- a client system 130 may access the social-networking system 160 using a web browser 132 , or a native application associated with the social-networking system 160 (e.g., a mobile social-networking application, a messaging application, another suitable application, or any combination thereof) either directly or via a network 110 .
- the social-networking system 160 may include one or more servers 162 .
- Each server 162 may be a unitary server or a distributed server spanning multiple computers or multiple datacenters.
- Servers 162 may be of various types, such as, for example and without limitation, web server, news server, mail server, message server, advertising server, file server, application server, exchange server, database server, proxy server, another server suitable for performing functions or processes described herein, or any combination thereof.
- each server 162 may include hardware, software, or embedded logic components or a combination of two or more such components for carrying out the appropriate functionalities implemented or supported by server 162 .
- the social-networking system 160 may include one or more data stores 164 . Data stores 164 may be used to store various types of information. In particular embodiments, the information stored in data stores 164 may be organized according to specific data structures.
- each data store 164 may be a relational, columnar, correlation, or other suitable database.
- this disclosure describes or illustrates particular types of databases, this disclosure contemplates any suitable types of databases.
- Particular embodiments may provide interfaces that enable a client system 130 , a social-networking system 160 , an assistant system 140 , or a third-party system 170 to manage, retrieve, modify, add, or delete, the information stored in data store 164 .
- the social-networking system 160 may store one or more social graphs in one or more data stores 164 .
- a social graph may include multiple nodes—which may include multiple user nodes (each corresponding to a particular user) or multiple concept nodes (each corresponding to a particular concept)—and multiple edges connecting the nodes.
- the social-networking system 160 may provide users of the online social network the ability to communicate and interact with other users.
- users may join the online social network via the social-networking system 160 and then add connections (e.g., relationships) to a number of other users of the social-networking system 160 whom they want to be connected to.
- the term “friend” may refer to any other user of the social-networking system 160 with whom a user has formed a connection, association, or relationship via the social-networking system 160 .
- the social-networking system 160 may provide users with the ability to take actions on various types of items or objects, supported by the social-networking system 160 .
- the items and objects may include groups or social networks to which users of the social-networking system 160 may belong, events or calendar entries in which a user might be interested, computer-based applications that a user may use, transactions that allow users to buy or sell items via the service, interactions with advertisements that a user may perform, or other suitable items or objects.
- a user may interact with anything that is capable of being represented in the social-networking system 160 or by an external system of a third-party system 170 , which is separate from the social-networking system 160 and coupled to the social-networking system 160 via a network 110 .
- the social-networking system 160 may be capable of linking a variety of entities.
- the social-networking system 160 may enable users to interact with each other as well as receive content from third-party systems 170 or other entities, or to allow users to interact with these entities through an application programming interfaces (API) or other communication channels.
- API application programming interfaces
- a third-party system 170 may include one or more types of servers, one or more data stores, one or more interfaces, including but not limited to APIs, one or more web services, one or more content sources, one or more networks, or any other suitable components, e.g., that servers may communicate with.
- a third-party system 170 may be operated by a different entity from an entity operating the social-networking system 160 .
- the social-networking system 160 and third-party systems 170 may operate in conjunction with each other to provide social-networking services to users of the social-networking system 160 or third-party systems 170 .
- the social-networking system 160 may provide a platform, or backbone, which other systems, such as third-party systems 170 , may use to provide social-networking services and functionality to users across the Internet.
- a third-party system 170 may include a third-party content object provider.
- a third-party content object provider may include one or more sources of content objects, which may be communicated to a client system 130 .
- content objects may include information regarding things or activities of interest to the user, such as, for example, movie show times, movie reviews, restaurant reviews, restaurant menus, product information and reviews, or other suitable information.
- content objects may include incentive content objects, such as coupons, discount tickets, gift certificates, or other suitable incentive objects.
- a third-party content provider may use one or more third-party agents to provide content objects and/or services.
- a third-party agent may be an implementation that is hosted and executing on the third-party system 170 .
- the social-networking system 160 also includes user-generated content objects, which may enhance a user's interactions with the social-networking system 160 .
- User-generated content may include anything a user can add, upload, send, or “post” to the social-networking system 160 .
- Posts may include data such as status updates or other textual data, location information, photos, videos, links, music or other similar data or media.
- Content may also be added to the social-networking system 160 by a third-party through a “communication channel,” such as a newsfeed or stream.
- the social-networking system 160 may include a variety of servers, sub-systems, programs, modules, logs, and data stores.
- the social-networking system 160 may include one or more of the following: a web server, action logger, API-request server, relevance-and-ranking engine, content-object classifier, notification controller, action log, third-party-content-object-exposure log, inference module, authorization/privacy server, search module, advertisement-targeting module, user-interface module, user-profile store, connection store, third-party content store, or location store.
- the social-networking system 160 may also include suitable components such as network interfaces, security mechanisms, load balancers, failover servers, management-and-network-operations consoles, other suitable components, or any suitable combination thereof.
- the social-networking system 160 may include one or more user-profile stores for storing user profiles.
- a user profile may include, for example, biographic information, demographic information, behavioral information, social information, or other types of descriptive information, such as work experience, educational history, hobbies or preferences, interests, affinities, or location.
- Interest information may include interests related to one or more categories. Categories may be general or specific.
- a connection store may be used for storing connection information about users.
- the connection information may indicate users who have similar or common work experience, group memberships, hobbies, educational history, or are in any way related or share common attributes.
- the connection information may also include user-defined connections between different users and content (both internal and external).
- a web server may be used for linking the social-networking system 160 to one or more client systems 130 or one or more third-party systems 170 via a network 110 .
- the web server may include a mail server or other messaging functionality for receiving and routing messages between the social-networking system 160 and one or more client systems 130 .
- An API-request server may allow, for example, an assistant system 140 or a third-party system 170 to access information from the social-networking system 160 by calling one or more APIs.
- An action logger may be used to receive communications from a web server about a user's actions on or off the social-networking system 160 .
- a third-party-content-object log may be maintained of user exposures to third-party-content objects.
- a notification controller may provide information regarding content objects to a client system 130 . Information may be pushed to a client system 130 as notifications, or information may be pulled from a client system 130 responsive to a request received from a client system 130 .
- Authorization servers may be used to enforce one or more privacy settings of the users of the social-networking system 160 .
- a privacy setting of a user determines how particular information associated with a user can be shared.
- the authorization server may allow users to opt in to or opt out of having their actions logged by the social-networking system 160 or shared with other systems (e.g., a third-party system 170 ), such as, for example, by setting appropriate privacy settings.
- Third-party-content-object stores may be used to store content objects received from third parties, such as a third-party system 170 .
- Location stores may be used for storing location information received from client systems 130 associated with users.
- Advertisement-pricing modules may combine social information, the current time, location information, or other suitable information to provide relevant advertisements, in the form of notifications, to a user.
- FIG. 2 illustrates an example architecture 200 of an assistant system 140 .
- the assistant system 140 may assist a user to obtain information or services.
- the assistant system 140 may enable the user to interact with it with multi-modal user input (such as voice, text, image, video, motion) in stateful and multi-turn conversations to get assistance.
- multi-modal user input such as voice, text, image, video, motion
- the assistant system 140 may support both audio input (verbal) and nonverbal input, such as vision, location, gesture, motion, or hybrid/multi-modal input.
- the assistant system 140 may create and store a user profile comprising both personal and contextual information associated with the user.
- the assistant system 140 may analyze the user input using natural-language understanding.
- the analysis may be based on the user profile of the user for more personalized and context-aware understanding.
- the assistant system 140 may resolve entities associated with the user input based on the analysis.
- the assistant system 140 may interact with different agents to obtain information or services that are associated with the resolved entities.
- the assistant system 140 may generate a response for the user regarding the information or services by using natural-language generation.
- the assistant system 140 may use dialog management techniques to manage and forward the conversation flow with the user.
- the assistant system 140 may further assist the user to effectively and efficiently digest the obtained information by summarizing the information.
- the assistant system 140 may also assist the user to be more engaging with an online social network by providing tools that help the user interact with the online social network (e.g., creating posts, comments, messages).
- the assistant system 140 may additionally assist the user to manage different tasks such as keeping track of events.
- the assistant system 140 may proactively execute, without a user input, pre-authorized tasks that are relevant to user interests and preferences based on the user profile, at a time relevant for the user.
- the assistant system 140 may check privacy settings to ensure that accessing a user's profile or other user information and executing different tasks are permitted subject to the user's privacy settings. More information on assisting users subject to privacy settings may be found in U.S.
- the assistant system 140 may assist the user via a hybrid architecture built upon both client-side processes and server-side processes.
- the client-side processes and the server-side processes may be two parallel workflows for processing a user input and providing assistances to the user.
- the client-side processes may be performed locally on a client system 130 associated with a user.
- the server-side processes may be performed remotely on one or more computing systems.
- an assistant orchestrator on the client system 130 may coordinate receiving user input (e.g., audio signal) and determine whether to use client-side processes, server-side processes, or both, to respond to the user input.
- a dialog arbitrator may analyze the processing results from each process.
- the dialog arbitrator may instruct agents on the client-side or server-side to execute tasks associated with the user input based on the aforementioned analyses.
- the execution results may be further rendered as output to the client system 130 .
- the assistant system 140 can effectively assist a user with optimal usage of computing resources while at the same time protecting user privacy and enhancing security.
- the assistant system 140 may receive a user input from a client system 130 associated with the user.
- the user input may be a user-generated input that is sent to the assistant system 140 in a single turn.
- the user input may be verbal, nonverbal, or a combination thereof.
- the nonverbal user input may be based on the user's voice, vision, location, activity, gesture, motion, or a combination thereof. If the user input is based on the user's voice (e.g., the user may speak to the client system 130 ), such user input may be first processed by a system audio API 202 (application programming interface).
- the system audio API 202 may conduct echo cancellation, noise removal, beam forming, and self-user voice activation, speaker identification, voice activity detection (VAD), and any other acoustic techniques to generate audio data that is readily processable by the assistant system 140 .
- the system audio API 202 may perform wake-word detection 204 from the user input.
- a wake-word may be “hey assistant”. If such wake-word is detected, the assistant system 140 may be activated accordingly.
- the user may activate the assistant system 140 via a visual signal without a wake-word.
- the visual signal may be received at a low-power sensor (e.g., a camera) that can detect various visual signals.
- the visual signal may be a barcode, a QR code or a universal product code (UPC) detected by the client system 130 .
- the visual signal may be the user's gaze at an object.
- the visual signal may be a user gesture, e.g., the user pointing at an object.
- the audio data from the system audio API 202 may be sent to an assistant orchestrator 206 .
- the assistant orchestrator 206 may be executing on the client system 130 .
- the assistant orchestrator 206 may determine whether to respond to the user input by using client-side processes, server-side processes, or both. As indicated in FIG. 2 , the client-side processes are illustrated below the dashed line 207 whereas the server-side processes are illustrated above the dashed line 207 .
- the assistant orchestrator 206 may also determine to respond to the user input by using both the client-side processes and the server-side processes simultaneously.
- FIG. 2 illustrates the assistant orchestrator 206 as being a client-side process, the assistant orchestrator 206 may be a server-side process or may be a hybrid process split between client- and server-side processes.
- the server-side processes may be as follows after audio data is generated from the system audio API 202 .
- the assistant orchestrator 206 may send the audio data to a remote computing system that hosts different modules of the assistant system 140 to respond to the user input.
- the audio data may be received at a remote automatic speech recognition (ASR) module 208 a .
- ASR remote automatic speech recognition
- the ASR module 208 a may allow a user to dictate and have speech transcribed as written text, have a document synthesized as an audio stream, or issue commands that are recognized as such by the system.
- the ASR module 208 a may use statistical models to determine the most likely sequences of words that correspond to a given portion of speech received by the assistant system 140 as audio input.
- the models may include one or more of hidden Markov models, neural networks, deep learning models, or any combination thereof.
- the received audio input may be encoded into digital data at a particular sampling rate (e.g., 16, 44.1, or 96 kHz) and with a particular number of bits representing each sample (e.g., 8, 16, of 24 bits).
- the ASR module 208 a may comprise different components.
- the ASR module 208 a may comprise one or more of a grapheme-to-phoneme (G2P) model, a pronunciation learning model, a personalized acoustic model, a personalized language model (PLM), or an end-pointing model.
- G2P model may be used to determine a user's grapheme-to-phoneme style, e.g., what it may sound like when a particular user speaks a particular word.
- the personalized acoustic model may be a model of the relationship between audio signals and the sounds of phonetic units in the language. Therefore, such personalized acoustic model may identify how a user's voice sounds.
- the personalized acoustical model may be generated using training data such as training speech received as audio input and the corresponding phonetic units that correspond to the speech.
- the personalized acoustical model may be trained or refined using the voice of a particular user to recognize that user's speech.
- the personalized language model may then determine the most likely phrase that corresponds to the identified phonetic units for a particular audio input.
- the personalized language model may be a model of the probabilities that various word sequences may occur in the language.
- the sounds of the phonetic units in the audio input may be matched with word sequences using the personalized language model, and greater weights may be assigned to the word sequences that are more likely to be phrases in the language.
- the word sequence having the highest weight may be then selected as the text that corresponds to the audio input.
- the personalized language model may be also used to predict what words a user is most likely to say given a context.
- the end-pointing model may detect when the end of an utterance is reached.
- the output of the ASR module 208 a may be sent to a remote natural-language understanding (NLU) module 210 a .
- the NLU module 210 a may perform named entity resolution (NER).
- NER named entity resolution
- the NLU module 210 a may additionally consider contextual information when analyzing the user input.
- an intent and/or a slot may be an output of the NLU module 210 a .
- An intent may be an element in a pre-defined taxonomy of semantic intentions, which may indicate a purpose of a user interacting with the assistant system 140 .
- the NLU module 210 a may classify a user input into a member of the pre-defined taxonomy, e.g., for the input “Play Beethoven's 5th,” the NLU module 210 a may classify the input as having the intent [IN:play music].
- a domain may denote a social context of interaction, e.g., education, or a namespace for a set of intents, e.g., music.
- a slot may be a named sub-string corresponding to a character string within the user input, representing a basic semantic entity. For example, a slot for “pizza” may be [SL:dish].
- a set of valid or expected named slots may be conditioned on the classified intent.
- a valid slot may be [SL:song_name].
- the NLU module 210 a may additionally extract information from one or more of a social graph, a knowledge graph, or a concept graph, and retrieve a user's profile from one or more remote data stores 212 .
- the NLU module 210 a may further process information from these different sources by determining what information to aggregate, annotating n-grams of the user input, ranking the n-grams with confidence scores based on the aggregated information, and formulating the ranked n-grams into features that can be used by the NLU module 210 a for understanding the user input.
- the NLU module 210 a may identify one or more of a domain, an intent, or a slot from the user input in a personalized and context-aware manner.
- a user input may comprise “show me how to get to the coffee shop”.
- the NLU module 210 a may identify the particular coffee shop that the user wants to go based on the user's personal information and the associated contextual information.
- the NLU module 210 a may comprise a lexicon of a particular language and a parser and grammar rules to partition sentences into an internal representation.
- the NLU module 210 a may also comprise one or more programs that perform naive semantics or stochastic semantic analysis to the use of pragmatics to understand a user input.
- the parser may be based on a deep learning architecture comprising multiple long-short term memory (LSTM) networks.
- the parser may be based on a recurrent neural network grammar (RNNG) model, which is a type of recurrent and recursive LSTM algorithm. More information on natural-language understanding may be found in U.S. patent application Ser. No. 16/011,062, filed 18 Jun. 2018, U.S. patent application Ser. No. 16/025,317, filed 2 Jul. 2018, and U.S. patent application Ser. No. 16/038,120, filed 17 Jul. 2018, each of which is incorporated by reference.
- RNG recurrent neural network grammar
- the output of the NLU module 210 a may be sent to a remote reasoning module 212 a .
- the reasoning module 212 a may comprise a dialog manager and an entity resolution component.
- the dialog manager may have complex dialog logic and product-related business logic.
- the dialog manager may manage the dialog state and flow of the conversation between the user and the assistant system 140 .
- the dialog manager may additionally store previous conversations between the user and the assistant system 140 .
- the dialog manager may communicate with the entity resolution component to resolve entities associated with the one or more slots, which supports the dialog manager to advance the flow of the conversation between the user and the assistant system 140 .
- the entity resolution component may access one or more of the social graph, the knowledge graph, or the concept graph when resolving the entities.
- Entities may include, for example, unique users or concepts, each of which may have a unique identifier (ID).
- ID unique identifier
- the knowledge graph may comprise a plurality of entities.
- Each entity may comprise a single record associated with one or more attribute values.
- the particular record may be associated with a unique entity identifier.
- Each record may have diverse values for an attribute of the entity.
- Each attribute value may be associated with a confidence probability.
- a confidence probability for an attribute value represents a probability that the value is accurate for the given attribute.
- Each attribute value may be also associated with a semantic weight.
- a semantic weight for an attribute value may represent how the value semantically appropriate for the given attribute considering all the available information.
- the knowledge graph may comprise an entity of a book “BookName”, which includes information that has been extracted from multiple content sources (e.g., an online social network, online encyclopedias, book review sources, media databases, and entertainment content sources), and then deduped, resolved, and fused to generate the single unique record for the knowledge graph.
- the entity may be associated with a “fantasy” attribute value which indicates the genre of the book “BookName”. More information on the knowledge graph may be found in U.S. patent application Ser. No. 16/048,049, filed 27 Jul. 2018, and U.S. patent application Ser. No. 16/048,101, filed 27 Jul. 2018, each of which is incorporated by reference.
- the entity resolution component may check the privacy constraints to guarantee that the resolving of the entities does not violate privacy policies.
- an entity to be resolved may be another user who specifies in his/her privacy settings that his/her identity should not be searchable on the online social network, and thus the entity resolution component may not return that user's identifier in response to a request.
- the entity resolution component may therefore resolve the entities associated with the user input in a personalized, context-aware, and privacy-aware manner.
- each of the resolved entities may be associated with one or more identifiers hosted by the social-networking system 160 .
- an identifier may comprise a unique user identifier (ID) corresponding to a particular user (e.g., a unique username or user ID number).
- ID unique user identifier
- each of the resolved entities may be also associated with a confidence score. More information on resolving entities may be found in U.S. patent application Ser. No. 16/048,049, filed 27 Jul. 2018, and U.S. patent application Ser. No. 16/048,072, filed 27 Jul. 2018, each of which is incorporated by reference.
- the dialog manager may conduct dialog optimization and assistant state tracking.
- Dialog optimization is the problem of using data to understand what the most likely branching in a dialog should be.
- the assistant system 140 may not need to confirm who a user wants to call because the assistant system 140 has high confidence that a person inferred based on dialog optimization would be very likely whom the user wants to call.
- the dialog manager may use reinforcement learning for dialog optimization.
- Assistant state tracking aims to keep track of a state that changes over time as a user interacts with the world and the assistant system 140 interacts with the user.
- assistant state tracking may track what a user is talking about, whom the user is with, where the user is, what tasks are currently in progress, and where the user's gaze is at, etc., subject to applicable privacy policies.
- the dialog manager may use a set of operators to track the dialog state. The operators may comprise the necessary data and logic to update the dialog state. Each operator may act as delta of the dialog state after processing an incoming request.
- the dialog manager may further comprise a dialog state tracker and an action selector.
- the dialog state tracker may replace the entity resolution component and resolve the references/mentions and keep track of the state.
- the reasoning module 212 a may further conduct false trigger mitigation.
- the goal of false trigger mitigation is to detect false triggers (e.g., wake-word) of assistance requests and to avoid generating false records when a user actually does not intend to invoke the assistant system 140 .
- the reasoning module 212 a may achieve false trigger mitigation based on a nonsense detector. If the nonsense detector determines that a wake-word makes no sense at this point in the interaction with the user, the reasoning module 212 a may determine that inferring the user intended to invoke the assistant system 140 may be incorrect.
- the output of the reasoning module 212 a may be sent a remote dialog arbitrator 214 .
- each of the ASR module 208 a , NLU module 210 a , and reasoning module 212 a may access the remote data store 216 , which comprises user episodic memories to determine how to assist a user more effectively. More information on episodic memories may be found in U.S. patent application Ser. No. 16/552,559, filed 27 Aug. 2019, which is incorporated by reference.
- the data store 216 may additionally store the user profile of the user.
- the user profile of the user may comprise user profile data including demographic information, social information, and contextual information associated with the user.
- the user profile data may also include user interests and preferences on a plurality of topics, aggregated through conversations on news feed, search logs, messaging platforms, etc.
- a user profile may be subject to privacy constraints to ensure that a user's information can be used only for his/her benefit, and not shared with anyone else. More information on user profiles may be found in U.S. patent application Ser. No. 15/967,239, filed 30 Apr. 2018, which is incorporated by reference.
- the client-side process may be as follows.
- the output of the assistant orchestrator 206 may be sent to a local ASR module 208 b on the client system 130 .
- the ASR module 208 b may comprise a personalized language model (PLM), a G2P model, and an end-pointing model. Because of the limited computing power of the client system 130 , the assistant system 140 may optimize the personalized language model at run time during the client-side process.
- the assistant system 140 may pre-compute a plurality of personalized language models for a plurality of possible subjects a user may talk about. When a user requests assistance, the assistant system 140 may then swap these pre-computed language models quickly so that the personalized language model may be optimized locally by the assistant system 140 at run time based on user activities. As a result, the assistant system 140 may have a technical advantage of saving computational resources while efficiently determining what the user may be talking about. In particular embodiments, the assistant system 140 may also re-learn user pronunciations quickly at run time.
- the output of the ASR module 208 b may be sent to a local NLU module 210 b .
- the NLU module 210 b herein may be more compact compared to the remote NLU module 210 a supported on the server-side.
- the ASR module 208 b and NLU module 210 b process the user input, they may access a local assistant memory 218 .
- the local assistant memory 218 may be different from the user memories stored on the data store 216 for the purpose of protecting user privacy.
- the local assistant memory 218 may be syncing with the user memories stored on the data store 216 via the network 110 .
- the local assistant memory 218 may sync a calendar on a user's client system 130 with a server-side calendar associate with the user.
- any secured data in the local assistant memory 218 may be only accessible to the modules of the assistant system 140 that are locally executing on the client system 130 .
- the output of the NLU module 210 b may be sent to a local reasoning module 212 b .
- the reasoning module 212 b may comprise a dialog manager and an entity resolution component. Due to the limited computing power, the reasoning module 212 b may conduct on-device learning that is based on learning algorithms particularly tailored for client systems 130 .
- federated learning may be used by the reasoning module 212 b .
- Federated learning is a specific category of distributed machine learning approaches which trains machine learning models using decentralized data residing on end devices such as mobile phones.
- the reasoning module 212 b may use a particular federated learning model, namely federated user representation learning, to extend existing neural-network personalization techniques to federated learning.
- Federated user representation learning can personalize models in federated learning by learning task-specific user representations (i.e., embeddings) or by personalizing model weights.
- Federated user representation learning is a simple, scalable, privacy-preserving, and resource-efficient.
- Federated user representation learning may divide model parameters into federated and private parameters. Private parameters, such as private user embeddings, may be trained locally on a client system 130 instead of being transferred to or averaged on a remote server.
- Federated parameters by contrast, may be trained remotely on the server.
- the reasoning module 212 b may use another particular federated learning model, namely active federated learning to transmit a global model trained on the remote server to client systems 130 and calculate gradients locally on these client systems 130 .
- Active federated learning may enable the reasoning module to minimize the transmission costs associated with downloading models and uploading gradients.
- client systems are selected not uniformly at random, but with a probability conditioned on the current model and the data on the client systems to maximize efficiency.
- the reasoning module 212 b may use another particular federated learning model, namely federated Adam.
- Conventional federated learning model may use stochastic gradient descent (SGD) optimizers.
- the federated Adam model may use moment-based optimizers.
- federated Adam model may use the averaged model to compute approximate gradients. These gradients may be then fed into the federated Adam model, which may de-noise stochastic gradients and use a per-parameter adaptive learning rate. Gradients produced by federated learning may be even noisier than stochastic gradient descent (because data may be not independent and identically distributed), so federated Adam model may help even more deal with the noise. The federated Adam model may use the gradients to take smarter steps towards minimizing the objective function.
- the experiments show that conventional federated learning on a benchmark has 1.6% drop in ROC (Receiver Operating Characteristics) curve whereas federated Adam model has only 0.4% drop.
- federated Adam model has no increase in communication or on-device computation.
- the reasoning module 212 b may also perform false trigger mitigation. This false trigger mitigation may help detect false activation requests, e.g., wake-word, on the client system 130 when the user's speech input comprises data that is subject to privacy constraints. As an example and not by way of limitation, when a user is in a voice call, the user's conversation is private and the false trigger detection based on such conversation can only occur locally on the user's client system 130 .
- the assistant system 140 may comprise a local context engine 220 .
- the context engine 220 may process all the other available signals to provide more informative cues to the reasoning module 212 b .
- the context engine 220 may have information related to people, sensory data from client system 130 sensors (e.g., microphone, camera) that are further analyzed by computer vision technologies, geometry constructions, activity data, inertial data (e.g., collected by a VR headset), location, etc.
- the computer vision technologies may comprise human skeleton reconstruction, face detection, facial recognition, hand tracking, eye tracking, etc.
- geometry constructions may comprise constructing objects surrounding a user using data collected by a client system 130 .
- inertial data may be data associated with linear and angular motions.
- inertial data may be captured by AR glasses which measures how a user's body parts move.
- the output of the local reasoning module 212 b may be sent to the dialog arbitrator 214 .
- the dialog arbitrator 214 may function differently in three scenarios. In the first scenario, the assistant orchestrator 206 determines to use server-side process, for which the dialog arbitrator 214 may transmit the output of the reasoning module 212 a to a remote action execution module 222 a . In the second scenario, the assistant orchestrator 206 determines to use both server-side processes and client-side processes, for which the dialog arbitrator 214 may aggregate output from both reasoning modules (i.e., remote reasoning module 212 a and local reasoning module 212 b ) of both processes and analyze them.
- both reasoning modules i.e., remote reasoning module 212 a and local reasoning module 212 b
- the dialog arbitrator 214 may perform ranking and select the best reasoning result for responding to the user input.
- the dialog arbitrator 214 may further determine whether to use agents on the server-side or on the client-side to execute relevant tasks based on the analysis.
- the assistant orchestrator 206 determines to use client-side processes and the dialog arbitrator 214 needs to evaluate the output of the local reasoning module 212 b to determine if the client-side processes can complete the task of handling the user input.
- the dialog arbitrator 214 may determine that the agents on the server-side are necessary to execute tasks responsive to the user input. Accordingly, the dialog arbitrator 214 may send necessary information regarding the user input to the action execution module 222 a .
- the action execution module 222 a may call one or more agents to execute the tasks.
- the action selector of the dialog manager may determine actions to execute and instruct the action execution module 222 a accordingly.
- an agent may be an implementation that serves as a broker across a plurality of content providers for one domain.
- a content provider may be an entity responsible for carrying out an action associated with an intent or completing a task associated with the intent.
- the agents may comprise first-party agents and third-party agents.
- first-party agents may comprise internal agents that are accessible and controllable by the assistant system 140 (e.g. agents associated with services provided by the online social network, such as messaging services or photo-share services).
- third-party agents may comprise external agents that the assistant system 140 has no control over (e.g., third-party online music application agents, ticket sales agents).
- the first-party agents may be associated with first-party providers that provide content objects and/or services hosted by the social-networking system 160 .
- the third-party agents may be associated with third-party providers that provide content objects and/or services hosted by the third-party system 170 .
- each of the first-party agents or third-party agents may be designated for a particular domain.
- the domain may comprise weather, transportation, music, shopping, social, videos, photos, events, locations, work, etc.
- the assistant system 140 may use a plurality of agents collaboratively to respond to a user input.
- the user input may comprise “direct me to my next meeting.”
- the assistant system 140 may use a calendar agent to retrieve the location of the next meeting.
- the assistant system 140 may then use a navigation agent to direct the user to the next meeting.
- the dialog arbitrator 214 may determine that the agents on the client-side are capable of executing tasks responsive to the user input but additional information is needed (e.g., response templates) or that the tasks can be only handled by the agents on the server-side. If the dialog arbitrator 214 determines that the tasks can be only handled by the agents on the server-side, the dialog arbitrator 214 may send necessary information regarding the user input to the action execution module 222 a . If the dialog arbitrator 214 determines that the agents on the client-side are capable of executing tasks but response templates are needed, the dialog arbitrator 214 may send necessary information regarding the user input to a remote response template generation module 224 . The output of the response template generation module 224 may be further sent to a local action execution module 222 b executing on the client system 130 .
- additional information e.g., response templates
- the action execution module 222 b may call local agents to execute tasks.
- a local agent on the client system 130 may be able to execute simpler tasks compared to an agent on the server-side.
- multiple device-specific implementations e.g., real-time calls for a client system 130 or a messaging application on the client system 130
- the action execution module 222 b may additionally perform a set of general executable dialog actions.
- the set of executable dialog actions may interact with agents, users and the assistant system 140 itself. These dialog actions may comprise dialog actions for slot request, confirmation, disambiguation, agent execution, etc.
- the dialog actions may be independent of the underlying implementation of the action selector or dialog policy. Both tree-based policy and model-based policy may generate the same basic dialog actions, with a callback function hiding any action selector specific implementation details.
- the output from the remote action execution module 222 a on the server-side may be sent to a remote response execution module 226 a .
- the action execution module 222 a may communicate back to the dialog arbitrator 214 for more information.
- the response execution module 226 a may be based on a remote conversational understanding (CU) composer.
- the output from the action execution module 222 a may be formulated as a ⁇ k, c, u, d> tuple, in which k indicates a knowledge source, c indicates a communicative goal, u indicates a user model, and d indicates a discourse model.
- the CU composer may comprise a natural-language generation (NLG) module and a user interface (UI) payload generator.
- the natural-language generator may generate a communication content based on the output of the action execution module 222 a using different language models and/or language templates.
- the generation of the communication content may be application specific and also personalized for each user.
- the CU composer may also determine a modality of the generated communication content using the UI payload generator.
- the NLG module may comprise a content determination component, a sentence planner, and a surface realization component. The content determination component may determine the communication content based on the knowledge source, communicative goal, and the user's expectations.
- the determining may be based on a description logic.
- the description logic may comprise, for example, three fundamental notions which are individuals (representing objects in the domain), concepts (describing sets of individuals), and roles (representing binary relations between individuals or concepts).
- the description logic may be characterized by a set of constructors that allow the natural-language generator to build complex concepts/roles from atomic ones.
- the content determination component may perform the following tasks to determine the communication content.
- the first task may comprise a translation task, in which the input to the natural-language generator may be translated to concepts.
- the second task may comprise a selection task, in which relevant concepts may be selected among those resulted from the translation task based on the user model.
- the third task may comprise a verification task, in which the coherence of the selected concepts may be verified.
- the fourth task may comprise an instantiation task, in which the verified concepts may be instantiated as an executable file that can be processed by the natural-language generator.
- the sentence planner may determine the organization of the communication content to make it human understandable.
- the surface realization component may determine specific words to use, the sequence of the sentences, and the style of the communication content.
- the UI payload generator may determine a preferred modality of the communication content to be presented to the user.
- the CU composer may check privacy constraints associated with the user to make sure the generation of the communication content follows the privacy policies. More information on natural-language generation may be found in U.S. patent application Ser. No. 15/967,279, filed 30 Apr. 2018, and U.S. patent application Ser. No. 15/966,455, filed 30 Apr. 2018, each of which is incorporated by reference.
- the output from the local action execution module 222 b on the client system 130 may be sent to a local response execution module 226 b .
- the response execution module 226 b may be based on a local conversational understanding (CU) composer.
- the CU composer may comprise a natural-language generation (NLG) module.
- NLG natural-language generation
- the NLG module may be simple for the consideration of computational efficiency.
- the output of the response execution module 226 b may be sent to a local response expansion module 228 .
- the response expansion module 228 may further expand the result of the response execution module 226 b to make a response more natural and contain richer semantic information.
- the output of the response execution module 226 a on the server-side may be sent to a remote text-to-speech (TTS) module 230 a .
- TTS text-to-speech
- the output of the response expansion module 228 on the client-side may be sent to a local TTS module 230 b .
- Both TTS modules may convert a response to audio signals.
- the output from the response execution module 226 a , the response expansion module 228 , or the TTS modules on both sides may be finally sent to a local render output module 232 .
- the render output module 232 may generate a response that is suitable for the client system 130 .
- the output of the response execution module 226 a or the response expansion module 228 may comprise one or more of natural-language strings, speech, actions with parameters, or rendered images or videos that can be displayed in a VR headset or AR smart glasses.
- the render output module 232 may determine what tasks to perform based on the output of CU composer to render the response appropriately for displaying on the VR headset or AR smart glasses.
- the response may be visual-based modality (e.g., an image or a video clip) that can be displayed via the VR headset or AR smart glasses.
- the response may be audio signals that can be played by the user via VR headset or AR smart glasses.
- the response may be augmented-reality data that can be rendered VR headset or AR smart glasses for enhancing user experience.
- the assistant system 140 may have a variety of capabilities including audio cognition, visual cognition, signals intelligence, reasoning, and memories.
- the capability of audio recognition may enable the assistant system 140 to understand a user's input associated with various domains in different languages, understand a conversation and be able to summarize it, perform on-device audio cognition for complex commands, identify a user by voice, extract topics from a conversation and auto-tag sections of the conversation, enable audio interaction without a wake-word, filter and amplify user voice from ambient noise and conversations, understand which client system 130 (if multiple client systems 130 are in vicinity) a user is talking to.
- the capability of visual cognition may enable the assistant system 140 to perform face detection and tracking, recognize a user, recognize most people of interest in major metropolitan areas at varying angles, recognize majority of interesting objects in the world through a combination of existing machine-learning models and one-shot learning, recognize an interesting moment and auto-capture it, achieve semantic understanding over multiple visual frames across different episodes of time, provide platform support for additional capabilities in people, places, objects recognition, recognize full set of settings and micro-locations including personalized locations, recognize complex activities, recognize complex gestures to control a client system 130 , handle images/videos from egocentric cameras (e.g., with motion, capture angles, resolution, etc.), accomplish similar level of accuracy and speed regarding images with lower resolution, conduct one-shot registration and recognition of people, places, and objects, and perform visual recognition on a client system 130 .
- egocentric cameras e.g., with motion, capture angles, resolution, etc.
- the assistant system 140 may leverage computer vision techniques to achieve visual cognition. Besides computer vision techniques, the assistant system 140 may explore options that can supplement these techniques to scale up the recognition of objects.
- the assistant system 140 may use supplemental signals such as optical character recognition (OCR) of an object's labels, GPS signals for places recognition, signals from a user's client system 130 to identify the user.
- OCR optical character recognition
- the assistant system 140 may perform general scene recognition (home, work, public space, etc.) to set context for the user and reduce the computer-vision search space to identify top likely objects or people.
- the assistant system 140 may guide users to train the assistant system 140 . For example, crowdsourcing may be used to get users to tag and help the assistant system 140 recognize more objects over time. As another example, users can register their personal objects as part of initial setup when using the assistant system 140 .
- the assistant system 140 may further allow users to provide positive/negative signals for objects they interact with to train and improve personalized models for them.
- the capability of signals intelligence may enable the assistant system 140 to determine user location, understand date/time, determine family locations, understand users' calendars and future desired locations, integrate richer sound understanding to identify setting/context through sound alone, build signals intelligence models at run time which may be personalized to a user's individual routines.
- the capability of reasoning may enable the assistant system 140 to have the ability to pick up any previous conversation threads at any point in the future, synthesize all signals to understand micro and personalized context, learn interaction patterns and preferences from users' historical behavior and accurately suggest interactions that they may value, generate highly predictive proactive suggestions based on micro-context understanding, understand what content a user may want to see at what time of a day, understand the changes in a scene and how that may impact the user's desired content.
- the capabilities of memories may enable the assistant system 140 to remember which social connections a user previously called or interacted with, write into memory and query memory at will (i.e., open dictation and auto tags), extract richer preferences based on prior interactions and long-term learning, remember a user's life history, extract rich information from egocentric streams of data and auto catalog, and write to memory in structured form to form rich short, episodic and long-term memories.
- FIG. 3 illustrates an example flow diagram 300 of server-side processes of the assistant system 140 .
- a server-assistant service module 301 may access a request manager 302 upon receiving a user request.
- the user request may be first processed by the remote ASR module 208 a if the user request is based on audio signals.
- the request manager 302 may comprise a context extractor 303 and a conversational understanding object generator (CU object generator) 304 .
- the context extractor 303 may extract contextual information associated with the user request.
- the context extractor 303 may also update contextual information based on the assistant application 136 executing on the client system 130 .
- the update of contextual information may comprise content items are displayed on the client system 130 .
- the update of contextual information may comprise whether an alarm is set on the client system 130 .
- the update of contextual information may comprise whether a song is playing on the client system 130 .
- the CU object generator 304 may generate particular content objects relevant to the user request.
- the content objects may comprise dialog-session data and features associated with the user request, which may be shared with all the modules of the assistant system 140 .
- the request manager 302 may store the contextual information and the generated content objects in data store 216 which is a particular data store implemented in the assistant system 140 .
- the request manger 302 may send the generated content objects to the remote NLU module 210 a .
- the NLU module 210 a may perform a plurality of steps to process the content objects.
- the NLU module 210 a may generate a whitelist for the content objects.
- the whitelist may comprise interpretation data matching the user request.
- the NLU module 210 a may perform a featurization based on the whitelist.
- the NLU module 210 a may perform domain classification/selection on user request based on the features resulted from the featurization to classify the user request into predefined domains. The domain classification/selection results may be further processed based on two related procedures.
- the NLU module 210 a may process the domain classification/selection result using an intent classifier.
- the intent classifier may determine the user's intent associated with the user request. In particular embodiments, there may be one intent classifier for each domain to determine the most possible intents in a given domain. As an example and not by way of limitation, the intent classifier may be based on a machine-learning model that may take the domain classification/selection result as input and calculate a probability of the input being associated with a particular predefined intent.
- the NLU module 210 a may process the domain classification/selection result using a meta-intent classifier. The meta-intent classifier may determine categories that describe the user's intent.
- intents that are common to multiple domains may be processed by the meta-intent classifier.
- the meta-intent classifier may be based on a machine-learning model that may take the domain classification/selection result as input and calculate a probability of the input being associated with a particular predefined meta-intent.
- the NLU module 210 a may use a slot tagger to annotate one or more slots associated with the user request.
- the slot tagger may annotate the one or more slots for the n-grams of the user request.
- the NLU module 210 a may use a meta slot tagger to annotate one or more slots for the classification result from the meta-intent classifier.
- the meta slot tagger may tag generic slots such as references to items (e.g., the first), the type of slot, the value of the slot, etc.
- a user request may comprise “change 500 dollars in my account to Japanese yen.”
- the intent classifier may take the user request as input and formulate it into a vector.
- the intent classifier may then calculate probabilities of the user request being associated with different predefined intents based on a vector comparison between the vector representing the user request and the vectors representing different predefined intents.
- the slot tagger may take the user request as input and formulate each word into a vector.
- the intent classifier may then calculate probabilities of each word being associated with different predefined slots based on a vector comparison between the vector representing the word and the vectors representing different predefined slots.
- the intent of the user may be classified as “changing money”.
- the slots of the user request may comprise “500”, “dollars”, “account”, and “Japanese yen”.
- the meta-intent of the user may be classified as “financial service”.
- the meta slot may comprise “finance”.
- the NLU module 210 a may comprise a semantic information aggregator 310 .
- the semantic information aggregator 310 may help the NLU module 210 a improve the domain classification/selection of the content objects by providing semantic information.
- the semantic information aggregator 310 may aggregate semantic information in the following way.
- the semantic information aggregator 310 may first retrieve information from a user context engine 315 .
- the user context engine 315 may comprise offline aggregators and an online inference service.
- the offline aggregators may process a plurality of data associated with the user that are collected from a prior time window.
- the data may include news feed posts/comments, interactions with news feed posts/comments, search history, etc., that are collected during a predetermined timeframe (e.g., from a prior 90-day window).
- the processing result may be stored in the user context engine 315 as part of the user profile.
- the online inference service may analyze the conversational data associated with the user that are received by the assistant system 140 at a current time.
- the analysis result may be stored in the user context engine 315 also as part of the user profile.
- both the offline aggregators and online inference service may extract personalization features from the plurality of data. The extracted personalization features may be used by other modules of the assistant system 140 to better understand user input.
- the semantic information aggregator 310 may then process the retrieved information, i.e., a user profile, from the user context engine 315 in the following steps.
- the semantic information aggregator 310 may process the retrieved information from the user context engine 315 based on natural-language processing (NLP).
- NLP natural-language processing
- the semantic information aggregator 310 may tokenize text by text normalization, extract syntax features from text, and extract semantic features from text based on NLP.
- the semantic information aggregator 310 may additionally extract features from contextual information, which is accessed from dialog history between a user and the assistant system 140 .
- the semantic information aggregator 310 may further conduct global word embedding, domain-specific embedding, and/or dynamic embedding based on the contextual information.
- the processing result may be annotated with entities by an entity tagger.
- the semantic information aggregator 310 may generate dictionaries for the retrieved information at step 313 .
- the dictionaries may comprise global dictionary features which can be updated dynamically offline.
- the semantic information aggregator 310 may rank the entities tagged by the entity tagger.
- the semantic information aggregator 310 may communicate with different graphs 320 including one or more of the social graph, the knowledge graph, or the concept graph to extract ontology data that is relevant to the retrieved information from the user context engine 315 .
- the semantic information aggregator 310 may aggregate the user profile, the ranked entities, and the information from the graphs 320 .
- the semantic information aggregator 310 may then provide the aggregated information to the NLU module 210 a to facilitate the domain classification/selection.
- the output of the NLU module 210 a may be sent to the remote reasoning module 212 a .
- the reasoning module 212 a may comprise a co-reference component 325 , an entity resolution component 330 , and a dialog manager 335 .
- the output of the NLU module 210 a may be first received at the co-reference component 325 to interpret references of the content objects associated with the user request.
- the co-reference component 325 may be used to identify an item to which the user request refers.
- the co-reference component 325 may comprise reference creation 326 and reference resolution 327 .
- the reference creation 326 may create references for entities determined by the NLU module 210 a .
- the reference resolution 327 may resolve these references accurately.
- a user request may comprise “find me the nearest grocery store and direct me there”.
- the co-reference component 325 may interpret “there” as “the nearest grocery store”.
- the co-reference component 325 may access the user context engine 315 and the dialog manager 335 when necessary to interpret references with improved accuracy.
- the identified domains, intents, meta-intents, slots, and meta slots, along with the resolved references may be sent to the entity resolution component 330 to resolve relevant entities.
- the entities may include one or more of a real world entity (from general knowledge base), a user entity (from user memory), a contextual entity (device context/dialog context), or a value resolution (numbers, datetime, etc.).
- the entity resolution component 330 may execute generic and domain-specific entity resolution.
- the entity resolution component 330 may comprise domain entity resolution 331 and generic entity resolution 332 .
- the domain entity resolution 331 may resolve the entities by categorizing the slots and meta slots into different domains.
- entities may be resolved based on the ontology data extracted from the graphs 320 .
- the ontology data may comprise the structural relationship between different slots/meta-slots and domains.
- the ontology may also comprise information of how the slots/meta-slots may be grouped, related within a hierarchy where the higher level comprises the domain, and subdivided according to similarities and differences.
- the generic entity resolution 332 may resolve the entities by categorizing the slots and meta slots into different generic topics.
- the resolving may be also based on the ontology data extracted from the graphs 320 .
- the ontology data may comprise the structural relationship between different slots/meta-slots and generic topics.
- the ontology may also comprise information of how the slots/meta-slots may be grouped, related within a hierarchy where the higher level comprises the topic, and subdivided according to similarities and differences.
- the generic entity resolution 332 may resolve the referenced brand of electric car as vehicle and the domain entity resolution 331 may resolve the referenced brand of electric car as electric car.
- the output of the entity resolution component 330 may be sent to the dialog manager 335 to advance the flow of the conversation with the user.
- the dialog manager 335 may be an asynchronous state machine that repeatedly updates the state and selects actions based on the new state.
- the dialog manager 335 may comprise dialog intent resolution 336 and dialog state tracker 337 .
- the dialog manager 335 may execute the selected actions and then call the dialog state tracker 337 again until the action selected requires a user response, or there are no more actions to execute. Each action selected may depend on the execution result from previous actions.
- the dialog intent resolution 336 may resolve the user intent associated with the current dialog session based on dialog history between the user and the assistant system 140 .
- the dialog intent resolution 336 may map intents determined by the NLU module 210 a to different dialog intents.
- the dialog intent resolution 336 may further rank dialog intents based on signals from the NLU module 210 a , the entity resolution component 330 , and dialog history between the user and the assistant system 140 .
- the dialog state tracker 337 may be a side-effect free component and generate n-best candidates of dialog state update operators that propose updates to the dialog state.
- the dialog state tracker 337 may comprise intent resolvers containing logic to handle different types of NLU intent based on the dialog state and generate the operators.
- the logic may be organized by intent handler, such as a disambiguation intent handler to handle the intents when the assistant system 140 asks for disambiguation, a confirmation intent handler that comprises the logic to handle confirmations, etc.
- intent resolvers may combine the turn intent together with the dialog state to generate the contextual updates for a conversation with the user.
- a slot resolution component may then recursively resolve the slots in the update operators with resolution providers including the knowledge graph and domain agents.
- the dialog state tracker 337 may update/rank the dialog state of the current dialog session. As an example and not by way of limitation, the dialog state tracker 337 may update the dialog state as “completed” if the dialog session is over. As another example and not by way of limitation, the dialog state tracker 337 may rank the dialog state based on a priority associated with it.
- the reasoning module 212 a may communicate with the remote action execution module 222 a and the dialog arbitrator 214 , respectively.
- the dialog manager 335 of the reasoning module 212 a may communicate with a task completion component 340 of the action execution module 222 a about the dialog intent and associated content objects.
- the task completion module 340 may rank different dialog hypotheses for different dialog intents.
- the task completion module 340 may comprise an action selector 341 .
- the action selector 341 may be comprised in the dialog manager 335 .
- the dialog manager 335 may additionally check against dialog policies 345 comprised in the dialog arbitrator 214 regarding the dialog state.
- a dialog policy 345 may comprise a data structure that describes an execution plan of an action by an agent 350 .
- the dialog policy 345 may comprise a general policy 346 and task policies 347 .
- the general policy 346 may be used for actions that are not specific to individual tasks.
- the general policy 346 may comprise handling low confidence intents, internal errors, unacceptable user response with retries, skipping or inserting confirmation based on ASR or NLU confidence scores, etc.
- the general policy 346 may also comprise the logic of ranking dialog state update candidates from the dialog state tracker 337 output and pick the one to update (such as picking the top ranked task intent).
- the assistant system 140 may have a particular interface for the general policy 346 , which allows for consolidating scattered cross-domain policy/business-rules, especial those found in the dialog state tracker 337 , into a function of the action selector 341 .
- the interface for the general policy 346 may also allow for authoring of self-contained sub-policy units that may be tied to specific situations or clients, e.g., policy functions that may be easily switched on or off based on clients, situation, etc.
- the interface for the general policy 346 may also allow for providing a layering of policies with back-off, i.e. multiple policy units, with highly specialized policy units that deal with specific situations being backed up by more general policies 346 that apply in wider circumstances.
- a task policy 347 may comprise the logic for action selector 341 based on the task and current state.
- the types of task policies 347 may include one or more of the following types: (1) manually crafted tree-based dialog plans; (2) coded policy that directly implements the interface for generating actions; (3) configurator-specified slot-filling tasks; or (4) machine-learning model based policy learned from data.
- the assistant system 140 may bootstrap new domains with rule-based logic and later refine the task policies 347 with machine-learning models.
- a dialog policy 345 may a tree-based policy, which is a pre-constructed dialog plan. Based on the current dialog state, a dialog policy 345 may choose a node to execute and generate the corresponding actions.
- the tree-based policy may comprise topic grouping nodes and dialog action (leaf) nodes.
- the action selector 341 may take candidate operators of dialog state and consult the dialog policy 345 to decide what action should be executed.
- the assistant system 140 may use a hierarchical dialog policy with general policy 346 handling the cross-domain business logic and task policies 347 handles the task/domain specific logic.
- the general policy 346 may pick one operator from the candidate operators to update the dialog state, followed by the selection of a user facing action by a task policy 347 . Once a task is active in the dialog state, the corresponding task policy 347 may be consulted to select right actions.
- both the dialog state tracker 337 and the action selector 341 may not change the dialog state until the selected action is executed.
- the assistant system 140 may execute the dialog state tracker 337 and the action selector 341 for processing speculative ASR results and to do n-best ranking with dry runs.
- the action selector 341 may take the dialog state update operators as part of the input to select the dialog action.
- the execution of the dialog action may generate a set of expectation to instruct the dialog state tracker 337 to handler future turns.
- an expectation may be used to provide context to the dialog state tracker 337 when handling the user input from next turn.
- slot request dialog action may have the expectation of proving a value for the requested slot.
- the dialog manager 335 may support multi-turn compositional resolution of slot mentions.
- the resolver may recursively resolve the nested slots.
- the dialog manager 335 may additionally support disambiguation for the nested slots.
- the user request may be “remind me to call Alex”.
- the resolver may need to know which Alex to call before creating an actionable reminder to-do entity.
- the resolver may halt the resolution and set the resolution state when further user clarification is necessary for a particular slot.
- the general policy 346 may examine the resolution state and create corresponding dialog action for user clarification.
- dialog state tracker 337 based on the user request and the last dialog action, the dialog manager may update the nested slot. This capability may allow the assistant system 140 to interact with the user not only to collect missing slot values but also to reduce ambiguity of more complex/ambiguous utterances to complete the task.
- the dialog manager may further support requesting missing slots in a nested intent and multi-intent user requests (e.g., “take this photo and send it to Dad”).
- the dialog manager 335 may support machine-learning models for more robust dialog experience.
- the dialog state tracker 337 may use neural network based models (or any other suitable machine-learning models) to model belief over task hypotheses.
- the action execution module 222 a may call different agents 350 for task execution.
- An agent 350 may select among registered content providers to complete the action.
- the data structure may be constructed by the dialog manager 335 based on an intent and one or more slots associated with the intent.
- a dialog policy 345 may further comprise multiple goals related to each other through logical operators.
- a goal may be an outcome of a portion of the dialog policy and it may be constructed by the dialog manager 335 .
- a goal may be represented by an identifier (e.g., string) with one or more named arguments, which parameterize the goal.
- a dialog policy may be based on a tree-structured representation, in which goals are mapped to leaves of the tree.
- the dialog manager 335 may execute a dialog policy 345 to determine the next action to carry out.
- the dialog policies 345 may comprise generic policy 346 and domain specific policies 347 , both of which may guide how to select the next system action based on the dialog state.
- the task completion component 340 of the action execution module 222 a may communicate with dialog policies 345 comprised in the dialog arbitrator 214 to obtain the guidance of the next system action.
- the action selection component 341 may therefore select an action based on the dialog intent, the associated content objects, and the guidance from dialog policies 345 .
- the output of the action execution module 222 a may be sent to the remote response execution module 226 a .
- the output of the task completion component 340 of the action execution module 222 a may be sent to the CU composer 355 of the response execution module 226 a .
- the selected action may require one or more agents 350 to be involved.
- the task completion module 340 may inform the agents 350 about the selected action.
- the dialog manager 335 may receive an instruction to update the dialog state.
- the update may comprise awaiting agents' 350 response.
- the CU composer 355 may generate a communication content for the user using a natural-language generation (NLG) module 356 based on the output of the task completion module 340 .
- the NLG module 356 may use different language models and/or language templates to generate natural language outputs.
- the generation of natural language outputs may be application specific.
- the generation of natural language outputs may be also personalized for each user.
- the CU composer 355 may also determine a modality of the generated communication content using the UI payload generator 357 . Since the generated communication content may be considered as a response to the user request, the CU composer 355 may additionally rank the generated communication content using a response ranker 358 . As an example and not by way of limitation, the ranking may indicate the priority of the response.
- the response execution module 226 a may perform different tasks based on the output of the CU composer 355 . These tasks may include writing (i.e., storing/updating) the dialog state 361 retrieved from data store 216 and generating responses 362 .
- the output of CU composer 355 may comprise one or more of natural-language strings, speech, actions with parameters, or rendered images or videos that can be displayed in a VR headset or AR smart glass.
- the response execution module 226 a may determine what tasks to perform based on the output of CU composer 355 .
- the generated response and the communication content may be sent to the local render output module 232 by the response execution module 226 a .
- the output of the CU composer 355 may be additionally sent to the remote TTS module 230 a if the determined modality of the communication content is audio.
- the speech generated by the TTS module 230 a and the response generated by the response execution module 226 a may be then sent to the render output module 232 .
- FIG. 4 illustrates an example flow diagram 400 of processing a user input by the assistant system 140 .
- the user input may be based on audio signals.
- a mic array 402 of the client system 130 may receive the audio signals (e.g., speech).
- the audio signals may be transmitted to a process loop 404 in a format of audio frames.
- the process loop 404 may send the audio frames for voice activity detection (VAD) 406 and wake-on-voice (WoV) detection 408 .
- VAD voice activity detection
- WoV wake-on-voice
- the audio frames together with the VAD 406 result may be sent to an encode unit 410 to generate encoded audio data.
- the encoded audio data may be sent to an encrypt unit 412 for privacy and security purpose, followed by a link unit 414 and decrypt unit 416 .
- the audio data may be sent to a mic driver 418 , which may further transmit the audio data to an audio service module 420 .
- the user input may be received at a wireless device (e.g., Bluetooth device) paired with the client system 130 .
- the audio service module 420 may determine that the user is requesting assistance that needs the assistant system 140 to respond. Accordingly, the audio service module 420 may inform the client-assistant service module 428 .
- the client-assistant service module 428 may communicate with the assistant orchestrator 206 .
- the assistant orchestrator 206 may determine whether to use client-side processes or server-side processes to respond to the user input.
- the assistant orchestrator 206 may determine to use client-side processes and inform the client-assistant service module 428 about such decision. As a result, the client-assistant service module 428 may call relevant modules to respond to the user input.
- the client-assistant service module 428 may use the local ASR module 208 b to analyze the user input.
- the ASR module 208 b may comprise a grapheme-to-phoneme (G2P) model, a pronunciation learning model, a personalized language model (PLM), an end-pointing model, and a personalized acoustic model.
- the client-assistant service module 428 may further use the local NLU module 210 b to understand the user input.
- the NLU module 210 b may comprise a named entity resolution (NER) component and a contextual session-based NLU component.
- the client-assistant service module 428 may use an intent broker 430 to analyze the user's intent.
- the intent broker 430 may access an entity store 432 comprising entities associated with the user and the world.
- the user input may be submitted via an application 434 executing on the client system 130 .
- an input manager 436 may receive the user input and analyze it by an application environment (App Env) module 438 .
- the analysis result may be sent to the application 434 which may further send the analysis result to the ASR module 208 b and NLU module 210 b .
- the user input may be directly submitted to the client-assistant service module 428 via an assistant application 440 executing on the client system 130 .
- the client-assistant service module 428 may perform similar procedures based on modules as aforementioned, i.e., the ASR module 208 b , the NLU module 210 b , and the intent broker 430 .
- the assistant orchestrator 206 may determine to user server-side process. Accordingly, the assistant orchestrator 206 may send the user input to one or more computing systems that host different modules of the assistant system 140 .
- a server-assistant service module 301 may receive the user input from the assistant orchestrator 206 .
- the server-assistant service module 301 may instruct the remote ASR module 208 a to analyze the audio data of the user input.
- the ASR module 208 a may comprise a grapheme-to-phoneme (G2P) model, a pronunciation learning model, a personalized language model (PLM), an end-pointing model, and a personalized acoustic model.
- G2P grapheme-to-phoneme
- PLM personalized language model
- end-pointing model and a personalized acoustic model.
- the server-assistant service module 301 may further instruct the remote NLU module 210 a to understand the user input.
- the server-assistant service module 301 may call the remote reasoning model 212 a to process the output from the ASR module 208 a and the NLU module 210 a .
- the reasoning model 212 a may perform entity resolution and dialog optimization.
- the output of the reasoning model 212 a may be sent to the agent 350 for executing one or more relevant tasks.
- the agent 350 may access an ontology module 442 to accurately understand the result from entity resolution and dialog optimization so that it can execute relevant tasks accurately.
- the ontology module 442 may provide ontology data associated with a plurality of predefined domains, intents, and slots.
- the ontology data may also comprise the structural relationship between different slots and domains.
- the ontology data may further comprise information of how the slots may be grouped, related within a hierarchy where the higher level comprises the domain, and subdivided according to similarities and differences.
- the ontology data may also comprise information of how the slots may be grouped, related within a hierarchy where the higher level comprises the topic, and subdivided according to similarities and differences.
- Artificial reality is a form of reality that has been adjusted in some manner before presentation to a user, which may include, e.g., a virtual reality (VR), an augmented reality (AR), a mixed reality (MR), a hybrid reality, or some combination and/or derivatives thereof.
- Artificial reality content may include completely generated content or generated content combined with captured content (e.g., real-world photographs).
- the artificial reality content may include video, audio, haptic feedback, or some combination thereof, and any of which may be presented in a single channel or in multiple channels (such as stereo video that produces a three-dimensional effect to the viewer).
- artificial reality may be associated with applications, products, accessories, services, or some combination thereof, that are, e.g., used to create content in an artificial reality and/or used in (e.g., perform activities in) an artificial reality.
- the artificial reality system that provides the artificial reality content may be implemented on various platforms, including a head-mounted display (HMD) connected to a host computer system, a standalone HMD, a mobile device or computing system, or any other hardware platform capable of providing artificial reality content to one or more viewers.
- HMD head-mounted display
- assistant system 140 may provide in-call experience enhancements in which content items, such as photos, videos, posts, etc., are proactively recommended to users during a video call.
- Video calls may lack a feeling of genuine social interaction, and users in a call may run out of topics to discuss or forget important topics relevant to a context of their conversation. Proactively providing content may thus guide and prolong a stalled conversation, and create a more social experience to the call.
- assistant system 140 may identify users in the video call (subject to privacy settings) and automatically select content items that are relevant to the users and to the context of the call, which may be then be presented on the screens of one or more client systems 130 of the users.
- FIG. 5A illustrates an example video call 500 between two users.
- the assistant system 140 may establish a video call 500 between a plurality of client systems 130 .
- Each client system 130 may be associated with one or more users (e.g., participants in the video call 500 ).
- the assistant system 140 may receive a request from a first client system 130 of a first user identifying one or more other users to add to a video call 500 and may assign a call identifier to the video call 500 .
- the assistant system 140 may use this call ID in monitoring the video call 500 and context information of the various client systems 130 participating in it.
- the assistant system 140 may itself be added as a participant in the video call 500 , subject to privacy settings of each of the users of the video call 500 .
- a first user may request to add the assistant system 140 to the video call 500 , and, if each of the other users permit, the assistant system 140 may be added as a participant to the video call 500 ; otherwise, the assistant system 140 may not be added.
- server-side processes of the assistant system 140 may continuously monitor the video call 500 to detect a current context of each of the client systems 130 .
- client-side processes of the assistant system 140 running on each user's client system 130 may individually monitor the current context of the respective client system 130 .
- this disclosure describes establishing a video call in a particular manner, this disclosure contemplates establishing a video call in any suitable manner.
- the assistant system 140 may determine a plurality of user identifiers (user IDs) of a plurality of users associated with the video call 500 .
- identification of these users in the video call 500 may occur through determination of a user's caller ID or through facial recognition of the users. Both active users currently using client systems 130 and background users viewable in the frame of the video call may be identified, subject to privacy settings.
- the identified users may be modified dynamically as, for example, people enter and leave the frame of the video call 500 . The number of users may thus be used to create a set of “slots”, which are changed as needed over the course of video call 500 , used to determine relevant content items for recommendation.
- the assistant system 140 may determine that it is an appropriate time to provide content recommendations when it detects via a detection algorithm that there is little or no voice input, which may indicate a pause in the conversation (e.g., there has been no input for more than 5 seconds).
- a detection algorithm may run on a client system 130 at various time intervals, which may be determined by considerations such as computing resources or privacy considerations.
- the detection algorithm may determine how much noise there is in the call, and if the noise level falls below a particular threshold (e.g., below 30 decibels, which may indicate a lull in the conversation), the assistant system 140 may determine that this is a signal to present content recommendations. Such a lull in the conversation may indicate that the users are bored or are running out of topics to chat about; thus, receiving content at this time may make the call more engaging and interactive, and encourage the users to spend more time on the call. As another example and not by way of limitation, the detection algorithm may determine whether an amount of voice input is less than a threshold amount of voice input.
- a threshold e.g., below 30 decibels, which may indicate a lull in the conversation
- the assistant system 140 may determine that it is an appropriate time to provide content recommendations and may thus determine to provide them to one or more users of the video call 500 .
- the assistant system 140 may determine that it is not an appropriate time to provide content recommendations, and may thus may determine to delay providing content recommendations.
- the assistant system 140 may delay the provision of content recommendations until a later time, when it detects that the amount of voice input has fallen below the threshold.
- the assistant system 140 may simply not provide the content recommendations during the video call 500 at all if the voice input never falls below the threshold amount of voice input.
- a current context of video call 500 may be determined via requests sent from one or more client systems 130 in the video call.
- the assistant system 140 may receive an independent request from a first client system 130 , and this request may include a current context of only the first client system.
- the assistant system 140 may receive this request from the first client system 130 in response to an explicit user input received from the first user at the first client system 130 , in response to an automatic generation of the request (e.g., at periodic time intervals), or in response to a request from the assistant system 140 requesting the first client system 130 to send its current context.
- each client system 130 in video call 500 may independently request recommendations, and receive individual, personalized recommendations in response.
- a first user's client system 130 may send, with or without user input, a request for content recommendations.
- This request may indicate user ID information for the remaining two users in the call as well as the user ID of the user using the first client system 130 , but only the context of the first user may be known.
- recommendations may be displayed to the first user, and the current context used in determining those recommendations may only be that of the first user. Similar processes may occur for the remaining two users in the call; each may receive personalized recommendations based only on their respective current contexts in response to their independent requests.
- the assistant system 140 may be added as a user in a call, and a server-side process may receive a call-wide request for recommendations (e.g., a request from one or more of the users in the call that is visible to all users).
- this request may be automatic or user-initiated, from a single user's client system 130 .
- the request may include various pieces of information gathered by such a group assistant system, such as a call ID of the video call 500 , identifiers of the users in the call, the user who initiated the call, which client system 130 initiated the request, and context information of each of the users.
- content recommendations may be generated, and these recommendations may be sent to all users, or to particular selected users.
- the assistant system 140 may extract various pieces of information from the call-wide request to use to select content items for the generated content recommendations. As an example and not by way of limitation, the assistant system 140 may extract the user IDs from the request and select appropriate content items based on these user IDs.
- this disclosure describes particular context information and determining whether to provide content recommendations based on context in a particular manner, this disclosure contemplates any suitable context information and determining whether to provide content recommendations in any suitable manner.
- the assistant system 140 may select one or more content items based on the user IDs of the plurality of users associated with the video call 500 . Content items that are particular related to one or more of the users may be selected and added to a content recommendation. As an example and not by way of limitation, the assistant system 140 may select content items featuring one or more of the users or that is relevant to activities of one or more of the users. In particular embodiments, various types of content may be recommended, and such content may be organized and retrieved in various ways. As an example and not by way of limitation, the assistant system 140 may provide content items, such as photos, in which one or more of the users of the video call 500 are tagged, subject to privacy settings indicating whether the photos are publicly accessible.
- the assistant system 140 may present photos of one particular user (e.g., the user who initiated the call). In particular embodiments, these photos may be categorized based on various criteria, such as events or dates, thus enabling a smart curation of recommendations that creates a story or memory for the users. Photos or other content items may be grouped and selected if they were taken at a same event or date. As an example and not by way of limitation, the assistant system 140 may provide a collection of photos taken on the same date (e.g., 20 January) over the course of the last ten years.
- the assistant system 140 may provide a recent post authored by one of the users in the video call 500 , or a post in which one or more of the users has been tagged.
- the assistant system 140 may provide a recommendation for a new mask relevant to the date of the video call 500 (e.g., a fantasy-related mask may be recommended for a call occurring on Halloween to alter the appearance and/or voice of a user to which the mask is applied).
- content may be selected either from a server or from a local data store of a client system 130 of a given user (e.g., from a local photo roll on a client device).
- the assistant system 140 may select a relevant photo of two users of a video call from local storage on one user's client system 130 and present it and any other content items selected from this local storage to the user of that device.
- selecting content items may further be based on content types associated with the content items, and, when determining what recommendations to serve, the assistant system 140 may decide what type of content to return before or after identifying the actual relevant content.
- an initial request for recommendations may specify a desired type of content. If a given user tends to interact with a particular type of content most frequently, or a particular type of content has been most popular recently, then the assistant system 140 may determine that this is the desired content type.
- relevant content may be identified first, and then one or more particular types may be selected based on recommendation scores that may indicate, for example, how likely a user is to engage with the associated content item.
- a variety of additional factors and context considerations may be taken into account when determining which content items or types of content items are selected as the recommendations, if privacy settings permit them to be accessed and/or monitored.
- content items may be selected based on whether a date is significant in a user's history (e.g., their birthday or anniversary).
- consideration may be given to a user's history of interaction with content items. If a given user tends to interact more with photo recommendations than with video ones, photo-type content items may be selected as recommendations. Or, if the user tends to interact with photos of trips more than group photos, photos of trips may be given greater weight when selecting content for recommendations.
- consideration may be given to social signals associated with content items, such as popularity of the content or of the content type itself. More popular content items, such as those with a greater number of likes or comments, may be up-ranked in the selection of recommendations; similarly, if photo-type content items tend to be more popular than text-type posts, photo-type content items may be selected over text posts, as the larger number of social signals associated with photo-type content items may indicate a higher probability that users will interact with or be interested in photos.
- demographic characteristics of the users may also be considered. While photos may be recommended for older callers, videos may be recommended for younger ones.
- selecting the content items may further be based on one or more topics of the video call 500 .
- the assistant system 140 may determine a topic of the video call 500 and return content items related to that topic (e.g., if a topic of the call is vacations, the assistant system 140 may provide photos of the last vacation a user took).
- content items may be organized or grouped before selection of content items, e.g., based on correlations between the content items.
- the photos may be selected based on their formatting (for example, all selected photos may be in the same orientation, i.e., all in landscape or all in portrait orientations). This similarity in subject and/or alignment may allow the presentation of content recommendations in a unified way, which may be useful when a user is using a large screen that is not optimal, due to its size and resolution, for displaying single photos at a time.
- photos of a same location may be selected.
- Subjects in the photos may be highly correlated to a user (e.g., the user's parents) and/or to each other (e.g., the parents themselves), or the photos may all involve a particular concept (e.g., food or hiking in group photos).
- these groups may be created offline before any requests are received, and updated periodically (e.g., every five hours).
- the grouping of content items may change based on these changes.
- Such an offline or proactive grouping may thus enable a request to be served immediately, as dynamically creating such groups in real-time in response to a request may require an undesirable and increasing amount of time as the number of content items grows.
- FIG. 5B illustrates an example video call 500 in which proactive content recommendations are presented to a first user.
- the assistant system 140 may send, to one or more of the client systems 130 while maintaining the video call 500 between the plurality of client systems 130 , responsive to determining whether to provide content recommendations during the video call 500 based on the current context of the video call 500 , a first content recommendation having the selected content items.
- the assistant system 140 may continuously monitor the video call 500 in order to determine whether it is an appropriate time to send proactive recommendations to one or more of the users.
- the assistant system 140 may provide a content sidebar 510 for display, such as by causing the content sidebar to pop up or slide into the frame of the video call 500 .
- content sidebar 510 may present various content items, such as photos 511 and 512 , that are relevant to the users of the call.
- photos 511 and 512 may be mutually tagged photos of the users.
- content sidebar may also present content items such as video 513 ; this video may, similar to photos 511 and 512 , involve the users, or it may be a video of a subject that concerns a common interest of both users.
- content sidebar 510 may also display social-networking content items, such as a post that may be authored by one of the users or a mutual contact, or that may simply have one or more of the users tagged in it.
- the assistant system 140 may further send a prompt to the first user to share the selected content items with one or more other user(s) of the video call 500 .
- a prompt may be provided when content recommendations are selected from local data stores of the first user's client system 130 , since any content accessed on a local data store may be assumed to be private content.
- the first user may then decide whether to accept the prompt; if the assistant system 140 receives, in response to the prompt, a request to share the selected content items, with either all users in the call or only with selected users, the assistant system 140 may then send, responsive to receiving the request, the selected content items to the one or more other users in accordance with the first user's selection.
- the assistant system 140 may receive a response to the prompt indicating that the selected content items be shared with all users in the video call 500 .
- the assistant system 140 may receive a response to the prompt requesting that the content item, such as a photo, be shared only with other users appearing in that photo.
- the sending of content recommendations may involve selecting particular users to receive the content recommendations. Certain users may either not find the content recommendations helpful or may even ignore them altogether; thus, presenting content recommendations to users with certain contexts and characteristics may attract their attention and thus increase user interaction with the content, and many options exist for selecting these users.
- content items may be provided to all users, or to just one or a selected few.
- assistant system 140 may select a first user associated with a first client system 130 and send content recommendations to that first client system 130 .
- recommended content items may be provided to a user who has uploaded media to a social network most recently, or to a user who has created content items with a higher score (e.g., a higher number of social signals such as likes or comments), as this activity may indicate that this user is very likely to interact with recommended content.
- a user in a video call 500 may be selected randomly, and recommendations may be provided to him.
- interactions by a particular user with past content recommendations may also be considered. If a user responds to a content recommendation, the assistant system 140 may store that interaction as an indication that this particular user is interested in recommendations and is thus a good candidate to show future or additional recommendations to.
- FIG. 6 illustrates an example method 600 for providing proactive content recommendations during a video call.
- the method may begin at step 610 , where the assistant system 140 may establish a video call between multiple client systems.
- the assistant system 140 may determine user identifiers (IDs) of users of the client systems in the video call.
- the assistant system 140 may determine whether to provide content recommendations based on a current context of the video call, and at step 640 , the assistant system 140 may select content items based on one or more of the user IDs.
- the assistant system 140 may send a first content recommendation with selected content items to one or more of the client systems while maintaining the video call.
- Particular embodiments may repeat one or more steps of the method of FIG. 6 , where appropriate.
- this disclosure describes and illustrates particular steps of the method of FIG. 6 as occurring in a particular order, this disclosure contemplates any suitable steps of the method of FIG. 6 occurring in any suitable order.
- this disclosure describes and illustrates an example method for proactively sending content recommendations based on user IDs and current context information, including the particular steps of the method of FIG. 6
- this disclosure contemplates any suitable method for proactively providing these content recommendations, including any suitable steps, which may include all, some, or none of the steps of the method of FIG. 6 , where appropriate.
- this disclosure describes and illustrates particular components, devices, or systems carrying out particular steps of the method of FIG. 6
- this disclosure contemplates any suitable combination of any suitable components, devices, or systems carrying out any suitable steps of the method of FIG. 6 .
- FIG. 7 illustrates an example method 700 for determining whether to provide content recommendations based on a current context of the video call.
- method 700 may correspond to step 630 of FIG. 6 .
- the method 700 may begin at step 710 , where the assistant system 140 may determine a current context of the video call.
- this current context may include a current amount of voice input in the video call 500 .
- the assistant system 140 may determine a current amount of voice input in the video call from the current context.
- Such an amount of voice input may be indicated by, for example, a noise level in the call, a number of users currently speaking, or an amount of time since a user last spoke.
- the assistant system 140 may determine whether the detected current amount of voice input is less than a threshold amount of voice input. If so, the method proceeds to step 740 , in which the assistant system 140 may determine that it is an appropriate time to provide content recommendations and thus determines to provide them to one or more users of the video call 500 . If the detected current amount of voice input is not less than the threshold amount of voice input, the method proceeds to step 750 , in which the assistant system 140 may determine that it is not an appropriate time to provide content recommendations, and thus may determine to delay providing content recommendations. As an example and not by way of limitation, the assistant system 140 may delay the provision of content recommendations until a later time, when it detects that the amount of voice input has fallen below the threshold.
- the assistant system 140 may simply not provide the content recommendations during the video call 500 at all if the voice input never falls below the threshold.
- Particular embodiments may repeat one or more steps of the method of FIG. 7 , where appropriate.
- this disclosure describes and illustrates particular steps of the method of FIG. 7 as occurring in a particular order, this disclosure contemplates any suitable steps of the method of FIG. 7 occurring in any suitable order.
- this disclosure describes and illustrates an example method for determining whether a current context of a video call indicates an appropriate time to provide content recommendations, including the particular steps of the method of FIG.
- this disclosure contemplates any suitable method for determining whether a current context of a video call indicates an appropriate time to provide content recommendation, including any suitable steps, which may include all, some, or none of the steps of the method of FIG. 7 , where appropriate.
- this disclosure describes and illustrates particular components, devices, or systems carrying out particular steps of the method of FIG. 7
- this disclosure contemplates any suitable combination of any suitable components, devices, or systems carrying out any suitable steps of the method of FIG. 7 .
- proactive recommendations may be implemented on either an individual or a call-wide basis.
- FIG. 8A illustrates an example method 800 for determining a current context of the video call 500 based on a request sent from a client system of one of the users of the video call.
- the method 800 may begin at step 810 , where the assistant system 140 may establish video call 500 between multiple client systems 130 .
- the assistant system 140 may determine user IDs of users of the client systems 130 in the video call 500 .
- the assistant system 140 may receive, from a first client system 130 of a first user, a request or notification of a current context at the first client system 130 .
- a request may be made automatically by a client-side process of the assistant system 140 .
- a user using the first client system 130 may explicitly request to view recommended content.
- the received request may be specifically a request for content recommendations, and the request may further include both a user identifier of the first user and the respective current context of the first user.
- the assistant system 140 may determine, at step 840 , to provide content recommendations.
- the assistant system 140 may interpret this explicit request as a signal that now is an appropriate time to make recommendations.
- the assistant system 140 may select content items based on one or more of the user IDs.
- the assistant system 140 may send a first content recommendation with selected content items specifically to the first client system 130 while maintaining the video call.
- Particular embodiments may repeat one or more steps of the method of FIG. 8A , where appropriate.
- this disclosure describes and illustrates particular steps of the method of FIG. 8A as occurring in a particular order, this disclosure contemplates any suitable steps of the method of FIG. 8A occurring in any suitable order.
- this disclosure describes and illustrates an example method for providing content recommendations on an individual basis based on requests and context received from a particular client system 130 including the particular steps of the method of FIG.
- this disclosure contemplates any suitable method for providing content recommendations on an individual basis including any suitable steps, which may include all, some, or none of the steps of the method of FIG. 8A , where appropriate.
- this disclosure describes and illustrates particular components, devices, or systems carrying out particular steps of the method of FIG. 8A
- this disclosure contemplates any suitable combination of any suitable components, devices, or systems carrying out any suitable steps of the method of FIG. 8A .
- FIG. 8B illustrates an example method 801 for determining a current context of the video call 500 by actively monitoring the video call 500 , and then selecting particular users to receive content recommendations.
- a call-wide method for determining this current context may include actively monitoring the video call via a server-side process.
- the method may begin at step 805 , where the assistant system 140 may establish video call 500 between multiple client systems 130 .
- the assistant system 140 may determine user IDs of users of the client systems 130 in the video call 500 .
- the assistant system 140 may monitor the established video call 500 to detect respective current contexts of each of the users of the multiple client systems 130 in the video call 500 .
- the assistant system 140 may determine, based on the respective current contexts, whether to provide content recommendations, and at step 845 , the assistant system 140 may select content items based on one or more of the user IDs. At step 855 , the assistant system 140 may select one or more users of the multiple client systems 130 based on the respective current contexts. Finally, at step 865 , while maintaining the video call, the assistant system 140 may send a first content recommendation with selected content items to the selected client systems 130 responsive to determining whether to provide content recommendations. Particular embodiments may repeat one or more steps of the method of FIG. 8B , where appropriate. Although this disclosure describes and illustrates particular steps of the method of FIG. 8B as occurring in a particular order, this disclosure contemplates any suitable steps of the method of FIG.
- this disclosure describes and illustrates an example method for providing content recommendations on a call-wide basis including the particular steps of the method of FIG. 8B
- this disclosure contemplates any suitable method for providing content recommendations on a call-wide basis including any suitable steps, which may include all, some, or none of the steps of the method of FIG. 8B , where appropriate.
- this disclosure describes and illustrates particular components, devices, or systems carrying out particular steps of the method of FIG. 8B
- this disclosure contemplates any suitable combination of any suitable components, devices, or systems carrying out any suitable steps of the method of FIG. 8B .
- FIG. 9 illustrates an example social graph 900 .
- the social-networking system 160 may store one or more social graphs 900 in one or more data stores.
- the social graph 900 may include multiple nodes—which may include multiple user nodes 902 or multiple concept nodes 904 —and multiple edges 906 connecting the nodes.
- Each node may be associated with a unique entity (i.e., user or concept), each of which may have a unique identifier (ID), such as a unique number or username.
- ID unique identifier
- the example social graph 900 illustrated in FIG. 9 is shown, for didactic purposes, in a two-dimensional visual map representation.
- a social-networking system 160 may access the social graph 900 and related social-graph information for suitable applications.
- the nodes and edges of the social graph 900 may be stored as data objects, for example, in a data store (such as a social-graph database).
- a data store may include one or more searchable or queryable indexes of nodes or edges of the social graph 900 .
- a user node 902 may correspond to a user of the social-networking system 160 or the assistant system 140 .
- a user may be an individual (human user), an entity (e.g., an enterprise, business, or third-party application), or a group (e.g., of individuals or entities) that interacts or communicates with or over the social-networking system 160 or the assistant system 140 .
- the social-networking system 160 may create a user node 902 corresponding to the user, and store the user node 902 in one or more data stores.
- Users and user nodes 902 described herein may, where appropriate, refer to registered users and user nodes 902 associated with registered users. In addition or as an alternative, users and user nodes 902 described herein may, where appropriate, refer to users that have not registered with the social-networking system 160 .
- a user node 902 may be associated with information provided by a user or information gathered by various systems, including the social-networking system 160 . As an example and not by way of limitation, a user may provide his or her name, profile picture, contact information, birth date, sex, marital status, family status, employment, education background, preferences, interests, or other demographic information.
- a user node 902 may be associated with one or more data objects corresponding to information associated with a user.
- a user node 902 may correspond to one or more web interfaces.
- a concept node 904 may correspond to a concept.
- a concept may correspond to a place (such as, for example, a movie theater, restaurant, landmark, or city); a website (such as, for example, a website associated with the social-networking system 160 or a third-party website associated with a web-application server); an entity (such as, for example, a person, business, group, sports team, or celebrity); a resource (such as, for example, an audio file, video file, digital photo, text file, structured document, or application) which may be located within the social-networking system 160 or on an external server, such as a web-application server; real or intellectual property (such as, for example, a sculpture, painting, movie, game, song, idea, photograph, or written work); a game; an activity; an idea or theory; another suitable concept; or two or more such concepts.
- a place such as, for example, a movie theater, restaurant, landmark, or city
- a website such as, for example, a website associated with the
- a concept node 904 may be associated with information of a concept provided by a user or information gathered by various systems, including the social-networking system 160 and the assistant system 140 .
- information of a concept may include a name or a title; one or more images (e.g., an image of the cover page of a book); a location (e.g., an address or a geographical location); a website (which may be associated with a URL); contact information (e.g., a phone number or an email address); other suitable concept information; or any suitable combination of such information.
- a concept node 904 may be associated with one or more data objects corresponding to information associated with concept node 904 .
- a concept node 904 may correspond to one or more web interfaces.
- a node in the social graph 900 may represent or be represented by a web interface (which may be referred to as a “profile interface”).
- Profile interfaces may be hosted by or accessible to the social-networking system 160 or the assistant system 140 .
- Profile interfaces may also be hosted on third-party websites associated with a third-party system 170 .
- a profile interface corresponding to a particular external web interface may be the particular external web interface and the profile interface may correspond to a particular concept node 904 .
- Profile interfaces may be viewable by all or a selected subset of other users.
- a user node 902 may have a corresponding user-profile interface in which the corresponding user may add content, make declarations, or otherwise express himself or herself.
- a concept node 904 may have a corresponding concept-profile interface in which one or more users may add content, make declarations, or express themselves, particularly in relation to the concept corresponding to concept node 904 .
- a concept node 904 may represent a third-party web interface or resource hosted by a third-party system 170 .
- the third-party web interface or resource may include, among other elements, content, a selectable or other icon, or other inter-actable object representing an action or activity.
- a third-party web interface may include a selectable icon such as “like,” “check-in,” “eat,” “recommend,” or another suitable action or activity.
- a user viewing the third-party web interface may perform an action by selecting one of the icons (e.g., “check-in”), causing a client system 130 to send to the social-networking system 160 a message indicating the user's action.
- the social-networking system 160 may create an edge (e.g., a check-in-type edge) between a user node 902 corresponding to the user and a concept node 904 corresponding to the third-party web interface or resource and store edge 906 in one or more data stores.
- an edge e.g., a check-in-type edge
- a pair of nodes in the social graph 900 may be connected to each other by one or more edges 906 .
- An edge 906 connecting a pair of nodes may represent a relationship between the pair of nodes.
- an edge 906 may include or represent one or more data objects or attributes corresponding to the relationship between a pair of nodes.
- a first user may indicate that a second user is a “friend” of the first user.
- the social-networking system 160 may send a “friend request” to the second user.
- the social-networking system 160 may create an edge 906 connecting the first user's user node 902 to the second user's user node 902 in the social graph 900 and store edge 906 as social-graph information in one or more of data stores 164 .
- the social graph 900 includes an edge 906 indicating a friend relation between user nodes 902 of user “A” and user “B” and an edge indicating a friend relation between user nodes 902 of user “C” and user “B.”
- an edge 906 may represent a friendship, family relationship, business or employment relationship, fan relationship (including, e.g., liking, etc.), follower relationship, visitor relationship (including, e.g., accessing, viewing, checking-in, sharing, etc.), sub scriber relationship, superior/subordinate relationship, reciprocal relationship, non-reciprocal relationship, another suitable type of relationship, or two or more such relationships.
- this disclosure generally describes nodes as being connected, this disclosure also describes users or concepts as being connected.
- references to users or concepts being connected may, where appropriate, refer to the nodes corresponding to those users or concepts being connected in the social graph 900 by one or more edges 906 .
- the degree of separation between two objects represented by two nodes, respectively, is a count of edges in a shortest path connecting the two nodes in the social graph 900 .
- the user node 902 of user “C” is connected to the user node 902 of user “A” via multiple paths including, for example, a first path directly passing through the user node 902 of user “B,” a second path passing through the concept node 904 of company “CompanyName” and the user node 902 of user “D,” and a third path passing through the user nodes 902 and concept nodes 904 representing school “SchoolName,” user “G,” company “CompanyName,” and user “D.”
- User “C” and user “A” have a degree of separation of two because the shortest path connecting their corresponding nodes (i.e., the first path) includes two edges 906 .
- an edge 906 between a user node 902 and a concept node 904 may represent a particular action or activity performed by a user associated with user node 902 toward a concept associated with a concept node 904 .
- a user may “like,” “attended,” “played,” “listened,” “cooked,” “worked at,” or “read” a concept, each of which may correspond to an edge type or subtype.
- a concept-profile interface corresponding to a concept node 904 may include, for example, a selectable “check in” icon (such as, for example, a clickable “check in” icon) or a selectable “add to favorites” icon.
- the social-networking system 160 may create a “favorite” edge or a “check in” edge in response to a user's action corresponding to a respective action.
- a user user “C” may listen to a particular song (“SongName”) using a particular application (a third-party online music application).
- the social-networking system 160 may create a “listened” edge 906 and a “used” edge (as illustrated in FIG. 9 ) between user nodes 902 corresponding to the user and concept nodes 904 corresponding to the song and application to indicate that the user listened to the song and used the application.
- the social-networking system 160 may create a “played” edge 906 (as illustrated in FIG. 9 ) between concept nodes 904 corresponding to the song and the application to indicate that the particular song was played by the particular application.
- “played” edge 906 corresponds to an action performed by an external application (the third-party online music application) on an external audio file (the song “SongName”).
- edges between a user node 902 and a concept node 904 representing a single relationship
- this disclosure contemplates edges between a user node 902 and a concept node 904 representing one or more relationships.
- an edge 906 may represent both that a user likes and has used at a particular concept.
- another edge 906 may represent each type of relationship (or multiples of a single relationship) between a user node 902 and a concept node 904 (as illustrated in FIG. 9 between user node 902 for user “E” and concept node 904 for “online music application”).
- the social-networking system 160 may create an edge 906 between a user node 902 and a concept node 904 in the social graph 900 .
- a user viewing a concept-profile interface (such as, for example, by using a web browser or a special-purpose application hosted by the user's client system 130 ) may indicate that he or she likes the concept represented by the concept node 904 by clicking or selecting a “Like” icon, which may cause the user's client system 130 to send to the social-networking system 160 a message indicating the user's liking of the concept associated with the concept-profile interface.
- the social-networking system 160 may create an edge 906 between user node 902 associated with the user and concept node 904 , as illustrated by “like” edge 906 between the user and concept node 904 .
- the social-networking system 160 may store an edge 906 in one or more data stores.
- an edge 906 may be automatically formed by the social-networking system 160 in response to a particular user action. As an example and not by way of limitation, if a first user uploads a picture, reads a book, watches a movie, or listens to a song, an edge 906 may be formed between user node 902 corresponding to the first user and concept nodes 904 corresponding to those concepts.
- this disclosure describes forming particular edges 906 in particular manners, this disclosure contemplates forming any suitable edges 906 in any suitable manner.
- FIG. 10 illustrates an example view of a vector space 1000 .
- an object or an n-gram may be represented in a d-dimensional vector space, where d denotes any suitable number of dimensions.
- the vector space 1000 is illustrated as a three-dimensional space, this is for illustrative purposes only, as the vector space 1000 may be of any suitable dimension.
- an n-gram may be represented in the vector space 1000 as a vector referred to as a term embedding.
- Each vector may comprise coordinates corresponding to a particular point in the vector space 1000 (i.e., the terminal point of the vector).
- vectors 1010 , 1020 , and 1030 may be represented as points in the vector space 1000 , as illustrated in FIG. 10 .
- An n-gram may be mapped to a respective vector representation.
- a dictionary trained to map text to a vector representation may be utilized, or such a dictionary may be itself generated via training.
- a word-embeddings model may be used to map an n-gram to a vector representation in the vector space 1000 .
- an n-gram may be mapped to a vector representation in the vector space 1000 by using a machine leaning model (e.g., a neural network).
- the machine learning model may have been trained using a sequence of training data (e.g., a corpus of objects each comprising n-grams).
- an object may be represented in the vector space 1000 as a vector referred to as a feature vector or an object embedding.
- an object may be mapped to a vector based on one or more properties, attributes, or features of the object, relationships of the object with other objects, or any other suitable information associated with the object.
- a function may map objects to vectors by feature extraction, which may start from an initial set of measured data and build derived values (e.g., features).
- an object comprising a video or an image may be mapped to a vector by using an algorithm to detect or isolate various desired portions or shapes of the object.
- Features used to calculate the vector may be based on information obtained from edge detection, corner detection, blob detection, ridge detection, scale-invariant feature transformation, edge direction, changing intensity, autocorrelation, motion detection, optical flow, thresholding, blob extraction, template matching, Hough transformation (e.g., lines, circles, ellipses, arbitrary shapes), or any other suitable information.
- an object comprising audio data may be mapped to a vector based on features such as a spectral slope, a tonality coefficient, an audio spectrum centroid, an audio spectrum envelope, a Mel-frequency cepstrum, or any other suitable information.
- a function may map the object to a vector using a transformed reduced set of features (e.g., feature selection).
- a function may map an object e to a vector (e) based on one or more n-grams associated with object e.
- the social-networking system 160 may calculate a similarity metric of vectors in vector space 1000 .
- a similarity metric may be a cosine similarity, a Minkowski distance, a Mahalanobis distance, a Jaccard similarity coefficient, or any suitable similarity metric.
- a similarity metric of and may be a cosine similarity
- a similarity metric of and may be a Euclidean distance ⁇ ⁇ ⁇ .
- a similarity metric of two vectors may represent how similar the two objects or n-grams corresponding to the two vectors, respectively, are to one another, as measured by the distance between the two vectors in the vector space 1000 .
- vector 1010 and vector 1020 may correspond to objects that are more similar to one another than the objects corresponding to vector 1010 and vector 1030 , based on the distance between the respective vectors.
- FIG. 11 illustrates an example artificial neural network (“ANN”) 1100 .
- an ANN may refer to a computational model comprising one or more nodes.
- Example ANN 1100 may comprise an input layer 1110 , hidden layers 1120 , 1130 , 1140 , and an output layer 1150 .
- Each layer of the ANN 1100 may comprise one or more nodes, such as a node 1105 or a node 1115 .
- each node of an ANN may be connected to another node of the ANN.
- each node of the input layer 1110 may be connected to one of more nodes of the hidden layer 1120 .
- one or more nodes may be a bias node (e.g., a node in a layer that is not connected to and does not receive input from any node in a previous layer).
- each node in each layer may be connected to one or more nodes of a previous or subsequent layer.
- FIG. 11 depicts a particular ANN with a particular number of layers, a particular number of nodes, and particular connections between nodes, this disclosure contemplates any suitable ANN with any suitable number of layers, any suitable number of nodes, and any suitable connections between nodes.
- FIG. 11 depicts a connection between each node of the input layer 1110 and each node of the hidden layer 1120 , one or more nodes of the input layer 1110 may not be connected to one or more nodes of the hidden layer 1120 .
- an ANN may be a feedforward ANN (e.g., an ANN with no cycles or loops where communication between nodes flows in one direction beginning with the input layer and proceeding to successive layers).
- the input to each node of the hidden layer 1120 may comprise the output of one or more nodes of the input layer 1110 .
- the input to each node of the output layer 1150 may comprise the output of one or more nodes of the hidden layer 1140 .
- an ANN may be a deep neural network (e.g., a neural network comprising at least two hidden layers).
- an ANN may be a deep residual network.
- a deep residual network may be a feedforward ANN comprising hidden layers organized into residual blocks.
- the input into each residual block after the first residual block may be a function of the output of the previous residual block and the input of the previous residual block.
- the input into residual block N may be F(x)+x, where F(x) may be the output of residual block N ⁇ 1, x may be the input into residual block N ⁇ 1.
- an activation function may correspond to each node of an ANN.
- An activation function of a node may define the output of a node for a given input.
- an input to a node may comprise a set of inputs.
- an activation function may be an identity function, a binary step function, a logistic function, or any other suitable function.
- an activation function for a node k may be the sigmoid function
- the rectifier F k (s k ) max (0,s k ), or any other suitable function F k (s k ), where s k may be the effective input to node k.
- the input of an activation function corresponding to a node may be weighted.
- Each node may generate output using a corresponding activation function based on weighted inputs.
- each connection between nodes may be associated with a weight.
- a connection 1125 between the node 1105 and the node 1115 may have a weighting coefficient of 0.4, which may indicate that 0.4 multiplied by the output of the node 1105 is used as an input to the node 1115 .
- the input to nodes of the input layer may be based on a vector representing an object.
- an ANN may be trained using training data.
- training data may comprise inputs to the ANN 1100 and an expected output.
- training data may comprise vectors each representing a training object and an expected label for each training object.
- training an ANN may comprise modifying the weights associated with the connections between nodes of the ANN by optimizing an objective function.
- a training method may be used (e.g., the conjugate gradient method, the gradient descent method, the stochastic gradient descent) to backpropagate the sum-of-squares error measured as a distances between each vector representing a training object (e.g., using a cost function that minimizes the sum-of-squares error).
- an ANN may be trained using a dropout technique.
- one or more nodes may be temporarily omitted (e.g., receive no input and generate no output) while training. For each training object, one or more nodes of the ANN may have some probability of being omitted.
- the nodes that are omitted for a particular training object may be different than the nodes omitted for other training objects (e.g., the nodes may be temporarily omitted on an object-by-object basis).
- this disclosure describes training an ANN in a particular manner, this disclosure contemplates training an ANN in any suitable manner.
- one or more objects of a computing system may be associated with one or more privacy settings.
- the one or more objects may be stored on or otherwise associated with any suitable computing system or application, such as, for example, a social-networking system 160 , a client system 130 , an assistant system 140 , a third-party system 170 , a social-networking application, an assistant application, a messaging application, a photo-sharing application, or any other suitable computing system or application.
- a social-networking system 160 such as, for example, a social-networking system 160 , a client system 130 , an assistant system 140 , a third-party system 170 , a social-networking application, an assistant application, a messaging application, a photo-sharing application, or any other suitable computing system or application.
- these privacy settings may be applied to any other suitable computing system.
- Privacy settings (or “access settings”) for an object may be stored in any suitable manner, such as, for example, in association with the object, in an index on an authorization server, in another suitable manner, or any suitable combination thereof.
- a privacy setting for an object may specify how the object (or particular information associated with the object) can be accessed, stored, or otherwise used (e.g., viewed, shared, modified, copied, executed, surfaced, or identified) within the online social network.
- privacy settings for an object allow a particular user or other entity to access that object, the object may be described as being “visible” with respect to that user or other entity.
- a user of the online social network may specify privacy settings for a user-profile page that identify a set of users that may access work-experience information on the user-profile page, thus excluding other users from accessing that information.
- privacy settings for an object may specify a “blocked list” of users or other entities that should not be allowed to access certain information associated with the object.
- the blocked list may include third-party entities.
- the blocked list may specify one or more users or entities for which an object is not visible.
- a user may specify a set of users who may not access photo albums associated with the user, thus excluding those users from accessing the photo albums (while also possibly allowing certain users not within the specified set of users to access the photo albums).
- privacy settings may be associated with particular social-graph elements.
- Privacy settings of a social-graph element may specify how the social-graph element, information associated with the social-graph element, or objects associated with the social-graph element can be accessed using the online social network.
- a particular concept node 904 corresponding to a particular photo may have a privacy setting specifying that the photo may be accessed only by users tagged in the photo and friends of the users tagged in the photo.
- privacy settings may allow users to opt in to or opt out of having their content, information, or actions stored/logged by the social-networking system 160 or assistant system 140 or shared with other systems (e.g., a third-party system 170 ).
- privacy settings may be based on one or more nodes or edges of a social graph 900 .
- a privacy setting may be specified for one or more edges 906 or edge-types of the social graph 900 , or with respect to one or more nodes 902 , 904 or node-types of the social graph 900 .
- the privacy settings applied to a particular edge 906 connecting two nodes may control whether the relationship between the two entities corresponding to the nodes is visible to other users of the online social network.
- the privacy settings applied to a particular node may control whether the user or concept corresponding to the node is visible to other users of the online social network.
- a first user may share an object to the social-networking system 160 .
- the object may be associated with a concept node 904 connected to a user node 902 of the first user by an edge 906 .
- the first user may specify privacy settings that apply to a particular edge 906 connecting to the concept node 904 of the object, or may specify privacy settings that apply to all edges 906 connecting to the concept node 904 .
- the first user may share a set of objects of a particular object-type (e.g., a set of images).
- the first user may specify privacy settings with respect to all objects associated with the first user of that particular object-type as having a particular privacy setting (e.g., specifying that all images posted by the first user are visible only to friends of the first user and/or users tagged in the images).
- the social-networking system 160 may present a “privacy wizard” (e.g., within a webpage, a module, one or more dialog boxes, or any other suitable interface) to the first user to assist the first user in specifying one or more privacy settings.
- the privacy wizard may display instructions, suitable privacy-related information, current privacy settings, one or more input fields for accepting one or more inputs from the first user specifying a change or confirmation of privacy settings, or any suitable combination thereof.
- the social-networking system 160 may offer a “dashboard” functionality to the first user that may display, to the first user, current privacy settings of the first user.
- the dashboard functionality may be displayed to the first user at any appropriate time (e.g., following an input from the first user summoning the dashboard functionality, following the occurrence of a particular event or trigger action).
- the dashboard functionality may allow the first user to modify one or more of the first user's current privacy settings at any time, in any suitable manner (e.g., redirecting the first user to the privacy wizard).
- Privacy settings associated with an object may specify any suitable granularity of permitted access or denial of access.
- access or denial of access may be specified for particular users (e.g., only me, my roommates, my boss), users within a particular degree-of-separation (e.g., friends, friends-of-friends), user groups (e.g., the gaming club, my family), user networks (e.g., employees of particular employers, students or alumni of particular university), all users (“public”), no users (“private”), users of third-party systems 170 , particular applications (e.g., third-party applications, external websites), other suitable entities, or any suitable combination thereof.
- this disclosure describes particular granularities of permitted access or denial of access, this disclosure contemplates any suitable granularities of permitted access or denial of access.
- one or more servers 162 may be authorization/privacy servers for enforcing privacy settings.
- the social-networking system 160 may send a request to the data store 164 for the object.
- the request may identify the user associated with the request and the object may be sent only to the user (or a client system 130 of the user) if the authorization server determines that the user is authorized to access the object based on the privacy settings associated with the object. If the requesting user is not authorized to access the object, the authorization server may prevent the requested object from being retrieved from the data store 164 or may prevent the requested object from being sent to the user.
- an object may be provided as a search result only if the querying user is authorized to access the object, e.g., if the privacy settings for the object allow it to be surfaced to, discovered by, or otherwise visible to the querying user.
- an object may represent content that is visible to a user through a newsfeed of the user.
- one or more objects may be visible to a user's “Trending” page.
- an object may correspond to a particular user. The object may be content associated with the particular user, or may be the particular user's account or information stored on the social-networking system 160 , or other computing system.
- a first user may view one or more second users of an online social network through a “People You May Know” function of the online social network, or by viewing a list of friends of the first user.
- a first user may specify that they do not wish to see objects associated with a particular second user in their newsfeed or friends list. If the privacy settings for the object do not allow it to be surfaced to, discovered by, or visible to the user, the object may be excluded from the search results.
- different objects of the same type associated with a user may have different privacy settings.
- Different types of objects associated with a user may have different types of privacy settings.
- a first user may specify that the first user's status updates are public, but any images shared by the first user are visible only to the first user's friends on the online social network.
- a user may specify different privacy settings for different types of entities, such as individual users, friends-of-friends, followers, user groups, or corporate entities.
- a first user may specify a group of users that may view videos posted by the first user, while keeping the videos from being visible to the first user's employer.
- different privacy settings may be provided for different user groups or user demographics.
- a first user may specify that other users who attend the same university as the first user may view the first user's pictures, but that other users who are family members of the first user may not view those same pictures.
- the social-networking system 160 may provide one or more default privacy settings for each object of a particular object-type.
- a privacy setting for an object that is set to a default may be changed by a user associated with that object.
- all images posted by a first user may have a default privacy setting of being visible only to friends of the first user and, for a particular image, the first user may change the privacy setting for the image to be visible to friends and friends-of-friends.
- privacy settings may allow a first user to specify (e.g., by opting out, by not opting in) whether the social-networking system 160 or assistant system 140 may receive, collect, log, or store particular objects or information associated with the user for any purpose.
- privacy settings may allow the first user to specify whether particular applications or processes may access, store, or use particular objects or information associated with the user.
- the privacy settings may allow the first user to opt in or opt out of having objects or information accessed, stored, or used by specific applications or processes.
- the social-networking system 160 or assistant system 140 may access such information in order to provide a particular function or service to the first user, without the social-networking system 160 or assistant system 140 having access to that information for any other purposes.
- the social-networking system 160 or assistant system 140 may prompt the user to provide privacy settings specifying which applications or processes, if any, may access, store, or use the object or information prior to allowing any such action.
- a first user may transmit a message to a second user via an application related to the online social network (e.g., a messaging app), and may specify privacy settings that such messages should not be stored by the social-networking system 160 or assistant system 140 .
- a user may specify whether particular types of objects or information associated with the first user may be accessed, stored, or used by the social-networking system 160 or assistant system 140 .
- the first user may specify that images sent by the first user through the social-networking system 160 or assistant system 140 may not be stored by the social-networking system 160 or assistant system 140 .
- a first user may specify that messages sent from the first user to a particular second user may not be stored by the social-networking system 160 or assistant system 140 .
- a first user may specify that all objects sent via a particular application may be saved by the social-networking system 160 or assistant system 140 .
- privacy settings may allow a first user to specify whether particular objects or information associated with the first user may be accessed from particular client systems 130 or third-party systems 170 .
- the privacy settings may allow the first user to opt in or opt out of having objects or information accessed from a particular device (e.g., the phone book on a user's smart phone), from a particular application (e.g., a messaging app), or from a particular system (e.g., an email server).
- the social-networking system 160 or assistant system 140 may provide default privacy settings with respect to each device, system, or application, and/or the first user may be prompted to specify a particular privacy setting for each context.
- the first user may utilize a location-services feature of the social-networking system 160 or assistant system 140 to provide recommendations for restaurants or other places in proximity to the user.
- the first user's default privacy settings may specify that the social-networking system 160 or assistant system 140 may use location information provided from a client system 130 of the first user to provide the location-based services, but that the social-networking system 160 or assistant system 140 may not store the location information of the first user or provide it to any third-party system 170 .
- the first user may then update the privacy settings to allow location information to be used by a third-party image-sharing application in order to geo-tag photos.
- privacy settings may allow a user to specify one or more geographic locations from which objects can be accessed. Access or denial of access to the objects may depend on the geographic location of a user who is attempting to access the objects.
- a user may share an object and specify that only users in the same city may access or view the object.
- a first user may share an object and specify that the object is visible to second users only while the first user is in a particular location. If the first user leaves the particular location, the object may no longer be visible to the second users.
- a first user may specify that an object is visible only to second users within a threshold distance from the first user. If the first user subsequently changes location, the original second users with access to the object may lose access, while a new group of second users may gain access as they come within the threshold distance of the first user.
- the social-networking system 160 or assistant system 140 may have functionalities that may use, as inputs, personal or biometric information of a user for user-authentication or experience-personalization purposes.
- a user may opt to make use of these functionalities to enhance their experience on the online social network.
- a user may provide personal or biometric information to the social-networking system 160 or assistant system 140 .
- the user's privacy settings may specify that such information may be used only for particular processes, such as authentication, and further specify that such information may not be shared with any third-party system 170 or used for other processes or applications associated with the social-networking system 160 or assistant system 140 .
- the social-networking system 160 may provide a functionality for a user to provide voice-print recordings to the online social network.
- the user may provide a voice recording of his or her own voice to provide a status update on the online social network.
- the recording of the voice-input may be compared to a voice print of the user to determine what words were spoken by the user.
- the user's privacy setting may specify that such voice recording may be used only for voice-input purposes (e.g., to authenticate the user, to send voice messages, to improve voice recognition in order to use voice-operated features of the online social network), and further specify that such voice recording may not be shared with any third-party system 170 or used by other processes or applications associated with the social-networking system 160 .
- the social-networking system 160 may provide a functionality for a user to provide a reference image (e.g., a facial profile, a retinal scan) to the online social network.
- the online social network may compare the reference image against a later-received image input (e.g., to authenticate the user, to tag the user in photos).
- the user's privacy setting may specify that such image may be used only for a limited purpose (e.g., authentication, tagging the user in photos), and further specify that such image may not be shared with any third-party system 170 or used by other processes or applications associated with the social-networking system 160 .
- FIG. 12 illustrates an example computer system 1200 .
- one or more computer systems 1200 perform one or more steps of one or more methods described or illustrated herein.
- one or more computer systems 1200 provide functionality described or illustrated herein.
- software running on one or more computer systems 1200 performs one or more steps of one or more methods described or illustrated herein or provides functionality described or illustrated herein.
- Particular embodiments include one or more portions of one or more computer systems 1200 .
- reference to a computer system may encompass a computing device, and vice versa, where appropriate.
- reference to a computer system may encompass one or more computer systems, where appropriate.
- computer system 1200 may be an embedded computer system, a system-on-chip (SOC), a single-board computer system (SBC) (such as, for example, a computer-on-module (COM) or system-on-module (SOM)), a desktop computer system, a laptop or notebook computer system, an interactive kiosk, a mainframe, a mesh of computer systems, a mobile telephone, a personal digital assistant (PDA), a server, a tablet computer system, or a combination of two or more of these.
- SOC system-on-chip
- SBC single-board computer system
- COM computer-on-module
- SOM system-on-module
- computer system 1200 may include one or more computer systems 1200 ; be unitary or distributed; span multiple locations; span multiple machines; span multiple data centers; or reside in a cloud, which may include one or more cloud components in one or more networks.
- one or more computer systems 1200 may perform without substantial spatial or temporal limitation one or more steps of one or more methods described or illustrated herein.
- one or more computer systems 1200 may perform in real time or in batch mode one or more steps of one or more methods described or illustrated herein.
- One or more computer systems 1200 may perform at different times or at different locations one or more steps of one or more methods described or illustrated herein, where appropriate.
- computer system 1200 includes a processor 1202 , memory 1204 , storage 1206 , an input/output (I/O) interface 1208 , a communication interface 1210 , and a bus 1212 .
- I/O input/output
- this disclosure describes and illustrates a particular computer system having a particular number of particular components in a particular arrangement, this disclosure contemplates any suitable computer system having any suitable number of any suitable components in any suitable arrangement.
- processor 1202 includes hardware for executing instructions, such as those making up a computer program.
- processor 1202 may retrieve (or fetch) the instructions from an internal register, an internal cache, memory 1204 , or storage 1206 ; decode and execute them; and then write one or more results to an internal register, an internal cache, memory 1204 , or storage 1206 .
- processor 1202 may include one or more internal caches for data, instructions, or addresses. This disclosure contemplates processor 1202 including any suitable number of any suitable internal caches, where appropriate.
- processor 1202 may include one or more instruction caches, one or more data caches, and one or more translation lookaside buffers (TLBs). Instructions in the instruction caches may be copies of instructions in memory 1204 or storage 1206 , and the instruction caches may speed up retrieval of those instructions by processor 1202 . Data in the data caches may be copies of data in memory 1204 or storage 1206 for instructions executing at processor 1202 to operate on; the results of previous instructions executed at processor 1202 for access by subsequent instructions executing at processor 1202 or for writing to memory 1204 or storage 1206 ; or other suitable data. The data caches may speed up read or write operations by processor 1202 . The TLBs may speed up virtual-address translation for processor 1202 .
- TLBs translation lookaside buffers
- processor 1202 may include one or more internal registers for data, instructions, or addresses. This disclosure contemplates processor 1202 including any suitable number of any suitable internal registers, where appropriate. Where appropriate, processor 1202 may include one or more arithmetic logic units (ALUs); be a multi-core processor; or include one or more processors 1202 . Although this disclosure describes and illustrates a particular processor, this disclosure contemplates any suitable processor.
- ALUs arithmetic logic units
- memory 1204 includes main memory for storing instructions for processor 1202 to execute or data for processor 1202 to operate on.
- computer system 1200 may load instructions from storage 1206 or another source (such as, for example, another computer system 1200 ) to memory 1204 .
- Processor 1202 may then load the instructions from memory 1204 to an internal register or internal cache.
- processor 1202 may retrieve the instructions from the internal register or internal cache and decode them.
- processor 1202 may write one or more results (which may be intermediate or final results) to the internal register or internal cache.
- Processor 1202 may then write one or more of those results to memory 1204 .
- processor 1202 executes only instructions in one or more internal registers or internal caches or in memory 1204 (as opposed to storage 1206 or elsewhere) and operates only on data in one or more internal registers or internal caches or in memory 1204 (as opposed to storage 1206 or elsewhere).
- One or more memory buses (which may each include an address bus and a data bus) may couple processor 1202 to memory 1204 .
- Bus 1212 may include one or more memory buses, as described below.
- one or more memory management units reside between processor 1202 and memory 1204 and facilitate accesses to memory 1204 requested by processor 1202 .
- memory 1204 includes random access memory (RAM). This RAM may be volatile memory, where appropriate.
- this RAM may be dynamic RAM (DRAM) or static RAM (SRAM). Moreover, where appropriate, this RAM may be single-ported or multi-ported RAM. This disclosure contemplates any suitable RAM.
- Memory 1204 may include one or more memories 1204 , where appropriate. Although this disclosure describes and illustrates particular memory, this disclosure contemplates any suitable memory.
- storage 1206 includes mass storage for data or instructions.
- storage 1206 may include a hard disk drive (HDD), a floppy disk drive, flash memory, an optical disc, a magneto-optical disc, magnetic tape, or a Universal Serial Bus (USB) drive or a combination of two or more of these.
- Storage 1206 may include removable or non-removable (or fixed) media, where appropriate.
- Storage 1206 may be internal or external to computer system 1200 , where appropriate.
- storage 1206 is non-volatile, solid-state memory.
- storage 1206 includes read-only memory (ROM).
- this ROM may be mask-programmed ROM, programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), electrically alterable ROM (EAROM), or flash memory or a combination of two or more of these.
- This disclosure contemplates mass storage 1206 taking any suitable physical form.
- Storage 1206 may include one or more storage control units facilitating communication between processor 1202 and storage 1206 , where appropriate.
- storage 1206 may include one or more storages 1206 .
- this disclosure describes and illustrates particular storage, this disclosure contemplates any suitable storage.
- I/O interface 1208 includes hardware, software, or both, providing one or more interfaces for communication between computer system 1200 and one or more I/O devices.
- Computer system 1200 may include one or more of these I/O devices, where appropriate.
- One or more of these I/O devices may enable communication between a person and computer system 1200 .
- an I/O device may include a keyboard, keypad, microphone, monitor, mouse, printer, scanner, speaker, still camera, stylus, tablet, touch screen, trackball, video camera, another suitable I/O device or a combination of two or more of these.
- An I/O device may include one or more sensors. This disclosure contemplates any suitable I/O devices and any suitable I/O interfaces 1208 for them.
- I/O interface 1208 may include one or more device or software drivers enabling processor 1202 to drive one or more of these I/O devices.
- I/O interface 1208 may include one or more I/O interfaces 1208 , where appropriate. Although this disclosure describes and illustrates a particular I/O interface, this disclosure contemplates any suitable I/O interface.
- communication interface 1210 includes hardware, software, or both providing one or more interfaces for communication (such as, for example, packet-based communication) between computer system 1200 and one or more other computer systems 1200 or one or more networks.
- communication interface 1210 may include a network interface controller (NIC) or network adapter for communicating with an Ethernet or other wire-based network or a wireless NIC (WNIC) or wireless adapter for communicating with a wireless network, such as a WI-FI network.
- NIC network interface controller
- WNIC wireless NIC
- WI-FI network wireless network
- computer system 1200 may communicate with an ad hoc network, a personal area network (PAN), a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), or one or more portions of the Internet or a combination of two or more of these.
- PAN personal area network
- LAN local area network
- WAN wide area network
- MAN metropolitan area network
- computer system 1200 may communicate with a wireless PAN (WPAN) (such as, for example, a BLUETOOTH WPAN), a WI-FI network, a WI-MAX network, a cellular telephone network (such as, for example, a Global System for Mobile Communications (GSM) network), or other suitable wireless network or a combination of two or more of these.
- Computer system 1200 may include any suitable communication interface 1210 for any of these networks, where appropriate.
- Communication interface 1210 may include one or more communication interfaces 1210 , where appropriate.
- bus 1212 includes hardware, software, or both coupling components of computer system 1200 to each other.
- bus 1212 may include an Accelerated Graphics Port (AGP) or other graphics bus, an Enhanced Industry Standard Architecture (EISA) bus, a front-side bus (FSB), a HYPERTRANSPORT (HT) interconnect, an Industry Standard Architecture (ISA) bus, an INFINIBAND interconnect, a low-pin-count (LPC) bus, a memory bus, a Micro Channel Architecture (MCA) bus, a Peripheral Component Interconnect (PCI) bus, a PCI-Express (PCIe) bus, a serial advanced technology attachment (SATA) bus, a Video Electronics Standards Association local (VLB) bus, or another suitable bus or a combination of two or more of these.
- Bus 1212 may include one or more buses 1212 , where appropriate.
- a computer-readable non-transitory storage medium or media may include one or more semiconductor-based or other integrated circuits (ICs) (such, as for example, field-programmable gate arrays (FPGAs) or application-specific ICs (ASICs)), hard disk drives (HDDs), hybrid hard drives (HHDs), optical discs, optical disc drives (ODDs), magneto-optical discs, magneto-optical drives, floppy diskettes, floppy disk drives (FDDs), magnetic tapes, solid-state drives (SSDs), RAM-drives, SECURE DIGITAL cards or drives, any other suitable computer-readable non-transitory storage media, or any suitable combination of two or more of these, where appropriate.
- ICs such, as for example, field-programmable gate arrays (FPGAs) or application-specific ICs (ASICs)
- HDDs hard disk drives
- HHDs hybrid hard drives
- ODDs optical disc drives
- magneto-optical discs magneto-optical drives
- references in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative. Additionally, although this disclosure describes or illustrates particular embodiments as providing particular advantages, particular embodiments may provide none, some, or all of these advantages.
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Information Transfer Between Computers (AREA)
Abstract
In one embodiment, a method includes establishing a video call between a plurality of client systems, sending, to a first client system of the plurality of client systems while maintaining the video call between the plurality of client systems, instructions for presenting a first content recommendation comprising one or more selected content items, wherein the first content recommendation comprises a prompt to share the selected content items with one or more second client systems of the plurality of client systems, receiving, from the first client system responsive to the prompt, a request to share the selected content items, and sending, to the one or more second client systems responsive to receiving the request and while maintaining the video call between the plurality of client systems, instructions for presenting the selected content items within the video call.
Description
- This application is a continuation under 35 U.S.C. § 120 of U.S. patent application Ser. No. 16/842,366, filed 7 Apr. 2020, which is incorporated herein by reference.
- This disclosure generally relates to databases and file management within network environments, and in particular relates to hardware and software for smart assistant systems.
- An assistant system can provide information or services on behalf of a user based on a combination of user input, location awareness, and the ability to access information from a variety of online sources (such as weather conditions, traffic congestion, news, stock prices, user schedules, retail prices, etc.). The user input may include text (e.g., online chat), especially in an instant messaging application or other applications, voice, images, motion, or a combination of them. The assistant system may perform concierge-type services (e.g., making dinner reservations, purchasing event tickets, making travel arrangements) or provide information based on the user input. The assistant system may also perform management or data-handling tasks based on online information and events without user initiation or interaction. Examples of those tasks that may be performed by an assistant system may include schedule management (e.g., sending an alert to a dinner date that a user is running late due to traffic conditions, update schedules for both parties, and change the restaurant reservation time). The assistant system may be enabled by the combination of computing devices, application programming interfaces (APIs), and the proliferation of applications on user devices.
- A social-networking system, which may include a social-networking website, may enable its users (such as persons or organizations) to interact with it and with each other through it. The social-networking system may, with input from a user, create and store in the social-networking system a user profile associated with the user. The user profile may include demographic information, communication-channel information, and information on personal interests of the user. The social-networking system may also, with input from a user, create and store a record of relationships of the user with other users of the social-networking system, as well as provide services (e.g. profile/news feed posts, photo-sharing, event organization, messaging, games, or advertisements) to facilitate social interaction between or among users.
- The social-networking system may send over one or more networks content or messages related to its services to a mobile or other computing device of a user. A user may also install software applications on a mobile or other computing device of the user for accessing a user profile of the user and other data within the social-networking system. The social-networking system may generate a personalized set of content objects to display to a user, such as a newsfeed of aggregated stories of other users connected to the user.
- In particular embodiments, the assistant system may assist a user to obtain information or services. The assistant system may enable the user to interact with it with multi-modal user input (such as voice, text, image, video, motion) in stateful and multi-turn conversations to get assistance. As an example and not by way of limitation, the assistant system may support both audio (verbal) input and nonverbal input, such as vision, location, gesture, motion, or hybrid/multi-modal input. The assistant system may create and store a user profile comprising both personal and contextual information associated with the user. In particular embodiments, the assistant system may analyze the user input using natural-language understanding. The analysis may be based on the user profile of the user for more personalized and context-aware understanding. The assistant system may resolve entities associated with the user input based on the analysis. In particular embodiments, the assistant system may interact with different agents to obtain information or services that are associated with the resolved entities. The assistant system may generate a response for the user regarding the information or services by using natural-language generation. Through the interaction with the user, the assistant system may use dialog-management techniques to manage and advance the conversation flow with the user. In particular embodiments, the assistant system may further assist the user to effectively and efficiently digest the obtained information by summarizing the information. The assistant system may also assist the user to be more engaging with an online social network by providing tools that help the user interact with the online social network (e.g., creating posts, comments, messages). The assistant system may additionally assist the user to manage different tasks such as keeping track of events. In particular embodiments, the assistant system may proactively execute, without a user input, tasks that are relevant to user interests and preferences based on the user profile, at a time relevant for the user. In particular embodiments, the assistant system may check privacy settings to ensure that accessing a user's profile or other user information and executing different tasks are permitted subject to the user's privacy settings.
- In particular embodiments, the assistant system may assist the user via a hybrid architecture built upon both client-side processes and server-side processes. The client-side processes and the server-side processes may be two parallel workflows for processing a user input and providing assistance to the user. In particular embodiments, the client-side processes may be performed locally on a client system associated with a user. By contrast, the server-side processes may be performed remotely on one or more computing systems. In particular embodiments, an arbitrator on the client system may coordinate receiving user input (e.g., an audio signal), determine whether to use a client-side process, a server-side process, or both, to respond to the user input, and analyze the processing results from each process. The arbitrator may instruct agents on the client-side or server-side to execute tasks associated with the user input based on the aforementioned analyses. The execution results may be further rendered as output to the client system. By leveraging both client-side and server-side processes, the assistant system can effectively assist a user with optimal usage of computing resources while at the same time protecting user privacy and enhancing security.
- In particular embodiments, the assistant system may provide in-call experience enhancements in which content items, such as photos, videos, posts, etc., are proactively recommended to users during a video call. The assistant system may identify the users in the video call (subject to privacy settings) and automatically select content items that are relevant to the users and to the context of the call, which may be then be presented on the screens of one or more of the users. As examples and not by way of limitation, such context may include factors such as a topic of a conversation within the call or the location or scenery behind users in the call, which may be identified subject to privacy settings. These content items may be proactively selected and presented by the assistant system based on a recommender module within the assistant architecture that determines the most relevant content items based on the user identifiers, context, and various parameters related to the call itself. Such recommendations may be handled by either the server-side and/or client-side processes of the assistant system, and the recommended content items may be selected from remote and/or local data stores (subject to access settings).
- In particular embodiments, the assistant system may establish a video call between multiple client systems and determine user identifiers of users associated with the video call. The assistant system may then determine whether to provide content recommendations during the video call based on a current context of that video call, and select one or more content items to recommend based on the determined user identifiers. Finally, in response to determining to provide content recommendations during the video call, the assistant system may send, while maintaining the video call between the client systems, a first content recommendation with the selected content items to one or more of the client systems.
- Certain technical challenges exist in maintaining a quality video call between users. Video calls may lack a feeling of genuine social interaction, and users in the call may run out of topics to discuss or forget important topics relevant to a context of their conversation. Proactively providing content may thus guide and prolong a stalled conversation, and create a more social experience to the call. However, one technical challenge to this may include determining an appropriate time to present these content recommendations, as presenting them at an inopportune time may result in the content being unnoticed or ignored, or even distracting the users from a current topic of the conversation. A solution presented by embodiments disclosed herein to address this challenge may thus include monitoring the video call for particular context information that may be used to determine such an appropriate time through the use of a hybrid client-side and server-side assistant system. Another technical challenge may include determining appropriate users in the video call to actually deliver content recommendations to, as certain users may either not find the content recommendations helpful or may even ignore them altogether. A solution presented by embodiments disclosed herein to address this challenge may thus involve the selection of particular users based on various information ascertained during the call, such as the context information, privacy settings and user preferences, significant dates or subjects relating to the call, and previous interactions with various content items by one or more of the users.
- Certain embodiments disclosed herein may provide one or more technical advantages. As an example, presenting content recommendations at a particular appropriate time may guide and prolong a faltering conversation, and may further increase the likelihood that users will actively interact with recommended content. Similarly, presenting content recommendations to users with certain contexts and characteristics may attract their attention and thus increase user interaction with the content. Certain embodiments disclosed herein may provide none, some, or all of the above technical advantages. One or more other technical advantages may be readily apparent to one skilled in the art in view of the figures, descriptions, and claims of the present disclosure.
- The embodiments disclosed herein are only examples, and the scope of this disclosure is not limited to them. Particular embodiments may include all, some, or none of the components, elements, features, functions, operations, or steps of the embodiments disclosed herein. Embodiments according to the invention are in particular disclosed in the attached claims directed to a method, a storage medium, a system and a computer program product, wherein any feature mentioned in one claim category, e.g. method, can be claimed in another claim category, e.g. system, as well. The dependencies or references back in the attached claims are chosen for formal reasons only. However any subject matter resulting from a deliberate reference back to any previous claims (in particular multiple dependencies) can be claimed as well, so that any combination of claims and the features thereof are disclosed and can be claimed regardless of the dependencies chosen in the attached claims. The subject-matter which can be claimed comprises not only the combinations of features as set out in the attached claims but also any other combination of features in the claims, wherein each feature mentioned in the claims can be combined with any other feature or combination of other features in the claims. Furthermore, any of the embodiments and features described or depicted herein can be claimed in a separate claim and/or in any combination with any embodiment or feature described or depicted herein or with any of the features of the attached claims.
-
FIG. 1 illustrates an example network environment associated with an assistant system. -
FIG. 2 illustrates an example architecture of the assistant system. -
FIG. 3 illustrates an example diagram flow of server-side processes of the assistant system. -
FIG. 4 illustrates an example diagram flow of processing a user input by the assistant system. -
FIG. 5A illustrates an example video call between two users. -
FIG. 5B illustrates an example video call in which proactive content recommendations are presented to a first user. -
FIG. 6 illustrates an example method for providing proactive content recommendations during a video call. -
FIG. 7 illustrates an example method for determining whether to provide content recommendations based on a current context of the video call. -
FIG. 8A illustrates an example method for determining a current context of the video call based on a request sent from a client system of one of the users of the video call. -
FIG. 8B illustrates an example method for determining a current context of the video call by actively monitoring the video call, and then selecting particular users to receive content recommendations. -
FIG. 9 illustrates an example social graph. -
FIG. 10 illustrates an example view of an embedding space. -
FIG. 11 illustrates an example artificial neural network. -
FIG. 12 illustrates an example computer system. -
FIG. 1 illustrates anexample network environment 100 associated with an assistant system.Network environment 100 includes aclient system 130, anassistant system 140, a social-networking system 160, and a third-party system 170 connected to each other by anetwork 110. AlthoughFIG. 1 illustrates a particular arrangement of aclient system 130, anassistant system 140, a social-networking system 160, a third-party system 170, and anetwork 110, this disclosure contemplates any suitable arrangement of aclient system 130, anassistant system 140, a social-networking system 160, a third-party system 170, and anetwork 110. As an example and not by way of limitation, two or more of aclient system 130, a social-networking system 160, anassistant system 140, and a third-party system 170 may be connected to each other directly, bypassing anetwork 110. As another example, two or more of aclient system 130, anassistant system 140, a social-networking system 160, and a third-party system 170 may be physically or logically co-located with each other in whole or in part. Moreover, althoughFIG. 1 illustrates a particular number ofclient systems 130,assistant systems 140, social-networking systems 160, third-party systems 170, andnetworks 110, this disclosure contemplates any suitable number ofclient systems 130,assistant systems 140, social-networking systems 160, third-party systems 170, and networks 110. As an example and not by way of limitation,network environment 100 may includemultiple client systems 130,assistant systems 140, social-networking systems 160, third-party systems 170, and networks 110. - This disclosure contemplates any
suitable network 110. As an example and not by way of limitation, one or more portions of anetwork 110 may include an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a cellular telephone network, or a combination of two or more of these. Anetwork 110 may include one ormore networks 110. -
Links 150 may connect aclient system 130, anassistant system 140, a social-networking system 160, and a third-party system 170 to acommunication network 110 or to each other. This disclosure contemplates anysuitable links 150. In particular embodiments, one ormore links 150 include one or more wireline (such as for example Digital Subscriber Line (DSL) or Data Over Cable Service Interface Specification (DOCSIS)), wireless (such as for example Wi-Fi or Worldwide Interoperability for Microwave Access (WiMAX)), or optical (such as for example Synchronous Optical Network (SONET) or Synchronous Digital Hierarchy (SDH)) links. In particular embodiments, one ormore links 150 each include an ad hoc network, an intranet, an extranet, a VPN, a LAN, a WLAN, a WAN, a WWAN, a MAN, a portion of the Internet, a portion of the PSTN, a cellular technology-based network, a satellite communications technology-based network, anotherlink 150, or a combination of two or moresuch links 150.Links 150 need not necessarily be the same throughout anetwork environment 100. One or morefirst links 150 may differ in one or more respects from one or moresecond links 150. - In particular embodiments, a
client system 130 may be an electronic device including hardware, software, or embedded logic components or a combination of two or more such components and capable of carrying out the appropriate functionalities implemented or supported by aclient system 130. As an example and not by way of limitation, aclient system 130 may include a computer system such as a desktop computer, notebook or laptop computer, netbook, a tablet computer, e-book reader, GPS device, camera, personal digital assistant (PDA), handheld electronic device, cellular telephone, smartphone, smart speaker, virtual reality (VR) headset, augment reality (AR) smart glasses, other suitable electronic device, or any suitable combination thereof. In particular embodiments, theclient system 130 may be a smart assistant device. More information on smart assistant devices may be found in U.S. patent application Ser. No. 15/949,011, filed 9 Apr. 2018, U.S. patent application Ser. No. 16/153,574, filed 5 Oct. 2018, U.S. Design patent application No. 29/631910, filed 3 Jan. 2018, U.S. Design patent application No. 29/631747, filed 2 Jan. 2018, U.S. Design patent application No. 29/631913, filed 3 Jan. 2018, and U.S. Design patent application No. 29/631914, filed 3 Jan. 2018, each of which is incorporated by reference. This disclosure contemplates anysuitable client systems 130. Aclient system 130 may enable a network user at aclient system 130 to access anetwork 110. Aclient system 130 may enable its user to communicate with other users atother client systems 130. - In particular embodiments, a
client system 130 may include aweb browser 132, and may have one or more add-ons, plug-ins, or other extensions. A user at aclient system 130 may enter a Uniform Resource Locator (URL) or other address directing aweb browser 132 to a particular server (such asserver 162, or a server associated with a third-party system 170), and theweb browser 132 may generate a Hyper Text Transfer Protocol (HTTP) request and communicate the HTTP request to server. The server may accept the HTTP request and communicate to aclient system 130 one or more Hyper Text Markup Language (HTML) files responsive to the HTTP request. Theclient system 130 may render a web interface (e.g. a webpage) based on the HTML files from the server for presentation to the user. This disclosure contemplates any suitable source files. As an example and not by way of limitation, a web interface may be rendered from HTML files, Extensible Hyper Text Markup Language (XHTML) files, or Extensible Markup Language (XML) files, according to particular needs. Such interfaces may also execute scripts, combinations of markup language and scripts, and the like. Herein, reference to a web interface encompasses one or more corresponding source files (which a browser may use to render the web interface) and vice versa, where appropriate. - In particular embodiments, a
client system 130 may include a social-networking application 134 installed on theclient system 130. A user at aclient system 130 may use the social-networking application 134 to access on online social network. The user at theclient system 130 may use the social-networking application 134 to communicate with the user's social connections (e.g., friends, followers, followed accounts, contacts, etc.). The user at theclient system 130 may also use the social-networking application 134 to interact with a plurality of content objects (e.g., posts, news articles, ephemeral content, etc.) on the online social network. As an example and not by way of limitation, the user may browse trending topics and breaking news using the social-networking application 134. - In particular embodiments, a
client system 130 may include an assistant application 136. A user at aclient system 130 may use the assistant application 136 to interact with theassistant system 140. In particular embodiments, the assistant application 136 may comprise a stand-alone application. In particular embodiments, the assistant application 136 may be integrated into the social-networking application 134 or another suitable application (e.g., a messaging application). In particular embodiments, the assistant application 136 may be also integrated into theclient system 130, an assistant hardware device, or any other suitable hardware devices. In particular embodiments, the assistant application 136 may be accessed via theweb browser 132. In particular embodiments, the user may provide input via different modalities. As an example and not by way of limitation, the modalities may include audio, text, image, video, motion, orientation, etc. The assistant application 136 may communicate the user input to theassistant system 140. Based on the user input, theassistant system 140 may generate responses. Theassistant system 140 may send the generated responses to the assistant application 136. The assistant application 136 may then present the responses to the user at theclient system 130. The presented responses may be based on different modalities such as audio, text, image, and video. As an example and not by way of limitation, the user may verbally ask the assistant application 136 about the traffic information (i.e., via an audio modality) by speaking into a microphone of theclient system 130. The assistant application 136 may then communicate the request to theassistant system 140. Theassistant system 140 may accordingly generate a response and send it back to the assistant application 136. The assistant application 136 may further present the response to the user in text and/or images on a display of theclient system 130. - In particular embodiments, an
assistant system 140 may assist users to retrieve information from different sources. Theassistant system 140 may also assist user to request services from different service providers. In particular embodiments, theassist system 140 may receive a user request for information or services via the assistant application 136 in theclient system 130. Theassist system 140 may use natural-language understanding to analyze the user request based on user's profile and other relevant information. The result of the analysis may comprise different entities associated with an online social network. Theassistant system 140 may then retrieve information or request services associated with these entities. In particular embodiments, theassistant system 140 may interact with the social-networking system 160 and/or third-party system 170 when retrieving information or requesting services for the user. In particular embodiments, theassistant system 140 may generate a personalized communication content for the user using natural-language generating techniques. The personalized communication content may comprise, for example, the retrieved information or the status of the requested services. In particular embodiments, theassistant system 140 may enable the user to interact with it regarding the information or services in a stateful and multi-turn conversation by using dialog-management techniques. The functionality of theassistant system 140 is described in more detail in the discussion ofFIG. 2 below. - In particular embodiments, the social-
networking system 160 may be a network-addressable computing system that can host an online social network. The social-networking system 160 may generate, store, receive, and send social-networking data, such as, for example, user profile data, concept-profile data, social-graph information, or other suitable data related to the online social network. The social-networking system 160 may be accessed by the other components ofnetwork environment 100 either directly or via anetwork 110. As an example and not by way of limitation, aclient system 130 may access the social-networking system 160 using aweb browser 132, or a native application associated with the social-networking system 160 (e.g., a mobile social-networking application, a messaging application, another suitable application, or any combination thereof) either directly or via anetwork 110. In particular embodiments, the social-networking system 160 may include one ormore servers 162. Eachserver 162 may be a unitary server or a distributed server spanning multiple computers or multiple datacenters.Servers 162 may be of various types, such as, for example and without limitation, web server, news server, mail server, message server, advertising server, file server, application server, exchange server, database server, proxy server, another server suitable for performing functions or processes described herein, or any combination thereof. In particular embodiments, eachserver 162 may include hardware, software, or embedded logic components or a combination of two or more such components for carrying out the appropriate functionalities implemented or supported byserver 162. In particular embodiments, the social-networking system 160 may include one ormore data stores 164.Data stores 164 may be used to store various types of information. In particular embodiments, the information stored indata stores 164 may be organized according to specific data structures. In particular embodiments, eachdata store 164 may be a relational, columnar, correlation, or other suitable database. Although this disclosure describes or illustrates particular types of databases, this disclosure contemplates any suitable types of databases. Particular embodiments may provide interfaces that enable aclient system 130, a social-networking system 160, anassistant system 140, or a third-party system 170 to manage, retrieve, modify, add, or delete, the information stored indata store 164. - In particular embodiments, the social-
networking system 160 may store one or more social graphs in one ormore data stores 164. In particular embodiments, a social graph may include multiple nodes—which may include multiple user nodes (each corresponding to a particular user) or multiple concept nodes (each corresponding to a particular concept)—and multiple edges connecting the nodes. The social-networking system 160 may provide users of the online social network the ability to communicate and interact with other users. In particular embodiments, users may join the online social network via the social-networking system 160 and then add connections (e.g., relationships) to a number of other users of the social-networking system 160 whom they want to be connected to. Herein, the term “friend” may refer to any other user of the social-networking system 160 with whom a user has formed a connection, association, or relationship via the social-networking system 160. - In particular embodiments, the social-
networking system 160 may provide users with the ability to take actions on various types of items or objects, supported by the social-networking system 160. As an example and not by way of limitation, the items and objects may include groups or social networks to which users of the social-networking system 160 may belong, events or calendar entries in which a user might be interested, computer-based applications that a user may use, transactions that allow users to buy or sell items via the service, interactions with advertisements that a user may perform, or other suitable items or objects. A user may interact with anything that is capable of being represented in the social-networking system 160 or by an external system of a third-party system 170, which is separate from the social-networking system 160 and coupled to the social-networking system 160 via anetwork 110. - In particular embodiments, the social-
networking system 160 may be capable of linking a variety of entities. As an example and not by way of limitation, the social-networking system 160 may enable users to interact with each other as well as receive content from third-party systems 170 or other entities, or to allow users to interact with these entities through an application programming interfaces (API) or other communication channels. - In particular embodiments, a third-
party system 170 may include one or more types of servers, one or more data stores, one or more interfaces, including but not limited to APIs, one or more web services, one or more content sources, one or more networks, or any other suitable components, e.g., that servers may communicate with. A third-party system 170 may be operated by a different entity from an entity operating the social-networking system 160. In particular embodiments, however, the social-networking system 160 and third-party systems 170 may operate in conjunction with each other to provide social-networking services to users of the social-networking system 160 or third-party systems 170. In this sense, the social-networking system 160 may provide a platform, or backbone, which other systems, such as third-party systems 170, may use to provide social-networking services and functionality to users across the Internet. - In particular embodiments, a third-
party system 170 may include a third-party content object provider. A third-party content object provider may include one or more sources of content objects, which may be communicated to aclient system 130. As an example and not by way of limitation, content objects may include information regarding things or activities of interest to the user, such as, for example, movie show times, movie reviews, restaurant reviews, restaurant menus, product information and reviews, or other suitable information. As another example and not by way of limitation, content objects may include incentive content objects, such as coupons, discount tickets, gift certificates, or other suitable incentive objects. In particular embodiments, a third-party content provider may use one or more third-party agents to provide content objects and/or services. A third-party agent may be an implementation that is hosted and executing on the third-party system 170. - In particular embodiments, the social-
networking system 160 also includes user-generated content objects, which may enhance a user's interactions with the social-networking system 160. User-generated content may include anything a user can add, upload, send, or “post” to the social-networking system 160. As an example and not by way of limitation, a user communicates posts to the social-networking system 160 from aclient system 130. Posts may include data such as status updates or other textual data, location information, photos, videos, links, music or other similar data or media. Content may also be added to the social-networking system 160 by a third-party through a “communication channel,” such as a newsfeed or stream. - In particular embodiments, the social-
networking system 160 may include a variety of servers, sub-systems, programs, modules, logs, and data stores. In particular embodiments, the social-networking system 160 may include one or more of the following: a web server, action logger, API-request server, relevance-and-ranking engine, content-object classifier, notification controller, action log, third-party-content-object-exposure log, inference module, authorization/privacy server, search module, advertisement-targeting module, user-interface module, user-profile store, connection store, third-party content store, or location store. The social-networking system 160 may also include suitable components such as network interfaces, security mechanisms, load balancers, failover servers, management-and-network-operations consoles, other suitable components, or any suitable combination thereof. In particular embodiments, the social-networking system 160 may include one or more user-profile stores for storing user profiles. A user profile may include, for example, biographic information, demographic information, behavioral information, social information, or other types of descriptive information, such as work experience, educational history, hobbies or preferences, interests, affinities, or location. Interest information may include interests related to one or more categories. Categories may be general or specific. As an example and not by way of limitation, if a user “likes” an article about a brand of shoes the category may be the brand, or the general category of “shoes” or “clothing.” A connection store may be used for storing connection information about users. The connection information may indicate users who have similar or common work experience, group memberships, hobbies, educational history, or are in any way related or share common attributes. The connection information may also include user-defined connections between different users and content (both internal and external). A web server may be used for linking the social-networking system 160 to one ormore client systems 130 or one or more third-party systems 170 via anetwork 110. The web server may include a mail server or other messaging functionality for receiving and routing messages between the social-networking system 160 and one ormore client systems 130. An API-request server may allow, for example, anassistant system 140 or a third-party system 170 to access information from the social-networking system 160 by calling one or more APIs. An action logger may be used to receive communications from a web server about a user's actions on or off the social-networking system 160. In conjunction with the action log, a third-party-content-object log may be maintained of user exposures to third-party-content objects. A notification controller may provide information regarding content objects to aclient system 130. Information may be pushed to aclient system 130 as notifications, or information may be pulled from aclient system 130 responsive to a request received from aclient system 130. Authorization servers may be used to enforce one or more privacy settings of the users of the social-networking system 160. A privacy setting of a user determines how particular information associated with a user can be shared. The authorization server may allow users to opt in to or opt out of having their actions logged by the social-networking system 160 or shared with other systems (e.g., a third-party system 170), such as, for example, by setting appropriate privacy settings. Third-party-content-object stores may be used to store content objects received from third parties, such as a third-party system 170. Location stores may be used for storing location information received fromclient systems 130 associated with users. Advertisement-pricing modules may combine social information, the current time, location information, or other suitable information to provide relevant advertisements, in the form of notifications, to a user. -
FIG. 2 illustrates anexample architecture 200 of anassistant system 140. In particular embodiments, theassistant system 140 may assist a user to obtain information or services. Theassistant system 140 may enable the user to interact with it with multi-modal user input (such as voice, text, image, video, motion) in stateful and multi-turn conversations to get assistance. As an example and not by way of limitation, theassistant system 140 may support both audio input (verbal) and nonverbal input, such as vision, location, gesture, motion, or hybrid/multi-modal input. Theassistant system 140 may create and store a user profile comprising both personal and contextual information associated with the user. In particular embodiments, theassistant system 140 may analyze the user input using natural-language understanding. The analysis may be based on the user profile of the user for more personalized and context-aware understanding. Theassistant system 140 may resolve entities associated with the user input based on the analysis. In particular embodiments, theassistant system 140 may interact with different agents to obtain information or services that are associated with the resolved entities. Theassistant system 140 may generate a response for the user regarding the information or services by using natural-language generation. Through the interaction with the user, theassistant system 140 may use dialog management techniques to manage and forward the conversation flow with the user. In particular embodiments, theassistant system 140 may further assist the user to effectively and efficiently digest the obtained information by summarizing the information. Theassistant system 140 may also assist the user to be more engaging with an online social network by providing tools that help the user interact with the online social network (e.g., creating posts, comments, messages). Theassistant system 140 may additionally assist the user to manage different tasks such as keeping track of events. In particular embodiments, theassistant system 140 may proactively execute, without a user input, pre-authorized tasks that are relevant to user interests and preferences based on the user profile, at a time relevant for the user. In particular embodiments, theassistant system 140 may check privacy settings to ensure that accessing a user's profile or other user information and executing different tasks are permitted subject to the user's privacy settings. More information on assisting users subject to privacy settings may be found in U.S. patent application Ser. No. 16/182,542, filed 6 Nov. 2018, which is incorporated by reference. - In particular embodiments, the
assistant system 140 may assist the user via a hybrid architecture built upon both client-side processes and server-side processes. The client-side processes and the server-side processes may be two parallel workflows for processing a user input and providing assistances to the user. In particular embodiments, the client-side processes may be performed locally on aclient system 130 associated with a user. By contrast, the server-side processes may be performed remotely on one or more computing systems. In particular embodiments, an assistant orchestrator on theclient system 130 may coordinate receiving user input (e.g., audio signal) and determine whether to use client-side processes, server-side processes, or both, to respond to the user input. A dialog arbitrator may analyze the processing results from each process. The dialog arbitrator may instruct agents on the client-side or server-side to execute tasks associated with the user input based on the aforementioned analyses. The execution results may be further rendered as output to theclient system 130. By leveraging both client-side and server-side processes, theassistant system 140 can effectively assist a user with optimal usage of computing resources while at the same time protecting user privacy and enhancing security. - In particular embodiments, the
assistant system 140 may receive a user input from aclient system 130 associated with the user. In particular embodiments, the user input may be a user-generated input that is sent to theassistant system 140 in a single turn. The user input may be verbal, nonverbal, or a combination thereof. As an example and not by way of limitation, the nonverbal user input may be based on the user's voice, vision, location, activity, gesture, motion, or a combination thereof. If the user input is based on the user's voice (e.g., the user may speak to the client system 130), such user input may be first processed by a system audio API 202 (application programming interface). Thesystem audio API 202 may conduct echo cancellation, noise removal, beam forming, and self-user voice activation, speaker identification, voice activity detection (VAD), and any other acoustic techniques to generate audio data that is readily processable by theassistant system 140. In particular embodiments, thesystem audio API 202 may perform wake-word detection 204 from the user input. As an example and not by way of limitation, a wake-word may be “hey assistant”. If such wake-word is detected, theassistant system 140 may be activated accordingly. In alternative embodiments, the user may activate theassistant system 140 via a visual signal without a wake-word. The visual signal may be received at a low-power sensor (e.g., a camera) that can detect various visual signals. As an example and not by way of limitation, the visual signal may be a barcode, a QR code or a universal product code (UPC) detected by theclient system 130. As another example and not by way of limitation, the visual signal may be the user's gaze at an object. As yet another example and not by way of limitation, the visual signal may be a user gesture, e.g., the user pointing at an object. - In particular embodiments, the audio data from the
system audio API 202 may be sent to anassistant orchestrator 206. Theassistant orchestrator 206 may be executing on theclient system 130. In particular embodiments, theassistant orchestrator 206 may determine whether to respond to the user input by using client-side processes, server-side processes, or both. As indicated inFIG. 2 , the client-side processes are illustrated below the dashedline 207 whereas the server-side processes are illustrated above the dashedline 207. Theassistant orchestrator 206 may also determine to respond to the user input by using both the client-side processes and the server-side processes simultaneously. AlthoughFIG. 2 illustrates theassistant orchestrator 206 as being a client-side process, theassistant orchestrator 206 may be a server-side process or may be a hybrid process split between client- and server-side processes. - In particular embodiments, the server-side processes may be as follows after audio data is generated from the
system audio API 202. Theassistant orchestrator 206 may send the audio data to a remote computing system that hosts different modules of theassistant system 140 to respond to the user input. In particular embodiments, the audio data may be received at a remote automatic speech recognition (ASR)module 208 a. TheASR module 208 a may allow a user to dictate and have speech transcribed as written text, have a document synthesized as an audio stream, or issue commands that are recognized as such by the system. TheASR module 208 a may use statistical models to determine the most likely sequences of words that correspond to a given portion of speech received by theassistant system 140 as audio input. The models may include one or more of hidden Markov models, neural networks, deep learning models, or any combination thereof. The received audio input may be encoded into digital data at a particular sampling rate (e.g., 16, 44.1, or 96 kHz) and with a particular number of bits representing each sample (e.g., 8, 16, of 24 bits). - In particular embodiments, the
ASR module 208 a may comprise different components. TheASR module 208 a may comprise one or more of a grapheme-to-phoneme (G2P) model, a pronunciation learning model, a personalized acoustic model, a personalized language model (PLM), or an end-pointing model. In particular embodiments, the G2P model may be used to determine a user's grapheme-to-phoneme style, e.g., what it may sound like when a particular user speaks a particular word. The personalized acoustic model may be a model of the relationship between audio signals and the sounds of phonetic units in the language. Therefore, such personalized acoustic model may identify how a user's voice sounds. The personalized acoustical model may be generated using training data such as training speech received as audio input and the corresponding phonetic units that correspond to the speech. The personalized acoustical model may be trained or refined using the voice of a particular user to recognize that user's speech. In particular embodiments, the personalized language model may then determine the most likely phrase that corresponds to the identified phonetic units for a particular audio input. The personalized language model may be a model of the probabilities that various word sequences may occur in the language. The sounds of the phonetic units in the audio input may be matched with word sequences using the personalized language model, and greater weights may be assigned to the word sequences that are more likely to be phrases in the language. The word sequence having the highest weight may be then selected as the text that corresponds to the audio input. In particular embodiments, the personalized language model may be also used to predict what words a user is most likely to say given a context. In particular embodiments, the end-pointing model may detect when the end of an utterance is reached. - In particular embodiments, the output of the
ASR module 208 a may be sent to a remote natural-language understanding (NLU)module 210 a. TheNLU module 210 a may perform named entity resolution (NER). TheNLU module 210 a may additionally consider contextual information when analyzing the user input. In particular embodiments, an intent and/or a slot may be an output of theNLU module 210 a. An intent may be an element in a pre-defined taxonomy of semantic intentions, which may indicate a purpose of a user interacting with theassistant system 140. TheNLU module 210 a may classify a user input into a member of the pre-defined taxonomy, e.g., for the input “Play Beethoven's 5th,” theNLU module 210 a may classify the input as having the intent [IN:play music]. In particular embodiments, a domain may denote a social context of interaction, e.g., education, or a namespace for a set of intents, e.g., music. A slot may be a named sub-string corresponding to a character string within the user input, representing a basic semantic entity. For example, a slot for “pizza” may be [SL:dish]. In particular embodiments, a set of valid or expected named slots may be conditioned on the classified intent. As an example and not by way of limitation, for the intent [IN:play music], a valid slot may be [SL:song_name]. In particular embodiments, theNLU module 210 a may additionally extract information from one or more of a social graph, a knowledge graph, or a concept graph, and retrieve a user's profile from one or more remote data stores 212. TheNLU module 210 a may further process information from these different sources by determining what information to aggregate, annotating n-grams of the user input, ranking the n-grams with confidence scores based on the aggregated information, and formulating the ranked n-grams into features that can be used by theNLU module 210 a for understanding the user input. - In particular embodiments, the
NLU module 210 a may identify one or more of a domain, an intent, or a slot from the user input in a personalized and context-aware manner. As an example and not by way of limitation, a user input may comprise “show me how to get to the coffee shop”. TheNLU module 210 a may identify the particular coffee shop that the user wants to go based on the user's personal information and the associated contextual information. In particular embodiments, theNLU module 210 a may comprise a lexicon of a particular language and a parser and grammar rules to partition sentences into an internal representation. TheNLU module 210 a may also comprise one or more programs that perform naive semantics or stochastic semantic analysis to the use of pragmatics to understand a user input. In particular embodiments, the parser may be based on a deep learning architecture comprising multiple long-short term memory (LSTM) networks. As an example and not by way of limitation, the parser may be based on a recurrent neural network grammar (RNNG) model, which is a type of recurrent and recursive LSTM algorithm. More information on natural-language understanding may be found in U.S. patent application Ser. No. 16/011,062, filed 18 Jun. 2018, U.S. patent application Ser. No. 16/025,317, filed 2 Jul. 2018, and U.S. patent application Ser. No. 16/038,120, filed 17 Jul. 2018, each of which is incorporated by reference. - In particular embodiments, the output of the
NLU module 210 a may be sent to aremote reasoning module 212 a. Thereasoning module 212 a may comprise a dialog manager and an entity resolution component. In particular embodiments, the dialog manager may have complex dialog logic and product-related business logic. The dialog manager may manage the dialog state and flow of the conversation between the user and theassistant system 140. The dialog manager may additionally store previous conversations between the user and theassistant system 140. In particular embodiments, the dialog manager may communicate with the entity resolution component to resolve entities associated with the one or more slots, which supports the dialog manager to advance the flow of the conversation between the user and theassistant system 140. In particular embodiments, the entity resolution component may access one or more of the social graph, the knowledge graph, or the concept graph when resolving the entities. Entities may include, for example, unique users or concepts, each of which may have a unique identifier (ID). As an example and not by way of limitation, the knowledge graph may comprise a plurality of entities. Each entity may comprise a single record associated with one or more attribute values. The particular record may be associated with a unique entity identifier. Each record may have diverse values for an attribute of the entity. Each attribute value may be associated with a confidence probability. A confidence probability for an attribute value represents a probability that the value is accurate for the given attribute. Each attribute value may be also associated with a semantic weight. A semantic weight for an attribute value may represent how the value semantically appropriate for the given attribute considering all the available information. For example, the knowledge graph may comprise an entity of a book “BookName”, which includes information that has been extracted from multiple content sources (e.g., an online social network, online encyclopedias, book review sources, media databases, and entertainment content sources), and then deduped, resolved, and fused to generate the single unique record for the knowledge graph. The entity may be associated with a “fantasy” attribute value which indicates the genre of the book “BookName”. More information on the knowledge graph may be found in U.S. patent application Ser. No. 16/048,049, filed 27 Jul. 2018, and U.S. patent application Ser. No. 16/048,101, filed 27 Jul. 2018, each of which is incorporated by reference. - In particular embodiments, the entity resolution component may check the privacy constraints to guarantee that the resolving of the entities does not violate privacy policies. As an example and not by way of limitation, an entity to be resolved may be another user who specifies in his/her privacy settings that his/her identity should not be searchable on the online social network, and thus the entity resolution component may not return that user's identifier in response to a request. Based on the information obtained from the social graph, the knowledge graph, the concept graph, and the user profile, and subject to applicable privacy policies, the entity resolution component may therefore resolve the entities associated with the user input in a personalized, context-aware, and privacy-aware manner. In particular embodiments, each of the resolved entities may be associated with one or more identifiers hosted by the social-
networking system 160. As an example and not by way of limitation, an identifier may comprise a unique user identifier (ID) corresponding to a particular user (e.g., a unique username or user ID number). In particular embodiments, each of the resolved entities may be also associated with a confidence score. More information on resolving entities may be found in U.S. patent application Ser. No. 16/048,049, filed 27 Jul. 2018, and U.S. patent application Ser. No. 16/048,072, filed 27 Jul. 2018, each of which is incorporated by reference. - In particular embodiments, the dialog manager may conduct dialog optimization and assistant state tracking. Dialog optimization is the problem of using data to understand what the most likely branching in a dialog should be. As an example and not by way of limitation, with dialog optimization the
assistant system 140 may not need to confirm who a user wants to call because theassistant system 140 has high confidence that a person inferred based on dialog optimization would be very likely whom the user wants to call. In particular embodiments, the dialog manager may use reinforcement learning for dialog optimization. Assistant state tracking aims to keep track of a state that changes over time as a user interacts with the world and theassistant system 140 interacts with the user. As an example and not by way of limitation, assistant state tracking may track what a user is talking about, whom the user is with, where the user is, what tasks are currently in progress, and where the user's gaze is at, etc., subject to applicable privacy policies. In particular embodiments, the dialog manager may use a set of operators to track the dialog state. The operators may comprise the necessary data and logic to update the dialog state. Each operator may act as delta of the dialog state after processing an incoming request. In particular embodiments, the dialog manager may further comprise a dialog state tracker and an action selector. In alternative embodiments, the dialog state tracker may replace the entity resolution component and resolve the references/mentions and keep track of the state. - In particular embodiments, the
reasoning module 212 a may further conduct false trigger mitigation. The goal of false trigger mitigation is to detect false triggers (e.g., wake-word) of assistance requests and to avoid generating false records when a user actually does not intend to invoke theassistant system 140. As an example and not by way of limitation, thereasoning module 212 a may achieve false trigger mitigation based on a nonsense detector. If the nonsense detector determines that a wake-word makes no sense at this point in the interaction with the user, thereasoning module 212 a may determine that inferring the user intended to invoke theassistant system 140 may be incorrect. In particular embodiments, the output of thereasoning module 212 a may be sent aremote dialog arbitrator 214. - In particular embodiments, each of the
ASR module 208 a,NLU module 210 a, andreasoning module 212 a may access theremote data store 216, which comprises user episodic memories to determine how to assist a user more effectively. More information on episodic memories may be found in U.S. patent application Ser. No. 16/552,559, filed 27 Aug. 2019, which is incorporated by reference. Thedata store 216 may additionally store the user profile of the user. The user profile of the user may comprise user profile data including demographic information, social information, and contextual information associated with the user. The user profile data may also include user interests and preferences on a plurality of topics, aggregated through conversations on news feed, search logs, messaging platforms, etc. The usage of a user profile may be subject to privacy constraints to ensure that a user's information can be used only for his/her benefit, and not shared with anyone else. More information on user profiles may be found in U.S. patent application Ser. No. 15/967,239, filed 30 Apr. 2018, which is incorporated by reference. - In particular embodiments, parallel to the aforementioned server-side process involving the
ASR module 208 a,NLU module 210 a, andreasoning module 212 a, the client-side process may be as follows. In particular embodiments, the output of theassistant orchestrator 206 may be sent to alocal ASR module 208 b on theclient system 130. TheASR module 208 b may comprise a personalized language model (PLM), a G2P model, and an end-pointing model. Because of the limited computing power of theclient system 130, theassistant system 140 may optimize the personalized language model at run time during the client-side process. As an example and not by way of limitation, theassistant system 140 may pre-compute a plurality of personalized language models for a plurality of possible subjects a user may talk about. When a user requests assistance, theassistant system 140 may then swap these pre-computed language models quickly so that the personalized language model may be optimized locally by theassistant system 140 at run time based on user activities. As a result, theassistant system 140 may have a technical advantage of saving computational resources while efficiently determining what the user may be talking about. In particular embodiments, theassistant system 140 may also re-learn user pronunciations quickly at run time. - In particular embodiments, the output of the
ASR module 208 b may be sent to alocal NLU module 210 b. In particular embodiments, theNLU module 210 b herein may be more compact compared to theremote NLU module 210 a supported on the server-side. When theASR module 208 b andNLU module 210 b process the user input, they may access alocal assistant memory 218. Thelocal assistant memory 218 may be different from the user memories stored on thedata store 216 for the purpose of protecting user privacy. In particular embodiments, thelocal assistant memory 218 may be syncing with the user memories stored on thedata store 216 via thenetwork 110. As an example and not by way of limitation, thelocal assistant memory 218 may sync a calendar on a user'sclient system 130 with a server-side calendar associate with the user. In particular embodiments, any secured data in thelocal assistant memory 218 may be only accessible to the modules of theassistant system 140 that are locally executing on theclient system 130. - In particular embodiments, the output of the
NLU module 210 b may be sent to alocal reasoning module 212 b. Thereasoning module 212 b may comprise a dialog manager and an entity resolution component. Due to the limited computing power, thereasoning module 212 b may conduct on-device learning that is based on learning algorithms particularly tailored forclient systems 130. As an example and not by way of limitation, federated learning may be used by thereasoning module 212 b. Federated learning is a specific category of distributed machine learning approaches which trains machine learning models using decentralized data residing on end devices such as mobile phones. In particular embodiments, thereasoning module 212 b may use a particular federated learning model, namely federated user representation learning, to extend existing neural-network personalization techniques to federated learning. Federated user representation learning can personalize models in federated learning by learning task-specific user representations (i.e., embeddings) or by personalizing model weights. Federated user representation learning is a simple, scalable, privacy-preserving, and resource-efficient. Federated user representation learning may divide model parameters into federated and private parameters. Private parameters, such as private user embeddings, may be trained locally on aclient system 130 instead of being transferred to or averaged on a remote server. Federated parameters, by contrast, may be trained remotely on the server. In particular embodiments, thereasoning module 212 b may use another particular federated learning model, namely active federated learning to transmit a global model trained on the remote server toclient systems 130 and calculate gradients locally on theseclient systems 130. Active federated learning may enable the reasoning module to minimize the transmission costs associated with downloading models and uploading gradients. For active federated learning, in each round client systems are selected not uniformly at random, but with a probability conditioned on the current model and the data on the client systems to maximize efficiency. In particular embodiments, thereasoning module 212 b may use another particular federated learning model, namely federated Adam. Conventional federated learning model may use stochastic gradient descent (SGD) optimizers. By contrast, the federated Adam model may use moment-based optimizers. Instead of using the averaged model directly as what conventional work does, federated Adam model may use the averaged model to compute approximate gradients. These gradients may be then fed into the federated Adam model, which may de-noise stochastic gradients and use a per-parameter adaptive learning rate. Gradients produced by federated learning may be even noisier than stochastic gradient descent (because data may be not independent and identically distributed), so federated Adam model may help even more deal with the noise. The federated Adam model may use the gradients to take smarter steps towards minimizing the objective function. The experiments show that conventional federated learning on a benchmark has 1.6% drop in ROC (Receiver Operating Characteristics) curve whereas federated Adam model has only 0.4% drop. In addition, federated Adam model has no increase in communication or on-device computation. In particular embodiments, thereasoning module 212 b may also perform false trigger mitigation. This false trigger mitigation may help detect false activation requests, e.g., wake-word, on theclient system 130 when the user's speech input comprises data that is subject to privacy constraints. As an example and not by way of limitation, when a user is in a voice call, the user's conversation is private and the false trigger detection based on such conversation can only occur locally on the user'sclient system 130. - In particular embodiments, the
assistant system 140 may comprise alocal context engine 220. Thecontext engine 220 may process all the other available signals to provide more informative cues to thereasoning module 212 b. As an example and not by way of limitation, thecontext engine 220 may have information related to people, sensory data fromclient system 130 sensors (e.g., microphone, camera) that are further analyzed by computer vision technologies, geometry constructions, activity data, inertial data (e.g., collected by a VR headset), location, etc. In particular embodiments, the computer vision technologies may comprise human skeleton reconstruction, face detection, facial recognition, hand tracking, eye tracking, etc. In particular embodiments, geometry constructions may comprise constructing objects surrounding a user using data collected by aclient system 130. As an example and not by way of limitation, the user may be wearing AR glasses and geometry construction may aim to determine where the floor is, where the wall is, where the user's hands are, etc. In particular embodiments, inertial data may be data associated with linear and angular motions. As an example and not by way of limitation, inertial data may be captured by AR glasses which measures how a user's body parts move. - In particular embodiments, the output of the
local reasoning module 212 b may be sent to thedialog arbitrator 214. Thedialog arbitrator 214 may function differently in three scenarios. In the first scenario, theassistant orchestrator 206 determines to use server-side process, for which thedialog arbitrator 214 may transmit the output of thereasoning module 212 a to a remoteaction execution module 222 a. In the second scenario, theassistant orchestrator 206 determines to use both server-side processes and client-side processes, for which thedialog arbitrator 214 may aggregate output from both reasoning modules (i.e.,remote reasoning module 212 a andlocal reasoning module 212 b) of both processes and analyze them. As an example and not by way of limitation, thedialog arbitrator 214 may perform ranking and select the best reasoning result for responding to the user input. In particular embodiments, thedialog arbitrator 214 may further determine whether to use agents on the server-side or on the client-side to execute relevant tasks based on the analysis. In the third scenario, theassistant orchestrator 206 determines to use client-side processes and thedialog arbitrator 214 needs to evaluate the output of thelocal reasoning module 212 b to determine if the client-side processes can complete the task of handling the user input. - In particular embodiments, for the first and second scenarios mentioned above, the
dialog arbitrator 214 may determine that the agents on the server-side are necessary to execute tasks responsive to the user input. Accordingly, thedialog arbitrator 214 may send necessary information regarding the user input to theaction execution module 222 a. Theaction execution module 222 a may call one or more agents to execute the tasks. In alternative embodiments, the action selector of the dialog manager may determine actions to execute and instruct theaction execution module 222 a accordingly. In particular embodiments, an agent may be an implementation that serves as a broker across a plurality of content providers for one domain. A content provider may be an entity responsible for carrying out an action associated with an intent or completing a task associated with the intent. In particular embodiments, the agents may comprise first-party agents and third-party agents. In particular embodiments, first-party agents may comprise internal agents that are accessible and controllable by the assistant system 140 (e.g. agents associated with services provided by the online social network, such as messaging services or photo-share services). In particular embodiments, third-party agents may comprise external agents that theassistant system 140 has no control over (e.g., third-party online music application agents, ticket sales agents). The first-party agents may be associated with first-party providers that provide content objects and/or services hosted by the social-networking system 160. The third-party agents may be associated with third-party providers that provide content objects and/or services hosted by the third-party system 170. In particular embodiments, each of the first-party agents or third-party agents may be designated for a particular domain. As an example and not by way of limitation, the domain may comprise weather, transportation, music, shopping, social, videos, photos, events, locations, work, etc. In particular embodiments, theassistant system 140 may use a plurality of agents collaboratively to respond to a user input. As an example and not by way of limitation, the user input may comprise “direct me to my next meeting.” Theassistant system 140 may use a calendar agent to retrieve the location of the next meeting. Theassistant system 140 may then use a navigation agent to direct the user to the next meeting. - In particular embodiments, for the second and third scenarios mentioned above, the
dialog arbitrator 214 may determine that the agents on the client-side are capable of executing tasks responsive to the user input but additional information is needed (e.g., response templates) or that the tasks can be only handled by the agents on the server-side. If thedialog arbitrator 214 determines that the tasks can be only handled by the agents on the server-side, thedialog arbitrator 214 may send necessary information regarding the user input to theaction execution module 222 a. If thedialog arbitrator 214 determines that the agents on the client-side are capable of executing tasks but response templates are needed, thedialog arbitrator 214 may send necessary information regarding the user input to a remote responsetemplate generation module 224. The output of the responsetemplate generation module 224 may be further sent to a localaction execution module 222 b executing on theclient system 130. - In particular embodiments, the
action execution module 222 b may call local agents to execute tasks. A local agent on theclient system 130 may be able to execute simpler tasks compared to an agent on the server-side. As an example and not by way of limitation, multiple device-specific implementations (e.g., real-time calls for aclient system 130 or a messaging application on the client system 130) may be handled internally by a single agent. Alternatively, these device-specific implementations may be handled by multiple agents associated with multiple domains. In particular embodiments, theaction execution module 222 b may additionally perform a set of general executable dialog actions. The set of executable dialog actions may interact with agents, users and theassistant system 140 itself. These dialog actions may comprise dialog actions for slot request, confirmation, disambiguation, agent execution, etc. The dialog actions may be independent of the underlying implementation of the action selector or dialog policy. Both tree-based policy and model-based policy may generate the same basic dialog actions, with a callback function hiding any action selector specific implementation details. - In particular embodiments, the output from the remote
action execution module 222 a on the server-side may be sent to a remoteresponse execution module 226 a. In particular embodiments, theaction execution module 222 a may communicate back to thedialog arbitrator 214 for more information. Theresponse execution module 226 a may be based on a remote conversational understanding (CU) composer. In particular embodiments, the output from theaction execution module 222 a may be formulated as a <k, c, u, d> tuple, in which k indicates a knowledge source, c indicates a communicative goal, u indicates a user model, and d indicates a discourse model. In particular embodiments, the CU composer may comprise a natural-language generation (NLG) module and a user interface (UI) payload generator. The natural-language generator may generate a communication content based on the output of theaction execution module 222 a using different language models and/or language templates. In particular embodiments, the generation of the communication content may be application specific and also personalized for each user. The CU composer may also determine a modality of the generated communication content using the UI payload generator. In particular embodiments, the NLG module may comprise a content determination component, a sentence planner, and a surface realization component. The content determination component may determine the communication content based on the knowledge source, communicative goal, and the user's expectations. As an example and not by way of limitation, the determining may be based on a description logic. The description logic may comprise, for example, three fundamental notions which are individuals (representing objects in the domain), concepts (describing sets of individuals), and roles (representing binary relations between individuals or concepts). The description logic may be characterized by a set of constructors that allow the natural-language generator to build complex concepts/roles from atomic ones. In particular embodiments, the content determination component may perform the following tasks to determine the communication content. The first task may comprise a translation task, in which the input to the natural-language generator may be translated to concepts. The second task may comprise a selection task, in which relevant concepts may be selected among those resulted from the translation task based on the user model. The third task may comprise a verification task, in which the coherence of the selected concepts may be verified. The fourth task may comprise an instantiation task, in which the verified concepts may be instantiated as an executable file that can be processed by the natural-language generator. The sentence planner may determine the organization of the communication content to make it human understandable. The surface realization component may determine specific words to use, the sequence of the sentences, and the style of the communication content. The UI payload generator may determine a preferred modality of the communication content to be presented to the user. In particular embodiments, the CU composer may check privacy constraints associated with the user to make sure the generation of the communication content follows the privacy policies. More information on natural-language generation may be found in U.S. patent application Ser. No. 15/967,279, filed 30 Apr. 2018, and U.S. patent application Ser. No. 15/966,455, filed 30 Apr. 2018, each of which is incorporated by reference. - In particular embodiments, the output from the local
action execution module 222 b on theclient system 130 may be sent to a localresponse execution module 226 b. Theresponse execution module 226 b may be based on a local conversational understanding (CU) composer. The CU composer may comprise a natural-language generation (NLG) module. As the computing power of aclient system 130 may be limited, the NLG module may be simple for the consideration of computational efficiency. Because the NLG module may be simple, the output of theresponse execution module 226 b may be sent to a localresponse expansion module 228. Theresponse expansion module 228 may further expand the result of theresponse execution module 226 b to make a response more natural and contain richer semantic information. - In particular embodiments, if the user input is based on audio signals, the output of the
response execution module 226 a on the server-side may be sent to a remote text-to-speech (TTS)module 230 a. Similarly, the output of theresponse expansion module 228 on the client-side may be sent to alocal TTS module 230 b. Both TTS modules may convert a response to audio signals. In particular embodiments, the output from theresponse execution module 226 a, theresponse expansion module 228, or the TTS modules on both sides, may be finally sent to a local renderoutput module 232. The renderoutput module 232 may generate a response that is suitable for theclient system 130. As an example and not by way of limitation, the output of theresponse execution module 226 a or theresponse expansion module 228 may comprise one or more of natural-language strings, speech, actions with parameters, or rendered images or videos that can be displayed in a VR headset or AR smart glasses. As a result, the renderoutput module 232 may determine what tasks to perform based on the output of CU composer to render the response appropriately for displaying on the VR headset or AR smart glasses. For example, the response may be visual-based modality (e.g., an image or a video clip) that can be displayed via the VR headset or AR smart glasses. As another example, the response may be audio signals that can be played by the user via VR headset or AR smart glasses. As yet another example, the response may be augmented-reality data that can be rendered VR headset or AR smart glasses for enhancing user experience. - In particular embodiments, the
assistant system 140 may have a variety of capabilities including audio cognition, visual cognition, signals intelligence, reasoning, and memories. In particular embodiments, the capability of audio recognition may enable theassistant system 140 to understand a user's input associated with various domains in different languages, understand a conversation and be able to summarize it, perform on-device audio cognition for complex commands, identify a user by voice, extract topics from a conversation and auto-tag sections of the conversation, enable audio interaction without a wake-word, filter and amplify user voice from ambient noise and conversations, understand which client system 130 (ifmultiple client systems 130 are in vicinity) a user is talking to. - In particular embodiments, the capability of visual cognition may enable the
assistant system 140 to perform face detection and tracking, recognize a user, recognize most people of interest in major metropolitan areas at varying angles, recognize majority of interesting objects in the world through a combination of existing machine-learning models and one-shot learning, recognize an interesting moment and auto-capture it, achieve semantic understanding over multiple visual frames across different episodes of time, provide platform support for additional capabilities in people, places, objects recognition, recognize full set of settings and micro-locations including personalized locations, recognize complex activities, recognize complex gestures to control aclient system 130, handle images/videos from egocentric cameras (e.g., with motion, capture angles, resolution, etc.), accomplish similar level of accuracy and speed regarding images with lower resolution, conduct one-shot registration and recognition of people, places, and objects, and perform visual recognition on aclient system 130. - In particular embodiments, the
assistant system 140 may leverage computer vision techniques to achieve visual cognition. Besides computer vision techniques, theassistant system 140 may explore options that can supplement these techniques to scale up the recognition of objects. In particular embodiments, theassistant system 140 may use supplemental signals such as optical character recognition (OCR) of an object's labels, GPS signals for places recognition, signals from a user'sclient system 130 to identify the user. In particular embodiments, theassistant system 140 may perform general scene recognition (home, work, public space, etc.) to set context for the user and reduce the computer-vision search space to identify top likely objects or people. In particular embodiments, theassistant system 140 may guide users to train theassistant system 140. For example, crowdsourcing may be used to get users to tag and help theassistant system 140 recognize more objects over time. As another example, users can register their personal objects as part of initial setup when using theassistant system 140. Theassistant system 140 may further allow users to provide positive/negative signals for objects they interact with to train and improve personalized models for them. - In particular embodiments, the capability of signals intelligence may enable the
assistant system 140 to determine user location, understand date/time, determine family locations, understand users' calendars and future desired locations, integrate richer sound understanding to identify setting/context through sound alone, build signals intelligence models at run time which may be personalized to a user's individual routines. - In particular embodiments, the capability of reasoning may enable the
assistant system 140 to have the ability to pick up any previous conversation threads at any point in the future, synthesize all signals to understand micro and personalized context, learn interaction patterns and preferences from users' historical behavior and accurately suggest interactions that they may value, generate highly predictive proactive suggestions based on micro-context understanding, understand what content a user may want to see at what time of a day, understand the changes in a scene and how that may impact the user's desired content. - In particular embodiments, the capabilities of memories may enable the
assistant system 140 to remember which social connections a user previously called or interacted with, write into memory and query memory at will (i.e., open dictation and auto tags), extract richer preferences based on prior interactions and long-term learning, remember a user's life history, extract rich information from egocentric streams of data and auto catalog, and write to memory in structured form to form rich short, episodic and long-term memories. -
FIG. 3 illustrates an example flow diagram 300 of server-side processes of theassistant system 140. In particular embodiments, a server-assistant service module 301 may access arequest manager 302 upon receiving a user request. In alternative embodiments, the user request may be first processed by theremote ASR module 208 a if the user request is based on audio signals. In particular embodiments, therequest manager 302 may comprise a context extractor 303 and a conversational understanding object generator (CU object generator) 304. The context extractor 303 may extract contextual information associated with the user request. The context extractor 303 may also update contextual information based on the assistant application 136 executing on theclient system 130. As an example and not by way of limitation, the update of contextual information may comprise content items are displayed on theclient system 130. As another example and not by way of limitation, the update of contextual information may comprise whether an alarm is set on theclient system 130. As another example and not by way of limitation, the update of contextual information may comprise whether a song is playing on theclient system 130. The CU object generator 304 may generate particular content objects relevant to the user request. The content objects may comprise dialog-session data and features associated with the user request, which may be shared with all the modules of theassistant system 140. In particular embodiments, therequest manager 302 may store the contextual information and the generated content objects indata store 216 which is a particular data store implemented in theassistant system 140. - In particular embodiments, the
request manger 302 may send the generated content objects to theremote NLU module 210 a. TheNLU module 210 a may perform a plurality of steps to process the content objects. Atstep 305, theNLU module 210 a may generate a whitelist for the content objects. In particular embodiments, the whitelist may comprise interpretation data matching the user request. Atstep 306, theNLU module 210 a may perform a featurization based on the whitelist. Atstep 307, theNLU module 210 a may perform domain classification/selection on user request based on the features resulted from the featurization to classify the user request into predefined domains. The domain classification/selection results may be further processed based on two related procedures. Atstep 308 a, theNLU module 210 a may process the domain classification/selection result using an intent classifier. The intent classifier may determine the user's intent associated with the user request. In particular embodiments, there may be one intent classifier for each domain to determine the most possible intents in a given domain. As an example and not by way of limitation, the intent classifier may be based on a machine-learning model that may take the domain classification/selection result as input and calculate a probability of the input being associated with a particular predefined intent. Atstep 308 b, theNLU module 210 a may process the domain classification/selection result using a meta-intent classifier. The meta-intent classifier may determine categories that describe the user's intent. In particular embodiments, intents that are common to multiple domains may be processed by the meta-intent classifier. As an example and not by way of limitation, the meta-intent classifier may be based on a machine-learning model that may take the domain classification/selection result as input and calculate a probability of the input being associated with a particular predefined meta-intent. Atstep 309 a, theNLU module 210 a may use a slot tagger to annotate one or more slots associated with the user request. In particular embodiments, the slot tagger may annotate the one or more slots for the n-grams of the user request. Atstep 309 b, theNLU module 210 a may use a meta slot tagger to annotate one or more slots for the classification result from the meta-intent classifier. In particular embodiments, the meta slot tagger may tag generic slots such as references to items (e.g., the first), the type of slot, the value of the slot, etc. As an example and not by way of limitation, a user request may comprise “change 500 dollars in my account to Japanese yen.” The intent classifier may take the user request as input and formulate it into a vector. The intent classifier may then calculate probabilities of the user request being associated with different predefined intents based on a vector comparison between the vector representing the user request and the vectors representing different predefined intents. In a similar manner, the slot tagger may take the user request as input and formulate each word into a vector. The intent classifier may then calculate probabilities of each word being associated with different predefined slots based on a vector comparison between the vector representing the word and the vectors representing different predefined slots. The intent of the user may be classified as “changing money”. The slots of the user request may comprise “500”, “dollars”, “account”, and “Japanese yen”. The meta-intent of the user may be classified as “financial service”. The meta slot may comprise “finance”. - In particular embodiments, the
NLU module 210 a may comprise asemantic information aggregator 310. Thesemantic information aggregator 310 may help theNLU module 210 a improve the domain classification/selection of the content objects by providing semantic information. In particular embodiments, thesemantic information aggregator 310 may aggregate semantic information in the following way. Thesemantic information aggregator 310 may first retrieve information from auser context engine 315. In particular embodiments, theuser context engine 315 may comprise offline aggregators and an online inference service. The offline aggregators may process a plurality of data associated with the user that are collected from a prior time window. As an example and not by way of limitation, the data may include news feed posts/comments, interactions with news feed posts/comments, search history, etc., that are collected during a predetermined timeframe (e.g., from a prior 90-day window). The processing result may be stored in theuser context engine 315 as part of the user profile. The online inference service may analyze the conversational data associated with the user that are received by theassistant system 140 at a current time. The analysis result may be stored in theuser context engine 315 also as part of the user profile. In particular embodiments, both the offline aggregators and online inference service may extract personalization features from the plurality of data. The extracted personalization features may be used by other modules of theassistant system 140 to better understand user input. In particular embodiments, thesemantic information aggregator 310 may then process the retrieved information, i.e., a user profile, from theuser context engine 315 in the following steps. Atstep 311, thesemantic information aggregator 310 may process the retrieved information from theuser context engine 315 based on natural-language processing (NLP). In particular embodiments, thesemantic information aggregator 310 may tokenize text by text normalization, extract syntax features from text, and extract semantic features from text based on NLP. Thesemantic information aggregator 310 may additionally extract features from contextual information, which is accessed from dialog history between a user and theassistant system 140. Thesemantic information aggregator 310 may further conduct global word embedding, domain-specific embedding, and/or dynamic embedding based on the contextual information. Atstep 312, the processing result may be annotated with entities by an entity tagger. Based on the annotations, thesemantic information aggregator 310 may generate dictionaries for the retrieved information atstep 313. In particular embodiments, the dictionaries may comprise global dictionary features which can be updated dynamically offline. Atstep 314, thesemantic information aggregator 310 may rank the entities tagged by the entity tagger. In particular embodiments, thesemantic information aggregator 310 may communicate withdifferent graphs 320 including one or more of the social graph, the knowledge graph, or the concept graph to extract ontology data that is relevant to the retrieved information from theuser context engine 315. In particular embodiments, thesemantic information aggregator 310 may aggregate the user profile, the ranked entities, and the information from thegraphs 320. Thesemantic information aggregator 310 may then provide the aggregated information to theNLU module 210 a to facilitate the domain classification/selection. - In particular embodiments, the output of the
NLU module 210 a may be sent to theremote reasoning module 212 a. Thereasoning module 212 a may comprise aco-reference component 325, anentity resolution component 330, and adialog manager 335. The output of theNLU module 210 a may be first received at theco-reference component 325 to interpret references of the content objects associated with the user request. In particular embodiments, theco-reference component 325 may be used to identify an item to which the user request refers. Theco-reference component 325 may comprise reference creation 326 and reference resolution 327. In particular embodiments, the reference creation 326 may create references for entities determined by theNLU module 210 a. The reference resolution 327 may resolve these references accurately. As an example and not by way of limitation, a user request may comprise “find me the nearest grocery store and direct me there”. Theco-reference component 325 may interpret “there” as “the nearest grocery store”. In particular embodiments, theco-reference component 325 may access theuser context engine 315 and thedialog manager 335 when necessary to interpret references with improved accuracy. - In particular embodiments, the identified domains, intents, meta-intents, slots, and meta slots, along with the resolved references may be sent to the
entity resolution component 330 to resolve relevant entities. The entities may include one or more of a real world entity (from general knowledge base), a user entity (from user memory), a contextual entity (device context/dialog context), or a value resolution (numbers, datetime, etc.). Theentity resolution component 330 may execute generic and domain-specific entity resolution. In particular embodiments, theentity resolution component 330 may comprisedomain entity resolution 331 andgeneric entity resolution 332. Thedomain entity resolution 331 may resolve the entities by categorizing the slots and meta slots into different domains. In particular embodiments, entities may be resolved based on the ontology data extracted from thegraphs 320. The ontology data may comprise the structural relationship between different slots/meta-slots and domains. The ontology may also comprise information of how the slots/meta-slots may be grouped, related within a hierarchy where the higher level comprises the domain, and subdivided according to similarities and differences. Thegeneric entity resolution 332 may resolve the entities by categorizing the slots and meta slots into different generic topics. In particular embodiments, the resolving may be also based on the ontology data extracted from thegraphs 320. The ontology data may comprise the structural relationship between different slots/meta-slots and generic topics. The ontology may also comprise information of how the slots/meta-slots may be grouped, related within a hierarchy where the higher level comprises the topic, and subdivided according to similarities and differences. As an example and not by way of limitation, in response to the input of an inquiry of the advantages of a particular brand of electric car, thegeneric entity resolution 332 may resolve the referenced brand of electric car as vehicle and thedomain entity resolution 331 may resolve the referenced brand of electric car as electric car. - In particular embodiments, the output of the
entity resolution component 330 may be sent to thedialog manager 335 to advance the flow of the conversation with the user. Thedialog manager 335 may be an asynchronous state machine that repeatedly updates the state and selects actions based on the new state. Thedialog manager 335 may comprise dialog intent resolution 336 anddialog state tracker 337. In particular embodiments, thedialog manager 335 may execute the selected actions and then call thedialog state tracker 337 again until the action selected requires a user response, or there are no more actions to execute. Each action selected may depend on the execution result from previous actions. In particular embodiments, the dialog intent resolution 336 may resolve the user intent associated with the current dialog session based on dialog history between the user and theassistant system 140. The dialog intent resolution 336 may map intents determined by theNLU module 210 a to different dialog intents. The dialog intent resolution 336 may further rank dialog intents based on signals from theNLU module 210 a, theentity resolution component 330, and dialog history between the user and theassistant system 140. In particular embodiments, instead of directly altering the dialog state, thedialog state tracker 337 may be a side-effect free component and generate n-best candidates of dialog state update operators that propose updates to the dialog state. Thedialog state tracker 337 may comprise intent resolvers containing logic to handle different types of NLU intent based on the dialog state and generate the operators. In particular embodiments, the logic may be organized by intent handler, such as a disambiguation intent handler to handle the intents when theassistant system 140 asks for disambiguation, a confirmation intent handler that comprises the logic to handle confirmations, etc. Intent resolvers may combine the turn intent together with the dialog state to generate the contextual updates for a conversation with the user. A slot resolution component may then recursively resolve the slots in the update operators with resolution providers including the knowledge graph and domain agents. In particular embodiments, thedialog state tracker 337 may update/rank the dialog state of the current dialog session. As an example and not by way of limitation, thedialog state tracker 337 may update the dialog state as “completed” if the dialog session is over. As another example and not by way of limitation, thedialog state tracker 337 may rank the dialog state based on a priority associated with it. - In particular embodiments, the
reasoning module 212 a may communicate with the remoteaction execution module 222 a and thedialog arbitrator 214, respectively. In particular embodiments, thedialog manager 335 of thereasoning module 212 a may communicate with atask completion component 340 of theaction execution module 222 a about the dialog intent and associated content objects. In particular embodiments, thetask completion module 340 may rank different dialog hypotheses for different dialog intents. Thetask completion module 340 may comprise an action selector 341. In alternative embodiments, the action selector 341 may be comprised in thedialog manager 335. In particular embodiments, thedialog manager 335 may additionally check againstdialog policies 345 comprised in thedialog arbitrator 214 regarding the dialog state. In particular embodiments, adialog policy 345 may comprise a data structure that describes an execution plan of an action by anagent 350. Thedialog policy 345 may comprise ageneral policy 346 andtask policies 347. In particular embodiments, thegeneral policy 346 may be used for actions that are not specific to individual tasks. Thegeneral policy 346 may comprise handling low confidence intents, internal errors, unacceptable user response with retries, skipping or inserting confirmation based on ASR or NLU confidence scores, etc. Thegeneral policy 346 may also comprise the logic of ranking dialog state update candidates from thedialog state tracker 337 output and pick the one to update (such as picking the top ranked task intent). In particular embodiments, theassistant system 140 may have a particular interface for thegeneral policy 346, which allows for consolidating scattered cross-domain policy/business-rules, especial those found in thedialog state tracker 337, into a function of the action selector 341. The interface for thegeneral policy 346 may also allow for authoring of self-contained sub-policy units that may be tied to specific situations or clients, e.g., policy functions that may be easily switched on or off based on clients, situation, etc. The interface for thegeneral policy 346 may also allow for providing a layering of policies with back-off, i.e. multiple policy units, with highly specialized policy units that deal with specific situations being backed up by moregeneral policies 346 that apply in wider circumstances. In this context thegeneral policy 346 may alternatively comprise intent or task specific policy. In particular embodiments, atask policy 347 may comprise the logic for action selector 341 based on the task and current state. In particular embodiments, the types oftask policies 347 may include one or more of the following types: (1) manually crafted tree-based dialog plans; (2) coded policy that directly implements the interface for generating actions; (3) configurator-specified slot-filling tasks; or (4) machine-learning model based policy learned from data. In particular embodiments, theassistant system 140 may bootstrap new domains with rule-based logic and later refine thetask policies 347 with machine-learning models. In particular embodiments, adialog policy 345 may a tree-based policy, which is a pre-constructed dialog plan. Based on the current dialog state, adialog policy 345 may choose a node to execute and generate the corresponding actions. As an example and not by way of limitation, the tree-based policy may comprise topic grouping nodes and dialog action (leaf) nodes. - In particular embodiments, the action selector 341 may take candidate operators of dialog state and consult the
dialog policy 345 to decide what action should be executed. Theassistant system 140 may use a hierarchical dialog policy withgeneral policy 346 handling the cross-domain business logic andtask policies 347 handles the task/domain specific logic. In particular embodiments, thegeneral policy 346 may pick one operator from the candidate operators to update the dialog state, followed by the selection of a user facing action by atask policy 347. Once a task is active in the dialog state, thecorresponding task policy 347 may be consulted to select right actions. In particular embodiments, both thedialog state tracker 337 and the action selector 341 may not change the dialog state until the selected action is executed. This may allow theassistant system 140 to execute thedialog state tracker 337 and the action selector 341 for processing speculative ASR results and to do n-best ranking with dry runs. In particular embodiments, the action selector 341 may take the dialog state update operators as part of the input to select the dialog action. The execution of the dialog action may generate a set of expectation to instruct thedialog state tracker 337 to handler future turns. In particular embodiments, an expectation may be used to provide context to thedialog state tracker 337 when handling the user input from next turn. As an example and not by way of limitation, slot request dialog action may have the expectation of proving a value for the requested slot. - In particular embodiments, the
dialog manager 335 may support multi-turn compositional resolution of slot mentions. For a compositional parse from theNLU 210 a, the resolver may recursively resolve the nested slots. Thedialog manager 335 may additionally support disambiguation for the nested slots. As an example and not by way of limitation, the user request may be “remind me to call Alex”. The resolver may need to know which Alex to call before creating an actionable reminder to-do entity. The resolver may halt the resolution and set the resolution state when further user clarification is necessary for a particular slot. Thegeneral policy 346 may examine the resolution state and create corresponding dialog action for user clarification. Indialog state tracker 337, based on the user request and the last dialog action, the dialog manager may update the nested slot. This capability may allow theassistant system 140 to interact with the user not only to collect missing slot values but also to reduce ambiguity of more complex/ambiguous utterances to complete the task. In particular embodiments, the dialog manager may further support requesting missing slots in a nested intent and multi-intent user requests (e.g., “take this photo and send it to Dad”). In particular embodiments, thedialog manager 335 may support machine-learning models for more robust dialog experience. As an example and not by way of limitation, thedialog state tracker 337 may use neural network based models (or any other suitable machine-learning models) to model belief over task hypotheses. As another example and not by way of limitation, for action selector 341, highest priority policy units may comprise white-list/black-list overrides, which may have to occur by design; middle priority units may comprise machine-learning models designed for action selection; and lower priority units may comprise rule-based fallbacks when the machine-learning models elect not to handle a situation. In particular embodiments, machine-learning model based general policy unit may help theassistant system 140 reduce redundant disambiguation or confirmation steps, thereby reducing the number of turns to execute the user request. - In particular embodiments, the
action execution module 222 a may calldifferent agents 350 for task execution. Anagent 350 may select among registered content providers to complete the action. The data structure may be constructed by thedialog manager 335 based on an intent and one or more slots associated with the intent. Adialog policy 345 may further comprise multiple goals related to each other through logical operators. In particular embodiments, a goal may be an outcome of a portion of the dialog policy and it may be constructed by thedialog manager 335. A goal may be represented by an identifier (e.g., string) with one or more named arguments, which parameterize the goal. As an example and not by way of limitation, a goal with its associated goal argument may be represented as {confirm_artist, args: {artist: “Madonna”}}. In particular embodiments, a dialog policy may be based on a tree-structured representation, in which goals are mapped to leaves of the tree. In particular embodiments, thedialog manager 335 may execute adialog policy 345 to determine the next action to carry out. Thedialog policies 345 may comprisegeneric policy 346 and domainspecific policies 347, both of which may guide how to select the next system action based on the dialog state. In particular embodiments, thetask completion component 340 of theaction execution module 222 a may communicate withdialog policies 345 comprised in thedialog arbitrator 214 to obtain the guidance of the next system action. In particular embodiments, the action selection component 341 may therefore select an action based on the dialog intent, the associated content objects, and the guidance fromdialog policies 345. - In particular embodiments, the output of the
action execution module 222 a may be sent to the remoteresponse execution module 226 a. Specifically, the output of thetask completion component 340 of theaction execution module 222 a may be sent to theCU composer 355 of theresponse execution module 226 a. In alternative embodiments, the selected action may require one ormore agents 350 to be involved. As a result, thetask completion module 340 may inform theagents 350 about the selected action. Meanwhile, thedialog manager 335 may receive an instruction to update the dialog state. As an example and not by way of limitation, the update may comprise awaiting agents' 350 response. In particular embodiments, theCU composer 355 may generate a communication content for the user using a natural-language generation (NLG)module 356 based on the output of thetask completion module 340. In particular embodiments, theNLG module 356 may use different language models and/or language templates to generate natural language outputs. The generation of natural language outputs may be application specific. The generation of natural language outputs may be also personalized for each user. TheCU composer 355 may also determine a modality of the generated communication content using theUI payload generator 357. Since the generated communication content may be considered as a response to the user request, theCU composer 355 may additionally rank the generated communication content using aresponse ranker 358. As an example and not by way of limitation, the ranking may indicate the priority of the response. - In particular embodiments, the
response execution module 226 a may perform different tasks based on the output of theCU composer 355. These tasks may include writing (i.e., storing/updating) thedialog state 361 retrieved fromdata store 216 and generatingresponses 362. In particular embodiments, the output ofCU composer 355 may comprise one or more of natural-language strings, speech, actions with parameters, or rendered images or videos that can be displayed in a VR headset or AR smart glass. As a result, theresponse execution module 226 a may determine what tasks to perform based on the output ofCU composer 355. In particular embodiments, the generated response and the communication content may be sent to the local renderoutput module 232 by theresponse execution module 226 a. In alternative embodiments, the output of theCU composer 355 may be additionally sent to theremote TTS module 230 a if the determined modality of the communication content is audio. The speech generated by theTTS module 230 a and the response generated by theresponse execution module 226 a may be then sent to the renderoutput module 232. -
FIG. 4 illustrates an example flow diagram 400 of processing a user input by theassistant system 140. As an example and not by way of limitation, the user input may be based on audio signals. In particular embodiments, amic array 402 of theclient system 130 may receive the audio signals (e.g., speech). The audio signals may be transmitted to aprocess loop 404 in a format of audio frames. In particular embodiments, theprocess loop 404 may send the audio frames for voice activity detection (VAD) 406 and wake-on-voice (WoV)detection 408. The detection results may be returned to theprocess loop 404. If theWoV detection 408 indicates the user wants to invoke theassistant system 140, the audio frames together with theVAD 406 result may be sent to an encodeunit 410 to generate encoded audio data. After encoding, the encoded audio data may be sent to anencrypt unit 412 for privacy and security purpose, followed by alink unit 414 and decryptunit 416. After decryption, the audio data may be sent to amic driver 418, which may further transmit the audio data to anaudio service module 420. In alternative embodiments, the user input may be received at a wireless device (e.g., Bluetooth device) paired with theclient system 130. Correspondingly, the audio data may be sent from a wireless-device driver 422 (e.g., Bluetooth driver) to theaudio service module 420. In particular embodiments, theaudio service module 420 may determine that the user input can be fulfilled by an application executing on theclient system 130. Accordingly, theaudio service module 420 may send the user input to a real-time communication (RTC)module 424. TheRTC module 424 may deliver audio packets to a video or audio communication system (e.g., VOIP or video call). TheRTC module 424 may call a relevant application (App) 426 to execute tasks related to the user input. - In particular embodiments, the
audio service module 420 may determine that the user is requesting assistance that needs theassistant system 140 to respond. Accordingly, theaudio service module 420 may inform the client-assistant service module 428. In particular embodiments, the client-assistant service module 428 may communicate with theassistant orchestrator 206. Theassistant orchestrator 206 may determine whether to use client-side processes or server-side processes to respond to the user input. In particular embodiments, theassistant orchestrator 206 may determine to use client-side processes and inform the client-assistant service module 428 about such decision. As a result, the client-assistant service module 428 may call relevant modules to respond to the user input. - In particular embodiments, the client-
assistant service module 428 may use thelocal ASR module 208 b to analyze the user input. TheASR module 208 b may comprise a grapheme-to-phoneme (G2P) model, a pronunciation learning model, a personalized language model (PLM), an end-pointing model, and a personalized acoustic model. In particular embodiments, the client-assistant service module 428 may further use thelocal NLU module 210 b to understand the user input. TheNLU module 210 b may comprise a named entity resolution (NER) component and a contextual session-based NLU component. In particular embodiments, the client-assistant service module 428 may use anintent broker 430 to analyze the user's intent. To be accurate about the user's intent, theintent broker 430 may access anentity store 432 comprising entities associated with the user and the world. In alternative embodiments, the user input may be submitted via anapplication 434 executing on theclient system 130. In this case, aninput manager 436 may receive the user input and analyze it by an application environment (App Env)module 438. The analysis result may be sent to theapplication 434 which may further send the analysis result to theASR module 208 b andNLU module 210 b. In alternative embodiments, the user input may be directly submitted to the client-assistant service module 428 via anassistant application 440 executing on theclient system 130. Then the client-assistant service module 428 may perform similar procedures based on modules as aforementioned, i.e., theASR module 208 b, theNLU module 210 b, and theintent broker 430. - In particular embodiments, the
assistant orchestrator 206 may determine to user server-side process. Accordingly, theassistant orchestrator 206 may send the user input to one or more computing systems that host different modules of theassistant system 140. In particular embodiments, a server-assistant service module 301 may receive the user input from theassistant orchestrator 206. The server-assistant service module 301 may instruct theremote ASR module 208 a to analyze the audio data of the user input. TheASR module 208 a may comprise a grapheme-to-phoneme (G2P) model, a pronunciation learning model, a personalized language model (PLM), an end-pointing model, and a personalized acoustic model. In particular embodiments, the server-assistant service module 301 may further instruct theremote NLU module 210 a to understand the user input. In particular embodiments, the server-assistant service module 301 may call theremote reasoning model 212 a to process the output from theASR module 208 a and theNLU module 210 a. In particular embodiments, thereasoning model 212 a may perform entity resolution and dialog optimization. In particular embodiments, the output of thereasoning model 212 a may be sent to theagent 350 for executing one or more relevant tasks. - In particular embodiments, the
agent 350 may access anontology module 442 to accurately understand the result from entity resolution and dialog optimization so that it can execute relevant tasks accurately. Theontology module 442 may provide ontology data associated with a plurality of predefined domains, intents, and slots. The ontology data may also comprise the structural relationship between different slots and domains. The ontology data may further comprise information of how the slots may be grouped, related within a hierarchy where the higher level comprises the domain, and subdivided according to similarities and differences. The ontology data may also comprise information of how the slots may be grouped, related within a hierarchy where the higher level comprises the topic, and subdivided according to similarities and differences. Once the tasks are executed, theagent 350 may return the execution results together with a task completion indication to thereasoning module 212 a. - The embodiments disclosed herein may include or be implemented in conjunction with an artificial reality system. Artificial reality is a form of reality that has been adjusted in some manner before presentation to a user, which may include, e.g., a virtual reality (VR), an augmented reality (AR), a mixed reality (MR), a hybrid reality, or some combination and/or derivatives thereof. Artificial reality content may include completely generated content or generated content combined with captured content (e.g., real-world photographs). The artificial reality content may include video, audio, haptic feedback, or some combination thereof, and any of which may be presented in a single channel or in multiple channels (such as stereo video that produces a three-dimensional effect to the viewer). Additionally, in some embodiments, artificial reality may be associated with applications, products, accessories, services, or some combination thereof, that are, e.g., used to create content in an artificial reality and/or used in (e.g., perform activities in) an artificial reality. The artificial reality system that provides the artificial reality content may be implemented on various platforms, including a head-mounted display (HMD) connected to a host computer system, a standalone HMD, a mobile device or computing system, or any other hardware platform capable of providing artificial reality content to one or more viewers.
- In particular embodiments,
assistant system 140 may provide in-call experience enhancements in which content items, such as photos, videos, posts, etc., are proactively recommended to users during a video call. Video calls may lack a feeling of genuine social interaction, and users in a call may run out of topics to discuss or forget important topics relevant to a context of their conversation. Proactively providing content may thus guide and prolong a stalled conversation, and create a more social experience to the call. Accordingly,assistant system 140 may identify users in the video call (subject to privacy settings) and automatically select content items that are relevant to the users and to the context of the call, which may be then be presented on the screens of one ormore client systems 130 of the users. As examples and not by way of limitation, such context may include factors such as a topic of a conversation within the call or the location or scenery behind users in the call, which may be identified subject to privacy settings. In particular embodiments, these content items may be proactively selected and presented by theassistant system 140 based on a recommender module within the assistant architecture that determines the most relevant content items based on the user identifiers, context, and various parameters related to the call itself. As an example and not by way of limitation, such recommendations may be handled by either the server-side and/or client-side processes of theassistant system 140, and the recommended content items may be selected from remote and/or local data stores (subject to access settings). Although this disclosure describes example methods for determining call context and presenting particular content recommendations proactively, this disclosure contemplates any suitable methods for selecting and providing such content recommendations. -
FIG. 5A illustrates anexample video call 500 between two users. In particular embodiments, theassistant system 140 may establish avideo call 500 between a plurality ofclient systems 130. Eachclient system 130 may be associated with one or more users (e.g., participants in the video call 500). In particular embodiments, theassistant system 140 may receive a request from afirst client system 130 of a first user identifying one or more other users to add to avideo call 500 and may assign a call identifier to thevideo call 500. As an example and not by way of limitation, theassistant system 140 may use this call ID in monitoring thevideo call 500 and context information of thevarious client systems 130 participating in it. In particular embodiments, theassistant system 140 may itself be added as a participant in thevideo call 500, subject to privacy settings of each of the users of thevideo call 500. A first user may request to add theassistant system 140 to thevideo call 500, and, if each of the other users permit, theassistant system 140 may be added as a participant to thevideo call 500; otherwise, theassistant system 140 may not be added. As an example and not by way of limitation, if theassistant system 140 is added to thevideo call 500, server-side processes of theassistant system 140 may continuously monitor thevideo call 500 to detect a current context of each of theclient systems 130. As another example and not by way of limitation, if theassistant system 140 is not added as a participant in thevideo call 500, client-side processes of theassistant system 140 running on each user'sclient system 130 may individually monitor the current context of therespective client system 130. Although this disclosure describes establishing a video call in a particular manner, this disclosure contemplates establishing a video call in any suitable manner. - In particular embodiments, the
assistant system 140 may determine a plurality of user identifiers (user IDs) of a plurality of users associated with thevideo call 500. As an example and not by way of limitation, identification of these users in thevideo call 500 may occur through determination of a user's caller ID or through facial recognition of the users. Both active users currently usingclient systems 130 and background users viewable in the frame of the video call may be identified, subject to privacy settings. In particular embodiments, the identified users may be modified dynamically as, for example, people enter and leave the frame of thevideo call 500. The number of users may thus be used to create a set of “slots”, which are changed as needed over the course ofvideo call 500, used to determine relevant content items for recommendation. Although this disclosure describes identification of users in a particular manner, this disclosure contemplates identification of users in any suitable manner. - In particular embodiments, the
assistant system 140 may determine whether to provide content recommendations during thevideo call 500 based on a current context of thevideo call 500. If a current context of thevideo call 500 indicates that it is an appropriate time to provide a content recommendation, theassistant system 140 may generate a content recommendation having particular content items and provide this content recommendation to one or more of the users in thevideo call 500. As an example and not by way of limitation, this current context may include a current amount of voice input in thevideo call 500. In particular embodiments, this amount of voice input may be indicated by, for example, a noise level in the call, a number of users currently speaking, or an amount of time since a user last spoke. Presenting content recommendations at an inopportune time may result in the content being unnoticed or ignored or even distracting the users from a current topic of the conversation, and so presenting the content recommendations at a more appropriate time may increase the likelihood that selected users will actively interact with recommended content. Thus, in particular embodiments, theassistant system 140 may determine that it is an appropriate time to provide content recommendations when it detects via a detection algorithm that there is little or no voice input, which may indicate a pause in the conversation (e.g., there has been no input for more than 5 seconds). Such a detection algorithm may run on aclient system 130 at various time intervals, which may be determined by considerations such as computing resources or privacy considerations. As an example and not by way of limitation, the detection algorithm may determine how much noise there is in the call, and if the noise level falls below a particular threshold (e.g., below 30 decibels, which may indicate a lull in the conversation), theassistant system 140 may determine that this is a signal to present content recommendations. Such a lull in the conversation may indicate that the users are bored or are running out of topics to chat about; thus, receiving content at this time may make the call more engaging and interactive, and encourage the users to spend more time on the call. As another example and not by way of limitation, the detection algorithm may determine whether an amount of voice input is less than a threshold amount of voice input. If so, theassistant system 140 may determine that it is an appropriate time to provide content recommendations and may thus determine to provide them to one or more users of thevideo call 500. On the other hand, if the current amount of voice is not less than the threshold amount of voice input, theassistant system 140 may determine that it is not an appropriate time to provide content recommendations, and may thus may determine to delay providing content recommendations. As an example and not by way of limitation, theassistant system 140 may delay the provision of content recommendations until a later time, when it detects that the amount of voice input has fallen below the threshold. As another example and not by way of limitation, theassistant system 140 may simply not provide the content recommendations during thevideo call 500 at all if the voice input never falls below the threshold amount of voice input. - In particular embodiments, a current context of
video call 500 may be determined via requests sent from one ormore client systems 130 in the video call. Theassistant system 140 may receive an independent request from afirst client system 130, and this request may include a current context of only the first client system. As an example and not by way of limitation, theassistant system 140 may receive this request from thefirst client system 130 in response to an explicit user input received from the first user at thefirst client system 130, in response to an automatic generation of the request (e.g., at periodic time intervals), or in response to a request from theassistant system 140 requesting thefirst client system 130 to send its current context. In particular embodiments, eachclient system 130 invideo call 500 may independently request recommendations, and receive individual, personalized recommendations in response. As an example and not by way of limitation, in a call between three users, a first user'sclient system 130 may send, with or without user input, a request for content recommendations. This request may indicate user ID information for the remaining two users in the call as well as the user ID of the user using thefirst client system 130, but only the context of the first user may be known. Thus, in response to this individual request, recommendations may be displayed to the first user, and the current context used in determining those recommendations may only be that of the first user. Similar processes may occur for the remaining two users in the call; each may receive personalized recommendations based only on their respective current contexts in response to their independent requests. In particular embodiments, these requests may be handled server-side, or they may be handled locally on the requesting user's device; in the latter case, only content from the user's local data stores may be returned. A client-side process of theassistant system 140 may independently monitor an individual user'sclient system 130 for user-generated requests and/or appropriate context information, such as in cases in which the access settings set by the user do not permit a server-side process of theassistant system 140 to monitor thevideo call 500. As an example and not by way of limitation, if privacy settings of the user do not permit theassistant system 140 to access online media of the user, or if there is insufficient media to recommend to the user theassistant system 140 may instead retrieve media from the user'sown client system 130. - As another example and not by way of limitation, the
assistant system 140 may be added as a user in a call, and a server-side process may receive a call-wide request for recommendations (e.g., a request from one or more of the users in the call that is visible to all users). In particular embodiments, this request may be automatic or user-initiated, from a single user'sclient system 130. In this case, the request may include various pieces of information gathered by such a group assistant system, such as a call ID of thevideo call 500, identifiers of the users in the call, the user who initiated the call, whichclient system 130 initiated the request, and context information of each of the users. In particular embodiments, in response to this call-wide request, content recommendations may be generated, and these recommendations may be sent to all users, or to particular selected users. Theassistant system 140 may extract various pieces of information from the call-wide request to use to select content items for the generated content recommendations. As an example and not by way of limitation, theassistant system 140 may extract the user IDs from the request and select appropriate content items based on these user IDs. - Although this disclosure describes particular context information and determining whether to provide content recommendations based on context in a particular manner, this disclosure contemplates any suitable context information and determining whether to provide content recommendations in any suitable manner.
- In particular embodiments, the
assistant system 140 may select one or more content items based on the user IDs of the plurality of users associated with thevideo call 500. Content items that are particular related to one or more of the users may be selected and added to a content recommendation. As an example and not by way of limitation, theassistant system 140 may select content items featuring one or more of the users or that is relevant to activities of one or more of the users. In particular embodiments, various types of content may be recommended, and such content may be organized and retrieved in various ways. As an example and not by way of limitation, theassistant system 140 may provide content items, such as photos, in which one or more of the users of thevideo call 500 are tagged, subject to privacy settings indicating whether the photos are publicly accessible. As another example and not by way of limitation, theassistant system 140 may present photos of one particular user (e.g., the user who initiated the call). In particular embodiments, these photos may be categorized based on various criteria, such as events or dates, thus enabling a smart curation of recommendations that creates a story or memory for the users. Photos or other content items may be grouped and selected if they were taken at a same event or date. As an example and not by way of limitation, theassistant system 140 may provide a collection of photos taken on the same date (e.g., 20 January) over the course of the last ten years. As another example and not by way of limitation, the recommendations may be a set of photos from a trip the users took together years ago, or photos from the date of the call years ago (e.g., if the call occurs on 20 Jan. 2020, recommended photos may be from an event, such as a convention, that the users attended on 20 Jan. 2013). Further, the content is not limited to photos; any suitable content items may be suggested. In particular embodiments, recommended content items may include videos, which may be of the users or may just feature a mutual interest; masks, either new or previously used, that can be applied to various users; or social content, such as posts on a social network. As an example and not by way of limitation, theassistant system 140 may provide a recent post authored by one of the users in thevideo call 500, or a post in which one or more of the users has been tagged. As another example and not by way of limitation, theassistant system 140 may provide a recommendation for a new mask relevant to the date of the video call 500 (e.g., a fantasy-related mask may be recommended for a call occurring on Halloween to alter the appearance and/or voice of a user to which the mask is applied). In particular embodiments, content may be selected either from a server or from a local data store of aclient system 130 of a given user (e.g., from a local photo roll on a client device). As an example and not by way of limitation, theassistant system 140 may select a relevant photo of two users of a video call from local storage on one user'sclient system 130 and present it and any other content items selected from this local storage to the user of that device. - In particular embodiments, selecting content items may further be based on content types associated with the content items, and, when determining what recommendations to serve, the
assistant system 140 may decide what type of content to return before or after identifying the actual relevant content. As an example and not by way of limitation, an initial request for recommendations may specify a desired type of content. If a given user tends to interact with a particular type of content most frequently, or a particular type of content has been most popular recently, then theassistant system 140 may determine that this is the desired content type. As another example and not by way of limitation, relevant content may be identified first, and then one or more particular types may be selected based on recommendation scores that may indicate, for example, how likely a user is to engage with the associated content item. - In particular embodiments, a variety of additional factors and context considerations may be taken into account when determining which content items or types of content items are selected as the recommendations, if privacy settings permit them to be accessed and/or monitored. As an example and not by way of limitation, content items may be selected based on whether a date is significant in a user's history (e.g., their birthday or anniversary). As another example and not by way of limitation, consideration may be given to a user's history of interaction with content items. If a given user tends to interact more with photo recommendations than with video ones, photo-type content items may be selected as recommendations. Or, if the user tends to interact with photos of trips more than group photos, photos of trips may be given greater weight when selecting content for recommendations. As another example and not by way of limitation, consideration may be given to social signals associated with content items, such as popularity of the content or of the content type itself. More popular content items, such as those with a greater number of likes or comments, may be up-ranked in the selection of recommendations; similarly, if photo-type content items tend to be more popular than text-type posts, photo-type content items may be selected over text posts, as the larger number of social signals associated with photo-type content items may indicate a higher probability that users will interact with or be interested in photos. As another example and not by way of limitation, demographic characteristics of the users may also be considered. While photos may be recommended for older callers, videos may be recommended for younger ones. As another example and not by way of limitation, selecting the content items may further be based on one or more topics of the
video call 500. Theassistant system 140 may determine a topic of thevideo call 500 and return content items related to that topic (e.g., if a topic of the call is vacations, theassistant system 140 may provide photos of the last vacation a user took). - In particular embodiments, content items may be organized or grouped before selection of content items, e.g., based on correlations between the content items. As an example and not by way of limitation, in the case of photos, the photos may be selected based on their formatting (for example, all selected photos may be in the same orientation, i.e., all in landscape or all in portrait orientations). This similarity in subject and/or alignment may allow the presentation of content recommendations in a unified way, which may be useful when a user is using a large screen that is not optimal, due to its size and resolution, for displaying single photos at a time. As another example and not by way of limitation, photos of a same location (determined from geotags), or photos in a same album may be selected. Subjects in the photos may be highly correlated to a user (e.g., the user's parents) and/or to each other (e.g., the parents themselves), or the photos may all involve a particular concept (e.g., food or hiking in group photos). In particular embodiments, these groups may be created offline before any requests are received, and updated periodically (e.g., every five hours). Thus, as more content items are added, or an increased number of social signals with particular content items are received (such as an increased number of likes or comments), the grouping of content items may change based on these changes. Such an offline or proactive grouping may thus enable a request to be served immediately, as dynamically creating such groups in real-time in response to a request may require an undesirable and increasing amount of time as the number of content items grows.
- Although this disclosure describes selecting content items in a particular manner, this disclosure contemplates selecting content items in any suitable manner.
-
FIG. 5B illustrates anexample video call 500 in which proactive content recommendations are presented to a first user. In particular embodiments, theassistant system 140 may send, to one or more of theclient systems 130 while maintaining thevideo call 500 between the plurality ofclient systems 130, responsive to determining whether to provide content recommendations during thevideo call 500 based on the current context of thevideo call 500, a first content recommendation having the selected content items. In particular embodiments, once users in thevideo call 500 have been identified, if access settings permit, theassistant system 140 may continuously monitor thevideo call 500 in order to determine whether it is an appropriate time to send proactive recommendations to one or more of the users. As an example and not by way of limitation, if theassistant system 140 determines that it is an appropriate time to make content recommendations, theassistant system 140 may provide acontent sidebar 510 for display, such as by causing the content sidebar to pop up or slide into the frame of thevideo call 500. In particular embodiments,content sidebar 510 may present various content items, such asphotos photos video 513; this video may, similar tophotos content sidebar 510 may also display social-networking content items, such as a post that may be authored by one of the users or a mutual contact, or that may simply have one or more of the users tagged in it. - In particular embodiments, the
assistant system 140 may further send a prompt to the first user to share the selected content items with one or more other user(s) of thevideo call 500. As an example and not by way of limitation, such a prompt may be provided when content recommendations are selected from local data stores of the first user'sclient system 130, since any content accessed on a local data store may be assumed to be private content. In particular embodiments, the first user may then decide whether to accept the prompt; if theassistant system 140 receives, in response to the prompt, a request to share the selected content items, with either all users in the call or only with selected users, theassistant system 140 may then send, responsive to receiving the request, the selected content items to the one or more other users in accordance with the first user's selection. As an example and not by way of limitation, theassistant system 140 may receive a response to the prompt indicating that the selected content items be shared with all users in thevideo call 500. As another example and not by way of limitation, theassistant system 140 may receive a response to the prompt requesting that the content item, such as a photo, be shared only with other users appearing in that photo. Although this disclosure describes obtaining access permission for media items from a user in a particular manner, this disclosure contemplates obtaining access permissions from a user in any suitable manner. - In particular embodiments, the sending of content recommendations may involve selecting particular users to receive the content recommendations. Certain users may either not find the content recommendations helpful or may even ignore them altogether; thus, presenting content recommendations to users with certain contexts and characteristics may attract their attention and thus increase user interaction with the content, and many options exist for selecting these users. In particular embodiments, content items may be provided to all users, or to just one or a selected few. As an example and not by way of limitation,
assistant system 140 may select a first user associated with afirst client system 130 and send content recommendations to thatfirst client system 130. As another example and not by way of limitation, recommended content items may be provided to a user who has uploaded media to a social network most recently, or to a user who has created content items with a higher score (e.g., a higher number of social signals such as likes or comments), as this activity may indicate that this user is very likely to interact with recommended content. As another example and not by way of limitation, a user in avideo call 500 may be selected randomly, and recommendations may be provided to him. As another example and not by way of limitation, interactions by a particular user with past content recommendations may also be considered. If a user responds to a content recommendation, theassistant system 140 may store that interaction as an indication that this particular user is interested in recommendations and is thus a good candidate to show future or additional recommendations to. In particular embodiments, these additional recommendations may even be made in thesame video call 500. As an example and not by way of limitation, if theassistant system 140 receives an indication that the particular user has interacted with a content recommendation, it may subsequently provide a second content recommendation with additional content items to the first user. As another example and not by way of limitation, theassistant system 140 may also select a user in the call who is not currently speaking (e.g., whose amount of voice input falls below the threshold amount of voice input), as this user may be able to devote more attention to any presentation. Accordingly, selections of user may be based on considerations such as user preferences, user activity, and/or user history. - Although this disclosure describes selecting users and sending content recommendations in a particular manner, this disclosure contemplates selecting users and sending content recommendations in any suitable manner.
-
FIG. 6 illustrates anexample method 600 for providing proactive content recommendations during a video call. The method may begin atstep 610, where theassistant system 140 may establish a video call between multiple client systems. Atstep 620, theassistant system 140 may determine user identifiers (IDs) of users of the client systems in the video call. Atstep 630, theassistant system 140 may determine whether to provide content recommendations based on a current context of the video call, and atstep 640, theassistant system 140 may select content items based on one or more of the user IDs. Finally, atstep 650, responsive to determining to provide content recommendations, theassistant system 140 may send a first content recommendation with selected content items to one or more of the client systems while maintaining the video call. Particular embodiments may repeat one or more steps of the method ofFIG. 6 , where appropriate. Although this disclosure describes and illustrates particular steps of the method ofFIG. 6 as occurring in a particular order, this disclosure contemplates any suitable steps of the method ofFIG. 6 occurring in any suitable order. Moreover, although this disclosure describes and illustrates an example method for proactively sending content recommendations based on user IDs and current context information, including the particular steps of the method ofFIG. 6 , this disclosure contemplates any suitable method for proactively providing these content recommendations, including any suitable steps, which may include all, some, or none of the steps of the method ofFIG. 6 , where appropriate. Furthermore, although this disclosure describes and illustrates particular components, devices, or systems carrying out particular steps of the method ofFIG. 6 , this disclosure contemplates any suitable combination of any suitable components, devices, or systems carrying out any suitable steps of the method ofFIG. 6 . -
FIG. 7 illustrates anexample method 700 for determining whether to provide content recommendations based on a current context of the video call. As an example and not by way of limitation,method 700 may correspond to step 630 ofFIG. 6 . Themethod 700 may begin atstep 710, where theassistant system 140 may determine a current context of the video call. As an example and not by way of limitation, this current context may include a current amount of voice input in thevideo call 500. Atstep 720, theassistant system 140 may determine a current amount of voice input in the video call from the current context. Such an amount of voice input may be indicated by, for example, a noise level in the call, a number of users currently speaking, or an amount of time since a user last spoke. Atstep 730, theassistant system 140 may determine whether the detected current amount of voice input is less than a threshold amount of voice input. If so, the method proceeds to step 740, in which theassistant system 140 may determine that it is an appropriate time to provide content recommendations and thus determines to provide them to one or more users of thevideo call 500. If the detected current amount of voice input is not less than the threshold amount of voice input, the method proceeds to step 750, in which theassistant system 140 may determine that it is not an appropriate time to provide content recommendations, and thus may determine to delay providing content recommendations. As an example and not by way of limitation, theassistant system 140 may delay the provision of content recommendations until a later time, when it detects that the amount of voice input has fallen below the threshold. As another example and not by way of limitation, theassistant system 140 may simply not provide the content recommendations during thevideo call 500 at all if the voice input never falls below the threshold. Particular embodiments may repeat one or more steps of the method ofFIG. 7 , where appropriate. Although this disclosure describes and illustrates particular steps of the method ofFIG. 7 as occurring in a particular order, this disclosure contemplates any suitable steps of the method ofFIG. 7 occurring in any suitable order. Moreover, although this disclosure describes and illustrates an example method for determining whether a current context of a video call indicates an appropriate time to provide content recommendations, including the particular steps of the method ofFIG. 7 , this disclosure contemplates any suitable method for determining whether a current context of a video call indicates an appropriate time to provide content recommendation, including any suitable steps, which may include all, some, or none of the steps of the method ofFIG. 7 , where appropriate. Furthermore, although this disclosure describes and illustrates particular components, devices, or systems carrying out particular steps of the method ofFIG. 7 , this disclosure contemplates any suitable combination of any suitable components, devices, or systems carrying out any suitable steps of the method ofFIG. 7 . - In particular embodiments, proactive recommendations may be implemented on either an individual or a call-wide basis.
-
FIG. 8A illustrates anexample method 800 for determining a current context of thevideo call 500 based on a request sent from a client system of one of the users of the video call. Themethod 800 may begin atstep 810, where theassistant system 140 may establish video call 500 betweenmultiple client systems 130. Atstep 820, theassistant system 140 may determine user IDs of users of theclient systems 130 in thevideo call 500. Atstep 830, theassistant system 140 may receive, from afirst client system 130 of a first user, a request or notification of a current context at thefirst client system 130. As an example and not by way of limitation, such a request may be made automatically by a client-side process of theassistant system 140. As another example and not by way of limitation, a user using thefirst client system 130 may explicitly request to view recommended content. The received request may be specifically a request for content recommendations, and the request may further include both a user identifier of the first user and the respective current context of the first user. Based on receiving the request, theassistant system 140 may determine, atstep 840, to provide content recommendations. As an example and not by way of limitation, in cases where a user explicitly requests content recommendations, theassistant system 140 may interpret this explicit request as a signal that now is an appropriate time to make recommendations. Atstep 850, theassistant system 140 may select content items based on one or more of the user IDs. Finally, atstep 860, theassistant system 140 may send a first content recommendation with selected content items specifically to thefirst client system 130 while maintaining the video call. Particular embodiments may repeat one or more steps of the method ofFIG. 8A , where appropriate. Although this disclosure describes and illustrates particular steps of the method ofFIG. 8A as occurring in a particular order, this disclosure contemplates any suitable steps of the method ofFIG. 8A occurring in any suitable order. Moreover, although this disclosure describes and illustrates an example method for providing content recommendations on an individual basis based on requests and context received from aparticular client system 130 including the particular steps of the method ofFIG. 8A , this disclosure contemplates any suitable method for providing content recommendations on an individual basis including any suitable steps, which may include all, some, or none of the steps of the method ofFIG. 8A , where appropriate. Furthermore, although this disclosure describes and illustrates particular components, devices, or systems carrying out particular steps of the method ofFIG. 8A , this disclosure contemplates any suitable combination of any suitable components, devices, or systems carrying out any suitable steps of the method ofFIG. 8A . -
FIG. 8B illustrates anexample method 801 for determining a current context of thevideo call 500 by actively monitoring thevideo call 500, and then selecting particular users to receive content recommendations. As an example and not by way of limitation, a call-wide method for determining this current context may include actively monitoring the video call via a server-side process. The method may begin atstep 805, where theassistant system 140 may establish video call 500 betweenmultiple client systems 130. Atstep 815, theassistant system 140 may determine user IDs of users of theclient systems 130 in thevideo call 500. Atstep 825, theassistant system 140 may monitor the establishedvideo call 500 to detect respective current contexts of each of the users of themultiple client systems 130 in thevideo call 500. Atstep 835, theassistant system 140 may determine, based on the respective current contexts, whether to provide content recommendations, and atstep 845, theassistant system 140 may select content items based on one or more of the user IDs. Atstep 855, theassistant system 140 may select one or more users of themultiple client systems 130 based on the respective current contexts. Finally, atstep 865, while maintaining the video call, theassistant system 140 may send a first content recommendation with selected content items to the selectedclient systems 130 responsive to determining whether to provide content recommendations. Particular embodiments may repeat one or more steps of the method ofFIG. 8B , where appropriate. Although this disclosure describes and illustrates particular steps of the method ofFIG. 8B as occurring in a particular order, this disclosure contemplates any suitable steps of the method ofFIG. 8B occurring in any suitable order. Moreover, although this disclosure describes and illustrates an example method for providing content recommendations on a call-wide basis including the particular steps of the method ofFIG. 8B , this disclosure contemplates any suitable method for providing content recommendations on a call-wide basis including any suitable steps, which may include all, some, or none of the steps of the method ofFIG. 8B , where appropriate. Furthermore, although this disclosure describes and illustrates particular components, devices, or systems carrying out particular steps of the method ofFIG. 8B , this disclosure contemplates any suitable combination of any suitable components, devices, or systems carrying out any suitable steps of the method ofFIG. 8B . -
FIG. 9 illustrates an examplesocial graph 900. In particular embodiments, the social-networking system 160 may store one or moresocial graphs 900 in one or more data stores. In particular embodiments, thesocial graph 900 may include multiple nodes—which may includemultiple user nodes 902 ormultiple concept nodes 904—andmultiple edges 906 connecting the nodes. Each node may be associated with a unique entity (i.e., user or concept), each of which may have a unique identifier (ID), such as a unique number or username. The examplesocial graph 900 illustrated inFIG. 9 is shown, for didactic purposes, in a two-dimensional visual map representation. In particular embodiments, a social-networking system 160, aclient system 130, anassistant system 140, or a third-party system 170 may access thesocial graph 900 and related social-graph information for suitable applications. The nodes and edges of thesocial graph 900 may be stored as data objects, for example, in a data store (such as a social-graph database). Such a data store may include one or more searchable or queryable indexes of nodes or edges of thesocial graph 900. - In particular embodiments, a
user node 902 may correspond to a user of the social-networking system 160 or theassistant system 140. As an example and not by way of limitation, a user may be an individual (human user), an entity (e.g., an enterprise, business, or third-party application), or a group (e.g., of individuals or entities) that interacts or communicates with or over the social-networking system 160 or theassistant system 140. In particular embodiments, when a user registers for an account with the social-networking system 160, the social-networking system 160 may create auser node 902 corresponding to the user, and store theuser node 902 in one or more data stores. Users anduser nodes 902 described herein may, where appropriate, refer to registered users anduser nodes 902 associated with registered users. In addition or as an alternative, users anduser nodes 902 described herein may, where appropriate, refer to users that have not registered with the social-networking system 160. In particular embodiments, auser node 902 may be associated with information provided by a user or information gathered by various systems, including the social-networking system 160. As an example and not by way of limitation, a user may provide his or her name, profile picture, contact information, birth date, sex, marital status, family status, employment, education background, preferences, interests, or other demographic information. In particular embodiments, auser node 902 may be associated with one or more data objects corresponding to information associated with a user. In particular embodiments, auser node 902 may correspond to one or more web interfaces. - In particular embodiments, a
concept node 904 may correspond to a concept. As an example and not by way of limitation, a concept may correspond to a place (such as, for example, a movie theater, restaurant, landmark, or city); a website (such as, for example, a website associated with the social-networking system 160 or a third-party website associated with a web-application server); an entity (such as, for example, a person, business, group, sports team, or celebrity); a resource (such as, for example, an audio file, video file, digital photo, text file, structured document, or application) which may be located within the social-networking system 160 or on an external server, such as a web-application server; real or intellectual property (such as, for example, a sculpture, painting, movie, game, song, idea, photograph, or written work); a game; an activity; an idea or theory; another suitable concept; or two or more such concepts. Aconcept node 904 may be associated with information of a concept provided by a user or information gathered by various systems, including the social-networking system 160 and theassistant system 140. As an example and not by way of limitation, information of a concept may include a name or a title; one or more images (e.g., an image of the cover page of a book); a location (e.g., an address or a geographical location); a website (which may be associated with a URL); contact information (e.g., a phone number or an email address); other suitable concept information; or any suitable combination of such information. In particular embodiments, aconcept node 904 may be associated with one or more data objects corresponding to information associated withconcept node 904. In particular embodiments, aconcept node 904 may correspond to one or more web interfaces. - In particular embodiments, a node in the
social graph 900 may represent or be represented by a web interface (which may be referred to as a “profile interface”). Profile interfaces may be hosted by or accessible to the social-networking system 160 or theassistant system 140. Profile interfaces may also be hosted on third-party websites associated with a third-party system 170. As an example and not by way of limitation, a profile interface corresponding to a particular external web interface may be the particular external web interface and the profile interface may correspond to aparticular concept node 904. Profile interfaces may be viewable by all or a selected subset of other users. As an example and not by way of limitation, auser node 902 may have a corresponding user-profile interface in which the corresponding user may add content, make declarations, or otherwise express himself or herself. As another example and not by way of limitation, aconcept node 904 may have a corresponding concept-profile interface in which one or more users may add content, make declarations, or express themselves, particularly in relation to the concept corresponding toconcept node 904. - In particular embodiments, a
concept node 904 may represent a third-party web interface or resource hosted by a third-party system 170. The third-party web interface or resource may include, among other elements, content, a selectable or other icon, or other inter-actable object representing an action or activity. As an example and not by way of limitation, a third-party web interface may include a selectable icon such as “like,” “check-in,” “eat,” “recommend,” or another suitable action or activity. A user viewing the third-party web interface may perform an action by selecting one of the icons (e.g., “check-in”), causing aclient system 130 to send to the social-networking system 160 a message indicating the user's action. In response to the message, the social-networking system 160 may create an edge (e.g., a check-in-type edge) between auser node 902 corresponding to the user and aconcept node 904 corresponding to the third-party web interface or resource andstore edge 906 in one or more data stores. - In particular embodiments, a pair of nodes in the
social graph 900 may be connected to each other by one ormore edges 906. Anedge 906 connecting a pair of nodes may represent a relationship between the pair of nodes. In particular embodiments, anedge 906 may include or represent one or more data objects or attributes corresponding to the relationship between a pair of nodes. As an example and not by way of limitation, a first user may indicate that a second user is a “friend” of the first user. In response to this indication, the social-networking system 160 may send a “friend request” to the second user. If the second user confirms the “friend request,” the social-networking system 160 may create anedge 906 connecting the first user'suser node 902 to the second user'suser node 902 in thesocial graph 900 andstore edge 906 as social-graph information in one or more ofdata stores 164. In the example ofFIG. 9 , thesocial graph 900 includes anedge 906 indicating a friend relation betweenuser nodes 902 of user “A” and user “B” and an edge indicating a friend relation betweenuser nodes 902 of user “C” and user “B.” Although this disclosure describes or illustratesparticular edges 906 with particular attributes connectingparticular user nodes 902, this disclosure contemplates anysuitable edges 906 with any suitable attributes connectinguser nodes 902. As an example and not by way of limitation, anedge 906 may represent a friendship, family relationship, business or employment relationship, fan relationship (including, e.g., liking, etc.), follower relationship, visitor relationship (including, e.g., accessing, viewing, checking-in, sharing, etc.), sub scriber relationship, superior/subordinate relationship, reciprocal relationship, non-reciprocal relationship, another suitable type of relationship, or two or more such relationships. Moreover, although this disclosure generally describes nodes as being connected, this disclosure also describes users or concepts as being connected. Herein, references to users or concepts being connected may, where appropriate, refer to the nodes corresponding to those users or concepts being connected in thesocial graph 900 by one ormore edges 906. The degree of separation between two objects represented by two nodes, respectively, is a count of edges in a shortest path connecting the two nodes in thesocial graph 900. As an example and not by way of limitation, in thesocial graph 900, theuser node 902 of user “C” is connected to theuser node 902 of user “A” via multiple paths including, for example, a first path directly passing through theuser node 902 of user “B,” a second path passing through theconcept node 904 of company “CompanyName” and theuser node 902 of user “D,” and a third path passing through theuser nodes 902 andconcept nodes 904 representing school “SchoolName,” user “G,” company “CompanyName,” and user “D.” User “C” and user “A” have a degree of separation of two because the shortest path connecting their corresponding nodes (i.e., the first path) includes twoedges 906. - In particular embodiments, an
edge 906 between auser node 902 and aconcept node 904 may represent a particular action or activity performed by a user associated withuser node 902 toward a concept associated with aconcept node 904. As an example and not by way of limitation, as illustrated inFIG. 9 , a user may “like,” “attended,” “played,” “listened,” “cooked,” “worked at,” or “read” a concept, each of which may correspond to an edge type or subtype. A concept-profile interface corresponding to aconcept node 904 may include, for example, a selectable “check in” icon (such as, for example, a clickable “check in” icon) or a selectable “add to favorites” icon. Similarly, after a user clicks these icons, the social-networking system 160 may create a “favorite” edge or a “check in” edge in response to a user's action corresponding to a respective action. As another example and not by way of limitation, a user (user “C”) may listen to a particular song (“SongName”) using a particular application (a third-party online music application). In this case, the social-networking system 160 may create a “listened”edge 906 and a “used” edge (as illustrated inFIG. 9 ) betweenuser nodes 902 corresponding to the user andconcept nodes 904 corresponding to the song and application to indicate that the user listened to the song and used the application. Moreover, the social-networking system 160 may create a “played” edge 906 (as illustrated inFIG. 9 ) betweenconcept nodes 904 corresponding to the song and the application to indicate that the particular song was played by the particular application. In this case, “played”edge 906 corresponds to an action performed by an external application (the third-party online music application) on an external audio file (the song “SongName”). Although this disclosure describesparticular edges 906 with particular attributes connectinguser nodes 902 andconcept nodes 904, this disclosure contemplates anysuitable edges 906 with any suitable attributes connectinguser nodes 902 andconcept nodes 904. Moreover, although this disclosure describes edges between auser node 902 and aconcept node 904 representing a single relationship, this disclosure contemplates edges between auser node 902 and aconcept node 904 representing one or more relationships. As an example and not by way of limitation, anedge 906 may represent both that a user likes and has used at a particular concept. Alternatively, anotheredge 906 may represent each type of relationship (or multiples of a single relationship) between auser node 902 and a concept node 904 (as illustrated inFIG. 9 betweenuser node 902 for user “E” andconcept node 904 for “online music application”). - In particular embodiments, the social-
networking system 160 may create anedge 906 between auser node 902 and aconcept node 904 in thesocial graph 900. As an example and not by way of limitation, a user viewing a concept-profile interface (such as, for example, by using a web browser or a special-purpose application hosted by the user's client system 130) may indicate that he or she likes the concept represented by theconcept node 904 by clicking or selecting a “Like” icon, which may cause the user'sclient system 130 to send to the social-networking system 160 a message indicating the user's liking of the concept associated with the concept-profile interface. In response to the message, the social-networking system 160 may create anedge 906 betweenuser node 902 associated with the user andconcept node 904, as illustrated by “like”edge 906 between the user andconcept node 904. In particular embodiments, the social-networking system 160 may store anedge 906 in one or more data stores. In particular embodiments, anedge 906 may be automatically formed by the social-networking system 160 in response to a particular user action. As an example and not by way of limitation, if a first user uploads a picture, reads a book, watches a movie, or listens to a song, anedge 906 may be formed betweenuser node 902 corresponding to the first user andconcept nodes 904 corresponding to those concepts. Although this disclosure describes formingparticular edges 906 in particular manners, this disclosure contemplates forming anysuitable edges 906 in any suitable manner. -
FIG. 10 illustrates an example view of avector space 1000. In particular embodiments, an object or an n-gram may be represented in a d-dimensional vector space, where d denotes any suitable number of dimensions. Although thevector space 1000 is illustrated as a three-dimensional space, this is for illustrative purposes only, as thevector space 1000 may be of any suitable dimension. In particular embodiments, an n-gram may be represented in thevector space 1000 as a vector referred to as a term embedding. Each vector may comprise coordinates corresponding to a particular point in the vector space 1000 (i.e., the terminal point of the vector). As an example and not by way of limitation,vectors vector space 1000, as illustrated inFIG. 10 . An n-gram may be mapped to a respective vector representation. As an example and not by way of limitation, n-grams t1 and t2 may be mapped to vectors and in thevector space 1000, respectively, by applying a function defined by a dictionary, such that =(t1) and =(t2). As another example and not by way of limitation, a dictionary trained to map text to a vector representation may be utilized, or such a dictionary may be itself generated via training. As another example and not by way of limitation, a word-embeddings model may be used to map an n-gram to a vector representation in thevector space 1000. In particular embodiments, an n-gram may be mapped to a vector representation in thevector space 1000 by using a machine leaning model (e.g., a neural network). The machine learning model may have been trained using a sequence of training data (e.g., a corpus of objects each comprising n-grams). - In particular embodiments, an object may be represented in the
vector space 1000 as a vector referred to as a feature vector or an object embedding. As an example and not by way of limitation, objects e1 and e2 may be mapped to vectors and in thevector space 1000, respectively, by applying a function , such that =(e1) and =(e2). In particular embodiments, an object may be mapped to a vector based on one or more properties, attributes, or features of the object, relationships of the object with other objects, or any other suitable information associated with the object. As an example and not by way of limitation, a function may map objects to vectors by feature extraction, which may start from an initial set of measured data and build derived values (e.g., features). As an example and not by way of limitation, an object comprising a video or an image may be mapped to a vector by using an algorithm to detect or isolate various desired portions or shapes of the object. Features used to calculate the vector may be based on information obtained from edge detection, corner detection, blob detection, ridge detection, scale-invariant feature transformation, edge direction, changing intensity, autocorrelation, motion detection, optical flow, thresholding, blob extraction, template matching, Hough transformation (e.g., lines, circles, ellipses, arbitrary shapes), or any other suitable information. As another example and not by way of limitation, an object comprising audio data may be mapped to a vector based on features such as a spectral slope, a tonality coefficient, an audio spectrum centroid, an audio spectrum envelope, a Mel-frequency cepstrum, or any other suitable information. In particular embodiments, when an object has data that is either too large to be efficiently processed or comprises redundant data, a function may map the object to a vector using a transformed reduced set of features (e.g., feature selection). In particular embodiments, a function may map an object e to a vector (e) based on one or more n-grams associated with object e. Although this disclosure describes representing an n-gram or an object in a vector space in a particular manner, this disclosure contemplates representing an n-gram or an object in a vector space in any suitable manner. - In particular embodiments, the social-
networking system 160 may calculate a similarity metric of vectors invector space 1000. A similarity metric may be a cosine similarity, a Minkowski distance, a Mahalanobis distance, a Jaccard similarity coefficient, or any suitable similarity metric. As an example and not by way of limitation, a similarity metric of and may be a cosine similarity -
- As another example and not by way of limitation, a similarity metric of and may be a Euclidean distance ∥−∥. A similarity metric of two vectors may represent how similar the two objects or n-grams corresponding to the two vectors, respectively, are to one another, as measured by the distance between the two vectors in the
vector space 1000. As an example and not by way of limitation,vector 1010 andvector 1020 may correspond to objects that are more similar to one another than the objects corresponding tovector 1010 andvector 1030, based on the distance between the respective vectors. Although this disclosure describes calculating a similarity metric between vectors in a particular manner, this disclosure contemplates calculating a similarity metric between vectors in any suitable manner. - More information on vector spaces, embeddings, feature vectors, and similarity metrics may be found in U.S. patent application Ser. No. 14/949,436, filed 23 Nov. 2015, U.S. patent application Ser. No. 15/286,315, filed 5 Oct. 2016, and U.S. patent application Ser. No. 15/365,789, filed 30 Nov. 2016, each of which is incorporated by reference.
-
FIG. 11 illustrates an example artificial neural network (“ANN”) 1100. In particular embodiments, an ANN may refer to a computational model comprising one or more nodes.Example ANN 1100 may comprise aninput layer 1110, hiddenlayers output layer 1150. Each layer of theANN 1100 may comprise one or more nodes, such as anode 1105 or anode 1115. In particular embodiments, each node of an ANN may be connected to another node of the ANN. As an example and not by way of limitation, each node of theinput layer 1110 may be connected to one of more nodes of the hiddenlayer 1120. In particular embodiments, one or more nodes may be a bias node (e.g., a node in a layer that is not connected to and does not receive input from any node in a previous layer). In particular embodiments, each node in each layer may be connected to one or more nodes of a previous or subsequent layer. AlthoughFIG. 11 depicts a particular ANN with a particular number of layers, a particular number of nodes, and particular connections between nodes, this disclosure contemplates any suitable ANN with any suitable number of layers, any suitable number of nodes, and any suitable connections between nodes. As an example and not by way of limitation, althoughFIG. 11 depicts a connection between each node of theinput layer 1110 and each node of the hiddenlayer 1120, one or more nodes of theinput layer 1110 may not be connected to one or more nodes of the hiddenlayer 1120. - In particular embodiments, an ANN may be a feedforward ANN (e.g., an ANN with no cycles or loops where communication between nodes flows in one direction beginning with the input layer and proceeding to successive layers). As an example and not by way of limitation, the input to each node of the hidden
layer 1120 may comprise the output of one or more nodes of theinput layer 1110. As another example and not by way of limitation, the input to each node of theoutput layer 1150 may comprise the output of one or more nodes of the hiddenlayer 1140. In particular embodiments, an ANN may be a deep neural network (e.g., a neural network comprising at least two hidden layers). In particular embodiments, an ANN may be a deep residual network. A deep residual network may be a feedforward ANN comprising hidden layers organized into residual blocks. The input into each residual block after the first residual block may be a function of the output of the previous residual block and the input of the previous residual block. As an example and not by way of limitation, the input into residual block N may be F(x)+x, where F(x) may be the output of residual block N−1, x may be the input into residual block N−1. Although this disclosure describes a particular ANN, this disclosure contemplates any suitable ANN. - In particular embodiments, an activation function may correspond to each node of an ANN. An activation function of a node may define the output of a node for a given input. In particular embodiments, an input to a node may comprise a set of inputs. As an example and not by way of limitation, an activation function may be an identity function, a binary step function, a logistic function, or any other suitable function. As another example and not by way of limitation, an activation function for a node k may be the sigmoid function
-
- the hyperbolic tangent function
-
- the rectifier Fk(sk)=max (0,sk), or any other suitable function Fk(sk), where sk may be the effective input to node k. In particular embodiments, the input of an activation function corresponding to a node may be weighted. Each node may generate output using a corresponding activation function based on weighted inputs. In particular embodiments, each connection between nodes may be associated with a weight. As an example and not by way of limitation, a
connection 1125 between thenode 1105 and thenode 1115 may have a weighting coefficient of 0.4, which may indicate that 0.4 multiplied by the output of thenode 1105 is used as an input to thenode 1115. As another example and not by way of limitation, the output yk of node k may be yk=Fk(sk), where Fk may be the activation function corresponding to node k, sk=Σj(wjkxj) may be the effective input to node k, xj may be the output of a node j connected to node k, and wjk may be the weighting coefficient between node j and node k. In particular embodiments, the input to nodes of the input layer may be based on a vector representing an object. Although this disclosure describes particular inputs to and outputs of nodes, this disclosure contemplates any suitable inputs to and outputs of nodes. Moreover, although this disclosure may describe particular connections and weights between nodes, this disclosure contemplates any suitable connections and weights between nodes. - In particular embodiments, an ANN may be trained using training data. As an example and not by way of limitation, training data may comprise inputs to the
ANN 1100 and an expected output. As another example and not by way of limitation, training data may comprise vectors each representing a training object and an expected label for each training object. In particular embodiments, training an ANN may comprise modifying the weights associated with the connections between nodes of the ANN by optimizing an objective function. As an example and not by way of limitation, a training method may be used (e.g., the conjugate gradient method, the gradient descent method, the stochastic gradient descent) to backpropagate the sum-of-squares error measured as a distances between each vector representing a training object (e.g., using a cost function that minimizes the sum-of-squares error). In particular embodiments, an ANN may be trained using a dropout technique. As an example and not by way of limitation, one or more nodes may be temporarily omitted (e.g., receive no input and generate no output) while training. For each training object, one or more nodes of the ANN may have some probability of being omitted. The nodes that are omitted for a particular training object may be different than the nodes omitted for other training objects (e.g., the nodes may be temporarily omitted on an object-by-object basis). Although this disclosure describes training an ANN in a particular manner, this disclosure contemplates training an ANN in any suitable manner. - In particular embodiments, one or more objects (e.g., content or other types of objects) of a computing system may be associated with one or more privacy settings. The one or more objects may be stored on or otherwise associated with any suitable computing system or application, such as, for example, a social-
networking system 160, aclient system 130, anassistant system 140, a third-party system 170, a social-networking application, an assistant application, a messaging application, a photo-sharing application, or any other suitable computing system or application. Although the examples discussed herein are in the context of an online social network, these privacy settings may be applied to any other suitable computing system. Privacy settings (or “access settings”) for an object may be stored in any suitable manner, such as, for example, in association with the object, in an index on an authorization server, in another suitable manner, or any suitable combination thereof. A privacy setting for an object may specify how the object (or particular information associated with the object) can be accessed, stored, or otherwise used (e.g., viewed, shared, modified, copied, executed, surfaced, or identified) within the online social network. When privacy settings for an object allow a particular user or other entity to access that object, the object may be described as being “visible” with respect to that user or other entity. As an example and not by way of limitation, a user of the online social network may specify privacy settings for a user-profile page that identify a set of users that may access work-experience information on the user-profile page, thus excluding other users from accessing that information. - In particular embodiments, privacy settings for an object may specify a “blocked list” of users or other entities that should not be allowed to access certain information associated with the object. In particular embodiments, the blocked list may include third-party entities. The blocked list may specify one or more users or entities for which an object is not visible. As an example and not by way of limitation, a user may specify a set of users who may not access photo albums associated with the user, thus excluding those users from accessing the photo albums (while also possibly allowing certain users not within the specified set of users to access the photo albums). In particular embodiments, privacy settings may be associated with particular social-graph elements. Privacy settings of a social-graph element, such as a node or an edge, may specify how the social-graph element, information associated with the social-graph element, or objects associated with the social-graph element can be accessed using the online social network. As an example and not by way of limitation, a
particular concept node 904 corresponding to a particular photo may have a privacy setting specifying that the photo may be accessed only by users tagged in the photo and friends of the users tagged in the photo. In particular embodiments, privacy settings may allow users to opt in to or opt out of having their content, information, or actions stored/logged by the social-networking system 160 orassistant system 140 or shared with other systems (e.g., a third-party system 170). Although this disclosure describes using particular privacy settings in a particular manner, this disclosure contemplates using any suitable privacy settings in any suitable manner. - In particular embodiments, privacy settings may be based on one or more nodes or edges of a
social graph 900. A privacy setting may be specified for one ormore edges 906 or edge-types of thesocial graph 900, or with respect to one ormore nodes social graph 900. The privacy settings applied to aparticular edge 906 connecting two nodes may control whether the relationship between the two entities corresponding to the nodes is visible to other users of the online social network. Similarly, the privacy settings applied to a particular node may control whether the user or concept corresponding to the node is visible to other users of the online social network. As an example and not by way of limitation, a first user may share an object to the social-networking system 160. The object may be associated with aconcept node 904 connected to auser node 902 of the first user by anedge 906. The first user may specify privacy settings that apply to aparticular edge 906 connecting to theconcept node 904 of the object, or may specify privacy settings that apply to alledges 906 connecting to theconcept node 904. As another example and not by way of limitation, the first user may share a set of objects of a particular object-type (e.g., a set of images). The first user may specify privacy settings with respect to all objects associated with the first user of that particular object-type as having a particular privacy setting (e.g., specifying that all images posted by the first user are visible only to friends of the first user and/or users tagged in the images). - In particular embodiments, the social-
networking system 160 may present a “privacy wizard” (e.g., within a webpage, a module, one or more dialog boxes, or any other suitable interface) to the first user to assist the first user in specifying one or more privacy settings. The privacy wizard may display instructions, suitable privacy-related information, current privacy settings, one or more input fields for accepting one or more inputs from the first user specifying a change or confirmation of privacy settings, or any suitable combination thereof. In particular embodiments, the social-networking system 160 may offer a “dashboard” functionality to the first user that may display, to the first user, current privacy settings of the first user. The dashboard functionality may be displayed to the first user at any appropriate time (e.g., following an input from the first user summoning the dashboard functionality, following the occurrence of a particular event or trigger action). The dashboard functionality may allow the first user to modify one or more of the first user's current privacy settings at any time, in any suitable manner (e.g., redirecting the first user to the privacy wizard). - Privacy settings associated with an object may specify any suitable granularity of permitted access or denial of access. As an example and not by way of limitation, access or denial of access may be specified for particular users (e.g., only me, my roommates, my boss), users within a particular degree-of-separation (e.g., friends, friends-of-friends), user groups (e.g., the gaming club, my family), user networks (e.g., employees of particular employers, students or alumni of particular university), all users (“public”), no users (“private”), users of third-
party systems 170, particular applications (e.g., third-party applications, external websites), other suitable entities, or any suitable combination thereof. Although this disclosure describes particular granularities of permitted access or denial of access, this disclosure contemplates any suitable granularities of permitted access or denial of access. - In particular embodiments, one or
more servers 162 may be authorization/privacy servers for enforcing privacy settings. In response to a request from a user (or other entity) for a particular object stored in adata store 164, the social-networking system 160 may send a request to thedata store 164 for the object. The request may identify the user associated with the request and the object may be sent only to the user (or aclient system 130 of the user) if the authorization server determines that the user is authorized to access the object based on the privacy settings associated with the object. If the requesting user is not authorized to access the object, the authorization server may prevent the requested object from being retrieved from thedata store 164 or may prevent the requested object from being sent to the user. In the search-query context, an object may be provided as a search result only if the querying user is authorized to access the object, e.g., if the privacy settings for the object allow it to be surfaced to, discovered by, or otherwise visible to the querying user. In particular embodiments, an object may represent content that is visible to a user through a newsfeed of the user. As an example and not by way of limitation, one or more objects may be visible to a user's “Trending” page. In particular embodiments, an object may correspond to a particular user. The object may be content associated with the particular user, or may be the particular user's account or information stored on the social-networking system 160, or other computing system. As an example and not by way of limitation, a first user may view one or more second users of an online social network through a “People You May Know” function of the online social network, or by viewing a list of friends of the first user. As an example and not by way of limitation, a first user may specify that they do not wish to see objects associated with a particular second user in their newsfeed or friends list. If the privacy settings for the object do not allow it to be surfaced to, discovered by, or visible to the user, the object may be excluded from the search results. Although this disclosure describes enforcing privacy settings in a particular manner, this disclosure contemplates enforcing privacy settings in any suitable manner. - In particular embodiments, different objects of the same type associated with a user may have different privacy settings. Different types of objects associated with a user may have different types of privacy settings. As an example and not by way of limitation, a first user may specify that the first user's status updates are public, but any images shared by the first user are visible only to the first user's friends on the online social network. As another example and not by way of limitation, a user may specify different privacy settings for different types of entities, such as individual users, friends-of-friends, followers, user groups, or corporate entities. As another example and not by way of limitation, a first user may specify a group of users that may view videos posted by the first user, while keeping the videos from being visible to the first user's employer. In particular embodiments, different privacy settings may be provided for different user groups or user demographics. As an example and not by way of limitation, a first user may specify that other users who attend the same university as the first user may view the first user's pictures, but that other users who are family members of the first user may not view those same pictures.
- In particular embodiments, the social-
networking system 160 may provide one or more default privacy settings for each object of a particular object-type. A privacy setting for an object that is set to a default may be changed by a user associated with that object. As an example and not by way of limitation, all images posted by a first user may have a default privacy setting of being visible only to friends of the first user and, for a particular image, the first user may change the privacy setting for the image to be visible to friends and friends-of-friends. - In particular embodiments, privacy settings may allow a first user to specify (e.g., by opting out, by not opting in) whether the social-
networking system 160 orassistant system 140 may receive, collect, log, or store particular objects or information associated with the user for any purpose. In particular embodiments, privacy settings may allow the first user to specify whether particular applications or processes may access, store, or use particular objects or information associated with the user. The privacy settings may allow the first user to opt in or opt out of having objects or information accessed, stored, or used by specific applications or processes. The social-networking system 160 orassistant system 140 may access such information in order to provide a particular function or service to the first user, without the social-networking system 160 orassistant system 140 having access to that information for any other purposes. Before accessing, storing, or using such objects or information, the social-networking system 160 orassistant system 140 may prompt the user to provide privacy settings specifying which applications or processes, if any, may access, store, or use the object or information prior to allowing any such action. As an example and not by way of limitation, a first user may transmit a message to a second user via an application related to the online social network (e.g., a messaging app), and may specify privacy settings that such messages should not be stored by the social-networking system 160 orassistant system 140. - In particular embodiments, a user may specify whether particular types of objects or information associated with the first user may be accessed, stored, or used by the social-
networking system 160 orassistant system 140. As an example and not by way of limitation, the first user may specify that images sent by the first user through the social-networking system 160 orassistant system 140 may not be stored by the social-networking system 160 orassistant system 140. As another example and not by way of limitation, a first user may specify that messages sent from the first user to a particular second user may not be stored by the social-networking system 160 orassistant system 140. As yet another example and not by way of limitation, a first user may specify that all objects sent via a particular application may be saved by the social-networking system 160 orassistant system 140. - In particular embodiments, privacy settings may allow a first user to specify whether particular objects or information associated with the first user may be accessed from
particular client systems 130 or third-party systems 170. The privacy settings may allow the first user to opt in or opt out of having objects or information accessed from a particular device (e.g., the phone book on a user's smart phone), from a particular application (e.g., a messaging app), or from a particular system (e.g., an email server). The social-networking system 160 orassistant system 140 may provide default privacy settings with respect to each device, system, or application, and/or the first user may be prompted to specify a particular privacy setting for each context. As an example and not by way of limitation, the first user may utilize a location-services feature of the social-networking system 160 orassistant system 140 to provide recommendations for restaurants or other places in proximity to the user. The first user's default privacy settings may specify that the social-networking system 160 orassistant system 140 may use location information provided from aclient system 130 of the first user to provide the location-based services, but that the social-networking system 160 orassistant system 140 may not store the location information of the first user or provide it to any third-party system 170. The first user may then update the privacy settings to allow location information to be used by a third-party image-sharing application in order to geo-tag photos. - In particular embodiments, privacy settings may allow a user to specify one or more geographic locations from which objects can be accessed. Access or denial of access to the objects may depend on the geographic location of a user who is attempting to access the objects. As an example and not by way of limitation, a user may share an object and specify that only users in the same city may access or view the object. As another example and not by way of limitation, a first user may share an object and specify that the object is visible to second users only while the first user is in a particular location. If the first user leaves the particular location, the object may no longer be visible to the second users. As another example and not by way of limitation, a first user may specify that an object is visible only to second users within a threshold distance from the first user. If the first user subsequently changes location, the original second users with access to the object may lose access, while a new group of second users may gain access as they come within the threshold distance of the first user.
- In particular embodiments, the social-
networking system 160 orassistant system 140 may have functionalities that may use, as inputs, personal or biometric information of a user for user-authentication or experience-personalization purposes. A user may opt to make use of these functionalities to enhance their experience on the online social network. As an example and not by way of limitation, a user may provide personal or biometric information to the social-networking system 160 orassistant system 140. The user's privacy settings may specify that such information may be used only for particular processes, such as authentication, and further specify that such information may not be shared with any third-party system 170 or used for other processes or applications associated with the social-networking system 160 orassistant system 140. As another example and not by way of limitation, the social-networking system 160 may provide a functionality for a user to provide voice-print recordings to the online social network. As an example and not by way of limitation, if a user wishes to utilize this function of the online social network, the user may provide a voice recording of his or her own voice to provide a status update on the online social network. The recording of the voice-input may be compared to a voice print of the user to determine what words were spoken by the user. The user's privacy setting may specify that such voice recording may be used only for voice-input purposes (e.g., to authenticate the user, to send voice messages, to improve voice recognition in order to use voice-operated features of the online social network), and further specify that such voice recording may not be shared with any third-party system 170 or used by other processes or applications associated with the social-networking system 160. As another example and not by way of limitation, the social-networking system 160 may provide a functionality for a user to provide a reference image (e.g., a facial profile, a retinal scan) to the online social network. The online social network may compare the reference image against a later-received image input (e.g., to authenticate the user, to tag the user in photos). The user's privacy setting may specify that such image may be used only for a limited purpose (e.g., authentication, tagging the user in photos), and further specify that such image may not be shared with any third-party system 170 or used by other processes or applications associated with the social-networking system 160. -
FIG. 12 illustrates anexample computer system 1200. In particular embodiments, one ormore computer systems 1200 perform one or more steps of one or more methods described or illustrated herein. In particular embodiments, one ormore computer systems 1200 provide functionality described or illustrated herein. In particular embodiments, software running on one ormore computer systems 1200 performs one or more steps of one or more methods described or illustrated herein or provides functionality described or illustrated herein. Particular embodiments include one or more portions of one ormore computer systems 1200. Herein, reference to a computer system may encompass a computing device, and vice versa, where appropriate. Moreover, reference to a computer system may encompass one or more computer systems, where appropriate. - This disclosure contemplates any suitable number of
computer systems 1200. This disclosure contemplatescomputer system 1200 taking any suitable physical form. As example and not by way of limitation,computer system 1200 may be an embedded computer system, a system-on-chip (SOC), a single-board computer system (SBC) (such as, for example, a computer-on-module (COM) or system-on-module (SOM)), a desktop computer system, a laptop or notebook computer system, an interactive kiosk, a mainframe, a mesh of computer systems, a mobile telephone, a personal digital assistant (PDA), a server, a tablet computer system, or a combination of two or more of these. Where appropriate,computer system 1200 may include one ormore computer systems 1200; be unitary or distributed; span multiple locations; span multiple machines; span multiple data centers; or reside in a cloud, which may include one or more cloud components in one or more networks. Where appropriate, one ormore computer systems 1200 may perform without substantial spatial or temporal limitation one or more steps of one or more methods described or illustrated herein. As an example and not by way of limitation, one ormore computer systems 1200 may perform in real time or in batch mode one or more steps of one or more methods described or illustrated herein. One ormore computer systems 1200 may perform at different times or at different locations one or more steps of one or more methods described or illustrated herein, where appropriate. - In particular embodiments,
computer system 1200 includes aprocessor 1202,memory 1204,storage 1206, an input/output (I/O)interface 1208, acommunication interface 1210, and abus 1212. Although this disclosure describes and illustrates a particular computer system having a particular number of particular components in a particular arrangement, this disclosure contemplates any suitable computer system having any suitable number of any suitable components in any suitable arrangement. - In particular embodiments,
processor 1202 includes hardware for executing instructions, such as those making up a computer program. As an example and not by way of limitation, to execute instructions,processor 1202 may retrieve (or fetch) the instructions from an internal register, an internal cache,memory 1204, orstorage 1206; decode and execute them; and then write one or more results to an internal register, an internal cache,memory 1204, orstorage 1206. In particular embodiments,processor 1202 may include one or more internal caches for data, instructions, or addresses. This disclosure contemplatesprocessor 1202 including any suitable number of any suitable internal caches, where appropriate. As an example and not by way of limitation,processor 1202 may include one or more instruction caches, one or more data caches, and one or more translation lookaside buffers (TLBs). Instructions in the instruction caches may be copies of instructions inmemory 1204 orstorage 1206, and the instruction caches may speed up retrieval of those instructions byprocessor 1202. Data in the data caches may be copies of data inmemory 1204 orstorage 1206 for instructions executing atprocessor 1202 to operate on; the results of previous instructions executed atprocessor 1202 for access by subsequent instructions executing atprocessor 1202 or for writing tomemory 1204 orstorage 1206; or other suitable data. The data caches may speed up read or write operations byprocessor 1202. The TLBs may speed up virtual-address translation forprocessor 1202. In particular embodiments,processor 1202 may include one or more internal registers for data, instructions, or addresses. This disclosure contemplatesprocessor 1202 including any suitable number of any suitable internal registers, where appropriate. Where appropriate,processor 1202 may include one or more arithmetic logic units (ALUs); be a multi-core processor; or include one ormore processors 1202. Although this disclosure describes and illustrates a particular processor, this disclosure contemplates any suitable processor. - In particular embodiments,
memory 1204 includes main memory for storing instructions forprocessor 1202 to execute or data forprocessor 1202 to operate on. As an example and not by way of limitation,computer system 1200 may load instructions fromstorage 1206 or another source (such as, for example, another computer system 1200) tomemory 1204.Processor 1202 may then load the instructions frommemory 1204 to an internal register or internal cache. To execute the instructions,processor 1202 may retrieve the instructions from the internal register or internal cache and decode them. During or after execution of the instructions,processor 1202 may write one or more results (which may be intermediate or final results) to the internal register or internal cache.Processor 1202 may then write one or more of those results tomemory 1204. In particular embodiments,processor 1202 executes only instructions in one or more internal registers or internal caches or in memory 1204 (as opposed tostorage 1206 or elsewhere) and operates only on data in one or more internal registers or internal caches or in memory 1204 (as opposed tostorage 1206 or elsewhere). One or more memory buses (which may each include an address bus and a data bus) may coupleprocessor 1202 tomemory 1204.Bus 1212 may include one or more memory buses, as described below. In particular embodiments, one or more memory management units (MMUs) reside betweenprocessor 1202 andmemory 1204 and facilitate accesses tomemory 1204 requested byprocessor 1202. In particular embodiments,memory 1204 includes random access memory (RAM). This RAM may be volatile memory, where appropriate. Where appropriate, this RAM may be dynamic RAM (DRAM) or static RAM (SRAM). Moreover, where appropriate, this RAM may be single-ported or multi-ported RAM. This disclosure contemplates any suitable RAM.Memory 1204 may include one ormore memories 1204, where appropriate. Although this disclosure describes and illustrates particular memory, this disclosure contemplates any suitable memory. - In particular embodiments,
storage 1206 includes mass storage for data or instructions. As an example and not by way of limitation,storage 1206 may include a hard disk drive (HDD), a floppy disk drive, flash memory, an optical disc, a magneto-optical disc, magnetic tape, or a Universal Serial Bus (USB) drive or a combination of two or more of these.Storage 1206 may include removable or non-removable (or fixed) media, where appropriate.Storage 1206 may be internal or external tocomputer system 1200, where appropriate. In particular embodiments,storage 1206 is non-volatile, solid-state memory. In particular embodiments,storage 1206 includes read-only memory (ROM). Where appropriate, this ROM may be mask-programmed ROM, programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), electrically alterable ROM (EAROM), or flash memory or a combination of two or more of these. This disclosure contemplatesmass storage 1206 taking any suitable physical form.Storage 1206 may include one or more storage control units facilitating communication betweenprocessor 1202 andstorage 1206, where appropriate. Where appropriate,storage 1206 may include one ormore storages 1206. Although this disclosure describes and illustrates particular storage, this disclosure contemplates any suitable storage. - In particular embodiments, I/
O interface 1208 includes hardware, software, or both, providing one or more interfaces for communication betweencomputer system 1200 and one or more I/O devices.Computer system 1200 may include one or more of these I/O devices, where appropriate. One or more of these I/O devices may enable communication between a person andcomputer system 1200. As an example and not by way of limitation, an I/O device may include a keyboard, keypad, microphone, monitor, mouse, printer, scanner, speaker, still camera, stylus, tablet, touch screen, trackball, video camera, another suitable I/O device or a combination of two or more of these. An I/O device may include one or more sensors. This disclosure contemplates any suitable I/O devices and any suitable I/O interfaces 1208 for them. Where appropriate, I/O interface 1208 may include one or more device or softwaredrivers enabling processor 1202 to drive one or more of these I/O devices. I/O interface 1208 may include one or more I/O interfaces 1208, where appropriate. Although this disclosure describes and illustrates a particular I/O interface, this disclosure contemplates any suitable I/O interface. - In particular embodiments,
communication interface 1210 includes hardware, software, or both providing one or more interfaces for communication (such as, for example, packet-based communication) betweencomputer system 1200 and one or moreother computer systems 1200 or one or more networks. As an example and not by way of limitation,communication interface 1210 may include a network interface controller (NIC) or network adapter for communicating with an Ethernet or other wire-based network or a wireless NIC (WNIC) or wireless adapter for communicating with a wireless network, such as a WI-FI network. This disclosure contemplates any suitable network and anysuitable communication interface 1210 for it. As an example and not by way of limitation,computer system 1200 may communicate with an ad hoc network, a personal area network (PAN), a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), or one or more portions of the Internet or a combination of two or more of these. One or more portions of one or more of these networks may be wired or wireless. As an example,computer system 1200 may communicate with a wireless PAN (WPAN) (such as, for example, a BLUETOOTH WPAN), a WI-FI network, a WI-MAX network, a cellular telephone network (such as, for example, a Global System for Mobile Communications (GSM) network), or other suitable wireless network or a combination of two or more of these.Computer system 1200 may include anysuitable communication interface 1210 for any of these networks, where appropriate.Communication interface 1210 may include one ormore communication interfaces 1210, where appropriate. Although this disclosure describes and illustrates a particular communication interface, this disclosure contemplates any suitable communication interface. - In particular embodiments,
bus 1212 includes hardware, software, or both coupling components ofcomputer system 1200 to each other. As an example and not by way of limitation,bus 1212 may include an Accelerated Graphics Port (AGP) or other graphics bus, an Enhanced Industry Standard Architecture (EISA) bus, a front-side bus (FSB), a HYPERTRANSPORT (HT) interconnect, an Industry Standard Architecture (ISA) bus, an INFINIBAND interconnect, a low-pin-count (LPC) bus, a memory bus, a Micro Channel Architecture (MCA) bus, a Peripheral Component Interconnect (PCI) bus, a PCI-Express (PCIe) bus, a serial advanced technology attachment (SATA) bus, a Video Electronics Standards Association local (VLB) bus, or another suitable bus or a combination of two or more of these.Bus 1212 may include one ormore buses 1212, where appropriate. Although this disclosure describes and illustrates a particular bus, this disclosure contemplates any suitable bus or interconnect. - Herein, a computer-readable non-transitory storage medium or media may include one or more semiconductor-based or other integrated circuits (ICs) (such, as for example, field-programmable gate arrays (FPGAs) or application-specific ICs (ASICs)), hard disk drives (HDDs), hybrid hard drives (HHDs), optical discs, optical disc drives (ODDs), magneto-optical discs, magneto-optical drives, floppy diskettes, floppy disk drives (FDDs), magnetic tapes, solid-state drives (SSDs), RAM-drives, SECURE DIGITAL cards or drives, any other suitable computer-readable non-transitory storage media, or any suitable combination of two or more of these, where appropriate. A computer-readable non-transitory storage medium may be volatile, non-volatile, or a combination of volatile and non-volatile, where appropriate.
- Herein, “or” is inclusive and not exclusive, unless expressly indicated otherwise or indicated otherwise by context. Therefore, herein, “A or B” means “A, B, or both,” unless expressly indicated otherwise or indicated otherwise by context. Moreover, “and” is both joint and several, unless expressly indicated otherwise or indicated otherwise by context. Therefore, herein, “A and B” means “A and B, jointly or severally,” unless expressly indicated otherwise or indicated otherwise by context.
- The scope of this disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments described or illustrated herein that a person having ordinary skill in the art would comprehend. The scope of this disclosure is not limited to the example embodiments described or illustrated herein. Moreover, although this disclosure describes and illustrates respective embodiments herein as including particular components, elements, feature, functions, operations, or steps, any of these embodiments may include any combination or permutation of any of the components, elements, features, functions, operations, or steps described or illustrated anywhere herein that a person having ordinary skill in the art would comprehend. Furthermore, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative. Additionally, although this disclosure describes or illustrates particular embodiments as providing particular advantages, particular embodiments may provide none, some, or all of these advantages.
Claims (20)
1. A method comprising, by one or more computing systems:
establishing a video call between a plurality of client systems;
sending, to a first client system of the plurality of client systems while maintaining the video call between the plurality of client systems, instructions for presenting a first content recommendation comprising one or more selected content items, wherein the first content recommendation comprises a prompt to share the selected content items with one or more second client systems of the plurality of client systems;
receiving, from the first client system responsive to the prompt, a request to share the selected content items; and
sending, to the one or more second client systems responsive to receiving the request and while maintaining the video call between the plurality of client systems, instructions for presenting the selected content items within the video call.
2. The method of claim 1 , wherein one or more of the selected content items comprise one or more content items in which one or more users of the plurality of client systems are tagged.
3. The method of claim 1 , wherein one or more of the selected content items are from a local data store of the first client system.
4. The method of claim 1 , further comprising:
determining whether to provide content recommendations during the video call based on a current context of the video call.
5. The method of claim 4 , wherein the current context comprises a current amount of voice input in the video call.
6. The method of claim 5 , determining whether to provide content recommendations during the video call based on the current context of the video call comprises:
determining whether the current amount voice input in the video call is less than a threshold amount of voice input, wherein:
if the current amount of voice input is less than the threshold amount of voice input, then determining to provide content recommendations; and
if the current amount of voice input is not less than the threshold amount of voice input, then determining to delay providing content recommendations until the current amount of voice input is less than the threshold amount of voice input.
7. The method of claim 1 , further comprising:
selecting the one or more content items based on one or more events or dates associated with the content items.
8. The method of claim 1 , further comprising:
selecting the one or more content items based on one or more topics of the video call.
9. The method of claim 1 , further comprising:
selecting the first client system of the plurality of client systems, wherein a first user is associated with the first client system.
10. The method of claim 9 , wherein the first user is selected based on a determination that the first user is not speaking.
11. The method of claim 9 , wherein the first user is selected based on interactions by the first user with past content recommendations.
12. The method of claim 9 , wherein the first user is selected based on respective social signals associated with one or more of the selected content items.
13. The method of claim 1 , further comprising:
selecting the one or more content items is based on respective social signals associated with the one or more content items.
14. The method of claim 1 , further comprising:
receiving, from the first client system, a request for content recommendations, wherein the request comprises a user identifier of a first user of the first client system and a current context of the first user.
15. The method of claim 1 , wherein in response to the prompt, a first user of the first client system requests to share the one or more selected content items with all users in the call.
16. The method of claim 1 , wherein in response to the prompt, a first user of the first client system requests to share the one or more selected content items with only selected users in the call.
17. The method of claim 1 , wherein the selected content items are presented within the video call via a content sidebar.
18. The method of claim 1 , further comprising:
selecting one or more additional content items responsive to the request to share the selected content items from the first client system; and
sending, to the first client system while maintaining the video call between the plurality of client systems, a second content recommendation comprising the one or more additional content items, wherein the second content recommendation comprises a prompt to share the one or more additional content items with the one or more second client systems of the plurality of client systems.
19. A system comprising one or more processors and a memory coupled to the processors, the memory comprising instructions that, when executed by the processors, configure the processors to:
establish a video call between a plurality of client systems;
send, to a first client system of the plurality of client systems while maintaining the video call between the plurality of client systems, instructions for presenting a first content recommendation comprising one or more selected content items, wherein the first content recommendation comprises a prompt to share the selected content items with one or more second client systems of the plurality of client systems;
receive, from the first client system responsive to the prompt, a request to share the selected content items; and
send, to the one or more second client systems responsive to receiving the request and while maintaining the video call between the plurality of client systems, instructions for presenting the selected content items within the video call.
20. One or more computer-readable non-transitory storage media embodying software that is configured, when executed by a processor, to:
establish a video call between a plurality of client systems;
send, to a first client system of the plurality of client systems while maintaining the video call between the plurality of client systems, instructions for presenting a first content recommendation comprising one or more selected content items, wherein the first content recommendation comprises a prompt to share the selected content items with one or more second client systems of the plurality of client systems;
receive, from the first client system responsive to the prompt, a request to share the selected content items; and
send, to the one or more second client systems responsive to receiving the request and while maintaining the video call between the plurality of client systems, instructions for presenting the selected content items within the video call.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/465,159 US20210400235A1 (en) | 2020-04-07 | 2021-09-02 | Proactive In-Call Content Recommendations for Assistant Systems |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/842,366 US11159767B1 (en) | 2020-04-07 | 2020-04-07 | Proactive in-call content recommendations for assistant systems |
US17/465,159 US20210400235A1 (en) | 2020-04-07 | 2021-09-02 | Proactive In-Call Content Recommendations for Assistant Systems |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/842,366 Continuation US11159767B1 (en) | 2020-04-07 | 2020-04-07 | Proactive in-call content recommendations for assistant systems |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210400235A1 true US20210400235A1 (en) | 2021-12-23 |
Family
ID=77922306
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/842,366 Active US11159767B1 (en) | 2020-04-07 | 2020-04-07 | Proactive in-call content recommendations for assistant systems |
US17/465,159 Abandoned US20210400235A1 (en) | 2020-04-07 | 2021-09-02 | Proactive In-Call Content Recommendations for Assistant Systems |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/842,366 Active US11159767B1 (en) | 2020-04-07 | 2020-04-07 | Proactive in-call content recommendations for assistant systems |
Country Status (1)
Country | Link |
---|---|
US (2) | US11159767B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11410653B1 (en) * | 2020-09-25 | 2022-08-09 | Amazon Technologies, Inc. | Generating content recommendation based on user-device dialogue |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10553098B2 (en) | 2014-05-20 | 2020-02-04 | Ooma, Inc. | Appliance device integration with alarm systems |
US9633547B2 (en) | 2014-05-20 | 2017-04-25 | Ooma, Inc. | Security monitoring and control |
US11330100B2 (en) | 2014-07-09 | 2022-05-10 | Ooma, Inc. | Server based intelligent personal assistant services |
US10009286B2 (en) | 2015-05-08 | 2018-06-26 | Ooma, Inc. | Communications hub |
US11715042B1 (en) | 2018-04-20 | 2023-08-01 | Meta Platforms Technologies, Llc | Interpretability of deep reinforcement learning models in assistant systems |
US11307880B2 (en) | 2018-04-20 | 2022-04-19 | Meta Platforms, Inc. | Assisting users with personalized and contextual communication content |
US11676220B2 (en) | 2018-04-20 | 2023-06-13 | Meta Platforms, Inc. | Processing multimodal user input for assistant systems |
US11886473B2 (en) | 2018-04-20 | 2024-01-30 | Meta Platforms, Inc. | Intent identification for agent matching by assistant systems |
US11010436B1 (en) | 2018-04-20 | 2021-05-18 | Facebook, Inc. | Engaging users by personalized composing-content recommendation |
KR20210150842A (en) * | 2020-06-04 | 2021-12-13 | 삼성전자주식회사 | Electronic device for translating voice or text and method thereof |
US11645559B2 (en) * | 2020-09-10 | 2023-05-09 | Walmart Apollo, Llc | Methods and apparatus for generating item recommendations based on real-time inference of machine learning models |
US11563706B2 (en) * | 2020-12-29 | 2023-01-24 | Meta Platforms, Inc. | Generating context-aware rendering of media contents for assistant systems |
US12014731B2 (en) | 2021-01-29 | 2024-06-18 | Zoom Video Communications, Inc. | Suggesting user actions during a video conference |
US11755954B2 (en) * | 2021-03-11 | 2023-09-12 | International Business Machines Corporation | Scheduled federated learning for enhanced search |
US11663024B2 (en) * | 2021-06-07 | 2023-05-30 | International Business Machines Corporation | Efficient collaboration using a virtual assistant |
KR102536806B1 (en) * | 2021-08-11 | 2023-05-26 | 라인플러스 주식회사 | Method and system for sharing content on instant messaging application during calls |
US11735185B2 (en) * | 2021-08-19 | 2023-08-22 | National Yang Ming Chiao Tung University | Caption service system for remote speech recognition |
US12045568B1 (en) | 2021-11-12 | 2024-07-23 | Meta Platforms, Inc. | Span pointer networks for non-autoregressive task-oriented semantic parsing for assistant systems |
US20230350928A1 (en) * | 2022-04-28 | 2023-11-02 | Knowbl LLC | Systems and methods for implementing a virtual agent performing context and query transformations using unsupervised machine learning models |
US11983329B1 (en) | 2022-12-05 | 2024-05-14 | Meta Platforms, Inc. | Detecting head gestures using inertial measurement unit signals |
US12112001B1 (en) | 2023-03-14 | 2024-10-08 | Meta Platforms, Inc. | Preventing false activations based on don/doff detection for assistant systems |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100063880A1 (en) * | 2006-09-13 | 2010-03-11 | Alon Atsmon | Providing content responsive to multimedia signals |
US20100306402A1 (en) * | 2003-09-15 | 2010-12-02 | Sony Computer Entertainment America Inc. | Addition of Supplemental Multimedia Content and Interactive Capability at the Client |
US20110184814A1 (en) * | 2010-01-22 | 2011-07-28 | Konkol Vincent | Network advertising methods and apparatus |
US9253513B1 (en) * | 2014-09-08 | 2016-02-02 | Microsoft Technology Licensing, Llc | Independent multi-panel display with cross-panel interactivity |
US20180032997A1 (en) * | 2012-10-09 | 2018-02-01 | George A. Gordon | System, method, and computer program product for determining whether to prompt an action by a platform in connection with a mobile device |
US20200151761A1 (en) * | 2018-11-08 | 2020-05-14 | Capital One Services, Llc | Systems and methods for targeted content delivery based on device sensor data |
US10708543B1 (en) * | 2015-05-28 | 2020-07-07 | Amazon Technologies, Inc. | Video communication sessions between whitelisted devices |
Family Cites Families (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7421432B1 (en) | 1999-12-15 | 2008-09-02 | Google Inc. | Hypertext browser assistant |
WO2001050720A1 (en) | 1999-12-29 | 2001-07-12 | Koninklijke Kpn N.V. | Electronic call assistants with shared database |
NL1015165C2 (en) | 2000-05-12 | 2001-11-13 | Koninkl Kpn Nv | Communication system. |
US7158678B2 (en) | 2001-07-19 | 2007-01-02 | Motorola, Inc. | Text input method for personal digital assistants and the like |
US7124123B1 (en) | 2003-06-30 | 2006-10-17 | America Online, Inc. | Intelligent processing in the context of away and offline instant messages |
US8677377B2 (en) | 2005-09-08 | 2014-03-18 | Apple Inc. | Method and apparatus for building an intelligent automated assistant |
US20080240379A1 (en) | 2006-08-03 | 2008-10-02 | Pudding Ltd. | Automatic retrieval and presentation of information relevant to the context of a user's conversation |
KR101462930B1 (en) * | 2008-04-30 | 2014-11-19 | 엘지전자 주식회사 | Mobile terminal and its video communication control method |
US10042032B2 (en) | 2009-04-29 | 2018-08-07 | Amazon Technologies, Inc. | System and method for generating recommendations based on similarities between location information of multiple users |
US10241752B2 (en) | 2011-09-30 | 2019-03-26 | Apple Inc. | Interface for a virtual digital assistant |
US9858925B2 (en) | 2009-06-05 | 2018-01-02 | Apple Inc. | Using context information to facilitate processing of commands in a virtual assistant |
US10679605B2 (en) | 2010-01-18 | 2020-06-09 | Apple Inc. | Hands-free list-reading by intelligent automated assistant |
US10276170B2 (en) | 2010-01-18 | 2019-04-30 | Apple Inc. | Intelligent automated assistant |
US9098808B1 (en) | 2010-04-22 | 2015-08-04 | Google Inc. | Social search engine |
WO2012116236A2 (en) | 2011-02-23 | 2012-08-30 | Nova Spivack | System and method for analyzing messages in a network or across networks |
US20120246191A1 (en) | 2011-03-24 | 2012-09-27 | True Xiong | World-Wide Video Context Sharing |
US9398347B2 (en) | 2011-05-30 | 2016-07-19 | Sandvine Incorporated Ulc | Systems and methods for measuring quality of experience for media streaming |
US9154739B1 (en) | 2011-11-30 | 2015-10-06 | Google Inc. | Physical training assistant system |
US9418658B1 (en) | 2012-02-08 | 2016-08-16 | Amazon Technologies, Inc. | Configuration of voice controlled assistant |
US10235346B2 (en) | 2012-04-06 | 2019-03-19 | Hmbay Patents Llc | Method and apparatus for inbound message summarization using message clustering and message placeholders |
US9060224B1 (en) | 2012-06-01 | 2015-06-16 | Rawles Llc | Voice controlled assistant with coaxial speaker and microphone arrangement |
US9299059B1 (en) | 2012-06-07 | 2016-03-29 | Google Inc. | Generating a summary of social media content |
US9747895B1 (en) | 2012-07-10 | 2017-08-29 | Google Inc. | Building language models for a user in a social network from linguistic information |
US9576574B2 (en) | 2012-09-10 | 2017-02-21 | Apple Inc. | Context-sensitive handling of interruptions by intelligent digital assistant |
US8983383B1 (en) | 2012-09-25 | 2015-03-17 | Rawles Llc | Providing hands-free service to multiple devices |
US11397462B2 (en) | 2012-09-28 | 2022-07-26 | Sri International | Real-time human-machine collaboration using big data driven augmented reality technologies |
WO2014142702A1 (en) | 2013-03-15 | 2014-09-18 | Obschestvo S Ogranichennoy Otvetstvennostiyu "Speaktoit" | Selective speech recognition for chat and digital personal assistant systems |
US20140164506A1 (en) | 2012-12-10 | 2014-06-12 | Rawllin International Inc. | Multimedia message having portions of networked media content |
DE112014000709B4 (en) | 2013-02-07 | 2021-12-30 | Apple Inc. | METHOD AND DEVICE FOR OPERATING A VOICE TRIGGER FOR A DIGITAL ASSISTANT |
US9659577B1 (en) | 2013-03-14 | 2017-05-23 | Amazon Technologies, Inc. | Voice controlled assistant with integrated control knob |
US9304736B1 (en) | 2013-04-18 | 2016-04-05 | Amazon Technologies, Inc. | Voice controlled assistant with non-verbal code entry |
US9472206B2 (en) | 2013-06-17 | 2016-10-18 | Google Technology Holdings LLC | Privacy mode for always-on voice-activated information assistant |
US9338242B1 (en) | 2013-09-09 | 2016-05-10 | Amazon Technologies, Inc. | Processes for generating content sharing recommendations |
US10134395B2 (en) | 2013-09-25 | 2018-11-20 | Amazon Technologies, Inc. | In-call virtual assistants |
US9479931B2 (en) | 2013-12-16 | 2016-10-25 | Nuance Communications, Inc. | Systems and methods for providing a virtual assistant |
US10181322B2 (en) | 2013-12-20 | 2019-01-15 | Microsoft Technology Licensing, Llc | Multi-user, multi-domain dialog system |
US9424247B1 (en) | 2013-12-31 | 2016-08-23 | Google Inc. | Associating one or more terms in a message trail with a task entry |
US9338493B2 (en) | 2014-06-30 | 2016-05-10 | Apple Inc. | Intelligent automated assistant for TV user interactions |
US9189514B1 (en) | 2014-09-04 | 2015-11-17 | Lucas J. Myslinski | Optimized fact checking method and system |
US9508339B2 (en) | 2015-01-30 | 2016-11-29 | Microsoft Technology Licensing, Llc | Updating language understanding classifier models for a digital personal assistant based on crowd-sourcing |
US9886953B2 (en) | 2015-03-08 | 2018-02-06 | Apple Inc. | Virtual assistant activation |
US10417799B2 (en) | 2015-05-07 | 2019-09-17 | Facebook, Inc. | Systems and methods for generating and presenting publishable collections of related media content items |
US10127220B2 (en) | 2015-06-04 | 2018-11-13 | Apple Inc. | Language identification from short strings |
US9792281B2 (en) | 2015-06-15 | 2017-10-17 | Microsoft Technology Licensing, Llc | Contextual language generation by leveraging language understanding |
EP3122001B1 (en) | 2015-07-24 | 2019-10-23 | Facebook, Inc. | Providing personal assistant service via messaging |
US10262654B2 (en) | 2015-09-24 | 2019-04-16 | Microsoft Technology Licensing, Llc | Detecting actionable items in a conversation among participants |
US11010550B2 (en) | 2015-09-29 | 2021-05-18 | Apple Inc. | Unified language modeling framework for word prediction, auto-completion and auto-correction |
US10691473B2 (en) | 2015-11-06 | 2020-06-23 | Apple Inc. | Intelligent automated assistant in a messaging environment |
US10402750B2 (en) | 2015-12-30 | 2019-09-03 | Facebook, Inc. | Identifying entities using a deep-learning model |
WO2017168202A1 (en) | 2016-03-27 | 2017-10-05 | Yogesh Chunilal Rathod | Identifying & storing followers, following users, viewers, users and connections for user |
CN109074292B (en) | 2016-04-18 | 2021-12-14 | 谷歌有限责任公司 | Automated assistant invocation of appropriate agents |
US20170353469A1 (en) | 2016-06-03 | 2017-12-07 | Facebook, Inc. | Search-Page Profile |
US10462619B2 (en) | 2016-06-08 | 2019-10-29 | Google Llc | Providing a personal assistant module with a selectively-traversable state machine |
CN107491469B (en) | 2016-06-11 | 2020-11-24 | 苹果公司 | Intelligent task discovery |
US20180018562A1 (en) | 2016-07-14 | 2018-01-18 | Cside Japan Inc. | Platform for providing task based on deep learning |
US10433052B2 (en) | 2016-07-16 | 2019-10-01 | Ron Zass | System and method for identifying speech prosody |
US20180096072A1 (en) | 2016-10-03 | 2018-04-05 | Google Inc. | Personalization of a virtual assistant |
US10579688B2 (en) | 2016-10-05 | 2020-03-03 | Facebook, Inc. | Search ranking and recommendations for online social networks based on reconstructed embeddings |
US11392598B2 (en) | 2016-10-19 | 2022-07-19 | Ebay Inc. | Applying a quantitative range for qualitative terms |
US10699181B2 (en) | 2016-12-30 | 2020-06-30 | Google Llc | Virtual assistant generation of group recommendations |
US9865260B1 (en) | 2017-05-03 | 2018-01-09 | Google Llc | Proactive incorporation of unsolicited content into human-to-computer dialogs |
US10438594B2 (en) | 2017-09-08 | 2019-10-08 | Amazon Technologies, Inc. | Administration of privileges by speech for voice assistant system |
US10511808B2 (en) | 2018-04-10 | 2019-12-17 | Facebook, Inc. | Automated cinematic decisions based on descriptive models |
US11861674B1 (en) * | 2019-10-18 | 2024-01-02 | Meta Platforms Technologies, Llc | Method, one or more computer-readable non-transitory storage media, and a system for generating comprehensive information for products of interest by assistant systems |
-
2020
- 2020-04-07 US US16/842,366 patent/US11159767B1/en active Active
-
2021
- 2021-09-02 US US17/465,159 patent/US20210400235A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100306402A1 (en) * | 2003-09-15 | 2010-12-02 | Sony Computer Entertainment America Inc. | Addition of Supplemental Multimedia Content and Interactive Capability at the Client |
US20100063880A1 (en) * | 2006-09-13 | 2010-03-11 | Alon Atsmon | Providing content responsive to multimedia signals |
US20110184814A1 (en) * | 2010-01-22 | 2011-07-28 | Konkol Vincent | Network advertising methods and apparatus |
US20180032997A1 (en) * | 2012-10-09 | 2018-02-01 | George A. Gordon | System, method, and computer program product for determining whether to prompt an action by a platform in connection with a mobile device |
US9253513B1 (en) * | 2014-09-08 | 2016-02-02 | Microsoft Technology Licensing, Llc | Independent multi-panel display with cross-panel interactivity |
US10708543B1 (en) * | 2015-05-28 | 2020-07-07 | Amazon Technologies, Inc. | Video communication sessions between whitelisted devices |
US20200151761A1 (en) * | 2018-11-08 | 2020-05-14 | Capital One Services, Llc | Systems and methods for targeted content delivery based on device sensor data |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11410653B1 (en) * | 2020-09-25 | 2022-08-09 | Amazon Technologies, Inc. | Generating content recommendation based on user-device dialogue |
US11741962B1 (en) * | 2020-09-25 | 2023-08-29 | Amazon Technologies, Inc. | Generating content recommendation based on user-device dialogue |
Also Published As
Publication number | Publication date |
---|---|
US20210314523A1 (en) | 2021-10-07 |
US11159767B1 (en) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11159767B1 (en) | Proactive in-call content recommendations for assistant systems | |
US11238239B2 (en) | In-call experience enhancement for assistant systems | |
US20210117214A1 (en) | Generating Proactive Content for Assistant Systems | |
US11658835B2 (en) | Using a single request for multi-person calling in assistant systems | |
US11567788B1 (en) | Generating proactive reminders for assistant systems | |
US11563706B2 (en) | Generating context-aware rendering of media contents for assistant systems | |
US11809480B1 (en) | Generating dynamic knowledge graph of media contents for assistant systems | |
US20220279051A1 (en) | Generating Proactive Reminders for Assistant Systems | |
US20240298084A9 (en) | Smart Cameras Enabled by Assistant Systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: META PLATFORMS TECHNOLOGIES, LLC, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:FACEBOOK TECHNOLOGIES, LLC;REEL/FRAME:060591/0848 Effective date: 20220318 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |