US20210389910A1 - Managing a memory system including memory devices with different characteristics - Google Patents

Managing a memory system including memory devices with different characteristics Download PDF

Info

Publication number
US20210389910A1
US20210389910A1 US17/461,902 US202117461902A US2021389910A1 US 20210389910 A1 US20210389910 A1 US 20210389910A1 US 202117461902 A US202117461902 A US 202117461902A US 2021389910 A1 US2021389910 A1 US 2021389910A1
Authority
US
United States
Prior art keywords
memory device
memory
usage
data
usage threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/461,902
Inventor
Michael B. Danielson
Paul A. Suhler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US17/461,902 priority Critical patent/US20210389910A1/en
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DANIELSON, MICHAEL B., SUHLER, PAUL A.
Publication of US20210389910A1 publication Critical patent/US20210389910A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0659Command handling arrangements, e.g. command buffers, queues, command scheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0629Configuration or reconfiguration of storage systems
    • G06F3/0631Configuration or reconfiguration of storage systems by allocating resources to storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0604Improving or facilitating administration, e.g. storage management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0604Improving or facilitating administration, e.g. storage management
    • G06F3/0607Improving or facilitating administration, e.g. storage management by facilitating the process of upgrading existing storage systems, e.g. for improving compatibility between host and storage device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0653Monitoring storage devices or systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0683Plurality of storage devices
    • G06F3/0685Hybrid storage combining heterogeneous device types, e.g. hierarchical storage, hybrid arrays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0683Plurality of storage devices
    • G06F3/0688Non-volatile semiconductor memory arrays

Definitions

  • Embodiments of the disclosure relate generally to memory systems, and more specifically, relate to managing a memory system including memory devices with different characteristics.
  • a memory system can be a storage system, such as a solid-state drive (SSD), and can include one or more memory devices that store data.
  • a memory system can include memory devices such as non-volatile memory devices and volatile memory devices.
  • a host system can utilize a memory system to store data at the memory devices of the memory system and to retrieve data from the memory devices of the memory system.
  • FIG. 1 illustrates an example computing environment that includes a memory system in accordance with some embodiments of the present disclosure.
  • FIG. 2 is a flow diagram of an example method to store data at a memory device based on an associated usage threshold in accordance with some embodiments of the present disclosure.
  • FIG. 3 is a flow diagram of an example method to store data at a memory device of a memory system based on an associated usage threshold in accordance with some embodiments of the present disclosure.
  • FIG. 4A illustrates an example of determining whether to store data at a memory device based on the usage of the memory device in accordance with some embodiments of the present disclosure.
  • FIG. 4B illustrates an example of determining whether to store other data at a memory device based on the usage of the memory device in accordance with some embodiments of the present disclosure.
  • FIG. 5 is a flow diagram of an example method to store data at a memory device of a memory system based on characteristics associated with the data in accordance with some embodiments of the present disclosure.
  • FIG. 6 is a block diagram of an example computer system in which implementations of the present disclosure may operate.
  • aspects of the present disclosure are directed to managing a memory system that includes memory devices with different characteristics.
  • a memory system is a storage system, such as a solid-state drive (SSD).
  • the memory system is a hybrid memory/storage system.
  • a host system can utilize a memory system that includes one or more memory devices. The host system can provide data to be stored at the memory system and can request data to be retrieved from the memory system.
  • the memory system can include multiple memory devices that can store data from the host system.
  • Each memory device can include a different type of media.
  • Examples of media of a memory device include, but are not limited to, a crosspoint array of non-volatile memory and flash based memory such as single-level cell (SLC) memory, triple-level cell (TLC) memory, and quad-level cell (QLC) memory.
  • SLC single-level cell
  • TLC triple-level cell
  • QLC quad-level cell
  • the characteristics of different types of media can be different from one media type to another media type.
  • One example of a characteristic associated with a memory device is data density. Data density corresponds to an amount of data (e.g., bits of data) that can be stored per memory cell of a memory device.
  • a quad-level cell can store four bits of data while a single-level cell (SLC) can store one bit of data. Accordingly, a memory device including QLC memory cells will have a higher data density than a memory device including SLC memory cells.
  • Another example of a characteristic of a memory device is access speed. The access speed corresponds to an amount of time for the memory device to access data stored at the memory device.
  • Other characteristics of a memory device can be associated with the endurance of the memory device to store data.
  • the memory cell can be damaged.
  • a characteristic associated with the endurance of the memory device is the number of write operations or a number of program/erase operations performed on a memory cell of the memory device. If a threshold number of write operations performed on the memory cell is exceeded, then data can no longer be reliably stored at the memory cell as the data can include a large number of errors that cannot be corrected.
  • Different media types can also have difference endurances for storing data. For example, a first media type can have a threshold of 1,000,000 write operations, while a second media type can have a threshold of 2,000,000 write operations. Accordingly, the endurance of the first media type to store data is less than the endurance of the second media type to store data.
  • Another characteristic associated with the endurance of a memory device to store data is the total bytes written to a memory cell of the memory device. Similar to the number of write operations, as new data is written to the same memory cell of the memory device the memory cell is damaged and the probability that data stored at the memory cell includes an error increases. If the number of total bytes written to the memory cell of the memory device exceeds a threshold number of total bytes, then the memory cell can no longer reliably store data.
  • a conventional memory system can include memory devices having a single media type. Accordingly, the memory devices in the conventional memory system have a single set of characteristics (e.g., data density, access speed, endurance, etc.) As a result, the conventional memory system can manage the memory device based on the single set of characteristics.
  • the host system can have desired characteristics for the memory device that is to store the data.
  • the desired characteristics for the memory device can be dependent on the characteristics of the data and can vary from one type of data to another type of data. For example, for data files having a large amount of data a desired characteristic of the memory device can be a high data density.
  • multiple conventional memory systems having different media types and associated characteristics can be used with a host system.
  • a host system can be coupled to a first conventional memory system having a first media type with a high data density, a second conventional memory system having a second media type with a high access speed, and a third conventional memory system having a third media type with a high endurance.
  • using multiple memory systems to achieve the different desired characteristics for the storage of data is costly and inefficient as the host system would utilize additional connections to each of the different memory systems.
  • aspects of the present disclosure address the above and other deficiencies by having a memory system that includes multiple memory devices having different media types with different sets of characteristics.
  • Such a memory system can reduce costs by providing memory devices with different sets of characteristics in a single memory system as opposed to using multiple memory systems.
  • the use of a single memory system having multiple memory devices with different media types can result in a reduced power consumption versus the use of multiple memory systems as a single memory system can utilize less power as opposed to multiple different memory systems.
  • memory devices having different media types can have different endurances and different respective threshold for storing data at the memory devices.
  • the data can be stored at the memory devices based on the determined usage thresholds. For example, if a first memory device of the memory system is at or near a first usage threshold that indicates that the first memory device is at or near a point where the first memory device can no longer reliably store data, then data can be stored at another memory device of the memory system.
  • the wear e.g., number of operations performed on a memory device and/or an amount of data written to the memory device
  • the wear can be more evenly distributed, preventing the premature failure of a particular memory device of a memory system relative to the other memory devices of the memory system.
  • FIG. 1 illustrates an example computing environment 100 that includes a memory system 110 in accordance with some implementations of the present disclosure.
  • the memory system 110 can include media, such as memory devices 112 A to 112 N.
  • the memory devices 112 A to 112 N can be volatile memory devices, non-volatile memory devices, or a combination of such.
  • the memory system is a storage system.
  • An example of a storage system is a SSD.
  • the computing environment 100 can include a host system 120 that uses the memory system 110 .
  • the host system 120 can write data to the memory system 110 and read data from the memory system 110 .
  • the memory system 110 is a hybrid memory/storage system.
  • the host system 120 can be a computing device such as a desktop computer, laptop computer, network server, mobile device, or such computing device that includes a memory and a processing device.
  • the host system 120 can include or be coupled to the memory system 110 so that the host system 120 can read data from or write data to the memory system 110 .
  • the host system 120 can be coupled to the memory system 110 via a physical host interface.
  • “coupled to” generally refers to a connection between components, which can be an indirect communicative connection or direct communicative connection (e.g., without intervening components), whether wired or wireless, including connections such as electrical, optical, magnetic, etc.
  • Examples of a physical host interface include, but are not limited to, a serial advanced technology attachment (SATA) interface, a peripheral component interconnect express (PCIe) interface, universal serial bus (USB) interface, Fibre Channel, Serial Attached SCSI (SAS), etc.
  • the physical host interface can be used to transmit data between the host system 120 and the memory system 110 .
  • the host system 120 can further utilize an NVM Express (NVMe) interface to access the memory devices 112 A to 112 N when the memory system 110 is coupled with the host system 120 by the PCIe interface.
  • NVMe NVM Express
  • the physical host interface can provide an interface for passing control, address, data, and other signals between the memory system 110 and the host system 120 .
  • the memory devices 112 A to 112 N can include any combination of the different types of non-volatile memory devices and/or volatile memory devices.
  • An example of non-volatile memory devices includes a negative-and (NAND) type flash memory.
  • Each of the memory devices 112 A to 112 N can include one or more arrays of memory cells such as single level cells (SLCs) or multi-level cells (MLCs) (e.g., triple level cells (TLCs) or quad-level cells (QLCs)).
  • a particular memory device can include both an SLC portion and a MLC portion of memory cells.
  • Each of the memory cells can store bits of data (e.g., data blocks) used by the host system 120 .
  • the memory devices 112 A to 112 N can be based on any other type of memory such as a volatile memory.
  • the memory devices 112 A to 112 N can be, but are not limited to, random access memory (RAM), read-only memory (ROM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), phase change memory (PCM), magneto random access memory (MRAM), negative-or (NOR) flash memory, electrically erasable programmable read-only memory (EEPROM), and a cross-point array of non-volatile memory cells.
  • a cross-point array of non-volatile memory can perform bit storage based on a change of bulk resistance, in conjunction with a stackable cross-gridded data access array. Additionally, in contrast to many flash-based memories, cross point non-volatile memory can perform a write in-place operation, where a non-volatile memory cell can be programmed without the non-volatile memory cell being previously erased. Furthermore, the memory cells of the memory devices 112 A to 112 N can be grouped as memory pages or data blocks that can refer to a unit of the memory device used to store data.
  • the controller 115 can communicate with the memory devices 112 A to 112 N to perform operations such as reading data, writing data, or erasing data at the memory devices 112 A to 112 N and other such operations.
  • the controller 115 can include hardware such as one or more integrated circuits and/or discrete components, a buffer memory, or a combination thereof.
  • the controller 115 can be a microcontroller, special purpose logic circuitry (e.g., a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), etc.), or other suitable processor.
  • the controller 115 can include a processor (processing device) 117 configured to execute instructions stored in local memory 119 .
  • the local memory 119 of the controller 115 includes an embedded memory configured to store instructions for performing various processes, operations, logic flows, and routines that control operation of the memory system 110 , including handling communications between the memory system 110 and the host system 120 .
  • the local memory 119 can include memory registers storing memory pointers, fetched data, etc.
  • the local memory 119 can also include read-only memory (ROM) for storing micro-code. While the example memory system 110 in FIG. 1 has been illustrated as including the controller 115 , in another embodiment of the present disclosure, a memory system 110 may not include a controller 115 , and may instead rely upon external control (e.g., provided by an external host, or by a processor or controller separate from the memory system).
  • the controller 115 can receive commands or operations from the host system 120 and can convert the commands or operations into instructions or appropriate commands to achieve the desired access to the memory devices 112 A to 112 N.
  • the controller 115 can be responsible for other operations such as wear leveling operations, garbage collection operations, error detection and error-correcting code (ECC) operations, encryption operations, caching operations, and address translations between a logical block address and a physical block address that are associated with the memory devices 112 A to 112 N.
  • the controller 115 can further include host interface circuitry to communicate with the host system 120 via the physical host interface.
  • the host interface circuitry can convert the commands received from the host system into command instructions to access the memory devices 112 A to 112 N as well as convert responses associated with the memory devices 112 A to 112 N into information for the host system 120 .
  • the memory system 110 includes a memory characteristic component 113 that can be used to store data at a particular memory device based on a corresponding usage threshold.
  • the controller 115 includes at least a portion of the memory characteristic component 113 .
  • the memory characteristic component 113 can receive sets of characteristics associated with media devices 112 A-N of the memory system 110 .
  • the memory characteristic component 113 can determine usage thresholds for each of the memory devices 112 A-N based on the sets of characteristics.
  • the memory characteristic component 113 can store data at memory devices 112 A-N based on the determined usage thresholds. Further details with regards to the operations of the memory characteristic component 113 are described below.
  • the memory system 110 can also include additional circuitry or components that are not illustrated.
  • the memory system 110 can include a cache or buffer (e.g., DRAM) and address circuitry (e.g., a row decoder and a column decoder) that can receive an address from the controller 115 and decode the address to access the memory devices 112 A to 112 N.
  • a cache or buffer e.g., DRAM
  • address circuitry e.g., a row decoder and a column decoder
  • FIG. 2 is a flow diagram of an example method 200 to store data at a memory device based on an associated usage threshold, in accordance with some embodiments of the present disclosure.
  • the method 200 can be performed by processing logic that can include hardware (e.g., processing device, circuitry, dedicated logic, programmable logic, microcode, hardware of a device, integrated circuit, etc.), software (e.g., instructions run or executed on a processing device), or a combination thereof.
  • the method 200 is performed by the memory characteristic component 113 of FIG. 1 .
  • a first set of characteristics that correspond to a first memory device of a memory system having multiple memory devices is received. Examples of characteristics that can be included in the set of characteristics can include, but are not limited to, data density, access speed, and an indication of the endurance of the memory device to store data.
  • a second set of characteristics that correspond to a second memory device of the memory system is received.
  • the first and second sets of characteristics are received in response to a request for sets of characteristics for the memory devices of the memory system.
  • a host system can transmit the request for sets of characteristics for each memory device of the memory system.
  • the memory system can provide the sets of characteristics for each of the devices of the memory system to the host system.
  • the first memory device can be different than the second memory device and the endurance of the first memory device to store data can be different than the endurance for the second memory device to store data.
  • the first memory device can be a flash based memory and the second memory device can be a non-flash based memory.
  • the first memory device can include a first media type, such as a flash based memory
  • the second memory device can include a second media type, such as a crosspoint array memory.
  • the memory device including flash based memory can have a first endurance to store data that is different than a second endurance to store data of the second memory device including the crosspoint array memory.
  • a first usage threshold is determined for the first memory device based on the first set of characteristics received at block 220 and a second usage threshold is determined for the second memory device based on the second set of characteristics received at block 220 .
  • the first usage threshold can correspond to an endurance of the first memory device to store data and the second usage threshold corresponds to an endurance for the second memory device to store data.
  • the first usage threshold and the second usage threshold can correspond to the amount of data that can be written to a memory cell of a corresponding memory device before the memory cell can be considered unreliable to store data.
  • the first usage threshold can correspond to 1,000,000 total bytes that can be written to a memory cell of the first memory device and the second usage threshold can correspond to 1,500,000 total bytes that can be written to a memory cell of the second memory device.
  • the first usage threshold and the second usage threshold can correspond to a number of write operations that can be performed on a memory cell of a corresponding memory device before the memory cell can be considered unreliable to store data.
  • the first usage threshold can correspond to 500,000 write operations that can be performed on a memory cell of the first memory device and the second usage threshold can correspond to 1,000,000 write operations that can be performed on a memory cell of the second memory device.
  • multiple usage thresholds can be assigned to a memory device of the memory system.
  • the multiple usage thresholds can be based on the endurance of the memory device to store data. For example, a first memory device can have an associated endurance of 1,000,000 total bytes written to a memory cell of the first memory device, at which point the first memory device can no longer store data.
  • the multiple usage thresholds can be a portion, such as a percentage, of the endurance of the first memory device to store data or the endurance of the first memory device to store data.
  • the first memory device can have one usage threshold corresponding to 900,000 total bytes written to a memory cell of the first memory device and another usage threshold corresponding to 1,000,000 total bytes written to the memory cell of the first memory device.
  • the first usage threshold and second usage threshold can be determined based on a received input from a host system. In other embodiments, the first usage threshold and the second usage threshold may be based on a portion, such as a percentage, of the endurance of the first memory device and the second memory device to reliably store data. For example, if a memory cell of a memory device can have 1,000,000 total bytes written to the memory cell before the memory cell can no longer reliably store data, then the usage threshold for the memory device can be 900,000 total bytes written (e.g., 90%) to a memory cell of the memory device.
  • data is stored at the first memory device of the memory system or the second memory device of the memory system based on the first usage threshold and the second usage threshold.
  • the data can be received from a host system for storage by the memory system.
  • data can be stored on a memory device having a higher usage threshold. For example, if the first memory device has a usage threshold of 500,000 write operations and the second memory device has a usage threshold of 1,000,000 write operations, then the data can be stored at the second memory device having the higher usage threshold. Further details with regards storing data at a memory device of the memory system based on associated usage thresholds are described below.
  • FIG. 3 is a flow diagram of an example method 300 to store data at a memory device of a memory system based on an associated usage threshold, in accordance with some embodiments of the present disclosure.
  • the method 300 can be performed by processing logic that can include hardware (e.g., processing device, circuitry, dedicated logic, programmable logic, microcode, hardware of a device, integrated circuit, etc.), software (e.g., instructions run or executed on a processing device), or a combination thereof.
  • the method 300 is performed by the memory characteristic component 113 of FIG. 1 .
  • a first memory device and a second memory device are assigned corresponding usage thresholds based on associated characteristics, as previously discussed.
  • the corresponding usage thresholds for the first memory device and the second memory device are provided.
  • the corresponding usage thresholds for the first memory device and the second memory device can be provided to a controller of the memory system.
  • providing the corresponding usage thresholds for the first memory device and the second memory device can cause the monitoring of the number of operations being performed on the memory devices of the memory system. For example, upon receipt of the corresponding usage thresholds, the total number of bytes written to memory cells of the first memory device and second memory device and/or the total number of write operations performed on the memory cells of the first memory device and the second memory device are monitored.
  • a usage threshold can be exceeded when a value is greater than or equal to the usage threshold. For example, if the first usage threshold for the first memory device is 1,000,000 total bytes written to a memory cell of the first memory device and a memory cell of the first memory device has had 1,000,000 total bytes written to the memory cell, then the first usage threshold has been exceeded. If a usage threshold for the first memory device and/or the second memory device has not been exceeded, then at block 340 , subsequent data is stored at the first memory device or the second memory device. The subsequent data can be received from a host system for storage by the memory system.
  • the subsequent data can be stored at the first memory device or second memory device based on characteristics associated with the subsequent data. Further detail with regards to storing data based on characteristics associated with the data will be discussed below.
  • the subsequent data is not stored at the memory device that corresponds to the exceeded usage threshold. For example, if it is determined that the usage threshold for the first memory device has not been exceeded and the usage threshold for the second memory device has been exceeded, then subsequent data is not stored at the second memory device (e.g., the memory device corresponding to the exceeded usage threshold).
  • the usage thresholds can correspond to the endurance of memory devices to reliably store data. Accordingly, the usage threshold of a memory device being exceeded can indicate that the memory device can no longer store data reliably and, therefore, subsequent data should no longer be stored at the memory device.
  • the memory device can begin to operate in a read-only mode. While operating in a read-only mode, data stored at the memory device can continue to be read (e.g., provided to the host system), but subsequent data received from the host system is not stored at the memory device.
  • a notification is generated for a host system that is associated with the memory device that exceeded the usage threshold at block 330 .
  • the notification can be provided to the host system associated with the memory device.
  • the notification can identify that the usage of a particular memory device has exceeded a corresponding usage threshold.
  • the notification can identify that the usage of the second memory device has exceeded the usage threshold of the second memory device.
  • the usage of a memory device can correspond to a number of bytes written to a memory cell of a memory device.
  • the usage of the first memory device can correspond to 1,000,000 bytes of data written to a memory cell of the first memory device.
  • the usage of a memory device can correspond to a number of write operations performed on a memory cell of a memory device.
  • the notification can include a prompt for a remedial action to be performed on the memory device having the exceeded usage threshold.
  • the notification can include a prompt for placing the memory device in a read-only mode.
  • a notification can be sent for each of the multiple usage thresholds.
  • the notifications can include information corresponding to their associated usage thresholds.
  • the notifications can include different prompts for remedial actions to be performed with regards to the memory device.
  • a memory device can have one usage threshold at 900,000 total bytes written to a memory cell of the memory device and another usage threshold at 1,000,000 total bytes written to the memory cell of the memory device, where 1,000,000 total bytes written corresponds to a point where the memory device can no longer reliably store data.
  • a notification can be generated indicating that the memory device is approaching a point where the memory device can no longer reliably store data.
  • the notification can also include a prompt for a remedial action.
  • the notification can prompt a user of the host system to replace the memory device.
  • another notification can be generated indicating that the memory device has reached a point where the memory device can no longer reliably store data.
  • the other notification can include a prompt to place the memory device into a read-only mode.
  • FIG. 4A illustrates an example of determining whether to store data at a memory device based on the usage of the memory devices 400 , in accordance with some embodiments of the present disclosure.
  • Memory system 410 includes memory devices 420 and 430 .
  • memory device 420 includes a first media type having a first endurance to store data and memory device 430 includes a second media type having a second endurance to store data.
  • memory device 420 has a usage threshold of 100 and memory device 430 has a usage threshold of 50.
  • the usage thresholds and actual usages can correspond to a number of bytes written to a memory cell of the memory device.
  • the usage thresholds and actual usages can correspond to a number of write operations performed on a memory cell of the memory device.
  • the actual usage of a memory cell of memory device 420 is 82 write operations performed on a memory cell of memory device 420 . Because the actual usage of the memory cell (e.g., 82 write operations) of memory device 420 is less than the usage threshold (e.g., 100 write operations) for memory device 420 , data can be stored at memory device 420 .
  • the actual usage of a memory cell of memory device 430 is 37 write operations performed on a memory cell of memory device 430 . Because the actual usage of the memory cell (e.g., 37 write operations) is less than the usage threshold (e.g., 50 write operations) for memory device 430 , data can be stored at memory device 430 .
  • FIG. 4B illustrates an example of determining whether to store other data at a memory device based on the usage of the memory devices 450 , in accordance with embodiments of the present disclosure.
  • the actual usage of a memory cell of memory device 420 is 94 write operations performed on a memory cell of memory device 420 . Because the actual usage of the memory cell of memory device 420 is less than the usage threshold (e.g., 100 write operations) for memory device 420 , data can be stored at the memory cell of the memory device 420 .
  • the actual usage of a memory cell of memory device 430 is 50 write operations performed on a memory cell of memory device 430 . Because the actual usage of the memory cell (e.g., 50 write operations) exceeds the usage threshold (e.g., 50) for memory device 430 , data is not stored at the memory cell of memory device 430 .
  • FIG. 5 is a flow diagram of an example method 500 to store data at a memory device of a memory system based on characteristics associated with the data, in accordance with some embodiments of the present disclosure.
  • the method 500 can be performed by processing logic that can include hardware (e.g., processing device, circuitry, dedicated logic, programmable logic, microcode, hardware of a device, integrated circuit, etc.), software (e.g., instructions run or executed on a processing device), or a combination thereof.
  • the method 500 is performed by the memory characteristic component 113 of FIG. 1 .
  • data is received for storage by a memory system.
  • the data can be received from a host system for storage at a memory device of the memory system.
  • one or more characteristics associated with the data received at block 510 are determined. Examples of characteristics associated with the data are amount of data (e.g., number of bits of data to be stored), access frequency (e.g., how often the data is accessed from the memory system), write operation frequency (e.g., how often data is written and/or erased), and the like.
  • one or more characteristics associated with a memory device and a second memory device is identified.
  • the characteristics can be identified from the first set of characteristics associated with the first memory device and the second set of characteristics associated with the second memory device.
  • the one or more characteristics can be associated with the endurance of the respective memory devices.
  • data is stored at the first memory device or the second memory device based on the characteristics associated with the data and the characteristics associated with the first memory device and the second memory device. For example, if the data received at block 510 is determined to correspond to a large amount of data, then the data can be stored at the memory device (e.g., the first memory device of the second memory device) having a higher data density. In another example, if the data is determined to have a high access frequency, then the data can be stored at the memory device having a higher access speed. In a further example, if the data is determined to have a high write operation frequency, then the data can be stored at the memory device having a higher endurance to store data.
  • the memory device e.g., the first memory device of the second memory device
  • data can be stored at the first memory device or the second memory device based on the determined characteristics of the received data as well as corresponding usage thresholds. For example, data can be stored at the first memory cell or second memory cell based on determined characteristics associated with the data, as described above. However, upon a usage threshold of a memory device being exceeded, subsequent data is no longer stored on the memory device even if the memory device has the desired characteristics for the subsequent data.
  • FIG. 6 illustrates an example machine of a computer system 600 within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, can be executed.
  • the computer system 600 can correspond to a host system (e.g., the host system 120 of FIG. 1 ) that includes or utilizes a memory system (e.g., the memory system 110 of FIG. 1 ) or can be used to perform the operations of a controller (e.g., to execute an operating system to perform operations corresponding to the memory characteristic component 113 of FIG. 1 ).
  • the machine can be connected (e.g., networked) to other machines in a LAN, an intranet, an extranet, and/or the Internet.
  • the machine can operate in the capacity of a server or a client machine in client-server network environment, as a peer machine in a peer-to-peer (or distributed) network environment, or as a server or a client machine in a cloud computing infrastructure or environment.
  • the machine can be a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a server, a network router, a switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.
  • PC personal computer
  • PDA Personal Digital Assistant
  • STB set-top box
  • STB set-top box
  • a cellular telephone a web appliance
  • server a server
  • network router a network router
  • switch or bridge or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine.
  • machine shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
  • the example computer system 600 includes a processing device 602 , a main memory 604 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.), a static memory 606 (e.g., flash memory, static random access memory (SRAM), etc.), and a data storage system 618 , which communicate with each other via a bus 630 .
  • main memory 604 e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • RDRAM Rambus DRAM
  • static memory 606 e.g., flash memory, static random access memory (SRAM), etc.
  • SRAM static random access memory
  • Processing device 602 represents one or more general-purpose processing devices such as a microprocessor, a central processing unit, or the like. More particularly, the processing device can be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or a processor implementing other instruction sets, or processors implementing a combination of instruction sets. Processing device 602 can also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. The processing device 602 is configured to execute instructions 626 for performing the operations and steps discussed herein.
  • the computer system 600 can further include a network interface device 608 to communicate over the network 620 .
  • the data storage system 618 can include a machine-readable storage medium 624 (also known as a computer-readable medium) on which is stored one or more sets of instructions or software 626 embodying any one or more of the methodologies or functions described herein.
  • the instructions 626 can also reside, completely or at least partially, within the main memory 604 and/or within the processing device 602 during execution thereof by the computer system 600 , the main memory 604 and the processing device 602 also constituting machine-readable storage media.
  • the machine-readable storage medium 624 , data storage system 618 , and/or main memory 604 can correspond to the memory system 110 of FIG. 1 .
  • the instructions 626 include instructions to implement functionality corresponding to a memory characteristic component (e.g., the memory characteristic component 113 of FIG. 1 ).
  • a memory characteristic component e.g., the memory characteristic component 113 of FIG. 1
  • the machine-readable storage medium 624 is shown in an example implementation to be a single medium, the term “machine-readable storage medium” should be taken to include a single medium or multiple media that store the one or more sets of instructions.
  • the term “machine-readable storage medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure.
  • the term “machine-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical media, and magnetic media.
  • the present disclosure also relates to an apparatus for performing the operations herein.
  • This apparatus can be specially constructed for the intended purposes, or it can include a general purpose computer selectively activated or reconfigured by a computer program stored in the computer.
  • a computer program can be stored in a computer readable storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, each coupled to a computer system bus.
  • the present disclosure can be provided as a computer program product, or software, that can include a machine-readable medium having stored thereon instructions, which can be used to program a computer system (or other electronic devices) to perform a process according to the present disclosure.
  • a machine-readable medium includes any mechanism for storing information in a form readable by a machine (e.g., a computer).
  • a machine-readable (e.g., computer-readable) medium includes a machine (e.g., a computer) readable storage medium such as a read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage media, optical storage media, flash memory devices, etc.

Abstract

A first set of characteristics corresponding to a first memory device and a second set of characteristics corresponding to a second memory device are received. A first usage threshold for the first memory device based on the first set of characteristics and a second usage threshold for the second memory device based on the second set of characteristics are determined. In response to determining that a respective usage of the first memory device exceeds the first usage threshold, subsequent data is refrained to be stored to the first memory device, and the first memory device is operated in a read-only mode by performing read operations on data stored at the first memory device.

Description

    RELATED APPLICATIONS
  • This application is a continuation application of co-pending U.S. patent application Ser. No. 15/962,719, filed Apr. 25, 2018, which is herein incorporated by reference.
  • TECHNICAL FIELD
  • Embodiments of the disclosure relate generally to memory systems, and more specifically, relate to managing a memory system including memory devices with different characteristics.
  • BACKGROUND
  • A memory system can be a storage system, such as a solid-state drive (SSD), and can include one or more memory devices that store data. A memory system can include memory devices such as non-volatile memory devices and volatile memory devices. In general, a host system can utilize a memory system to store data at the memory devices of the memory system and to retrieve data from the memory devices of the memory system.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present disclosure will be understood more fully from the detailed description given below and from the accompanying drawings of various implementations of the disclosure.
  • FIG. 1 illustrates an example computing environment that includes a memory system in accordance with some embodiments of the present disclosure.
  • FIG. 2 is a flow diagram of an example method to store data at a memory device based on an associated usage threshold in accordance with some embodiments of the present disclosure.
  • FIG. 3 is a flow diagram of an example method to store data at a memory device of a memory system based on an associated usage threshold in accordance with some embodiments of the present disclosure.
  • FIG. 4A illustrates an example of determining whether to store data at a memory device based on the usage of the memory device in accordance with some embodiments of the present disclosure.
  • FIG. 4B illustrates an example of determining whether to store other data at a memory device based on the usage of the memory device in accordance with some embodiments of the present disclosure.
  • FIG. 5 is a flow diagram of an example method to store data at a memory device of a memory system based on characteristics associated with the data in accordance with some embodiments of the present disclosure.
  • FIG. 6 is a block diagram of an example computer system in which implementations of the present disclosure may operate.
  • DETAILED DESCRIPTION
  • Aspects of the present disclosure are directed to managing a memory system that includes memory devices with different characteristics. An example of a memory system is a storage system, such as a solid-state drive (SSD). In some embodiments, the memory system is a hybrid memory/storage system. In general, a host system can utilize a memory system that includes one or more memory devices. The host system can provide data to be stored at the memory system and can request data to be retrieved from the memory system.
  • The memory system can include multiple memory devices that can store data from the host system. Each memory device can include a different type of media. Examples of media of a memory device include, but are not limited to, a crosspoint array of non-volatile memory and flash based memory such as single-level cell (SLC) memory, triple-level cell (TLC) memory, and quad-level cell (QLC) memory. The characteristics of different types of media can be different from one media type to another media type. One example of a characteristic associated with a memory device is data density. Data density corresponds to an amount of data (e.g., bits of data) that can be stored per memory cell of a memory device. Using the example of a flash based memory, a quad-level cell (QLC) can store four bits of data while a single-level cell (SLC) can store one bit of data. Accordingly, a memory device including QLC memory cells will have a higher data density than a memory device including SLC memory cells. Another example of a characteristic of a memory device is access speed. The access speed corresponds to an amount of time for the memory device to access data stored at the memory device.
  • Other characteristics of a memory device can be associated with the endurance of the memory device to store data. When data is written to and/or erased from a memory cell of a memory device, the memory cell can be damaged. As the number of write operations and/or erase operations performed on a memory cell increases, the probability that the data stored at the memory cell including an error increases as the memory cell is increasingly damaged. A characteristic associated with the endurance of the memory device is the number of write operations or a number of program/erase operations performed on a memory cell of the memory device. If a threshold number of write operations performed on the memory cell is exceeded, then data can no longer be reliably stored at the memory cell as the data can include a large number of errors that cannot be corrected. Different media types can also have difference endurances for storing data. For example, a first media type can have a threshold of 1,000,000 write operations, while a second media type can have a threshold of 2,000,000 write operations. Accordingly, the endurance of the first media type to store data is less than the endurance of the second media type to store data.
  • Another characteristic associated with the endurance of a memory device to store data is the total bytes written to a memory cell of the memory device. Similar to the number of write operations, as new data is written to the same memory cell of the memory device the memory cell is damaged and the probability that data stored at the memory cell includes an error increases. If the number of total bytes written to the memory cell of the memory device exceeds a threshold number of total bytes, then the memory cell can no longer reliably store data.
  • A conventional memory system can include memory devices having a single media type. Accordingly, the memory devices in the conventional memory system have a single set of characteristics (e.g., data density, access speed, endurance, etc.) As a result, the conventional memory system can manage the memory device based on the single set of characteristics. When a host system provides data to a memory system for storage, the host system can have desired characteristics for the memory device that is to store the data. The desired characteristics for the memory device can be dependent on the characteristics of the data and can vary from one type of data to another type of data. For example, for data files having a large amount of data a desired characteristic of the memory device can be a high data density.
  • Generally, in order to obtain the different desired characteristics of memory devices, multiple conventional memory systems having different media types and associated characteristics can be used with a host system. For example, a host system can be coupled to a first conventional memory system having a first media type with a high data density, a second conventional memory system having a second media type with a high access speed, and a third conventional memory system having a third media type with a high endurance. However, using multiple memory systems to achieve the different desired characteristics for the storage of data is costly and inefficient as the host system would utilize additional connections to each of the different memory systems.
  • Aspects of the present disclosure address the above and other deficiencies by having a memory system that includes multiple memory devices having different media types with different sets of characteristics. Such a memory system can reduce costs by providing memory devices with different sets of characteristics in a single memory system as opposed to using multiple memory systems. Furthermore, the use of a single memory system having multiple memory devices with different media types can result in a reduced power consumption versus the use of multiple memory systems as a single memory system can utilize less power as opposed to multiple different memory systems.
  • However, as previously discussed, memory devices having different media types can have different endurances and different respective threshold for storing data at the memory devices. The data can be stored at the memory devices based on the determined usage thresholds. For example, if a first memory device of the memory system is at or near a first usage threshold that indicates that the first memory device is at or near a point where the first memory device can no longer reliably store data, then data can be stored at another memory device of the memory system. By providing data to the different memory devices of the memory system based on different determined usage thresholds, the wear (e.g., number of operations performed on a memory device and/or an amount of data written to the memory device) on the multiple memory devices of the memory system can be more evenly distributed, preventing the premature failure of a particular memory device of a memory system relative to the other memory devices of the memory system.
  • FIG. 1 illustrates an example computing environment 100 that includes a memory system 110 in accordance with some implementations of the present disclosure. The memory system 110 can include media, such as memory devices 112A to 112N. The memory devices 112A to 112N can be volatile memory devices, non-volatile memory devices, or a combination of such. In some embodiments, the memory system is a storage system. An example of a storage system is a SSD. In general, the computing environment 100 can include a host system 120 that uses the memory system 110. In some implementations, the host system 120 can write data to the memory system 110 and read data from the memory system 110. In some embodiments, the memory system 110 is a hybrid memory/storage system.
  • The host system 120 can be a computing device such as a desktop computer, laptop computer, network server, mobile device, or such computing device that includes a memory and a processing device. The host system 120 can include or be coupled to the memory system 110 so that the host system 120 can read data from or write data to the memory system 110. The host system 120 can be coupled to the memory system 110 via a physical host interface. As used herein, “coupled to” generally refers to a connection between components, which can be an indirect communicative connection or direct communicative connection (e.g., without intervening components), whether wired or wireless, including connections such as electrical, optical, magnetic, etc. Examples of a physical host interface include, but are not limited to, a serial advanced technology attachment (SATA) interface, a peripheral component interconnect express (PCIe) interface, universal serial bus (USB) interface, Fibre Channel, Serial Attached SCSI (SAS), etc. The physical host interface can be used to transmit data between the host system 120 and the memory system 110. The host system 120 can further utilize an NVM Express (NVMe) interface to access the memory devices 112A to 112N when the memory system 110 is coupled with the host system 120 by the PCIe interface. The physical host interface can provide an interface for passing control, address, data, and other signals between the memory system 110 and the host system 120.
  • The memory devices 112A to 112N can include any combination of the different types of non-volatile memory devices and/or volatile memory devices. An example of non-volatile memory devices includes a negative-and (NAND) type flash memory. Each of the memory devices 112A to 112N can include one or more arrays of memory cells such as single level cells (SLCs) or multi-level cells (MLCs) (e.g., triple level cells (TLCs) or quad-level cells (QLCs)). In some implementations, a particular memory device can include both an SLC portion and a MLC portion of memory cells. Each of the memory cells can store bits of data (e.g., data blocks) used by the host system 120. Although non-volatile memory devices such as NAND type flash memory are described, the memory devices 112A to 112N can be based on any other type of memory such as a volatile memory. In some implementations, the memory devices 112A to 112N can be, but are not limited to, random access memory (RAM), read-only memory (ROM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), phase change memory (PCM), magneto random access memory (MRAM), negative-or (NOR) flash memory, electrically erasable programmable read-only memory (EEPROM), and a cross-point array of non-volatile memory cells. A cross-point array of non-volatile memory can perform bit storage based on a change of bulk resistance, in conjunction with a stackable cross-gridded data access array. Additionally, in contrast to many flash-based memories, cross point non-volatile memory can perform a write in-place operation, where a non-volatile memory cell can be programmed without the non-volatile memory cell being previously erased. Furthermore, the memory cells of the memory devices 112A to 112N can be grouped as memory pages or data blocks that can refer to a unit of the memory device used to store data.
  • The controller 115 can communicate with the memory devices 112A to 112N to perform operations such as reading data, writing data, or erasing data at the memory devices 112A to 112N and other such operations. The controller 115 can include hardware such as one or more integrated circuits and/or discrete components, a buffer memory, or a combination thereof. The controller 115 can be a microcontroller, special purpose logic circuitry (e.g., a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), etc.), or other suitable processor. The controller 115 can include a processor (processing device) 117 configured to execute instructions stored in local memory 119. In the illustrated example, the local memory 119 of the controller 115 includes an embedded memory configured to store instructions for performing various processes, operations, logic flows, and routines that control operation of the memory system 110, including handling communications between the memory system 110 and the host system 120. In some embodiments, the local memory 119 can include memory registers storing memory pointers, fetched data, etc. The local memory 119 can also include read-only memory (ROM) for storing micro-code. While the example memory system 110 in FIG. 1 has been illustrated as including the controller 115, in another embodiment of the present disclosure, a memory system 110 may not include a controller 115, and may instead rely upon external control (e.g., provided by an external host, or by a processor or controller separate from the memory system).
  • In general, the controller 115 can receive commands or operations from the host system 120 and can convert the commands or operations into instructions or appropriate commands to achieve the desired access to the memory devices 112A to 112N. The controller 115 can be responsible for other operations such as wear leveling operations, garbage collection operations, error detection and error-correcting code (ECC) operations, encryption operations, caching operations, and address translations between a logical block address and a physical block address that are associated with the memory devices 112A to 112N. The controller 115 can further include host interface circuitry to communicate with the host system 120 via the physical host interface. The host interface circuitry can convert the commands received from the host system into command instructions to access the memory devices 112A to 112N as well as convert responses associated with the memory devices 112A to 112N into information for the host system 120.
  • The memory system 110 includes a memory characteristic component 113 that can be used to store data at a particular memory device based on a corresponding usage threshold. In some embodiments, the controller 115 includes at least a portion of the memory characteristic component 113. The memory characteristic component 113 can receive sets of characteristics associated with media devices 112A-N of the memory system 110. The memory characteristic component 113 can determine usage thresholds for each of the memory devices 112A-N based on the sets of characteristics. The memory characteristic component 113 can store data at memory devices 112A-N based on the determined usage thresholds. Further details with regards to the operations of the memory characteristic component 113 are described below.
  • The memory system 110 can also include additional circuitry or components that are not illustrated. In some implementations, the memory system 110 can include a cache or buffer (e.g., DRAM) and address circuitry (e.g., a row decoder and a column decoder) that can receive an address from the controller 115 and decode the address to access the memory devices 112A to 112N.
  • FIG. 2 is a flow diagram of an example method 200 to store data at a memory device based on an associated usage threshold, in accordance with some embodiments of the present disclosure. The method 200 can be performed by processing logic that can include hardware (e.g., processing device, circuitry, dedicated logic, programmable logic, microcode, hardware of a device, integrated circuit, etc.), software (e.g., instructions run or executed on a processing device), or a combination thereof. In some embodiments, the method 200 is performed by the memory characteristic component 113 of FIG. 1.
  • At block 210, a first set of characteristics that correspond to a first memory device of a memory system having multiple memory devices is received. Examples of characteristics that can be included in the set of characteristics can include, but are not limited to, data density, access speed, and an indication of the endurance of the memory device to store data. At block 220, a second set of characteristics that correspond to a second memory device of the memory system is received. In one embodiment, the first and second sets of characteristics are received in response to a request for sets of characteristics for the memory devices of the memory system. In an example, a host system can transmit the request for sets of characteristics for each memory device of the memory system. In response, the memory system can provide the sets of characteristics for each of the devices of the memory system to the host system. In some embodiments, the first memory device can be different than the second memory device and the endurance of the first memory device to store data can be different than the endurance for the second memory device to store data. In one embodiment, the first memory device can be a flash based memory and the second memory device can be a non-flash based memory. For example, the first memory device can include a first media type, such as a flash based memory, while the second memory device can include a second media type, such as a crosspoint array memory. In the present example, the memory device including flash based memory can have a first endurance to store data that is different than a second endurance to store data of the second memory device including the crosspoint array memory. Although flash based memory and crosspoint array memory are described, any type of media can be used in the memory devices.
  • At block 230, a first usage threshold is determined for the first memory device based on the first set of characteristics received at block 220 and a second usage threshold is determined for the second memory device based on the second set of characteristics received at block 220. In embodiments, the first usage threshold can correspond to an endurance of the first memory device to store data and the second usage threshold corresponds to an endurance for the second memory device to store data. In one embodiment, the first usage threshold and the second usage threshold can correspond to the amount of data that can be written to a memory cell of a corresponding memory device before the memory cell can be considered unreliable to store data. For example, the first usage threshold can correspond to 1,000,000 total bytes that can be written to a memory cell of the first memory device and the second usage threshold can correspond to 1,500,000 total bytes that can be written to a memory cell of the second memory device. In some embodiments, the first usage threshold and the second usage threshold can correspond to a number of write operations that can be performed on a memory cell of a corresponding memory device before the memory cell can be considered unreliable to store data. For example, the first usage threshold can correspond to 500,000 write operations that can be performed on a memory cell of the first memory device and the second usage threshold can correspond to 1,000,000 write operations that can be performed on a memory cell of the second memory device.
  • In embodiments, multiple usage thresholds can be assigned to a memory device of the memory system. The multiple usage thresholds can be based on the endurance of the memory device to store data. For example, a first memory device can have an associated endurance of 1,000,000 total bytes written to a memory cell of the first memory device, at which point the first memory device can no longer store data. In one embodiment, the multiple usage thresholds can be a portion, such as a percentage, of the endurance of the first memory device to store data or the endurance of the first memory device to store data. For example, the first memory device can have one usage threshold corresponding to 900,000 total bytes written to a memory cell of the first memory device and another usage threshold corresponding to 1,000,000 total bytes written to the memory cell of the first memory device. In embodiments, the first usage threshold and second usage threshold can be determined based on a received input from a host system. In other embodiments, the first usage threshold and the second usage threshold may be based on a portion, such as a percentage, of the endurance of the first memory device and the second memory device to reliably store data. For example, if a memory cell of a memory device can have 1,000,000 total bytes written to the memory cell before the memory cell can no longer reliably store data, then the usage threshold for the memory device can be 900,000 total bytes written (e.g., 90%) to a memory cell of the memory device.
  • At block 240, data is stored at the first memory device of the memory system or the second memory device of the memory system based on the first usage threshold and the second usage threshold. The data can be received from a host system for storage by the memory system. In one embodiment, data can be stored on a memory device having a higher usage threshold. For example, if the first memory device has a usage threshold of 500,000 write operations and the second memory device has a usage threshold of 1,000,000 write operations, then the data can be stored at the second memory device having the higher usage threshold. Further details with regards storing data at a memory device of the memory system based on associated usage thresholds are described below.
  • FIG. 3 is a flow diagram of an example method 300 to store data at a memory device of a memory system based on an associated usage threshold, in accordance with some embodiments of the present disclosure. The method 300 can be performed by processing logic that can include hardware (e.g., processing device, circuitry, dedicated logic, programmable logic, microcode, hardware of a device, integrated circuit, etc.), software (e.g., instructions run or executed on a processing device), or a combination thereof. In some embodiments, the method 300 is performed by the memory characteristic component 113 of FIG. 1.
  • At block 310, a first memory device and a second memory device are assigned corresponding usage thresholds based on associated characteristics, as previously discussed. At block 320, the corresponding usage thresholds for the first memory device and the second memory device are provided. In one embodiment, the corresponding usage thresholds for the first memory device and the second memory device can be provided to a controller of the memory system. In embodiments, providing the corresponding usage thresholds for the first memory device and the second memory device can cause the monitoring of the number of operations being performed on the memory devices of the memory system. For example, upon receipt of the corresponding usage thresholds, the total number of bytes written to memory cells of the first memory device and second memory device and/or the total number of write operations performed on the memory cells of the first memory device and the second memory device are monitored.
  • At block 330, a determination is made as to whether a corresponding usage threshold of the first memory device or the second memory device has been exceeded. For purposes of the present disclosure, a usage threshold can be exceeded when a value is greater than or equal to the usage threshold. For example, if the first usage threshold for the first memory device is 1,000,000 total bytes written to a memory cell of the first memory device and a memory cell of the first memory device has had 1,000,000 total bytes written to the memory cell, then the first usage threshold has been exceeded. If a usage threshold for the first memory device and/or the second memory device has not been exceeded, then at block 340, subsequent data is stored at the first memory device or the second memory device. The subsequent data can be received from a host system for storage by the memory system. In one embodiment, if the usage thresholds for the memory devices have not been exceeded, the subsequent data can be stored at the first memory device or second memory device based on characteristics associated with the subsequent data. Further detail with regards to storing data based on characteristics associated with the data will be discussed below.
  • At block 350, if a usage threshold of the first memory device and/or the second memory device has been exceeded, the subsequent data is not stored at the memory device that corresponds to the exceeded usage threshold. For example, if it is determined that the usage threshold for the first memory device has not been exceeded and the usage threshold for the second memory device has been exceeded, then subsequent data is not stored at the second memory device (e.g., the memory device corresponding to the exceeded usage threshold). As previously described, in one embodiment, the usage thresholds can correspond to the endurance of memory devices to reliably store data. Accordingly, the usage threshold of a memory device being exceeded can indicate that the memory device can no longer store data reliably and, therefore, subsequent data should no longer be stored at the memory device. In one embodiment, if the usage threshold of the memory device is exceeded, the memory device can begin to operate in a read-only mode. While operating in a read-only mode, data stored at the memory device can continue to be read (e.g., provided to the host system), but subsequent data received from the host system is not stored at the memory device.
  • At block 360, a notification is generated for a host system that is associated with the memory device that exceeded the usage threshold at block 330. Upon generation of the notification, the notification can be provided to the host system associated with the memory device. The notification can identify that the usage of a particular memory device has exceeded a corresponding usage threshold. For example, the notification can identify that the usage of the second memory device has exceeded the usage threshold of the second memory device. In one embodiment, the usage of a memory device can correspond to a number of bytes written to a memory cell of a memory device. For example, the usage of the first memory device can correspond to 1,000,000 bytes of data written to a memory cell of the first memory device. In embodiments, the usage of a memory device can correspond to a number of write operations performed on a memory cell of a memory device. In one embodiment, the notification can include a prompt for a remedial action to be performed on the memory device having the exceeded usage threshold. For example, the notification can include a prompt for placing the memory device in a read-only mode.
  • In embodiments where a memory device has multiple usage thresholds, a notification can be sent for each of the multiple usage thresholds. The notifications can include information corresponding to their associated usage thresholds. In embodiments, the notifications can include different prompts for remedial actions to be performed with regards to the memory device. For example, a memory device can have one usage threshold at 900,000 total bytes written to a memory cell of the memory device and another usage threshold at 1,000,000 total bytes written to the memory cell of the memory device, where 1,000,000 total bytes written corresponds to a point where the memory device can no longer reliably store data. Upon the number of bytes written to the memory cell of the memory device exceeding the usage threshold of 900,000 total bytes written to the memory cell, a notification can be generated indicating that the memory device is approaching a point where the memory device can no longer reliably store data. The notification can also include a prompt for a remedial action. For example, the notification can prompt a user of the host system to replace the memory device. Upon the number of bytes written to the memory cell of the memory device exceeding the usage threshold of 1,000,000 total bytes written to the memory cell, another notification can be generated indicating that the memory device has reached a point where the memory device can no longer reliably store data. In embodiments, the other notification can include a prompt to place the memory device into a read-only mode.
  • FIG. 4A illustrates an example of determining whether to store data at a memory device based on the usage of the memory devices 400, in accordance with some embodiments of the present disclosure. Memory system 410 includes memory devices 420 and 430. In one embodiment, memory device 420 includes a first media type having a first endurance to store data and memory device 430 includes a second media type having a second endurance to store data. For illustrative purposes, memory device 420 has a usage threshold of 100 and memory device 430 has a usage threshold of 50. In one embodiment, the usage thresholds and actual usages can correspond to a number of bytes written to a memory cell of the memory device. In embodiments, the usage thresholds and actual usages can correspond to a number of write operations performed on a memory cell of the memory device.
  • In the present illustration, the actual usage of a memory cell of memory device 420 is 82 write operations performed on a memory cell of memory device 420. Because the actual usage of the memory cell (e.g., 82 write operations) of memory device 420 is less than the usage threshold (e.g., 100 write operations) for memory device 420, data can be stored at memory device 420. The actual usage of a memory cell of memory device 430 is 37 write operations performed on a memory cell of memory device 430. Because the actual usage of the memory cell (e.g., 37 write operations) is less than the usage threshold (e.g., 50 write operations) for memory device 430, data can be stored at memory device 430.
  • FIG. 4B illustrates an example of determining whether to store other data at a memory device based on the usage of the memory devices 450, in accordance with embodiments of the present disclosure. In the present illustration, the actual usage of a memory cell of memory device 420 is 94 write operations performed on a memory cell of memory device 420. Because the actual usage of the memory cell of memory device 420 is less than the usage threshold (e.g., 100 write operations) for memory device 420, data can be stored at the memory cell of the memory device 420. The actual usage of a memory cell of memory device 430, however, is 50 write operations performed on a memory cell of memory device 430. Because the actual usage of the memory cell (e.g., 50 write operations) exceeds the usage threshold (e.g., 50) for memory device 430, data is not stored at the memory cell of memory device 430.
  • FIG. 5 is a flow diagram of an example method 500 to store data at a memory device of a memory system based on characteristics associated with the data, in accordance with some embodiments of the present disclosure. The method 500 can be performed by processing logic that can include hardware (e.g., processing device, circuitry, dedicated logic, programmable logic, microcode, hardware of a device, integrated circuit, etc.), software (e.g., instructions run or executed on a processing device), or a combination thereof. In some embodiments, the method 500 is performed by the memory characteristic component 113 of FIG. 1.
  • At block 510, data is received for storage by a memory system. The data can be received from a host system for storage at a memory device of the memory system. At block 520, one or more characteristics associated with the data received at block 510 are determined. Examples of characteristics associated with the data are amount of data (e.g., number of bits of data to be stored), access frequency (e.g., how often the data is accessed from the memory system), write operation frequency (e.g., how often data is written and/or erased), and the like.
  • At block 530, one or more characteristics associated with a memory device and a second memory device is identified. The characteristics can be identified from the first set of characteristics associated with the first memory device and the second set of characteristics associated with the second memory device. The one or more characteristics can be associated with the endurance of the respective memory devices.
  • At block 540, data is stored at the first memory device or the second memory device based on the characteristics associated with the data and the characteristics associated with the first memory device and the second memory device. For example, if the data received at block 510 is determined to correspond to a large amount of data, then the data can be stored at the memory device (e.g., the first memory device of the second memory device) having a higher data density. In another example, if the data is determined to have a high access frequency, then the data can be stored at the memory device having a higher access speed. In a further example, if the data is determined to have a high write operation frequency, then the data can be stored at the memory device having a higher endurance to store data. In some embodiments, data can be stored at the first memory device or the second memory device based on the determined characteristics of the received data as well as corresponding usage thresholds. For example, data can be stored at the first memory cell or second memory cell based on determined characteristics associated with the data, as described above. However, upon a usage threshold of a memory device being exceeded, subsequent data is no longer stored on the memory device even if the memory device has the desired characteristics for the subsequent data.
  • FIG. 6 illustrates an example machine of a computer system 600 within which a set of instructions, for causing the machine to perform any one or more of the methodologies discussed herein, can be executed. In some implementations, the computer system 600 can correspond to a host system (e.g., the host system 120 of FIG. 1) that includes or utilizes a memory system (e.g., the memory system 110 of FIG. 1) or can be used to perform the operations of a controller (e.g., to execute an operating system to perform operations corresponding to the memory characteristic component 113 of FIG. 1). In alternative implementations, the machine can be connected (e.g., networked) to other machines in a LAN, an intranet, an extranet, and/or the Internet. The machine can operate in the capacity of a server or a client machine in client-server network environment, as a peer machine in a peer-to-peer (or distributed) network environment, or as a server or a client machine in a cloud computing infrastructure or environment.
  • The machine can be a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a server, a network router, a switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that specify actions to be taken by that machine. Further, while a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
  • The example computer system 600 includes a processing device 602, a main memory 604 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM), etc.), a static memory 606 (e.g., flash memory, static random access memory (SRAM), etc.), and a data storage system 618, which communicate with each other via a bus 630.
  • Processing device 602 represents one or more general-purpose processing devices such as a microprocessor, a central processing unit, or the like. More particularly, the processing device can be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or a processor implementing other instruction sets, or processors implementing a combination of instruction sets. Processing device 602 can also be one or more special-purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), network processor, or the like. The processing device 602 is configured to execute instructions 626 for performing the operations and steps discussed herein. The computer system 600 can further include a network interface device 608 to communicate over the network 620.
  • The data storage system 618 can include a machine-readable storage medium 624 (also known as a computer-readable medium) on which is stored one or more sets of instructions or software 626 embodying any one or more of the methodologies or functions described herein. The instructions 626 can also reside, completely or at least partially, within the main memory 604 and/or within the processing device 602 during execution thereof by the computer system 600, the main memory 604 and the processing device 602 also constituting machine-readable storage media. The machine-readable storage medium 624, data storage system 618, and/or main memory 604 can correspond to the memory system 110 of FIG. 1.
  • In one implementation, the instructions 626 include instructions to implement functionality corresponding to a memory characteristic component (e.g., the memory characteristic component 113 of FIG. 1). While the machine-readable storage medium 624 is shown in an example implementation to be a single medium, the term “machine-readable storage medium” should be taken to include a single medium or multiple media that store the one or more sets of instructions. The term “machine-readable storage medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure. The term “machine-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical media, and magnetic media.
  • Some portions of the preceding detailed descriptions have been presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the ways used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
  • It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. The present disclosure can refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage systems.
  • The present disclosure also relates to an apparatus for performing the operations herein. This apparatus can be specially constructed for the intended purposes, or it can include a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program can be stored in a computer readable storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, each coupled to a computer system bus.
  • The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general purpose systems can be used with programs in accordance with the teachings herein, or it can prove convenient to construct a more specialized apparatus to perform the method. The structure for a variety of these systems will appear as set forth in the description below. In addition, the present disclosure is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages can be used to implement the teachings of the disclosure as described herein.
  • The present disclosure can be provided as a computer program product, or software, that can include a machine-readable medium having stored thereon instructions, which can be used to program a computer system (or other electronic devices) to perform a process according to the present disclosure. A machine-readable medium includes any mechanism for storing information in a form readable by a machine (e.g., a computer). In some implementations, a machine-readable (e.g., computer-readable) medium includes a machine (e.g., a computer) readable storage medium such as a read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage media, optical storage media, flash memory devices, etc.
  • In the foregoing specification, implementations of the disclosure have been described with reference to specific example implementations thereof. It will be evident that various modifications can be made thereto without departing from the broader spirit and scope of implementations of the disclosure as set forth in the following claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.

Claims (20)

What is claimed is:
1. A system comprising:
a plurality of memory devices; and
a processing device, operatively coupled with the plurality of memory devices, to perform operations comprising:
receiving a first set of characteristics corresponding to a first memory device of the plurality of memory devices and a second set of characteristics corresponding to a second memory device of the plurality of memory devices;
determining a first usage threshold for the first memory device based on the first set of characteristics and a second usage threshold for the second memory device based on the second set of characteristics;
receiving data for storage from a host system coupled to the system; and
in response to determining that a respective usage of the first memory device exceeds the first usage threshold:
refraining from storing subsequent data to the first memory device; and
operating the first memory device in a read-only mode by performing read operations on data stored at the first memory device.
2. The system of claim 1, wherein the first usage threshold corresponds to an endurance of the first memory device to store the data and wherein the second usage threshold corresponds to an endurance of the second memory device to store the data.
3. The system of claim 1, wherein the operations further comprise:
determining whether a first usage of the first memory device exceeds the first usage threshold or a second usage of the second memory device exceeds the second usage threshold; and
in response to determining that the first usage of the first memory device exceeds the first usage threshold or the second usage of the second memory device exceeds the second usage threshold, providing a notification to a host system associated with the memory device that identifies the first usage of the first memory device exceeding the first usage threshold or the second usage of the second memory device exceeding the second usage threshold.
4. The system of claim 1, wherein the operations further comprise:
determining that a first usage of the first memory device exceeds the first usage threshold; and
in response to determining that the first usage of the first memory device exceeds the first usage threshold, determining to not store subsequent data to the first memory device, wherein the subsequent data is stored at the second memory device.
5. The system of claim 1, wherein the first set of characteristics comprise data density, access speed, a number of total bytes written or a number of write operations performed with respect to the first memory device and wherein the second set of characteristics comprise data density, access speed, a number of total bytes written or a number of write operations performed with respect to the second memory device.
6. The system of claim 1, wherein the operations further comprise:
transmitting a request for sets of characteristics for each memory device of the plurality of memory devices, wherein to receive the first set of characteristics corresponding to the first memory device of the plurality of memory devices and the second set of characteristics corresponding to the second memory device of the plurality of memory devices is in response to transmitting the request for the sets of characteristics for each memory device of the plurality of memory devices.
7. The system of claim 1, wherein the first memory device is different than the second memory device and wherein an endurance of the first memory device to store data is different than an endurance of the second memory device to store data.
8. The system of claim 1, wherein the first memory device is a flash based memory and the second memory device is a non-flash based memory.
9. A method comprising:
receiving a first set of characteristics corresponding to a first memory device of the plurality of memory devices and a second set of characteristics corresponding to a second memory device of the plurality of memory devices;
determining a first usage threshold for the first memory device based on the first set of characteristics and a second usage threshold for the second memory device based on the second set of characteristics;
receiving data for storage from a host system coupled to the system; and
in response to determining that a respective usage of the first memory device exceeds the first usage threshold:
refraining from storing subsequent data to the first memory device; and
operating the first memory device in a read-only mode by performing read operations on data stored at the first memory device.
10. The method of claim 9, wherein the first usage threshold corresponds to an endurance of the first memory device to store the data and wherein the second usage threshold corresponds to an endurance of the second memory device to store the data.
11. The method of claim 9, further comprising:
determining whether a first usage of the first memory device exceeds the first usage threshold or a second usage of the second memory device exceeds the second usage threshold; and
in response to determining that the first usage of the first memory device exceeds the first usage threshold or the second usage of the second memory device exceeds the second usage threshold, providing a notification to a host system associated with the memory device that identifies the first usage of the first memory device exceeding the first usage threshold or the second usage of the second memory device exceeding the second usage threshold.
12. The method of claim 9, further comprising:
determining that a first usage of the first memory device exceeds the first usage threshold; and
in response to determining that the first usage of the first memory device exceeds the first usage threshold, determining to not store subsequent data to the first memory device, wherein the subsequent data is stored at the second memory device.
13. The method of claim 9, wherein the first set of characteristics comprise data density, access speed, a number of total bytes written or a number of write operations performed with respect to the first memory device and wherein the second set of characteristics comprise data density, access speed, a number of total bytes written or a number of write operations performed with respect to the second memory device.
14. The method of claim 9, further comprising:
transmitting a request for sets of characteristics for each memory device of the plurality of memory devices, wherein to receive the first set of characteristics corresponding to the first memory device of the plurality of memory devices and the second set of characteristics corresponding to the second memory device of the plurality of memory devices is in response to transmitting the request for the sets of characteristics for each memory device of the plurality of memory devices.
15. The method of claim 9, wherein the first memory device is different than the second memory device and wherein an endurance of the first memory device to store data is different than an endurance of the second memory device to store data.
16. A non-transitory computer-readable storage medium comprising instructions that, when executed by a processing device, cause the processing device to perform operations comprising:
receiving a first set of characteristics corresponding to a first memory device of the plurality of memory devices and a second set of characteristics corresponding to a second memory device of the plurality of memory devices;
determining a first usage threshold for the first memory device based on the first set of characteristics and a second usage threshold for the second memory device based on the second set of characteristics;
receiving data for storage from a host system coupled to the system; and
in response to determining that a respective usage of the first memory device exceeds the first usage threshold:
refraining from storing subsequent data to the first memory device; and
operating the first memory device in a read-only mode by performing read operations on data stored at the first memory device.
17. The non-transitory computer-readable storage medium of claim 16, wherein the first usage threshold corresponds to an endurance of the first memory device to store the data and wherein the second usage threshold corresponds to an endurance of the second memory device to store the data.
18. The non-transitory computer-readable storage medium of claim 16, wherein the operations further comprise:
determining whether a first usage of the first memory device exceeds the first usage threshold or a second usage of the second memory device exceeds the second usage threshold; and
in response to determining that the first usage of the first memory device exceeds the first usage threshold or the second usage of the second memory device exceeds the second usage threshold, providing a notification to a host system associated with the memory device that identifies the first usage of the first memory device exceeding the first usage threshold or the second usage of the second memory device exceeding the second usage threshold.
19. The non-transitory computer-readable storage medium of claim 16, wherein the operations further comprise:
determining that a first usage of the first memory device exceeds the first usage threshold; and
in response to determining that the first usage of the first memory device exceeds the first usage threshold, determining to not store subsequent data to the first memory device, wherein the subsequent data is stored at the second memory device.
20. The non-transitory computer-readable storage medium of claim 16, wherein the operations further comprise:
transmitting a request for sets of characteristics for each memory device of the plurality of memory devices, wherein to receive the first set of characteristics corresponding to the first memory device of the plurality of memory devices and the second set of characteristics corresponding to the second memory device of the plurality of memory devices is in response to transmitting the request for the sets of characteristics for each memory device of the plurality of memory devices.
US17/461,902 2018-04-25 2021-08-30 Managing a memory system including memory devices with different characteristics Pending US20210389910A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/461,902 US20210389910A1 (en) 2018-04-25 2021-08-30 Managing a memory system including memory devices with different characteristics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/962,719 US11106391B2 (en) 2018-04-25 2018-04-25 Managing a memory system including memory devices with different characteristics
US17/461,902 US20210389910A1 (en) 2018-04-25 2021-08-30 Managing a memory system including memory devices with different characteristics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/962,719 Continuation US11106391B2 (en) 2018-04-25 2018-04-25 Managing a memory system including memory devices with different characteristics

Publications (1)

Publication Number Publication Date
US20210389910A1 true US20210389910A1 (en) 2021-12-16

Family

ID=68292523

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/962,719 Active US11106391B2 (en) 2018-04-25 2018-04-25 Managing a memory system including memory devices with different characteristics
US17/461,902 Pending US20210389910A1 (en) 2018-04-25 2021-08-30 Managing a memory system including memory devices with different characteristics

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/962,719 Active US11106391B2 (en) 2018-04-25 2018-04-25 Managing a memory system including memory devices with different characteristics

Country Status (3)

Country Link
US (2) US11106391B2 (en)
CN (1) CN112166406A (en)
WO (1) WO2019209873A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11520488B2 (en) * 2020-04-22 2022-12-06 Dell Products, L.P. Method and apparatus for identifying a device missing from a consistency group
US11868652B2 (en) * 2021-02-25 2024-01-09 SK Hynix Inc. Utilization based dynamic shared buffer in data storage system
US20240012751A1 (en) * 2022-07-11 2024-01-11 Micron Technology, Inc. Adaptive wear leveling for a memory system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7568075B2 (en) * 2005-09-22 2009-07-28 Hitachi, Ltd. Apparatus, system and method for making endurance of storage media
US20120117304A1 (en) * 2010-11-05 2012-05-10 Microsoft Corporation Managing memory with limited write cycles in heterogeneous memory systems
US9146875B1 (en) * 2010-08-09 2015-09-29 Western Digital Technologies, Inc. Hybrid drive converting non-volatile semiconductor memory to read only based on life remaining
US20160292025A1 (en) * 2015-03-30 2016-10-06 Netapp, Inc. Methods to identify, handle and recover from suspect ssds in a clustered flash array
US20160342344A1 (en) * 2015-05-20 2016-11-24 Sandisk Enterprise Ip Llc Variable Bit Encoding Per NAND Flash Cell to Extend Life of Flash-Based Storage Devices and Preserve Over-Provisioning
US9529543B1 (en) * 2015-12-02 2016-12-27 International Business Machines Corporation Concurrent upgrade and backup of non-volatile memory
US20170160957A1 (en) * 2015-12-03 2017-06-08 Sandisk Technologies Inc. Efficiently Managing Unmapped Blocks to Extend Life of Solid State Drive

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7269708B2 (en) 2004-04-20 2007-09-11 Rambus Inc. Memory controller for non-homogenous memory system
US8209466B2 (en) 2008-12-16 2012-06-26 Intel Corporation Methods and systems to allocate addresses in a high-endurance/low-endurance hybrid flash memory
US8261009B2 (en) 2008-12-30 2012-09-04 Sandisk Il Ltd. Method and apparatus for retroactive adaptation of data location
US8464106B2 (en) 2009-08-24 2013-06-11 Ocz Technology Group, Inc. Computer system with backup function and method therefor
US20150092488A1 (en) * 2013-09-27 2015-04-02 Yogesh Wakchaure Flash memory system endurance improvement using temperature based nand settings
US9785374B2 (en) * 2014-09-25 2017-10-10 Microsoft Technology Licensing, Llc Storage device management in computing systems
KR102114256B1 (en) * 2016-02-19 2020-05-22 후아웨이 테크놀러지 컴퍼니 리미티드 Flash memory device access method and apparatus
US9927975B2 (en) * 2016-08-03 2018-03-27 Micron Technology, Inc. Hybrid memory drives, computer system, and related method for operating a multi-mode hybrid drive
US10372342B2 (en) * 2017-10-02 2019-08-06 Western Digital Technologies, Inc. Multi-level cell solid state device and method for transferring data between a host and the multi-level cell solid state device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7568075B2 (en) * 2005-09-22 2009-07-28 Hitachi, Ltd. Apparatus, system and method for making endurance of storage media
US9146875B1 (en) * 2010-08-09 2015-09-29 Western Digital Technologies, Inc. Hybrid drive converting non-volatile semiconductor memory to read only based on life remaining
US20120117304A1 (en) * 2010-11-05 2012-05-10 Microsoft Corporation Managing memory with limited write cycles in heterogeneous memory systems
US20160292025A1 (en) * 2015-03-30 2016-10-06 Netapp, Inc. Methods to identify, handle and recover from suspect ssds in a clustered flash array
US20160342344A1 (en) * 2015-05-20 2016-11-24 Sandisk Enterprise Ip Llc Variable Bit Encoding Per NAND Flash Cell to Extend Life of Flash-Based Storage Devices and Preserve Over-Provisioning
US9529543B1 (en) * 2015-12-02 2016-12-27 International Business Machines Corporation Concurrent upgrade and backup of non-volatile memory
US20170160957A1 (en) * 2015-12-03 2017-06-08 Sandisk Technologies Inc. Efficiently Managing Unmapped Blocks to Extend Life of Solid State Drive

Also Published As

Publication number Publication date
US11106391B2 (en) 2021-08-31
CN112166406A (en) 2021-01-01
US20190332317A1 (en) 2019-10-31
WO2019209873A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US20210389910A1 (en) Managing a memory system including memory devices with different characteristics
US11749373B2 (en) Bad block management for memory sub-systems
US11249679B2 (en) Selecting a write operation mode from multiple write operation modes
US10761754B2 (en) Adjustment of a pre-read operation associated with a write operation
US11023177B2 (en) Temperature correction in memory sub-systems
US11688475B2 (en) Performing read operation prior to two-pass programming of storage system
US11836392B2 (en) Relocating data to low latency memory
US11720286B2 (en) Extended cross-temperature handling in a memory sub-system
US11347415B2 (en) Selection component that is configured based on an architecture associated with memory devices
US20210191816A1 (en) Storing critical data at a memory system
US10685725B2 (en) Performing an operation on a memory cell of a memory system at a frequency based on temperature
US11221912B2 (en) Mitigating an undetectable error when retrieving critical data during error handling

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DANIELSON, MICHAEL B.;SUHLER, PAUL A.;REEL/FRAME:057362/0107

Effective date: 20180425

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER