US20210385614A1 - Apparatus and method for minimizing direct and indirect cross-contamination of pathogens between personnel within a workplace - Google Patents

Apparatus and method for minimizing direct and indirect cross-contamination of pathogens between personnel within a workplace Download PDF

Info

Publication number
US20210385614A1
US20210385614A1 US17/039,170 US202017039170A US2021385614A1 US 20210385614 A1 US20210385614 A1 US 20210385614A1 US 202017039170 A US202017039170 A US 202017039170A US 2021385614 A1 US2021385614 A1 US 2021385614A1
Authority
US
United States
Prior art keywords
person
building area
tapping
monitored building
tags
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/039,170
Inventor
Peter Millius
James A. White
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovet LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US17/039,170 priority Critical patent/US20210385614A1/en
Assigned to INNOVET, LLC reassignment INNOVET, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MILLIUS, PETER, WHITE, JAMES A.
Priority to US17/083,514 priority patent/US11212645B2/en
Publication of US20210385614A1 publication Critical patent/US20210385614A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/14Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
    • G06K7/1404Methods for optical code recognition
    • G06K7/1408Methods for optical code recognition the method being specifically adapted for the type of code
    • G06K7/14172D bar codes
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/08Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using communication transmission lines
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/80ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for detecting, monitoring or modelling epidemics or pandemics, e.g. flu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management

Definitions

  • the invention relates to apparatus and methods for inhibiting the spread of disease, and more particularly, to apparatus and methods for minimizing cross-contamination of pathogens between personnel within a workplace environment.
  • SARS-CoV-2 has greatly heightened public awareness of the risks that are associated with highly transmissible infectious diseases, and of the possibility that another, more virulent strain could one day appear. Ensuring continuity of business operations under these circumstances will be critically important.
  • Testing for infection can be augmented by so-called “contact tracing,” wherein the detection of an infected individual is followed by an attempt to identify all of the other individuals with whom the infected person likely had contact during a pre-symptomatic, pre-detection period when the individual was unknowingly infectious.
  • contact tracing so-called “contact tracing,” wherein the detection of an infected individual is followed by an attempt to identify all of the other individuals with whom the infected person likely had contact during a pre-symptomatic, pre-detection period when the individual was unknowingly infectious.
  • contact tracing so-called “contact tracing,” wherein the detection of an infected individual is followed by an attempt to identify all of the other individuals with whom the infected person likely had contact during a pre-symptomatic, pre-detection period when the individual was unknowingly infectious.
  • this approach can be limited, because it can be very difficult to accurately determine all of the movements and activities of the infected individual prior to detecting the infection, and to comprehensively identify all
  • Another approach is to physically isolate employees within the workplace as much as possible. While this is an important step, nevertheless in practice it is almost impossible to ensure that no two individuals in the workplace will ever be in proximity to each other, for example within six feet of each other. Furthermore, excessive separation of employees necessarily reduces the number of employees that can be present in the workplace, and can significantly reduce productivity.
  • SARS-CoV-2 virus like many other pathogens, is known to remain viable for some period of time after being deposited on surfaces, which can lead to cross-contamination even when individuals are not in close proximity to each other.
  • One approach is to frequently sanitize all commonly touched surfaces, such as handrails, tables, desks, chairs, etc.
  • sanitation to the required degree can be very time consuming, highly inefficient, and expensive, in that many surfaces may be sanitized multiple times between actual human contact events, while other surfaces may be touched many times by employees between each sanitizing.
  • any lapses in implementing a thorough sanitation program could lead to otherwise avoidable cross-contamination.
  • the present invention is an apparatus and method for minimizing the likelihood of both airborne and surface-mediated cross-contamination of pathogens between employees at a workplace, and for maximizing the effectiveness of contact tracing and other mitigation efforts if an outbreak does occur.
  • the disclosed method and apparatus provide detailed information to the management of a workplace, both about employee usage of the facility and about sanitization activities undertaken in the facility. This detailed information, when fused with the latest scientific knowledge on the transmissibility of the disease, can provide to management the best possible data, thereby allowing them to make fully informed decisions so as to ensure the safety and productivity of the workplace staff.
  • a majority of the personnel who are present at the workplace are required to carry mobile devices, and critical locations within the workplace are “tagged” by strategic placement of “tags” that can be “tapped,” at short range, by the mobile devices, where each tapping event represents a sensing of a tag by a mobile device or a sensing of a mobile device by a tag.
  • Information regarding these “tapping events” is forwarded by either the mobile devices or the tags to a central server, which maintains a log “tapping events,” i.e. of encounters between the mobile devices, and hence the “users” of the mobile devices, and the tagged locations.
  • the information can be forwarded in “near-real time,” i.e. each time a mobile device “taps” a location, and/or the information can be stored by the mobile devices and subsequently transmitted to the central server when a connection is established.
  • the data that is recorded by the server includes tag identifying information, such as tag identification codes, as well as the times, and in some embodiments also the durations of the tapping events.
  • tag identifying information such as tag identification codes
  • the times and in some embodiments also the durations of the tapping events.
  • Various embodiments determine when a user has departed a tapped location according to any of several criteria, including a “tapping out” event, noting that the same user has tapped into a different location, and/or assuming that the location has been vacated after a specified duration of time has passed, according to the type of the location, such as elevator, bathroom stall, lunch table, etc.
  • the locations of the tags relative to objects and structures within a building are known. This can enable an analysis of the tapping events that are logged by the server to go beyond mere proximities, and to be environmentally “aware.” For example, two tapping events that take place in very close proximity may not be relevant to a contact tracing analysis if there is an intervening wall between the two tags.
  • Embodiments further record specific information regarding the nature or “type” of the tapping event, for example “arrived at location,” “sanitized location,” “departed location,” and “mark location as a frequently visited point.” Selection of the type of tapping event can be made by the user selecting from among a plurality of tags, and/or by the user selecting an icon or otherwise entering information into the mobile device.
  • the tags are devices that are powered, for example by small batteries, and can be sensed by any of the mobile devices that is within a specified distance of the tag, such as within six feet.
  • the communication between the tags and the mobile devices is, or can be, via Bluetooth, where the Bluetooth range of the tags can be limited, for example by limiting the power that is supplied to the Bluetooth transmitter of the tag.
  • the tag can be a Bluetooth “beacon” that is sensed by a cellular telephone that is serving as the mobile device by running an app that is specific to implementing the present invention, where the cellular telephone is in network communication with the server.
  • the tag can be a Bluetooth-enabled device that is in network communication with the server, while the mobile device is a Bluetooth beacon.
  • the “tag” can be an electronic display that is able to display messages to users according to instructions received from the server.
  • This approach of using powered, Bluetooth-enabled tags can be desirable for certain environments within a workplace, such as within elevators or when monitoring the sanitation of hotel rooms.
  • Certain of these embodiments support automated, “passive tapping,” in that the mobile devices automatically communicate with the tags whenever a “user” comes within range of a tag.
  • the tags can be placed in obscure, unobtrusive locations, and users need not be aware of the locations of the tags.
  • the tags are unpowered.
  • the tags can be scannable labels or objects, such as “QR” codes, near-field communication devices (NFC's), or RFID's that are unpowered except when one of the mobile devices is located very nearby, such as within one foot, whereupon the tags are powered by RF energy emitted by the mobile devices.
  • QR quality of recognition
  • NFC near-field communication devices
  • RFID RFID's that are unpowered except when one of the mobile devices is located very nearby, such as within one foot, whereupon the tags are powered by RF energy emitted by the mobile devices.
  • This approach eliminates any need to periodically replace the tags, or to replace batteries in the tags.
  • this approach typically requires “active tapping,” wherein users “tap in” to a location by intentionally placing their mobile devices into proximity of a tag, either to scan a code or to energize an NFC device, each time the individual arrives at a tagged location.
  • users are also required to “tap out” of locations by placing their mobile device into proximity of a tag when
  • Embodiments can combine within the same workplace both powered and unpowered tags, and can combine both passive and active tapping.
  • actively tapped (scanned) QR-code tags may be used at strategic locations within each floor of an office building, while passively tapped, Bluetooth beacons may be implemented in elevators of the same building.
  • Method embodiments of the present invention implement the devices that are described above, and then make use of the logged information by implementing any or all of the following methods.
  • Embodiments determine a degree of risk of a tagged location, for example “low risk”, “medium risk” or “high risk,” according to whether any users have “tapped” the location since it was most recently sanitized.
  • a location is also deemed to be “low risk” after a certain duration of time has elapsed since it was most recently tapped, even if the location has not been sanitized in the meantime.
  • Embodiments further indicate degrees of risk for various locations, such as a “moderate risk” rating when sufficient time has elapsed since the most recent tapping to cause most or all pathogens, if present, to have become non-viable.
  • Embodiments push messages to the mobile devices to indicate the risk status of locations, for example to inform a user of a desk as to whether the desk location is considered to be low risk.
  • sanitation personnel within the workplace are required to carry mobile devices, and their encounters with tags are logged.
  • sanitation workers are required to “tap in” when they arrive at a location that is to be sanitized, and this information is logged and used to ensure that an established sanitation schedule is adhered to.
  • the duration of the worker's encounter with a location is determined and recorded, either by requiring the worker to “tap out” when the sanitation is completed, and/or by noting when the worker taps into another location.
  • Embodiments further record whether a location was merely “sanitized,”, or if the location was “disinfected” or “sterilized.” The determination can be according to work instructions given to sanitizing personnel, and/or information provided by the sanitation personnel. Embodiments further record specific products and chemicals that are used for sanitation, for example by directing sanitation workers to scan barcode labels provided on product containers using their mobile devices.
  • sanitized refers to a combination of cleaning, i.e. removing visible dirt and debris, in addition to treatment with one or more substances that kill bacteria, but not necessarily viruses or fungi.
  • Disinfected refers to a treatment with one or more substances that reduce or effectively eliminate viruses and fungi, in addition to bacteria.
  • Stterilization refers to a treatment that destroys all microscopic life, and can include treatment by chemicals, heat, and/or radiation such as ultra-violet light.
  • users are allowed to move between workstations, bathrooms, and eating or other common areas, without restriction, and their movements are monitored according to the tapping events that are logged. Subsequently, in some embodiments, users are only required to tap in at locations that are outside of their normal movement patterns. For example, during normal hours of usage, after the initial tracking phase, a user may not need to continue tapping his or her desk and preferred lunch table, which the user encounters at the same times each day, but may still be required to tap in at conference rooms when attending meetings that are not daily events.
  • a “geo-fence” approach can be used to determine if a user is present at the workplace on a given day, for example based on determining the user's location using “GPS” (global positioning system) location awareness.
  • GPS global positioning system
  • users are encouraged or assigned to use certain specified bathroom stalls, sinks, cafeteria tables, and other locations at certain specified times.
  • This approach can help to avoid crowding of certain locations by ensuring that use of common facilities such as bathroom stalls, lunch tables, etc. is distributed over time and among personnel.
  • This approach can reduce each user's “virus footprint,” i.e. the range of locations and personnel who would be placed at risk if the user were to be unknowingly infectious.
  • the logged tapping information can be used to enhance contact tracing by focusing testing and other mitigation efforts on other users who were either proximal to the infected user, e.g. ate at the same lunch table, or who were most likely to have come into contact with a surface that was touched by the infected user, e.g. used the same bathroom stall shortly after the infected user.
  • air current patterns are assessed in common areas such as dining areas, bathrooms, and cubical “farms,” and are used to estimate which personnel located in these areas are most likely to be infected by air-born virus particles emitted by an infected user.
  • embodiments By assigning certain bathroom stalls, sinks, lunch tables, and other common areas to the same limited group of users, embodiments create virtual sub-groups of users who come into some limited contact with each other, either in person or via shared surfaces, but who rarely come into contact with any other users outside of their sub-group. Accordingly, if a user is found to be infected, testing and other mitigation efforts can be rendered more effective by focusing these efforts primarily on the other members of the infected user's sub-group. Furthermore, in the worst case, any spread of the infection is likely to be limited only to other personnel within the sub-group, or to only a few sub-groups, and is less likely to spread throughout the workforce as a whole.
  • One general aspect of the present invention is a method of reducing transmission of an infectious disease.
  • the method includes locating a plurality of tags at selected tagged locations within a monitored building area, selecting at least one person designated to work in the monitored building area, causing the at least one person to maintain a mobile device in the person's possession while the person is in the monitored building area, said mobile device being configured to interact with each of the tags during a tapping event when the mobile device is proximal to the tag, at least one of the mobile devices and the tags being configured to provide tapping information regarding said tapping events to a server, analyzing the tapping information, and in response to the analyzing, taking an action that reduces a risk of cross contamination of the infectious disease in the monitored building area by modifying at least one activity of the at least one person while the at least one person is in the monitored building area, and/or enhances an efficacy of a response to a transmission of the infectious disease in the monitored building area by identifying at least one person who is at an enhanced risk of infection by the infectious disease.
  • the monitored building area is a workplace.
  • the at least one person can comprise a plurality of people, each maintaining a mobile device while in the monitored building area.
  • the tags can be chosen from a group consisting of powered devices, unpowered devices, devices configured to communicate via Bluetooth communication, devices configured to communicate by near field communication, and optically scannable indicia.
  • the tapping information can include information pertaining to a duration of time during which the mobile device was proximal to the tag.
  • each mobile device can be configured to accept input information provided by the person possessing the mobile device, and to include said input information with the tapping information.
  • the input information includes information relevant to sanitation of the location where the tag is located.
  • modifying the at least one activity of the at least one person can include designating one of the tagged location as being at elevated risk if, according to the tapping information, the tagged location has not been sanitized since it was most recently tapped, and insufficient time has elapsed since the tagged location was most recently tapped to ensure that a specified percentage of any pathogens of the infectious disease deposited at the tagged location have become non-infectious.
  • modifying the at least one activity of the at least one person can include causing the person to adhere to sanitization requirements that are assigned to the person, if the analysis of the tapping information indicates non-compliance therewith.
  • modifying the at least one activity of the at least one person can include instructing the person to consistently use a designated facility from among a plurality of facilities that are within the monitored building area.
  • the designated facility can be selected from among the plurality of facilities according to an analysis of the tapping information.
  • the at least one person comprises a plurality of people, each of said people maintaining one of the mobile devices while in the monitored building area, and the method further comprises dividing the plurality of people into a plurality of sub-groups, and assigning the plurality of facilities that are within the monitored building area to the subgroups, such that use of the same one of the facilities by members of more than one of the subgroups is minimized or eliminated.
  • the plurality of facilities includes facilities that are located in a common area.
  • each maintaining a mobile device while in the monitored building area enhancing an efficacy of a response to the transmission of the infectious disease can include, upon determining that a first person of the plurality of people is infected with the infectious disease, analyzing the tapping information to identify a second person of the plurality of people who is at heightened risk of infection by the first person, and applying at least one mitigating action to the second person.
  • the at least one mitigating action includes applying a test to the second person to determine if the second person has become infected by the infectious disease.
  • identifying the second person can include determining that the first and second persons occupied the same or proximal locations within the monitored building area at substantially the same time. And in some of these embodiments identifying the second person further includes determining a pattern of air currents proximal to the location or locations within the monitored building area that were occupied by the first and second persons at substantially the same time.
  • the at least one person designated to work in the monitored building area can be at least one sanitation staff worker and/or a plurality of office workers.
  • a second general aspect of the present invention is a method of reducing transmission of an infectious disease at a monitored building area.
  • the method includes locating a plurality of tags at selected tagged locations within the monitored building area, providing all workers who wish to access the monitored building area with a mobile device while the person is in the monitored building area, said mobile device being configured to interact with each of the tags when the mobile device is proximal to the tag, at least one of the mobile devices and the tags being configured to provide information regarding any such interaction to a server, analyzing the interactions, and in response to the analyzing, taking an action that reduces a risk of cross contamination of the infectious disease in the monitored building area by modifying at least one activity of the at least one of said workers while the at least one worker is in the monitored building area, and/or enhances an efficacy of a response to a transmission of the infectious disease in the monitored building area by identifying at least one of said workers who is at an enhanced risk of infection by the infectious disease.
  • said identifying at least one of said workers who is at an enhanced risk of infection includes determining that that worker occupied a location that was previously occupied by another person at a time when a heightened risk existed of infectious disease spread from the another person.
  • FIG. 1A is a perspective view of an employee workstation within a workplace according to an embodiment of the present invention where a Bluetooth beacon has been applied to a desk as a tag and a worker is carrying a mobile device in his pocket;
  • FIG. 1B is a perspective view of a mobile device scanning a tag that displays a QR-code in an embodiment of the present invention
  • FIG. 1C is a perspective view of a mobile device receiving information from a near field RF tag that is energized temporarily by the mobile device in an embodiment of the present invention
  • FIG. 1D is a perspective view of a mobile device scanning a selected one of a plurality of tags applied to a desk in an embodiment of the present invention
  • FIG. 1E is a perspective view of a mobile device presenting a menu of tapping information during a tapping event for selection by a user in an embodiment of the present invention
  • FIG. 2 is a perspective view of a plurality of bathroom stalls having associated tags and electronic displays that present information pertaining to sanitizing of the stalls in an embodiment of the present invention
  • FIG. 3A is a perspective view of a server positioned to receive tapping information relevant to a plurality of tagged locations within a workplace in an embodiment of the present invention
  • FIG. 3B is a front view of an entrance to a conference room where a tag has been applied and where an electronic sign has been installed that presents information regarding availability of the conference room as directed by the server in an embodiment of the present invention
  • FIG. 4 is a flow diagram illustrating a method embodiment of the present invention wherein a degree of risk of a location is determined according to logged tapping events;
  • FIG. 5 is a flow diagram illustrating a method embodiment of the present invention wherein logged tapping events are analyzed to determine compliance with a specified sanitation schedule
  • FIG. 6 is a flow diagram illustrating a method embodiment of the present invention wherein logged tapping events are used to establish and monitor compliance with location assignments and usage schedules assigned to users;
  • FIG. 7 is a flow diagram illustrating a method embodiment of the present invention wherein logged tapping events are used to enhance mitigation of an infection event by identifying users who are at heightened risk of cross-contamination.
  • the present invention is an apparatus and method for minimizing the likelihood of both airborne and surface-mediated cross-contamination of pathogens between employees at a workplace, and for maximizing the effectiveness of contact tracing and other mitigation efforts if an infection does occur.
  • a majority of the personnel 110 who are present at the workplace for example at least 80% of the personnel 110 , and in embodiments up to 100% of the personnel 110 , are required to carry mobile wireless devices 102 .
  • the mobile devices 102 are able to interact with “tags” 100 that are located at key locations within the workplace, such as desks 104 used by employees. These interactions, or “tapping events,” can include scanning or sensing of tags by the mobile devices and/or scanning or sensing of the mobile devices by tags. The scanning or sensing is generally limited to only short-range detection, so that each tapping event indicates proximity of the tag 100 to the mobile device 102 , and hence of the “user” 110 who is carrying the mobile device 102 .
  • the tag 100 is a Bluetooth beacon that is attached to a user's desk 104 , while the mobile device 102 is a cellular telephone.
  • the Bluetooth range of the tag 100 is limited by limiting the power that is supplied to the Bluetooth transmitter of the tag 100 , and thereby limiting the power of the RF signal 112 that is emitted by the tag 100 .
  • the tag 100 is a Bluetooth-enabled device that is in network communication with the server, while the mobile device 102 is a Bluetooth beacon. This approach of using powered, Bluetooth-enabled tags can be even more desirable for other environments within a workplace, such as within elevators.
  • the location of a user can be estimated by analyzing simultaneous tapping events recorded between a mobile device and a plurality of tags.
  • Embodiments such as FIG. 1A support automated, “passive tapping,” in that the mobile device 102 and tag 100 automatically communicates with each other whenever the user 110 comes within range of the tag 100 , without requiring the user 110 to take any specific action.
  • the mobile device 102 can communicate with the tag 100 while remaining in the user's pocket 114 .
  • the tags can be placed in obscure, unobtrusive locations (although the tag 100 in FIG. 1A is located in a clearly observable location), and users 110 need not be aware of the locations of the tags 100 .
  • the tags 100 are labels or objects 1105 such as “QR” codes ( FIG. 1B ), that can be scanned 108 by a camera 106 included in the mobile device 102 , and/or are near-field communication devices (NFC's) or RFID's 100 NF ( FIG. 1C ) that are unpowered except when one of the mobile devices is located very nearby, such as within one foot, whereupon the tags 100 NF are powered by RF energy 116 emitted by the mobile devices 102 .
  • NFC's near-field communication devices
  • RFID's 100 NF FIG. 1C
  • This approach eliminates any need to periodically replace the tags 100 , or to replace the batteries in the tags 100 .
  • this approach typically requires “active tapping,” wherein users 110 “tap in” to a location by intentionally placing their mobile device 102 into proximity of a tag 100 , either to scan 108 a code 1005 or to energize 116 an NFC device 100 NF, each time the individual 110 arrives at a tagged location.
  • users 110 are also required to “tap out” of locations by placing their mobile device 102 into proximity of a tag 100 when they depart from a location.
  • Embodiments further record specific information regarding the nature or “type” of the tapping event, for example “arrived at location,” “sanitized location,” “departed location,” and “mark location as a frequently visited point.” Selection of the type of tapping event can be made by the user selecting from among a plurality of tags 100 S, as illustrated in FIG. 1D , and/or by the user selecting an icon 120 or otherwise entering information into the mobile device 102 , as illustrated in FIG. 1E .
  • tags 100 are also placed at key locations within common areas, such as bathroom stalls 200 and sinks (not shown), as well as handrails in hallways (not shown) and tables in dining areas ( 302 , FIG. 3A ).
  • information regarding tapping “events” is forwarded by the mobile devices 102 and/or by the tags 100 to a central server 300 , which maintains a log of encounters between the mobile devices 102 , and hence the “users” 110 of the mobile devices 102 , and the tagged locations.
  • the information can be forwarded in “near-real time,” i.e. each time a mobile device 102 “taps” a location, and/or the information can be stored by the mobile devices 102 or tags 100 and subsequently transmitted to the central server 300 when a connection is established.
  • the server 300 records the times when the encounters took place, and in some embodiments also the durations of the encounters.
  • electronically controlled signage 202 such as “e-ink” displays can be used to display the current status of a common area facility, such as a bathroom stall, as determined from tapping information that is logged by the central server 300 .
  • a common area facility such as a bathroom stall
  • the conference room may be designated as being closed until it can be thoroughly disinfected.
  • electronically controlled signage 202 can be installed within or at the entrances of hotel rooms, and can display updated disinfection information to hotel guests.
  • the signage 202 can include Bluetooth receivers and can be in network communication with the server 300 , whereby the signage 202 function as tags 100 , so that cleaning personnel need only carry Bluetooth beacons as their mobile devices 102 . If it is not convenient to restrict the Bluetooth communication range of the signage 202 , then in embodiments the location of a room sanitizing employee is determined to a high degree of accuracy by analyzing the times of signal detection and, in some embodiments the signal strengths that are reported to the server 300 by a plurality of the signage devices 202 .
  • Method embodiments of the present invention collect and log information pertaining to tapping events as described above, and then make use of the logged information by implementing any or all of the following methods.
  • the information logged by the server 300 is used to determine a degree of risk of a tagged location, such as “low risk”, “medium risk” or “high risk,” according to whether any users 110 have “tapped” the location since it was most recently sanitized.
  • a degree of risk of a tagged location such as “low risk”, “medium risk” or “high risk”
  • the server 300 initially deems the location to be “high risk” 402 for contact with other users.
  • the location is subsequently tapped by a sanitization worker, and if the tapping indicates that the sanitation worker completed a sanitation of the location, or at least remained at the location for a duration that is consistent with a sanitizing event, then the location is deemed to have been sanitized and to be “low risk” 408 .
  • users 110 are assigned to sanitize their own workstations 104 before they depart, and to confirm that they have performed this task when they “tap out” from the workstation 104 , for example by tapping a specific tag 100 , and/or by entering information into their mobile device 102 .
  • the server 300 designates the workstation 104 to be low risk for use by another user 110 , for example for an employee 110 who shares the same workstation 104 but during a different work shift.
  • the server 300 continues to deem the location to be high risk until sufficient time has elapsed 406 to cause any deposited pathogens to become inactivated, at which point the server 300 deems the location to be low risk 408 , even if it has not been sanitized since the previous user encounter 400 .
  • Embodiments further indicate degrees of risk for various locations, such as a “moderate risk” rating when sufficient time has elapsed since the most recent tapping to cause most pathogens, if present, to have become non-viable.
  • Embodiments push messages to the mobile devices 102 of users, and/or to strategically located electronic displays 202 , to indicate the safety status of locations, for example to inform a user 110 whether an unoccupied conference room (e.g. FIG. 3B ) is considered to be low risk.
  • a warning alert is transmitted by the server 300 to the mobile device 102 of the second user 110 so as to warn the second user 110 to take appropriate measures as dictated by organizational policies and procedures, such as to evacuate the area until it is deemed low risk.
  • sanitation personnel within the workplace are required to carry mobile devices 102 , and with reference to FIG. 5 their encounters with tags 100 are logged 500 .
  • the logging further indicates whether a sanitation was performed, or at least whether the sanitation worker remained at the location for a duration that is consistent with a sanitizing event.
  • Embodiments can send push notifications to facility managers when scheduled sanitization activities do not occur according to schedule.
  • the system can automatically increase the risk associated with the particular tagged location based on utilization by staff, and/or until proper sanitization has been undertaken.
  • the algorithms that are used to assess risk are stored in the central server, and can be updated according to the latest scientific understanding of one or more pathogens that may be present in the environment.
  • Embodiments further record whether a location was merely “sanitized,”, or if the location was “disinfected” or “sterilized.” The determination can be according to work instructions given to sanitizing personnel, and/or information provided by the sanitation personnel. Embodiments further record specific products and chemicals that are used for sanitation, for example by directing sanitation workers to scan barcode labels provided on product containers using their mobile devices 102 .
  • sanitized refers to a combination of cleaning, i.e. removing visible dirt and debris, in addition to treatment with one or more substances that kill bacteria, but not necessarily viruses or fungi.
  • Disinfected refers to a treatment with one or more substances that reduce or effectively eliminate viruses and fungi, in addition to bacteria.
  • Stterilization refers to a treatment that destroys all microscopic life, and can include treatment by chemicals, heat, and/or radiation such as ultra-violet light.
  • this logged data is compared 502 with a pre-specified sanitation schedule to determine 504 if the logged sanitation events meet or exceed the requirements of the sanitation schedule. If so, then compliance with the sanitation schedule is recorded 506 . If not, then corrective action is initiated, for example by informing management 508 as to a suspected failure to adhere to the required sanitation schedule.
  • users 110 are allowed to move between their workstations 104 , bathrooms 200 , corridors, dining facilities 302 , and other common areas without restriction, and their movements are monitored according to the tapping events that are logged.
  • the logged information is then used to determine optimal schedules and/or optimal assignments of common area locations 602 that will minimize crowding in those areas.
  • workers can be assigned 604 to use specific bathroom stalls, sinks, and cafeteria tables, and in some embodiments the use of certain facilities, such as cafeteria tables, can also be distributed over specified time periods, thereby ensuring that occupation of the common areas does not exceed maximum numbers, and that usage of common facilities such as bathroom stalls and cafeteria tables is evenly distributed.
  • users are only required to tap locations that are outside of their normal movement patterns. For example, during normal usage times a user may not need to continue tapping his or her desk and lunch table, which the user encounters at the same times each day, but may still be required to tap in at conference rooms when attending meetings that are not daily events.
  • a “geo-fence” approach can be used to determine if a user is present at the workplace on a given day, for example based on determining the user's location using “GPS” (global positioning system) location awareness.
  • GPS global positioning system
  • the logged information can be used to enhance contact tracing by identifying at-risk workers who simultaneously occupied the same public spaces as the infected worker 702 , such as by using the same bathroom at the same time, or occupying the same lunch table at the same time.
  • air current patterns are assessed in common areas such as dining areas, bathrooms, and cubical “farms,” and are used to estimate which of the personnel who were located in these areas are most likely to have been infected by air-born virus particles emitted by the infected user.
  • the logged information can further be reviewed to determine at-risk workers who may have had physical contact with surfaces in common areas shortly after they had been rendered high risk due to contact by the infected worker 704 . These determinations will not necessarily be limited to common areas. For example, sanitation workers may be at risk if they sanitized a workstation that is assigned to the infected employee.
  • the step of determining optimal time schedules and location assignments for use of common areas 602 can be extended to create virtual sub-groups of workers who will come into limited contact with each other, either in person or via shared surfaces, but who will rarely come into contact with any other workers outside of their sub-group. This can be accomplished by assigning certain bathroom stalls, sinks, lunch tables, and other common areas to the same limited group of users, so that necessary interactions between workers are limited primarily to interactions within the defined sub-groups.
  • testing and other mitigation efforts can be focused primarily on the other members of the infected user's sub-group.
  • dividing the workforce into sub-groups in this matter can create virtual “firewalls” that can impede any spread of the infection within the workplace, whereby if there is any spread of infection, it will most likely be limited only to other personnel within the sub-group of the infected worker, or to only a few sub-groups, and is less likely to spread throughout the workforce as a whole.

Abstract

An apparatus and method of minimizing pathogen cross-contamination and enhancing infection mitigation at a workplace includes placing tags at selected locations, requiring at least some workplace personnel to carry mobile devices, and logging interactions between the mobile devices and tags as tapping events. Tags can be powered or unpowered. Tapping can include RF or Bluetooth communication, and/or indicia scanning. Tapping events can be wirelessly directed to a server by the tags and/or mobile devices. The logged tapping can be used to identify high risk locations, record user movements, monitor user compliance with assigned schedules and locations, and monitor compliance with specified sanitation schedules. During mitigation of an infection event, the logged tapping can be used to identify persons at high risk of direct cross-contamination due to proximity to an infected person and/or surface-mitigated cross-contamination due to occupation of a location shortly after occupation thereof by the infected person.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 16/894,030, filed Jun. 5, 2020, which is herein incorporated by reference in its entirety for all purposes.
  • FIELD OF THE INVENTION
  • The invention relates to apparatus and methods for inhibiting the spread of disease, and more particularly, to apparatus and methods for minimizing cross-contamination of pathogens between personnel within a workplace environment.
  • BACKGROUND OF THE INVENTION
  • The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has given rise to many new challenges. In particular, it has become clear that many business activities that are essential to the sustenance of the population, and/or to the survival of the economy, can only be carried out by employees when gathered at a workplace. Furthermore, as the incidence of SARS-CoV-2 infection has stabilized and begun to recede, it has become desirable, and even necessary in many cases, to reopen some workplaces, even though the virus has not been completely eradicated. As a result, the possibility cannot be excluded that an infectious but asymptomatic employee could be present at a workplace at any given time, and that cross-contamination of other employees could take place.
  • Furthermore, the emergence of SARS-CoV-2 has greatly heightened public awareness of the risks that are associated with highly transmissible infectious diseases, and of the possibility that another, more virulent strain could one day appear. Ensuring continuity of business operations under these circumstances will be critically important.
  • One approach is to frequently test an entire workforce for infection, in an attempt to ensure that no infected individuals are allowed to enter a workplace. However, while the capacity to test individuals for infection has grown dramatically, nevertheless it remains impractical to test every employee every day. Furthermore, only a fraction of the available testing methods are able to provide an immediate result. Accordingly, while testing can be an important tool, testing alone cannot exclude the possibility of cross-contamination at the workplace.
  • Testing for infection can be augmented by so-called “contact tracing,” wherein the detection of an infected individual is followed by an attempt to identify all of the other individuals with whom the infected person likely had contact during a pre-symptomatic, pre-detection period when the individual was unknowingly infectious. However, this approach can be limited, because it can be very difficult to accurately determine all of the movements and activities of the infected individual prior to detecting the infection, and to comprehensively identify all of the individuals who were present at those places and times, and who also might be at risk.
  • Another approach is to physically isolate employees within the workplace as much as possible. While this is an important step, nevertheless in practice it is almost impossible to ensure that no two individuals in the workplace will ever be in proximity to each other, for example within six feet of each other. Furthermore, excessive separation of employees necessarily reduces the number of employees that can be present in the workplace, and can significantly reduce productivity.
  • In addition, the SARS-CoV-2 virus, like many other pathogens, is known to remain viable for some period of time after being deposited on surfaces, which can lead to cross-contamination even when individuals are not in close proximity to each other. One approach is to frequently sanitize all commonly touched surfaces, such as handrails, tables, desks, chairs, etc. However, sanitation to the required degree can be very time consuming, highly inefficient, and expensive, in that many surfaces may be sanitized multiple times between actual human contact events, while other surfaces may be touched many times by employees between each sanitizing. Furthermore, any lapses in implementing a thorough sanitation program could lead to otherwise avoidable cross-contamination.
  • What is needed, therefore, is an apparatus and method of minimizing the likelihood of both airborne and surface-mediated cross-contamination of pathogens between employees at a workplace, and for maximizing the effectiveness of contact tracing and other mitigation efforts if an infection does occur.
  • SUMMARY OF THE INVENTION
  • The present invention is an apparatus and method for minimizing the likelihood of both airborne and surface-mediated cross-contamination of pathogens between employees at a workplace, and for maximizing the effectiveness of contact tracing and other mitigation efforts if an outbreak does occur. The disclosed method and apparatus provide detailed information to the management of a workplace, both about employee usage of the facility and about sanitization activities undertaken in the facility. This detailed information, when fused with the latest scientific knowledge on the transmissibility of the disease, can provide to management the best possible data, thereby allowing them to make fully informed decisions so as to ensure the safety and productivity of the workplace staff.
  • According to the invention, a majority of the personnel who are present at the workplace, for example at least 80% of the personnel, and in embodiments up to 100%, are required to carry mobile devices, and critical locations within the workplace are “tagged” by strategic placement of “tags” that can be “tapped,” at short range, by the mobile devices, where each tapping event represents a sensing of a tag by a mobile device or a sensing of a mobile device by a tag. Information regarding these “tapping events” is forwarded by either the mobile devices or the tags to a central server, which maintains a log “tapping events,” i.e. of encounters between the mobile devices, and hence the “users” of the mobile devices, and the tagged locations. The information can be forwarded in “near-real time,” i.e. each time a mobile device “taps” a location, and/or the information can be stored by the mobile devices and subsequently transmitted to the central server when a connection is established.
  • In various embodiments, the data that is recorded by the server includes tag identifying information, such as tag identification codes, as well as the times, and in some embodiments also the durations of the tapping events. Various embodiments determine when a user has departed a tapped location according to any of several criteria, including a “tapping out” event, noting that the same user has tapped into a different location, and/or assuming that the location has been vacated after a specified duration of time has passed, according to the type of the location, such as elevator, bathroom stall, lunch table, etc.
  • Of course, the locations of the tags relative to objects and structures within a building are known. This can enable an analysis of the tapping events that are logged by the server to go beyond mere proximities, and to be environmentally “aware.” For example, two tapping events that take place in very close proximity may not be relevant to a contact tracing analysis if there is an intervening wall between the two tags.
  • Embodiments further record specific information regarding the nature or “type” of the tapping event, for example “arrived at location,” “sanitized location,” “departed location,” and “mark location as a frequently visited point.” Selection of the type of tapping event can be made by the user selecting from among a plurality of tags, and/or by the user selecting an icon or otherwise entering information into the mobile device.
  • In some embodiments, the tags are devices that are powered, for example by small batteries, and can be sensed by any of the mobile devices that is within a specified distance of the tag, such as within six feet. In some of these embodiments, the communication between the tags and the mobile devices is, or can be, via Bluetooth, where the Bluetooth range of the tags can be limited, for example by limiting the power that is supplied to the Bluetooth transmitter of the tag. For example, the tag can be a Bluetooth “beacon” that is sensed by a cellular telephone that is serving as the mobile device by running an app that is specific to implementing the present invention, where the cellular telephone is in network communication with the server. Or, the tag can be a Bluetooth-enabled device that is in network communication with the server, while the mobile device is a Bluetooth beacon. In the latter case, the “tag” can be an electronic display that is able to display messages to users according to instructions received from the server.
  • This approach of using powered, Bluetooth-enabled tags can be desirable for certain environments within a workplace, such as within elevators or when monitoring the sanitation of hotel rooms. Certain of these embodiments support automated, “passive tapping,” in that the mobile devices automatically communicate with the tags whenever a “user” comes within range of a tag. According to this approach, the tags can be placed in obscure, unobtrusive locations, and users need not be aware of the locations of the tags.
  • In other embodiments, the tags are unpowered. For example, the tags can be scannable labels or objects, such as “QR” codes, near-field communication devices (NFC's), or RFID's that are unpowered except when one of the mobile devices is located very nearby, such as within one foot, whereupon the tags are powered by RF energy emitted by the mobile devices. This approach eliminates any need to periodically replace the tags, or to replace batteries in the tags. However, this approach typically requires “active tapping,” wherein users “tap in” to a location by intentionally placing their mobile devices into proximity of a tag, either to scan a code or to energize an NFC device, each time the individual arrives at a tagged location. In some embodiments, users are also required to “tap out” of locations by placing their mobile device into proximity of a tag when they depart from a location.
  • Embodiments can combine within the same workplace both powered and unpowered tags, and can combine both passive and active tapping. For example, actively tapped (scanned) QR-code tags may be used at strategic locations within each floor of an office building, while passively tapped, Bluetooth beacons may be implemented in elevators of the same building.
  • Method embodiments of the present invention implement the devices that are described above, and then make use of the logged information by implementing any or all of the following methods.
  • Determining Location “Risk”
  • Embodiments determine a degree of risk of a tagged location, for example “low risk”, “medium risk” or “high risk,” according to whether any users have “tapped” the location since it was most recently sanitized. In some embodiments, a location is also deemed to be “low risk” after a certain duration of time has elapsed since it was most recently tapped, even if the location has not been sanitized in the meantime. Embodiments further indicate degrees of risk for various locations, such as a “moderate risk” rating when sufficient time has elapsed since the most recent tapping to cause most or all pathogens, if present, to have become non-viable. Embodiments push messages to the mobile devices to indicate the risk status of locations, for example to inform a user of a desk as to whether the desk location is considered to be low risk.
  • Sanitation Quality Control
  • According to embodiments of the present invention, sanitation personnel within the workplace are required to carry mobile devices, and their encounters with tags are logged. In some embodiments that require active tapping, sanitation workers are required to “tap in” when they arrive at a location that is to be sanitized, and this information is logged and used to ensure that an established sanitation schedule is adhered to. In some of these embodiments, the duration of the worker's encounter with a location is determined and recorded, either by requiring the worker to “tap out” when the sanitation is completed, and/or by noting when the worker taps into another location.
  • Embodiments further record whether a location was merely “sanitized,”, or if the location was “disinfected” or “sterilized.” The determination can be according to work instructions given to sanitizing personnel, and/or information provided by the sanitation personnel. Embodiments further record specific products and chemicals that are used for sanitation, for example by directing sanitation workers to scan barcode labels provided on product containers using their mobile devices.
  • Here “sanitized” refers to a combination of cleaning, i.e. removing visible dirt and debris, in addition to treatment with one or more substances that kill bacteria, but not necessarily viruses or fungi. “Disinfected” refers to a treatment with one or more substances that reduce or effectively eliminate viruses and fungi, in addition to bacteria. “Sterilization” refers to a treatment that destroys all microscopic life, and can include treatment by chemicals, heat, and/or radiation such as ultra-violet light.
  • Determining User Movement Patterns
  • In embodiments, during an initial tracking phase, users are allowed to move between workstations, bathrooms, and eating or other common areas, without restriction, and their movements are monitored according to the tapping events that are logged. Subsequently, in some embodiments, users are only required to tap in at locations that are outside of their normal movement patterns. For example, during normal hours of usage, after the initial tracking phase, a user may not need to continue tapping his or her desk and preferred lunch table, which the user encounters at the same times each day, but may still be required to tap in at conference rooms when attending meetings that are not daily events. In some of these embodiments, a “geo-fence” approach can be used to determine if a user is present at the workplace on a given day, for example based on determining the user's location using “GPS” (global positioning system) location awareness.
  • In some embodiments, users are encouraged or assigned to use certain specified bathroom stalls, sinks, cafeteria tables, and other locations at certain specified times. This approach can help to avoid crowding of certain locations by ensuring that use of common facilities such as bathroom stalls, lunch tables, etc. is distributed over time and among personnel. This approach can reduce each user's “virus footprint,” i.e. the range of locations and personnel who would be placed at risk if the user were to be unknowingly infectious.
  • Focusing Mitigation Efforts
  • In embodiments, if a user is found to have been infected, the logged tapping information can be used to enhance contact tracing by focusing testing and other mitigation efforts on other users who were either proximal to the infected user, e.g. ate at the same lunch table, or who were most likely to have come into contact with a surface that was touched by the infected user, e.g. used the same bathroom stall shortly after the infected user. In embodiments, air current patterns are assessed in common areas such as dining areas, bathrooms, and cubical “farms,” and are used to estimate which personnel located in these areas are most likely to be infected by air-born virus particles emitted by an infected user.
  • Defining “Sub-groups” of Personnel
  • By assigning certain bathroom stalls, sinks, lunch tables, and other common areas to the same limited group of users, embodiments create virtual sub-groups of users who come into some limited contact with each other, either in person or via shared surfaces, but who rarely come into contact with any other users outside of their sub-group. Accordingly, if a user is found to be infected, testing and other mitigation efforts can be rendered more effective by focusing these efforts primarily on the other members of the infected user's sub-group. Furthermore, in the worst case, any spread of the infection is likely to be limited only to other personnel within the sub-group, or to only a few sub-groups, and is less likely to spread throughout the workforce as a whole.
  • One general aspect of the present invention is a method of reducing transmission of an infectious disease. The method includes locating a plurality of tags at selected tagged locations within a monitored building area, selecting at least one person designated to work in the monitored building area, causing the at least one person to maintain a mobile device in the person's possession while the person is in the monitored building area, said mobile device being configured to interact with each of the tags during a tapping event when the mobile device is proximal to the tag, at least one of the mobile devices and the tags being configured to provide tapping information regarding said tapping events to a server, analyzing the tapping information, and in response to the analyzing, taking an action that reduces a risk of cross contamination of the infectious disease in the monitored building area by modifying at least one activity of the at least one person while the at least one person is in the monitored building area, and/or enhances an efficacy of a response to a transmission of the infectious disease in the monitored building area by identifying at least one person who is at an enhanced risk of infection by the infectious disease.
  • In embodiments, the monitored building area is a workplace.
  • In any of the above embodiments, the at least one person can comprise a plurality of people, each maintaining a mobile device while in the monitored building area.
  • In any of the above embodiments, the tags can be chosen from a group consisting of powered devices, unpowered devices, devices configured to communicate via Bluetooth communication, devices configured to communicate by near field communication, and optically scannable indicia.
  • In any of the above embodiments, the tapping information can include information pertaining to a duration of time during which the mobile device was proximal to the tag.
  • In any of the above embodiments, each mobile device can be configured to accept input information provided by the person possessing the mobile device, and to include said input information with the tapping information. In some of these embodiments, the input information includes information relevant to sanitation of the location where the tag is located.
  • In any of the above embodiments, modifying the at least one activity of the at least one person can include designating one of the tagged location as being at elevated risk if, according to the tapping information, the tagged location has not been sanitized since it was most recently tapped, and insufficient time has elapsed since the tagged location was most recently tapped to ensure that a specified percentage of any pathogens of the infectious disease deposited at the tagged location have become non-infectious.
  • In any of the above embodiments, modifying the at least one activity of the at least one person can include causing the person to adhere to sanitization requirements that are assigned to the person, if the analysis of the tapping information indicates non-compliance therewith.
  • In any of the above embodiments, modifying the at least one activity of the at least one person can include instructing the person to consistently use a designated facility from among a plurality of facilities that are within the monitored building area.
  • In any of the above embodiments, the designated facility can be selected from among the plurality of facilities according to an analysis of the tapping information. In some of these embodiments, the at least one person comprises a plurality of people, each of said people maintaining one of the mobile devices while in the monitored building area, and the method further comprises dividing the plurality of people into a plurality of sub-groups, and assigning the plurality of facilities that are within the monitored building area to the subgroups, such that use of the same one of the facilities by members of more than one of the subgroups is minimized or eliminated. And in some of these embodiments, the plurality of facilities includes facilities that are located in a common area.
  • In any of the above embodiments wherein the at least one person comprises a plurality of people, each maintaining a mobile device while in the monitored building area, enhancing an efficacy of a response to the transmission of the infectious disease can include, upon determining that a first person of the plurality of people is infected with the infectious disease, analyzing the tapping information to identify a second person of the plurality of people who is at heightened risk of infection by the first person, and applying at least one mitigating action to the second person. In some of these embodiments, the at least one mitigating action includes applying a test to the second person to determine if the second person has become infected by the infectious disease. In any of these embodiments, identifying the second person can include determining that the first and second persons occupied the same or proximal locations within the monitored building area at substantially the same time. And in some of these embodiments identifying the second person further includes determining a pattern of air currents proximal to the location or locations within the monitored building area that were occupied by the first and second persons at substantially the same time.
  • In any of the above embodiments, the at least one person designated to work in the monitored building area can be at least one sanitation staff worker and/or a plurality of office workers.
  • A second general aspect of the present invention is a method of reducing transmission of an infectious disease at a monitored building area. The method includes locating a plurality of tags at selected tagged locations within the monitored building area, providing all workers who wish to access the monitored building area with a mobile device while the person is in the monitored building area, said mobile device being configured to interact with each of the tags when the mobile device is proximal to the tag, at least one of the mobile devices and the tags being configured to provide information regarding any such interaction to a server, analyzing the interactions, and in response to the analyzing, taking an action that reduces a risk of cross contamination of the infectious disease in the monitored building area by modifying at least one activity of the at least one of said workers while the at least one worker is in the monitored building area, and/or enhances an efficacy of a response to a transmission of the infectious disease in the monitored building area by identifying at least one of said workers who is at an enhanced risk of infection by the infectious disease.
  • In embodiments, said identifying at least one of said workers who is at an enhanced risk of infection includes determining that that worker occupied a location that was previously occupied by another person at a time when a heightened risk existed of infectious disease spread from the another person.
  • The features and advantages described herein are not all-inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and not to limit the scope of the inventive subject matter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a perspective view of an employee workstation within a workplace according to an embodiment of the present invention where a Bluetooth beacon has been applied to a desk as a tag and a worker is carrying a mobile device in his pocket;
  • FIG. 1B is a perspective view of a mobile device scanning a tag that displays a QR-code in an embodiment of the present invention;
  • FIG. 1C is a perspective view of a mobile device receiving information from a near field RF tag that is energized temporarily by the mobile device in an embodiment of the present invention;
  • FIG. 1D is a perspective view of a mobile device scanning a selected one of a plurality of tags applied to a desk in an embodiment of the present invention;
  • FIG. 1E is a perspective view of a mobile device presenting a menu of tapping information during a tapping event for selection by a user in an embodiment of the present invention;
  • FIG. 2 is a perspective view of a plurality of bathroom stalls having associated tags and electronic displays that present information pertaining to sanitizing of the stalls in an embodiment of the present invention;
  • FIG. 3A is a perspective view of a server positioned to receive tapping information relevant to a plurality of tagged locations within a workplace in an embodiment of the present invention;
  • FIG. 3B is a front view of an entrance to a conference room where a tag has been applied and where an electronic sign has been installed that presents information regarding availability of the conference room as directed by the server in an embodiment of the present invention;
  • FIG. 4 is a flow diagram illustrating a method embodiment of the present invention wherein a degree of risk of a location is determined according to logged tapping events;
  • FIG. 5 is a flow diagram illustrating a method embodiment of the present invention wherein logged tapping events are analyzed to determine compliance with a specified sanitation schedule;
  • FIG. 6 is a flow diagram illustrating a method embodiment of the present invention wherein logged tapping events are used to establish and monitor compliance with location assignments and usage schedules assigned to users; and
  • FIG. 7 is a flow diagram illustrating a method embodiment of the present invention wherein logged tapping events are used to enhance mitigation of an infection event by identifying users who are at heightened risk of cross-contamination.
  • DETAILED DESCRIPTION
  • The present invention is an apparatus and method for minimizing the likelihood of both airborne and surface-mediated cross-contamination of pathogens between employees at a workplace, and for maximizing the effectiveness of contact tracing and other mitigation efforts if an infection does occur.
  • With reference to FIG. 1A, according to the present invention a majority of the personnel 110 who are present at the workplace, for example at least 80% of the personnel 110, and in embodiments up to 100% of the personnel 110, are required to carry mobile wireless devices 102. The mobile devices 102 are able to interact with “tags” 100 that are located at key locations within the workplace, such as desks 104 used by employees. These interactions, or “tapping events,” can include scanning or sensing of tags by the mobile devices and/or scanning or sensing of the mobile devices by tags. The scanning or sensing is generally limited to only short-range detection, so that each tapping event indicates proximity of the tag 100 to the mobile device 102, and hence of the “user” 110 who is carrying the mobile device 102.
  • In the embodiment of FIG. 1A, the tag 100 is a Bluetooth beacon that is attached to a user's desk 104, while the mobile device 102 is a cellular telephone. The Bluetooth range of the tag 100 is limited by limiting the power that is supplied to the Bluetooth transmitter of the tag 100, and thereby limiting the power of the RF signal 112 that is emitted by the tag 100. In similar embodiments, the tag 100 is a Bluetooth-enabled device that is in network communication with the server, while the mobile device 102 is a Bluetooth beacon. This approach of using powered, Bluetooth-enabled tags can be even more desirable for other environments within a workplace, such as within elevators. In embodiments where it is impractical to limit the Bluetooth detection range, the location of a user can be estimated by analyzing simultaneous tapping events recorded between a mobile device and a plurality of tags.
  • Embodiments such as FIG. 1A support automated, “passive tapping,” in that the mobile device 102 and tag 100 automatically communicates with each other whenever the user 110 comes within range of the tag 100, without requiring the user 110 to take any specific action. In the illustrated example, the mobile device 102 can communicate with the tag 100 while remaining in the user's pocket 114. In some of these embodiments the tags can be placed in obscure, unobtrusive locations (although the tag 100 in FIG. 1A is located in a clearly observable location), and users 110 need not be aware of the locations of the tags 100.
  • With reference to FIGS. 1B and 1C, in other embodiments the tags 100 are labels or objects 1105 such as “QR” codes (FIG. 1B), that can be scanned 108 by a camera 106 included in the mobile device 102, and/or are near-field communication devices (NFC's) or RFID's 100NF (FIG. 1C) that are unpowered except when one of the mobile devices is located very nearby, such as within one foot, whereupon the tags 100NF are powered by RF energy 116 emitted by the mobile devices 102. This approach eliminates any need to periodically replace the tags 100, or to replace the batteries in the tags 100. However, this approach typically requires “active tapping,” wherein users 110 “tap in” to a location by intentionally placing their mobile device 102 into proximity of a tag 100, either to scan 108 a code 1005 or to energize 116 an NFC device 100NF, each time the individual 110 arrives at a tagged location. In some embodiments, users 110 are also required to “tap out” of locations by placing their mobile device 102 into proximity of a tag 100 when they depart from a location.
  • Embodiments further record specific information regarding the nature or “type” of the tapping event, for example “arrived at location,” “sanitized location,” “departed location,” and “mark location as a frequently visited point.” Selection of the type of tapping event can be made by the user selecting from among a plurality of tags 100S, as illustrated in FIG. 1D, and/or by the user selecting an icon 120 or otherwise entering information into the mobile device 102, as illustrated in FIG. 1E.
  • With reference to FIG. 2, tags 100 are also placed at key locations within common areas, such as bathroom stalls 200 and sinks (not shown), as well as handrails in hallways (not shown) and tables in dining areas (302, FIG. 3A).
  • With reference to FIG. 3A, information regarding tapping “events” is forwarded by the mobile devices 102 and/or by the tags 100 to a central server 300, which maintains a log of encounters between the mobile devices 102, and hence the “users” 110 of the mobile devices 102, and the tagged locations. The information can be forwarded in “near-real time,” i.e. each time a mobile device 102 “taps” a location, and/or the information can be stored by the mobile devices 102 or tags 100 and subsequently transmitted to the central server 300 when a connection is established. In embodiments the server 300 records the times when the encounters took place, and in some embodiments also the durations of the encounters.
  • With reference again to FIG. 2, and with reference to FIG. 3B, electronically controlled signage 202 such as “e-ink” displays can be used to display the current status of a common area facility, such as a bathroom stall, as determined from tapping information that is logged by the central server 300. For example, with reference to FIG. 3B, during contact tracing after an infection event, if it is discovered that a conference room has been recently occupied by an individual who is likely to have been infected, then the conference room may be designated as being closed until it can be thoroughly disinfected.
  • In another example, electronically controlled signage 202 can be installed within or at the entrances of hotel rooms, and can display updated disinfection information to hotel guests. The signage 202 can include Bluetooth receivers and can be in network communication with the server 300, whereby the signage 202 function as tags 100, so that cleaning personnel need only carry Bluetooth beacons as their mobile devices 102. If it is not convenient to restrict the Bluetooth communication range of the signage 202, then in embodiments the location of a room sanitizing employee is determined to a high degree of accuracy by analyzing the times of signal detection and, in some embodiments the signal strengths that are reported to the server 300 by a plurality of the signage devices 202.
  • Method embodiments of the present invention collect and log information pertaining to tapping events as described above, and then make use of the logged information by implementing any or all of the following methods.
  • Determining Location “Risk”
  • In embodiments, the information logged by the server 300 is used to determine a degree of risk of a tagged location, such as “low risk”, “medium risk” or “high risk,” according to whether any users 110 have “tapped” the location since it was most recently sanitized. In some embodiments, with reference to FIG. 4, when a server 300 is informed that a location has been tapped 400 by a “high risk” user 110, the server 300 initially deems the location to be “high risk” 402 for contact with other users. If the location is subsequently tapped by a sanitization worker, and if the tapping indicates that the sanitation worker completed a sanitation of the location, or at least remained at the location for a duration that is consistent with a sanitizing event, then the location is deemed to have been sanitized and to be “low risk” 408.
  • In some embodiments, users 110 are assigned to sanitize their own workstations 104 before they depart, and to confirm that they have performed this task when they “tap out” from the workstation 104, for example by tapping a specific tag 100, and/or by entering information into their mobile device 102. Upon receiving this information, the server 300 then designates the workstation 104 to be low risk for use by another user 110, for example for an employee 110 who shares the same workstation 104 but during a different work shift.
  • If the server does not receive any information indicating that a location has been sanitized 404, then the server 300 continues to deem the location to be high risk until sufficient time has elapsed 406 to cause any deposited pathogens to become inactivated, at which point the server 300 deems the location to be low risk 408, even if it has not been sanitized since the previous user encounter 400. Embodiments further indicate degrees of risk for various locations, such as a “moderate risk” rating when sufficient time has elapsed since the most recent tapping to cause most pathogens, if present, to have become non-viable.
  • Embodiments push messages to the mobile devices 102 of users, and/or to strategically located electronic displays 202, to indicate the safety status of locations, for example to inform a user 110 whether an unoccupied conference room (e.g. FIG. 3B) is considered to be low risk. In some embodiments, if a second user 110 taps into a location that is considered to be high risk due to a recent interaction with a first user 110, then a warning alert is transmitted by the server 300 to the mobile device 102 of the second user 110 so as to warn the second user 110 to take appropriate measures as dictated by organizational policies and procedures, such as to evacuate the area until it is deemed low risk.
  • Sanitation Quality Control
  • According to the present invention, sanitation personnel within the workplace are required to carry mobile devices 102, and with reference to FIG. 5 their encounters with tags 100 are logged 500. In some embodiments, the logging further indicates whether a sanitation was performed, or at least whether the sanitation worker remained at the location for a duration that is consistent with a sanitizing event.
  • Embodiments can send push notifications to facility managers when scheduled sanitization activities do not occur according to schedule. In these cases, the system can automatically increase the risk associated with the particular tagged location based on utilization by staff, and/or until proper sanitization has been undertaken. In embodiments the algorithms that are used to assess risk are stored in the central server, and can be updated according to the latest scientific understanding of one or more pathogens that may be present in the environment.
  • Embodiments further record whether a location was merely “sanitized,”, or if the location was “disinfected” or “sterilized.” The determination can be according to work instructions given to sanitizing personnel, and/or information provided by the sanitation personnel. Embodiments further record specific products and chemicals that are used for sanitation, for example by directing sanitation workers to scan barcode labels provided on product containers using their mobile devices 102.
  • Here “sanitized” refers to a combination of cleaning, i.e. removing visible dirt and debris, in addition to treatment with one or more substances that kill bacteria, but not necessarily viruses or fungi. “Disinfected” refers to a treatment with one or more substances that reduce or effectively eliminate viruses and fungi, in addition to bacteria. “Sterilization” refers to a treatment that destroys all microscopic life, and can include treatment by chemicals, heat, and/or radiation such as ultra-violet light.
  • In embodiments, this logged data is compared 502 with a pre-specified sanitation schedule to determine 504 if the logged sanitation events meet or exceed the requirements of the sanitation schedule. If so, then compliance with the sanitation schedule is recorded 506. If not, then corrective action is initiated, for example by informing management 508 as to a suspected failure to adhere to the required sanitation schedule.
  • Determining User Movement Patterns
  • With reference to FIG. 6, in embodiments, during an initial tracking phase 600, users 110 are allowed to move between their workstations 104, bathrooms 200, corridors, dining facilities 302, and other common areas without restriction, and their movements are monitored according to the tapping events that are logged. The logged information is then used to determine optimal schedules and/or optimal assignments of common area locations 602 that will minimize crowding in those areas. For example, workers can be assigned 604 to use specific bathroom stalls, sinks, and cafeteria tables, and in some embodiments the use of certain facilities, such as cafeteria tables, can also be distributed over specified time periods, thereby ensuring that occupation of the common areas does not exceed maximum numbers, and that usage of common facilities such as bathroom stalls and cafeteria tables is evenly distributed.
  • Once optimal schedules and assignments have been distributed to the workers 604, subsequent tapping is used to log activity and can be used to monitor compliance with the location assignments and schedules 606.
  • In similar embodiments, after the initial tracking phase 600, users are only required to tap locations that are outside of their normal movement patterns. For example, during normal usage times a user may not need to continue tapping his or her desk and lunch table, which the user encounters at the same times each day, but may still be required to tap in at conference rooms when attending meetings that are not daily events. In some of these embodiments, a “geo-fence” approach can be used to determine if a user is present at the workplace on a given day, for example based on determining the user's location using “GPS” (global positioning system) location awareness.
  • Focusing Mitigation Efforts
  • With reference to FIG. 7, in embodiments, if a user is found to have been infected 700, the logged information can be used to enhance contact tracing by identifying at-risk workers who simultaneously occupied the same public spaces as the infected worker 702, such as by using the same bathroom at the same time, or occupying the same lunch table at the same time. In embodiments, air current patterns are assessed in common areas such as dining areas, bathrooms, and cubical “farms,” and are used to estimate which of the personnel who were located in these areas are most likely to have been infected by air-born virus particles emitted by the infected user.
  • The logged information can further be reviewed to determine at-risk workers who may have had physical contact with surfaces in common areas shortly after they had been rendered high risk due to contact by the infected worker 704. These determinations will not necessarily be limited to common areas. For example, sanitation workers may be at risk if they sanitized a workstation that is assigned to the infected employee.
  • Once the at-risk employees have been identified, aggressive virus testing and/or other mitigation efforts such as precautionary quarantine can be focused on the at-risk employees 706, while other employees who are not deemed to be at high risk may be allowed to continue to perform their duties, either in whole or in part.
  • Defining “Sub-groups” of Personnel
  • With reference again to FIG. 6, the step of determining optimal time schedules and location assignments for use of common areas 602 can be extended to create virtual sub-groups of workers who will come into limited contact with each other, either in person or via shared surfaces, but who will rarely come into contact with any other workers outside of their sub-group. This can be accomplished by assigning certain bathroom stalls, sinks, lunch tables, and other common areas to the same limited group of users, so that necessary interactions between workers are limited primarily to interactions within the defined sub-groups.
  • Accordingly, if a worker is found to be infected, testing and other mitigation efforts can be focused primarily on the other members of the infected user's sub-group. Furthermore, dividing the workforce into sub-groups in this matter can create virtual “firewalls” that can impede any spread of the infection within the workplace, whereby if there is any spread of infection, it will most likely be limited only to other personnel within the sub-group of the infected worker, or to only a few sub-groups, and is less likely to spread throughout the workforce as a whole.
  • The foregoing description of the embodiments of the invention has been presented for the purposes of illustration and description. Each and every page of this submission, and all contents thereon, however characterized, identified, or numbered, is considered a substantive part of this application for all purposes, irrespective of form or placement within the application. This specification is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of this disclosure.
  • Although the present application is shown in a limited number of forms, the scope of the invention is not limited to just these forms, but is amenable to various changes and modifications without departing from the spirit thereof. The disclosure presented herein does not explicitly disclose all possible combinations of features that fall within the scope of the invention. The features disclosed herein for the various embodiments can generally be interchanged and combined into any combinations that are not self-contradictory without departing from the scope of the invention. In particular, the limitations presented in dependent claims below can be combined with their corresponding independent claims in any number and in any order without departing from the scope of this disclosure, unless the dependent claims are logically incompatible with each other.

Claims (20)

I claim:
1. A method of reducing transmission of an infectious disease, comprising:
locating a plurality of tags at selected tagged locations within a monitored building area;
selecting at least one person designated to work in the monitored building area;
causing the at least one person to maintain a mobile device in the person's possession while the person is in the monitored building area, said mobile device being configured to interact with each of the tags during a tapping event when the mobile device is proximal to the tag;
at least one of the mobile devices and the tags being configured to provide tapping information regarding said tapping events to a server;
analyzing the tapping information; and
in response to the analyzing, taking an action that at least one of:
reduces a risk of cross contamination of the infectious disease in the monitored building area by modifying at least one activity of the at least one person while the at least one person is in the monitored building area; and
enhances an efficacy of a response to a transmission of the infectious disease in the monitored building area by identifying at least one person who is at an enhanced risk of infection by the infectious disease.
2. The method of claim 1, wherein the monitored building area is a workplace.
3. The method of claim 1, wherein the at least one person comprises a plurality of people, each maintaining a mobile device while in the monitored building area.
4. The method of claim 1, wherein the tags are chosen from a group consisting of powered devices, unpowered devices, devices configured to communicate via Bluetooth communication, devices configured to communicate by near field communication, and optically scannable indicia.
5. The method of claim 1, wherein the tapping information includes information pertaining to a duration of time during which the mobile device was proximal to the tag.
6. The method of claim 1, wherein each mobile device is configured to accept input information provided by the person possessing the mobile device, and to include said input information with the tapping information.
7. The method of claim 6, wherein the input information includes information relevant to sanitation of the location where the tag is located.
8. The method of claim 1, wherein modifying the at least one activity of the at least one person includes designating one of the tagged location as being at elevated risk if, according to the tapping information:
the tagged location has not been sanitized since it was most recently tapped; and
insufficient time has elapsed since the tagged location was most recently tapped to ensure that a specified percentage of any pathogens of the infectious disease deposited at the tagged location have become non-infectious.
9. The method of claim 1, wherein modifying the at least one activity of the at least one person includes causing the person to adhere to sanitization requirements that are assigned to the person, if the analysis of the tapping information indicates non-compliance therewith.
10. The method of claim 1, wherein modifying the at least one activity of the at least one person includes instructing the person to consistently use a designated facility from among a plurality of facilities that are within the monitored building area.
11. The method of claim 10, wherein the designated facility is selected from among the plurality of facilities according to an analysis of the tapping information.
12. The method of claim 10, wherein the at least one person comprises a plurality of people, each of said people maintaining one of the mobile devices while in the monitored building area, and the method further comprises dividing the plurality of people into a plurality of sub-groups, and assigning the plurality of facilities that are within the monitored building area to the subgroups, such that use of the same one of the facilities by members of more than one of the subgroups is minimized or eliminated.
13. The method of claim 12, wherein the plurality of facilities includes facilities that are located in a common area.
14. The method of claim 3, wherein enhancing an efficacy of a response to the transmission of the infectious disease includes, upon determining that a first person of the plurality of people is infected with the infectious disease, analyzing the tapping information to identify a second person of the plurality of people who is at heightened risk of infection by the first person, and applying at least one mitigating action to the second person.
15. The method of claim 14, wherein the at least one mitigating action includes applying a test to the second person to determine if the second person has become infected by the infectious disease.
16. The method of claim 14, wherein identifying the second person includes determining that the first and second persons occupied the same or proximal locations within the monitored building area at substantially the same time.
17. The method of claim 16, wherein identifying the second person further includes determining a pattern of air currents proximal to the location or locations within the monitored building area that were occupied by the first and second persons at substantially the same time.
18. The method of claim 1, wherein the at least one person designated to work in the monitored building area is at least one sanitation staff worker and/or a plurality of office workers.
19. A method of reducing transmission of an infectious disease at a monitored building area, comprising:
locating a plurality of tags at selected tagged locations within the monitored building area;
providing all workers who wish to access the monitored building area with a mobile device while the person is in the monitored building area, said mobile device being configured to interact with each of the tags when the mobile device is proximal to the tag, at least one of the mobile devices and the tags being configured to provide information regarding any such interaction to a server;
analyzing the interactions; and
in response to the analyzing, taking an action that at least one of:
reduces a risk of cross contamination of the infectious disease in the monitored building area by modifying at least one activity of the at least one of said workers while the at least one worker is in the monitored building area; and
enhances an efficacy of a response to a transmission of the infectious disease in the monitored building area by identifying at least one of said workers who is at an enhanced risk of infection by the infectious disease.
20. The method of claim 19, wherein said identifying at least one of said workers who is at an enhanced risk of infection includes determining that that worker occupied a location that was previously occupied by another person at a time when a heightened risk existed of infectious disease spread from the another person.
US17/039,170 2020-06-05 2020-09-30 Apparatus and method for minimizing direct and indirect cross-contamination of pathogens between personnel within a workplace Abandoned US20210385614A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/039,170 US20210385614A1 (en) 2020-06-05 2020-09-30 Apparatus and method for minimizing direct and indirect cross-contamination of pathogens between personnel within a workplace
US17/083,514 US11212645B2 (en) 2020-06-05 2020-10-29 Apparatus and method for assigning resources to persons within a facility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/894,030 US10841737B2 (en) 2020-06-05 2020-06-05 Apparatus and method for minimizing direct and indirect cross-contamination of pathogens between personnel within a workplace
US17/039,170 US20210385614A1 (en) 2020-06-05 2020-09-30 Apparatus and method for minimizing direct and indirect cross-contamination of pathogens between personnel within a workplace

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US16/894,030 Continuation US10841737B2 (en) 2020-06-05 2020-06-05 Apparatus and method for minimizing direct and indirect cross-contamination of pathogens between personnel within a workplace
US17/083,514 Continuation US11212645B2 (en) 2020-06-05 2020-10-29 Apparatus and method for assigning resources to persons within a facility

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/083,514 Continuation-In-Part US11212645B2 (en) 2020-06-05 2020-10-29 Apparatus and method for assigning resources to persons within a facility

Publications (1)

Publication Number Publication Date
US20210385614A1 true US20210385614A1 (en) 2021-12-09

Family

ID=72514963

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/894,030 Active US10841737B2 (en) 2020-06-05 2020-06-05 Apparatus and method for minimizing direct and indirect cross-contamination of pathogens between personnel within a workplace
US17/039,170 Abandoned US20210385614A1 (en) 2020-06-05 2020-09-30 Apparatus and method for minimizing direct and indirect cross-contamination of pathogens between personnel within a workplace

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/894,030 Active US10841737B2 (en) 2020-06-05 2020-06-05 Apparatus and method for minimizing direct and indirect cross-contamination of pathogens between personnel within a workplace

Country Status (1)

Country Link
US (2) US10841737B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220136857A1 (en) * 2020-11-03 2022-05-05 Rutgers, The State University Of New Jersey Safety-aware route recommendation system and method
US11354996B1 (en) * 2021-04-30 2022-06-07 Sony Group Corporation Social distancing alert notification based on location

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7034597B2 (en) * 2017-03-27 2022-03-14 株式会社Lixil Toilet system
US11264130B2 (en) * 2019-02-28 2022-03-01 Fujifilm Business Innovation Corp. System and method for estimating pathogen transfer from mobile interaction in clinical environments and a warning system and method for reducing cross-contamination risks
US20220020481A1 (en) 2020-07-20 2022-01-20 Abbott Laboratories Digital pass verification systems and methods
US20230394880A1 (en) * 2020-10-19 2023-12-07 Signify Holding B.V. Systems and methods for monitoring social distancing using motion sensors
JP6925071B1 (en) * 2020-11-13 2021-08-25 IoT−EX株式会社 Information processing system, information processing method and computer program
NL2028050B1 (en) * 2021-04-23 2022-11-02 Knollenstein Tech B V Methods, device, software and computer-readable medium for collecting infectious disease contact data
US11576026B1 (en) 2021-08-10 2023-02-07 International Business Machines Corporation Vehicle contamination notification using ad hoc networks

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727818B1 (en) * 1999-10-29 2004-04-27 Hill-Rom Services, Inc. Hygiene monitoring system
US20090091458A1 (en) * 2007-10-05 2009-04-09 Richard Deutsch Systems and methods for monitoring health care workers and patients
US20090319295A1 (en) * 2006-07-25 2009-12-24 Kass-Hout Taha A Global disease surveillance platform, and corresponding system and method
WO2011031774A1 (en) * 2009-09-08 2011-03-17 Biovigil, Llc Hand cleanliness
US20110121974A1 (en) * 2009-11-20 2011-05-26 Versus Technology, Inc. Real-time method and system for monitoring hygiene compliance within a tracking environment
WO2012081006A1 (en) * 2010-12-15 2012-06-21 Michal Lev System and method for analyzing and controlling epidemics
US20130187775A1 (en) * 2012-01-20 2013-07-25 Cleankeys, Inc. System for monitoring infection control and prevention processes
US20130318027A1 (en) * 2011-11-20 2013-11-28 Gal Almogy System and method to enable detection of viral infection by users of electronic communication devices
CA2486089C (en) * 2002-05-15 2013-12-17 Tommy J. Morris System and method for handling medical information
US9497428B2 (en) * 2013-07-19 2016-11-15 Versus Technology, Inc. Automatic hygiene compliance assistance
US9609003B1 (en) * 2007-06-12 2017-03-28 Icontrol Networks, Inc. Generating risk profile using data of home monitoring and security system
US20170173200A1 (en) * 2015-12-19 2017-06-22 Steven N. Wyman Sanitation platform
US9773402B2 (en) * 2012-09-04 2017-09-26 Hyginex Israel Ltd. Infectious disease spread prevention
US10002518B1 (en) * 2016-02-18 2018-06-19 OND Creative Solutions, LLC System and method of biological and germ cross contamination control
US20210272702A1 (en) * 2020-03-02 2021-09-02 Hooman HAKAMI Method and system for assessing likelihood of disease transmission
US11264130B2 (en) * 2019-02-28 2022-03-01 Fujifilm Business Innovation Corp. System and method for estimating pathogen transfer from mobile interaction in clinical environments and a warning system and method for reducing cross-contamination risks

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7242306B2 (en) * 2001-05-08 2007-07-10 Hill-Rom Services, Inc. Article locating and tracking apparatus and method
US20040211923A1 (en) * 2003-04-24 2004-10-28 Bridges John H. Anthrax remediation and response
IL164457A0 (en) * 2004-10-10 2005-12-18 Nbc - protection and decontamination system
US8294584B2 (en) * 2004-10-12 2012-10-23 Plost Gerald N System, method and implementation for increasing a likelihood of improved hand hygiene in a desirably sanitary environment
US7423533B1 (en) * 2004-10-19 2008-09-09 Cognetive Systems, Incorporated System for monitoring and recording cross-contamination events
US8502681B2 (en) * 2005-06-20 2013-08-06 Biovigil, Llc Hand cleanliness
US9147334B2 (en) * 2008-11-19 2015-09-29 Proventix Systems, Inc. System and method for monitoring hospital workflow compliance with a hand hygiene network
US20140180713A1 (en) * 2009-11-20 2014-06-26 Versus Technology, Inc. Real-time method and system for monitoring hygiene compliance within a tracking environment utilizing various timers
EP2997505A4 (en) * 2013-05-16 2016-12-07 Nfluence Media Inc Privacy sensitive persona management tools
CN103473574B (en) * 2013-09-01 2018-07-31 湖南人文科技学院 A kind of uncertainty RFID data processing method based on sequential relationship
GB2521844A (en) * 2014-01-03 2015-07-08 Fluke Corp A method and system for monitoring hand washing
US9773403B2 (en) * 2015-07-28 2017-09-26 Hill-Rom Services, Inc. Hygiene compliance system
US20190034820A1 (en) * 2017-07-25 2019-01-31 Nathan Manning Method, system and program product for forecasted incident risk
US10643446B2 (en) * 2017-12-28 2020-05-05 Cerner Innovation, Inc. Utilizing artificial intelligence to detect objects or patient safety events in a patient room
CA3109003A1 (en) * 2018-08-07 2020-02-13 Anram Holdings Remote cleaning quality management systems and related methods of use

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727818B1 (en) * 1999-10-29 2004-04-27 Hill-Rom Services, Inc. Hygiene monitoring system
CA2486089C (en) * 2002-05-15 2013-12-17 Tommy J. Morris System and method for handling medical information
US20090319295A1 (en) * 2006-07-25 2009-12-24 Kass-Hout Taha A Global disease surveillance platform, and corresponding system and method
US9609003B1 (en) * 2007-06-12 2017-03-28 Icontrol Networks, Inc. Generating risk profile using data of home monitoring and security system
US20090091458A1 (en) * 2007-10-05 2009-04-09 Richard Deutsch Systems and methods for monitoring health care workers and patients
WO2011031774A1 (en) * 2009-09-08 2011-03-17 Biovigil, Llc Hand cleanliness
US20110121974A1 (en) * 2009-11-20 2011-05-26 Versus Technology, Inc. Real-time method and system for monitoring hygiene compliance within a tracking environment
WO2012081006A1 (en) * 2010-12-15 2012-06-21 Michal Lev System and method for analyzing and controlling epidemics
US20130318027A1 (en) * 2011-11-20 2013-11-28 Gal Almogy System and method to enable detection of viral infection by users of electronic communication devices
US20130187775A1 (en) * 2012-01-20 2013-07-25 Cleankeys, Inc. System for monitoring infection control and prevention processes
US9773402B2 (en) * 2012-09-04 2017-09-26 Hyginex Israel Ltd. Infectious disease spread prevention
US9497428B2 (en) * 2013-07-19 2016-11-15 Versus Technology, Inc. Automatic hygiene compliance assistance
US20170173200A1 (en) * 2015-12-19 2017-06-22 Steven N. Wyman Sanitation platform
US10002518B1 (en) * 2016-02-18 2018-06-19 OND Creative Solutions, LLC System and method of biological and germ cross contamination control
US11264130B2 (en) * 2019-02-28 2022-03-01 Fujifilm Business Innovation Corp. System and method for estimating pathogen transfer from mobile interaction in clinical environments and a warning system and method for reducing cross-contamination risks
US20210272702A1 (en) * 2020-03-02 2021-09-02 Hooman HAKAMI Method and system for assessing likelihood of disease transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220136857A1 (en) * 2020-11-03 2022-05-05 Rutgers, The State University Of New Jersey Safety-aware route recommendation system and method
US11354996B1 (en) * 2021-04-30 2022-06-07 Sony Group Corporation Social distancing alert notification based on location

Also Published As

Publication number Publication date
US20200304944A1 (en) 2020-09-24
US10841737B2 (en) 2020-11-17

Similar Documents

Publication Publication Date Title
US10841737B2 (en) Apparatus and method for minimizing direct and indirect cross-contamination of pathogens between personnel within a workplace
US11367534B2 (en) Systems and methods for contagious disease risk management
US7551092B1 (en) Sanitary monitoring system to monitor the hand sanitation of health care workers or other required sanitary activities
US9147334B2 (en) System and method for monitoring hospital workflow compliance with a hand hygiene network
JP5906187B2 (en) Method and system for detecting when a device is cleaned
US20210361240A1 (en) Rati-fi employee monitoring system
US9959743B2 (en) Hygiene compliance system
US9317659B2 (en) Healthcare management
US20090224907A1 (en) Sanitation Tracking and Alerting System
US8866608B2 (en) Facility sanitization management
US20150221208A1 (en) Sanitation Dispenser System and Program
US11862330B2 (en) Proximity based systems for contact tracing
Gravina et al. Behavioral strategies for reducing disease transmission in the workplace
US11783240B2 (en) Building management system with dynamic workspace assignment
Baslyman et al. Towards an RTLS-based hand hygiene notification system
US11120681B2 (en) Method and system for monitoring hand hygiene compliance
Taylor et al. Safely returning America to work part II: industry-specific guidance
UK Working safely during coronavirus (COVID
Black Pandemic planning for the construction industry–A guide
Schoening et al. The Latest CDC Guidelines for Events
US11212645B2 (en) Apparatus and method for assigning resources to persons within a facility
Taylor Covid-19: Contact/Call Centre Workers in Scotland
US11842619B2 (en) System and method for insuring hand-hygiene compliance
Bankova et al. Strategies and Tactics for OHS Management to Confront the Pandemic Crisis in the Hospitality Industry: The Case of Countries in Europe
US10970659B1 (en) Tasking system

Legal Events

Date Code Title Description
AS Assignment

Owner name: INNOVET, LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MILLIUS, PETER;WHITE, JAMES A.;REEL/FRAME:053950/0868

Effective date: 20200724

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE