US20210379500A1 - Tubular Transport System With Motorized Vehicle - Google Patents

Tubular Transport System With Motorized Vehicle Download PDF

Info

Publication number
US20210379500A1
US20210379500A1 US16/946,064 US202016946064A US2021379500A1 US 20210379500 A1 US20210379500 A1 US 20210379500A1 US 202016946064 A US202016946064 A US 202016946064A US 2021379500 A1 US2021379500 A1 US 2021379500A1
Authority
US
United States
Prior art keywords
hollow tube
transport system
vehicle
motorized vehicle
tubular transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/946,064
Inventor
Anthony-Joseph DiMatteo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US16/946,064 priority Critical patent/US20210379500A1/en
Publication of US20210379500A1 publication Critical patent/US20210379500A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H21/00Other toy railways
    • A63H21/04Mono-railways, e.g. with vehicles embracing the rail in the form of a saddle
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H18/00Highways or trackways for toys; Propulsion by special interaction between vehicle and track
    • A63H18/02Construction or arrangement of the trackway
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H18/00Highways or trackways for toys; Propulsion by special interaction between vehicle and track
    • A63H18/02Construction or arrangement of the trackway
    • A63H18/021Flexible tracks; Fluid-pressure-actuated tracks
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H18/00Highways or trackways for toys; Propulsion by special interaction between vehicle and track
    • A63H18/02Construction or arrangement of the trackway
    • A63H18/04Up-and-down-hill trackways
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H18/00Highways or trackways for toys; Propulsion by special interaction between vehicle and track
    • A63H18/08Highways or trackways for toys; Propulsion by special interaction between vehicle and track with mechanical means for guiding or steering
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H29/00Drive mechanisms for toys in general
    • A63H29/22Electric drives

Definitions

  • the present invention generally relates to miniature motorized vehicles travelling in hollow tubes that may be at least partially transparent, with unique components more fully described below.
  • the hollow tubes may be closed-loop or open-loop (meaning, having a closed periphery end view, such as a circular or square tube, or having an open end view periphery, such as a C-shaped tube with an open front), and these tubes may be opaque, translucent, transparent, and combinations thereof.
  • the hollow tubes may have sidewalls constructed from a single piece or multiple pieces put together.
  • the hollow tubes are specifically built to be bent by a user but to not bend exceedingly, i.e., to not bend so tightly as to kink or to thereby have such a small turning radius as to jam up the motorized vehicle inside and thus inhibit travel of the motorized vehicle.
  • the motorized vehicle may be a single unit or two or more units connected to one another and may have the appearance of any theme, such as army vehicles, spaceships, old Iron Horses, trains, modern bullet trains, racing cars, various animals, Santa with sleigh and reindeer; or theme character vehicles with licensed characters such as Mickey Mouse and Shrek drivers.
  • the motorized vehicle may come in on part, or two or more parts with removable theme tops or cover pieces that will thereby present the use of interchangeable themes (a cartoon character in a Santa Clause outfit in a Christmas vehicle, the Easter Bunny in an Easter egg vehicle, or vehicles with personalized children's names, etc.).
  • the tubes that carry these motorized vehicles may have corresponding theme scenery.
  • the theme scenery themselves may be interchangeable.
  • the vehicles and the system itself may be used for purposes other than amusement, such as for the mobility of security cameras, the mobility of cleaning solutions, or for transport of sensitive matter such as toxins.
  • the motor that drives the vehicle may be contained within the vehicle or external to it (such as cable, or tract driven, or magnetic motive power), to provide indirect drive.
  • the motor may be electric (AC or DC), or magnetic or gas powered, or any other known motive power.
  • the motorized vehicle may be operated in a continuous loop tube, or in a closed ended tube or set of tubes, back and forth.
  • U.S. Pat. No. 6,276,280 B1 to Nitti describes an elevated toy train track that is formed from multiple platform sections and a stabilizing ring that are attachable together to form a ring-like structure.
  • Each platform section has at least two lateral sides, where one lateral side has ridges and the other lateral side has slots.
  • the stabilizing ring is attached, using threaded fasteners, to the joined platform sections to form the ring-like structure.
  • a train track is attached to the ring-like structure or can be integrally molded to the platform sections.
  • the structure is attachable to the central pole of a Christmas tree, thus providing an elevated toy train track.
  • U.S. Pat. No. 6,152,800 to Higuchi describes an ornamental track toy that includes a loop track assembly, a motor, an elongated coupling and an ornament.
  • the track assembly includes a hollow base having a flat surface, a slot in the flat surface and the elongated coupling slidably mounted in a hollow channel in the base.
  • the motor includes a gear and a pinch roller for moving the elongated coupling in a loop path around the track assembly.
  • the elongated coupling includes a link that is connected to the ornament so that the ornament is pulled around the track assembly as the elongated coupling is moved around the loop path of the track assembly.
  • U.S. Pat. No. 5,588,164 to Proulx describes a base unit for supporting an infant carrier seat comprising a housing member having a bottom curved surface for rocking on a generally flat support surface, an upper central portion on which an infant carrier seat is removably mountable, an endless pathway that circumscribes said central portion, a weight and a motor to move along the weight in a closed loop at a selected predetermined rate of travel.
  • the weight in the preferred form is a toy train unit with open topped box cars that removably hold a supply of weights.
  • a sound generator on the train provides music and/or train whistle simulation. An infant can be entertained by the train travelling around the infant, by sounds generated by the train, and the infant being rocked, all at the same time. The motion of the train travelling around the infant can be used to check responses of the infant as can also the movement of sound relative to the infant.
  • U.S. Pat. No. 5,450,682 to Franco et al describes a track display apparatus that comprises an elongated endless track preferably in the form of a ring.
  • a pair of spaced apart conductive rails extend along the track and are engaged by conductive rollers which receive electrical power for a motor housing surrounded by an ornament.
  • the ornament is advantageously Santa with his sleigh and the reindeer.
  • Power is supplied by a power signal unit attached along the track and electrically connected to the rails and a low voltage direct current power source.
  • a plurality of supports are connected around the track for supporting the track above the floor or around another ornament, for example, a Christmas tree.
  • U.S. Pat. No. 5,279,871 to Segan et al describes a Christmas display resembling a ski-lift and ski-slope, for use in conjunction with a Christmas tree.
  • the display comprises a track having a first end and a second end, wherein the first end is at a higher elevation than the second end, and a lift disposed between the first end and the second end.
  • the device also comprises a plurality of figurines having a base configured for slidable movement along the track from the first end of track to the second end of track whereby the lift transports the figurine back to the first end of the track in a continuous manner.
  • the display also comprises a support mechanism for supporting the display on a Christmas tree.
  • U.S. Pat. No. 5,211,366 to Cummings describes an improved, ornamental, decorative structure such as a Christmas tree or the like, in which the structure has a decorative device mounted above a floor in cantilever fashion.
  • the decorative device is in effect cantilevered above the floor and uses a center portion of the structure as the main support, thus avoiding the need for additional support beneath the device and on a floor below.
  • the device itself can be a ring which can support another object, such as a continuous track over which a train can be movable, either under manual power or by electrical power supplied to the track by an electrical transformer on the floor adjacent to the ornamental structure.
  • the train will have an engine provided with an electrical motor which will drive the train along at an elevated position.
  • the device will provide a display which will provide enjoyment and amusement for young and old alike.
  • the operation of the train and other still or moving parts associated with the elevated device will be seen from a location near the structures and will present no hazards which might otherwise detract from the aesthetic and safety aspects of the device as well as the ease with which the elements mount the device on a center portion of the Christmas tree or the like.
  • U.S. Pat. No. 5,027,712 to Wallick describes a monorail toy train suspended from an overhead guideway, which is secured to a ceiling or other fixed support structure.
  • the elongated tubular guideway includes a plurality of guideway sections connected together at a joint by a short tubular coupler and a hanger secured to the ceiling.
  • Each guideway section is connected to like length guide rails and rack rails, which together define a track for cars of the monorail toy.
  • Trucks of driven and nondriver cars ride on the track defined by the rack rail and guide rail.
  • the driven car includes a drive frame including a motor, drive gear and pinion gear, which pinion gear meshes with the rack rail to provide motive force for the monorail train.
  • U.S. Pat. No. 4,632,038 to Lawrence describes a monorail vehicular system that uses an elevated track of multipiece construction, with a central electrically insulated panel having a supporting lower metal rail, which acts as one side of an electrical supply system, and with an upper metal rail on top of the central panel for support, and to provide the other side of the electrical system.
  • the lower rail is supported at intervals by clips, carried on spaced vertical poles which rest on bases on the ground or other supporting surface.
  • a car used in the system rides on wide roller type wheels on top of the upper metal rail, has a resiliently urged collector in contact with the upper rail, and a pair of contacts which engage the lower metal rail, with a pair of horizontal stabilizing wheels extending downwardly from the car on each side of the central panel and in contact with it, and which wheels are unequally spaced from the upper rail.
  • U.S. Pat. No. 4,231,294 to Arzoumanian describes a toy train in which each track length or section is mounted in a base having a spaced longitudinal slot parallel with the tracks and outside of the tracks.
  • a pair of spaced parallel rails are mounted for carrying the electric current to the train.
  • a transparent curved cover is arched over the tracks with the edges of the cover entering the slots in the base.
  • a connecting strip also joins the contiguous edges of the transparent cover to form a continuous enclosed transparent tube.
  • the train is generally annular to fit the tube.
  • the train is also provided with a pair of grooved wheels adapted to engage the electrical rails.
  • This not only supplies the electrical current to the train, but also serves to hold the train on the tracks and prevent derailment at high speeds especially around the curves.
  • the tubular system may have an open section for a station and the sections may be raised over obstacles.
  • the sections may also be curved to provide a sinuous track. On curved sections, the rails are banked to minimize derailment.
  • U.S. Pat. No. 4,217,727 to Fetty et al describes a toy monorail system of the support type for vehicles such as miniature railway cars and slot cars.
  • the monorail track consists of an elongated flat strip or length of plastic having flat metal conductors located in flanged recesses molded into each side of the strip or length.
  • the track is edge-mounted and, on flat surfaces, is self-supporting.
  • the system can be set up in an unlimited number of configurations and elevations.
  • the track is arranged either in a self-supporting configuration on floors, table tops and the like, or utilizes special supports which engage a slot or recess molded into one edge of the track.
  • the drive vehicle is mounted on the edge of the track opposite the slotted or recessed edge.
  • the vehicle utilizes a pair of shaped contacts to make electrical connection with the metallic conductors and a pair of drive wheels mounted on vertical axes for gripping the plastic monorail on each side at a point on the track below the location of the metallic conductors.
  • U.S. Pat. No. 3,540,153 to Aoki describes a toy comprising a track system and a vehicle for traveling over said track system, said track system comprising a plurality of longitudinally extending track sections, means on each of said track sections for interconnecting said sections together, said track sections having varied configurations so that when interconnecting a portion of said track system extends in an elevated bridge-like structure above the remainder of said track system, each said track section having a channel-shaped cross section transverse of the longitudinal direction and the channel-shaped cross section being formed of a longitudinally extending bottom portion and a pair of laterally spaced side walls, each said track section having a pair of longitudinally extending inward facing grooves, a pair of lateral spaced longitudinally extending parallel racks formed on said track sections, a motor mounted in said vehicle for supplying the power to propel said vehicle on said track sections, at least a pair of guild rollers mounted on said vehicle and extending into said grooves in said track sections for retaining said vehicle on said track system regardless of the orientation of
  • U.S. Pat. No. 3,115,845 to Girz describes a toy monorailway comprising a running and guild rail and at least one vehicle including a support plate or the like and an electric motor and being driven by said electric motor, said vehicle being provided with means extending downwardly from said support plate and straddling said rail, a pair of wheels made of rubber or the like serving as running and driving wheels resting on said rail, one disposed at each end of said motor, reduction gearing connected between each said wheel and said motor and operatively linking said wheels to said motor, and a vehicle housing connected to said support plate, said means straddling said rails comprising one unit ahead of and one unit behind said motor and being articulately supported in said housing and being provided at the lower ends with current collector means, and pairs of lateral guidance and balance maintaining devices each including two members, one each in engagement, with a different side of said rail.
  • U.S. Pat. No. 2,106,698 to Bonanno describes an articulated toy train, in combination, a coupling section comprising a truck having wheels and axles, a truck-carried member, a spring normally holding the truck-carried member in one position, the member being freely manually movable to another predetermined position, a fixed truck-supported element, a movable element carried by the moveable member and normally held thereby in a predetermined position opposite the fixed element, and car bodies each having draft elements extending between the fixed and movable elements and having a configuration to interlock with one of said elements to prevent separation of the corresponding car body from the coupling section when the movable member is in normal position and to transmit pull from one draft to the other without changing the load on the spring, the draft elements being unlocked when said member is manually moved to the other position.
  • U.S. Pat. No. 2,096,579 to Frank et al describes a trolley duct having a vertical wall and a horizontal wall provided with a continuous elongated riding slot bounded by a vertical flange bent transversely from the horizontal wall into the duct, and a bus bar rail between the flange and the adjacent vertical wall and having a horizontal portion adjacent the horizontal wall of the duct and a vertical portion adjacent the flange, the vertical portion of the rail extending into the duct beyond the flange to provide on the rail exposed vertical surfaces.
  • United States Patent Publication No. 2003/0029927 A1 to Spano describes scenery apparatus for a toy train track array formed from a series of oblong panels which can be folded for storage and interconnected for erecting in a wide variety of layouts.
  • the panels contain structure for interconnecting the panels, for adjusting the size of the array, for securing the panels to the track and for ensuring that the panels will not interfere with the track and or the model trains running on the track with which the scenery is associated.
  • United States Patent Publication No. 2013/0045656 A1 to Aigner et al describes an interactive toy train system including a track layout, a plurality of vehicles configured to travel along the track, and a plurality of destinations removably coupled to the track.
  • the vehicles are configured to communicate with one another and the vehicles are further configured to communicate with one or more of the destinations.
  • the system includes an infrared toy network having a network protocol, which determines who is present and who is not present thereby allowing multiple vehicles and destinations to converse intelligently and without interference.
  • the present invention is directed to a tubular transport system with a motorized vehicle, which includes: a) a hollow tube having, with sidewalls constructed from a single piece or multiple pieces put together, a proximal end and a distal end, the hollow tube being semi-flexible so as to bend no less than a predetermined minimum radius, without kinking, the hollow tube being opaque or transparent or at least partially transparent, the hollow tube having a supportive spine in contact therewith to facilitate control of bending and holding a bent portion of the hollow tube; b) a motorized vehicle moveably positioned within the hollow tube; c) a motor connected to and preferably within the vehicle for advancing the motorized vehicle by driving a traction mechanism; d) a power source connected to the motor, the power source being located in a position selected from the group consisting of: (i) within the motor vehicle: (ii) within the hollow tube, external from the motor vehicle, and (iii) functionally connected to the motor of the motor vehicle; e) the traction mechanism for
  • the spine is necessary for structural support to hold the tube in place when put in its desired position(s) and also necessary to provide support for the tube's other components, e.g., the motor vehicle.
  • the spine may be a separate attached component, an integrally formed component or a portion of the tube itself.
  • the hollow tube has background images on at least a portion thereof, such as scenery or other images.
  • the hollow tube supportive spine is in contact therewith to facilitate control of bending and holding a bent portion of the hollow tube
  • the hollow tube supportive spine is at least one set of fingers wherein each finger has a first end, being a proximal end that is connected to the hollow tube, and a second end, being a distal end that is extended away from the hollow tube.
  • the tube has a first position, being a rest position, with open space between each adjacent finger distal end when the hollow tube is unbent, and having a second position with each adjacent finger distal end contacting one another when the hollow tube is bent to the minimum radius, wherein the contacting creates stops to inhibit further bending, and having a third position wherein the fingers are spread apart to a maximum spacing beyond the rest position.
  • the hollow tube supportive spine is an exoskeleton attached to the hollow tube.
  • the hollow tube supportive spine is embedded within the hollow tube.
  • the embedded supportive spine may be selected from the group consisting of at least one continuous coil, a plurality of disconnected linear supports, or a plurality of disconnected arcuate supports. These coils, lines and arcs may be made of sturdier plastic (plastic that is sturdier than the flexible hollow tube), metal or other material, with single filament wires and woven wires preferred.
  • the hollow tube includes at least one light thereon, the light being selected from the group consisting of: (i) at least one spotlight; (ii) at least one backlight; (iii) at least one overhead light; (iv) at least one string of LED lights; and (v) a combination thereof.
  • the motor vehicle includes a receiver adapted for the attachment and removal of interchangeable overcaps, and the tubular transport system includes at least one theme-based overcap which may also be attached onto external vehicles that are not connected to the tubes.
  • Motor vehicle should be taken to include singular and plural vehicles, with and without direct motors, which may be articulated or not.
  • the motor is an electric motor and the power source is selected from the group consisting of an AC power source and a DC power source.
  • the power source is a DC power source, the DC power source being a battery.
  • the power source is an AC power source that includes a transformer and an outlet plug.
  • a controller such as a controller box external from or integrally connected to the tube, to have at least a plug, wire, transformer (to reduce the voltage to a low voltage or to transform the current to DC), and adequate switches (at least an on-off switch), as well as an optional variostat or equivalent chip to permit manual speed control and direction of the motorized vehicle.
  • the power emanating therefrom may go into the tube by one or more rails, overhead rail(s), wires or any other means to power the vehicle(s).
  • the motor is a fixed output DC motor, while in other embodiments, the motor is a variable output motor and the system further includes a variable speed manual controller.
  • the hollow tube is selected from the group consisting of: (i) a hollow tube having a closed side wall; and (ii) a hollow tube having an open side wall.
  • the tubular transport system has a hollow tube with an open side wall. The sidewalls of the tube may be constructed from a single piece or multiple pieces attached together.
  • the hollow tube supportive spine is at least one set of fingers wherein each finger has a first end, being a proximal end that is connected to the hollow tube, and has a second end, being a distal end that is extended away from the hollow tube, having a first position with open space between each adjacent finger distal end when the hollow tube is unbent, and having a second position with each adjacent finger distal end contacting one another when the hollow tube is bent inward to the minimum radius (maximum bend position), and wherein the contacting creates stops to inhibit further bending.
  • At least one set of fingers is located in a position selected from the group consisting of: (i) a bottom of the open side wall hollow tube; (ii) a top of the open side wall hollow tube; and (iii) both a bottom of the open side wall hollow tube and a top of the open side wall hollow tube.
  • one set of fingers function also a set of tracks as part of the traction mechanism.
  • the open side wall hollow tube has a closed side wall with at least a portion thereof having a decorative sheet-receiving mechanism.
  • the closed wall portion is selected from the group consisting of transparent and translucent and wherein the closed wall portion has an outside surface that includes at least one backlight.
  • the closed wall portion includes a guide rail for attachment of a vehicle thereto.
  • the closed wall portion guide rail includes electric power rails to power a vehicle.
  • a portion of one side of the motor vehicle my extend through the open side wall for enhanced three dimensional effects.
  • the hollow tube is a plurality of separate sections that includes interconnectors at each end for assembly.
  • the motor vehicle is positioned within the hollow tube with a portion extending through the open side wall for enhanced three dimensional effects.
  • the portion of the motor vehicle extending through the open side wall includes wheels, treads, skis, and any other component that would function to move the vehicle.
  • the hollow tube has at least one hatch or cap on either or both the proximal end and/or the distal end, for accessing the motor vehicle.
  • the motor vehicle is a train.
  • the motor vehicle includes a structure selected from the group consisting of: (i) a support for mounting and moving an object; (ii) a carrier for transporting an object; (iii) at least one illumination system; (iv) at least one sound system; (v) at least one speed controller; (vi) at least one wireless receiver; (vii) at least one sensor that would reverse the vehicle direction at end points; (viii) combination of foregoing.
  • FIG. 1 illustrates a block diagram showing important features and functionalities for the present invention tubular transport system with motorized vehicle
  • FIG. 2 shows a block diagram of additional features and options for the present invention tubular transport system with motorized vehicle
  • FIG. 3 shows a front view of an embodiment of the present invention tubular transport system that travels in a spiral direction around a Christmas tree;
  • FIG. 4 shows a front view of another embodiment of the present invention tubular transport system wherein the motorized vehicle is ratcheted uphill and relies upon gravity for its downhill travel;
  • FIG. 5 shows a side cut view of another embodiment of the present invention tubular transport system that includes interchangeable scenery and support guides that permit steep angle and upside-down travel;
  • FIGS. 6, 7, and 8 receptively illustrate side views of circular tubing, rectangular tubing and open tubing embodiments
  • FIG. 9 shows a partially cut side view of a rectangular tube with an open side and with a motorized vehicle that is partially external from the tube;
  • FIGS. 10, 11, and 12 show top views of three different uncut tubes with supporting spines to control the degree of bend and to add strength to the tube structure;
  • FIGS. 13A front view
  • 13 B left end view
  • 14 top view
  • 15 A Back view
  • 15 B right end view
  • FIGS. 16, 17, and 18 show top views of the same open spine-based present invention tube component in three different positions (at rest, spread open and spread closed), to illustrate the flexibility and controlled limits of the spine and its tines;
  • FIGS. 19 and 20 show a top cut view and a side oblique view of another embodiment of the present invention tubular transport system wherein the spine has tines that flex inwardly and outwardly in the same manner and degree, with the power-guide rail in the center of the bottom portion;
  • FIGS. 21 and 22 show the same embodiment of the present invention tubular transport system, from a top view, with inward and outward flexing, respectively;
  • FIG. 23 illustrates a front oblique view of another embodiment of the present invention tubular transport system, similar to the one in the immediately preceding Figures, but with arc bent inwardly;
  • FIG. 24 shows a partial, blown up front view of the present invention tubular transport system of FIG. 23 , but with a train engine cut to show details of one embodiment of the drive mechanism relative to the tube;
  • FIGS. 25 and 26 illustrate front and rear oblique views of yet another embodiment of the present invention tubular transport system wherein the spine has tines that flex inwardly and outwardly, with the power-guide rail in the center of the bottom portion, wherein the tines are separate, assembled “C-links” connected to one another to form the tubular transport section, wherein a plurality of these sections are subsequently connected to one another to establish the system;
  • FIGS. 27, 28, and 29 illustrate assembly of the “C-links”, including the “C-links”, track segments, clip receivers, rotator clips and hanger rotator clips;
  • FIG. 30 shows an oblique bottom view of a section of the present invention tubular transport system with assembly of the type described in conjunction with “C-links” such as those in FIGS. 25 through 29 above, including an end cap with a power cord;
  • FIGS. 31 and 32 show two sections of the present invention tubular transport system being assembled and curved inwardly. After assembly, they may be curved inwardly or outwardly, or portions inwardly and other portions outwardly, enabling layouts of a spiral, and “S” shape, a figure eight, or otherwise;
  • FIGS. 33 and 34 show two sections of the present invention tubular transport system being assembled and disassembled, respectively, and curved outwardly;
  • FIGS. 35 and 36 show front and side views of one embodiment of a train engine that may be attached to and moved along the present invention tubular transport system that has a center T-rail, such as some of the embodiments shown above; and,
  • FIG. 37 shows the train engine of FIGS. 35 and 36 , fastened onto the present invention tubular transport system center T-rail.
  • the present invention is a tubular transport system with a motorized vehicle, wherein the degree of bending of the hollow tube is controlled to avoid crimping and to avoid radii too small to permit the motorized vehicle therein to travel, that is, to prevent tight turns that would jam up the movement of the motorized vehicle.
  • the hollow tubes may have sidewalls constructed from a single piece or multiple pieces and may be closed-loop or open-loop (meaning, having a closed periphery end view, such as a circular or square tube, or having an open end view periphery, such as a C-shaped tube with an open front), and these tubes may be opaque, translucent, transparent, and combinations thereof.
  • FIG. 1 shows a block diagram showing important features and functionalities for the present invention tubular transport system with motorized vehicle.
  • Tubular transport system with motorized vehicle, block 1 includes at least one tube, block 5 , which has limited and controlled bending. This is an important aspect of the present invention.
  • the tube, or plurality of tubes needs to be shapeable but not overbend in order to prevent kinking and prevent overly sharp turns that would jam up the motorized vehicle.
  • the designer of a particular embodiment would set a minimum radius to avoid kinking and to avoid the vehicle jumping the track or jamming. This would then be structured into the tube by mechanisms described herein above and below.
  • These present invention system tubes may be hollow: with no open end, one open end, two open ends, or y-tube base.
  • Y-tubes may provide alternative vehicle paths or may be part of crossovers, such as with a figure eight configuration.
  • the motorized vehicle, block 7 may have an internal motor or it may be driven by an external motor.
  • An external motor as used herein, means any motor that does not rest inside or on the vehicle, but instead drives another component which in turn pushes or pulls the motorized vehicle. Examples would be a continuous belt drive, a gear drive, a cable drive, a magnetic resonance drive, a vacuum motor, a positive pressure motor, etc.
  • the tube, block 9 may have sidewalls constructed from one piece or multiple pieces attached together, and may have closed sidewalls or open sidewalls. These side walls are more fully described in conjunction with the figures set forth below.
  • the cross section of the tubes may be circular, rectangular, square, polygonal, oval, irregular and any other cross-section shapes.
  • the vehicle, block 11 may be a single vehicle, multiple vehicles that are articulated (hinged), or may be multiple unconnected vehicles.
  • the vehicles may have design themes, block 13 , such as autos, trains, rockets, sleighs, animals, sleds, trademark characters, etc. These vehicles, block 13 , preferably have removable and interchangeable vehicle body tops or covers (over caps) to display specific themes.
  • background images, block 15 may be affixed to the tubes, or may be removable, and thus interchangeable. Images may be printed or embossed directly onto the tube, or indirectly with insertable or attachable panes or cards.
  • FIG. 2 shows a block diagram of additional feature details and options for the present invention tubular transport system with motorized vehicle, block 20 .
  • the system's motorized vehicle may have an internal motor on/in the vehicle, block 21 .
  • This internal motor may be electric, such as battery powered or other DC power, a magnetic-based motor, or an AC motor with a plug and transformer.
  • External motors, block 23 could be a continuous belt, magnetic sprockets, gears, tract power or other external motors, such as a positive or negative air pressure push or pull motor.
  • Drive mechanisms, block 25 include motor driven wheels such as, wheels on the tube, wheels on tracks in the tube, or wheels on multi-directional tracking slots.
  • the motor controls, block 27 include remote controls (wireless controllers, Blue Tooth app), transformers, variostats or other manual speed controllers, such as controller chips.
  • Automatic stop mechanisms may automatically shut off power to a motor when a trip or predetermined number of trips is completed or if another problem were identified, such as the vehicle getting jammed, e.g., by a finger or intervening object.
  • a cycle controller mechanism may be employed that would turn off a motor after a preset number of travel cycles was completed.
  • the bend limiting spine, block 29 may be any built in or attached component that prevents tight bending, i.e., limits the radius to a predetermined minimum radius and no less, as well as to prevent it from exceeding a predetermined maximum radius. These minimum and maximum radiuses are determined by a manufacturer's engineer based on the size (cross section) of the tube and the size and minimum turning radius of the motorized vehicle. Once the spine(s) are in place, it is desired that the hollow tube is semi-flexible so as to bend no less than a predetermined minimum radius.
  • the present invention includes bend limiting components broadly referred to herein as supportive spines.
  • these hollow tube “supportive spines” are selected from the group consisting of at least one continuous support coil, a plurality of disconnected linear supports (straight, separate spine members), and a plurality of disconnected arcuate supports (curved, separate spine members), or combinations of any of the aforementioned.
  • the hollow tube supportive spine is at least one set of fingers wherein each finger has a first end, being a proximal end that is connected to the hollow tube, and has a second end, being a distal end that is extended away from the hollow tube.
  • These fingers have a first position, which is a rest position and a second position, being a tight position wherein the fingers touch one another and can compress no farther, as well as many positions in-between.
  • the fingers have a first position with open space between each adjacent finger's distal end when the hollow tube is unbent, and have a second position with each adjacent finger's distal end contacting one another when the hollow tube is bent inward to the minimum radius (maximum bend position), and wherein the contacting creates stops to inhibit further bending.
  • FIG. 3 shows a front view of an embodiment of the present invention tubular transport system with motorized vehicle 40 that travels in a sloping spiral around a Christmas tree 30 .
  • the details of the tube 35 and articulated vehicles 39 are not shown, but may be any that are contemplated in the above and below descriptions. Since the present invention tubular transport system with motorized vehicle 40 is used in conjunction with a Christmas tree 30 , vehicles 39 would appropriately be Christmas themed. Thus, vehicles 39 could be a Christmas themed train, or a Christmas themed boat with presents on barges, or a Santa figure on a sleigh being pulled by reindeer, etc.
  • Christmas tree 30 has ornaments such as a bulb 33 , as well as ornaments that interact with the present invention tubular transport system with motorized vehicle 40 .
  • hanging ornaments 37 , 47 , and 49 support tube 35 , so that tube 35 and vehicles 39 pass through theses ornaments, and in some embodiments interact with the ornaments.
  • Vehicles 39 and/or tube 35 , and/or ornaments 37 , 47 and 49 , as well as tunnel 48 may be illuminated, such as with multicolored LEDs in this embodiment.
  • Control box 41 has a plug 43 for connecting to DC power, and via a transformer transmits power through wires 45 to train tacks that are within tube 35 (tracks not shown in FIG. 3 , but shown and described in subsequent Figures).
  • FIG. 4 shows a front view of another embodiment of the present invention tubular transport system with motorized vehicle 50 wherein the motorized vehicle 60 is ratcheted uphill and relies upon gravity for its downhill decent.
  • a continuous loop belt 61 has ratchets such as ratchets 63 and is driven by a motor that is external from vehicle 60 .
  • control blocks 59 include a motor (not shown) that drives belt 61 in a continuous loop, much like a conveyer belt, and is controlled by on-off switch 65 .
  • Tube 51 is constructed of bendable plastic that will hold its new shape (whatever shape a user may desire), except that it cannot be bent to a smaller radius than will accommodate vehicle 60 .
  • Tube 51 has a starting end that is open and a tapered back end 57 with stop 69 so that a user may initiate the upward drive of vehicle 60 using belt 61 with control box 59 .
  • vehicle 60 reaches the top of the belt, it is released and travels through tube 51 via gravity until it reaches the stop 69 .
  • FIG. 4 shows an open-ended tube 51
  • the tube could be a closed loop such that the tube end 57 would be connected to the other tube end 55 to create a continuous travel loop for vehicle 60 to travel through.
  • a tube access hatch may be included, such as a hinged or snap hatch, for accessing vehicle 60 .
  • FIG. 5 shows a side cut view of another embodiment of the present invention tubular transport system with motorized vehicle 70 that includes interchangeable scenery and support guides that permit steep angle and upside-down travel of the vehicle(s).
  • a rectangular tube 71 that has a closed cross-section.
  • This tube 71 may be a continuous loop (with a vehicle access hatch or port), or one with both ends open, or one with one end closed and the other end open (wherein a bump switch would cause a motor drive reversal when the vehicle “hit” the closed end).
  • the tube 71 would be facing right, with a removeable and interchangeable snap-on image panel 95 attached to the left (when set up, the right would be a front and the left would be the back, so that the images would be presented on the inside of the panel 95 and viewed through the tube as background scenery behind the moving vehicle.)
  • guides 73 and 75 which are semiflexible continuous detents that create side slots for vehicle braces 79 and 81 .
  • Braces 79 and 81 may be guide fins or wheeled braces. They move through the guides 73 and 75 and retain vehicle 87 in engagement for movement uphill and even upside-down travel through tube 71 (such as when tube 71 is positioned with vertical loops).
  • vehicle 87 has an internal battery and motor 85 that drive center gear wheel 83 .
  • Gear wheel 83 in turn engages bottom ratchets 77 of tube 71 to move forward.
  • This vehicle 87 is manually operated by a wireless remote control (not shown) that works in a fashion similar to that of radio-controlled toy cars.
  • Vehicle 87 can also be controlled by a phone application via Bluetooth.
  • Vehicle 87 has faux wheels 91 and 93 that may engage the tube 71 and rotate for appearance purposes, but are not drive wheels. In another embodiment, wheels could be connected to the motor and function as drive wheels with frictional engagement on the tops of guides 73 and 75 , in which case the gear wheel 83 and ratchets 77 would be eliminated.
  • vehicle top 89 with snaps 86 and 88 .
  • Vehicle top 89 is removeable and interchangeable with similar or dissimilar interchangeable tops.
  • top 89 could have embossments, orifices, lighting, and printed or decaled representations of a passenger train while a replacement top (not shown) could have the imaging of a limousine, or a rocket ship, or any other vehicle or object.
  • FIGS. 6, 7, and 8 respectively illustrate embodiments of side views of closed circular tubing, closed rectangular tubing and open square tubing.
  • closed (no side opening or cut, but could be closed ended, open ended or one open/one closed end) circular tube 100 has a flat bottom 101 for frictional drive engagement, vehicle guides 103 and 105 , and vehicle travel space 107 .
  • the guides 103 and 105 may serve only as guides or may also serve as vehicle wheels, tread or other vehicle component for engagement and travel. As described above, the guides function to keep the vehicle drive mechanism against the tube when the vehicle is traveling at non-horizontal angles or upside-down.
  • tube 110 is rectangular and is closed, with walls 111 and 113 , and bottom 115 .
  • Tube top 121 has an overhead drive and guide set up for vehicles with overhead drive mechanisms, such as a motor driven overhead wheel, to engage ratchets 119 of guide bar 117 .
  • the ratchet 119 could be replaced with an L-shaped hanger run for cable-driven vehicles with monorail or other themed vehicle(s).
  • square tube 130 has a top 133 , bottom 135 , closed back 137 , and open front 139 . Contained therein is vehicle 143 with a motor-driven bottom drive tread 145 . Most of vehicle 143 sits within tube 130 . However, this is a side view with the front facing right. Therefore, there is a full height vehicle portion 147 positioned outside of tube 130 .
  • Vehicle 143 moves along tube 130 with a portion 147 having a theme façade or other details, appearing to move outside tube 130 .
  • any vehicle or group of vehicles may be included, and themes would be preferred.
  • attachable and removeable images would also be preferred.
  • FIG. 9 shows a partially cut side view of another embodiment of the present invention tubular transport system with motorized vehicle 150 with rectangular tube 151 .
  • Tube 151 has a back 153 , a top 155 , a bottom 157 , and an open front 159 .
  • Vehicle 159 has free moving wheels 175 and 177 located under tube guides 163 and 165 . Wheels 175 and 177 , and guides 163 and 165 , permit loops and steep hill travel without disengaging vehicle 169 .
  • Vehicle 169 has battery and control box 171 for operation with a remote controller (not shown), and has opposing electromagnetic bars, with bar 173 on the bottom of vehicle 169 and bar 167 fixed on bottom 157 of tube 151 with an open side 159 and with the motorized vehicle 169 that is partially external from the tube.
  • FIGS. 10, 11, and 12 show various embodiments of the present invention tubular transport system with motorized vehicle with various embodiments of tubes having support spines.
  • tube 150 is a plastic tube 151 , that can be transparent or opaque, with embedded coils such as spiral coils 153 and 155 . These coils add rigidity to tube 150 , thereby requiring significant force to kink and also limit bending to a predetermined minimum radius, such as a 12-inch radius.
  • FIG. 11 shows tube 160 with similar properties but relying upon parallel stands, rods, or fibers to restrict bending and kinking.
  • tube 160 has a clear flexible main tubing 161 with support spine filaments such as filaments 163 , 165 , 167 , and 169 .
  • tube 181 has a clamp spine 183 that is flexible but not as flexible as commercial tubing.
  • Spine 183 has a main back 185 with orifices to permit flexing, and has a plurality of springy griping fingers 187 , 189 , 191 , and 193 .
  • Suspension loops 195 and 197 are included and can be used with hanger wires or other mechanisms for horizontal, vertical, or angled suspension.
  • the embedded spirals, filaments, and external spines may be made of plastic, metal, mixed composites, or other materials.
  • the clear plastic tubes may be made of PVH, PVC or other flexible material.
  • FIGS. 13A front view
  • 13 B left end view
  • 14 top
  • 15 A back view
  • 15 B right end view
  • the present invention tube 300 consists here of a center spine and tines, and optionally, but preferably, a plastic stretchable film, such as a clear plastic film. Although the film is not necessary, it acts to protect the rail from falling debris, especially needles from Christmas trees, and acts to control the radius.
  • Tube 330 has a top set of tine segments 302 , a bottom set of tine segments 304 , and a back set of tine segments 306 .
  • Each tine is “C” shaped with an open front 305 , a top, a back and a bottom.
  • the spine backbone for tube 300 is the rail 309 which partially encases the electric contact rails, guides the vehicle (train 311 ), and keeps the tines in place, lined up, equally spaced and holding their shape. As will be seen in the descriptions in subsequent Figures below, these tines limit the bending to where they touch each other when folded inward and are limited in bending outward by the flexibility and strength of the spine (rail tube 309 ).
  • male and female connectors 313 and 315 at opposites ends to permit linear, curved, or continuous loop (e.g. a circle) connections.
  • a hanger loop 317 On the top 303 of male connector 313 is a hanger loop 317 , with others, hanger loops 319 and 321 , positioned as shown.
  • An LED light strip 325 is positioned behind tube 300 to create backlight for the imagery. This light strip 325 has a plug 323 at one end and a plug receptacle 327 at the opposite end for connection to other tube units and/or a power source, typically via an extension cord.
  • Train 311 travels along rail of tube 300 and the toothed wheels (not shown) ride along the tines.
  • the tines function as the tube structure, as a controlling feature with regard to limiting the tightness of inward bending, and act as the train rails for the train 311 wheel engagement.
  • This embodiment of the present invention (with connected other tube sections) may be hung on tree branches, hung from a ceiling, hung from hangers, spiraled abut a tree, laid out on a floor, arranged in a circle, or oval, or serpentine, as desired.
  • the train 311 is shown alone, it is ideally connected to other cars: realistic like freight trains, or fanciful like circus cars.
  • FIGS. 16, 17, and 18 show top views of an open spine-based embodiment of the present invention tubular transport system with motorized vehicle similar to shown in FIGS. 13A-15B (with the backbone of the spine off center, i.e. on one side), but in three different positions, namely at rest, spread open, and spread closed, to illustrate the flexibility and controlled limits of the spine and its tines.
  • the tube 201 has a spine 203 with tines, such as tines 205 , 209 , and 213 , with spaces 207 and 211 therebetween.
  • FIG. 16 shows the tube 201 at rest
  • FIG. 17 shows the tube 201 bent outwardly and limited by the strength of its spine 203 as to the extent of its bending.
  • FIG. 18 illustrates that inward bending is limited to the point where the tines touch each other.
  • FIGS. 19 and 20 show a top cut view and a side oblique view of another embodiment of the present invention tubular transport system with motorized vehicle 220 , wherein both the spine 243 and the electric rail 240 are centered withing the tube.
  • the tube has tines 229 , 231 , 233 and 235 that flex inwardly and outwardly in the same manner and degree, with the power-guide rail 240 in the center of the bottom portion.
  • Tines, aka fingers, such as tines 223 , 225 and 227 on one side of rail 240 , and tines 229 , 231 , 233 and 235 on the opposite side are all similar or equal in size and width, and function to inhibit over-bending both inwardly and outwardly.
  • the center rail 240 has connectors 221 and 237 on opposite ends for connection to additional tubes to create a connected tubular transportation system for enjoyment, decoration, or task performance.
  • FIGS. 21 and 22 show the same present invention tubular transport system with motorized vehicle 220 from a top view, with inward and outward flexing, respectively.
  • the components are numbered identically to those in FIGS. 19 and 20 .
  • FIG. 23 illustrates a front oblique view of another embodiment of the present invention tubular transport system with motorized vehicle, similar to the one in the immediately preceding Figures, but with arc bent inwardly.
  • tube 400 has a set of tines 401 (as exemplified by tine 407 ) in a “C” shape and with a center contacts guide 409 .
  • Vehicles 500 straddle guide 409 and connect electrically or rely upon rechargeable batteries for power.
  • Drive wheels with teeth grip the tines for traction and move the vehicles through the tube 400 .
  • a clear plastic film 413 is adhered to the tines to complete the tube, protecting its contents and stretching as needed.
  • FIG. 24 shows a partial, blown up cut front view of the present invention tubular transport system with motorized vehicle 400 of FIG. 23 , with some elements identically numbered, but with a train engine 500 cut to show details of one embodiment of the drive mechanism relative to the tube 400 .
  • the drive mechanism includes a motor and rechargeable battery 501 , a drive shaft with worm gear 507 that turns a toothed wheel 509 that engages with guide tube 409 as shown in the circle 511 .
  • the motor and battery 501 also include a variable speed and directional chip(s) and receiver for variable speed and directional control operation via a wireless controller (not shown).
  • FIGS. 25 and 26 illustrate front and rear oblique views of yet another embodiment of the present invention tubular transport system with motorized vehicle wherein the spine has tines that flex inwardly and outwardly, with the power-guide rail in the center of the bottom portion where the tines are separate, assembled “C-links” connected to one another to form the tubular transport section, and wherein a plurality of these sections are subsequently connected to one another to establish the system.
  • present invention system section 601 includes end pieces (such as end piece 603 ) for interconnection with other sections, including physical connection by male and female interconnectors and including electrical connection by opposing plugs and receptacles, such as male plug 615 and female plug receptacle 617 .
  • tine 605 which is a “C-link” tine.
  • C-links have a squared “C-shape” from an end view and each an inner portion and an outer portion wherein the inner portion of a first tine fits under and is secured to the outer portion of the next tine.
  • FIG. 25 there are rotator snap clips, such as clips 607 and 609 , and similar clips with hanging loops or hooks, such as clip 611 .
  • a train set 621 is shown. This train set 621 is adapted to ride securely on the T-track and receive electric power therefrom to run its motor.
  • FIG. 26 shows the back of section 601 and identical parts are identically numbered.
  • an LED light strip 613 is fastened behind tube 601 by hooks 623 attached to or molded into some “C-links”.
  • FIGS. 27, 28, and 29 illustrate the sequential assembly of the “C-links”, including the “C-links”, track segments, clip receivers, rotator snap clips and hanger rotator clips.
  • single “C-link” 605 is shown in detail, with its outer portion 649 and its inner portion 651 , including top 629 , back 623 , and bottom 631 .
  • Top 629 has a clip receiver 635 and an adjacent clip receiver orifice 633 .
  • Back 623 has slide guides 625 and 627 for receiving advertising, messages, light strips, scenery, or combinations thereof.
  • Bottom 631 includes a rail clip receiver 639 , an adjacent rail clip receiver orifice 641 , and a bottom leg 643 .
  • FIG. 29 shows this assembly repeated with “C-link” 665 connected to “C-link” 655 , with all three rail clips 637 , 647 , and 657 inserted into place, properly oriented and locked in.
  • identical parts are identically numbered. Note that although clips are used for assembly, any form of assembly for rotation may be substituted for the clips without exceeding the scope of the present invention. As examples, rivets, screws, bolts coupled with washers, or force-fit mushroom ended clips could be used.
  • FIG. 30 shows an oblique bottom view of the present invention tubular transport system with motorized vehicle where the section assembly of the type described, in conjunction with the types of “C-links” shown in FIGS. 25 through 29 above (including an end cap), and a terminal end cap with a power cord.
  • section 701 has endward “C-links” 703 and 705 assembled and incoming “C-link” 709 about to be attached.
  • “C-link” 709 includes rail clip 713 , rail clip receiver orifice 715 , and rotator clip 711 .
  • End cap 717 has a rotator clip 719 and a rail clip 727 , as shown.
  • Terminal end cap 721 includes a power cord 725 with a plug (not shown).
  • FIGS. 31 and 32 show two sections 751 and 753 of the present invention tubular transport system with motorized vehicle being assembled and as assembled, curved inwardly.
  • Male connectors, such as connector 755 are inserted into female connectors, such as female connector 757 .
  • female connectors such as female connector 757 .
  • After assembly they may be curved inwardly, or outwardly, or portions inwardly and other portions outwardly, enabling layouts of a spiral, or in a figure eight, or otherwise.
  • FIGS. 33 and 34 show the two sections 751 and 753 of the present invention tubular transport system with motorized vehicle from FIGS. 31 and 32 above, with identical parts being identically numbered, being assembled and as assembled, curved outwardly.
  • FIGS. 35 and 36 show front and side views of one embodiment of a train engine 801 that may be attached to and moved along the present invention tubular transport system with motorized vehicle that has a center T-rail, such as some of the embodiments shown above.
  • Train engine 801 has a removable theme top 803 (in this case, an early “Iron Horse” steam engine), a motor 813 , fake wheels 805 and 807 , and operating wheels 809 and 811 with serrated and gripping edges.
  • T-rail electrical contact blocks 815 and 817 shown engaged in FIG. 37 below.
  • FIG. 37 shows a cut rear view of the train engine 801 with removable theme top 803 of FIGS. 35 and 36 above on the present invention tubular transport system with motorized vehicle 851 , which includes top 853 , backside 855 , open front 857 and bottom 859 , with center T-rail 869 .
  • Operating wheels 809 and 811 engage the inside bottom 859
  • T-rail electrical contact blocks 815 and 817 engage T-rail 869 for electrical contact and guidance.
  • each “C-link” or track section could have sidewalls that are constructed from a single piece or multiple pieces attached together, as desired.
  • the metal or other spine may be eliminated as a separate piece, and the tube structure be strong enough to act as both a spine and a tube.
  • the present invention tubular transport system with motorized vehicle encompasses any available motive power, such as magnetic propellants, gas propellants, or combinations thereof.
  • the term “motorized vehicle” includes vehicles with the motor onboard as well as vehicles that are motorized indirectly such as motor driven tracks, cogs, gears, pulleys, or other motorized push or pull mechanism.
  • the tubes may have any cross-sectional shape and thus are not limited to “C-link” shapes such as circles, squares, and rectangles.
  • the present invention tubular transport system with motorized vehicle may be used to carry a camera and/or multiple cameras arounds a desired or designated area.
  • the camera(s) could take sequential stills or continuous or interrupted or scheduled videos and/or be used for real time observations.
  • the present invention tubular transport system with motorized vehicle with cameras could be used for homes, business, hotels, warehouses, factories, amusement parks, offices, plains, trains or even public areas for roaming security cameras. They could be used with cameras for quality control in factories, stores, hospitals and other facilities.
  • tubular transport system with motorized vehicle could be used to transport selected items, such as uranium, toxic medications, toxins, etc. and could also be used for scientific purposes such as collecting periodic air or water samples for environmental or other testing.
  • the present invention systems could be used for pet toys, or to disperse sprays and disinfectants throughout a room or facility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toys (AREA)

Abstract

A tubular transport system with a motorized vehicle includes a) an at least partially transparent hollow tube being semi-flexible so as to bend to a predetermined minimum radius and no further; b) a motorized vehicle within tube; c) a motor within or connected to the vehicle for movement by traction; d) a power source for the motor; e) a traction mechanism for assisting in movement of said motor vehicle. The vehicle may be themed, and may be singular, plural articulated and/or plural separate vehicles.

Description

    REFERENCE TO RELATED APPLICATIONS
  • The present application is not related to any pending or issued United States of America or foreign patent or patent application.
  • BACKGROUND OF INVENTION a. Field of Invention
  • The present invention generally relates to miniature motorized vehicles travelling in hollow tubes that may be at least partially transparent, with unique components more fully described below. The hollow tubes may be closed-loop or open-loop (meaning, having a closed periphery end view, such as a circular or square tube, or having an open end view periphery, such as a C-shaped tube with an open front), and these tubes may be opaque, translucent, transparent, and combinations thereof. The hollow tubes may have sidewalls constructed from a single piece or multiple pieces put together. The hollow tubes are specifically built to be bent by a user but to not bend exceedingly, i.e., to not bend so tightly as to kink or to thereby have such a small turning radius as to jam up the motorized vehicle inside and thus inhibit travel of the motorized vehicle. The motorized vehicle may be a single unit or two or more units connected to one another and may have the appearance of any theme, such as army vehicles, spaceships, old Iron Horses, trains, modern bullet trains, racing cars, various animals, Santa with sleigh and reindeer; or theme character vehicles with licensed characters such as Mickey Mouse and Shrek drivers. The motorized vehicle may come in on part, or two or more parts with removable theme tops or cover pieces that will thereby present the use of interchangeable themes (a cartoon character in a Santa Clause outfit in a Christmas vehicle, the Easter Bunny in an Easter egg vehicle, or vehicles with personalized children's names, etc.). The tubes that carry these motorized vehicles may have corresponding theme scenery. The theme scenery themselves may be interchangeable. In the alternative, the vehicles and the system itself may be used for purposes other than amusement, such as for the mobility of security cameras, the mobility of cleaning solutions, or for transport of sensitive matter such as toxins. The motor that drives the vehicle may be contained within the vehicle or external to it (such as cable, or tract driven, or magnetic motive power), to provide indirect drive. The motor may be electric (AC or DC), or magnetic or gas powered, or any other known motive power. The motorized vehicle may be operated in a continuous loop tube, or in a closed ended tube or set of tubes, back and forth.
  • b. Description of Related Art
  • The following patents are representative of the field pertaining to the present invention:
  • U.S. Pat. No. 6,276,280 B1 to Nitti describes an elevated toy train track that is formed from multiple platform sections and a stabilizing ring that are attachable together to form a ring-like structure. Each platform section has at least two lateral sides, where one lateral side has ridges and the other lateral side has slots. During assembly, the ridges on one platform section are placed in snug engagement with complementary slots of an adjacent platform section, until all platform sections are joined together. The stabilizing ring is attached, using threaded fasteners, to the joined platform sections to form the ring-like structure. A train track is attached to the ring-like structure or can be integrally molded to the platform sections. The structure is attachable to the central pole of a Christmas tree, thus providing an elevated toy train track.
  • U.S. Pat. No. 6,152,800 to Higuchi describes an ornamental track toy that includes a loop track assembly, a motor, an elongated coupling and an ornament. The track assembly includes a hollow base having a flat surface, a slot in the flat surface and the elongated coupling slidably mounted in a hollow channel in the base. The motor includes a gear and a pinch roller for moving the elongated coupling in a loop path around the track assembly. The elongated coupling includes a link that is connected to the ornament so that the ornament is pulled around the track assembly as the elongated coupling is moved around the loop path of the track assembly.
  • U.S. Pat. No. 5,588,164 to Proulx describes a base unit for supporting an infant carrier seat comprising a housing member having a bottom curved surface for rocking on a generally flat support surface, an upper central portion on which an infant carrier seat is removably mountable, an endless pathway that circumscribes said central portion, a weight and a motor to move along the weight in a closed loop at a selected predetermined rate of travel. The weight in the preferred form is a toy train unit with open topped box cars that removably hold a supply of weights. A sound generator on the train provides music and/or train whistle simulation. An infant can be entertained by the train travelling around the infant, by sounds generated by the train, and the infant being rocked, all at the same time. The motion of the train travelling around the infant can be used to check responses of the infant as can also the movement of sound relative to the infant.
  • U.S. Pat. No. 5,450,682 to Franco et al describes a track display apparatus that comprises an elongated endless track preferably in the form of a ring. A pair of spaced apart conductive rails extend along the track and are engaged by conductive rollers which receive electrical power for a motor housing surrounded by an ornament. The ornament is advantageously Santa with his sleigh and the reindeer. Power is supplied by a power signal unit attached along the track and electrically connected to the rails and a low voltage direct current power source. A plurality of supports are connected around the track for supporting the track above the floor or around another ornament, for example, a Christmas tree.
  • U.S. Pat. No. 5,279,871 to Segan et al describes a Christmas display resembling a ski-lift and ski-slope, for use in conjunction with a Christmas tree. The display comprises a track having a first end and a second end, wherein the first end is at a higher elevation than the second end, and a lift disposed between the first end and the second end. The device also comprises a plurality of figurines having a base configured for slidable movement along the track from the first end of track to the second end of track whereby the lift transports the figurine back to the first end of the track in a continuous manner. In the preferred embodiment, the display also comprises a support mechanism for supporting the display on a Christmas tree.
  • U.S. Pat. No. 5,211,366 to Cummings describes an improved, ornamental, decorative structure such as a Christmas tree or the like, in which the structure has a decorative device mounted above a floor in cantilever fashion. Thus, the decorative device is in effect cantilevered above the floor and uses a center portion of the structure as the main support, thus avoiding the need for additional support beneath the device and on a floor below. The device itself can be a ring which can support another object, such as a continuous track over which a train can be movable, either under manual power or by electrical power supplied to the track by an electrical transformer on the floor adjacent to the ornamental structure. The train will have an engine provided with an electrical motor which will drive the train along at an elevated position. Thus, the device will provide a display which will provide enjoyment and amusement for young and old alike. The operation of the train and other still or moving parts associated with the elevated device will be seen from a location near the structures and will present no hazards which might otherwise detract from the aesthetic and safety aspects of the device as well as the ease with which the elements mount the device on a center portion of the Christmas tree or the like.
  • U.S. Pat. No. 5,027,712 to Wallick describes a monorail toy train suspended from an overhead guideway, which is secured to a ceiling or other fixed support structure. The elongated tubular guideway includes a plurality of guideway sections connected together at a joint by a short tubular coupler and a hanger secured to the ceiling. Each guideway section is connected to like length guide rails and rack rails, which together define a track for cars of the monorail toy. Trucks of driven and nondriver cars ride on the track defined by the rack rail and guide rail. The driven car includes a drive frame including a motor, drive gear and pinion gear, which pinion gear meshes with the rack rail to provide motive force for the monorail train.
  • U.S. Pat. No. 4,632,038 to Lawrence describes a monorail vehicular system that uses an elevated track of multipiece construction, with a central electrically insulated panel having a supporting lower metal rail, which acts as one side of an electrical supply system, and with an upper metal rail on top of the central panel for support, and to provide the other side of the electrical system. The lower rail is supported at intervals by clips, carried on spaced vertical poles which rest on bases on the ground or other supporting surface. A car used in the system rides on wide roller type wheels on top of the upper metal rail, has a resiliently urged collector in contact with the upper rail, and a pair of contacts which engage the lower metal rail, with a pair of horizontal stabilizing wheels extending downwardly from the car on each side of the central panel and in contact with it, and which wheels are unequally spaced from the upper rail.
  • U.S. Pat. No. 4,231,294 to Arzoumanian describes a toy train in which each track length or section is mounted in a base having a spaced longitudinal slot parallel with the tracks and outside of the tracks. In addition to the conventional rails, and lying between them, a pair of spaced parallel rails are mounted for carrying the electric current to the train. A transparent curved cover is arched over the tracks with the edges of the cover entering the slots in the base. When the track lengths are joined at the ends, a connecting strip also joins the contiguous edges of the transparent cover to form a continuous enclosed transparent tube. The train is generally annular to fit the tube. Besides the conventional flanged wheels for riding the rails, the train is also provided with a pair of grooved wheels adapted to engage the electrical rails. This not only supplies the electrical current to the train, but also serves to hold the train on the tracks and prevent derailment at high speeds especially around the curves. The tubular system may have an open section for a station and the sections may be raised over obstacles. The sections may also be curved to provide a sinuous track. On curved sections, the rails are banked to minimize derailment.
  • U.S. Pat. No. 4,217,727 to Fetty et al describes a toy monorail system of the support type for vehicles such as miniature railway cars and slot cars. The monorail track consists of an elongated flat strip or length of plastic having flat metal conductors located in flanged recesses molded into each side of the strip or length. The track is edge-mounted and, on flat surfaces, is self-supporting. The system can be set up in an unlimited number of configurations and elevations. In use, the track is arranged either in a self-supporting configuration on floors, table tops and the like, or utilizes special supports which engage a slot or recess molded into one edge of the track. Various styles of vehicles are used with the system, including trains, automobiles, boats, and rockets. The drive vehicle is mounted on the edge of the track opposite the slotted or recessed edge. The vehicle utilizes a pair of shaped contacts to make electrical connection with the metallic conductors and a pair of drive wheels mounted on vertical axes for gripping the plastic monorail on each side at a point on the track below the location of the metallic conductors.
  • U.S. Pat. No. 3,540,153 to Aoki describes a toy comprising a track system and a vehicle for traveling over said track system, said track system comprising a plurality of longitudinally extending track sections, means on each of said track sections for interconnecting said sections together, said track sections having varied configurations so that when interconnecting a portion of said track system extends in an elevated bridge-like structure above the remainder of said track system, each said track section having a channel-shaped cross section transverse of the longitudinal direction and the channel-shaped cross section being formed of a longitudinally extending bottom portion and a pair of laterally spaced side walls, each said track section having a pair of longitudinally extending inward facing grooves, a pair of lateral spaced longitudinally extending parallel racks formed on said track sections, a motor mounted in said vehicle for supplying the power to propel said vehicle on said track sections, at least a pair of guild rollers mounted on said vehicle and extending into said grooves in said track sections for retaining said vehicle on said track system regardless of the orientation of the individual said track sections thereof, at least a pair of drive wheels on said vehicle operatively engaged with said motor and in meshed engagement with said racks on said track section for moving said vehicle over said track system, a turn table positioned at each end of said track system, said turn table comprising a stationary base, a disc rotatably for receiving said vehicle on said turntable from said system, and means in said turn table arranged for operative engagement with said drive wheels on said vehicle for rotating said disc and reversing the direction of said vehicle for returning in onto said track system for travel to opposite end thereof.
  • U.S. Pat. No. 3,115,845 to Girz describes a toy monorailway comprising a running and guild rail and at least one vehicle including a support plate or the like and an electric motor and being driven by said electric motor, said vehicle being provided with means extending downwardly from said support plate and straddling said rail, a pair of wheels made of rubber or the like serving as running and driving wheels resting on said rail, one disposed at each end of said motor, reduction gearing connected between each said wheel and said motor and operatively linking said wheels to said motor, and a vehicle housing connected to said support plate, said means straddling said rails comprising one unit ahead of and one unit behind said motor and being articulately supported in said housing and being provided at the lower ends with current collector means, and pairs of lateral guidance and balance maintaining devices each including two members, one each in engagement, with a different side of said rail.
  • U.S. Pat. No. 2,106,698 to Bonanno describes an articulated toy train, in combination, a coupling section comprising a truck having wheels and axles, a truck-carried member, a spring normally holding the truck-carried member in one position, the member being freely manually movable to another predetermined position, a fixed truck-supported element, a movable element carried by the moveable member and normally held thereby in a predetermined position opposite the fixed element, and car bodies each having draft elements extending between the fixed and movable elements and having a configuration to interlock with one of said elements to prevent separation of the corresponding car body from the coupling section when the movable member is in normal position and to transmit pull from one draft to the other without changing the load on the spring, the draft elements being unlocked when said member is manually moved to the other position.
  • U.S. Pat. No. 2,096,579 to Frank et al describes a trolley duct having a vertical wall and a horizontal wall provided with a continuous elongated riding slot bounded by a vertical flange bent transversely from the horizontal wall into the duct, and a bus bar rail between the flange and the adjacent vertical wall and having a horizontal portion adjacent the horizontal wall of the duct and a vertical portion adjacent the flange, the vertical portion of the rail extending into the duct beyond the flange to provide on the rail exposed vertical surfaces.
  • United States Patent Publication No. 2003/0029927 A1 to Spano describes scenery apparatus for a toy train track array formed from a series of oblong panels which can be folded for storage and interconnected for erecting in a wide variety of layouts. The panels contain structure for interconnecting the panels, for adjusting the size of the array, for securing the panels to the track and for ensuring that the panels will not interfere with the track and or the model trains running on the track with which the scenery is associated.
  • United States Patent Publication No. 2013/0045656 A1 to Aigner et al describes an interactive toy train system including a track layout, a plurality of vehicles configured to travel along the track, and a plurality of destinations removably coupled to the track. The vehicles are configured to communicate with one another and the vehicles are further configured to communicate with one or more of the destinations. The system includes an infrared toy network having a network protocol, which determines who is present and who is not present thereby allowing multiple vehicles and destinations to converse intelligently and without interference.
  • Notwithstanding the prior art, the present invention is neither taught nor rendered obvious thereby.
  • SUMMARY OF INVENTION
  • The present invention is directed to a tubular transport system with a motorized vehicle, which includes: a) a hollow tube having, with sidewalls constructed from a single piece or multiple pieces put together, a proximal end and a distal end, the hollow tube being semi-flexible so as to bend no less than a predetermined minimum radius, without kinking, the hollow tube being opaque or transparent or at least partially transparent, the hollow tube having a supportive spine in contact therewith to facilitate control of bending and holding a bent portion of the hollow tube; b) a motorized vehicle moveably positioned within the hollow tube; c) a motor connected to and preferably within the vehicle for advancing the motorized vehicle by driving a traction mechanism; d) a power source connected to the motor, the power source being located in a position selected from the group consisting of: (i) within the motor vehicle: (ii) within the hollow tube, external from the motor vehicle, and (iii) functionally connected to the motor of the motor vehicle; e) the traction mechanism for assisting in movement of the motor vehicle, the traction mechanism selected from the group consisting of: (i) wheels connected to the motor vehicle, the wheels being friction wheels; (ii) wheels and tracks, one of the wheels and one of the and tracks being located on the motor vehicle and the other of the wheels and tracks being located in the hollow tube; (iii) a monorail system connected to the motor vehicle and the hollow tube; (iv) a magnetic drive connected to the motor vehicle and the hollow tube; and (v) a slot, detent and wheel mechanism connected to the motor vehicle and the hollow tube. The spine is necessary for structural support to hold the tube in place when put in its desired position(s) and also necessary to provide support for the tube's other components, e.g., the motor vehicle. The spine may be a separate attached component, an integrally formed component or a portion of the tube itself.
  • In some embodiments of the tubular transport system with a motorized vehicle, the hollow tube has background images on at least a portion thereof, such as scenery or other images.
  • In some embodiments of the tubular transport system with a motorized vehicle, the hollow tube supportive spine is in contact therewith to facilitate control of bending and holding a bent portion of the hollow tube wherein the hollow tube supportive spine is at least one set of fingers wherein each finger has a first end, being a proximal end that is connected to the hollow tube, and a second end, being a distal end that is extended away from the hollow tube. The tube has a first position, being a rest position, with open space between each adjacent finger distal end when the hollow tube is unbent, and having a second position with each adjacent finger distal end contacting one another when the hollow tube is bent to the minimum radius, wherein the contacting creates stops to inhibit further bending, and having a third position wherein the fingers are spread apart to a maximum spacing beyond the rest position.
  • In some of these embodiments, the hollow tube supportive spine is an exoskeleton attached to the hollow tube. In other of these embodiments, the hollow tube supportive spine is embedded within the hollow tube. In some embodiments, the embedded supportive spine may be selected from the group consisting of at least one continuous coil, a plurality of disconnected linear supports, or a plurality of disconnected arcuate supports. These coils, lines and arcs may be made of sturdier plastic (plastic that is sturdier than the flexible hollow tube), metal or other material, with single filament wires and woven wires preferred.
  • In some embodiments of the tubular transport system with a motorized vehicle, the hollow tube includes at least one light thereon, the light being selected from the group consisting of: (i) at least one spotlight; (ii) at least one backlight; (iii) at least one overhead light; (iv) at least one string of LED lights; and (v) a combination thereof.
  • In some embodiments of the tubular transport system with a motorized vehicle, the motor vehicle includes a receiver adapted for the attachment and removal of interchangeable overcaps, and the tubular transport system includes at least one theme-based overcap which may also be attached onto external vehicles that are not connected to the tubes. Motor vehicle should be taken to include singular and plural vehicles, with and without direct motors, which may be articulated or not.
  • In some embodiments of the tubular transport system with a motorized vehicle, the motor is an electric motor and the power source is selected from the group consisting of an AC power source and a DC power source. In some of these embodiments of the tubular transport system with a motorized vehicle, the power source is a DC power source, the DC power source being a battery. In other of these embodiments of the tubular transport system with a motorized vehicle, the power source is an AC power source that includes a transformer and an outlet plug. Thus, it is anticipated in these embodiments that a controller, such as a controller box external from or integrally connected to the tube, to have at least a plug, wire, transformer (to reduce the voltage to a low voltage or to transform the current to DC), and adequate switches (at least an on-off switch), as well as an optional variostat or equivalent chip to permit manual speed control and direction of the motorized vehicle. The power emanating therefrom may go into the tube by one or more rails, overhead rail(s), wires or any other means to power the vehicle(s).
  • In some embodiments of the tubular transport system with a motorized vehicle, the motor is a fixed output DC motor, while in other embodiments, the motor is a variable output motor and the system further includes a variable speed manual controller.
  • In some embodiments of the tubular transport system with a motorized vehicle, the hollow tube is selected from the group consisting of: (i) a hollow tube having a closed side wall; and (ii) a hollow tube having an open side wall. In some preferred embodiments, the tubular transport system has a hollow tube with an open side wall. The sidewalls of the tube may be constructed from a single piece or multiple pieces attached together.
  • In some embodiments with an open side wall, the hollow tube supportive spine is at least one set of fingers wherein each finger has a first end, being a proximal end that is connected to the hollow tube, and has a second end, being a distal end that is extended away from the hollow tube, having a first position with open space between each adjacent finger distal end when the hollow tube is unbent, and having a second position with each adjacent finger distal end contacting one another when the hollow tube is bent inward to the minimum radius (maximum bend position), and wherein the contacting creates stops to inhibit further bending. In some of these embodiments, at least one set of fingers is located in a position selected from the group consisting of: (i) a bottom of the open side wall hollow tube; (ii) a top of the open side wall hollow tube; and (iii) both a bottom of the open side wall hollow tube and a top of the open side wall hollow tube.
  • In some embodiments of the tubular transport system with a motorized vehicle, one set of fingers function also a set of tracks as part of the traction mechanism.
  • In some embodiments of the tubular transport system with a motorized vehicle, the open side wall hollow tube has a closed side wall with at least a portion thereof having a decorative sheet-receiving mechanism. In some of these embodiments, the closed wall portion is selected from the group consisting of transparent and translucent and wherein the closed wall portion has an outside surface that includes at least one backlight.
  • In some embodiments of the tubular transport system with a motorized vehicle, the closed wall portion includes a guide rail for attachment of a vehicle thereto. In some of these embodiments, the closed wall portion guide rail includes electric power rails to power a vehicle.
  • In some embodiments of the tubular transport system with a motorized vehicle, a portion of one side of the motor vehicle my extend through the open side wall for enhanced three dimensional effects.
  • In some embodiments of the tubular transport system with a motorized vehicle, the hollow tube is a plurality of separate sections that includes interconnectors at each end for assembly.
  • In some embodiments of the tubular transport system with a motorized vehicle, the motor vehicle is positioned within the hollow tube with a portion extending through the open side wall for enhanced three dimensional effects. In some of these embodiments, the portion of the motor vehicle extending through the open side wall includes wheels, treads, skis, and any other component that would function to move the vehicle.
  • In some embodiments of the tubular transport system with a motorized vehicle, the hollow tube has at least one hatch or cap on either or both the proximal end and/or the distal end, for accessing the motor vehicle.
  • In some preferred embodiments of the tubular transport system with a motorized vehicle, the motor vehicle is a train.
  • In some embodiments of the tubular transport system with a motorized vehicle, the motor vehicle includes a structure selected from the group consisting of: (i) a support for mounting and moving an object; (ii) a carrier for transporting an object; (iii) at least one illumination system; (iv) at least one sound system; (v) at least one speed controller; (vi) at least one wireless receiver; (vii) at least one sensor that would reverse the vehicle direction at end points; (viii) combination of foregoing.
  • Additional features, advantages, and embodiments of the invention may be set forth or apparent from consideration of the following detailed descriptions, drawings, and claims. Moreover, it is to be understood that both the foregoing summary of the invention and the following detailed descriptions are exemplary and intended to provide further explanation without limiting the scope of the invention as claimed.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate preferred embodiments of the invention and together, with detailed descriptions, serve to explain the principles of the invention. In the drawings:
  • FIG. 1 illustrates a block diagram showing important features and functionalities for the present invention tubular transport system with motorized vehicle;
  • FIG. 2 shows a block diagram of additional features and options for the present invention tubular transport system with motorized vehicle;
  • FIG. 3 shows a front view of an embodiment of the present invention tubular transport system that travels in a spiral direction around a Christmas tree;
  • FIG. 4 shows a front view of another embodiment of the present invention tubular transport system wherein the motorized vehicle is ratcheted uphill and relies upon gravity for its downhill travel;
  • FIG. 5 shows a side cut view of another embodiment of the present invention tubular transport system that includes interchangeable scenery and support guides that permit steep angle and upside-down travel;
  • FIGS. 6, 7, and 8 receptively illustrate side views of circular tubing, rectangular tubing and open tubing embodiments;
  • FIG. 9 shows a partially cut side view of a rectangular tube with an open side and with a motorized vehicle that is partially external from the tube;
  • FIGS. 10, 11, and 12 show top views of three different uncut tubes with supporting spines to control the degree of bend and to add strength to the tube structure;
  • FIGS. 13A (front view), 13B (left end view), 14 (top view), 15A (Back view) and 15B (right end view) show different views of the same embodiment of the present invention tubular transport system having a tube shaped like a squared off “C” with a spine having flexible tines;
  • FIGS. 16, 17, and 18 show top views of the same open spine-based present invention tube component in three different positions (at rest, spread open and spread closed), to illustrate the flexibility and controlled limits of the spine and its tines;
  • FIGS. 19 and 20 show a top cut view and a side oblique view of another embodiment of the present invention tubular transport system wherein the spine has tines that flex inwardly and outwardly in the same manner and degree, with the power-guide rail in the center of the bottom portion;
  • FIGS. 21 and 22 show the same embodiment of the present invention tubular transport system, from a top view, with inward and outward flexing, respectively; and,
  • FIG. 23 illustrates a front oblique view of another embodiment of the present invention tubular transport system, similar to the one in the immediately preceding Figures, but with arc bent inwardly;
  • FIG. 24 shows a partial, blown up front view of the present invention tubular transport system of FIG. 23, but with a train engine cut to show details of one embodiment of the drive mechanism relative to the tube;
  • FIGS. 25 and 26 illustrate front and rear oblique views of yet another embodiment of the present invention tubular transport system wherein the spine has tines that flex inwardly and outwardly, with the power-guide rail in the center of the bottom portion, wherein the tines are separate, assembled “C-links” connected to one another to form the tubular transport section, wherein a plurality of these sections are subsequently connected to one another to establish the system;
  • FIGS. 27, 28, and 29 illustrate assembly of the “C-links”, including the “C-links”, track segments, clip receivers, rotator clips and hanger rotator clips;
  • FIG. 30 shows an oblique bottom view of a section of the present invention tubular transport system with assembly of the type described in conjunction with “C-links” such as those in FIGS. 25 through 29 above, including an end cap with a power cord;
  • FIGS. 31 and 32 show two sections of the present invention tubular transport system being assembled and curved inwardly. After assembly, they may be curved inwardly or outwardly, or portions inwardly and other portions outwardly, enabling layouts of a spiral, and “S” shape, a figure eight, or otherwise;
  • FIGS. 33 and 34 show two sections of the present invention tubular transport system being assembled and disassembled, respectively, and curved outwardly;
  • FIGS. 35 and 36 show front and side views of one embodiment of a train engine that may be attached to and moved along the present invention tubular transport system that has a center T-rail, such as some of the embodiments shown above; and,
  • FIG. 37 shows the train engine of FIGS. 35 and 36, fastened onto the present invention tubular transport system center T-rail.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • The present invention is a tubular transport system with a motorized vehicle, wherein the degree of bending of the hollow tube is controlled to avoid crimping and to avoid radii too small to permit the motorized vehicle therein to travel, that is, to prevent tight turns that would jam up the movement of the motorized vehicle. The hollow tubes may have sidewalls constructed from a single piece or multiple pieces and may be closed-loop or open-loop (meaning, having a closed periphery end view, such as a circular or square tube, or having an open end view periphery, such as a C-shaped tube with an open front), and these tubes may be opaque, translucent, transparent, and combinations thereof.
  • FIG. 1 shows a block diagram showing important features and functionalities for the present invention tubular transport system with motorized vehicle. Tubular transport system with motorized vehicle, block 1, includes at least one tube, block 5, which has limited and controlled bending. This is an important aspect of the present invention. The tube, or plurality of tubes, needs to be shapeable but not overbend in order to prevent kinking and prevent overly sharp turns that would jam up the motorized vehicle. The designer of a particular embodiment would set a minimum radius to avoid kinking and to avoid the vehicle jumping the track or jamming. This would then be structured into the tube by mechanisms described herein above and below. These present invention system tubes may be hollow: with no open end, one open end, two open ends, or y-tube base. Y-tubes may provide alternative vehicle paths or may be part of crossovers, such as with a figure eight configuration. The motorized vehicle, block 7, may have an internal motor or it may be driven by an external motor. An external motor, as used herein, means any motor that does not rest inside or on the vehicle, but instead drives another component which in turn pushes or pulls the motorized vehicle. Examples would be a continuous belt drive, a gear drive, a cable drive, a magnetic resonance drive, a vacuum motor, a positive pressure motor, etc. The tube, block 9, may have sidewalls constructed from one piece or multiple pieces attached together, and may have closed sidewalls or open sidewalls. These side walls are more fully described in conjunction with the figures set forth below. The cross section of the tubes may be circular, rectangular, square, polygonal, oval, irregular and any other cross-section shapes. The vehicle, block 11, may be a single vehicle, multiple vehicles that are articulated (hinged), or may be multiple unconnected vehicles. The vehicles may have design themes, block 13, such as autos, trains, rockets, sleighs, animals, sleds, trademark characters, etc. These vehicles, block 13, preferably have removable and interchangeable vehicle body tops or covers (over caps) to display specific themes. Likewise, background images, block 15, may be affixed to the tubes, or may be removable, and thus interchangeable. Images may be printed or embossed directly onto the tube, or indirectly with insertable or attachable panes or cards.
  • FIG. 2 shows a block diagram of additional feature details and options for the present invention tubular transport system with motorized vehicle, block 20. The system's motorized vehicle may have an internal motor on/in the vehicle, block 21. This internal motor may be electric, such as battery powered or other DC power, a magnetic-based motor, or an AC motor with a plug and transformer. External motors, block 23, could be a continuous belt, magnetic sprockets, gears, tract power or other external motors, such as a positive or negative air pressure push or pull motor. Drive mechanisms, block 25, include motor driven wheels such as, wheels on the tube, wheels on tracks in the tube, or wheels on multi-directional tracking slots. The motor controls, block 27, include remote controls (wireless controllers, Blue Tooth app), transformers, variostats or other manual speed controllers, such as controller chips. Automatic stop mechanisms (auto stops) may automatically shut off power to a motor when a trip or predetermined number of trips is completed or if another problem were identified, such as the vehicle getting jammed, e.g., by a finger or intervening object. In those embodiments where the vehicles travel in continuous loops or cycle back and forth through a tube, a cycle controller mechanism may be employed that would turn off a motor after a preset number of travel cycles was completed. Further, in cases where vehicles travel by electric power AC or DC, a warning signal mechanism could advise the user of a low battery or a breaker shut off to warn the user of loss of power. The bend limiting spine, block 29, may be any built in or attached component that prevents tight bending, i.e., limits the radius to a predetermined minimum radius and no less, as well as to prevent it from exceeding a predetermined maximum radius. These minimum and maximum radiuses are determined by a manufacturer's engineer based on the size (cross section) of the tube and the size and minimum turning radius of the motorized vehicle. Once the spine(s) are in place, it is desired that the hollow tube is semi-flexible so as to bend no less than a predetermined minimum radius. In simple geometry, the smaller the circle, the smaller the radius. If the present invention tube were able to make a small enough arc (circle segment), ergo a small radius, it would be too tight for the motorized vehicle to move. Further, even if the tubes were set for larger vehicle-accommodating radii, the tube could crimp or be moved accidently and jam up. Thus, the present invention includes bend limiting components broadly referred to herein as supportive spines. In some embodiments, these hollow tube “supportive spines” are selected from the group consisting of at least one continuous support coil, a plurality of disconnected linear supports (straight, separate spine members), and a plurality of disconnected arcuate supports (curved, separate spine members), or combinations of any of the aforementioned. In other embodiments, the hollow tube supportive spine is at least one set of fingers wherein each finger has a first end, being a proximal end that is connected to the hollow tube, and has a second end, being a distal end that is extended away from the hollow tube. These fingers have a first position, which is a rest position and a second position, being a tight position wherein the fingers touch one another and can compress no farther, as well as many positions in-between. Thus, the fingers have a first position with open space between each adjacent finger's distal end when the hollow tube is unbent, and have a second position with each adjacent finger's distal end contacting one another when the hollow tube is bent inward to the minimum radius (maximum bend position), and wherein the contacting creates stops to inhibit further bending.
  • FIG. 3 shows a front view of an embodiment of the present invention tubular transport system with motorized vehicle 40 that travels in a sloping spiral around a Christmas tree 30. The details of the tube 35 and articulated vehicles 39 are not shown, but may be any that are contemplated in the above and below descriptions. Since the present invention tubular transport system with motorized vehicle 40 is used in conjunction with a Christmas tree 30, vehicles 39 would appropriately be Christmas themed. Thus, vehicles 39 could be a Christmas themed train, or a Christmas themed boat with presents on barges, or a Santa figure on a sleigh being pulled by reindeer, etc. Christmas tree 30 has ornaments such as a bulb 33, as well as ornaments that interact with the present invention tubular transport system with motorized vehicle 40. Thus, hanging ornaments 37, 47, and 49 support tube 35, so that tube 35 and vehicles 39 pass through theses ornaments, and in some embodiments interact with the ornaments. Vehicles 39 and/or tube 35, and/or ornaments 37, 47 and 49, as well as tunnel 48, may be illuminated, such as with multicolored LEDs in this embodiment. Control box 41 has a plug 43 for connecting to DC power, and via a transformer transmits power through wires 45 to train tacks that are within tube 35 (tracks not shown in FIG. 3, but shown and described in subsequent Figures).
  • FIG. 4 shows a front view of another embodiment of the present invention tubular transport system with motorized vehicle 50 wherein the motorized vehicle 60 is ratcheted uphill and relies upon gravity for its downhill decent. A continuous loop belt 61 has ratchets such as ratchets 63 and is driven by a motor that is external from vehicle 60. Specifically, control blocks 59 include a motor (not shown) that drives belt 61 in a continuous loop, much like a conveyer belt, and is controlled by on-off switch 65. Tube 51 is constructed of bendable plastic that will hold its new shape (whatever shape a user may desire), except that it cannot be bent to a smaller radius than will accommodate vehicle 60. In this case, there are one or more stiffening spines 67 that limit the bendability of tube 51. Tube 51 has a starting end that is open and a tapered back end 57 with stop 69 so that a user may initiate the upward drive of vehicle 60 using belt 61 with control box 59. When vehicle 60 reaches the top of the belt, it is released and travels through tube 51 via gravity until it reaches the stop 69. Although FIG. 4 shows an open-ended tube 51, the tube could be a closed loop such that the tube end 57 would be connected to the other tube end 55 to create a continuous travel loop for vehicle 60 to travel through. In this alternative embodiment, a tube access hatch may be included, such as a hinged or snap hatch, for accessing vehicle 60.
  • FIG. 5 shows a side cut view of another embodiment of the present invention tubular transport system with motorized vehicle 70 that includes interchangeable scenery and support guides that permit steep angle and upside-down travel of the vehicle(s). In this Figure, there is a rectangular tube 71 that has a closed cross-section. This tube 71 may be a continuous loop (with a vehicle access hatch or port), or one with both ends open, or one with one end closed and the other end open (wherein a bump switch would cause a motor drive reversal when the vehicle “hit” the closed end). In this Figure, the tube 71 would be facing right, with a removeable and interchangeable snap-on image panel 95 attached to the left (when set up, the right would be a front and the left would be the back, so that the images would be presented on the inside of the panel 95 and viewed through the tube as background scenery behind the moving vehicle.) Inside the tube 71 are opposing guides 73 and 75, which are semiflexible continuous detents that create side slots for vehicle braces 79 and 81. Braces 79 and 81 may be guide fins or wheeled braces. They move through the guides 73 and 75 and retain vehicle 87 in engagement for movement uphill and even upside-down travel through tube 71 (such as when tube 71 is positioned with vertical loops).
  • In FIG. 5, vehicle 87 has an internal battery and motor 85 that drive center gear wheel 83. Gear wheel 83 in turn engages bottom ratchets 77 of tube 71 to move forward. This vehicle 87 is manually operated by a wireless remote control (not shown) that works in a fashion similar to that of radio-controlled toy cars. Vehicle 87 can also be controlled by a phone application via Bluetooth. Vehicle 87 has faux wheels 91 and 93 that may engage the tube 71 and rotate for appearance purposes, but are not drive wheels. In another embodiment, wheels could be connected to the motor and function as drive wheels with frictional engagement on the tops of guides 73 and 75, in which case the gear wheel 83 and ratchets 77 would be eliminated. However, the gear wheel 83 relies on more than flat frictional engagement and is thus preferred. Also shown in FIG. 5 is vehicle top 89 with snaps 86 and 88. Vehicle top 89 is removeable and interchangeable with similar or dissimilar interchangeable tops. For example, top 89 could have embossments, orifices, lighting, and printed or decaled representations of a passenger train while a replacement top (not shown) could have the imaging of a limousine, or a rocket ship, or any other vehicle or object.
  • FIGS. 6, 7, and 8 respectively illustrate embodiments of side views of closed circular tubing, closed rectangular tubing and open square tubing. In FIG. 6, closed (no side opening or cut, but could be closed ended, open ended or one open/one closed end) circular tube 100 has a flat bottom 101 for frictional drive engagement, vehicle guides 103 and 105, and vehicle travel space 107. The guides 103 and 105 may serve only as guides or may also serve as vehicle wheels, tread or other vehicle component for engagement and travel. As described above, the guides function to keep the vehicle drive mechanism against the tube when the vehicle is traveling at non-horizontal angles or upside-down. In FIG. 7, tube 110 is rectangular and is closed, with walls 111 and 113, and bottom 115. Tube top 121 has an overhead drive and guide set up for vehicles with overhead drive mechanisms, such as a motor driven overhead wheel, to engage ratchets 119 of guide bar 117. As an alternative, the ratchet 119 could be replaced with an L-shaped hanger run for cable-driven vehicles with monorail or other themed vehicle(s). In FIG. 8, square tube 130 has a top 133, bottom 135, closed back 137, and open front 139. Contained therein is vehicle 143 with a motor-driven bottom drive tread 145. Most of vehicle 143 sits within tube 130. However, this is a side view with the front facing right. Therefore, there is a full height vehicle portion 147 positioned outside of tube 130. Vehicle 143 moves along tube 130 with a portion 147 having a theme façade or other details, appearing to move outside tube 130. With respect to FIGS. 6, 7, and 8, any vehicle or group of vehicles may be included, and themes would be preferred. Likewise, attachable and removeable images would also be preferred.
  • FIG. 9 shows a partially cut side view of another embodiment of the present invention tubular transport system with motorized vehicle 150 with rectangular tube 151. Tube 151 has a back 153, a top 155, a bottom 157, and an open front 159. Partially protruding from tube 151 on front 159 is vehicle 169 in the form of a school bus. Vehicle 159 has free moving wheels 175 and 177 located under tube guides 163 and 165. Wheels 175 and 177, and guides 163 and 165, permit loops and steep hill travel without disengaging vehicle 169. Vehicle 169 has battery and control box 171 for operation with a remote controller (not shown), and has opposing electromagnetic bars, with bar 173 on the bottom of vehicle 169 and bar 167 fixed on bottom 157 of tube 151 with an open side 159 and with the motorized vehicle 169 that is partially external from the tube.
  • FIGS. 10, 11, and 12 show various embodiments of the present invention tubular transport system with motorized vehicle with various embodiments of tubes having support spines. In FIG. 10, tube 150 is a plastic tube 151, that can be transparent or opaque, with embedded coils such as spiral coils 153 and 155. These coils add rigidity to tube 150, thereby requiring significant force to kink and also limit bending to a predetermined minimum radius, such as a 12-inch radius. FIG. 11 shows tube 160 with similar properties but relying upon parallel stands, rods, or fibers to restrict bending and kinking. Thus, tube 160 has a clear flexible main tubing 161 with support spine filaments such as filaments 163, 165, 167, and 169. FIG. 12 achieves similar results by utilizing external clamping spines. Thus, tube 181 has a clamp spine 183 that is flexible but not as flexible as commercial tubing. Spine 183 has a main back 185 with orifices to permit flexing, and has a plurality of springy griping fingers 187, 189, 191, and 193. Suspension loops 195 and 197 are included and can be used with hanger wires or other mechanisms for horizontal, vertical, or angled suspension. The embedded spirals, filaments, and external spines may be made of plastic, metal, mixed composites, or other materials. The clear plastic tubes may be made of PVH, PVC or other flexible material.
  • FIGS. 13A (front view), 13B (left end view), 14 (top), 15A (back view), and 15B (right end view), show different views of the same present invention tubular transport with motorized vehicle having a “C” shape with a spine having flexible tines. All of these Figures will be described collectively, with common elements identically numbered, and with some views missing some elements due to the various views. The present invention tube 300 consists here of a center spine and tines, and optionally, but preferably, a plastic stretchable film, such as a clear plastic film. Although the film is not necessary, it acts to protect the rail from falling debris, especially needles from Christmas trees, and acts to control the radius. Tube 330 has a top set of tine segments 302, a bottom set of tine segments 304, and a back set of tine segments 306. Each tine is “C” shaped with an open front 305, a top, a back and a bottom. The spine backbone for tube 300 is the rail 309 which partially encases the electric contact rails, guides the vehicle (train 311), and keeps the tines in place, lined up, equally spaced and holding their shape. As will be seen in the descriptions in subsequent Figures below, these tines limit the bending to where they touch each other when folded inward and are limited in bending outward by the flexibility and strength of the spine (rail tube 309). There are male and female connectors 313 and 315 at opposites ends to permit linear, curved, or continuous loop (e.g. a circle) connections. On the top 303 of male connector 313 is a hanger loop 317, with others, hanger loops 319 and 321, positioned as shown. There is an interchangeable sheet 307 with imaginary (blank here for simplicity), that is flexible and at least partially translucent or transparent. An LED light strip 325 is positioned behind tube 300 to create backlight for the imagery. This light strip 325 has a plug 323 at one end and a plug receptacle 327 at the opposite end for connection to other tube units and/or a power source, typically via an extension cord. Train 311 travels along rail of tube 300 and the toothed wheels (not shown) ride along the tines. Thus, the tines function as the tube structure, as a controlling feature with regard to limiting the tightness of inward bending, and act as the train rails for the train 311 wheel engagement. This embodiment of the present invention (with connected other tube sections) may be hung on tree branches, hung from a ceiling, hung from hangers, spiraled abut a tree, laid out on a floor, arranged in a circle, or oval, or serpentine, as desired. Although the train 311 is shown alone, it is ideally connected to other cars: realistic like freight trains, or fanciful like circus cars.
  • FIGS. 16, 17, and 18 show top views of an open spine-based embodiment of the present invention tubular transport system with motorized vehicle similar to shown in FIGS. 13A-15B (with the backbone of the spine off center, i.e. on one side), but in three different positions, namely at rest, spread open, and spread closed, to illustrate the flexibility and controlled limits of the spine and its tines. Identical parts are identically numbered in these Figures. The tube 201 has a spine 203 with tines, such as tines 205, 209, and 213, with spaces 207 and 211 therebetween. FIG. 16 shows the tube 201 at rest, FIG. 17 shows the tube 201 bent outwardly and limited by the strength of its spine 203 as to the extent of its bending. FIG. 18 illustrates that inward bending is limited to the point where the tines touch each other. These features maintain the flexibility limits necessary to keep the train on track, but offer the user an infinite number of positions within the bending limits.
  • FIGS. 19 and 20 show a top cut view and a side oblique view of another embodiment of the present invention tubular transport system with motorized vehicle 220, wherein both the spine 243 and the electric rail 240 are centered withing the tube. The tube has tines 229, 231, 233 and 235 that flex inwardly and outwardly in the same manner and degree, with the power-guide rail 240 in the center of the bottom portion. Tines, aka fingers, such as tines 223, 225 and 227 on one side of rail 240, and tines 229, 231, 233 and 235 on the opposite side are all similar or equal in size and width, and function to inhibit over-bending both inwardly and outwardly. The center rail 240 has connectors 221 and 237 on opposite ends for connection to additional tubes to create a connected tubular transportation system for enjoyment, decoration, or task performance.
  • FIGS. 21 and 22 show the same present invention tubular transport system with motorized vehicle 220 from a top view, with inward and outward flexing, respectively. The components are numbered identically to those in FIGS. 19 and 20.
  • FIG. 23 illustrates a front oblique view of another embodiment of the present invention tubular transport system with motorized vehicle, similar to the one in the immediately preceding Figures, but with arc bent inwardly. Here, tube 400 has a set of tines 401 (as exemplified by tine 407) in a “C” shape and with a center contacts guide 409. Vehicles 500 straddle guide 409 and connect electrically or rely upon rechargeable batteries for power. Drive wheels with teeth grip the tines for traction and move the vehicles through the tube 400. In this case, a clear plastic film 413 is adhered to the tines to complete the tube, protecting its contents and stretching as needed.
  • FIG. 24 shows a partial, blown up cut front view of the present invention tubular transport system with motorized vehicle 400 of FIG. 23, with some elements identically numbered, but with a train engine 500 cut to show details of one embodiment of the drive mechanism relative to the tube 400. The drive mechanism includes a motor and rechargeable battery 501, a drive shaft with worm gear 507 that turns a toothed wheel 509 that engages with guide tube 409 as shown in the circle 511. The motor and battery 501 also include a variable speed and directional chip(s) and receiver for variable speed and directional control operation via a wireless controller (not shown).
  • FIGS. 25 and 26 illustrate front and rear oblique views of yet another embodiment of the present invention tubular transport system with motorized vehicle wherein the spine has tines that flex inwardly and outwardly, with the power-guide rail in the center of the bottom portion where the tines are separate, assembled “C-links” connected to one another to form the tubular transport section, and wherein a plurality of these sections are subsequently connected to one another to establish the system. Thus, present invention system section 601 includes end pieces (such as end piece 603) for interconnection with other sections, including physical connection by male and female interconnectors and including electrical connection by opposing plugs and receptacles, such as male plug 615 and female plug receptacle 617. There are individual tines, such as tine 605 which is a “C-link” tine. These “C-links” have a squared “C-shape” from an end view and each an inner portion and an outer portion wherein the inner portion of a first tine fits under and is secured to the outer portion of the next tine. This is shown in more detail below. In FIG. 25, there are rotator snap clips, such as clips 607 and 609, and similar clips with hanging loops or hooks, such as clip 611. In this Figure a train set 621 is shown. This train set 621 is adapted to ride securely on the T-track and receive electric power therefrom to run its motor. FIG. 26 shows the back of section 601 and identical parts are identically numbered. In FIG. 26, an LED light strip 613 is fastened behind tube 601 by hooks 623 attached to or molded into some “C-links”.
  • FIGS. 27, 28, and 29 illustrate the sequential assembly of the “C-links”, including the “C-links”, track segments, clip receivers, rotator snap clips and hanger rotator clips. In FIG. 27, single “C-link” 605 is shown in detail, with its outer portion 649 and its inner portion 651, including top 629, back 623, and bottom 631. Top 629 has a clip receiver 635 and an adjacent clip receiver orifice 633. Back 623 has slide guides 625 and 627 for receiving advertising, messages, light strips, scenery, or combinations thereof. Bottom 631 includes a rail clip receiver 639, an adjacent rail clip receiver orifice 641, and a bottom leg 643. When “C-link” 605 is connected to an adjacent “C-link,” such as “C-link” 655 in FIG. 28, then rail clip 637 is inserted into its proper orientation into receiver 639. Once the outer portion 649 is slipped into and above the inner portion of “C-link” 655 in FIG. 28, then all of the clips, such as snap clip 645, hanging clip 611, and the above-mentioned rail clips(such as rail clip 637), are inserted into place. FIG. 29 shows this assembly repeated with “C-link” 665 connected to “C-link” 655, with all three rail clips 637, 647, and 657 inserted into place, properly oriented and locked in. In these three figures, identical parts are identically numbered. Note that although clips are used for assembly, any form of assembly for rotation may be substituted for the clips without exceeding the scope of the present invention. As examples, rivets, screws, bolts coupled with washers, or force-fit mushroom ended clips could be used.
  • FIG. 30 shows an oblique bottom view of the present invention tubular transport system with motorized vehicle where the section assembly of the type described, in conjunction with the types of “C-links” shown in FIGS. 25 through 29 above (including an end cap), and a terminal end cap with a power cord. Here, section 701 has endward “C-links” 703 and 705 assembled and incoming “C-link” 709 about to be attached. “C-link” 709 includes rail clip 713, rail clip receiver orifice 715, and rotator clip 711. End cap 717 has a rotator clip 719 and a rail clip 727, as shown. Terminal end cap 721 includes a power cord 725 with a plug (not shown). All of these pieces are assembled by movement from left to right, after which the various clips are inserted and locked in. This assembly enables rotation of each “C-link” relative to the next “C-link”, to the extent of the amount of space between each “C-link”. Power strips 723 are run along rail clips 713. There is an interchangeable sheet 707 with imagery (blank here for simplicity) that is flexible and, opaque, or at least partially translucent, or transparent.
  • FIGS. 31 and 32 show two sections 751 and 753 of the present invention tubular transport system with motorized vehicle being assembled and as assembled, curved inwardly. Male connectors, such as connector 755, are inserted into female connectors, such as female connector 757. After assembly they may be curved inwardly, or outwardly, or portions inwardly and other portions outwardly, enabling layouts of a spiral, or in a figure eight, or otherwise.
  • FIGS. 33 and 34 show the two sections 751 and 753 of the present invention tubular transport system with motorized vehicle from FIGS. 31 and 32 above, with identical parts being identically numbered, being assembled and as assembled, curved outwardly.
  • FIGS. 35 and 36 show front and side views of one embodiment of a train engine 801 that may be attached to and moved along the present invention tubular transport system with motorized vehicle that has a center T-rail, such as some of the embodiments shown above. Train engine 801 has a removable theme top 803 (in this case, an early “Iron Horse” steam engine), a motor 813, fake wheels 805 and 807, and operating wheels 809 and 811 with serrated and gripping edges. There are also T-rail electrical contact blocks 815 and 817, shown engaged in FIG. 37 below.
  • FIG. 37 shows a cut rear view of the train engine 801 with removable theme top 803 of FIGS. 35 and 36 above on the present invention tubular transport system with motorized vehicle 851, which includes top 853, backside 855, open front 857 and bottom 859, with center T-rail 869. Operating wheels 809 and 811 engage the inside bottom 859, while T-rail electrical contact blocks 815 and 817 engage T-rail 869 for electrical contact and guidance.
  • Many variations and embodiments have been described above for the present invention tubular transport system with motorized vehicle. For example, the “C-links” described above may be varied from those depicted. The clip receiver on the “C-links” could be rotate-and-lock connections. The clip receiver could have small notches and/or protrusions along the outside of the clip receiver, so that as the clip receiver is rotated, the notches or protrusions lock into place between small bumps or ridges around the clip orifice. Further, each “C-link” or track section could have sidewalls that are constructed from a single piece or multiple pieces attached together, as desired. Also, as suggested elsewhere herein, the metal or other spine may be eliminated as a separate piece, and the tube structure be strong enough to act as both a spine and a tube.
  • While most embodiments rely upon electric motors to propel the vehicles, the present invention tubular transport system with motorized vehicle encompasses any available motive power, such as magnetic propellants, gas propellants, or combinations thereof. Further, as mentioned above, the term “motorized vehicle” includes vehicles with the motor onboard as well as vehicles that are motorized indirectly such as motor driven tracks, cogs, gears, pulleys, or other motorized push or pull mechanism. Additionally, the tubes may have any cross-sectional shape and thus are not limited to “C-link” shapes such as circles, squares, and rectangles.
  • While the present invention tubular transport system with motorized vehicle has been described and is in the illustrations as a device that can be seen generally as an amusement device, the present invention has other notable purposes that are within the scope of the present invention. For example, the present invention tubular transport system with motorized vehicle may be used to carry a camera and/or multiple cameras arounds a desired or designated area. The camera(s) could take sequential stills or continuous or interrupted or scheduled videos and/or be used for real time observations. Thus, the present invention tubular transport system with motorized vehicle with cameras could be used for homes, business, hotels, warehouses, factories, amusement parks, offices, plains, trains or even public areas for roaming security cameras. They could be used with cameras for quality control in factories, stores, hospitals and other facilities. They could be used with cameras for educational or instructional filming. Further, the present invention tubular transport system with motorized vehicle could be used to transport selected items, such as uranium, toxic medications, toxins, etc. and could also be used for scientific purposes such as collecting periodic air or water samples for environmental or other testing. The present invention systems could be used for pet toys, or to disperse sprays and disinfectants throughout a room or facility.
  • Although particular embodiments of the present invention tubular transport system with motorized vehicle have been described in detail herein with reference to the accompanying drawings, it is to be understood that the present invention tubular transport system with motorized vehicle is not limited to those particular embodiments, and that various changes and modifications may be included therein by one skilled in the art without departing from the scope or spirit of the invention as defined in the appended claims. For example, the actual shape of the main housing may be any of numerous possibilities as long as its functionality as described is not affected adversely.

Claims (30)

What is claimed is:
1. A tubular transport system with motorized vehicle, which comprises:
a) a hollow tube having a proximal end and a distal end, said hollow tube being semi-flexible so as to bend no less than a predetermined minimum radius and to bend no farther than a predetermined maximum radius without kinking, said hollow tube having a transparency selected from the group consisting of translucent, transparent, opaque, or combinations thereof, said hollow tube having a supportive spine to facilitate control of bending and holding a bent portion of said hollow tube;
b) a motorized vehicle moveably positioned within said hollow tube;
c) a motor connected to said vehicle for advancing said motorized vehicle by driving a traction mechanism;
d) a power source connected to said motor, said power source being located in a position selected from the group consisting of: (i) within said motor vehicle: (ii) within said hollow tube external from said motor vehicle, and (iii) functionally connected to said motor of said motor vehicle;
e) said traction mechanism for assisting in movement of said motor vehicle, said traction mechanism selected from the group consisting of: (i) wheels connected to said motor vehicle, said wheels being friction wheels; (ii) wheels and tracks, one of said wheels and one of said tracks being located on said motor vehicle and the other of said wheels and said tracks being located in said hollow tube; (iii) a monorail system connected to said motor vehicle and said hollow tube; (iv) a magnetic drive connected to said motor vehicle and said hollow tube; and (v) a slot, detent and propulsion mechanism connected to said motor vehicle and said hollow tube.
2. The tubular transport system with motorized vehicle of claim 1 wherein said hollow tube has background scenery on a portion thereof.
3. The tubular transport system with motorized vehicle of claim 1 wherein said hollow tube supportive spine is at least one set of fingers wherein each finger has a first end, being a proximal end, that is connected to said hollow tube, and has a second end, being a distal end, that is extended away from said hollow tube, having a first position with open space between each adjacent finger distal end when said hollow tube is unbent, and having a second position with each said adjacent finger distal end contacting one another when said hollow tube is bent to said minimum radius (maximum bending position), and wherein said contacting creates stops to inhibit further bending.
4. The tubular transport system with motorized vehicle of claim 1 wherein said hollow tube supportive spine is an exoskeleton attached to said hollow tube.
5. The tubular transport system with motorized vehicle of claim 1 wherein said hollow tube supportive spine is embedded within said hollow tube.
6. The tubular transport system with motorized vehicle of claim 1 wherein said hollow tube supportive spine is selected from the group consisting of at least one continuous support coil, a plurality of disconnected linear supports, and a plurality of disconnected arcuate supports.
7. The tubular transport system with motorized vehicle of claim 1 wherein said hollow tube includes at least one light thereon, said light being selected from the group consisting of: (i) at least one spotlight; (ii) at least one backlight; (iii) at least one overhead light; (iv) at least one string of LED lights; and (v) a combination thereof.
8. The tubular transport system with motorized vehicle of claim 1 wherein said motor vehicle includes a top that has a receiver adapted for attachment and removal of interchangeable overcaps, and said tubular transport system includes at least one theme-based over cap.
9. The tubular transport system with motorized vehicle of claim 1 wherein said motor is an electric motor and said power source is selected from the group consisting of an AC power source and a DC power source.
10. The tubular transport system with motorized vehicle of claim 9 wherein said power source is a DC power source, said DC power source being a battery.
11. The tubular transport system with motorized vehicle of claim 9 wherein said power source is an AC power source that includes a transformer and an outlet plug.
12. The tubular transport system with motorized vehicle of claim 10 wherein said motor is a fixed output DC motor.
13. The tubular transport system with a motorized vehicle of claim 11 wherein said motor is a variable output motor and said system further includes a variable speed manual controller.
14. The tubular transport system with motorized vehicle of claim 1 wherein said hollow tube is selected from the group consisting of: (i) a hollow tube having a closed side wall; and (ii) a hollow tube having an open side wall.
15. The tubular transport system with motorized vehicle of claim 14 wherein said hollow tube has an open side wall and said hollow tube supportive spine is at least one set of fingers wherein each finger has a first end, being a proximal end that is connected to said hollow tube, and has a second end, being a distal end that is extended away from said hollow tube, having a first position with open space between each adjacent finger distal end when said hollow tube is unbent, and having a second position with said each adjacent finger distal end contacting one another when said hollow tube is bent to said minimum radius (maximum bending position), and wherein said contacting creates stops to inhibit further bending.
16. The tubular transport system with motorized vehicle of claim 15 wherein at least one set of said fingers is located in a position selected from the group consisting of: (i) a bottom of said open side wall hollow tube; (ii) a top of said open side wall hollow tube; and (iii) both a bottom of said open side wall hollow tube and a top of said open side wall hollow tube.
17. The tubular transport system with motorized vehicle of claim 15 wherein one set of fingers is also a set of tracks as part of said traction mechanism.
18. The tubular transport system with motorized vehicle of claim 15 wherein said open side wall hollow tube has a closed side wall with at least a portion thereof having a decorative sheet-receiving mechanism.
19. The tubular transport system with motorized vehicle of claim 18 wherein said closed wall portion is selected from the group consisting of transparent and translucent and wherein said closed wall portion has an outside surface that includes at least one backlight.
20. The tubular transport system with motorized vehicle of claim 15 wherein said closed wall portion includes a guide rail for attachment of a vehicle thereto.
21. The tubular transport system with motorized vehicle of claim 20 wherein said closed wall portion guide rail includes electric power rails to power a vehicle.
22. The tubular transport system with motorized vehicle of claim 14 wherein a portion of said motor vehicle extends through said open side wall.
23. The tubular transport system with motorized vehicle of claim 14 wherein said tube is a plurality of separate sections that includes interconnectors at each end for assembly.
24. The tubular transport system with motorized vehicle of claim 1 wherein said hollow tube has a hatch on at least one of said proximal end and said distal end, for accessing said motorized vehicle.
25. The tubular transport system with motorized vehicle of claim 1 wherein said motorized vehicle is a train.
26. The tubular transport system with motorized vehicle of claim 1 wherein said motorized vehicle includes a structure selected from the group consisting of: (i) a support for mounting and moving an object; (ii) a carrier for transporting an object; (iii) at least one illumination system; (iv) at least one sounding system; and (v) combinations of foregoing.
27. The tubular transport system with motorized vehicle of claim 1 wherein said system is comprised of a plurality of connected sections and at least one section is comprised of a plurality of individual interconnected links that are rotatable relative to one another.
28. The tubular transport system with motorized vehicle of claim 27 wherein each of said individual interconnected links has an inner portion and an outer portion and an inner portion of one link is connected by being inserted into the outer portion of an adjacent link.
29. The tubular transport system with motorized vehicle of claim 28 wherein said individual interconnected links are connected with rotator clips.
30. The tubular transport system with motorized vehicle of claim 29 wherein at least two of said rotator clips have hanging loops.
US16/946,064 2020-06-04 2020-06-04 Tubular Transport System With Motorized Vehicle Abandoned US20210379500A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/946,064 US20210379500A1 (en) 2020-06-04 2020-06-04 Tubular Transport System With Motorized Vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/946,064 US20210379500A1 (en) 2020-06-04 2020-06-04 Tubular Transport System With Motorized Vehicle

Publications (1)

Publication Number Publication Date
US20210379500A1 true US20210379500A1 (en) 2021-12-09

Family

ID=78816790

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/946,064 Abandoned US20210379500A1 (en) 2020-06-04 2020-06-04 Tubular Transport System With Motorized Vehicle

Country Status (1)

Country Link
US (1) US20210379500A1 (en)

Similar Documents

Publication Publication Date Title
KR970000430B1 (en) Toy rack railway
US7353758B2 (en) Track and vehicle amusement apparatus and methods
US8033348B1 (en) Self-propelled child stroller
US8065963B2 (en) Fairground attraction having people carriers driftingly movable along a track
CN106621295B (en) Demountable modular electric return board and its remote control device
US6508179B2 (en) Unpowered toy vehicle play set
US10603600B2 (en) Autonomous, gravity-assisted motorized racer configured to travel through non-straight tube segments
US4217727A (en) Miniature monorail system
US9579578B2 (en) Zip line trolley retriever system
US4231294A (en) Toy tube train
CN102753242A (en) Toy vehicle track play set
US20030017782A1 (en) Roller coaster toy
US3337985A (en) Toy vehicle having variable drive means and pliable track
US20210379500A1 (en) Tubular Transport System With Motorized Vehicle
US5027712A (en) Monorail train suspended from guideway
CA1083352A (en) Control tower and track toy assembly
EP1692344A2 (en) Flexible track for a toy vehicle
US20200179817A1 (en) Track vehicle for moving in toy track system
US8747181B1 (en) Toy vehicle and playset therefor
US4417523A (en) Rideable motor-driven toy train
US4352329A (en) Toy roadway system
US4357877A (en) Toy train
JP2006346182A (en) Vehicle apparatus
US6520830B1 (en) Ceiling mounted model toy railing system and method therefor
JP3736867B2 (en) Rail guided device support system

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION