US20210371547A1 - Biological products - Google Patents
Biological products Download PDFInfo
- Publication number
- US20210371547A1 US20210371547A1 US17/151,911 US202117151911A US2021371547A1 US 20210371547 A1 US20210371547 A1 US 20210371547A1 US 202117151911 A US202117151911 A US 202117151911A US 2021371547 A1 US2021371547 A1 US 2021371547A1
- Authority
- US
- United States
- Prior art keywords
- seq
- cdr
- antibody
- antibody molecule
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 claims abstract description 31
- 102000044389 human CD22 Human genes 0.000 claims abstract description 5
- 241000282414 Homo sapiens Species 0.000 claims description 41
- 108010047041 Complementarity Determining Regions Proteins 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 21
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 15
- 239000003085 diluting agent Substances 0.000 claims description 3
- 239000004615 ingredient Substances 0.000 claims description 3
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 3
- 101710099705 Anti-lipopolysaccharide factor Proteins 0.000 claims description 2
- 102100038080 B-cell receptor CD22 Human genes 0.000 abstract description 26
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 21
- 239000013598 vector Substances 0.000 abstract description 21
- 201000010099 disease Diseases 0.000 abstract description 20
- 108091028043 Nucleic acid sequence Proteins 0.000 abstract description 16
- 238000011282 treatment Methods 0.000 abstract description 10
- 229940126619 mouse monoclonal antibody Drugs 0.000 abstract description 9
- 230000001404 mediated effect Effects 0.000 abstract description 6
- 210000004027 cell Anatomy 0.000 description 24
- 239000013615 primer Substances 0.000 description 22
- 230000027455 binding Effects 0.000 description 20
- 108090000623 proteins and genes Proteins 0.000 description 19
- 238000003752 polymerase chain reaction Methods 0.000 description 18
- 108020004414 DNA Proteins 0.000 description 16
- 230000013595 glycosylation Effects 0.000 description 16
- 238000006206 glycosylation reaction Methods 0.000 description 16
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 14
- 235000001014 amino acid Nutrition 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 241000699666 Mus <mouse, genus> Species 0.000 description 13
- 150000001413 amino acids Chemical class 0.000 description 12
- 241001529936 Murinae Species 0.000 description 10
- 239000000427 antigen Substances 0.000 description 10
- 102000036639 antigens Human genes 0.000 description 10
- 108091007433 antigens Proteins 0.000 description 10
- 239000012634 fragment Substances 0.000 description 10
- 210000004602 germ cell Anatomy 0.000 description 10
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 10
- 239000002773 nucleotide Substances 0.000 description 10
- 125000003729 nucleotide group Chemical group 0.000 description 10
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical group COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 9
- 206010025323 Lymphomas Diseases 0.000 description 9
- 239000004472 Lysine Substances 0.000 description 9
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 9
- 206010028980 Neoplasm Diseases 0.000 description 9
- 108091034117 Oligonucleotide Proteins 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000013604 expression vector Substances 0.000 description 9
- 108090000765 processed proteins & peptides Proteins 0.000 description 9
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 8
- 210000003719 b-lymphocyte Anatomy 0.000 description 8
- 230000001225 therapeutic effect Effects 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000010367 cloning Methods 0.000 description 7
- 239000002299 complementary DNA Substances 0.000 description 7
- 210000004408 hybridoma Anatomy 0.000 description 7
- 230000035772 mutation Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 238000003556 assay Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 229920001184 polypeptide Polymers 0.000 description 6
- 102000004196 processed proteins & peptides Human genes 0.000 description 6
- 235000018102 proteins Nutrition 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- 208000003950 B-cell lymphoma Diseases 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 210000001035 gastrointestinal tract Anatomy 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000008194 pharmaceutical composition Substances 0.000 description 5
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 101000686903 Homo sapiens Reticulophagy regulator 1 Proteins 0.000 description 4
- 102220490323 Matrix metalloproteinase-27_N55Q_mutation Human genes 0.000 description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- 108010029157 Sialic Acid Binding Ig-like Lectin 2 Proteins 0.000 description 4
- 102000001613 Sialic Acid Binding Ig-like Lectin 2 Human genes 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000000692 anti-sense effect Effects 0.000 description 4
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 208000032839 leukemia Diseases 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910001629 magnesium chloride Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 102200094314 rs74315399 Human genes 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 102220624752 Atrial natriuretic peptide receptor 1_T57V_mutation Human genes 0.000 description 3
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 3
- 238000001712 DNA sequencing Methods 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 239000011543 agarose gel Substances 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 239000013599 cloning vector Substances 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 3
- 239000005549 deoxyribonucleoside Substances 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 102220196538 rs1057518860 Human genes 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000001226 triphosphate Substances 0.000 description 3
- 235000011178 triphosphate Nutrition 0.000 description 3
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 2
- 230000003844 B-cell-activation Effects 0.000 description 2
- 108010017826 DNA Polymerase I Proteins 0.000 description 2
- 102000004594 DNA Polymerase I Human genes 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 2
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- 230000009824 affinity maturation Effects 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000011712 cell development Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 238000012215 gene cloning Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 208000003747 lymphoid leukemia Diseases 0.000 description 2
- 210000003519 mature b lymphocyte Anatomy 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 210000004180 plasmocyte Anatomy 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical class O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 1
- 102100026445 A-kinase anchor protein 17A Human genes 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 102000019260 B-Cell Antigen Receptors Human genes 0.000 description 1
- 108010012919 B-Cell Antigen Receptors Proteins 0.000 description 1
- 208000025321 B-lymphoblastic leukemia/lymphoma Diseases 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 208000011691 Burkitt lymphomas Diseases 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 1
- 208000036119 Frailty Diseases 0.000 description 1
- 101000718019 Homo sapiens A-kinase anchor protein 17A Proteins 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical class Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 1
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 1
- 208000008771 Lymphadenopathy Diseases 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 208000028018 Lymphocytic leukaemia Diseases 0.000 description 1
- 201000003791 MALT lymphoma Diseases 0.000 description 1
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 1
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 230000004988 N-glycosylation Effects 0.000 description 1
- 101800000135 N-terminal protein Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 101800001452 P1 proteinase Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 108091007960 PI3Ks Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 1
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 102000000551 Syk Kinase Human genes 0.000 description 1
- 108010016672 Syk Kinase Proteins 0.000 description 1
- 108010008038 Synthetic Vaccines Proteins 0.000 description 1
- 206010042971 T-cell lymphoma Diseases 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 238000011230 antibody-based therapy Methods 0.000 description 1
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 206010003549 asthenia Diseases 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 238000009104 chemotherapy regimen Methods 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 238000009096 combination chemotherapy Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 108020001096 dihydrofolate reductase Proteins 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- VHJLVAABSRFDPM-ZXZARUISSA-N dithioerythritol Chemical compound SC[C@H](O)[C@H](O)CS VHJLVAABSRFDPM-ZXZARUISSA-N 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 208000022532 enlargement of lymph nodes Diseases 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009093 first-line therapy Methods 0.000 description 1
- 201000003444 follicular lymphoma Diseases 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000002871 immunocytoma Effects 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 238000012933 kinetic analysis Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 201000011649 lymphoblastic lymphoma Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 150000002678 macrocyclic compounds Chemical class 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000003471 mutagenic agent Substances 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 208000017426 precursor B-cell acute lymphoblastic leukemia Diseases 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 210000001948 pro-b lymphocyte Anatomy 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 238000001273 protein sequence alignment Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 208000037922 refractory disease Diseases 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 102000036068 sialic acid binding proteins Human genes 0.000 description 1
- 108091000315 sialic acid binding proteins Proteins 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000003019 stabilising effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 229940065721 systemic for obstructive airway disease xanthines Drugs 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000003867 tiredness Effects 0.000 description 1
- 208000016255 tiredness Diseases 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
- C07K16/461—Igs containing Ig-regions, -domains or -residues form different species
- C07K16/464—Igs containing CDR-residues from one specie grafted between FR-residues from another
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2851—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3061—Blood cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/566—Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
- G01N33/567—Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds utilising isolate of tissue or organ as binding agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
- A61K2039/507—Comprising a combination of two or more separate antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/40—Immunoglobulins specific features characterized by post-translational modification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/40—Immunoglobulins specific features characterized by post-translational modification
- C07K2317/41—Glycosylation, sialylation, or fucosylation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/52—Constant or Fc region; Isotype
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/567—Framework region [FR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
Definitions
- the present invention relates to an antibody molecule having specificity for antigenic determinants of the B lymphocyte antigen, CD22.
- the present invention also relates to the therapeutic uses of the antibody molecule and methods for producing the antibody molecule.
- variable domains In a natural antibody molecule, there are two heavy chains and two light chains. Each heavy chain and each light chain has at its N-terminal end a variable domain. Each variable domain is composed of four framework regions (FRs) alternating with three complementarity determining regions (CDRs). The residues in the variable domains are conventionally numbered according to a system devised by Kabat et al. This system is set forth in Kabat et al., 1987, in Sequences of Proteins of Immunological Interest, US Department of Health and Human Services, NIH, USA (hereafter “Kabat et al. (supra)”). This numbering system is used in the present specification except where otherwise indicated.
- the Kabat residue designations do not always correspond directly with the linear numbering of the amino acid residues.
- the actual linear amino acid sequence may contain fewer or additional amino acids than in the strict Kabat numbering corresponding to a shortening of, or insertion into, a structural component, whether framework or CDR, of the basic variable domain structure.
- the correct Kabat numbering of residues may be determined for a given antibody by alignment of residues of homology in the sequence of the antibody with a “standard” Kabat numbered sequence.
- the CDRs of the heavy chain variable domain are located at residues 31-35 (CDR-H1), residues 50-65 (CDR-H2) and residues 95-102 (CDR-H3) according to the Kabat numbering.
- the CDRs of the light chain variable domain are located at residues 24-34 (CDR-L1), residues 50-56 (CDR-L2) and residues 89-97 (CDR-L3) according to the Kabat numbering.
- CDR-grafted antibodies is described in European Patent Application EP-A-0239400, which discloses a process in which the CDRs of a mouse monoclonal antibody are grafted onto the framework regions of the variable domains of a human immunoglobulin by site directed mutagenesis using long oligonucleotides.
- the CDRs determine the antigen binding specificity of antibodies and are relatively short peptide sequences carried on the framework regions of the variable domains.
- Non-Hodgkins Lymphoma is a disease that currently affects 200,000 to 250,000 patients in the U.S. It is the second fastest rising cancer in the U.S., rising at a rate of about 55,000 new cases per year. The incidence is rising at a rate that is greater than can be accounted for simply by the increasing age of the population and exposure to known risk factors.
- lymphoma The classification of lymphoma is complex, and has evolved in recent decades. In 1994 the Revised European-American Lymphoma (REAL) classification was introduced. This classification organises lymphomas of B cell (the most frequently identified), T cell and unclassifiable origin into agreed subtypes. In everyday practice, the grouping of NHLs into low, intermediate and high-grade categories on the basis of their general histological appearance, broadly reflects their clinical behaviour.
- REL Revised European-American Lymphoma
- NHL predominantly affects the lymph nodes but, in individual patients, the tumour may involve other anatomical sites such as the liver, spleen, bone marrow, lung, gut and skin.
- the disease commonly presents as a painless enlargement of lymph nodes.
- Extranodal lymphoma most frequently affects the gut, although primary lymphoma of virtually every organ has been documented.
- Systemic symptoms include fever, sweats, tiredness and weight loss.
- the Ann Arbor staging system based entirely upon the anatomical extent of disease, was the major determinant of therapy in NHL. This information may be refined by incorporating additional prognostic pointers, including age, serum lactate dehydrogenase levels and performance status. Even so, knowledge of the Ann Arbor staging system, together with the histological and immunological subtype of the tumour, is still the major determinant of treatment.
- Low grade NHL has an indolent course, with a median patient survival of 8 to 10 years. Survival is little impacted by currently available therapy, although irradiation of local disease and chemotherapy for systemic symptoms improves patients' quality of life. Combination chemotherapy may be reserved for relapsed disease. Intermediate disease and, especially, high grade disease is extremely aggressive and tends to disseminate. Disease of this grade requires urgent treatment. Radiotherapy may be a useful component of treatment in patients with very bulky disease. Many different chemotherapy regimens have been employed, and long-term disease-free survival may be obtained in more than half of patients. High dose therapy with stem cell support was introduced initially for patients with relapsed or refractory disease, but is now increasingly finding a place in first line therapy for patients with poor-risk disease. The tendency in recent years for an increasingly aggressive therapeutic approach must be balanced against the generally elderly age and relative debility of many patients with NHL, and by the need to match the toxicity of treatment to the individual prognosis of each patient's disease.
- Agents recently introduced include new cytotoxic drugs, progressively incorporated into combinations, and the introduction of antibody-based therapies.
- Non-Hodgkin's lymphoma encompasses a range of B cell lymphomas. B cell antigens therefore represent suitable targets for antibody therapy.
- CD22 is a 135 kDa membrane glycoprotein belonging to a family of sialic acid binding proteins called sialoadhesins. It is detected in the cytoplasm early in B cell development, appears on the cell surface simultaneously with IgD and is found on most mature B cells. Expression is increased following B cell activation. CD22 is lost with terminal differentiation and is generally reported as being absent on plasma cells. Thus this internalising antigen is present on the surface of pre-B cells and mature B cells but not stem cells or plasma cells.
- CD22 ⁇ The predominant form (CD22 ⁇ ) contains 7 immunoglobulin-like (Ig-like) domains in the extracellular region.
- the CD22 ⁇ variant lacks Ig-like domain 4 and may have a truncated cytoplasmic domain.
- Antibodies which block CD22 adhesion to monocytes, neutrophils, lymphocytes and erythrocytes have been shown to bind within the first or second Ig-like domain.
- the cytoplasmic domain of CD22 is tyrosine phosphorylated upon ligation of the B cell antigen receptor and associates with Lyk, Syk and phosphatidyl inositol 3-kinase.
- the function of CD22 is to down-modulate the B cell activation threshold. It can also mediate cell adhesion through interaction with cells bearing the appropriate sialoglycoconjugates.
- CD22 is expressed in most B cell leukaemias and lymphomas, including NHL, acute lymphoblastic leukaemia (B-ALL), chronic lymphocytic leukaemia (B-CLL) and especially acute non-lymphocytic leukaemia (ANLL).
- NHL acute lymphoblastic leukaemia
- B-CLL chronic lymphocytic leukaemia
- ANLL acute non-lymphocytic leukaemia
- WO 98/41641 describes recombinant anti-CD22 antibodies with cysteine residues at V H 44 and V L 100.
- WO 96/04925 describes the V H and V L regions of the anti-CD22 antibody LL2.
- U.S. Pat. No. 5,686,072 describes combinations of anti-CD22 and anti-CD19 immunotoxins.
- WO 98/42378 describes the use of naked anti-CD22 antibodies for the treatment of B-cell malignancies.
- a number of antibody-based therapeutics have either been recently licensed, eg. Rituxan (an unlabeled chimeric human ⁇ 1 (+m ⁇ 1V-region) specific for CD20), or are in clinical trials for this disease. These rely either on complement- or ADCC-mediated killing of B cells or the use of radionuclides, such as 131 I or 90 Y, which have associated preparation and use problems for clinicians and patients.
- an antibody molecule to treat NHL which can be used repeatedly and produced easily and efficiently.
- an antibody molecule which has high affinity for CD22 and low immunogenicity in humans.
- the present invention provides an antibody molecule having specificity for human CD22, comprising a heavy chain wherein the variable domain comprises a CDR (as defined by Kabat et al., (supra)) having the sequence given as H1 in FIG. 1 (SEQ ID NO:1) for CDR-H1, as H2 in FIG. 1 (SEQ ID NO:2) or an H2 from which a potential glycosylation site has been removed, or an H2 in which the lysine residue at position 60 (according to the Kabat numbering system) has been replaced by an alternative amino acid, or an H2 in which both the glycosylation site and the reactive lysine at position 60 have been removed for CDR-H2 or as H3 in FIG. 1 (SEQ ID NO:3) for CDR-H3.
- CDR as defined by Kabat et al., (supra) having the sequence given as H1 in FIG. 1 (SEQ ID NO:1) for CDR-H1, as H2 in FIG. 1 (SEQ ID NO:2) or
- the antibody molecule of the first aspect of the present invention comprises at least one CDR selected from H1, H2 and H3 (SEQ ID NO:1, SEQ ID NO:2 and SEQ ID NO:3) for the heavy chain variable domain.
- the antibody molecule comprises at least two and more preferably all three CDRs in the heavy chain variable domain.
- an antibody molecule having specificity for human CD22 comprising a light chain wherein the variable domain comprises a CDR (as defined by Kabat et al., (supra)) having the sequence given as L1 in FIG. 1 (SEQ ID NO:4) for CDR-L1, L2 in FIG. 1 (SEQ ID NO:5) for CDR-L2 or L3 in FIG. 1 (SEQ ID NO:6) for CDR-L3.
- CDR as defined by Kabat et al., (supra) having the sequence given as L1 in FIG. 1 (SEQ ID NO:4) for CDR-L1, L2 in FIG. 1 (SEQ ID NO:5) for CDR-L2 or L3 in FIG. 1 (SEQ ID NO:6) for CDR-L3.
- the antibody molecule of the second aspect of the present invention comprises at least one CDR selected from L1, L2 and L3 (SEQ ID NO:4; SEQ ID NO:5 and SEQ ID NO:6) for the light chain variable domain.
- the antibody molecule comprises at least two and more preferably all three CDRs in the light chain variable domain.
- the antibody molecules of the first and second aspects of the present invention preferably have a complementary light chain or a complementary heavy chain, respectively.
- the antibody molecule of the first or second aspect of the present invention comprises a heavy chain wherein the variable domain comprises a CDR (as defined by Kabat et al., (supra)) having the sequence given as H1 in FIG. 1 (SEQ ID NO:1) for CDR-H1, as H2 in FIG. 1 (SEQ ID NO:2) or an H2 from which a potential glycosylation site has been removed, or an H2 in which the lysine residue at position 60 (according to the Kabat numbering system) has been replaced by an alternative amino acid, or an H2 in which both the glycosylation site and the reactive lysine at position 60 have been removed for CDR-H2 or as H3 in FIG.
- CDR as defined by Kabat et al., (supra) having the sequence given as H1 in FIG. 1 (SEQ ID NO:1) for CDR-H1, as H2 in FIG. 1 (SEQ ID NO:2) or an H2 from which a potential glycosylation site has been removed,
- variable domain comprises a CDR (as defined by Kabat et al., (supra)) having the sequence given as L1 in FIG. 1 (SEQ ID NO:4) for CDR-L1, as L2 in FIG. 1 (SEQ ID NO:5) for CDR-L2 or as L3 in FIG. 1 (SEQ ID NO:6) for CDR-L3.
- the CDRs given in SEQ IDS NOs:1 to 6 and in FIG. 1 referred to above are derived from a mouse monoclonal antibody 5/44.
- FIG. 2 light chain
- FIG. 3 dasheavy chain
- SEQ ID NO:8 The complete sequences of the variable domains of the mouse 5/44 antibody are shown in FIG. 2 (light chain) (SEQ ID NO:7) and FIG. 3 (heavy chain) (SEQ ID NO:8).
- This mouse antibody is also referred to below as “the donor antibody” or the “murine monoclonal antibody”.
- a first alternatively preferred embodiment of the first or second aspect of the present invention is the mouse monoclonal antibody 5/44 having the light and heavy chain variable domain sequences shown in FIG. 2 (SEQ ID NO:7) and FIG. 3 (SEQ ID NO:8), respectively.
- the light chain constant region of 5/44 is kappa and the heavy chain constant region is IgG1.
- the antibody according to either of the first and second aspects of the present invention is a chimeric mouse/human antibody molecule, referred to herein as the chimeric 5/44 antibody molecule.
- the chimeric antibody molecule comprises the variable domains of the mouse monoclonal antibody 5/44 (SEQ ID NOs:7 and 8) and human constant domains.
- the chimeric 5/44 antibody molecule comprises the human C kappa domain (Hieter et al., Cell, 22, 197-207, 1980; Genebank accession number J00241) in the light chain and the human gamma 4 domains (Flanagan et al., Nature, 300, 709-713, 1982) in the heavy chain, optionally with the serine residue at position 241 replaced by a proline residue.
- the antibody of the present invention comprises a heavy chain wherein the variable domain comprises as CDR-H2 (as defined by Kabat et al., (supra)) an H2′ in which a potential glycosylation site sequence has been removed and which unexpectedly increased the affinity of the chimeric 5/44 antibody for the CD22 antigen and which preferably has as CDR-H2 the sequence given as H2′ (SEQ ID NO:13).
- CDR-H2 as defined by Kabat et al., (supra)
- H2′ in which a potential glycosylation site sequence has been removed and which unexpectedly increased the affinity of the chimeric 5/44 antibody for the CD22 antigen and which preferably has as CDR-H2 the sequence given as H2′ (SEQ ID NO:13).
- the antibody of the present invention may comprise a heavy chain wherein the variable domain comprises as CDR-H2 (as defined by Kabat et al., (supra)) an H2′′ in which a lysine residue at position 60, which is located at an exposed position within CDR-H2 and which is considered to have the potential to react with conjugation agents resulting in a reduction of antigen binding affinity, is substituted for an alternative amino acid to result in a conserved substitution.
- CDR-H2 has the sequence given as H2′′ (SEQ ID NO:15).
- the antibody of the present invention may comprise a heavy chain wherein the variable domain comprises as CDR-H2 (as defined by Kabat et al., (supra)) an H2′′′ in which both the potential glycosylation site sequence and the lysine residue at position 60, are substituted for alternative amino acids.
- CDR-H2 has the sequence given as H2′′′ (SEQ ID NO:16).
- the antibody according to either of the first and second aspects of the present invention is a CDR-grafted antibody molecule.
- a CDR-grafted antibody molecule refers to an antibody molecule wherein the heavy and/or light chain contains one or more CDRs (including, if desired, a modified CDR) from a donor antibody (e.g. a murine monoclonal antibody) grafted into a heavy and/or light chain variable region framework of an acceptor antibody (e.g. a human antibody).
- such a CDR-grafted antibody has a variable domain comprising human acceptor framework regions as well as one or more of the donor CDRs referred to above.
- any appropriate acceptor variable region framework sequence may be used having regard to the class/type of the donor antibody from which the CDRs are derived, including mouse, primate and human framework regions.
- human frameworks which can be used in the present invention are KOL, NEWM, REI, EU, TUR, TEI, LAY and POM (Kabat et al. (supra)).
- KOL and NEWM can be used for the heavy chain
- REI can be used for the light chain and EU
- LAY and POM can be used for both the heavy chain and the light chain.
- human germline sequences may be used.
- the preferred framework region for the light chain is the human germline sub-group sequence (DPK9+JK1) shown in FIG. 5 (SEQ ID NO:17).
- the preferred framework region for the heavy chain is the human sub-group sequence (DP7+JH4) shown in FIG. 6 (SEQ ID NO:21).
- acceptor antibody In a CDR-grafted antibody of the present invention, it is preferred to use as the acceptor antibody one having chains which are homologous to the chains of the donor antibody.
- the acceptor heavy and light chains do not necessarily need to be derived from the same antibody and may, if desired, comprise composite chains having framework regions derived from different chains.
- the framework regions need not have exactly the same sequence as those of the acceptor antibody. For instance, unusual residues may be changed to more frequently-occurring residues for that acceptor chain class or type. Alternatively, selected residues in the acceptor framework regions may be changed so that they correspond to the residue found at the same position in the donor antibody or to a residue that is a conservative substitution for the residue found at the same position in the donor antibody. Such changes should be kept to the minimum necessary to recover the affinity of the donor antibody.
- a protocol for selecting residues in the acceptor framework regions which may need to be changed is set forth in WO 91/09967.
- the acceptor light chain has the human sub-group DPK9+JK1 sequence (shown in FIG. 5 ) (SEQ ID NO:17 (DPK9) plus SEQ ID NO:18 (JK1))
- the acceptor framework regions of the light chain comprise donor residues at positions 2, 4, 37, 38, 45 and 60 and may additionally comprise a donor residue at position 3 (according to Kabat et al. (supra)).
- the acceptor heavy chain has the human DP7+JH4 sequence (shown in FIG. 6 ) (SEQ ID NO:21 (DP7) plus SEQ ID NO:22 (JH4)), then the acceptor framework regions of the heavy chain comprise, in addition to one or more donor CDRs, donor residues at positions 1, 28, 48, 71 and 93 and may additionally comprise donor residues at positions 67 and 69 (according to Kabat et al. (supra)).
- Donor residues are residues from the donor antibody, i.e. the antibody from which the CDRs were originally derived.
- the antibody of the present invention comprises a heavy chain wherein the variable domain comprises as CDR-H2 (as defined by Kabat et al., (supra)) an H2′ in which a potential glycosylation site sequence has been removed in order to increase the affinity of the chimeric 5/44 antibody for the CD22 antigen and which preferably has as CDR-H2 the sequence given as H2′ (SEQ ID NO:13).
- CDR-H2 as defined by Kabat et al., (supra)
- H2′ in which a potential glycosylation site sequence has been removed in order to increase the affinity of the chimeric 5/44 antibody for the CD22 antigen and which preferably has as CDR-H2 the sequence given as H2′ (SEQ ID NO:13).
- the antibody of the present invention may comprise a heavy chain wherein the variable domain comprises as CDR-H2 (as defined by Kabat et al., (supra)) an H2′′ in which a lysine residue at position 60, which is located at an exposed position within CDR-H2 and which is considered to have the potential to react with conjugation agents resulting in a reduction of antigen binding affinity, is substituted for an alternative amino acid.
- CDR-H2 has the sequence given as H2′′ (SEQ ID NO:15).
- the antibody of the present invention may comprise a heavy chain wherein the variable domain comprises as CDR-H2 (as defined by Kabat et al., (supra)) an H2′′′ in which both the potential glycosylation site sequence and the lysine residue at position 60, are substituted for alternative amino acids.
- CDR-H2 has the sequence given as H2′′′ (SEQ ID NO:16).
- the antibody molecule of the present invention may comprise: a complete antibody molecule, having full length heavy and light chains; a fragment thereof, such as a Fab, modified Fab, Fab′, F(ab′) 2 or Fv fragment; a light chain or heavy chain monomer or dimer; a single chain antibody, e.g. a single chain Fv in which the heavy and light chain variable domains are joined by a peptide linker.
- the heavy and light chain variable regions may be combined with other antibody domains as appropriate.
- the antibody molecule of the present invention may have an effector or a reporter molecule attached to it.
- it may have a macrocycle, for chelating a heavy metal atom, or a toxin, such as ricin, attached to it by a covalent bridging structure.
- procedures of recombinant DNA technology may be used to produce an antibody molecule in which the Fc fragment (CH2, CH3 and hinge domains), the CH2 and CH3 domains or the CH3 domain of a complete immunoglobulin molecule has (have) been replaced by, or has (have) attached thereto by peptide linkage, a functional non-immunoglobulin protein, such as an enzyme or toxin molecule.
- the antibody molecule of the present invention preferably has a binding affinity of at least 0.85 ⁇ 10 ⁇ 10 M, more preferably at least 0.75 ⁇ 10 ⁇ 10 M and most preferably at least 0.5 ⁇ 10 ⁇ 10 M.
- the antibody molecule of the present invention comprises the light chain variable domain 5/44-gL1 (SEQ ID NO:19) and the heavy chain variable domain 5/44-gH7 (SEQ ID NO:27).
- the sequences of the variable domains of these light and heavy chains are shown in FIGS. 5 and 6 , respectively.
- the present invention also relates to variants of the antibody molecule of the present invention, which have an improved affinity for CD22.
- variants can be obtained by a number of affinity maturation protocols including mutating the CDRs (Yang et al., J. Mol. Biol., 254, 392-403, 1995), chain shuffling (Marks et al., Bio/Technology, 10, 779-783, 1992), use of mutator strains of E. coli (Low et al., J. Mol. Biol., 250, 359-368, 1996), DNA shuffling (Patten et al., Curr. Opin.
- the present invention also provides a DNA sequence encoding the heavy and/or light chain(s) of the antibody molecule of the present invention.
- the DNA sequence encodes the heavy or the light chain of the antibody molecule of the present invention.
- the DNA sequence of the present invention may comprise synthetic DNA, for instance produced by chemical processing, cDNA, genomic DNA or any combination thereof.
- the present invention also relates to a cloning or expression vector comprising one or more DNA sequences of the present invention.
- the cloning or expression vector comprises two DNA sequences, encoding the light chain and the heavy chain of the antibody molecule of the present invention, respectively.
- DNA sequences which encode the antibody molecule of the present invention can be obtained by methods well known to those skilled in the art. For example, DNA sequences coding for part or all of the antibody heavy and light chains may be synthesised as desired from the determined DNA sequences or on the basis of the corresponding amino acid sequences.
- DNA coding for acceptor framework sequences is widely available to those skilled in the art and can be readily synthesised on the basis of their known amino acid sequences.
- Standard techniques of molecular biology may be used to prepare DNA sequences coding for the antibody molecule of the present invention. Desired DNA sequences may be synthesised completely or in part using oligonucleotide synthesis techniques. Site-directed mutagenesis and polymerase chain reaction (PCR) techniques may be used as appropriate.
- PCR polymerase chain reaction
- Any suitable host cell/vector system may be used for expression of the DNA sequences encoding the antibody molecule of the present invention.
- Bacterial for example E. coli , and other microbial systems may be used, in part, for expression of antibody fragments such as Fab and F(ab′) 2 fragments, and especially Fv fragments and single chain antibody fragments, for example, single chain Fvs.
- Eukaryotic, e.g. mammalian, host cell expression systems may be used for production of larger antibody molecules, including complete antibody molecules.
- Suitable mammalian host cells include CHO, myeloma or hybridoma cells.
- the present invention also provides a process for the production of an antibody molecule according to the present invention comprising culturing a host cell containing a vector of the present invention under conditions suitable for leading to expression of protein from DNA encoding the antibody molecule of the present invention, and isolating the antibody molecule.
- the antibody molecule may comprise only a heavy or light chain polypeptide, in which case only a heavy chain or light chain polypeptide coding sequence needs to be used to transfect the host cells.
- the cell line may be transfected with two vectors, a first vector encoding a light chain polypeptide and a second vector encoding a heavy chain polypeptide.
- a single vector may be used, the vector including sequences encoding light chain and heavy chain polypeptides.
- the present invention also provides a therapeutic or diagnostic composition
- a therapeutic or diagnostic composition comprising an antibody molecule of the present invention in combination with a pharmaceutically acceptable excipient, diluent or carrier.
- the present invention also provides a process for preparation of a therapeutic or diagnostic composition comprising admixing the antibody molecule of the present invention together with a pharmaceutically acceptable excipient, diluent or carrier.
- the antibody molecule may be the sole active ingredient in the therapeutic or diagnostic composition or may be accompanied by other active ingredients including other antibody ingredients, for example anti-T cell, anti-IFN ⁇ or anti-LPS antibodies, or non-antibody ingredients such as xanthines.
- compositions preferably comprise a therapeutically effective amount of the antibody of the invention.
- therapeutically effective amount refers to an amount of a therapeutic agent needed to treat, ameliorate or prevent a targeted disease or condition, or to exhibit a detectable therapeutic or preventative effect.
- the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually in rodents, rabbits, dogs, pigs or primates. The animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
- an effective amount for a human subject will depend upon the severity of the disease state, the general health of the subject, the age, weight and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities and tolerance/response to therapy. This amount can be determined by routine experimentation and is within the judgement of the clinician. Generally, an effective dose will be from 0.01 mg/kg to 50 mg/kg, preferably 0.1 mg/kg to 20 mg/kg, more preferably about 15 mg/kg.
- compositions may be administered individually to a patient or may be administered in combination with other agents, drugs or hormones.
- the dose at which the antibody molecule of the present invention is administered depends on the nature of the condition to be treated, the grade of the malignant lymphoma or leukaemia and on whether the antibody molecule is being used prophylactically or to treat an existing condition.
- the frequency of dose will depend on the half-life of the antibody molecule and the duration of its effect. If the antibody molecule has a short half-life (e.g. 2 to 10 hours) it may be necessary to give one or more doses per day. Alternatively, if the antibody molecule has a long half life (e.g. 2 to 15 days) it may only be necessary to give a dosage once per day, once per week or even once every 1 or 2 months.
- a short half-life e.g. 2 to 10 hours
- a long half life e.g. 2 to 15 days
- a pharmaceutical composition may also contain a pharmaceutically acceptable carrier for administration of the antibody.
- the carrier should not itself induce the production of antibodies harmful to the individual receiving the composition and should not be toxic.
- Suitable carriers may be large, slowly metabolised macromolecules such as proteins, polypeptides, liposomes, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers and inactive virus particles.
- salts can be used, for example mineral acid salts, such as hydrochlorides, hydrobromides, phosphates and sulphates, or salts of organic acids, such as acetates, propionates, malonates and benzoates.
- mineral acid salts such as hydrochlorides, hydrobromides, phosphates and sulphates
- organic acids such as acetates, propionates, malonates and benzoates.
- Pharmaceutically acceptable carriers in therapeutic compositions may additionally contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents or pH buffering substances, may be present in such compositions. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries and suspensions, for ingestion by the patient.
- Preferred forms for administration include forms suitable for parenteral administration, e.g. by injection or infusion, for example by bolus injection or continuous infusion.
- the product may take the form of a suspension, solution or emulsion in an oily or aqueous vehicle and it may contain formulatory agents, such as suspending, preservative, stabilising and/or dispersing agents.
- the antibody molecule may be in dry form, for reconstitution before use with an appropriate sterile liquid.
- compositions of the invention can be administered directly to the subject.
- the subjects to be treated can be animals. However, it is preferred that the compositions are adapted for administration to human subjects.
- compositions of this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, transcutaneous (for example, see WO98/20734), subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, intravaginal or rectal routes. Hyposprays may also be used to administer the pharmaceutical compositions of the invention.
- the therapeutic compositions may be prepared as injectables, either as liquid solutions or suspensions. Solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared.
- Direct delivery of the compositions will generally be accomplished by injection, subcutaneously, intraperitoneally, intravenously or intramuscularly, or delivered to the interstitial space of a tissue.
- the compositions can also be administered into a lesion. Dosage treatment may be a single dose schedule or a multiple dose schedule.
- the active ingredient in the composition will be an antibody molecule. As such, it will be susceptible to degradation in the gastrointestinal tract. Thus, if the composition is to be administered by a route using the gastrointestinal tract, the composition will need to contain agents which protect the antibody from degradation but which release the antibody once it has been absorbed from the gastrointestinal tract.
- the antibody of the present invention will be administered by use of gene therapy.
- DNA sequences encoding the heavy and light chains of the antibody molecule under the control of appropriate DNA components are introduced into a patient such that the antibody chains are expressed from the DNA sequences and assembled in situ.
- the present invention also provides the antibody molecule of the present invention for use in treating a disease mediated by cells expressing CD22.
- the present invention further provides the use of the antibody molecule according to the present invention in the manufacture of a medicament for the treatment of a disease mediated by cells expressing CD22.
- the antibody molecule of the present invention may be utilised in any therapy where it is desired to reduce the level of cells expressing CD22 that are present in the human or animal body. These CD22-expressing cells may be circulating in the body or be present in an undesirably high level localised at a particular site in the body. For example, elevated levels of cells expressing CD22 will be present in B cell lymphomas and leukaemias.
- the antibody molecule of the present invention may be utilised in the therapy of diseases mediated by cells expressing CD22.
- the antibody molecule of the present invention is preferably used for treatment of malignant lymphomas and leukaemias, most preferably NHL.
- the present invention also provides a method of treating human or animal subjects suffering from or at risk of a disorder mediated by cells expressing CD22, the method comprising administering to the subject an effective amount of the antibody molecule of the present invention.
- the antibody molecule of the present invention may also be used in diagnosis, for example in the in vivo diagnosis and imaging of disease states involving cells that express CD22.
- FIG. 1 shows the amino acid sequence of the CDRs of mouse monoclonal antibody 5/44 (SEQ ID NOs:1 to 6);
- FIG. 2 shows the complete sequence of the light chain variable domain of mouse monoclonal antibody 5/44 (nucleotide sequence-SEQ ID NO:48; amino acid sequence-SEQ ID NO: 7); antisense nucleotide strand-SEQ ID NO:67;
- FIG. 3 shows the complete sequence of the heavy chain variable domain of mouse monoclonal antibody 5/44 (nucleotide sequence—SEQ ID NO:49; amino acid sequence-SEQ ID NO:8); antisense nucleotide strand-SEQ ID NO:68;
- FIG. 4 shows the strategy for removal of the glycosylation site and reactive lysine in CDR-H2 (SEQ ID NOs:9-12);
- FIG. 5 shows the graft design for the 5/44 light chain sequence (V L -SEQ ID NO:7; DPK9-SEQ ID NO:17, SEQ ID NO:69, and SEQ ID NO:70, respectively; JK1-SEQ ID NO:18 gL1-SEQ ID NO:19; and gL2-SEQ ID NO:20);
- FIG. 6 shows the graft design for the 5/44 heavy chain sequence (V H -SEQ ID NO:8, DP7-SEQ ID NO:24, gH5-SEQ ID NO:25, gH6-SEQ ID NO:26, gH7-SEQ ID NO:27, and JH4-SEQ ID NO:22);
- FIGS. 7A-7B show the vectors pMRR14 and pMRR10.1
- FIG. 8 shows the Biacore assay results of the chimeric 5/44 mutants
- FIG. 9 shows the oligonucleotides for 5/44 gH1 (SEQ ID NOs:32-39, respectively) and gL1 (SEQ ID NOs:40-47, respectively) gene assemblies;
- FIGS. 10A-10B show the intermediate vectors pCR2.1(544gH1) and pCR2.1(544gL1);
- FIG. 11 shows the oligonucleotide cassettes used to make further grafts (gH4-SEQ ID NOs:52, 53, and 62, respectively, gH5—SEQ ID NOs:54, 55, and 63, respectively; gH6—SEQ ID NOs:56, 57, and 64, respectively; gH7—SEQ ID NOs: 58, 59, and 65, respectively; and gL2—SEQ ID NOs:60, 61, and 66, respectively;
- FIGS. 12A-12B show the competition assay between fluorescently labelled mouse 5/44 antibody and grafted variants.
- FIG. 13 shows the full DNA and protein sequence of the grafted heavy and light chains—a) SEQ ID NO:30 (amino acid), SEQ ID NO:31 (nucleotide), and SEQ ID NO:63 (antisense nucleotide strand); b) SEQ ID NO: 28 (amino acid), SEQ ID NO:29 (nucleotide), and SEQ ID NO:74 (antisense strand).
- a panel of antibodies against CD22 were selected from hybridomas using the following selection criteria: binding to Daudi cells, internalisation on Daudi cells, binding to peripheral blood mononuclear cells (PBMC), internalisation on PBMC, affinity (greater than 10 ⁇ 9 M), mouse ⁇ 1 and production rate. 5/44 was selected as the preferred antibody.
- Hybridoma 5/44 was generated by conventional hybridoma technology following immunisation of mice with human CD22 protein.
- RNA was prepared from 5/44 hybridoma cells using a RNEasy kit (Qiagen, Crawley, UK; Catalogue No. 74106). The RNA obtained was reverse transcribed to cDNA, as described below.
- tumours A total of 50 tumours were studied and these were categorised as follows by using the Working Formulation and REAL classification systems:
- CD22 antigen is widely expressed on B cell lymphomas and thus provides a suitable target for immunotherapy in NHL.
- cDNA sequences coding for the variable domains of 5/44 heavy and light chains were synthesised using reverse transcriptase to produce single stranded cDNA copies of the mRNA present in the total RNA. This was then used as the template for amplification of the murine V-region sequences using specific oligonucleotide primers by the Polymerase Chain Reaction (PCR).
- PCR Polymerase Chain Reaction
- cDNA was synthesised in a 20 ⁇ l reaction volume containing the following reagents: 50 mM Tris-HCl pH 8.3, 75 mM KCl, 10 mM dithiothreitol, 3 mM MgCl 2 , 0.5 mM each deoxyribonucleoside triphosphate, 20 units RNAsin, 75 ng random hexanucleotide primer, 2 ⁇ g 5/44 RNA and 200 units Moloney Murine Leukemia Virus reverse transcriptase. After incubation at 42° C. for 60 minutes, the reaction was terminated by heating at 95° C. for 5 minutes.
- the 3′ primers are designed to span the framework 4 J-C junction of the antibody and contain a restriction site for the enzyme BsiWI to facilitate cloning of the V L PCR fragment.
- the heavy chain 3′ primers are a mixture designed to span the J-C junction of the antibody.
- the 3′ primer includes an ApaI restriction site to facilitate cloning.
- the 3′ region of the primers contains a mixed sequence based on those found in known mouse antibodies (Kabat et al., 1991, supra).
- the combinations of primers described above enable the PCR products for V H and V1 to be cloned directly into an appropriate expression vector (see below) to produce chimeric (mouse-human) heavy and light chains and for these genes to be expressed in mammalian cells to produce chimeric antibodies of the desired isotype.
- Incubations (100 ⁇ l) for the PCR were set up as follows. Each reaction contained 10 mM Tris-HCl pH 8.3, 1.5 mM MgCl2, 50 mM KCl, 0.01% w/v gelatin, 0.25 mM each deoxyribonucleoside triphosphate, 10 pmoles 5′ primer mix, 10 pmoles 3′ primer, 1 cDNA and 1 unit Taq polymerase. Reactions were incubated at 95° C. for 5 minutes and then cycled through 94° C. for 1 minute, 55° C. for 1 minute and 72° C. for 1 minute. After 30 cycles, aliquots of each reaction were analysed by electrophoresis on an agarose gel.
- FIGS. 2 and 3 shows the DNA/protein sequence of the mature light and heavy chain V-regions of mouse monoclonal 5/44 respectively.
- the murine v-region sequences were then cloned into the expression vectors pMRR10.1 and pMRR14 ( FIG. 7 ). These are vectors for the expression of light and heavy chain respectively containing DNA encoding constant regions of human kappa light chain and human gamma-4 heavy chain.
- the V L region was sub-cloned into the expression vector by restriction digest and ligation from the sequencing vector, using SfuI and BsiWI restriction sites, creating plasmid pMRR10(544cL).
- the heavy chain DNA was amplified by PCR using a 5′ primer to introduce a signal peptide, since this was not obtained in the cloning strategy—a mouse heavy chain antibody leader from a different in-house hybridoma (termed 162) was employed.
- the 5′ primer had the following sequence:
- the reverse primer was identical to that used in the original V H gene cloning.
- the resultant PCR product was digested with enzymes HindIII and ApaI, was sub-cloned, and its DNA sequence was confirmed, creating plasmid pMRR14(544cH).
- Transient co-transfection of both expression vectors into CHO cells generated chimeric c5/44 antibody. This was achieved using the Lipofectamine reagent according to the manufacturer's protocols (InVitrogen: Life Technology, Groningen, The Netherlands. Catalogue no. 11668-027).
- a potential N-linked glycosylation site sequence was observed in CDR-H2, having the amino acid sequence N-Y-T ( FIG. 3 ).
- a lysine residue was observed at an exposed position within CDR-H2, which had the potential to reduce the binding affinity of the antibody by providing an additional site for conjugation with an agent with which the antibody may be conjugated.
- a PCR strategy was used to introduce amino acid substitutions into the CDR-H2 sequence in an attempt to remove the glycosylation site and/or the reactive lysine, as shown in FIG. 4 .
- Forward primers encoding the mutations N55Q, T57A or T57V were used to remove the glycosylation site ( FIG. 4 ) and a fourth forward primer containing the substitution K60R, was generated to remove the reactive lysine residue ( FIG. 4 ).
- a framework 4 reverse primer was used in each of these PCR amplifications.
- the PCR products were digested with the enzymes XbaI and ApaI and were inserted into pMRR14(544cH) (also cleaved with XbaI and ApaI) to generate expression plasmids encoding these mutants.
- the N55Q, T57A and T57V mutations ablate the glycosylation site by changing the amino acid sequence away from the consensus N-X-T/S whilst the K60R mutation replaces the potentially reactive lysine with the similarly positively charged residue arginine.
- the resultant cH variant plasmids were co-transfected with the cL plasmid to generate expressed chimeric antibody variants.
- the activities of the chimeric genes were evaluated following transient transfection into CHO cells.
- FIG. 5 A comparison of the amino acid sequences of the framework regions of murine 5/44 and the acceptor sequence is given in FIG. 5 and shows that there are 27 differences between the donor and acceptor chains.
- an analysis was made of the potential of the murine residue to contribute to antigen binding, either directly or indirectly, through effects on packing or at the V H /V L interface. If a murine residue was considered important and sufficiently different from the human residue in terms of size, polarity or charge, then that murine residue was retained.
- two versions of the CDR-grafted light chain having the sequences given in SEQ ID NO:19 and SEQ ID NO:20 ( FIG. 5 ), were constructed.
- CDR-grafting of 5/44 heavy chain was accomplished using the same strategy as described for the light chain.
- the V-domain of 5/44 heavy chain was found to be homologous to human heavy chains belonging to sub-group I (70% sequence identity) and therefore the sequence of the human sub-group I germline framework VH1-3,DP7 was used as an acceptor framework.
- the framework 4 acceptor sequences were derived from human J-region germline sequence JH4.
- FIG. 6 A comparison of 5/44 heavy chain with the framework regions is shown in FIG. 6 where it can be seen that the 5/44 heavy chain differs from the acceptor sequence at 22 positions. Analysis of the contribution that any of these might make to antigen binding led to 5 versions of the CDR-grafted heavy chains being constructed, having the sequences given in SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26 and SEQ ID NO:27 ( FIG. 6 ).
- Reaction volumes of 100 ul were set up containing 10 mM Tris-HCl pH8.3, 1.5 mM MgCl2, 50 mM KCl, 0.001% gelatin, 0.25 mM each deoxyribonucleoside triphosphate, 1 pmole each of the ‘internal’ primers (T1, T2, T3, B1, B2, B3), 10 pmole each of the ‘external’ primers (F1, R1), and 1 unit of Taq polymerase (AmpliTaq, Applied BioSystems, catalogue no. N808-0171).
- PCR cycle parameters were 94° C. for 1 minute, 55° C. for 1 minute and 72° C. for 1 minute, for 30 cycles.
- reaction products were then run on a 1.5% agarose gel, excised and recovered using QIAGEN® spin columns (QIAquick® gel extraction kit, cat no. 28706).
- the DNA was eluted in a volume of 30 ⁇ l. Aliquots (1 ⁇ l) of the gH1 and gL1 DNA were then cloned into the InVitrogen TOPO® TA cloning vector pCR2.1 TOPO® (catalogue no. K4500-01) according to the manufacturer's instructions.
- This non-expression vector served as a cloning intermediate to facilitate sequencing of a large number of clones.
- DNA sequencing using vector-specific primers was used to identify correct clones containing gH1 and gL1, creating plasmids pCR2.1 (544gH1) and pCR2.1(544gL1) ( FIG. 10 ).
- FIG. 11 shows the design of the oligonucleotide cassettes.
- the vector pCR2.1(544gH1) or pCR2.1(544gL1)
- the large vector fragment was gel purified from agarose and was used in ligation with the oligonucleotide cassette.
- These cassettes are composed of 2 complementary oligonucleotides (shown in FIG.
- the vectors encoding grafted variants were co-transfected into CHO cells in a variety of combinations, together with the original chimeric antibody chains. Binding activity was compared in a competition assay, competing the binding of the original mouse 5/44 antibody for binding to Ramos cells (obtained from ATCC, a Burkitt's lymphoma lymphoblast human cell line expressing surface CD22). This assay was considered the best way to compare grafts in their ability to bind to cell surface CD22. The results are shown in FIG. 8 . As can be seen, there is very little difference between any of the grafts, all performing more effectively than the chimeric at competing against the murine parent. The introduction of the 3 additional human residues at the end of CDR H2 (gH6 and gH7) does not appear to have affected binding.
- the graft combination with the least number of murine residues was selected, gL1gH7.
- the light chain graft gL1 has 6 donor residues.
- Residues V2, V4, L37 and Q45 are potentially important packing residues.
- Residue H38 is at the V H /V L interface.
- Residue D60 is a surface residue close to the CDR-L2 and may directly contribute to antigen binding. Of these residues, V2, L37, Q45 and D60 are found in germline sequences of human kappa genes from other sub-groups.
- the heavy chain graft gH7 has 4 donor framework residues (Residue R28 is considered to be part of CDR-H1 under the structural definition used in CDR-grafting (se Adair et al (1991 WO91/09967)).
- Residues E1 and A71 are surface residues close to the CDR's.
- Residue I48 is a potential packing residue.
- Residue T93 is present at the V H /V L interface. Of these residues, E1 and A71 are found in other germline genes of human sub-group I.
- Residue I48 is found in human germline sub-group 4, and T73 is found in human germline sub-group 3.
- Heavy chain DNA was digested at the 5′ HindIII site, then was treated with the Klenow fragment of E. coli DNA polymerase I to create a 5′ blunt end. Cleavage at the 3′ EcoRI site resulted in the heavy chain fragment which was purified from agarose gels. In the same way, a light chain fragment was produced, blunted at the 5′ SfuI site and with a 3′ EcoRI site. Both fragments were cloned into DHFR based expression vectors and used to generate stable cell lines in CHO cells.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Hematology (AREA)
- Cell Biology (AREA)
- Urology & Nephrology (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Zoology (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Plant Pathology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
There is disclosed antibody molecules containing at least one CDR derived from a mouse monoclonal antibody having specificity for human CD22. There is also disclosed a CDR grafted antibody wherein at least one of the CDRs is a modified CDR. Further disclosed are DNA sequences encoding the chains of the antibody molecules, vectors, transformed host cells and uses of the antibody molecules in the treatment of diseases mediated by cells expressing CD22.
Description
- This application is a Continuation of application Ser. No. 15/417,973, filed on Jan. 27, 2017, which is a Continuation of application Ser. No. 15/069,078, filed on Mar. 14, 2016, which is a Continuation of application Ser. No. 11/519,585, filed on Sep. 11, 2006, which is a Continuation of application Ser. No. 10/428,408, filed May 2, 2003, now U.S. Pat. No. 7,355,011, which claims priority under 35 U.S.C. § 119(a)-(d) to United Kingdom Application No. GB 0210121.0, filed May 2, 2002, all applications being incorporated by reference herein in their entireties.
- The present invention relates to an antibody molecule having specificity for antigenic determinants of the B lymphocyte antigen, CD22. The present invention also relates to the therapeutic uses of the antibody molecule and methods for producing the antibody molecule.
- In a natural antibody molecule, there are two heavy chains and two light chains. Each heavy chain and each light chain has at its N-terminal end a variable domain. Each variable domain is composed of four framework regions (FRs) alternating with three complementarity determining regions (CDRs). The residues in the variable domains are conventionally numbered according to a system devised by Kabat et al. This system is set forth in Kabat et al., 1987, in Sequences of Proteins of Immunological Interest, US Department of Health and Human Services, NIH, USA (hereafter “Kabat et al. (supra)”). This numbering system is used in the present specification except where otherwise indicated.
- The Kabat residue designations do not always correspond directly with the linear numbering of the amino acid residues. The actual linear amino acid sequence may contain fewer or additional amino acids than in the strict Kabat numbering corresponding to a shortening of, or insertion into, a structural component, whether framework or CDR, of the basic variable domain structure. The correct Kabat numbering of residues may be determined for a given antibody by alignment of residues of homology in the sequence of the antibody with a “standard” Kabat numbered sequence.
- The CDRs of the heavy chain variable domain are located at residues 31-35 (CDR-H1), residues 50-65 (CDR-H2) and residues 95-102 (CDR-H3) according to the Kabat numbering.
- The CDRs of the light chain variable domain are located at residues 24-34 (CDR-L1), residues 50-56 (CDR-L2) and residues 89-97 (CDR-L3) according to the Kabat numbering.
- Construction of CDR-grafted antibodies is described in European Patent Application EP-A-0239400, which discloses a process in which the CDRs of a mouse monoclonal antibody are grafted onto the framework regions of the variable domains of a human immunoglobulin by site directed mutagenesis using long oligonucleotides. The CDRs determine the antigen binding specificity of antibodies and are relatively short peptide sequences carried on the framework regions of the variable domains.
- The earliest work on humanising monoclonal antibodies by CDR-grafting was carried out on monoclonal antibodies recognising synthetic antigens, such as NP. However, examples in which a mouse monoclonal antibody recognising lysozyme and a rat monoclonal antibody recognising an antigen on human T-cells were humanised by CDR-grafting have been described by Verhoeyen et al. (Science, 239, 1534-1536, 1988) and Riechmann et al. (Nature, 332, 323-324, 1988), respectively.
- Riechmann et al., found that the transfer of the CDRs alone (as defined by Kabat (Kabat et al. (supra) and Wu et al., J. Exp. Med., 132, 211-250, 1970)) was not sufficient to provide satisfactory antigen binding activity in the CDR-grafted product. It was found that a number of framework residues have to be altered so that they correspond to those of the donor framework region. Proposed criteria for selecting which framework residues need to be altered are described in International Patent Application No.
WO 90/07861. - A number of reviews discussing CDR-grafted antibodies have been published, including Vaughan et al. (Nature Biotechnology, 16, 535-539, 1998).
- Malignant lymphomas are a diverse group of neoplasms. The majority of cases occur in older people. Non-Hodgkins Lymphoma (NHL) is a disease that currently affects 200,000 to 250,000 patients in the U.S. It is the second fastest rising cancer in the U.S., rising at a rate of about 55,000 new cases per year. The incidence is rising at a rate that is greater than can be accounted for simply by the increasing age of the population and exposure to known risk factors.
- The classification of lymphoma is complex, and has evolved in recent decades. In 1994 the Revised European-American Lymphoma (REAL) classification was introduced. This classification organises lymphomas of B cell (the most frequently identified), T cell and unclassifiable origin into agreed subtypes. In everyday practice, the grouping of NHLs into low, intermediate and high-grade categories on the basis of their general histological appearance, broadly reflects their clinical behaviour.
- NHL predominantly affects the lymph nodes but, in individual patients, the tumour may involve other anatomical sites such as the liver, spleen, bone marrow, lung, gut and skin. The disease commonly presents as a painless enlargement of lymph nodes. Extranodal lymphoma most frequently affects the gut, although primary lymphoma of virtually every organ has been documented. Systemic symptoms include fever, sweats, tiredness and weight loss.
- Until recently, the Ann Arbor staging system, based entirely upon the anatomical extent of disease, was the major determinant of therapy in NHL. This information may be refined by incorporating additional prognostic pointers, including age, serum lactate dehydrogenase levels and performance status. Even so, knowledge of the Ann Arbor staging system, together with the histological and immunological subtype of the tumour, is still the major determinant of treatment.
- Low grade NHL has an indolent course, with a median patient survival of 8 to 10 years. Survival is little impacted by currently available therapy, although irradiation of local disease and chemotherapy for systemic symptoms improves patients' quality of life. Combination chemotherapy may be reserved for relapsed disease. Intermediate disease and, especially, high grade disease is extremely aggressive and tends to disseminate. Disease of this grade requires urgent treatment. Radiotherapy may be a useful component of treatment in patients with very bulky disease. Many different chemotherapy regimens have been employed, and long-term disease-free survival may be obtained in more than half of patients. High dose therapy with stem cell support was introduced initially for patients with relapsed or refractory disease, but is now increasingly finding a place in first line therapy for patients with poor-risk disease. The tendency in recent years for an increasingly aggressive therapeutic approach must be balanced against the generally elderly age and relative debility of many patients with NHL, and by the need to match the toxicity of treatment to the individual prognosis of each patient's disease.
- Improved treatments, that are more effective and better tolerated, are needed. Agents recently introduced include new cytotoxic drugs, progressively incorporated into combinations, and the introduction of antibody-based therapies.
- Non-Hodgkin's lymphoma encompasses a range of B cell lymphomas. B cell antigens therefore represent suitable targets for antibody therapy.
- CD22 is a 135 kDa membrane glycoprotein belonging to a family of sialic acid binding proteins called sialoadhesins. It is detected in the cytoplasm early in B cell development, appears on the cell surface simultaneously with IgD and is found on most mature B cells. Expression is increased following B cell activation. CD22 is lost with terminal differentiation and is generally reported as being absent on plasma cells. Thus this internalising antigen is present on the surface of pre-B cells and mature B cells but not stem cells or plasma cells.
- Two isoforms of CD22 exist in man. The predominant form (CD22β) contains 7 immunoglobulin-like (Ig-like) domains in the extracellular region. The CD22α variant lacks Ig-
like domain 4 and may have a truncated cytoplasmic domain. Antibodies which block CD22 adhesion to monocytes, neutrophils, lymphocytes and erythrocytes have been shown to bind within the first or second Ig-like domain. - The cytoplasmic domain of CD22 is tyrosine phosphorylated upon ligation of the B cell antigen receptor and associates with Lyk, Syk and phosphatidyl inositol 3-kinase. The function of CD22 is to down-modulate the B cell activation threshold. It can also mediate cell adhesion through interaction with cells bearing the appropriate sialoglycoconjugates.
- CD22 is expressed in most B cell leukaemias and lymphomas, including NHL, acute lymphoblastic leukaemia (B-ALL), chronic lymphocytic leukaemia (B-CLL) and especially acute non-lymphocytic leukaemia (ANLL).
- Monoclonal antibodies against CD22 have been described in the prior art. WO 98/41641 describes recombinant anti-CD22 antibodies with cysteine residues at VH44 and
V L100. WO 96/04925 describes the VH and VL regions of the anti-CD22 antibody LL2. U.S. Pat. No. 5,686,072 describes combinations of anti-CD22 and anti-CD19 immunotoxins. WO 98/42378 describes the use of naked anti-CD22 antibodies for the treatment of B-cell malignancies. - A number of antibody-based therapeutics have either been recently licensed, eg. Rituxan (an unlabeled chimeric human γ1 (+mγ1V-region) specific for CD20), or are in clinical trials for this disease. These rely either on complement- or ADCC-mediated killing of B cells or the use of radionuclides, such as 131I or 90Y, which have associated preparation and use problems for clinicians and patients. There is a need for an antibody molecule to treat NHL which can be used repeatedly and produced easily and efficiently. There is also a need for an antibody molecule, which has high affinity for CD22 and low immunogenicity in humans.
- In a first aspect, the present invention provides an antibody molecule having specificity for human CD22, comprising a heavy chain wherein the variable domain comprises a CDR (as defined by Kabat et al., (supra)) having the sequence given as H1 in
FIG. 1 (SEQ ID NO:1) for CDR-H1, as H2 inFIG. 1 (SEQ ID NO:2) or an H2 from which a potential glycosylation site has been removed, or an H2 in which the lysine residue at position 60 (according to the Kabat numbering system) has been replaced by an alternative amino acid, or an H2 in which both the glycosylation site and the reactive lysine atposition 60 have been removed for CDR-H2 or as H3 inFIG. 1 (SEQ ID NO:3) for CDR-H3. - The antibody molecule of the first aspect of the present invention comprises at least one CDR selected from H1, H2 and H3 (SEQ ID NO:1, SEQ ID NO:2 and SEQ ID NO:3) for the heavy chain variable domain. Preferably, the antibody molecule comprises at least two and more preferably all three CDRs in the heavy chain variable domain.
- In a second aspect of the present invention, there is provided an antibody molecule having specificity for human CD22, comprising a light chain wherein the variable domain comprises a CDR (as defined by Kabat et al., (supra)) having the sequence given as L1 in
FIG. 1 (SEQ ID NO:4) for CDR-L1, L2 inFIG. 1 (SEQ ID NO:5) for CDR-L2 or L3 inFIG. 1 (SEQ ID NO:6) for CDR-L3. - The antibody molecule of the second aspect of the present invention comprises at least one CDR selected from L1, L2 and L3 (SEQ ID NO:4; SEQ ID NO:5 and SEQ ID NO:6) for the light chain variable domain. Preferably, the antibody molecule comprises at least two and more preferably all three CDRs in the light chain variable domain.
- The antibody molecules of the first and second aspects of the present invention preferably have a complementary light chain or a complementary heavy chain, respectively.
- Preferably, the antibody molecule of the first or second aspect of the present invention comprises a heavy chain wherein the variable domain comprises a CDR (as defined by Kabat et al., (supra)) having the sequence given as H1 in
FIG. 1 (SEQ ID NO:1) for CDR-H1, as H2 inFIG. 1 (SEQ ID NO:2) or an H2 from which a potential glycosylation site has been removed, or an H2 in which the lysine residue at position 60 (according to the Kabat numbering system) has been replaced by an alternative amino acid, or an H2 in which both the glycosylation site and the reactive lysine atposition 60 have been removed for CDR-H2 or as H3 inFIG. 1 (SEQ ID NO:3) for CDR-H3 and a light chain wherein the variable domain comprises a CDR (as defined by Kabat et al., (supra)) having the sequence given as L1 inFIG. 1 (SEQ ID NO:4) for CDR-L1, as L2 inFIG. 1 (SEQ ID NO:5) for CDR-L2 or as L3 inFIG. 1 (SEQ ID NO:6) for CDR-L3. - The CDRs given in SEQ IDS NOs:1 to 6 and in
FIG. 1 referred to above are derived from a mousemonoclonal antibody 5/44. - The complete sequences of the variable domains of the
mouse 5/44 antibody are shown inFIG. 2 (light chain) (SEQ ID NO:7) andFIG. 3 (heavy chain) (SEQ ID NO:8). This mouse antibody is also referred to below as “the donor antibody” or the “murine monoclonal antibody”. - A first alternatively preferred embodiment of the first or second aspect of the present invention is the mouse
monoclonal antibody 5/44 having the light and heavy chain variable domain sequences shown inFIG. 2 (SEQ ID NO:7) andFIG. 3 (SEQ ID NO:8), respectively. The light chain constant region of 5/44 is kappa and the heavy chain constant region is IgG1. - In a second alternatively preferred embodiment, the antibody according to either of the first and second aspects of the present invention is a chimeric mouse/human antibody molecule, referred to herein as the chimeric 5/44 antibody molecule. The chimeric antibody molecule comprises the variable domains of the mouse
monoclonal antibody 5/44 (SEQ ID NOs:7 and 8) and human constant domains. Preferably, the chimeric 5/44 antibody molecule comprises the human C kappa domain (Hieter et al., Cell, 22, 197-207, 1980; Genebank accession number J00241) in the light chain and thehuman gamma 4 domains (Flanagan et al., Nature, 300, 709-713, 1982) in the heavy chain, optionally with the serine residue at position 241 replaced by a proline residue. - Preferably, the antibody of the present invention comprises a heavy chain wherein the variable domain comprises as CDR-H2 (as defined by Kabat et al., (supra)) an H2′ in which a potential glycosylation site sequence has been removed and which unexpectedly increased the affinity of the chimeric 5/44 antibody for the CD22 antigen and which preferably has as CDR-H2 the sequence given as H2′ (SEQ ID NO:13).
- Alternatively or additionally, the antibody of the present invention may comprise a heavy chain wherein the variable domain comprises as CDR-H2 (as defined by Kabat et al., (supra)) an H2″ in which a lysine residue at
position 60, which is located at an exposed position within CDR-H2 and which is considered to have the potential to react with conjugation agents resulting in a reduction of antigen binding affinity, is substituted for an alternative amino acid to result in a conserved substitution. Preferably CDR-H2 has the sequence given as H2″ (SEQ ID NO:15). - Alternatively or additionally, the antibody of the present invention may comprise a heavy chain wherein the variable domain comprises as CDR-H2 (as defined by Kabat et al., (supra)) an H2′″ in which both the potential glycosylation site sequence and the lysine residue at
position 60, are substituted for alternative amino acids. Preferably CDR-H2 has the sequence given as H2′″ (SEQ ID NO:16). - In a third alternatively preferred embodiment, the antibody according to either of the first and second aspects of the present invention is a CDR-grafted antibody molecule. The term “a CDR-grafted antibody molecule” as used herein refers to an antibody molecule wherein the heavy and/or light chain contains one or more CDRs (including, if desired, a modified CDR) from a donor antibody (e.g. a murine monoclonal antibody) grafted into a heavy and/or light chain variable region framework of an acceptor antibody (e.g. a human antibody).
- Preferably, such a CDR-grafted antibody has a variable domain comprising human acceptor framework regions as well as one or more of the donor CDRs referred to above.
- When the CDRs are grafted, any appropriate acceptor variable region framework sequence may be used having regard to the class/type of the donor antibody from which the CDRs are derived, including mouse, primate and human framework regions. Examples of human frameworks which can be used in the present invention are KOL, NEWM, REI, EU, TUR, TEI, LAY and POM (Kabat et al. (supra)). For example, KOL and NEWM can be used for the heavy chain, REI can be used for the light chain and EU, LAY and POM can be used for both the heavy chain and the light chain. Alternatively, human germline sequences may be used. The preferred framework region for the light chain is the human germline sub-group sequence (DPK9+JK1) shown in
FIG. 5 (SEQ ID NO:17). The preferred framework region for the heavy chain is the human sub-group sequence (DP7+JH4) shown inFIG. 6 (SEQ ID NO:21). - In a CDR-grafted antibody of the present invention, it is preferred to use as the acceptor antibody one having chains which are homologous to the chains of the donor antibody. The acceptor heavy and light chains do not necessarily need to be derived from the same antibody and may, if desired, comprise composite chains having framework regions derived from different chains.
- Also, in a CDR-grafted antibody of the present invention, the framework regions need not have exactly the same sequence as those of the acceptor antibody. For instance, unusual residues may be changed to more frequently-occurring residues for that acceptor chain class or type. Alternatively, selected residues in the acceptor framework regions may be changed so that they correspond to the residue found at the same position in the donor antibody or to a residue that is a conservative substitution for the residue found at the same position in the donor antibody. Such changes should be kept to the minimum necessary to recover the affinity of the donor antibody. A protocol for selecting residues in the acceptor framework regions which may need to be changed is set forth in WO 91/09967.
- Preferably, in a CDR-grafted antibody molecule according to the present invention, if the acceptor light chain has the human sub-group DPK9+JK1 sequence (shown in
FIG. 5 ) (SEQ ID NO:17 (DPK9) plus SEQ ID NO:18 (JK1)) then the acceptor framework regions of the light chain comprise donor residues atpositions - Preferably, in a CDR-grafted antibody molecule of the present invention, if the acceptor heavy chain has the human DP7+JH4 sequence (shown in
FIG. 6 ) (SEQ ID NO:21 (DP7) plus SEQ ID NO:22 (JH4)), then the acceptor framework regions of the heavy chain comprise, in addition to one or more donor CDRs, donor residues atpositions 1, 28, 48, 71 and 93 and may additionally comprise donor residues at positions 67 and 69 (according to Kabat et al. (supra)). - Donor residues are residues from the donor antibody, i.e. the antibody from which the CDRs were originally derived.
- Preferably, the antibody of the present invention comprises a heavy chain wherein the variable domain comprises as CDR-H2 (as defined by Kabat et al., (supra)) an H2′ in which a potential glycosylation site sequence has been removed in order to increase the affinity of the chimeric 5/44 antibody for the CD22 antigen and which preferably has as CDR-H2 the sequence given as H2′ (SEQ ID NO:13).
- Alternatively or additionally, the antibody of the present invention may comprise a heavy chain wherein the variable domain comprises as CDR-H2 (as defined by Kabat et al., (supra)) an H2″ in which a lysine residue at
position 60, which is located at an exposed position within CDR-H2 and which is considered to have the potential to react with conjugation agents resulting in a reduction of antigen binding affinity, is substituted for an alternative amino acid. Preferably CDR-H2 has the sequence given as H2″ (SEQ ID NO:15). - Alternatively or additionally, the antibody of the present invention may comprise a heavy chain wherein the variable domain comprises as CDR-H2 (as defined by Kabat et al., (supra)) an H2′″ in which both the potential glycosylation site sequence and the lysine residue at
position 60, are substituted for alternative amino acids. Preferably CDR-H2 has the sequence given as H2′″ (SEQ ID NO:16). - The antibody molecule of the present invention may comprise: a complete antibody molecule, having full length heavy and light chains; a fragment thereof, such as a Fab, modified Fab, Fab′, F(ab′)2 or Fv fragment; a light chain or heavy chain monomer or dimer; a single chain antibody, e.g. a single chain Fv in which the heavy and light chain variable domains are joined by a peptide linker. Similarly, the heavy and light chain variable regions may be combined with other antibody domains as appropriate.
- The antibody molecule of the present invention may have an effector or a reporter molecule attached to it. For instance, it may have a macrocycle, for chelating a heavy metal atom, or a toxin, such as ricin, attached to it by a covalent bridging structure. Alternatively, procedures of recombinant DNA technology may be used to produce an antibody molecule in which the Fc fragment (CH2, CH3 and hinge domains), the CH2 and CH3 domains or the CH3 domain of a complete immunoglobulin molecule has (have) been replaced by, or has (have) attached thereto by peptide linkage, a functional non-immunoglobulin protein, such as an enzyme or toxin molecule.
- The antibody molecule of the present invention preferably has a binding affinity of at least 0.85×10−10 M, more preferably at least 0.75×10−10 M and most preferably at least 0.5×10−10 M.
- Preferably, the antibody molecule of the present invention comprises the light
chain variable domain 5/44-gL1 (SEQ ID NO:19) and the heavy chainvariable domain 5/44-gH7 (SEQ ID NO:27). The sequences of the variable domains of these light and heavy chains are shown inFIGS. 5 and 6 , respectively. - The present invention also relates to variants of the antibody molecule of the present invention, which have an improved affinity for CD22. Such variants can be obtained by a number of affinity maturation protocols including mutating the CDRs (Yang et al., J. Mol. Biol., 254, 392-403, 1995), chain shuffling (Marks et al., Bio/Technology, 10, 779-783, 1992), use of mutator strains of E. coli (Low et al., J. Mol. Biol., 250, 359-368, 1996), DNA shuffling (Patten et al., Curr. Opin. Biotechnol., 8, 724-733, 1997), phage display (Thompson et al., J. Mol. Biol., 256, 77-88, 1996) and sexual PCR (Crameri et al., Nature, 391, 288-291, 1998). Vaughan et al. (supra) discusses these methods of affinity maturation.
- The present invention also provides a DNA sequence encoding the heavy and/or light chain(s) of the antibody molecule of the present invention.
- Preferably, the DNA sequence encodes the heavy or the light chain of the antibody molecule of the present invention.
- The DNA sequence of the present invention may comprise synthetic DNA, for instance produced by chemical processing, cDNA, genomic DNA or any combination thereof.
- The present invention also relates to a cloning or expression vector comprising one or more DNA sequences of the present invention. Preferably, the cloning or expression vector comprises two DNA sequences, encoding the light chain and the heavy chain of the antibody molecule of the present invention, respectively.
- General methods by which the vectors may be constructed, transfection methods and culture methods are well known to those skilled in the art. In this respect, reference is made to “Current Protocols in Molecular Biology”, 1999, F. M. Ausubel (ed), Wiley Interscience, New York and the Maniatis Manual produced by Cold Spring Harbor Publishing.
- DNA sequences which encode the antibody molecule of the present invention can be obtained by methods well known to those skilled in the art. For example, DNA sequences coding for part or all of the antibody heavy and light chains may be synthesised as desired from the determined DNA sequences or on the basis of the corresponding amino acid sequences.
- DNA coding for acceptor framework sequences is widely available to those skilled in the art and can be readily synthesised on the basis of their known amino acid sequences.
- Standard techniques of molecular biology may be used to prepare DNA sequences coding for the antibody molecule of the present invention. Desired DNA sequences may be synthesised completely or in part using oligonucleotide synthesis techniques. Site-directed mutagenesis and polymerase chain reaction (PCR) techniques may be used as appropriate.
- Any suitable host cell/vector system may be used for expression of the DNA sequences encoding the antibody molecule of the present invention. Bacterial, for example E. coli, and other microbial systems may be used, in part, for expression of antibody fragments such as Fab and F(ab′)2 fragments, and especially Fv fragments and single chain antibody fragments, for example, single chain Fvs. Eukaryotic, e.g. mammalian, host cell expression systems may be used for production of larger antibody molecules, including complete antibody molecules. Suitable mammalian host cells include CHO, myeloma or hybridoma cells.
- The present invention also provides a process for the production of an antibody molecule according to the present invention comprising culturing a host cell containing a vector of the present invention under conditions suitable for leading to expression of protein from DNA encoding the antibody molecule of the present invention, and isolating the antibody molecule.
- The antibody molecule may comprise only a heavy or light chain polypeptide, in which case only a heavy chain or light chain polypeptide coding sequence needs to be used to transfect the host cells. For production of products comprising both heavy and light chains, the cell line may be transfected with two vectors, a first vector encoding a light chain polypeptide and a second vector encoding a heavy chain polypeptide. Alternatively, a single vector may be used, the vector including sequences encoding light chain and heavy chain polypeptides.
- The present invention also provides a therapeutic or diagnostic composition comprising an antibody molecule of the present invention in combination with a pharmaceutically acceptable excipient, diluent or carrier.
- The present invention also provides a process for preparation of a therapeutic or diagnostic composition comprising admixing the antibody molecule of the present invention together with a pharmaceutically acceptable excipient, diluent or carrier.
- The antibody molecule may be the sole active ingredient in the therapeutic or diagnostic composition or may be accompanied by other active ingredients including other antibody ingredients, for example anti-T cell, anti-IFNγ or anti-LPS antibodies, or non-antibody ingredients such as xanthines.
- The pharmaceutical compositions preferably comprise a therapeutically effective amount of the antibody of the invention. The term “therapeutically effective amount” as used herein refers to an amount of a therapeutic agent needed to treat, ameliorate or prevent a targeted disease or condition, or to exhibit a detectable therapeutic or preventative effect. For any antibody, the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually in rodents, rabbits, dogs, pigs or primates. The animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
- The precise effective amount for a human subject will depend upon the severity of the disease state, the general health of the subject, the age, weight and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities and tolerance/response to therapy. This amount can be determined by routine experimentation and is within the judgement of the clinician. Generally, an effective dose will be from 0.01 mg/kg to 50 mg/kg, preferably 0.1 mg/kg to 20 mg/kg, more preferably about 15 mg/kg.
- Compositions may be administered individually to a patient or may be administered in combination with other agents, drugs or hormones.
- The dose at which the antibody molecule of the present invention is administered depends on the nature of the condition to be treated, the grade of the malignant lymphoma or leukaemia and on whether the antibody molecule is being used prophylactically or to treat an existing condition.
- The frequency of dose will depend on the half-life of the antibody molecule and the duration of its effect. If the antibody molecule has a short half-life (e.g. 2 to 10 hours) it may be necessary to give one or more doses per day. Alternatively, if the antibody molecule has a long half life (e.g. 2 to 15 days) it may only be necessary to give a dosage once per day, once per week or even once every 1 or 2 months.
- A pharmaceutical composition may also contain a pharmaceutically acceptable carrier for administration of the antibody. The carrier should not itself induce the production of antibodies harmful to the individual receiving the composition and should not be toxic. Suitable carriers may be large, slowly metabolised macromolecules such as proteins, polypeptides, liposomes, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers and inactive virus particles.
- Pharmaceutically acceptable salts can be used, for example mineral acid salts, such as hydrochlorides, hydrobromides, phosphates and sulphates, or salts of organic acids, such as acetates, propionates, malonates and benzoates.
- Pharmaceutically acceptable carriers in therapeutic compositions may additionally contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents or pH buffering substances, may be present in such compositions. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries and suspensions, for ingestion by the patient.
- Preferred forms for administration include forms suitable for parenteral administration, e.g. by injection or infusion, for example by bolus injection or continuous infusion. Where the product is for injection or infusion, it may take the form of a suspension, solution or emulsion in an oily or aqueous vehicle and it may contain formulatory agents, such as suspending, preservative, stabilising and/or dispersing agents. Alternatively, the antibody molecule may be in dry form, for reconstitution before use with an appropriate sterile liquid.
- Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals. However, it is preferred that the compositions are adapted for administration to human subjects.
- The pharmaceutical compositions of this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, transcutaneous (for example, see WO98/20734), subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, intravaginal or rectal routes. Hyposprays may also be used to administer the pharmaceutical compositions of the invention. Typically, the therapeutic compositions may be prepared as injectables, either as liquid solutions or suspensions. Solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared.
- Direct delivery of the compositions will generally be accomplished by injection, subcutaneously, intraperitoneally, intravenously or intramuscularly, or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Dosage treatment may be a single dose schedule or a multiple dose schedule.
- It will be appreciated that the active ingredient in the composition will be an antibody molecule. As such, it will be susceptible to degradation in the gastrointestinal tract. Thus, if the composition is to be administered by a route using the gastrointestinal tract, the composition will need to contain agents which protect the antibody from degradation but which release the antibody once it has been absorbed from the gastrointestinal tract.
- A thorough discussion of pharmaceutically acceptable carriers is available in Remington's Pharmaceutical Sciences (Mack Publishing Company, N.J. 1991).
- It is also envisaged that the antibody of the present invention will be administered by use of gene therapy. In order to achieve this, DNA sequences encoding the heavy and light chains of the antibody molecule under the control of appropriate DNA components are introduced into a patient such that the antibody chains are expressed from the DNA sequences and assembled in situ.
- The present invention also provides the antibody molecule of the present invention for use in treating a disease mediated by cells expressing CD22.
- The present invention further provides the use of the antibody molecule according to the present invention in the manufacture of a medicament for the treatment of a disease mediated by cells expressing CD22.
- The antibody molecule of the present invention may be utilised in any therapy where it is desired to reduce the level of cells expressing CD22 that are present in the human or animal body. These CD22-expressing cells may be circulating in the body or be present in an undesirably high level localised at a particular site in the body. For example, elevated levels of cells expressing CD22 will be present in B cell lymphomas and leukaemias. The antibody molecule of the present invention may be utilised in the therapy of diseases mediated by cells expressing CD22.
- The antibody molecule of the present invention is preferably used for treatment of malignant lymphomas and leukaemias, most preferably NHL.
- The present invention also provides a method of treating human or animal subjects suffering from or at risk of a disorder mediated by cells expressing CD22, the method comprising administering to the subject an effective amount of the antibody molecule of the present invention.
- The antibody molecule of the present invention may also be used in diagnosis, for example in the in vivo diagnosis and imaging of disease states involving cells that express CD22.
- The present invention is further described by way of illustration only in the following examples, which refer to the accompanying Figures, in which:
-
FIG. 1 shows the amino acid sequence of the CDRs of mousemonoclonal antibody 5/44 (SEQ ID NOs:1 to 6); -
FIG. 2 shows the complete sequence of the light chain variable domain of mousemonoclonal antibody 5/44 (nucleotide sequence-SEQ ID NO:48; amino acid sequence-SEQ ID NO: 7); antisense nucleotide strand-SEQ ID NO:67; -
FIG. 3 shows the complete sequence of the heavy chain variable domain of mousemonoclonal antibody 5/44 (nucleotide sequence—SEQ ID NO:49; amino acid sequence-SEQ ID NO:8); antisense nucleotide strand-SEQ ID NO:68; -
FIG. 4 shows the strategy for removal of the glycosylation site and reactive lysine in CDR-H2 (SEQ ID NOs:9-12); -
FIG. 5 shows the graft design for the 5/44 light chain sequence (VL-SEQ ID NO:7; DPK9-SEQ ID NO:17, SEQ ID NO:69, and SEQ ID NO:70, respectively; JK1-SEQ ID NO:18 gL1-SEQ ID NO:19; and gL2-SEQ ID NO:20); -
FIG. 6 shows the graft design for the 5/44 heavy chain sequence (VH-SEQ ID NO:8, DP7-SEQ ID NO:24, gH5-SEQ ID NO:25, gH6-SEQ ID NO:26, gH7-SEQ ID NO:27, and JH4-SEQ ID NO:22); -
FIGS. 7A-7B show the vectors pMRR14 and pMRR10.1; -
FIG. 8 shows the Biacore assay results of the chimeric 5/44 mutants; -
FIG. 9 shows the oligonucleotides for 5/44 gH1 (SEQ ID NOs:32-39, respectively) and gL1 (SEQ ID NOs:40-47, respectively) gene assemblies; -
FIGS. 10A-10B show the intermediate vectors pCR2.1(544gH1) and pCR2.1(544gL1); -
FIG. 11 shows the oligonucleotide cassettes used to make further grafts (gH4-SEQ ID NOs:52, 53, and 62, respectively, gH5—SEQ ID NOs:54, 55, and 63, respectively; gH6—SEQ ID NOs:56, 57, and 64, respectively; gH7—SEQ ID NOs: 58, 59, and 65, respectively; and gL2—SEQ ID NOs:60, 61, and 66, respectively; -
FIGS. 12A-12B show the competition assay between fluorescently labelledmouse 5/44 antibody and grafted variants; and -
FIG. 13 shows the full DNA and protein sequence of the grafted heavy and light chains—a) SEQ ID NO:30 (amino acid), SEQ ID NO:31 (nucleotide), and SEQ ID NO:63 (antisense nucleotide strand); b) SEQ ID NO: 28 (amino acid), SEQ ID NO:29 (nucleotide), and SEQ ID NO:74 (antisense strand). - A panel of antibodies against CD22 were selected from hybridomas using the following selection criteria: binding to Daudi cells, internalisation on Daudi cells, binding to peripheral blood mononuclear cells (PBMC), internalisation on PBMC, affinity (greater than 10−9M), mouse γ1 and production rate. 5/44 was selected as the preferred antibody.
- Preparation of 5/44 Hybridoma Cells and RNA Preparation Therefrom
-
Hybridoma 5/44 was generated by conventional hybridoma technology following immunisation of mice with human CD22 protein. RNA was prepared from 5/44 hybridoma cells using a RNEasy kit (Qiagen, Crawley, UK; Catalogue No. 74106). The RNA obtained was reverse transcribed to cDNA, as described below. - Distribution of CD22 on NHL Tumours
- An immunohistochemistry study was undertaken to examine the incidence and distribution of staining using the 5/44 anti-CD22 monoclonal antibodies. Control anti-CD20 and anti-CD79a antibodies were included in the study to confirm B cell areas of tumours.
- A total of 50 tumours were studied and these were categorised as follows by using the Working Formulation and REAL classification systems:
- 7 B lymphoblastic leukaemia/lymphoma (High/l)
- 4 B-CLL/small lymphocytic lymphoma (Low/A)
- 3 lymphoplasmacytoid/Immunocytoma (Low/A)
- 1 Mantle cell (Int/F)
- 14 Follicle center lymphoma (Low to Int/D)
- 13 Diffuse large cell lymphoma (Int to High/G,H)
- 6 Unclassifiable (K)
- 2 T cell lymphomas
- 40 B cell lymphomas were positive for CD22 antigen with the 5/44 antibody at 0.1 μg/ml and a further 6 became positive when the concentration was increased to 0.5 μg/ml. For the remaining 2 B cell tumours that were negative at 0.1 μg/ml, there was insufficient tissue remaining to test at the higher concentration. However, parallel testing with another Celltech
anti-CD22 antibody 6/13, which gave stronger staining than 5/44, resulted in all 48 B cell lymphomas staining positive for CD22. - Thus, it is possible to conclude that the CD22 antigen is widely expressed on B cell lymphomas and thus provides a suitable target for immunotherapy in NHL.
- PCR Cloning of 5/44 VH and VL
- cDNA sequences coding for the variable domains of 5/44 heavy and light chains were synthesised using reverse transcriptase to produce single stranded cDNA copies of the mRNA present in the total RNA. This was then used as the template for amplification of the murine V-region sequences using specific oligonucleotide primers by the Polymerase Chain Reaction (PCR).
- a) cDNA Synthesis
- cDNA was synthesised in a 20 μl reaction volume containing the following reagents: 50 mM Tris-HCl pH 8.3, 75 mM KCl, 10 mM dithiothreitol, 3 mM MgCl2, 0.5 mM each deoxyribonucleoside triphosphate, 20 units RNAsin, 75 ng random hexanucleotide primer, 2
μg 5/44 RNA and 200 units Moloney Murine Leukemia Virus reverse transcriptase. After incubation at 42° C. for 60 minutes, the reaction was terminated by heating at 95° C. for 5 minutes. - b) PCR
- Aliquots of the cDNA were subjected to PCR using combinations of primers specific for the heavy and light chains. Degenerate primer pools designed to anneal with the conserved sequences of the signal peptide were used as forward primers. These sequences all contain, in order, a restriction site (VL SfuI; VH HindIII) starting 7 nucleotides from their 5′ ends, the sequence GCCGCCACC (SEQ ID NO:50), to allow optimal translation of the resulting mRNAs, an initiation codon and 20-30 nucleotides based on the leader peptide sequences of known mouse antibodies (Kabat et al., Sequences of proteins of immunological interest, 5th Edition, 1991, U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health).
- The 3′ primers are designed to span the
framework 4 J-C junction of the antibody and contain a restriction site for the enzyme BsiWI to facilitate cloning of the VL PCR fragment. Theheavy chain 3′ primers are a mixture designed to span the J-C junction of the antibody. The 3′ primer includes an ApaI restriction site to facilitate cloning. The 3′ region of the primers contains a mixed sequence based on those found in known mouse antibodies (Kabat et al., 1991, supra). - The combinations of primers described above enable the PCR products for VH and V1 to be cloned directly into an appropriate expression vector (see below) to produce chimeric (mouse-human) heavy and light chains and for these genes to be expressed in mammalian cells to produce chimeric antibodies of the desired isotype.
- Incubations (100 μl) for the PCR were set up as follows. Each reaction contained 10 mM Tris-HCl pH 8.3, 1.5 mM MgCl2, 50 mM KCl, 0.01% w/v gelatin, 0.25 mM each deoxyribonucleoside triphosphate, 10
pmoles 5′ primer mix, 10pmoles 3′ primer, 1 cDNA and 1 unit Taq polymerase. Reactions were incubated at 95° C. for 5 minutes and then cycled through 94° C. for 1 minute, 55° C. for 1 minute and 72° C. for 1 minute. After 30 cycles, aliquots of each reaction were analysed by electrophoresis on an agarose gel. - For the heavy chain V-region, an amplified DNA product was only obtained when a primer pool annealing within the start of framework I replaced the signal peptide primer pool. The fragments were cloned into DNA sequencing vectors. The DNA sequence was determined and translated to give a deduced amino acid sequence. This deduced sequence was verified by reference to the N-terminal protein sequence determined experimentally.
FIGS. 2 and 3 shows the DNA/protein sequence of the mature light and heavy chain V-regions of mouse monoclonal 5/44 respectively. - c) Molecular Cloning of the PCR Fragments
- The murine v-region sequences were then cloned into the expression vectors pMRR10.1 and pMRR14 (
FIG. 7 ). These are vectors for the expression of light and heavy chain respectively containing DNA encoding constant regions of human kappa light chain and human gamma-4 heavy chain. The VL region was sub-cloned into the expression vector by restriction digest and ligation from the sequencing vector, using SfuI and BsiWI restriction sites, creating plasmid pMRR10(544cL). The heavy chain DNA was amplified by PCR using a 5′ primer to introduce a signal peptide, since this was not obtained in the cloning strategy—a mouse heavy chain antibody leader from a different in-house hybridoma (termed 162) was employed. The 5′ primer had the following sequence: -
(SEQ ID NO: 51) 5′GCGCGCAAGCTTGCCGCCACCATGGACTTCGGATTCTCTCTCGTGTT CCTGGCACTCATTCTCAAGGGAGTGCAGTGTGAGGTGCAGCTCGTCGA GTCTGG3′. - The reverse primer was identical to that used in the original VH gene cloning. The resultant PCR product was digested with enzymes HindIII and ApaI, was sub-cloned, and its DNA sequence was confirmed, creating plasmid pMRR14(544cH). Transient co-transfection of both expression vectors into CHO cells generated chimeric c5/44 antibody. This was achieved using the Lipofectamine reagent according to the manufacturer's protocols (InVitrogen: Life Technology, Groningen, The Netherlands. Catalogue no. 11668-027).
- Removal of Glycosylation Site and Reactive Lysine
- A potential N-linked glycosylation site sequence was observed in CDR-H2, having the amino acid sequence N-Y-T (
FIG. 3 ). SDS-PAGE, Western blotting and carbohydrate staining of gels of 5/44 and its fragments (including Fab) indicated that this site was indeed glycosylated (not shown). In addition, a lysine residue was observed at an exposed position within CDR-H2, which had the potential to reduce the binding affinity of the antibody by providing an additional site for conjugation with an agent with which the antibody may be conjugated. - A PCR strategy was used to introduce amino acid substitutions into the CDR-H2 sequence in an attempt to remove the glycosylation site and/or the reactive lysine, as shown in
FIG. 4 . Forward primers encoding the mutations N55Q, T57A or T57V were used to remove the glycosylation site (FIG. 4 ) and a fourth forward primer containing the substitution K60R, was generated to remove the reactive lysine residue (FIG. 4 ). Aframework 4 reverse primer was used in each of these PCR amplifications. The PCR products were digested with the enzymes XbaI and ApaI and were inserted into pMRR14(544cH) (also cleaved with XbaI and ApaI) to generate expression plasmids encoding these mutants. The N55Q, T57A and T57V mutations ablate the glycosylation site by changing the amino acid sequence away from the consensus N-X-T/S whilst the K60R mutation replaces the potentially reactive lysine with the similarly positively charged residue arginine. The resultant cH variant plasmids were co-transfected with the cL plasmid to generate expressed chimeric antibody variants. - Evaluation of Activities of Chimeric Genes
- The activities of the chimeric genes were evaluated following transient transfection into CHO cells.
- c) Determination of Affinity Constants by BiaCore Analysis.
- The affinities of chimeric 5/44 or its variants, which have had their glycosylation site or their reactive lysine removed, were investigated using BIA technology for binding to CD22-mFc constructs. The results are shown in
FIG. 8 . All binding measurements were performed in theBIAcore™ 2000 instrument (Pharmacia Biosensor AB, Uppsala, Sweden). The assay was performed by capture of CD22mFc via the immobilised anti-mouse Fc. The antibody was in the soluble phase. Samples, standard, and controls (50 ul) were injected over immobilised anti-mouse Fc followed by antibody in the soluble phase. After each cycle the surface was regenerated with 50 ul of 40 mM HCl at 30 ul/min. The kinetic analysis was performed using the BIAevaluation 3.1 software (Pharmacia). - Removal of the glycosylation site in construct T57A resulted in a slightly faster on-rate and a significantly slower off-rate compared to the chimeric 5/44, giving an affinity improvement of approximately 5-fold. The N55Q mutation had no effect on affinity. This result was unexpected as it suggests that the removal of the carbohydrate itself apparently has no effect on binding (as with the N55Q change). The improved affinity was observed only with the T57A change. One possible explanation is that, regardless of the presence of carbohydrate, the threonine at position 57 exerts a negative effect on binding that is removed on conversion of threonine to alanine. The hypothesis that the small size of alanine is important, and that the negative effect of threonine is related to its size, is supported from the result obtained using the T57V mutation: that replacement with valine at position 57 is not beneficial (results not shown).
- Removal of the lysine by the K60R mutation had a neutral effect on affinity, i.e. the introduction of arginine removes a potential reactive site without compromising affinity.
- The mutations for removal of the glycosylation site and for removal of the reactive lysine were therefore both included in the humanisation design.
- The molecular cloning of genes for the variable regions of the heavy and light chains of the 5/44 antibody and their use to produce chimeric (mouse/human) 5/44 antibodies has been described above. The nucleotide and amino acid sequences of the
mouse 5/44 VL and VH domains are shown inFIGS. 2 and 3 (SEQ ID NOs:7 and 8), respectively. This example describes the CDR-grafting of the 5/44 antibody onto human frameworks to reduce potential immunogenicity in humans, according to the method of Adair et al., (WO91/09967). - CDR-Grafting of 5/44 Light Chain
- Protein sequence alignment with consensus sequences from human sub-group I kappa light chain V region indicated 64% sequence identity. Consequently, for constructing the CDR-grafted light chain, the acceptor framework regions chosen corresponded to those of the human VK sub-group I germline 012,DPK9 sequence. The
framework 4 acceptor sequence was derived from the human J-region germline sequence JK1. - A comparison of the amino acid sequences of the framework regions of murine 5/44 and the acceptor sequence is given in
FIG. 5 and shows that there are 27 differences between the donor and acceptor chains. At each position, an analysis was made of the potential of the murine residue to contribute to antigen binding, either directly or indirectly, through effects on packing or at the VH/VL interface. If a murine residue was considered important and sufficiently different from the human residue in terms of size, polarity or charge, then that murine residue was retained. Based on this analysis, two versions of the CDR-grafted light chain, having the sequences given in SEQ ID NO:19 and SEQ ID NO:20 (FIG. 5 ), were constructed. - CDR-Grafting of 5/44 Heavy Chain
- CDR-grafting of 5/44 heavy chain was accomplished using the same strategy as described for the light chain. The V-domain of 5/44 heavy chain was found to be homologous to human heavy chains belonging to sub-group I (70% sequence identity) and therefore the sequence of the human sub-group I germline framework VH1-3,DP7 was used as an acceptor framework. The
framework 4 acceptor sequences were derived from human J-region germline sequence JH4. - A comparison of 5/44 heavy chain with the framework regions is shown in
FIG. 6 where it can be seen that the 5/44 heavy chain differs from the acceptor sequence at 22 positions. Analysis of the contribution that any of these might make to antigen binding led to 5 versions of the CDR-grafted heavy chains being constructed, having the sequences given in SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26 and SEQ ID NO:27 (FIG. 6 ). - Construction of Genes for Grafted Sequences.
- Genes were designed to encode the grafted sequences gH1 and gL1, and a series of overlapping oligonucleotides were designed and constructed (
FIG. 9 ). A PCR assembly technique was employed to construct the CDR-grafted V-region genes. Reaction volumes of 100 ul were set up containing 10 mM Tris-HCl pH8.3, 1.5 mM MgCl2, 50 mM KCl, 0.001% gelatin, 0.25 mM each deoxyribonucleoside triphosphate, 1 pmole each of the ‘internal’ primers (T1, T2, T3, B1, B2, B3), 10 pmole each of the ‘external’ primers (F1, R1), and 1 unit of Taq polymerase (AmpliTaq, Applied BioSystems, catalogue no. N808-0171). PCR cycle parameters were 94° C. for 1 minute, 55° C. for 1 minute and 72° C. for 1 minute, for 30 cycles. The reaction products were then run on a 1.5% agarose gel, excised and recovered using QIAGEN® spin columns (QIAquick® gel extraction kit, cat no. 28706). The DNA was eluted in a volume of 30 μl. Aliquots (1 μl) of the gH1 and gL1 DNA were then cloned into the InVitrogen TOPO® TA cloning vector pCR2.1 TOPO® (catalogue no. K4500-01) according to the manufacturer's instructions. This non-expression vector served as a cloning intermediate to facilitate sequencing of a large number of clones. DNA sequencing using vector-specific primers was used to identify correct clones containing gH1 and gL1, creating plasmids pCR2.1 (544gH1) and pCR2.1(544gL1) (FIG. 10 ). - An oligonucleotide cassette replacement method was used to create the humanised grafts gH4,5,6 and 7, and gL2.
FIG. 11 shows the design of the oligonucleotide cassettes. To construct each variant, the vector (pCR2.1(544gH1) or pCR2.1(544gL1)) was cut with the restriction enzymes shown (XmaI/SacII for the heavy chain, XmaI/BstEII for the light chain). The large vector fragment was gel purified from agarose and was used in ligation with the oligonucleotide cassette. These cassettes are composed of 2 complementary oligonucleotides (shown inFIG. 11 ), mixed at a concentration of 0.5 pmoles/μ1 in a volume of 200 μl 12.5 mM Tris-HCl pH 7.5, 2.5 mM MgCl2, 25 mM NaCl, 0.25 mM dithioerythritol. Annealing was achieved by heating to 95° C. for 3 minutes in a waterbath (volume 500 ml) then allowing the reaction to slow-cool to room temperature. The annealed oligonucleotide cassette was then diluted ten-fold in water before ligation into the appropriately cut vector. DNA sequencing was used to confirm the correct sequence, creating plasmids pCR2.1 (5/44-gH4-7) and pCR2.1(5/44-gL2). The verified grafted sequences were then sub-cloned into the expression vectors pMRR14 (heavy chain) and pMR10.1 (light chain). - CD22 Binding Activity of CDR-Grafted Sequences
- The vectors encoding grafted variants were co-transfected into CHO cells in a variety of combinations, together with the original chimeric antibody chains. Binding activity was compared in a competition assay, competing the binding of the
original mouse 5/44 antibody for binding to Ramos cells (obtained from ATCC, a Burkitt's lymphoma lymphoblast human cell line expressing surface CD22). This assay was considered the best way to compare grafts in their ability to bind to cell surface CD22. The results are shown inFIG. 8 . As can be seen, there is very little difference between any of the grafts, all performing more effectively than the chimeric at competing against the murine parent. The introduction of the 3 additional human residues at the end of CDR H2 (gH6 and gH7) does not appear to have affected binding. - The graft combination with the least number of murine residues was selected, gL1gH7. The light chain graft gL1 has 6 donor residues. Residues V2, V4, L37 and Q45 are potentially important packing residues. Residue H38 is at the VH/VL interface. Residue D60 is a surface residue close to the CDR-L2 and may directly contribute to antigen binding. Of these residues, V2, L37, Q45 and D60 are found in germline sequences of human kappa genes from other sub-groups. The heavy chain graft gH7 has 4 donor framework residues (Residue R28 is considered to be part of CDR-H1 under the structural definition used in CDR-grafting (se Adair et al (1991 WO91/09967)). Residues E1 and A71 are surface residues close to the CDR's. Residue I48 is a potential packing residue. Residue T93 is present at the VH/VL interface. Of these residues, E1 and A71 are found in other germline genes of human sub-group I. Residue I48 is found in
human germline sub-group 4, and T73 is found inhuman germline sub-group 3. - The full DNA and protein sequence of both the light chain and heavy chain, including approximate position of introns within the constant region genes provided by the vectors, are shown in
FIG. 13 and are given in SEQ ID NO:29 and SEQ ID NO:28 respectively for the light chain and SEQ ID NO:31 and SEQ ID NO:30 respectively for the heavy chain. - DNA encoding these light and heavy chain genes was excised from these vectors. Heavy chain DNA was digested at the 5′ HindIII site, then was treated with the Klenow fragment of E. coli DNA polymerase I to create a 5′ blunt end. Cleavage at the 3′ EcoRI site resulted in the heavy chain fragment which was purified from agarose gels. In the same way, a light chain fragment was produced, blunted at the 5′ SfuI site and with a 3′ EcoRI site. Both fragments were cloned into DHFR based expression vectors and used to generate stable cell lines in CHO cells.
- All references and patents cited herein are hereby incorporated by reference in their entireties.
Claims (6)
1. An antibody molecule that binds human CD22 comprising a heavy chain and a light chain, wherein each chain comprises three complementarity determining regions (CDRs), wherein CDR-H1 comprises the amino acid sequence of SEQ ID NO:1; CDR-H3 comprises the amino acid sequence of SEQ ID NO:3; CDR-L1 comprises the amino acid sequence of SEQ ID NO:4; CDR-L2 comprises the amino acid sequence of SEQ ID NO:5; and CDR-L3 comprises the amino acid sequence of SEQ ID NO:6.
2. The antibody molecule of claim 1 , which is a CDR-grafted antibody molecule.
3. The antibody molecule of claim 2 , wherein the variable domain comprises human acceptor framework regions and non-human donor CDRs.
4. A composition comprising the antibody molecule of claim 1 .
5. The composition according to claim 4 , comprising a pharmaceutically acceptable excipient, diluent, or carrier.
6. The composition according to claim 4 , additionally comprising anti-T cell, anti-IFNγ, anti-LPS antibodies, or a non-antibody ingredient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/151,911 US20210371547A1 (en) | 2002-05-02 | 2021-01-19 | Biological products |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0210121.0A GB0210121D0 (en) | 2002-05-02 | 2002-05-02 | Biological products |
GB0210121.0 | 2002-05-02 | ||
US10/428,408 US7355011B2 (en) | 2002-05-02 | 2003-05-02 | Biological products |
US11/519,585 US20070059307A1 (en) | 2002-05-02 | 2006-09-11 | Biological products |
US15/069,078 US20160326247A1 (en) | 2002-05-02 | 2016-03-14 | Biological products |
US15/417,973 US20170145114A1 (en) | 2002-05-02 | 2017-01-27 | Biological products |
US17/151,911 US20210371547A1 (en) | 2002-05-02 | 2021-01-19 | Biological products |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/417,973 Continuation US20170145114A1 (en) | 2002-05-02 | 2017-01-27 | Biological products |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210371547A1 true US20210371547A1 (en) | 2021-12-02 |
Family
ID=9935990
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/428,408 Active 2024-12-15 US7355011B2 (en) | 2002-05-02 | 2003-05-02 | Biological products |
US11/519,585 Abandoned US20070059307A1 (en) | 2002-05-02 | 2006-09-11 | Biological products |
US12/235,724 Expired - Lifetime US7919606B2 (en) | 2002-05-02 | 2008-09-23 | Biological products |
US13/049,087 Active 2025-05-30 US8895714B2 (en) | 2002-05-02 | 2011-03-16 | Biological products |
US13/548,542 Abandoned US20120302739A1 (en) | 2002-05-02 | 2012-07-13 | Biological products |
US15/069,078 Abandoned US20160326247A1 (en) | 2002-05-02 | 2016-03-14 | Biological products |
US15/417,973 Abandoned US20170145114A1 (en) | 2002-05-02 | 2017-01-27 | Biological products |
US17/151,911 Abandoned US20210371547A1 (en) | 2002-05-02 | 2021-01-19 | Biological products |
Family Applications Before (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/428,408 Active 2024-12-15 US7355011B2 (en) | 2002-05-02 | 2003-05-02 | Biological products |
US11/519,585 Abandoned US20070059307A1 (en) | 2002-05-02 | 2006-09-11 | Biological products |
US12/235,724 Expired - Lifetime US7919606B2 (en) | 2002-05-02 | 2008-09-23 | Biological products |
US13/049,087 Active 2025-05-30 US8895714B2 (en) | 2002-05-02 | 2011-03-16 | Biological products |
US13/548,542 Abandoned US20120302739A1 (en) | 2002-05-02 | 2012-07-13 | Biological products |
US15/069,078 Abandoned US20160326247A1 (en) | 2002-05-02 | 2016-03-14 | Biological products |
US15/417,973 Abandoned US20170145114A1 (en) | 2002-05-02 | 2017-01-27 | Biological products |
Country Status (35)
Country | Link |
---|---|
US (8) | US7355011B2 (en) |
EP (1) | EP1504035B9 (en) |
JP (3) | JP4486494B2 (en) |
KR (3) | KR101238970B1 (en) |
CN (3) | CN100384878C (en) |
AT (1) | ATE462729T3 (en) |
AU (1) | AU2003223007C1 (en) |
BE (1) | BE2017C068I2 (en) |
CA (1) | CA2484420C (en) |
CO (1) | CO5631451A2 (en) |
CY (3) | CY1110134T1 (en) |
DE (1) | DE60331910D1 (en) |
DK (1) | DK1504035T6 (en) |
EC (1) | ECSP045470A (en) |
ES (1) | ES2341708T7 (en) |
FR (1) | FR17C1062I2 (en) |
GB (1) | GB0210121D0 (en) |
HK (2) | HK1071762A1 (en) |
HU (2) | HUS1700055I1 (en) |
IL (1) | IL164923A (en) |
LT (2) | LTC1504035I2 (en) |
LU (2) | LUC00057I2 (en) |
MX (1) | MXPA04010787A (en) |
NL (1) | NL300920I2 (en) |
NO (3) | NO336201B3 (en) |
NZ (1) | NZ536757A (en) |
PL (1) | PL218433B1 (en) |
PT (1) | PT1504035E (en) |
RU (1) | RU2342401C2 (en) |
SG (1) | SG161744A1 (en) |
SI (1) | SI1504035T1 (en) |
TW (1) | TWI324161B (en) |
UA (1) | UA92580C2 (en) |
WO (1) | WO2003093320A2 (en) |
ZA (1) | ZA200408851B (en) |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7355012B2 (en) | 2001-09-26 | 2008-04-08 | United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Mutated anti-CD22 antibodies with increased affinity to CD22-expressing leukemia cells |
US20110045005A1 (en) | 2001-10-19 | 2011-02-24 | Craig Crowley | Compositions and methods for the treatment of tumor of hematopoietic origin |
WO2003072036A2 (en) | 2002-02-21 | 2003-09-04 | Duke University | Treatment methods using anti-cd22 antibodies |
EP2371392B1 (en) | 2002-05-02 | 2015-07-08 | Wyeth Holdings LLC | Calicheamicin derivative-carrier conjugates |
GB0210121D0 (en) * | 2002-05-02 | 2002-06-12 | Celltech R&D Ltd | Biological products |
GB0312481D0 (en) | 2003-05-30 | 2003-07-09 | Celltech R&D Ltd | Antibodies |
AR052774A1 (en) * | 2004-10-08 | 2007-04-04 | Wyeth Corp | IMMUNOTHERAPY FOR AUTOIMMUNE DISORDERS |
EP1909831A4 (en) | 2005-06-14 | 2013-02-20 | Amgen Inc | Self-buffering protein formulations |
MY149159A (en) | 2005-11-15 | 2013-07-31 | Hoffmann La Roche | Method for treating joint damage |
JP2009532336A (en) * | 2006-03-06 | 2009-09-10 | メディミューン,エルエルシー | Humanized anti-CD22 antibodies and their use in the treatment of tumors, transplants and autoimmune diseases |
EP2540741A1 (en) * | 2006-03-06 | 2013-01-02 | Aeres Biomedical Limited | Humanized anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease |
WO2007140371A2 (en) * | 2006-05-30 | 2007-12-06 | Genentech, Inc. | Antibodies and immunoconjugates and uses therefor |
EP2097097B1 (en) | 2006-12-01 | 2018-05-30 | E. R. Squibb & Sons, L.L.C. | Antibodies, in particular human antibodies, that bind cd22 and uses thereof |
WO2009124109A1 (en) * | 2008-04-04 | 2009-10-08 | The Government Of The U.S. A. As Represented By The Secretary Of The Dept. Of Health &Human Services | Human monoclonal antibodies specific for cd22 |
WO2010075249A2 (en) | 2008-12-22 | 2010-07-01 | Genentech, Inc. | A method for treating rheumatoid arthritis with b-cell antagonists |
WO2010096394A2 (en) * | 2009-02-17 | 2010-08-26 | Redwood Biosciences, Inc. | Aldehyde-tagged protein-based drug carriers and methods of use |
BR112012004777A2 (en) | 2009-09-03 | 2019-09-24 | Genentech Inc | Methods to Treat Diagnose and Monitor Rheumatoid Arthritis |
JP6162606B2 (en) | 2011-01-14 | 2017-07-12 | レッドウッド バイオサイエンス, インコーポレイテッド | Aldehyde-tagged immunoglobulin polypeptides and methods of use thereof |
CN103502472B (en) | 2011-02-28 | 2017-06-06 | 弗·哈夫曼-拉罗切有限公司 | Biomarker and the method for predicting the response to B cell antagonists |
MX361533B (en) * | 2012-04-26 | 2018-12-07 | Bioatla Llc | Anti-cd22 antibodies. |
SG11201408626YA (en) | 2012-07-03 | 2015-03-30 | Univ Washington | Antibodies to tau |
EP3539563A1 (en) | 2012-07-19 | 2019-09-18 | Redwood Bioscience, Inc. | Antibody specific for cd22 and methods of use thereof |
RU2658485C2 (en) | 2012-10-24 | 2018-06-21 | Дзе Юнайтед Стейтс Оф Америка, Эз Репрезентед Бай Дзе Секретари, Департмент Оф Хелс Энд Хьюман Сёрвисез | M971 chimeric antigen receptors |
CN103214578B (en) * | 2013-05-10 | 2014-05-28 | 北京东方百泰生物科技有限公司 | Novel humanized anti-CD22 antibody |
AU2014342610A1 (en) | 2013-11-04 | 2016-06-02 | Abbvie Stemcentrx Llc | Anti-EFNA4 antibody-drug conjugates |
GB201409558D0 (en) | 2014-05-29 | 2014-07-16 | Ucb Biopharma Sprl | Method |
TWI734975B (en) | 2014-06-27 | 2021-08-01 | 美商C2N醫療診斷有限責任公司 | Humanized anti-tau antibodies |
GB201412659D0 (en) | 2014-07-16 | 2014-08-27 | Ucb Biopharma Sprl | Molecules |
GB201412658D0 (en) | 2014-07-16 | 2014-08-27 | Ucb Biopharma Sprl | Molecules |
DK3280729T3 (en) * | 2015-04-08 | 2022-07-25 | Novartis Ag | CD20 TREATMENTS, CD22 TREATMENTS AND COMBINATION TREATMENTS WITH A CD19 CHIMERIC ANTIGEN RECEPTOR (CAR) EXPRESSING CELL |
GB201601077D0 (en) | 2016-01-20 | 2016-03-02 | Ucb Biopharma Sprl | Antibody molecule |
GB201601075D0 (en) | 2016-01-20 | 2016-03-02 | Ucb Biopharma Sprl | Antibodies molecules |
GB201601073D0 (en) | 2016-01-20 | 2016-03-02 | Ucb Biopharma Sprl | Antibodies |
AU2016354009B2 (en) | 2015-11-09 | 2021-05-20 | R.P. Scherer Technologies, Llc | Anti-CD22 antibody-maytansine conjugates and methods of use thereof |
GB201521383D0 (en) | 2015-12-03 | 2016-01-20 | Ucb Biopharma Sprl And Ucb Celltech | Method |
GB201521391D0 (en) | 2015-12-03 | 2016-01-20 | Ucb Biopharma Sprl | Antibodies |
GB201521382D0 (en) | 2015-12-03 | 2016-01-20 | Ucb Biopharma Sprl | Antibodies |
GB201521393D0 (en) | 2015-12-03 | 2016-01-20 | Ucb Biopharma Sprl | Antibodies |
GB201521389D0 (en) | 2015-12-03 | 2016-01-20 | Ucb Biopharma Sprl | Method |
WO2017189432A1 (en) | 2016-04-26 | 2017-11-02 | R.P. Scherer Technologies, Llc | Antibody conjugates and methods of making and using the same |
GB201610512D0 (en) * | 2016-06-16 | 2016-08-03 | Autolus Ltd | Chimeric antigen receptor |
JP6884858B2 (en) | 2016-10-21 | 2021-06-09 | アムジエン・インコーポレーテツド | Pharmaceutical product and its manufacturing method |
MX2020010227A (en) | 2018-03-30 | 2021-02-17 | Eureka Therapeutics Inc | Constructs targeting cd22 and uses thereof. |
JP2023521635A (en) * | 2020-04-02 | 2023-05-25 | ナンチン イアソ バイオセラピューティクス カンパニー,リミティド | Fully humanized anti-human CD22 chimeric antigen receptor and its application |
WO2022042494A1 (en) * | 2020-08-27 | 2022-03-03 | 深圳市菲鹏生物治疗股份有限公司 | Cd22 antibody and application thereof |
WO2022262783A1 (en) * | 2021-06-16 | 2022-12-22 | 西安宇繁生物科技有限责任公司 | Anti-cd22 fully human antibody or antigen binding fragment thereof, preparation method therefor, and use thereof |
WO2023027534A1 (en) * | 2021-08-27 | 2023-03-02 | 주식회사 펩트론 | Novel anti-muc1 antibody and use thereof |
WO2024102693A2 (en) | 2022-11-07 | 2024-05-16 | Xencor, Inc. | Il-18-fc fusion proteins |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5558864A (en) * | 1991-03-06 | 1996-09-24 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Humanized and chimeric anti-epidermal growth factor receptor monoclonal antibodies |
US7355011B2 (en) * | 2002-05-02 | 2008-04-08 | Ucb Pharma S.A. | Biological products |
US8153768B2 (en) * | 2002-05-02 | 2012-04-10 | Wyeth Holdings Corporation | Calicheamicin derivative-carrier conjugates |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3957362A (en) * | 1972-10-02 | 1976-05-18 | Corneal Sciences, Inc. | Hydrogels and articles made therefrom |
GB8607679D0 (en) | 1986-03-27 | 1986-04-30 | Winter G P | Recombinant dna product |
US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
IL162181A (en) | 1988-12-28 | 2006-04-10 | Pdl Biopharma Inc | A method of producing humanized immunoglubulin, and polynucleotides encoding the same |
US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5134075A (en) * | 1989-02-17 | 1992-07-28 | Oncogen Limited Partnership | Monoclonal antibody to novel antigen associated with human tumors |
GB8928874D0 (en) | 1989-12-21 | 1990-02-28 | Celltech Ltd | Humanised antibodies |
JP3179481B2 (en) * | 1990-06-27 | 2001-06-25 | プリンストン ユニバーシティ | Probe for detecting mutant p53 |
US5714350A (en) * | 1992-03-09 | 1998-02-03 | Protein Design Labs, Inc. | Increasing antibody affinity by altering glycosylation in the immunoglobulin variable region |
US5686072A (en) | 1992-06-17 | 1997-11-11 | Board Of Regents, The University Of Texas | Epitope-specific monoclonal antibodies and immunotoxins and uses thereof |
US5714340A (en) * | 1992-12-22 | 1998-02-03 | Johnson & Johnson Clinical Diagnostics, Inc. | Immunoassay elements having a receptor zone |
US6180377B1 (en) * | 1993-06-16 | 2001-01-30 | Celltech Therapeutics Limited | Humanized antibodies |
US5474995A (en) | 1993-06-24 | 1995-12-12 | Merck Frosst Canada, Inc. | Phenyl heterocycles as cox-2 inhibitors |
US5436265A (en) * | 1993-11-12 | 1995-07-25 | Merck Frosst Canada, Inc. | 1-aroyl-3-indolyl alkanoic acids and derivatives thereof useful as anti-inflammatory agents |
CN1211123C (en) * | 1994-01-25 | 2005-07-20 | 雅典娜神经科学公司 | Humanized antibodies against leukocyte adhesion molecule VLA-4 |
DE69534530T2 (en) * | 1994-08-12 | 2006-07-06 | Immunomedics, Inc. | FOR B-CELL LYMPHOMA AND LEUKEMIA SPECIMEN IMMUNOCONJUGATES AND HUMAN ANTIBODIES |
MX9701075A (en) | 1994-08-12 | 1998-03-31 | Myriad Genetics Inc | IN VIVO MUTATIONS AND POLYMORPHISMS IN THE 17q-LINKED BREAST AND OVARIAN CANCER SUSCEPTIBILITY GENE. |
US5712374A (en) * | 1995-06-07 | 1998-01-27 | American Cyanamid Company | Method for the preparation of substantiallly monomeric calicheamicin derivative/carrier conjugates |
US5714586A (en) * | 1995-06-07 | 1998-02-03 | American Cyanamid Company | Methods for the preparation of monomeric calicheamicin derivative/carrier conjugates |
US7147851B1 (en) * | 1996-08-15 | 2006-12-12 | Millennium Pharmaceuticals, Inc. | Humanized immunoglobulin reactive with α4β7 integrin |
CA2270288A1 (en) * | 1996-11-01 | 1998-05-14 | Smithkline Beecham Corporation | Human monoclonal antibodies |
US20020141990A1 (en) * | 1996-11-01 | 2002-10-03 | Smithkline Beecham Corporation | Anti-RSV human monoclonal antibodies |
US5980898A (en) | 1996-11-14 | 1999-11-09 | The United States Of America As Represented By The U.S. Army Medical Research & Material Command | Adjuvant for transcutaneous immunization |
CA2284665C (en) | 1997-03-20 | 2010-08-17 | David Fitzgerald | Recombinant antibodies and immunoconjugates targeted to cd-22 bearing cells and tumors |
US6183744B1 (en) | 1997-03-24 | 2001-02-06 | Immunomedics, Inc. | Immunotherapy of B-cell malignancies using anti-CD22 antibodies |
DK0999853T3 (en) | 1997-06-13 | 2003-04-22 | Genentech Inc | Stabilized antibody formulation |
AT408613B (en) * | 1998-06-17 | 2002-01-25 | Immuno Ag | PHARMACEUTICAL FACTOR VII PREPARATION |
KR100345463B1 (en) * | 1998-11-19 | 2003-01-08 | 주)녹십자 | Preparation of humanized antibody on surface antigen pre-s1 of hepatitis b virus |
EP1194167B1 (en) * | 1999-06-09 | 2009-08-19 | Immunomedics, Inc. | Immunotherapy of autoimmune disorders using antibodies which target b-cells |
AU7787100A (en) * | 1999-10-12 | 2001-04-23 | Connex Gesellschaft Zur Optimierung Von Forschung Und Entwicklung Mbh | Improved method for the detection of acid resistant microorganisms in a stool |
US20010046496A1 (en) * | 2000-04-14 | 2001-11-29 | Brettman Lee R. | Method of administering an antibody |
GB0013810D0 (en) * | 2000-06-06 | 2000-07-26 | Celltech Chiroscience Ltd | Biological products |
JP2004502742A (en) * | 2000-07-12 | 2004-01-29 | アイデック ファーマスーティカルズ コーポレイション | B-cell malignant disease treatment-related application using antibodies that kill B cells and immunomodulatory antibodies in combination |
CN1205479C (en) * | 2000-10-31 | 2005-06-08 | 杨梦甦 | Protein chip for immunodiagnosis and its preparing process |
EP2540741A1 (en) * | 2006-03-06 | 2013-01-02 | Aeres Biomedical Limited | Humanized anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease |
-
2002
- 2002-05-02 GB GBGB0210121.0A patent/GB0210121D0/en not_active Ceased
-
2003
- 2003-05-02 PT PT03718974T patent/PT1504035E/en unknown
- 2003-05-02 EP EP03718974.3A patent/EP1504035B9/en not_active Expired - Lifetime
- 2003-05-02 DE DE60331910T patent/DE60331910D1/en not_active Expired - Lifetime
- 2003-05-02 KR KR1020107027192A patent/KR101238970B1/en active IP Right Grant
- 2003-05-02 MX MXPA04010787A patent/MXPA04010787A/en active IP Right Grant
- 2003-05-02 CA CA2484420A patent/CA2484420C/en not_active Expired - Lifetime
- 2003-05-02 CN CNB038150433A patent/CN100384878C/en not_active Expired - Lifetime
- 2003-05-02 AU AU2003223007A patent/AU2003223007C1/en active Active
- 2003-05-02 PL PL373277A patent/PL218433B1/en unknown
- 2003-05-02 CN CN201310021287.1A patent/CN103172742B/en not_active Expired - Lifetime
- 2003-05-02 NZ NZ536757A patent/NZ536757A/en not_active IP Right Cessation
- 2003-05-02 RU RU2004135103/13A patent/RU2342401C2/en active
- 2003-05-02 AT AT03718974T patent/ATE462729T3/en unknown
- 2003-05-02 WO PCT/GB2003/001934 patent/WO2003093320A2/en active Application Filing
- 2003-05-02 US US10/428,408 patent/US7355011B2/en active Active
- 2003-05-02 SG SG200608406-5A patent/SG161744A1/en unknown
- 2003-05-02 KR KR1020127025129A patent/KR101386376B1/en active IP Right Grant
- 2003-05-02 JP JP2004501459A patent/JP4486494B2/en not_active Expired - Lifetime
- 2003-05-02 CN CN2007100852904A patent/CN101134779B/en not_active Expired - Lifetime
- 2003-05-02 SI SI200331804T patent/SI1504035T1/en unknown
- 2003-05-02 KR KR1020047017615A patent/KR101156796B1/en active IP Right Grant
- 2003-05-02 ES ES03718974.3T patent/ES2341708T7/en active Active
- 2003-05-02 DK DK03718974.3T patent/DK1504035T6/en active
- 2003-05-02 TW TW092112182A patent/TWI324161B/en not_active IP Right Cessation
- 2003-05-02 UA UA20041209866A patent/UA92580C2/en unknown
-
2004
- 2004-10-28 IL IL164923A patent/IL164923A/en active IP Right Grant
- 2004-11-02 ZA ZA2004/08851A patent/ZA200408851B/en unknown
- 2004-11-02 NO NO20044742A patent/NO336201B3/en not_active IP Right Cessation
- 2004-11-30 CO CO04120665A patent/CO5631451A2/en active IP Right Grant
- 2004-12-02 EC EC2004005470A patent/ECSP045470A/en unknown
-
2005
- 2005-05-27 HK HK05104462.6A patent/HK1071762A1/en not_active IP Right Cessation
-
2006
- 2006-09-11 US US11/519,585 patent/US20070059307A1/en not_active Abandoned
-
2008
- 2008-09-23 US US12/235,724 patent/US7919606B2/en not_active Expired - Lifetime
-
2009
- 2009-09-07 JP JP2009205660A patent/JP5377173B2/en not_active Expired - Lifetime
-
2010
- 2010-06-03 CY CY20101100492T patent/CY1110134T1/en unknown
-
2011
- 2011-03-16 US US13/049,087 patent/US8895714B2/en active Active
-
2012
- 2012-07-13 US US13/548,542 patent/US20120302739A1/en not_active Abandoned
-
2013
- 2013-07-04 JP JP2013140245A patent/JP5920934B2/en not_active Expired - Lifetime
- 2013-12-12 HK HK13113804.4A patent/HK1186479A1/en not_active IP Right Cessation
-
2016
- 2016-03-14 US US15/069,078 patent/US20160326247A1/en not_active Abandoned
-
2017
- 2017-01-27 US US15/417,973 patent/US20170145114A1/en not_active Abandoned
- 2017-12-20 CY CY2017046C patent/CY2017046I1/en unknown
- 2017-12-21 LU LU00057C patent/LUC00057I2/en unknown
- 2017-12-21 NL NL300920C patent/NL300920I2/en unknown
- 2017-12-21 NO NO2017068C patent/NO2017068I1/en unknown
- 2017-12-21 BE BE2017C068C patent/BE2017C068I2/nl unknown
- 2017-12-21 LU LU00058C patent/LUC00058I2/en unknown
- 2017-12-21 NO NO2017069C patent/NO2017069I1/en unknown
- 2017-12-21 CY CY2017045C patent/CY2017045I2/en unknown
- 2017-12-21 LT LTPA2017044C patent/LTC1504035I2/en unknown
- 2017-12-21 LT LTPA2017043C patent/LTPA2017043I1/en unknown
- 2017-12-21 FR FR17C1062C patent/FR17C1062I2/en active Active
- 2017-12-22 HU HUS1700055C patent/HUS1700055I1/en unknown
- 2017-12-22 HU HUS1700056C patent/HUS1700056I1/en unknown
-
2021
- 2021-01-19 US US17/151,911 patent/US20210371547A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5558864A (en) * | 1991-03-06 | 1996-09-24 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Humanized and chimeric anti-epidermal growth factor receptor monoclonal antibodies |
US7355011B2 (en) * | 2002-05-02 | 2008-04-08 | Ucb Pharma S.A. | Biological products |
US7919606B2 (en) * | 2002-05-02 | 2011-04-05 | Ucb Pharma S.A. | Biological products |
US8153768B2 (en) * | 2002-05-02 | 2012-04-10 | Wyeth Holdings Corporation | Calicheamicin derivative-carrier conjugates |
US8747857B2 (en) * | 2002-05-02 | 2014-06-10 | Wyeth Holdings Llc | Calicheamicin derivative-carrier conjugates |
US8835611B2 (en) * | 2002-05-02 | 2014-09-16 | Wyeth Holdings Llc | Calicheamicin derivative-carrier conjugates |
US8895714B2 (en) * | 2002-05-02 | 2014-11-25 | Ucb Pharma S.A. | Biological products |
US9351986B2 (en) * | 2002-05-02 | 2016-05-31 | Wyeth Holdings Llc | Calicheamicin derivative-carrier conjugates |
Non-Patent Citations (7)
Title |
---|
Bumbaca et al (mAbs, 3(4):376-386, 2011) * |
Edwards et al (J Mol Biol, 14;334(1):103-118, 2003) * |
Gussow et al (Methods in Enzymology. 1991; 203: 99-121) * |
Lloyd et al (Protein Engineering, Design & Selection, 22:159-168, 2009) * |
Robin et al (JMB, 426:3729-3743, 2014) * |
Winkler et al (J. Imm., 265:4505-4514, 2000) * |
Yu et al. (PLoS One. 2012; 7 (3): e33340; pp. 1-15) * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210371547A1 (en) | Biological products | |
AU2015305770B2 (en) | Anti-LAG3 antibodies and antigen-binding fragments | |
BRPI0309730B1 (en) | ANTIBODY MOLECULE HAVING SPECIFICITY FOR HUMAN CD22, DNA SEQUENCE, EXPRESSION OR CLONING VECTOR, HOST CELL, USE OF ANTIBODY MOLECULE OR DNA SEQUENCE, DIAGNOSTIC COMPOSITION OR THERAPEUTIC PROCESS, PREPARATION OF A DIAGNOSTIC OR THERAPEUTIC COMPOSITION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |