US20210361887A1 - Filter cartridge assemblies for managing fluid and humidity in endoscopic surgery - Google Patents

Filter cartridge assemblies for managing fluid and humidity in endoscopic surgery Download PDF

Info

Publication number
US20210361887A1
US20210361887A1 US17/397,912 US202117397912A US2021361887A1 US 20210361887 A1 US20210361887 A1 US 20210361887A1 US 202117397912 A US202117397912 A US 202117397912A US 2021361887 A1 US2021361887 A1 US 2021361887A1
Authority
US
United States
Prior art keywords
humidity
filter
filter element
lumen
filter cartridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/397,912
Inventor
Mikiya Silver
Michael J. Kane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conmed Corp
Original Assignee
Conmed Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conmed Corp filed Critical Conmed Corp
Priority to US17/397,912 priority Critical patent/US20210361887A1/en
Assigned to CONMED CORPORATION reassignment CONMED CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANE, MICHAEL J., SILVER, Mikiya
Publication of US20210361887A1 publication Critical patent/US20210361887A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/015Control of fluid supply or evacuation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M13/00Insufflators for therapeutic or disinfectant purposes, i.e. devices for blowing a gas, powder or vapour into the body
    • A61M13/003Blowing gases other than for carrying powders, e.g. for inflating, dilating or rinsing
    • A61M13/006Blowing gases other than for carrying powders, e.g. for inflating, dilating or rinsing with gas recirculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0002Casings; Housings; Frame constructions
    • B01D46/0005Mounting of filtering elements within casings, housings or frames
    • B01D46/0008Two or more filter elements not fluidly connected positioned in the same housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/56Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition
    • B01D46/62Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in series
    • B01D46/64Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with multiple filtering elements, characterised by their mutual disposition connected in series arranged concentrically or coaxially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3474Insufflating needles, e.g. Veress needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B2017/3437Cannulas with means for removing or absorbing fluid, e.g. wicks or absorbent pads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/007Aspiration
    • A61B2218/008Aspiration for smoke evacuation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0808Condensation traps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0225Carbon oxides, e.g. Carbon dioxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/07General characteristics of the apparatus having air pumping means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3344Measuring or controlling pressure at the body treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3379Masses, volumes, levels of fluids in reservoirs, flow rates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • A61M2205/505Touch-screens; Virtual keyboard or keypads; Virtual buttons; Soft keys; Mouse touches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/75General characteristics of the apparatus with filters
    • A61M2205/7527General characteristics of the apparatus with filters liquophilic, hydrophilic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/75General characteristics of the apparatus with filters
    • A61M2205/7536General characteristics of the apparatus with filters allowing gas passage, but preventing liquid passage, e.g. liquophobic, hydrophobic, water-repellent membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/75General characteristics of the apparatus with filters
    • A61M2205/7545General characteristics of the apparatus with filters for solid matter, e.g. microaggregates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1007Breast; mammary
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1021Abdominal cavity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1042Alimentary tract
    • A61M2210/1064Large intestine

Definitions

  • the subject invention is directed to endoscopic surgery, and more particularly, to filter systems and methods for a multimodal insufflation system used during endoscopic surgical procedures.
  • Laparoscopic or “minimally invasive” surgical techniques are becoming commonplace in the performance of procedures such as cholecystectomies, appendectomies, hernia repair and nephrectomies. Benefits of such procedures include reduced trauma to the patient, reduced opportunity for infection, and decreased recovery time.
  • Such procedures within the abdominal (peritoneal) cavity are typically performed through a device known as a trocar or cannula, which facilitates the introduction of laparoscopic instruments into the abdominal cavity of a patient.
  • a pneumoperitoneum commonly involves filling or “insufflating” the abdominal (peritoneal) cavity with a pressurized fluid, such as carbon dioxide, to create what is referred to as a pneumoperitoneum.
  • the insufflation can be carried out by a surgical access device (sometimes referred to as a “cannula” or “trocar”) equipped to deliver insufflation fluid, or by a separate insufflation device, such as an insufflation (veress) needle.
  • a surgical access device sometimes referred to as a “cannula” or “trocar” equipped to deliver insufflation fluid
  • a separate insufflation device such as an insufflation (veress) needle.
  • Introduction of surgical instruments into the pneumoperitoneum without a substantial loss of insufflation gas is desirable, in order to maintain the pneumoperitoneum.
  • a surgeon makes three to four small incisions, usually no larger than about twelve millimeters each, which are typically made with the surgical access devices themselves, typically using a separate inserter or obturator placed therein. Following insertion, the inserter is removed, and the trocar allows access for instruments to be inserted into the abdominal cavity. Typical trocars often provide means to insufflate the abdominal cavity, so that the surgeon has an open interior space in which to work.
  • the trocar must provide a means to maintain the pressure within the cavity by sealing between the trocar and the surgical instrument being used, while still allowing at least a minimum freedom of movement of the surgical instruments.
  • Such instruments can include, for example, scissors, grasping instruments, and occluding instruments, cauterizing units, cameras, light sources and other surgical instruments.
  • Sealing elements or mechanisms are typically provided on trocars to prevent the escape of insufflation gas. Sealing elements or mechanisms typically include a duckbill-type valve made of a relatively pliable material, to seal around an outer surface of surgical instruments passing through the trocar.
  • electrocautery and other techniques create smoke and other debris in the surgical cavity, reducing visibility by fogging the view from, and coating surfaces of endoscopes and the like.
  • harmonic scalpels e.g. harmonic scalpels
  • CONMED Corporation of Utica, N.Y., USA has developed surgical access devices that permit access to an insufflated surgical cavity without conventional mechanical seals, and has developed related systems for providing sufficient pressure and flow rates to such access devices, as described in whole or in part in U.S. Pat. No. 7,854,724.
  • the present disclosure relates to multimodal systems, and related devices and methods, capable of performing multiple surgical gas delivery functions, including insufflation to standard or specialized surgical access devices or other instruments, such as veress needles and the like, smoke evacuation through standard or specialized surgical access devices, and specialized functions, such as recirculation and filtration of insufflation fluids, such as with the above-mentioned surgical access devices described in U.S. Pat. No. 7,854,724, as well as those in U.S. Pat. Nos. 7,182,752, 7,285,112, 7,413,559 or 7,338,473, for example.
  • gas that is filtered for particulate and fluids can carry moisture as gaseous water vapor.
  • the water vapor can condense inside the device and potentially damage electrical components, rubber seals in valves and pumps, and corrode metal components.
  • the fluid can also potentially damage or alter sensor readings when condensing on various surfaces inside a device.
  • the presence of humidity can also facilitate the growth of bacteria and fungi which needs to be avoided in a multi-patient medical device. Removing humidity from the evacuation/return lumen feeding into the device can help prevent the growth of bacteria and fungi, as well as reducing the damage to electrical components, rubber seals, metal components, and sensors in the device.
  • a filter cartridge for surgical gas delivery systems includes a filter housing configured to be seated in a filter cartridge interface of a surgical gas delivery system, with a plurality of flow paths defined through the filter housing including at least one evacuation/return flow path and at least one insufflation/sensing flow path.
  • a humidity filter element is included in the evacuation/return flow path for removing humidity from an evacuation/return lumen of a tube set.
  • the humidity filter element can include a sintered polymer material configured to provide tortuous flow paths therethrough to condense humidity out of a flow through the humidity filter element.
  • Each of the first and second filter elements can include a pleated filter material.
  • a first filter element can be seated in a first end portion of the filter housing, and a second filter element can be seated in a second end portion of the filter housing opposite the first end portion.
  • An activated carbon filter element can optionally be seated in the filter housing between the humidity filter element and the second filter element.
  • the cover plate can include a fitting for connecting to a tri-lumen tube set for communication of gases between a tri-lumen tube set and the filter elements, and a tri-lumen tube set connected to the fitting. It is also contemplated that the cover plate can include a fitting for connecting to a bi-lumen tube set for communication of gases between a bi-lumen tube set and the filter elements, and a bi-lumen tube set connected to the fitting.
  • the humidity filter element can be seated in a return passage of the filter housing radially outboard of the first filter element.
  • the humidity filter element can have a cross-sectional shape that conforms to the return passage of the filter housing.
  • the cross-sectional shape of the humidity filter element can include an inner radiused portion and an outer radiused portion, wherein the inner and outer radiused portions are non-concentric.
  • the cross-sectional shape of the humidity filter element can include a circumferentially spaced apart set of radial ends.
  • the humidity filter element can be seated in the filter housing between the first and second filter elements.
  • a separator wall can be included within the filter housing between the humidity filter element and the second filter element.
  • the separator wall can include a gas aperture therethrough, wherein a fluid trap is defined between the first filter element and the separator wall, wherein the gas aperture is configured to allow passage of gas above a reservoir of fluid trapped in the fluid trap.
  • the filter housing can include at least one optical prism formed integral with the housing within the reservoir for sensing level of a liquid in the reservoir.
  • the humidity filter element and the separator wall can be keyed to one another for circumferential alignment.
  • the humidity filter element can define a notch along one side thereof for accommodating at least one optical prism formed integral with the housing within the reservoir for sensing level of a liquid in the reservoir.
  • a tube set assembly for surgical gas delivery systems includes a filter cartridge with a filter housing configured to be seated in a filter cartridge interface of a surgical gas delivery system, with a plurality of flow paths defined through the filter housing including at least one evacuation/return flow path and at least one insufflation/sensing flow path.
  • a tube set includes a first lumen in fluid communication with the evacuation/return flow path and a second lumen in fluid communication with the insufflation/sensing flow path.
  • An in-line humidity filter assembly with a humidity filter housing defines an inlet in fluid communication with a first portion of the first lumen for receiving gas from a patient and an outlet in fluid communication with a second portion of the first lumen for communication of humidity filtered gas from the in-line humidity filter assembly to the filter cartridge.
  • a humidity filter element is seated in the humidity filter housing for removing humidity from the first lumen of the tube set.
  • the tube set can be a bi-lumen tube set. It is also contemplated that the tube set can be a tri-lumen tube set, or can have any other suitable number of lumens.
  • the humidity filter element can include a sintered polymer material configured to provide tortuous flow paths therethrough to condense humidity out of a flow through the humidity filter element.
  • the humidity filter element can be in-line between the inlet and the outlet of the humidity filter housing.
  • a sponge element can be included within the humidity filter housing offset from being in-line between the inlet and outlet of the humidity filter housing for absorbing condensation from the humidity filter element.
  • the humidity filter element can be a planar layer, and wherein the sponge element can be a planar layer in parallel with the humidity filter element.
  • the humidity filter element can be cylindrical, and the sponge element can be an annular layer arranged around the humidity filter element.
  • the humidity filter housing can include a drain for removal of condensation from the humidity filter housing, wherein the humidity filter housing includes only the humidity seal element and is devoid of a separate sponge element.
  • FIG. 1 is a perspective view of a multimodal gas delivery device, showing the filter cartridge and the corresponding filter cartridge interface constructed in accordance with an exemplary embodiment of the subject invention
  • FIG. 2 is an exploded perspective view of a filter cartridge adapted and configured for interfacing with the gas delivery device of FIG. 1 , showing the filter cartridge components looking toward the openings in the fitting for the tri-lumen-tube set in the first cover plate;
  • FIG. 3 is an exploded perspective view of the filter cartridge of FIG. 1 , showing the filter cartridge components looking toward the apertures in the second cover plate that seal against the gas ports in the filter cartridge interface of FIG. 1 ;
  • FIG. 4 is a cross-sectional side elevation view of the filter cartridge of FIG. 1 , showing the filter elements assembled into the filter housing;
  • FIG. 5 is a schematic perspective view of a portion of the filter cartridge of FIG. 4 , showing the cross-sectional shape of the humidity filter element;
  • FIG. 6 is a perspective view of the humidity filter element of FIG. 5 ;
  • FIG. 7 is a partially cut-away exploded perspective view of another exemplary embodiment of a filter cartridge constructed in accordance with the present disclosure, showing a humidity filter element that seats between the pleated filter elements looking toward the openings in the fitting for the tri-lumen-tube set in the first cover plate;
  • FIG. 8 is a partially cut-away exploded perspective view of the filter cartridge of FIG. 7 , showing the filter cartridge components looking toward the apertures in the second cover plate that seal against the gas ports in the filter cartridge interface of FIG. 1 ;
  • FIG. 9 is a cross-sectional side elevation view of the filter cartridge of FIG. 7 , showing the filter elements assembled into the filter housing;
  • FIGS. 10 and 11 are perspective views from two opposed sides of the humidity filter element of FIG. 8 ;
  • FIG. 12 is a perspective view of an exemplary embodiment of a humidity filter assembly constructed in accordance with the present disclosure, showing the humidity filter assembly connected in-line with one lumen of a tri-lumen tube set connected to a filter cartridge for connecting to a filter cartridge interface as shown in FIG. 1 ;
  • FIG. 13 is a perspective view of the humidity filter assembly of FIG. 12 , showing the humidity filter assembly connected in-line with one lumen of a bi-lumen tube set connected to a filter cartridge for connecting to a filter cartridge interface as shown in FIG. 1 ;
  • FIG. 14 is a cross-sectional perspective view of the humidity filter assembly of FIG. 12 , showing the humidity filter element and the sponge element as planar layers;
  • FIG. 15 is a perspective view of an exemplary embodiment of a humidity filter assembly constructed in accordance with the present disclosure, showing the humidity filter assembly connected in-line with one lumen of a tri-lumen tube set connected to a filter cartridge for connecting to a filter cartridge interface as shown in FIG. 1 ;
  • FIG. 16 is a perspective view of the humidity filter assembly of FIG. 15 , showing the humidity filter assembly connected in-line with one lumen of a bi-lumen tube set connected to a filter cartridge for connecting to a filter cartridge interface as shown in FIG. 1 ;
  • FIG. 17 is a cross-sectional perspective view of the humidity filter assembly of FIG. 15 , showing the cylindrical humidity filter element and the sponge element as an annular layer arranged about the humidity filter element;
  • FIG. 18 is a perspective view of an exemplary embodiment of a humidity filter assembly constructed in accordance with the present disclosure, showing the humidity filter assembly connected in-line with one lumen of a tri-lumen tube set connected to a filter cartridge for connecting to a filter cartridge interface as shown in FIG. 1 ;
  • FIG. 19 is a perspective view of the humidity filter assembly of FIG. 18 , showing the humidity filter assembly connected in-line with one lumen of a bi-lumen tube set connected to a filter cartridge for connecting to a filter cartridge interface as shown in FIG. 1 ;
  • FIG. 20 is a cross-sectional perspective view of the humidity filter assembly of FIG. 18 , showing the humidity filter element and the drain without a sponge element.
  • FIG. 1 a partial view of an exemplary embodiment of a filter cartridge in accordance with the disclosure is shown in FIG. 1 and is designated generally by reference character 24 .
  • FIGS. 2-20 Other embodiments of filter cartridges in accordance with the disclosure, or aspects thereof, are provided in FIGS. 2-20 , as will be described.
  • the systems and methods described herein can be used for filtering humidity out of surgical gases such as smoke evacuation gas from a surgical cavity during smoke-producing surgical procedures.
  • FIG. 1 a surgical gas delivery system 10 for use during endoscopic surgical procedures.
  • the system 10 includes a device housing 12 with carrying handles 14 on each side of the housing.
  • the front face of the housing 12 has a capacitive or resistive touch screen 16 for presenting a graphical user interface (GUI) and a power switch 18 for turning the device on and off.
  • GUI graphical user interface
  • the front face of housing 12 further includes a filter cartridge interface 20 with a rotatable latch mechanism 22 configured to facilitate the secure engagement of a disposable filter cartridge 24 within the device housing 12 .
  • the front face of housing 12 includes a standard 6 mm insufflation connection 26 .
  • the rear face of the housing 12 includes a gas supply fitting for connection with a source of compressed gas, a standard USB interface for service purposes, and a standard power connection.
  • the filter cartridge interface 20 is designed to recognize which type of filter 24 has been inserted into the housing. For example, it may recognize the proper position or orientation of the filter cartridge. It can also recognize if the inserted filter is specifically designed for use in the first mode of operation (i.e., the gaseous seal mode) or a filter specifically designed for use in the second mode of operation (i.e., insufflation and smoke evacuation mode). Other aspects of surgical gas delivery systems are described in U.S. Pat. No. 9,067,030, which is incorporated by reference herein in its entirety. Filter cartridge and/or tube set recognition can be accomplished, for example, using RFID techniques.
  • the filter cartridge 24 has a filter housing 28 that includes a first cover plate 30 having a fitting 46 associated with a tri-lumen tube set 36 (as shown in FIG. 1 ).
  • the filter cartridge 24 is configured to be seated in the filter cartridge interface 20 of the surgical gas delivery system 10 of FIG. 1 .
  • the filter housing 28 is dimensioned and configured to support a pair of first and second pleated filter elements 38 a and 38 b , and it defines an interior reservoir or fluid trap 40 for collecting liquid that has been drawn into the system through the suction line of the tube set 36 during smoke evacuation, for example.
  • the first filter element 38 a is seated in a first end portion 26 of the filter housing 28 .
  • the second filter element 38 b is seated in a second end portion 42 of the filter housing 28 opposite the first end portion 26 .
  • An optional third filter element 44 can seated in the filter housing 28 between the first and second filter elements 38 a and 38 b , as shown in FIG. 4 .
  • There is a fourth filter element 32 within end cap 50 shown in FIG. 3 , that is a non-pleated filter for the sense/insufflation line described below.
  • the optional third filter element 44 includes an activated carbon material and is in the form of an activated carbon disc.
  • Each of the first and second filter elements 38 a and 38 b includes a pleated filter material.
  • the third filter element 44 is a separate filter element from the second and third filter elements 38 a and 38 b , but it is contemplated that it could be integrated together with the second filter element 38 b .
  • a mesh support can be sandwiched between a paper filter and a carbon filter together that can then be folded into pleats to form combined second filter element 38 b and third filter element 44 .
  • the first cover plate 30 is mounted to a first end of the filter housing 28 to secure the first filter element 38 a in the first end portion 26 of the filter housing 28 .
  • the first cover plate 30 includes a fitting 46 for connecting to the tri-lumen tube set 36 of FIG. 1 for communication of gases between a tri-lumen tube set 36 and the filter elements 38 a , 38 b , and 44 .
  • a second cover plate 50 is mounted to the opposite end of the filter housing 28 to secure the second filter element 38 b in the second end portion 42 of the filter housing.
  • the second cover plate 50 includes a proximal and a distal plate welded or otherwise joined together with the fourth filter element 32 sandwiched therebetween. Referring to FIG.
  • the second cover plate 50 defines three apertures 52 a , 52 b , and 52 c that are each configured to seal against three respective gas ports defined in the filter cartridge interface 20 of FIG. 1 .
  • Fitting 46 includes three corresponding openings 54 a , 54 b , and 54 c.
  • a first flow path is defined through filter cartridge 24 from opening 54 a , through to fluid trap 40 (as indicated with broken lines in FIG. 4 ) and on through the second and third filter elements 38 b and 44 and out through aperture 52 a for filtration of smoke evacuation gas from a patient, through one of lumens in the tri-lumen tube set 36 into the surgical gas delivery system 10 of FIG. 1 .
  • the second filter element 38 b is downstream of the third filter element 44 in this first flow path.
  • a second flow path is defined through the filter cartridge 24 , that is fluidly isolated within the filter cartridge 24 from the first flow path.
  • the second flow path brings gas from the surgical gas delivery system 10 , through aperture 52 b , through the first filter element 38 a , and out opening 54 b for maintaining a cavity pressure with gas through a second one of the lumens in the tri-lumen tube set 36 .
  • the first filter element 38 a is therefore in a separate flow path from the second and third filter elements 38 b and 44 .
  • This second flow path is in the pressure line, supplying pressure to jets to create a gas seal in a valve-less seal, e.g., for a surgical access device connected to the tri-lumen tube set 36 .
  • a third flow path is defined through the filter cartridge 24 that is fluidly isolated within the filter cartridge 24 from the other two flow paths.
  • This third flow path does not pass through any of the filter elements 38 a , 38 b , or 44 . Instead, the third flow path communicates pressure from opening 54 c through the filter cartridge 24 to aperture 52 c , bypassing the filter elements 38 a , 38 b , and 44 so the surgical gas delivery system 10 can monitor pressure, e.g., in a surgical cavity, through a third one of the lumens in the tri-lumen tube set 36 .
  • CO 2 insufflation gas can flow from aperture 52 c to opening 54 c to a surgical cavity.
  • This third flow path acts as the insufflation/sense line, and is the only one of the three flow paths that passes through the fourth filter element 32 .
  • a separator wall 56 is included within the filter housing 28 between the first filter element 38 a and the second filter element 38 b .
  • the separator wall 56 cooperates with a bulkhead 58 of filter housing 28 inboard of first filter element 38 a to define the fluid trap 40 therebetween for trapping fluids (shown schematically in FIG. 4 in the bottom of the fluid trap 40 ) from incoming gas evacuated from the surgical cavity.
  • the separator wall 56 includes a gas aperture 60 therethrough. The gas aperture 60 is configured to allow passage of gas above a reservoir of fluid trapped in the bottom of fluid trap 40 .
  • a plenum 62 is defined between the separator wall 56 and the third filter element 44 .
  • the gas aperture 60 is configured to pressurize the plenum 62 with gas for utilization of a larger cross-sectional area of the third filter element 44 than the cross-sectional area of the gas aperture 60 , i.e. the plenum 62 is pressurized for nearly full area usage of the activated carbon of the third filter element 44 . This allows flowing the smoke evacuation gas through the activated carbon filter element 44 within the filter cartridge 24 to filter at least one of smoke, particulate, and impurities from the smoke evacuation gas.
  • a peripheral rim 64 is defined around the separator wall 56 , wherein the third filter element 44 seats against the peripheral rim 64 to maintain spacing for the plenum 62 defined inside a volume defined between the separator wall 56 and the third filter element 44 and within the peripheral rim 64 .
  • a seal 66 is seated between the separator wall 56 and the third filter element 44 to force gas flow from the plenum 62 through the third filter element 44 .
  • a seal seat 68 is defined in the peripheral rim 64 with the seal 66 seated therein.
  • a bi-lumen tube set would be attached to the filter cartridge, e.g., with one lumen connected to opening 54 a and one lumen connected to opening 54 c , with one lumen responsible for sense/insufflation gas, and the other lumen removing surgical gas and smoke from the cavity.
  • This embodiment omits the third lumen of the tri-lumen tube set 36 .
  • a humidity filter element 100 is included in the evacuation/return flow path for removing humidity from an evacuation/return lumen of a tube set.
  • the humidity filter element 100 includes a sintered polymer material configured to provide tortuous flow paths therethrough to condense humidity out of a flow through the humidity filter element 100 .
  • the sintered polymer material provides a tortuous flow path, but the porosity gives low resistance pathways through the humidity filter element 100 .
  • the gas can pass freely through the humidity filter element 100 but the polymer grains of the filter material alter the direction of gas flowing therethrough, creating physical obstacles that knock water vapor out of the gas flow and cause the humidity to condense on the surfaces of the filter material and drip downward for collection, preventing the condensed liquid from entering the interior of the system 10 .
  • the humidity filter element 100 With the humidity filter element 100 in-line within the gas path, there is no need for a pneumatic seal around the humidity filter element 100 .
  • the humidity filter element 100 still functions to condense moisture even if some of the gas flow passes around the humidity filter element 100 .
  • the humidity filter element 100 is seated in a return passage of the filter housing 28 radially outboard of the first filter element 38 a .
  • the humidity filter element 100 has a cross-sectional shape that conforms to the return passage of the filter housing 28 .
  • the return passage through the filter housing 28 includes a filter seat 102 that has the same cross-sectional shape as the humidity filter element 100 .
  • the cross-sectional shape of the humidity filter element 100 includes an inner radiused portion 104 and an outer radiused portion 106 (labeled in FIG.
  • the cross-sectional shape of the humidity filter element 100 also includes a circumferentially spaced apart set of radial ends 108 and 110 .
  • the upstream and downstream surfaces 112 and 114 of the humidity filter element 100 are planar and parallel to one another.
  • FIG. 6 shows the humidity filter element 100 with the surface symbolically marked to indicate the surface (and internal) porosity.
  • FIGS. 7-8 another exemplary embodiment of a humidity filter element 200 is shown similar to humidity filter element 100 described above, but wherein the humidity filter element 200 is seated in the filter housing 28 between the first and second filter elements 38 a and 38 b .
  • the separator wall 56 is positioned within the filter housing 28 between the humidity filter element 200 and the second filter element 38 b .
  • the filter housing 28 includes a pair of optical prisms 42 a and 42 b , shown in FIGS. 7-8 , formed integral with the housing 28 within the reservoir of the fluid trap 40 for sensing level of a liquid in the reservoir.
  • Optical prisms for sensing level of a liquid in a reservoir of a filter cartridge are described in U.S. Pat.
  • the humidity filter element 200 and the separator wall 56 are keyed to one another for circumferential alignment, wherein the key 156 of the separator wall 56 is keyed to the depression 256 (labeled in FIGS. 10-11 ) in the humidity filter element 200 .
  • the humidity filter element 200 defines a lunate shaped notch 202 , also identified in FIGS. 10-11 , along one side thereof for accommodating the optical prisms 42 a and 42 b . Even with the humidity filter element 200 taking up most of the fluid trap 40 if liquids build up in the bottom of the fluid trap 40 , as oriented in FIG.
  • the notch 202 provides room for the optical prisms 42 a and 42 b to function for detecting the liquids.
  • the humidity filter element 100 can be used with a tri-lumen or bi-lumen tube set
  • the humidity filter element 200 can be used with either a tri-lumen or bi-lumen tube set. Additional details regarding tri-lumen and bi-lumen tube sets are found un U.S. Pat. No. 9,526,886 and U.S. Patent Application Publication No. 2017/0050011, each of which is incorporated by reference herein in its entirety.
  • a tube set assembly 37 for surgical gas delivery systems includes a filter cartridge 24 as described above but not necessarily including a humidity filter element 100 or 200 therein.
  • the tube set 336 includes a first lumen 337 in fluid communication with the evacuation/return flow path of the filter cartridge 24 and a second lumen 339 in fluid communication with the insufflation and sensing flow path of the filter cartridge 24 .
  • the third lumen 341 can be in fluid communication with the third flow path through the filter cartridge 24 for providing pressurized gas supply to and from a pneumatic seal in a valve-less trocar, for example.
  • An in-line humidity filter assembly 324 with a humidity filter housing 328 (labeled in FIG.
  • the humidity filter assembly 324 can similarly be incorporated in-line with the return line 337 where tube set 336 is a bi-lumen tube set that omits the third lumen 341 and uses the second lumen 339 for insufflation and sensing.
  • the filter cartridge 24 can be modified to block one port as described above.
  • the humidity filter element 300 e.g., of the same sintered polymer material described above with respect to humidity filter elements 100 and 200 , is seated in the humidity filter housing 328 for removing humidity from the first lumen 337 of the tube set 336 .
  • the humidity filter element 300 is in-line between the inlet 354 and the outlet 352 of the humidity filter housing 328 so gas passing through the humidity filter housing 328 must pass through the humidity filter element 300 .
  • a sponge element 329 is included within the humidity filter housing 328 offset from being in-line between the inlet 354 and outlet 352 of the humidity filter housing 328 for absorbing condensation from the humidity filter element, e.g., as gravity pulls liquid water from the humidity filter element 300 downward into the sponge element 329 if the humidity filter housing 328 is oriented as shown in FIG. 14 .
  • the humidity filter element 300 and the sponge element 329 form planar layers in parallel with one another.
  • FIGS. 15-16 another embodiment of a humidity filter assembly 424 can be used in-line with lumen 337 in the tri-lumen configuration, shown in FIG. 15 , or bi-lumen configuration, shown in FIG. 16 , of the tube set 336 as described above with respect to the humidity filter assembly 324 .
  • the humidity filter element 400 is cylindrical, and is of the same material described above with respect to humidity filter elements 100 , 200 , and 300 .
  • the sponge element 429 is an annular layer arranged around the humidity filter element 400 , as indicated with the hidden lines in FIG. 17 .
  • the humidity filter element 400 is in-line between the inlet 454 and the outlet 452 of the humidity filter housing 428 so gas passing through the humidity filter housing 428 must pass through the humidity filter element 400 .
  • the sponge element 429 is included within the humidity filter housing 428 offset from being in-line between the inlet 454 and outlet 452 of the humidity filter housing 428 for absorbing condensation from the humidity filter element.
  • the humidity filter housing 428 does not need to be oriented any particular way relative to the direction of the force of gravity, since the sponge element 429 can absorb liquid from the humidity filter element 400 from essentially any direction.
  • a humidity filter assembly 524 can be used in-line with lumen 337 in the tri-lumen configuration, shown in FIG. 18 , or bi-lumen configuration, shown in FIG. 19 , of the tube set 336 as described above with respect to humidity filter assembly 324 .
  • the humidity filter housing 528 includes a drain 555 which can in turn be connected to a drain tube 556 connected to a drainage or waste collection system 557 for removal of condensation from the humidity filter housing 528 .
  • the humidity filter housing 528 includes only the humidity seal element 500 and is devoid of a separate sponge element.

Abstract

A filter cartridge for surgical gas delivery systems includes a filter housing configured to be seated in a filter cartridge interface of a surgical gas delivery system, with a plurality of flow paths defined through the filter housing including at least one evacuation/return flow path and at least one insufflation/sensing flow path. A humidity filter element is included in the evacuation/return flow path for removing humidity from an evacuation/return lumen of a tube set. The humidity filter element can include a sintered polymer material configured to provide tortuous flow paths therethrough to condense humidity out of a flow through the humidity filter element.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 16/017,125, filed Jun. 25, 2018, the entire content of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The subject invention is directed to endoscopic surgery, and more particularly, to filter systems and methods for a multimodal insufflation system used during endoscopic surgical procedures.
  • 2. Description of Related Art
  • Laparoscopic or “minimally invasive” surgical techniques are becoming commonplace in the performance of procedures such as cholecystectomies, appendectomies, hernia repair and nephrectomies. Benefits of such procedures include reduced trauma to the patient, reduced opportunity for infection, and decreased recovery time. Such procedures within the abdominal (peritoneal) cavity are typically performed through a device known as a trocar or cannula, which facilitates the introduction of laparoscopic instruments into the abdominal cavity of a patient.
  • Additionally, such procedures commonly involve filling or “insufflating” the abdominal (peritoneal) cavity with a pressurized fluid, such as carbon dioxide, to create what is referred to as a pneumoperitoneum. The insufflation can be carried out by a surgical access device (sometimes referred to as a “cannula” or “trocar”) equipped to deliver insufflation fluid, or by a separate insufflation device, such as an insufflation (veress) needle. Introduction of surgical instruments into the pneumoperitoneum without a substantial loss of insufflation gas is desirable, in order to maintain the pneumoperitoneum.
  • During typical laparoscopic procedures, a surgeon makes three to four small incisions, usually no larger than about twelve millimeters each, which are typically made with the surgical access devices themselves, typically using a separate inserter or obturator placed therein. Following insertion, the inserter is removed, and the trocar allows access for instruments to be inserted into the abdominal cavity. Typical trocars often provide means to insufflate the abdominal cavity, so that the surgeon has an open interior space in which to work.
  • The trocar must provide a means to maintain the pressure within the cavity by sealing between the trocar and the surgical instrument being used, while still allowing at least a minimum freedom of movement of the surgical instruments. Such instruments can include, for example, scissors, grasping instruments, and occluding instruments, cauterizing units, cameras, light sources and other surgical instruments. Sealing elements or mechanisms are typically provided on trocars to prevent the escape of insufflation gas. Sealing elements or mechanisms typically include a duckbill-type valve made of a relatively pliable material, to seal around an outer surface of surgical instruments passing through the trocar.
  • Further, in laparoscopic surgery, electrocautery and other techniques (e.g. harmonic scalpels) create smoke and other debris in the surgical cavity, reducing visibility by fogging the view from, and coating surfaces of endoscopes and the like. A variety of surgical insufflation systems and smoke evacuation systems are known in the art.
  • Additionally, CONMED Corporation of Utica, N.Y., USA has developed surgical access devices that permit access to an insufflated surgical cavity without conventional mechanical seals, and has developed related systems for providing sufficient pressure and flow rates to such access devices, as described in whole or in part in U.S. Pat. No. 7,854,724.
  • The present disclosure relates to multimodal systems, and related devices and methods, capable of performing multiple surgical gas delivery functions, including insufflation to standard or specialized surgical access devices or other instruments, such as veress needles and the like, smoke evacuation through standard or specialized surgical access devices, and specialized functions, such as recirculation and filtration of insufflation fluids, such as with the above-mentioned surgical access devices described in U.S. Pat. No. 7,854,724, as well as those in U.S. Pat. Nos. 7,182,752, 7,285,112, 7,413,559 or 7,338,473, for example.
  • Use of a single multimodal system such as those described herein reduces costs by requiring purchase of only one system while achieving multiple functions, and also thereby reduces the amount of equipment needed in an operating room, thus reducing clutter and allowing space for other necessary equipment.
  • While the preceding discussion makes particular mention of laparoscopy and abdominal insufflation, those skilled in the art will readily appreciate that the issue of managing fluid and humidity is generally relevant for insufflation of any suitable surgical cavity, including colorectal and thoracic insufflation.
  • In devices like smoke evacuation devices that recirculate or remove gas from a patient cavity, even gas that is filtered for particulate and fluids can carry moisture as gaseous water vapor. The water vapor can condense inside the device and potentially damage electrical components, rubber seals in valves and pumps, and corrode metal components. The fluid can also potentially damage or alter sensor readings when condensing on various surfaces inside a device. The presence of humidity can also facilitate the growth of bacteria and fungi which needs to be avoided in a multi-patient medical device. Removing humidity from the evacuation/return lumen feeding into the device can help prevent the growth of bacteria and fungi, as well as reducing the damage to electrical components, rubber seals, metal components, and sensors in the device.
  • The conventional techniques have been considered satisfactory for their intended purpose. However, there is an ever present need for improved filtration in surgical access devices. This disclosure provides a solution for this problem.
  • SUMMARY OF THE INVENTION
  • A filter cartridge for surgical gas delivery systems includes a filter housing configured to be seated in a filter cartridge interface of a surgical gas delivery system, with a plurality of flow paths defined through the filter housing including at least one evacuation/return flow path and at least one insufflation/sensing flow path. A humidity filter element is included in the evacuation/return flow path for removing humidity from an evacuation/return lumen of a tube set.
  • The humidity filter element can include a sintered polymer material configured to provide tortuous flow paths therethrough to condense humidity out of a flow through the humidity filter element. Each of the first and second filter elements can include a pleated filter material. A first filter element can be seated in a first end portion of the filter housing, and a second filter element can be seated in a second end portion of the filter housing opposite the first end portion. An activated carbon filter element can optionally be seated in the filter housing between the humidity filter element and the second filter element. The cover plate can include a fitting for connecting to a tri-lumen tube set for communication of gases between a tri-lumen tube set and the filter elements, and a tri-lumen tube set connected to the fitting. It is also contemplated that the cover plate can include a fitting for connecting to a bi-lumen tube set for communication of gases between a bi-lumen tube set and the filter elements, and a bi-lumen tube set connected to the fitting.
  • The humidity filter element can be seated in a return passage of the filter housing radially outboard of the first filter element. The humidity filter element can have a cross-sectional shape that conforms to the return passage of the filter housing. The cross-sectional shape of the humidity filter element can include an inner radiused portion and an outer radiused portion, wherein the inner and outer radiused portions are non-concentric. The cross-sectional shape of the humidity filter element can include a circumferentially spaced apart set of radial ends.
  • It is also contemplated that the humidity filter element can be seated in the filter housing between the first and second filter elements. A separator wall can be included within the filter housing between the humidity filter element and the second filter element. The separator wall can include a gas aperture therethrough, wherein a fluid trap is defined between the first filter element and the separator wall, wherein the gas aperture is configured to allow passage of gas above a reservoir of fluid trapped in the fluid trap. The filter housing can include at least one optical prism formed integral with the housing within the reservoir for sensing level of a liquid in the reservoir. The humidity filter element and the separator wall can be keyed to one another for circumferential alignment. The humidity filter element can define a notch along one side thereof for accommodating at least one optical prism formed integral with the housing within the reservoir for sensing level of a liquid in the reservoir.
  • A tube set assembly for surgical gas delivery systems includes a filter cartridge with a filter housing configured to be seated in a filter cartridge interface of a surgical gas delivery system, with a plurality of flow paths defined through the filter housing including at least one evacuation/return flow path and at least one insufflation/sensing flow path. A tube set includes a first lumen in fluid communication with the evacuation/return flow path and a second lumen in fluid communication with the insufflation/sensing flow path. An in-line humidity filter assembly with a humidity filter housing defines an inlet in fluid communication with a first portion of the first lumen for receiving gas from a patient and an outlet in fluid communication with a second portion of the first lumen for communication of humidity filtered gas from the in-line humidity filter assembly to the filter cartridge. A humidity filter element is seated in the humidity filter housing for removing humidity from the first lumen of the tube set.
  • The tube set can be a bi-lumen tube set. It is also contemplated that the tube set can be a tri-lumen tube set, or can have any other suitable number of lumens.
  • The humidity filter element can include a sintered polymer material configured to provide tortuous flow paths therethrough to condense humidity out of a flow through the humidity filter element. The humidity filter element can be in-line between the inlet and the outlet of the humidity filter housing. A sponge element can be included within the humidity filter housing offset from being in-line between the inlet and outlet of the humidity filter housing for absorbing condensation from the humidity filter element.
  • The humidity filter element can be a planar layer, and wherein the sponge element can be a planar layer in parallel with the humidity filter element. The humidity filter element can be cylindrical, and the sponge element can be an annular layer arranged around the humidity filter element. The humidity filter housing can include a drain for removal of condensation from the humidity filter housing, wherein the humidity filter housing includes only the humidity seal element and is devoid of a separate sponge element.
  • These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
  • FIG. 1 is a perspective view of a multimodal gas delivery device, showing the filter cartridge and the corresponding filter cartridge interface constructed in accordance with an exemplary embodiment of the subject invention;
  • FIG. 2 is an exploded perspective view of a filter cartridge adapted and configured for interfacing with the gas delivery device of FIG. 1, showing the filter cartridge components looking toward the openings in the fitting for the tri-lumen-tube set in the first cover plate;
  • FIG. 3 is an exploded perspective view of the filter cartridge of FIG. 1, showing the filter cartridge components looking toward the apertures in the second cover plate that seal against the gas ports in the filter cartridge interface of FIG. 1;
  • FIG. 4 is a cross-sectional side elevation view of the filter cartridge of FIG. 1, showing the filter elements assembled into the filter housing;
  • FIG. 5 is a schematic perspective view of a portion of the filter cartridge of FIG. 4, showing the cross-sectional shape of the humidity filter element;
  • FIG. 6 is a perspective view of the humidity filter element of FIG. 5;
  • FIG. 7 is a partially cut-away exploded perspective view of another exemplary embodiment of a filter cartridge constructed in accordance with the present disclosure, showing a humidity filter element that seats between the pleated filter elements looking toward the openings in the fitting for the tri-lumen-tube set in the first cover plate;
  • FIG. 8 is a partially cut-away exploded perspective view of the filter cartridge of FIG. 7, showing the filter cartridge components looking toward the apertures in the second cover plate that seal against the gas ports in the filter cartridge interface of FIG. 1;
  • FIG. 9 is a cross-sectional side elevation view of the filter cartridge of FIG. 7, showing the filter elements assembled into the filter housing;
  • FIGS. 10 and 11 are perspective views from two opposed sides of the humidity filter element of FIG. 8;
  • FIG. 12 is a perspective view of an exemplary embodiment of a humidity filter assembly constructed in accordance with the present disclosure, showing the humidity filter assembly connected in-line with one lumen of a tri-lumen tube set connected to a filter cartridge for connecting to a filter cartridge interface as shown in FIG. 1;
  • FIG. 13 is a perspective view of the humidity filter assembly of FIG. 12, showing the humidity filter assembly connected in-line with one lumen of a bi-lumen tube set connected to a filter cartridge for connecting to a filter cartridge interface as shown in FIG. 1;
  • FIG. 14 is a cross-sectional perspective view of the humidity filter assembly of FIG. 12, showing the humidity filter element and the sponge element as planar layers;
  • FIG. 15 is a perspective view of an exemplary embodiment of a humidity filter assembly constructed in accordance with the present disclosure, showing the humidity filter assembly connected in-line with one lumen of a tri-lumen tube set connected to a filter cartridge for connecting to a filter cartridge interface as shown in FIG. 1;
  • FIG. 16 is a perspective view of the humidity filter assembly of FIG. 15, showing the humidity filter assembly connected in-line with one lumen of a bi-lumen tube set connected to a filter cartridge for connecting to a filter cartridge interface as shown in FIG. 1;
  • FIG. 17 is a cross-sectional perspective view of the humidity filter assembly of FIG. 15, showing the cylindrical humidity filter element and the sponge element as an annular layer arranged about the humidity filter element;
  • FIG. 18 is a perspective view of an exemplary embodiment of a humidity filter assembly constructed in accordance with the present disclosure, showing the humidity filter assembly connected in-line with one lumen of a tri-lumen tube set connected to a filter cartridge for connecting to a filter cartridge interface as shown in FIG. 1;
  • FIG. 19 is a perspective view of the humidity filter assembly of FIG. 18, showing the humidity filter assembly connected in-line with one lumen of a bi-lumen tube set connected to a filter cartridge for connecting to a filter cartridge interface as shown in FIG. 1; and
  • FIG. 20 is a cross-sectional perspective view of the humidity filter assembly of FIG. 18, showing the humidity filter element and the drain without a sponge element.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a partial view of an exemplary embodiment of a filter cartridge in accordance with the disclosure is shown in FIG. 1 and is designated generally by reference character 24. Other embodiments of filter cartridges in accordance with the disclosure, or aspects thereof, are provided in FIGS. 2-20, as will be described. The systems and methods described herein can be used for filtering humidity out of surgical gases such as smoke evacuation gas from a surgical cavity during smoke-producing surgical procedures.
  • There is illustrated in FIG. 1 a surgical gas delivery system 10 for use during endoscopic surgical procedures. The system 10 includes a device housing 12 with carrying handles 14 on each side of the housing. The front face of the housing 12 has a capacitive or resistive touch screen 16 for presenting a graphical user interface (GUI) and a power switch 18 for turning the device on and off.
  • The front face of housing 12 further includes a filter cartridge interface 20 with a rotatable latch mechanism 22 configured to facilitate the secure engagement of a disposable filter cartridge 24 within the device housing 12. In addition, the front face of housing 12 includes a standard 6 mm insufflation connection 26. While not shown, the rear face of the housing 12 includes a gas supply fitting for connection with a source of compressed gas, a standard USB interface for service purposes, and a standard power connection.
  • The filter cartridge interface 20 is designed to recognize which type of filter 24 has been inserted into the housing. For example, it may recognize the proper position or orientation of the filter cartridge. It can also recognize if the inserted filter is specifically designed for use in the first mode of operation (i.e., the gaseous seal mode) or a filter specifically designed for use in the second mode of operation (i.e., insufflation and smoke evacuation mode). Other aspects of surgical gas delivery systems are described in U.S. Pat. No. 9,067,030, which is incorporated by reference herein in its entirety. Filter cartridge and/or tube set recognition can be accomplished, for example, using RFID techniques.
  • Referring to FIG. 2, the filter cartridge 24 has a filter housing 28 that includes a first cover plate 30 having a fitting 46 associated with a tri-lumen tube set 36 (as shown in FIG. 1). The filter cartridge 24 is configured to be seated in the filter cartridge interface 20 of the surgical gas delivery system 10 of FIG. 1. The filter housing 28 is dimensioned and configured to support a pair of first and second pleated filter elements 38 a and 38 b, and it defines an interior reservoir or fluid trap 40 for collecting liquid that has been drawn into the system through the suction line of the tube set 36 during smoke evacuation, for example.
  • The first filter element 38 a is seated in a first end portion 26 of the filter housing 28. As shown in FIG. 3, the second filter element 38 b is seated in a second end portion 42 of the filter housing 28 opposite the first end portion 26. An optional third filter element 44 can seated in the filter housing 28 between the first and second filter elements 38 a and 38 b, as shown in FIG. 4. There is a fourth filter element 32 within end cap 50, shown in FIG. 3, that is a non-pleated filter for the sense/insufflation line described below. The optional third filter element 44 includes an activated carbon material and is in the form of an activated carbon disc. Each of the first and second filter elements 38 a and 38 b includes a pleated filter material. The third filter element 44 is a separate filter element from the second and third filter elements 38 a and 38 b, but it is contemplated that it could be integrated together with the second filter element 38 b. For example, a mesh support can be sandwiched between a paper filter and a carbon filter together that can then be folded into pleats to form combined second filter element 38 b and third filter element 44.
  • The first cover plate 30 is mounted to a first end of the filter housing 28 to secure the first filter element 38 a in the first end portion 26 of the filter housing 28. The first cover plate 30 includes a fitting 46 for connecting to the tri-lumen tube set 36 of FIG. 1 for communication of gases between a tri-lumen tube set 36 and the filter elements 38 a, 38 b, and 44. A second cover plate 50 is mounted to the opposite end of the filter housing 28 to secure the second filter element 38 b in the second end portion 42 of the filter housing. The second cover plate 50 includes a proximal and a distal plate welded or otherwise joined together with the fourth filter element 32 sandwiched therebetween. Referring to FIG. 3, the second cover plate 50 defines three apertures 52 a, 52 b, and 52 c that are each configured to seal against three respective gas ports defined in the filter cartridge interface 20 of FIG. 1. Fitting 46 includes three corresponding openings 54 a, 54 b, and 54 c.
  • A first flow path is defined through filter cartridge 24 from opening 54 a, through to fluid trap 40 (as indicated with broken lines in FIG. 4) and on through the second and third filter elements 38 b and 44 and out through aperture 52 a for filtration of smoke evacuation gas from a patient, through one of lumens in the tri-lumen tube set 36 into the surgical gas delivery system 10 of FIG. 1. The second filter element 38 b is downstream of the third filter element 44 in this first flow path.
  • A second flow path is defined through the filter cartridge 24, that is fluidly isolated within the filter cartridge 24 from the first flow path. The second flow path brings gas from the surgical gas delivery system 10, through aperture 52 b, through the first filter element 38 a, and out opening 54 b for maintaining a cavity pressure with gas through a second one of the lumens in the tri-lumen tube set 36. The first filter element 38 a is therefore in a separate flow path from the second and third filter elements 38 b and 44. This second flow path is in the pressure line, supplying pressure to jets to create a gas seal in a valve-less seal, e.g., for a surgical access device connected to the tri-lumen tube set 36.
  • A third flow path is defined through the filter cartridge 24 that is fluidly isolated within the filter cartridge 24 from the other two flow paths. This third flow path does not pass through any of the filter elements 38 a, 38 b, or 44. Instead, the third flow path communicates pressure from opening 54 c through the filter cartridge 24 to aperture 52 c, bypassing the filter elements 38 a, 38 b, and 44 so the surgical gas delivery system 10 can monitor pressure, e.g., in a surgical cavity, through a third one of the lumens in the tri-lumen tube set 36. CO2 insufflation gas can flow from aperture 52 c to opening 54 c to a surgical cavity. This third flow path acts as the insufflation/sense line, and is the only one of the three flow paths that passes through the fourth filter element 32.
  • With reference now to FIG. 4, a separator wall 56 is included within the filter housing 28 between the first filter element 38 a and the second filter element 38 b. The separator wall 56 cooperates with a bulkhead 58 of filter housing 28 inboard of first filter element 38 a to define the fluid trap 40 therebetween for trapping fluids (shown schematically in FIG. 4 in the bottom of the fluid trap 40) from incoming gas evacuated from the surgical cavity. The separator wall 56 includes a gas aperture 60 therethrough. The gas aperture 60 is configured to allow passage of gas above a reservoir of fluid trapped in the bottom of fluid trap 40.
  • A plenum 62 is defined between the separator wall 56 and the third filter element 44. The gas aperture 60 is configured to pressurize the plenum 62 with gas for utilization of a larger cross-sectional area of the third filter element 44 than the cross-sectional area of the gas aperture 60, i.e. the plenum 62 is pressurized for nearly full area usage of the activated carbon of the third filter element 44. This allows flowing the smoke evacuation gas through the activated carbon filter element 44 within the filter cartridge 24 to filter at least one of smoke, particulate, and impurities from the smoke evacuation gas.
  • A peripheral rim 64 is defined around the separator wall 56, wherein the third filter element 44 seats against the peripheral rim 64 to maintain spacing for the plenum 62 defined inside a volume defined between the separator wall 56 and the third filter element 44 and within the peripheral rim 64. A seal 66 is seated between the separator wall 56 and the third filter element 44 to force gas flow from the plenum 62 through the third filter element 44. A seal seat 68 is defined in the peripheral rim 64 with the seal 66 seated therein.
  • Another embodiment of a filter with tube set in accordance with this disclosure includes an adapter that plugs the pressure line, e.g., by plugging opening 54 b, which is responsible for creating the gas seal described above. In this embodiment, a bi-lumen tube set would be attached to the filter cartridge, e.g., with one lumen connected to opening 54 a and one lumen connected to opening 54 c, with one lumen responsible for sense/insufflation gas, and the other lumen removing surgical gas and smoke from the cavity. This embodiment omits the third lumen of the tri-lumen tube set 36.
  • With reference now to FIG. 5, a humidity filter element 100 is included in the evacuation/return flow path for removing humidity from an evacuation/return lumen of a tube set. The humidity filter element 100 includes a sintered polymer material configured to provide tortuous flow paths therethrough to condense humidity out of a flow through the humidity filter element 100. The sintered polymer material provides a tortuous flow path, but the porosity gives low resistance pathways through the humidity filter element 100. The gas can pass freely through the humidity filter element 100 but the polymer grains of the filter material alter the direction of gas flowing therethrough, creating physical obstacles that knock water vapor out of the gas flow and cause the humidity to condense on the surfaces of the filter material and drip downward for collection, preventing the condensed liquid from entering the interior of the system 10. With the humidity filter element 100 in-line within the gas path, there is no need for a pneumatic seal around the humidity filter element 100. The humidity filter element 100 still functions to condense moisture even if some of the gas flow passes around the humidity filter element 100.
  • As indicated in FIGS. 2-4 and shown in cross-section in FIG. 4, the humidity filter element 100 is seated in a return passage of the filter housing 28 radially outboard of the first filter element 38 a. The humidity filter element 100 has a cross-sectional shape that conforms to the return passage of the filter housing 28. Specifically, the return passage through the filter housing 28 includes a filter seat 102 that has the same cross-sectional shape as the humidity filter element 100. The cross-sectional shape of the humidity filter element 100 includes an inner radiused portion 104 and an outer radiused portion 106 (labeled in FIG. 5), wherein the inner and outer radiused portions 104, 106 are non-concentric, i.e., the distance between the inner and outer radiused portions 104 and 106 varies rather than being constant. The cross-sectional shape of the humidity filter element 100 also includes a circumferentially spaced apart set of radial ends 108 and 110. The upstream and downstream surfaces 112 and 114 of the humidity filter element 100 are planar and parallel to one another. FIG. 6 shows the humidity filter element 100 with the surface symbolically marked to indicate the surface (and internal) porosity.
  • With reference now to FIGS. 7-8, another exemplary embodiment of a humidity filter element 200 is shown similar to humidity filter element 100 described above, but wherein the humidity filter element 200 is seated in the filter housing 28 between the first and second filter elements 38 a and 38 b. As shown in FIG. 9, the separator wall 56 is positioned within the filter housing 28 between the humidity filter element 200 and the second filter element 38 b. The filter housing 28 includes a pair of optical prisms 42 a and 42 b, shown in FIGS. 7-8, formed integral with the housing 28 within the reservoir of the fluid trap 40 for sensing level of a liquid in the reservoir. Optical prisms for sensing level of a liquid in a reservoir of a filter cartridge are described in U.S. Pat. No. 9,950,127 which is incorporated by reference herein in its entirety. The humidity filter element 200 and the separator wall 56 are keyed to one another for circumferential alignment, wherein the key 156 of the separator wall 56 is keyed to the depression 256 (labeled in FIGS. 10-11) in the humidity filter element 200. The humidity filter element 200 defines a lunate shaped notch 202, also identified in FIGS. 10-11, along one side thereof for accommodating the optical prisms 42 a and 42 b. Even with the humidity filter element 200 taking up most of the fluid trap 40 if liquids build up in the bottom of the fluid trap 40, as oriented in FIG. 9, the notch 202 provides room for the optical prisms 42 a and 42 b to function for detecting the liquids. Just as the humidity filter element 100 can be used with a tri-lumen or bi-lumen tube set, so the humidity filter element 200 can be used with either a tri-lumen or bi-lumen tube set. Additional details regarding tri-lumen and bi-lumen tube sets are found un U.S. Pat. No. 9,526,886 and U.S. Patent Application Publication No. 2017/0050011, each of which is incorporated by reference herein in its entirety.
  • With reference now to FIG. 12, a tube set assembly 37 for surgical gas delivery systems includes a filter cartridge 24 as described above but not necessarily including a humidity filter element 100 or 200 therein. The tube set 336 includes a first lumen 337 in fluid communication with the evacuation/return flow path of the filter cartridge 24 and a second lumen 339 in fluid communication with the insufflation and sensing flow path of the filter cartridge 24. The third lumen 341 can be in fluid communication with the third flow path through the filter cartridge 24 for providing pressurized gas supply to and from a pneumatic seal in a valve-less trocar, for example. An in-line humidity filter assembly 324 with a humidity filter housing 328 (labeled in FIG. 14) defines an inlet 354 in fluid communication with a first portion of the first lumen 337 for receiving gas from a patient and an outlet 352 in fluid communication with a second portion of the first lumen 337 for communication of humidity filtered gas from the in-line humidity filter assembly 324 to the filter cartridge. As shown in FIG. 12, the humidity filter assembly 324 can similarly be incorporated in-line with the return line 337 where tube set 336 is a bi-lumen tube set that omits the third lumen 341 and uses the second lumen 339 for insufflation and sensing. In this case, the filter cartridge 24 can be modified to block one port as described above.
  • As shown in FIG. 14, the humidity filter element 300, e.g., of the same sintered polymer material described above with respect to humidity filter elements 100 and 200, is seated in the humidity filter housing 328 for removing humidity from the first lumen 337 of the tube set 336. The humidity filter element 300 is in-line between the inlet 354 and the outlet 352 of the humidity filter housing 328 so gas passing through the humidity filter housing 328 must pass through the humidity filter element 300. A sponge element 329 is included within the humidity filter housing 328 offset from being in-line between the inlet 354 and outlet 352 of the humidity filter housing 328 for absorbing condensation from the humidity filter element, e.g., as gravity pulls liquid water from the humidity filter element 300 downward into the sponge element 329 if the humidity filter housing 328 is oriented as shown in FIG. 14. The humidity filter element 300 and the sponge element 329 form planar layers in parallel with one another.
  • With reference now to FIGS. 15-16, another embodiment of a humidity filter assembly 424 can be used in-line with lumen 337 in the tri-lumen configuration, shown in FIG. 15, or bi-lumen configuration, shown in FIG. 16, of the tube set 336 as described above with respect to the humidity filter assembly 324. The humidity filter element 400 is cylindrical, and is of the same material described above with respect to humidity filter elements 100, 200, and 300. The sponge element 429 is an annular layer arranged around the humidity filter element 400, as indicated with the hidden lines in FIG. 17. The humidity filter element 400 is in-line between the inlet 454 and the outlet 452 of the humidity filter housing 428 so gas passing through the humidity filter housing 428 must pass through the humidity filter element 400. The sponge element 429 is included within the humidity filter housing 428 offset from being in-line between the inlet 454 and outlet 452 of the humidity filter housing 428 for absorbing condensation from the humidity filter element. With this geometry, the humidity filter housing 428 does not need to be oriented any particular way relative to the direction of the force of gravity, since the sponge element 429 can absorb liquid from the humidity filter element 400 from essentially any direction.
  • With reference now to FIGS. 18-19, another embodiment of a humidity filter assembly 524 can be used in-line with lumen 337 in the tri-lumen configuration, shown in FIG. 18, or bi-lumen configuration, shown in FIG. 19, of the tube set 336 as described above with respect to humidity filter assembly 324. The humidity filter housing 528 includes a drain 555 which can in turn be connected to a drain tube 556 connected to a drainage or waste collection system 557 for removal of condensation from the humidity filter housing 528. As shown in FIG. 20, the humidity filter housing 528 includes only the humidity seal element 500 and is devoid of a separate sponge element.
  • The methods and systems of the present disclosure, as described above and shown in the drawings, provide for filtration of surgical gases with superior properties including improved removal of smoke, particulate, and impurities. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure.

Claims (1)

What is claimed is:
1. A filtered tube set comprising:
a) a filter cartridge having a cylindrical housing and defining a filtered inlet flow path and a filtered outlet flow path, wherein the filtered inlet flow path includes a first pleated filter element and the filtered outlet path includes a second pleated filter element;
b) a first lumen extending from a front end of the filter cartridge and communicating with the filtered outlet flow path, wherein the first lumen has a first connector at a distal end thereof for connecting to a first surgical access device;
c) a second lumen extending from the front end of the filter cartridge and communicating with the filtered inlet flow path;
d) an in-line humidity filter assembly having a cylindrical housing containing a humidity filter element and including an inlet fitting and an outlet fitting, wherein the outlet fitting communicates with a distal end of the second lumen; and
e) a third lumen extending from the inlet fitting and having a second connector at a distal end thereof for connecting to a second surgical access device.
US17/397,912 2018-06-25 2021-08-09 Filter cartridge assemblies for managing fluid and humidity in endoscopic surgery Pending US20210361887A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/397,912 US20210361887A1 (en) 2018-06-25 2021-08-09 Filter cartridge assemblies for managing fluid and humidity in endoscopic surgery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/017,125 US11167096B2 (en) 2018-06-25 2018-06-25 Filter cartridge assemblies for managing fluid and humidity in endoscopic surgery
US17/397,912 US20210361887A1 (en) 2018-06-25 2021-08-09 Filter cartridge assemblies for managing fluid and humidity in endoscopic surgery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/017,125 Continuation US11167096B2 (en) 2018-06-25 2018-06-25 Filter cartridge assemblies for managing fluid and humidity in endoscopic surgery

Publications (1)

Publication Number Publication Date
US20210361887A1 true US20210361887A1 (en) 2021-11-25

Family

ID=68980443

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/017,125 Active 2039-05-14 US11167096B2 (en) 2018-06-25 2018-06-25 Filter cartridge assemblies for managing fluid and humidity in endoscopic surgery
US17/397,912 Pending US20210361887A1 (en) 2018-06-25 2021-08-09 Filter cartridge assemblies for managing fluid and humidity in endoscopic surgery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/017,125 Active 2039-05-14 US11167096B2 (en) 2018-06-25 2018-06-25 Filter cartridge assemblies for managing fluid and humidity in endoscopic surgery

Country Status (8)

Country Link
US (2) US11167096B2 (en)
EP (1) EP3810239B1 (en)
JP (2) JP7195347B2 (en)
KR (2) KR20230154102A (en)
CN (1) CN112384271B (en)
AU (2) AU2019295450B2 (en)
CA (2) CA3103607C (en)
WO (1) WO2020005494A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11185644B2 (en) * 2017-06-30 2021-11-30 Conmed Corporation Filter cartridge assemblies
DE102018004001A1 (en) * 2018-05-17 2019-11-21 A. Kayser Automotive Systems Gmbh Fuel vapor buffer means
KR20210094598A (en) * 2018-11-21 2021-07-29 버팔로 필터 엘엘씨 FILTERING METHOD AND APPARATUS
US11717781B2 (en) * 2019-04-10 2023-08-08 Conmed Corporation Filter cartridge assembly having fluid management structure
US20230263563A1 (en) 2020-07-22 2023-08-24 Kyocera Corporation Water trap, smoke evacuation tube set, surgical system
US11904087B2 (en) 2021-02-17 2024-02-20 Conmed Corporation Passive surgical access port filtration fittings
US11903611B2 (en) * 2021-05-05 2024-02-20 Conmed Corporation Active surgical access port filtration fittings
CA3227635A1 (en) * 2021-10-25 2023-05-01 Mikiya SILVER Filter cartridge assemblies
WO2023192053A1 (en) * 2022-03-30 2023-10-05 Conmed Corporation Filtered tube sets

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963134A (en) * 1989-03-03 1990-10-16 United States Medical Corporation Laser surgery plume evacuator with aspirator
US20050000196A1 (en) * 2003-07-03 2005-01-06 Schultz Leonard S. Smoke evacuation system
US20130231606A1 (en) * 2010-09-20 2013-09-05 Surgiquest, Inc. Filter interface for multimodal surgical gas delivery system
US20170000959A1 (en) * 2015-07-02 2017-01-05 Northgate Technologies Inc. Gas recirculation system and method

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068609A (en) * 1998-05-19 2000-05-30 Douglas E. Ott Method and apparatus for conditioning gas for medical procedures having humidity monitoring and recharge alert
US20050107767A1 (en) * 1998-05-19 2005-05-19 Ott Douglas E. Method and apparatus for delivering an agent to the abdomen
EP1188415A3 (en) 2000-09-08 2002-05-08 Pall Corporation Cannula assembly
US7338473B2 (en) 2003-04-08 2008-03-04 Surgiquest, Incorporated Pneumoseal trocar arrangement
US7854724B2 (en) 2003-04-08 2010-12-21 Surgiquest, Inc. Trocar assembly with pneumatic sealing
US7285112B2 (en) 2003-04-08 2007-10-23 Surgiquest, Incorporated Gas flow trocar arrangement
US7182752B2 (en) 2003-04-08 2007-02-27 Surgiquest, Incorporated Continuous gas flow trocar assembly
WO2007012140A1 (en) * 2005-07-29 2007-02-01 Resmed Limited Method and apparatus for managing moisture buildup in pressurised breathing systems
WO2010068265A1 (en) * 2008-12-10 2010-06-17 Minimally Invasive Devices, Llc Systems and methods for optimizing and maintaining visualization of a surgical field during the use of surgical scopes
US20120184897A1 (en) * 2010-07-19 2012-07-19 Minimally Invasive Devices, Llc Integrated systems and methods for maintenance and management of an intra-abdominal gas environment during laparoscopic surgery
DK2809433T3 (en) 2012-01-27 2018-01-15 Zeus Ind Products Inc ELECTROSPUNDED POROST MEDIA
US9017281B2 (en) * 2012-09-07 2015-04-28 Surgiquest, Inc. System having multiple pneumatically sealed trocars
US11259839B2 (en) * 2012-12-12 2022-03-01 Buffalo Filter Llc Filtration device and system
CN104869925B (en) 2012-12-19 2017-07-07 瑟吉奎斯特公司 Connector for pipe group to be connected to trochar
US9387296B1 (en) 2015-01-30 2016-07-12 Surgiquest, Inc. Filter cartridge with integrated gaseous seal for multimodal surgical gas delivery system
US10159809B2 (en) * 2015-01-30 2018-12-25 Surgiquest, Inc. Multipath filter assembly with integrated gaseous seal for multimodal surgical gas delivery system
WO2017003712A1 (en) 2015-06-30 2017-01-05 Surgiquest, Inc. Multipath filter assembly with integrated gaseous seal for multimodal surgical gas delivery system
WO2017034965A1 (en) 2015-08-21 2017-03-02 Surgiquest, Inc. Coupling devices for tube sets used with surgical gas delivery systems
KR101761170B1 (en) 2016-05-31 2017-07-25 주식회사 인성메디칼 apparatus for removing hazardous gas
WO2018039239A1 (en) 2016-08-22 2018-03-01 Poll Wayne L Continuous gas supply insufflator having exhaust line peritoneal pressure control methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963134A (en) * 1989-03-03 1990-10-16 United States Medical Corporation Laser surgery plume evacuator with aspirator
US20050000196A1 (en) * 2003-07-03 2005-01-06 Schultz Leonard S. Smoke evacuation system
US20130231606A1 (en) * 2010-09-20 2013-09-05 Surgiquest, Inc. Filter interface for multimodal surgical gas delivery system
US20170000959A1 (en) * 2015-07-02 2017-01-05 Northgate Technologies Inc. Gas recirculation system and method

Also Published As

Publication number Publication date
US20190388631A1 (en) 2019-12-26
KR20230154102A (en) 2023-11-07
JP7195347B2 (en) 2022-12-23
AU2019295450A1 (en) 2021-01-14
AU2022202469B2 (en) 2023-10-26
JP2023027257A (en) 2023-03-01
AU2022202469A1 (en) 2022-05-12
CA3103607A1 (en) 2020-01-02
KR102634701B1 (en) 2024-02-07
CN112384271B (en) 2022-11-01
CN112384271A (en) 2021-02-19
KR20210012044A (en) 2021-02-02
JP2021528176A (en) 2021-10-21
EP3810239B1 (en) 2024-02-28
EP3810239A4 (en) 2022-03-23
CA3103607C (en) 2023-04-11
EP3810239A1 (en) 2021-04-28
AU2019295450B2 (en) 2022-01-27
WO2020005494A1 (en) 2020-01-02
US11167096B2 (en) 2021-11-09
CA3190246A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
AU2022202469B2 (en) Filter cartridge assemblies for managing fluid and humidity in endoscopic surgery
AU2016211651B2 (en) Filter cartridge with internal gaseous seal for multimodal surgical gas delivery system having a smoke evacuation mode
US11185644B2 (en) Filter cartridge assemblies
EP3261563B1 (en) Filter cartridge with integrated gaseous seal for multimodal surgical gas delivery system
US20220040419A1 (en) Filter cartridge assemblies
WO2023192053A1 (en) Filtered tube sets
AU2022377261A1 (en) Filter cartridge assemblies

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: CONMED CORPORATION, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SILVER, MIKIYA;KANE, MICHAEL J.;SIGNING DATES FROM 20180619 TO 20180620;REEL/FRAME:057294/0230

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED