US20210335935A1 - Display device and method for manufacturing same - Google Patents

Display device and method for manufacturing same Download PDF

Info

Publication number
US20210335935A1
US20210335935A1 US16/623,087 US201916623087A US2021335935A1 US 20210335935 A1 US20210335935 A1 US 20210335935A1 US 201916623087 A US201916623087 A US 201916623087A US 2021335935 A1 US2021335935 A1 US 2021335935A1
Authority
US
United States
Prior art keywords
layer
optical fiber
pixel defining
detector
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/623,087
Other versions
US11158691B1 (en
Inventor
Jiajia Luo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Original Assignee
Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd filed Critical Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Assigned to WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD. reassignment WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LUO, JIAJIA
Application granted granted Critical
Publication of US11158691B1 publication Critical patent/US11158691B1/en
Publication of US20210335935A1 publication Critical patent/US20210335935A1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • H01L27/3246
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • H01L27/3234
    • H01L51/0097
    • H01L51/56
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • H01L2227/323
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This disclosure relates to touch display technology, and more particularly, to a display device and a method for manufacturing the display device.
  • a method of proceeding a hollowing out an organic light-emitting diode (OLED) can realize disposal of a camera under a screen.
  • OLED organic light-emitting diode
  • Another solution is to make the OLED into a translucent area.
  • the OLED above the camera is controlled by an array not to emit light, and can emit light during a normal display state, thus realizing a full screen is realized, but this also leads to a display drawback for the screen when the camera is turned on.
  • One display effect of the translucent area above the camera is that there is a large difference in display effect from other areas of the screen.
  • An object of this disclosure is to provide a display device, in which a camera is disposed under a display screen, and an optical fiber detector is disposed in a non-light-emitting area above the display screen.
  • the optical fiber detector is connected to the camera by providing an optical fiber in the non-light-emitting area, so that an optical path of the camera does not interfere with an optical path of the display screen.
  • a full screen display effect can be realized, and a multi-angle image of the camera can be realized at the same time.
  • Another object of this disclosure provides a method for manufacturing a display device. The camera is disposed under the display screen, and the optical fiber detector is disposed in the non-light-emitting area above the display.
  • the optical fiber detector is connected to the camera by providing an optical fiber in the non-light-emitting area, so that an optical path of the camera does not interfere with an optical path of the display screen.
  • a full screen display effect can be realized, and a multi-angle image of the camera can be realized at the same time.
  • the display device comprises a display screen and a camera disposed under the display screen.
  • the display screen includes a flexible substrate layer, a thin film transistor substrate, a pixel defining layer, and a light emitting layer which are sequentially laminated.
  • the thin film transistor substrate is disposed on the flexible substrate layer
  • the pixel defining layer is disposed on the thin film transistor substrate
  • the pixel defining layer comprises a pixel defining structure and a pixel defining groove formed by being surrounded by the pixel defining structure.
  • the light emitting layer is disposed in the pixel defining groove.
  • the camera comprises a detector, an optical fiber detector, and an optical fiber for connecting the detector and the optical fiber detector.
  • the detector is disposed under the flexible substrate layer, and the detector corresponds to the light emitting layer.
  • the optical fiber detector is disposed on an upper surface of the pixel defining structure for receiving an optical signal.
  • the optical fiber is disposed opposite to the pixel defining structure, and the optical fiber is disposed through the display screen for connecting the detector and the optical fiber detector to transmit the optical signal.
  • the display screen further comprises a through hole formed through the display screen, the through hole is corresponding to the pixel defining structure, and the optical fiber is disposed in the through hole.
  • a material of the flexible substrate layer comprises a polyimide layer.
  • the thin film transistor substrate comprises a flexible substrate, a buffer layer, an active layer, a gate insulating layer, a gate layer, an interlayer insulating layer, a source/drain layer, a planarization layer, and an anode layer which are sequentially laminated.
  • the anode layer is electrically connected to the light emitting layer.
  • a material of the active layer comprises low temperature polysilicon.
  • the disclosure further provides a method for manufacturing a display device.
  • the method comprises the step of: forming a display screen, wherein the steps of forming the display screen comprising: providing a flexible substrate layer, and sequentially forming a thin film transistor substrate, a pixel defining layer, and a light emitting layer on the flexible substrate layer; and wherein a pixel defining structure is formed on the pixel defining layer and a pixel defining groove is formed by being surrounded by the pixel defining structure, the light emitting layer is disposed in the pixel defining groove; and
  • the camera comprises a detector, an optical fiber detector, and an optical fiber; and wherein the detector is disposed under the flexible substrate layer and corresponds to the light emitting layer, the optical fiber detector is disposed on the pixel defining layer, and the optical fiber passes through the display screen to connect the detector to the optical fiber detector.
  • the method further comprises a step of forming a through hole, and wherein the through hole is disposed on the display screen, the through hole corresponds to a pixel defining structure of the pixel defining layer, and the optical fiber is disposed in the through hole.
  • step of providing the camera further comprises:
  • the detector wherein the detector is disposed under the flexible substrate layer
  • optical fiber detector wherein the optical fiber detector is disposed on the pixel defining structure
  • a length of the optical fiber is greater than a thickness of the display screen, and the optical fiber is passed through the through hole to connect the detector to the optical fiber detector.
  • the step of forming the thin film transistor substrate further comprises:
  • a material of the active layer comprises low temperature polysilicon, and the active layer is doped to form a source region and a drain region on the active layer;
  • the source/drain layer include a source and a drain
  • anode layer on the planarization layer, wherein the anode layer is correspondingly disposed and electrically connected to the active layer, and the anode layer is connected to the light-emitting layer.
  • the disclosure provides a display device and a method for manufacturing the display device.
  • a camera is disposed under a display screen, and an optical fiber detector is disposed at a pixel defining structure of a non-light-emitting area above the display screen.
  • the optical fiber detector is connected to the camera by providing an optical fiber in the non-light-emitting area, so that an optical path of the camera does not interfere with an optical path of the display screen.
  • a full screen display effect can be realized, and a multi-angle image of the camera can be realized at the same time.
  • FIG. 1 is a schematic structural diagram of a display device in an embodiment of the disclosure.
  • FIG. 2 is a schematic structural diagram of a thin film transistor substrate of FIG. 1 .
  • FIG. 3 is a schematic structural diagram of the thin film transistor substrate and the pixel defining layer of FIG. 1 .
  • FIG. 4 is a flowchart of a method for manufacturing the display device in an embodiment of the disclosure.
  • FIG. 5 is a flowchart of the steps of manufacturing a display screen according to FIG. 4 .
  • FIG. 6 is a flowchart of the steps of disposing a camera according to FIG. 4 .
  • FIG. 7 is a flowchart of the steps of manufacturing the thin film transistor substrate according to FIG. 5 .
  • a first feature “on” or “under” a second feature may include direct contact of the first feature and the second feature, and it may also be included that the first feature and the second feature are not in direct contact but are contacted by additional features between them, unless otherwise specifically defined and limited.
  • the first feature “on”, “above” and “upper” the second feature includes the first feature directly above and obliquely upward the second feature, or merely indicates that a level of the first feature is higher than a level of the second feature.
  • the first feature “lower”, “below” and “under” the second feature includes the first feature directly below and obliquely downward the second feature, or merely indicates that a level of the first feature is less than a level of the second feature.
  • the term “a plurality” refers to two or more, unless otherwise specified.
  • the term “comprises” and its variations are intended to cover a non-exclusive inclusion.
  • the terms “dispose”, “arrange”, “connected”, and “connection” are to be understood broadly, unless otherwise specified and defined. For example, it can be a fixed connection, a detachable connection, or an integrated connection. It also can be a mechanical connection or an electrical connection. It further can be directly connected, or indirectly connected through an intermediate medium. It still can be an internal connection between the two elements.
  • the specific meaning of the above terms in the disclosure can be understood in specific circumstances by those skilled in the art.
  • the display device 100 comprises a display screen 10 and a camera 20 disposed under the display screen 10 .
  • the display screen 10 includes a flexible substrate layer 1 , a thin film transistor substrate 2 , a pixel defining layer 3 , and a light emitting layer 4 which are sequentially laminated.
  • the thin film transistor substrate 2 is disposed on the flexible substrate layer 1
  • the pixel defining layer 3 is disposed on the thin film transistor substrate 2
  • the pixel defining layer 3 comprises a pixel defining structure 31 and a pixel defining groove 32 formed by being surrounded by the pixel defining structure 31 .
  • the light emitting layer 4 is disposed in the pixel defining groove 32 .
  • the camera 20 comprises a detector 5 , an optical fiber detector 6 , and an optical fiber 7 for connecting the detector and the optical fiber detector.
  • the detector 5 is disposed under the flexible substrate layer 1 , and the detector 5 corresponds to the light emitting layer 4 .
  • the optical fiber detector 6 is disposed on the pixel defining structure 31 for receiving an optical signal (arrows shown in FIG. 1 ).
  • the optical fiber 7 is disposed through the display screen 10 for connecting the detector 5 and the optical fiber detector 6 to transmit the optical signal.
  • an area corresponding to the light emitting layer 4 in the display screen 10 is a light emitting area
  • the light emitting layer 4 emits light as a light source
  • an area corresponding to the pixel defining structure 31 is a non-light-emitting area.
  • the camera 20 is disposed under the display screen 10 .
  • the detector 5 of the camera 20 is disposed below the display screen 10 at a position corresponding to the light-emitting area.
  • the optical fiber detector 6 is disposed at the pixel defining structure 31 of the non-light-emitting area above the display screen 10
  • the optical fiber 7 is disposed in the non-light emitting area to connect the optical fiber detector 6 to the camera 20 .
  • an optical path of the camera 20 does not interfere with an optical path of the display screen 10 .
  • a full screen display effect can be realized, and a multi-angle image of the camera 20 can be realized at the same time.
  • the optical fiber detector 6 is arranged in a full screen manner, a full screen display effect is realized, and the full screen imaging display and the multi-angle full screen imaging display can be realized at the same time. Further, a 180° full-angle imaging effect can be realized.
  • the display screen 10 further comprises a through hole 8 is configured to pass through the display screen 10 , the through hole 8 is corresponding to the pixel defining structure 31 . More specifically, the through hole 8 is formed at the pixel defining structure 31 and penetrates the display screen 10 , and the optical fiber 7 is disposed in the through hole 8 .
  • a material of the flexible substrate layer 1 comprises a polyimide layer.
  • the thin film transistor substrate 2 includes a flexible substrate 21 , a buffer layer 22 , an active layer 23 , a gate insulating layer 24 , a gate layer 25 , and an interlayer insulating layer 26 , a source/drain layer 27 , a planarization layer 28 , and anode layer 29 which are disposed in a stacked manner.
  • FIG. 3 is a schematic structural diagram indicating the positional relationship between the thin film transistor substrate 2 and the pixel defining layer 3 according to the embodiment.
  • the anode layer 29 is disposed at a bottom portion of the pixel defining groove 32 , and the anode layer 29 is electrically connected to the light emitting layer 4 .
  • a material of the active layer 23 includes low temperature polysilicon.
  • the active layer 23 includes a source region and a drain region.
  • the source/drain layer 27 includes a source and a drain.
  • the disclosure further provides a method for manufacturing the display device 100 , including the following steps S 1 -S 2 .
  • a display screen 10 is formed.
  • the steps of forming the display screen comprising: providing a flexible substrate layer 1 , and sequentially forming a thin film transistor substrate 2 , a pixel defining layer 3 , and a light emitting layer 4 on the flexible substrate layer 1 .
  • the thin film transistor substrate 2 is disposed on the flexible substrate layer 1 .
  • the pixel defining layer 3 is disposed on the thin film transistor substrate 2 .
  • a pixel defining structure 31 is formed on the pixel defining layer 3 and a pixel defining groove 32 is formed by being surrounded by the pixel defining structure 31 .
  • the light emitting layer 4 is disposed in the pixel defining groove 32 .
  • a camera 20 is provided.
  • the camera 20 comprises a detector 5 , an optical fiber detector 6 , and an optical fiber 7 for connecting the detector and the optical fiber detector.
  • the detector 5 is disposed under the flexible substrate layer 1 and corresponds to the light emitting layer 4
  • the optical fiber detector 6 is disposed on the pixel defining layer
  • the optical fiber 7 passes through the display screen 10 to connect the detector 5 to the optical fiber detector 6 .
  • the method for manufacturing the display screen 10 further comprises a step of forming a through hole 8 .
  • the through hole 8 is disposed on the display screen 10 , and the through hole 8 corresponds to the pixel defining structure 31 .
  • through holes 8 are formed in each of the flexible substrate 21 , the thin film transistor substrate 2 , and the pixel defining structure 31 of the pixel defining layer 3 , and the through hole 8 penetrates the display screen 10 .
  • the optical fiber 7 is disposed in the through hole 8 .
  • the step S 1 for manufacturing the display screen 10 specifically comprises the following steps.
  • a step S 11 the flexible substrate layer is provided.
  • a step S 12 the thin film transistor substrate 2 is provided.
  • the thin film transistor substrate 2 is formed on the flexible substrate layer.
  • the pixel defining layer 3 is formed.
  • the pixel defining layer 3 is formed on the thin film transistor substrate 2 .
  • the pixel defining structure 31 is formed on the pixel defining layer 3 and a pixel defining groove 32 is formed by being surrounded by the pixel defining structure 31 .
  • a step S 14 the light emitting layer 4 is formed, and the light emitting layer 4 is formed in the pixel defining groove 32 .
  • the step S 2 of manufacturing the camera 20 comprises the following steps.
  • a step S 21 the detector 5 is provided.
  • the detector 5 is disposed under the flexible substrate layer 1 .
  • the optical fiber detector 6 is provided.
  • the optical fiber detector 6 is disposed on the pixel defining structure 31 .
  • a step S 23 the optical fiber 7 is provided.
  • a length of the optical fiber 7 is greater than a thickness of the display screen 10 , and the optical fiber 7 is passed through the through hole 8 to connect the detector 5 to the optical fiber detector 6 .
  • the step S 12 of manufacturing the thin film transistor substrate 2 comprises the following steps.
  • a flexible substrate 21 is provided.
  • a buffer layer 22 is formed.
  • the buffer layer 22 is formed on the flexible substrate 21 .
  • an active layer 23 is formed.
  • the active layer 23 is formed on the buffer layer 22 .
  • a material of the active layer 23 includes low temperature polysilicon, and the active layer 23 is doped to form a source region and a drain region on the active layer 23 .
  • a gate insulating layer 24 is formed.
  • the gate insulating layer 24 is formed on the active layer 23 .
  • a gate layer 25 is formed.
  • the gate layer 25 is formed on the gate insulating layer 24 .
  • an interlayer insulating layer 26 is formed.
  • the interlayer insulating layer 26 is formed on the gate layer 25 .
  • a source/drain layer 27 is formed.
  • the source/drain layer 27 is formed on the gate layer 25 , and the source/drain layer 27 comprises a source and a drain.
  • a planarization layer 28 is formed.
  • the planarization layer 28 is formed on the source/drain layer 27 .
  • an anode layer 29 is formed.
  • the anode layer 29 is formed on the planarization layer 28 .
  • the anode layer 29 is correspondingly disposed and electrically connected to the active layer 23 , and the anode layer 29 is connected to the light-emitting layer 4 .
  • the disclosure provides a display device and a method for manufacturing the display device.
  • a camera is disposed under a display screen, and an optical fiber detector is disposed at a pixel defining structure of a non-light-emitting area above the display screen.
  • the optical fiber detector is connected to the camera by providing an optical fiber in the non-light-emitting area, so that an optical path of the camera does not interfere with an optical path of the display screen.
  • a full screen display effect can be realized, and a multi-angle image of the camera can be realized at the same time.
  • the optical fiber detector is arranged in a full screen manner, a full screen display effect is realized, and the full screen imaging display and the multi-angle full screen imaging display can be realized at the same time. Further, a 180° full-angle imaging effect can be realized.

Abstract

A display device and method for manufacturing the same are provided. The display device includes a display screen and a camera disposed under the display screen. The display screen includes a flexible substrate layer, a thin film transistor substrate, a pixel defining layer, and a light emitting layer which are sequentially laminated. The camera includes a detector, an optical fiber detector, and an optical fiber for connecting the detector and the optical fiber detector. The manufacturing method of the display device includes the steps of: providing a display screen, providing a through hole, and providing a camera.

Description

    FIELD OF INVENTION
  • This disclosure relates to touch display technology, and more particularly, to a display device and a method for manufacturing the display device.
  • BACKGROUND OF INVENTION
  • It is a difficult for mobile phone manufacturers and panel manufacturers to overcome a problem of increasing a screen ratio of mobile phone display screens. Due to a front camera, an absolute full screen has been difficult to achieve.
  • At present, for a camera under panel (CUP) design, a method of proceeding a hollowing out an organic light-emitting diode (OLED) can realize disposal of a camera under a screen. However, the hollowing out process will affect a life-time of the screen, and display effect will be defective, thus there has been no good development for solving the problem. Another solution is to make the OLED into a translucent area. When the camera is turned on, the OLED above the camera is controlled by an array not to emit light, and can emit light during a normal display state, thus realizing a full screen is realized, but this also leads to a display drawback for the screen when the camera is turned on. One display effect of the translucent area above the camera is that there is a large difference in display effect from other areas of the screen.
  • Therefore, it is necessary to provide a novel display screen to overcome the drawbacks of the conventional technology.
  • SUMMARY OF INVENTION
  • An object of this disclosure is to provide a display device, in which a camera is disposed under a display screen, and an optical fiber detector is disposed in a non-light-emitting area above the display screen. The optical fiber detector is connected to the camera by providing an optical fiber in the non-light-emitting area, so that an optical path of the camera does not interfere with an optical path of the display screen. A full screen display effect can be realized, and a multi-angle image of the camera can be realized at the same time. Another object of this disclosure provides a method for manufacturing a display device. The camera is disposed under the display screen, and the optical fiber detector is disposed in the non-light-emitting area above the display. The optical fiber detector is connected to the camera by providing an optical fiber in the non-light-emitting area, so that an optical path of the camera does not interfere with an optical path of the display screen. A full screen display effect can be realized, and a multi-angle image of the camera can be realized at the same time.
  • In order to achieve the above objects, this disclosure provides a display device. The display device comprises a display screen and a camera disposed under the display screen. The display screen includes a flexible substrate layer, a thin film transistor substrate, a pixel defining layer, and a light emitting layer which are sequentially laminated. Specifically, the thin film transistor substrate is disposed on the flexible substrate layer, the pixel defining layer is disposed on the thin film transistor substrate, and the pixel defining layer comprises a pixel defining structure and a pixel defining groove formed by being surrounded by the pixel defining structure. The light emitting layer is disposed in the pixel defining groove.
  • The camera comprises a detector, an optical fiber detector, and an optical fiber for connecting the detector and the optical fiber detector. Specifically, the detector is disposed under the flexible substrate layer, and the detector corresponds to the light emitting layer. The optical fiber detector is disposed on an upper surface of the pixel defining structure for receiving an optical signal. The optical fiber is disposed opposite to the pixel defining structure, and the optical fiber is disposed through the display screen for connecting the detector and the optical fiber detector to transmit the optical signal.
  • Furthermore, the display screen further comprises a through hole formed through the display screen, the through hole is corresponding to the pixel defining structure, and the optical fiber is disposed in the through hole.
  • Furthermore, a material of the flexible substrate layer comprises a polyimide layer.
  • Furthermore, the thin film transistor substrate comprises a flexible substrate, a buffer layer, an active layer, a gate insulating layer, a gate layer, an interlayer insulating layer, a source/drain layer, a planarization layer, and an anode layer which are sequentially laminated.
  • Furthermore, the anode layer is electrically connected to the light emitting layer.
  • Furthermore, a material of the active layer comprises low temperature polysilicon.
  • The disclosure further provides a method for manufacturing a display device. The method comprises the step of: forming a display screen, wherein the steps of forming the display screen comprising: providing a flexible substrate layer, and sequentially forming a thin film transistor substrate, a pixel defining layer, and a light emitting layer on the flexible substrate layer; and wherein a pixel defining structure is formed on the pixel defining layer and a pixel defining groove is formed by being surrounded by the pixel defining structure, the light emitting layer is disposed in the pixel defining groove; and
  • providing a camera, wherein the camera comprises a detector, an optical fiber detector, and an optical fiber; and wherein the detector is disposed under the flexible substrate layer and corresponds to the light emitting layer, the optical fiber detector is disposed on the pixel defining layer, and the optical fiber passes through the display screen to connect the detector to the optical fiber detector.
  • Furthermore, the method further comprises a step of forming a through hole, and wherein the through hole is disposed on the display screen, the through hole corresponds to a pixel defining structure of the pixel defining layer, and the optical fiber is disposed in the through hole.
  • Furthermore, the step of providing the camera further comprises:
  • providing the detector, wherein the detector is disposed under the flexible substrate layer;
  • providing the optical fiber detector, wherein the optical fiber detector is disposed on the pixel defining structure; and
  • providing the optical fiber, wherein a length of the optical fiber is greater than a thickness of the display screen, and the optical fiber is passed through the through hole to connect the detector to the optical fiber detector.
  • Furthermore, the step of forming the thin film transistor substrate further comprises:
  • providing a flexible substrate;
  • forming a buffer layer on the flexible substrate;
  • forming an active layer on the buffer layer, wherein a material of the active layer comprises low temperature polysilicon, and the active layer is doped to form a source region and a drain region on the active layer;
  • forming a gate insulating layer on the active layer;
  • forming a gate layer on the gate insulating layer;
  • forming an interlayer insulating layer on the gate layer;
  • forming a source/drain layer on the gate layer, wherein the source/drain layer include a source and a drain;
  • forming a planarization layer on the source/drain layer; and
  • forming an anode layer on the planarization layer, wherein the anode layer is correspondingly disposed and electrically connected to the active layer, and the anode layer is connected to the light-emitting layer.
  • Advantageous effects of the disclosure are as follows. The disclosure provides a display device and a method for manufacturing the display device. A camera is disposed under a display screen, and an optical fiber detector is disposed at a pixel defining structure of a non-light-emitting area above the display screen. The optical fiber detector is connected to the camera by providing an optical fiber in the non-light-emitting area, so that an optical path of the camera does not interfere with an optical path of the display screen. A full screen display effect can be realized, and a multi-angle image of the camera can be realized at the same time.
  • DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic structural diagram of a display device in an embodiment of the disclosure.
  • FIG. 2 is a schematic structural diagram of a thin film transistor substrate of FIG. 1.
  • FIG. 3 is a schematic structural diagram of the thin film transistor substrate and the pixel defining layer of FIG. 1.
  • FIG. 4 is a flowchart of a method for manufacturing the display device in an embodiment of the disclosure.
  • FIG. 5 is a flowchart of the steps of manufacturing a display screen according to FIG. 4.
  • FIG. 6 is a flowchart of the steps of disposing a camera according to FIG. 4.
  • FIG. 7 is a flowchart of the steps of manufacturing the thin film transistor substrate according to FIG. 5.
  • The elements in the figures are identified as follows:
      • 100, display device; 10, display screen; 20, camera;
      • 1, flexible substrate layer; 2, thin film transistor substrate; 3 pixel defining layer; 4, light emitting layer;
      • 5, detector; 6, optical fiber detector; 7, optical fiber; 8, through hole; 21, flexible substrate;
      • 22, buffer layer; 23, active layer; 24, gate insulating layer; 25, gate layer;
      • 26, interlayer insulating layer; 27, source/drain layer; 28, planarization layer; 29, anode layer;
      • 31, pixel defining structure; 32, pixel defining groove.
    DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • In this disclosure, a first feature “on” or “under” a second feature may include direct contact of the first feature and the second feature, and it may also be included that the first feature and the second feature are not in direct contact but are contacted by additional features between them, unless otherwise specifically defined and limited. Moreover, the first feature “on”, “above” and “upper” the second feature includes the first feature directly above and obliquely upward the second feature, or merely indicates that a level of the first feature is higher than a level of the second feature. The first feature “lower”, “below” and “under” the second feature includes the first feature directly below and obliquely downward the second feature, or merely indicates that a level of the first feature is less than a level of the second feature.
  • In this disclosure, the term “a plurality” refers to two or more, unless otherwise specified. In addition, the term “comprises” and its variations are intended to cover a non-exclusive inclusion.
  • In the description of this disclosure, it should be noted that the terms “dispose”, “arrange”, “connected”, and “connection” are to be understood broadly, unless otherwise specified and defined. For example, it can be a fixed connection, a detachable connection, or an integrated connection. It also can be a mechanical connection or an electrical connection. It further can be directly connected, or indirectly connected through an intermediate medium. It still can be an internal connection between the two elements. The specific meaning of the above terms in the disclosure can be understood in specific circumstances by those skilled in the art.
  • Referring to FIG. 1, this disclosure provides a display device 100. The display device 100 comprises a display screen 10 and a camera 20 disposed under the display screen 10.
  • The display screen 10 includes a flexible substrate layer 1, a thin film transistor substrate 2, a pixel defining layer 3, and a light emitting layer 4 which are sequentially laminated. Specifically, the thin film transistor substrate 2 is disposed on the flexible substrate layer 1, the pixel defining layer 3 is disposed on the thin film transistor substrate 2, and the pixel defining layer 3 comprises a pixel defining structure 31 and a pixel defining groove 32 formed by being surrounded by the pixel defining structure 31. The light emitting layer 4 is disposed in the pixel defining groove 32.
  • The camera 20 comprises a detector 5, an optical fiber detector 6, and an optical fiber 7 for connecting the detector and the optical fiber detector. Specifically, the detector 5 is disposed under the flexible substrate layer 1, and the detector 5 corresponds to the light emitting layer 4. The optical fiber detector 6 is disposed on the pixel defining structure 31 for receiving an optical signal (arrows shown in FIG. 1). The optical fiber 7 is disposed through the display screen 10 for connecting the detector 5 and the optical fiber detector 6 to transmit the optical signal.
  • It can be understood that an area corresponding to the light emitting layer 4 in the display screen 10 is a light emitting area, the light emitting layer 4 emits light as a light source, and an area corresponding to the pixel defining structure 31 is a non-light-emitting area. In this disclosure, the camera 20 is disposed under the display screen 10. Preferably, the detector 5 of the camera 20 is disposed below the display screen 10 at a position corresponding to the light-emitting area. The optical fiber detector 6 is disposed at the pixel defining structure 31 of the non-light-emitting area above the display screen 10, and the optical fiber 7 is disposed in the non-light emitting area to connect the optical fiber detector 6 to the camera 20. Therefore, an optical path of the camera 20 does not interfere with an optical path of the display screen 10. A full screen display effect can be realized, and a multi-angle image of the camera 20 can be realized at the same time. Moreover, because the optical fiber detector 6 is arranged in a full screen manner, a full screen display effect is realized, and the full screen imaging display and the multi-angle full screen imaging display can be realized at the same time. Further, a 180° full-angle imaging effect can be realized.
  • In this embodiment, the display screen 10 further comprises a through hole 8 is configured to pass through the display screen 10, the through hole 8 is corresponding to the pixel defining structure 31. More specifically, the through hole 8 is formed at the pixel defining structure 31 and penetrates the display screen 10, and the optical fiber 7 is disposed in the through hole 8.
  • In the embodiment, a material of the flexible substrate layer 1 comprises a polyimide layer.
  • Referring to FIG. 2, in the embodiment, the thin film transistor substrate 2 includes a flexible substrate 21, a buffer layer 22, an active layer 23, a gate insulating layer 24, a gate layer 25, and an interlayer insulating layer 26, a source/drain layer 27, a planarization layer 28, and anode layer 29 which are disposed in a stacked manner.
  • Referring to FIG. 3, FIG. 3 is a schematic structural diagram indicating the positional relationship between the thin film transistor substrate 2 and the pixel defining layer 3 according to the embodiment. The anode layer 29 is disposed at a bottom portion of the pixel defining groove 32, and the anode layer 29 is electrically connected to the light emitting layer 4.
  • In this embodiment, a material of the active layer 23 includes low temperature polysilicon. The active layer 23 includes a source region and a drain region. The source/drain layer 27 includes a source and a drain.
  • Referring to FIG. 4, the disclosure further provides a method for manufacturing the display device 100, including the following steps S1-S2.
  • In the step S1, a display screen 10 is formed. The steps of forming the display screen comprising: providing a flexible substrate layer 1, and sequentially forming a thin film transistor substrate 2, a pixel defining layer 3, and a light emitting layer 4 on the flexible substrate layer 1. Specifically, the thin film transistor substrate 2 is disposed on the flexible substrate layer 1. The pixel defining layer 3 is disposed on the thin film transistor substrate 2. A pixel defining structure 31 is formed on the pixel defining layer 3 and a pixel defining groove 32 is formed by being surrounded by the pixel defining structure 31. The light emitting layer 4 is disposed in the pixel defining groove 32.
  • In the step S2, a camera 20 is provided. The camera 20 comprises a detector 5, an optical fiber detector 6, and an optical fiber 7 for connecting the detector and the optical fiber detector. The detector 5 is disposed under the flexible substrate layer 1 and corresponds to the light emitting layer 4, the optical fiber detector 6 is disposed on the pixel defining layer, and the optical fiber 7 passes through the display screen 10 to connect the detector 5 to the optical fiber detector 6.
  • In this embodiment, the method for manufacturing the display screen 10 further comprises a step of forming a through hole 8. The through hole 8 is disposed on the display screen 10, and the through hole 8 corresponds to the pixel defining structure 31. Specifically, through holes 8 are formed in each of the flexible substrate 21, the thin film transistor substrate 2, and the pixel defining structure 31 of the pixel defining layer 3, and the through hole 8 penetrates the display screen 10. The optical fiber 7 is disposed in the through hole 8.
  • Referring to FIG. 5, in the embodiment, the step S1 for manufacturing the display screen 10 specifically comprises the following steps.
  • In a step S11, the flexible substrate layer is provided.
  • In a step S12, the thin film transistor substrate 2 is provided. The thin film transistor substrate 2 is formed on the flexible substrate layer.
  • In a step S13, the pixel defining layer 3 is formed. The pixel defining layer 3 is formed on the thin film transistor substrate 2. The pixel defining structure 31 is formed on the pixel defining layer 3 and a pixel defining groove 32 is formed by being surrounded by the pixel defining structure 31.
  • In a step S14, the light emitting layer 4 is formed, and the light emitting layer 4 is formed in the pixel defining groove 32.
  • Referring to FIG. 6, in the embodiment, the step S2 of manufacturing the camera 20 comprises the following steps.
  • In a step S21, the detector 5 is provided. The detector 5 is disposed under the flexible substrate layer 1.
  • In a step S22, the optical fiber detector 6 is provided. The optical fiber detector 6 is disposed on the pixel defining structure 31.
  • In a step S23, the optical fiber 7 is provided. A length of the optical fiber 7 is greater than a thickness of the display screen 10, and the optical fiber 7 is passed through the through hole 8 to connect the detector 5 to the optical fiber detector 6.
  • Referring to FIG. 7, in the embodiment, the step S12 of manufacturing the thin film transistor substrate 2 comprises the following steps.
  • In a step S121, a flexible substrate 21 is provided.
  • In a step S122, a buffer layer 22 is formed. The buffer layer 22 is formed on the flexible substrate 21.
  • In a step S123, an active layer 23 is formed. The active layer 23 is formed on the buffer layer 22. A material of the active layer 23 includes low temperature polysilicon, and the active layer 23 is doped to form a source region and a drain region on the active layer 23.
  • In a step S124, a gate insulating layer 24 is formed. The gate insulating layer 24 is formed on the active layer 23.
  • In a step S125, a gate layer 25 is formed. The gate layer 25 is formed on the gate insulating layer 24.
  • In a step S126, an interlayer insulating layer 26 is formed. The interlayer insulating layer 26 is formed on the gate layer 25.
  • In a step S127, a source/drain layer 27 is formed. The source/drain layer 27 is formed on the gate layer 25, and the source/drain layer 27 comprises a source and a drain.
  • In a step S128, a planarization layer 28 is formed. The planarization layer 28 is formed on the source/drain layer 27.
  • In a step S129, an anode layer 29 is formed. The anode layer 29 is formed on the planarization layer 28. The anode layer 29 is correspondingly disposed and electrically connected to the active layer 23, and the anode layer 29 is connected to the light-emitting layer 4.
  • Advantageous effects of the disclosure are as follows. The disclosure provides a display device and a method for manufacturing the display device. A camera is disposed under a display screen, and an optical fiber detector is disposed at a pixel defining structure of a non-light-emitting area above the display screen. The optical fiber detector is connected to the camera by providing an optical fiber in the non-light-emitting area, so that an optical path of the camera does not interfere with an optical path of the display screen. A full screen display effect can be realized, and a multi-angle image of the camera can be realized at the same time. Moreover, because the optical fiber detector is arranged in a full screen manner, a full screen display effect is realized, and the full screen imaging display and the multi-angle full screen imaging display can be realized at the same time. Further, a 180° full-angle imaging effect can be realized.
  • This disclosure has been described with preferred embodiments thereof, and it is understood that many changes and modifications to the described embodiment can be carried out without departing from the scope and the spirit of the invention.

Claims (10)

What is claimed is:
1. A display device, comprising: a display screen and a camera;
wherein the display screen comprises:
a flexible substrate layer;
a thin film transistor substrate disposed on the flexible substrate layer;
a pixel defining layer disposed on the thin film transistor substrate, wherein the pixel defining layer comprises a pixel defining structure and a pixel defining groove formed by being surrounded by the pixel defining structure; and
a light emitting layer disposed in the pixel defining groove; and
wherein the camera comprises:
a detector disposed under the flexible substrate layer, wherein the detector is corresponding to the light emitting layer;
an optical fiber detector disposed on the pixel defining structure for receiving an optical signal; and
an optical fiber is disposed through the display screen for connecting the detector and the optical fiber detector to transmit the optical signal.
2. The display device according to claim 1, wherein the display screen further comprises a through hole formed through the display screen, the through hole is corresponding to the pixel defining structure, and the optical fiber is disposed in the through hole.
3. The display device according to claim 1, wherein a material of the flexible substrate layer comprises a polyimide layer.
4. The display device according to claim 1, wherein the thin film transistor substrate comprises a flexible substrate, a buffer layer, an active layer, a gate insulating layer, a gate layer, an interlayer insulating layer, a source/drain layer, a planarization layer, and an anode layer which are sequentially laminated.
5. The display device according to claim 4, wherein the anode layer is electrically connected to the light emitting layer.
6. The display device according to claim 4, wherein a material of the active layer comprises low temperature polysilicon.
7. A method for manufacturing a display device, comprising:
forming a display screen, wherein the steps of forming the display screen comprising: providing a flexible substrate layer, and sequentially forming a thin film transistor substrate, a pixel defining layer, and a light emitting layer on the flexible substrate layer; and wherein a pixel defining structure is formed on the pixel defining layer and a pixel defining groove is formed by being surrounded by the pixel defining structure, the light emitting layer is disposed in the pixel defining groove; and
providing a camera, wherein the camera comprises a detector, an optical fiber detector, and an optical fiber; and wherein the detector is disposed under the flexible substrate layer and corresponds to the light emitting layer, the optical fiber detector is disposed on the pixel defining layer, and the optical fiber passes through the display screen to connect the detector to the optical fiber detector.
8. The method according to claim 7, wherein the method further comprises a step of forming a through hole, and wherein the through hole is disposed on the display screen, the through hole corresponds to a pixel defining structure of the pixel defining layer, and the optical fiber is disposed in the through hole.
9. The method according to claim 8, wherein the step of providing the camera further comprises:
providing the detector, wherein the detector is disposed under the flexible substrate layer;
providing the optical fiber detector, wherein the optical fiber detector is disposed on the pixel defining structure; and
providing the optical fiber, wherein a length of the optical fiber is greater than a thickness of the display screen, and the optical fiber is passed through the through hole to connect the detector to the optical fiber detector.
10. The method according to claim 8, wherein the step of forming the thin film transistor substrate further comprises:
providing a flexible substrate;
forming a buffer layer on the flexible substrate;
forming an active layer on the buffer layer, wherein a material of the active layer comprises low temperature polysilicon, and the active layer is doped to form a source region and a drain region on the active layer;
forming a gate insulating layer on the active layer;
forming a gate layer on the gate insulating layer;
forming an interlayer insulating layer on the gate layer;
forming a source/drain layer on the gate layer, wherein the source/drain layer comprises a source and a drain;
forming a planarization layer on the source/drain layer; and
forming an anode layer on the planarization layer, wherein the anode layer is correspondingly disposed and electrically connected to the active layer, and the anode layer is connected to the light emitting layer.
US16/623,087 2019-07-04 2019-08-30 Display device and method for manufacturing same Active 2040-03-06 US11158691B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910598013.6A CN110350010B (en) 2019-07-04 2019-07-04 Display device and manufacturing method thereof
CN201910598013.6 2019-07-04
PCT/CN2019/103509 WO2021000413A1 (en) 2019-07-04 2019-08-30 Display apparatus and manufacturing method therefor

Publications (2)

Publication Number Publication Date
US11158691B1 US11158691B1 (en) 2021-10-26
US20210335935A1 true US20210335935A1 (en) 2021-10-28

Family

ID=68178154

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/623,087 Active 2040-03-06 US11158691B1 (en) 2019-07-04 2019-08-30 Display device and method for manufacturing same

Country Status (3)

Country Link
US (1) US11158691B1 (en)
CN (1) CN110350010B (en)
WO (1) WO2021000413A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739339A (en) * 2019-10-28 2020-01-31 武汉华星光电半导体显示技术有限公司 kinds of display panel and display device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170036876A (en) * 2015-09-18 2017-04-03 삼성디스플레이 주식회사 Organic light emitting device and display device having the same
CN107122742B (en) * 2017-04-27 2019-12-03 上海天马微电子有限公司 A kind of display device and its fingerprint identification method and electronic equipment
CN107133613B (en) * 2017-06-06 2020-06-30 上海天马微电子有限公司 Display panel and display device
CN107680988B (en) * 2017-09-15 2020-03-13 上海天马微电子有限公司 Display panel and electronic equipment
KR102400868B1 (en) * 2017-09-28 2022-05-25 삼성디스플레이 주식회사 Display device
CN108364958A (en) * 2018-02-11 2018-08-03 武汉华星光电半导体显示技术有限公司 TFT substrate and preparation method thereof and oled substrate
CN208271897U (en) * 2018-03-16 2018-12-21 华为技术有限公司 A kind of display screen and display terminal
CN108848214A (en) * 2018-06-07 2018-11-20 信利光电股份有限公司 A kind of comprehensive screen mobile phone
CN108807487B (en) * 2018-06-26 2021-03-30 武汉天马微电子有限公司 Display panel and display device
CN109034089B (en) * 2018-08-07 2020-11-20 武汉天马微电子有限公司 Display device and electronic equipment
CN208956153U (en) * 2018-09-06 2019-06-07 珠海格力电器股份有限公司 A kind of mobile terminal and its photographic device
CN109301085B (en) * 2018-09-30 2020-11-27 京东方科技集团股份有限公司 Display substrate, manufacturing method thereof and display device
CN109449760B (en) * 2018-12-04 2021-03-16 矽照光电(厦门)有限公司 Vertical cavity surface emitting laser array module and display device
CN109491007B (en) * 2019-01-02 2021-09-21 京东方科技集团股份有限公司 Light guide structure, display device and use method

Also Published As

Publication number Publication date
CN110350010A (en) 2019-10-18
WO2021000413A1 (en) 2021-01-07
US11158691B1 (en) 2021-10-26
CN110350010B (en) 2022-01-04

Similar Documents

Publication Publication Date Title
KR102602670B1 (en) Display apharatus having input sensing unit
US11659636B2 (en) Display device and electronic device
US10978533B2 (en) Array substrate structure and display device
US11302760B2 (en) Array substrate and fabrication method thereof, and display device
WO2020133738A1 (en) Oled display panel and under-screen optical fingerprint recognition method
US20150162387A1 (en) Oled display apparatus with in cell touch structure
KR102615177B1 (en) Flat panel display
CN107256880B (en) Display array substrate, preparation method and display
US11910691B2 (en) Display panel, manufacturing method thereof, and display device
KR20170071659A (en) flexible display device
US20140240370A1 (en) Display, method of manufacturing display, method of driving display, and electronic apparatus
WO2019192399A1 (en) Display substrate and manufacturing method therefor, display panel, and apparatus
WO2016074401A1 (en) Array substrate and manufacturing method thereof, and display device
KR102102353B1 (en) Method for testing of organic light-emitting dsplay panel, apparatus and method for testing mother substrate
US11569274B2 (en) Array substrate, display device and method of forming array substrate
TW201438219A (en) Organic electroluminescent type touch display panel
KR20230026978A (en) Display board and display device
CN108346678B (en) Optical sensor module
US11158691B1 (en) Display device and method for manufacturing same
WO2021104050A1 (en) Display substrate, display panel and display apparatus
CN111276492B (en) Display device, OLED panel thereof and manufacturing method of OLED panel
CN103187017A (en) Aging system used for display device and aging method employing aging system
CN113272965A (en) Display panel and display device
KR20200034945A (en) Organic LED display screen and electronic devices
US20200312945A1 (en) Display panel, manufacturing method thereof, and display device

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD., CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUO, JIAJIA;REEL/FRAME:051331/0783

Effective date: 20190603

STCF Information on status: patent grant

Free format text: PATENTED CASE