US20210329134A1 - Information processing apparatus enabling communication settings to be made with ease, method of controlling information processing apparatus, and storage medium - Google Patents

Information processing apparatus enabling communication settings to be made with ease, method of controlling information processing apparatus, and storage medium Download PDF

Info

Publication number
US20210329134A1
US20210329134A1 US17/363,428 US202117363428A US2021329134A1 US 20210329134 A1 US20210329134 A1 US 20210329134A1 US 202117363428 A US202117363428 A US 202117363428A US 2021329134 A1 US2021329134 A1 US 2021329134A1
Authority
US
United States
Prior art keywords
communication
storage medium
image forming
readable storage
transitory computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/363,428
Inventor
Shintaro Okamura
Motoki Koshigaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US17/363,428 priority Critical patent/US20210329134A1/en
Publication of US20210329134A1 publication Critical patent/US20210329134A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00281Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a telecommunication apparatus, e.g. a switched network of teleprinters for the distribution of text-based information, a selective call terminal
    • H04N1/00307Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a telecommunication apparatus, e.g. a switched network of teleprinters for the distribution of text-based information, a selective call terminal with a mobile telephone apparatus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1201Dedicated interfaces to print systems
    • G06F3/1202Dedicated interfaces to print systems specifically adapted to achieve a particular effect
    • G06F3/1203Improving or facilitating administration, e.g. print management
    • G06F3/1204Improving or facilitating administration, e.g. print management resulting in reduced user or operator actions, e.g. presetting, automatic actions, using hardware token storing data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1201Dedicated interfaces to print systems
    • G06F3/1223Dedicated interfaces to print systems specifically adapted to use a particular technique
    • G06F3/1236Connection management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1201Dedicated interfaces to print systems
    • G06F3/1278Dedicated interfaces to print systems specifically adapted to adopt a particular infrastructure
    • G06F3/1292Mobile client, e.g. wireless printing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0008Connection or combination of a still picture apparatus with another apparatus
    • H04N2201/0034Details of the connection, e.g. connector, interface
    • H04N2201/0048Type of connection
    • H04N2201/0055By radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0008Connection or combination of a still picture apparatus with another apparatus
    • H04N2201/0034Details of the connection, e.g. connector, interface
    • H04N2201/0048Type of connection
    • H04N2201/006Using near field communication, e.g. an inductive loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0077Types of the still picture apparatus
    • H04N2201/0094Multifunctional device, i.e. a device capable of all of reading, reproducing, copying, facsimile transception, file transception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to an information processing apparatus, a method of controlling the information processing apparatus, and a storage medium, and more particularly to an information processing apparatus that enables communication settings to be made with ease by wireless communication, a method of controlling the information processing apparatus, and a storage medium.
  • wireless communication based on various communication standards is performed according to communication settings of the MFP and the mobile terminal.
  • a data communication apparatus such as an MFP
  • a mobile terminal such as a smartphone or a tablet PC
  • wireless communication based on various communication standards is performed according to communication settings of the MFP and the mobile terminal.
  • communication such as Wi-Fi communication using the standard of Wi-Fi
  • short-distance wireless communication such as NFC (Near Field Communication)
  • Bluetooth Bluetooth Low Energy
  • NFC NFC
  • Wi-Fi communication between the MFP and the mobile terminal are made. This makes it possible, even in a case where the data of a print job is large-volume data, for the mobile terminal to transmit the print job to the MFP by performing Wi-Fi communication (see e.g. Japanese Patent Laid-Open Publication No. 2014-050015).
  • the present invention provides an information processing apparatus which makes it possible to make communication settings with ease, a method of controlling the information processing apparatus, and a storage medium.
  • an information processing apparatus comprising a reception unit configured to receive a packet, a generation unit configured to generate a device list, based on the packet received by the reception unit, a display unit configured to display the device list, a first selection unit configured to select a device from the device list, based on a received radio field intensity of the packet, a second selection unit configured to select a device from the device list, based on a selection operation by a user, and a transmission unit configured to transmit data to the device selected by the first selection unit or the second selection unit.
  • a method of controlling an information processing apparatus comprising receiving a packet, generating a device list, based on the packet received by said receiving, displaying the device list, selecting a device from the device list, based on a received radio field intensity of the packet, selecting a device from the device list, based on a selection operation by a user, and transmitting data to the device selected by said first-mentioned selecting or said second-mentioned selecting.
  • a non-transitory computer-readable storage medium storing a computer-executable program for executing a method of controlling an information processing apparatus, wherein the method comprises receiving a packet, generating a device list, based on the packet received by said receiving, displaying the device list, selecting a device from the device list, based on a received radio field intensity of the packet, selecting a device from the device list, based on a selection operation by a user, and transmitting data to the device selected by said first-mentioned selecting or said second-mentioned selecting.
  • FIG. 1 is a schematic block diagram of a data communication system including a mobile terminal as an information processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of the mobile terminal appearing in FIG. 1 .
  • FIG. 3 is a schematic block diagram of an MFP appearing in FIG. 1 .
  • FIG. 4 is a sequence diagram useful in explaining BLE communication performed in the data communication system.
  • FIG. 5 is a flowchart of a job transmission process performed by the mobile terminal.
  • FIGS. 6A to 6F are examples of various operation screens of a job transmission application, displayed on a display section appearing in FIG. 2 , in which FIG. 6A shows a top screen of the job transmission application, FIG. 6B shows a notification for enabling a Bluetooth function, FIG. 6C shows a notification indicating unavailability of the job transmission application, FIG. 6D shows a notification indicating that a job transmission destination is not set, FIG. 6E shows a notification for terminating the job transmission application, and FIG. 6F shows a screen for setting a job transmission destination.
  • FIG. 7 is a flowchart of a list generation process performed by the mobile terminal.
  • FIG. 8 is a flowchart of a communication switching process performed by the mobile terminal.
  • FIG. 9A is a flowchart of a communication setting process performed by the mobile terminal.
  • FIG. 9B is a continuation of FIG. 9A .
  • the description will be given of a case where the present invention is applied to a mobile terminal as an information processing apparatus, this is not limitative, but the present invention can be applied to any other communication apparatus, insofar as it is a communication apparatus capable of performing wireless communication.
  • FIG. 1 is a schematic block diagram of a data communication system 100 including the mobile terminal as the information processing apparatus according to the embodiment.
  • the data communication system 100 includes the mobile terminal, denoted by reference numeral 101 , and an MFP (Multi-Function Peripheral) 102 as the data communication apparatus.
  • the mobile terminal 101 includes a controller 103 , a wireless LAN communication section 104 , a Bluetooth communication section 105 , and a UI (User Interface) section 106 .
  • the controller 103 and each of the wireless LAN communication section 104 , the Bluetooth communication section 105 , and the UI section 106 are connected to each other.
  • the MFP 102 includes a controller 107 , a wireless LAN communication section 108 , a Bluetooth communication section 109 , a scanner section 110 , a printer section 111 , and a UI section 112 .
  • the controller 107 and each of the wireless LAN communication section 108 , the Bluetooth communication section 109 , the scanner section 110 , the printer section 111 , and the UI section 112 are connected to each other.
  • the mobile terminal 101 is one of a mobile phone, such as a smartphone, a tablet PC, a notebook PC, a PDA, and the like.
  • the controller 103 controls each of the components connected to the controller 103 .
  • the wireless LAN communication section 104 includes an antenna for performing wireless LAN communication, such as Wi-Fi communication.
  • the mobile terminal 101 performs Wi-Fi communication with the MFP 102 including the wireless LAN communication section 108 via the wireless LAN communication section 104 to transmit a print job of which the data is large-volume data, to the MFP 102 .
  • the Bluetooth communication section 105 includes an antenna for performing wireless communication using Bluetooth.
  • the mobile terminal 101 performs BLE (Bluetooth Low Energy) communication with the MFP 102 including the Bluetooth communication section 109 via the Bluetooth communication section 105 to receive communication setting information from the MFP 102 , for performing Wi-Fi communication connection to the MFP 102 .
  • the UI section 106 is a user interface unit used by a user for operating the mobile terminal 101 .
  • various settings of a job transmission application, referred to hereinafter, which is used when performing BLE communication are configured by user's operation of the UI section 106 .
  • the MFP 102 has various functions, such as a print function, a scan function, a copy function, and a FAX function.
  • the controller 107 controls each of the components connected to the controller 107 .
  • the wireless LAN communication section 108 includes an antenna for performing wireless LAN communication, such as Wi-Fi communication.
  • the Bluetooth communication section 109 includes an antenna for performing wireless communication using Bluetooth, such as BLE communication.
  • the scanner section 110 performs scan processing based on a control signal sent from the controller 107 . For example, the scanner section 110 reads image information of an original placed on an original platen glass, not shown, generates image data based on the read image information, and sends the generated image data to the controller 107 .
  • the printer section 111 performs print processing based on a control signal sent from the controller 107 .
  • the printer section 111 performs printing on a recording sheet based on the image data sent from the controller 107 .
  • the UI section 112 is a user interface unit used by a user for operating the MFP 102 .
  • FIG. 2 is a schematic block diagram of the mobile terminal 101 appearing in FIG. 1 .
  • the controller 103 includes a CPU 201 , a RAM 202 , a ROM 203 , a storage device 204 , a call section 205 , a display controller 206 , an operating section controller 207 , a wireless LAN controller 208 , a communication section 209 , and a Bluetooth controller 210 . These components are interconnected by a bus 211 .
  • the UI section 106 includes a display section 212 , a touch panel 213 , and keys 214 .
  • the CPU 201 performs centralized control of the overall operation of the mobile terminal 101 .
  • the RAM 202 is used as a work area for the CPU 201 , and further, stores various operation data and various programs used by the CPU 201 .
  • the ROM 203 stores various programs used by the CPU 201 , image data, and various applications used when the mobile terminal 101 performs BLE communication with the MFP 102 .
  • the storage device 204 is a memory device including an SD card and an SSD, for storing large-volume programs and various data.
  • the call section 205 performs voice communication by a telephone function.
  • the display controller 206 performs data communication with the display section 212 of the UI section 106 .
  • the operating section controller 207 performs data communication with the touch panel 213 and the keys 214 of the UI section 106 .
  • the wireless LAN controller 208 performs data communication with various apparatuses, such as an apparatus having a Wi-Fi communication function, via the wireless LAN communication section 104 .
  • the communication section 209 performs data communication with various devices connected to a USB connector, not shown.
  • the Bluetooth controller 210 performs data communication with various apparatuses each having a Bluetooth function. Further, the Bluetooth controller 210 makes a setting for enabling or disabling the Bluetooth function of the mobile terminal 101 based on setting information for controlling the Bluetooth function (hereinafter referred to as the “BT setting information”), which is set by user's operation of the UI section 106 .
  • BT setting information setting information for controlling the Bluetooth function
  • the display section 212 displays various operation screens according to control signals sent from the display controller 206 .
  • the display section 212 displays the operation screens of the job transmission application, referred to hereinafter, for transmitting the job.
  • the touch panel 213 and the keys 214 transmit various setting information set by user's operation of the touch panel 213 and the keys 214 to the operating section controller 207 .
  • FIG. 3 is a schematic block diagram of the MFP 102 appearing in FIG. 1 .
  • the MFP 102 includes an original detection section 315 , in addition to the controller 107 , the wireless LAN communication section 108 , the Bluetooth communication section 109 , the scanner section 110 , the printer section 111 , and the UI section 112 , which are described with reference to FIG. 1 .
  • the controller 107 includes a CPU 301 , a RAM 302 , a ROM 303 , a storage device 304 , an image processor 305 , an engine interface 306 , a scanner interface 307 , a wireless LAN controller 308 , an operating section controller 309 , a Bluetooth controller 310 , a USB interface 311 , a network interface 312 , and a FAX interface 313 . These components are interconnected by a bus 314 .
  • the CPU 301 performs centralized control of the overall operation of the MFP 102 .
  • the RAM 302 is used as a work area for the CPU 301 , and further, stores various operation data and various programs used by the CPU 301 .
  • the RAM 302 stores image data subjected to image processing performed by the image processor 305
  • the ROM 303 stores various programs used by the CPU 301 , image data, and setting data.
  • the storage device 304 is a memory device including an HDD and an SSD, for storing large-volume programs and various data.
  • the engine interface 306 performs data communication with the printer section 111 .
  • the scanner interface 307 performs data communication with the scanner section 110 .
  • the wireless LAN controller 308 performs data communication with various apparatuses, such as an apparatus having the Wi-Fi communication function, via the wireless LAN communication section 108 .
  • the operating section controller 309 performs data communication with the UI section 112 .
  • the Bluetooth controller 310 performs data communication with various apparatuses each having the Bluetooth function, via the Bluetooth communication section 109 .
  • the USB interface 311 performs data communication with various devices connected to a USB connector, not shown.
  • the network interface 312 performs network communication with various apparatuses connected to a LAN 316 .
  • the FAX interface 313 performs facsimile communication with other MFPs each having a facsimile communication function and connected to a public line network 317 .
  • the original detection section 315 detects whether or not an original is placed on the original platen glass, and when the original detection section 315 detects an original placed on the original platen glass, it notifies the CPU 301 of the detection.
  • FIG. 4 is a sequence diagram useful in explaining BLE communication performed in the data communication system 100 shown in FIG. 1 .
  • the mobile terminal 101 and the MFP 102 are both in a standby state in which packet communication is not performed. Then, when transmission of an advertising packet is instructed by the CPU 301 , the MFP 102 shifts to an advertising state, and transmits the advertising packet to an unspecified number of destinations (hereinafter referred to as the “broadcast transmission”) simultaneously (step S 401 ).
  • the advertising packet includes a model name (apparatus name) and address information that identifies the MFP 102 , a Tx power level indicative of a radio field intensity of radio waves transmitted from the MFP 102 , UUID (Universally Unique IDentifier) information of the MFP 102 , and so forth.
  • the MFP 102 continuously transmits an advertising packet by broadcast transmission at fixed intervals (step S 402 ).
  • ADV_IND for connecting to an unspecified large number of apparatuses is used.
  • the mobile terminal 101 shifts to a scanning state, and receives the advertising packet transmitted by broadcast transmission.
  • the scanning state includes two scanning states: passive scan and active scan.
  • the scanning state is passive scan.
  • the mobile terminal 101 analyzes the received advertising packet, and identifies a transmission source of the advertising packet.
  • the mobile terminal 101 transmits a scan request (SCAN_REQ) to the identified transmission source, i.e. the MFP 102 , for requesting transmission of detailed information of the MFP 102 (step S 403 ).
  • the scan state of the mobile terminal 101 is shifted from passive scan to active scan.
  • the MFP 102 transmits a scan response (SCAN_RESP) including the detailed information of the MFP 102 to the mobile terminal 101 in response to the scan request (SCAN_REQ) transmitted from the mobile terminal 101 (step S 404 ).
  • the mobile terminal 101 stores the detailed information of the MFP 102 , included in the received scan response, e.g. in the RAM 202 , determines the MFP 102 as a connection destination by performing a job transmission process described hereinafter with reference to FIG. 5 , and shifts to an initiating state.
  • the mobile terminal 101 Upon receipt of the advertising packet transmitted from the MFP 102 , the mobile terminal 101 having shifted to the initiating state transmits to the MFP 102 a connection request (CONNET_REQ) for requesting BLE communication connection thereto (step S 405 ).
  • the MFP 102 Upon receipt of the connection request (CONNET_REQ) transmitted from the mobile terminal 101 , the MFP 102 performs BLE communication connection.
  • BLE communication between the mobile terminal 101 and the MFP 102 is established, and the mobile terminal 101 and the MFP 102 shift to a connected stat, followed by terminating the present process.
  • FIG. 5 is a flowchart of the job transmission process performed by the mobile terminal 101 .
  • the job transmission process in FIG. 5 is performed by the CPU 201 of the mobile terminal 101 , which executes programs stored in the ROM 203 and the storage device 204 .
  • the CPU 201 determines whether or not the job transmission application for making settings of a job to be transmitted has been activated (step S 501 ). If the job transmission application is activated, a top screen 601 shown in FIG. 6A is displayed on the display section 212 of the mobile terminal 101 . The top screen 601 displays a setting button group 602 for setting various jobs to be transmitted by the job transmission application and a device selection button 603 for setting a job transmission destination.
  • the CPU 201 determines whether or not the Bluetooth function of the mobile terminal 101 has been enabled (step S 502 ).
  • the enabling or disabling of the Bluetooth function is set based on the BT setting information set by user's operation of the UI section 106 .
  • step S 502 If it is determined in the step S 502 that the Bluetooth function has been enabled, the CPU 201 proceeds to a step S 506 without executing steps S 503 and S 504 .
  • the CPU 201 displays an operation screen 604 , shown in FIG. 6B , for prompting the user to make a setting for enabling the Bluetooth function (step S 503 ). Then, the CPU 201 determines which of a setting button 605 for making a setting for enabling the Bluetooth function and a cancel button 606 for not making a setting for enabling the Bluetooth function has been pressed on the operation screen 604 (step S 504 ).
  • the CPU 201 displays an operation screen 607 shown in FIG. 6C on the display section 212 so as to notify the user that the job transmission process cannot be performed. Then, the CPU 201 determines whether or not which of an OK button 608 and a return button 609 has been pressed on the operation screen 607 (step S 505 ).
  • step S 505 If it is determined in the step S 505 that the OK button 608 has been pressed, the CPU 201 proceeds to a step S 509 .
  • step S 505 If it is determined in the step S 505 that the return button 609 has been pressed, the CPU 201 returns to the step S 504 .
  • the job transmission destination candidate list records a model name (apparatus name) that identifies an apparatus capable of performing BLE communication as a candidate of a job transmission destination (hereinafter referred to as the “job transmission destination candidate apparatus”) out of a plurality of apparatuses compatible with the job transmission application (hereinafter referred to as the “application-compatible apparatus”), which are set in advance.
  • a model name apparatus name
  • the CPU 201 determines that generation of the job transmission destination candidate list has been instructed.
  • the CPU 201 performs a list generation process in FIG. 7 , and thereby generates the job transmission destination candidate list (step S 507 ). Then, by performing a communication switching process described hereinafter with reference to FIG. 8 , the CPU 201 performs BLE communication connection to an apparatus which is determined, based on the job transmission destination candidate list, as a destination to which the job is to be transmitted (hereinafter referred to as the “job transmission destination apparatus”), and makes settings for Wi-Fi-communication with the job transmission destination apparatus based on the communication setting information for Wi-Fi communication connection, acquired by BLE communication (step S 508 ).
  • the CPU 201 terminates the job transmission application (step S 509 ).
  • an operation screen 612 shown in FIG. 6E , for making a setting for the Bluetooth function before terminating the job transmission application is displayed on the display section 212 .
  • the CPU 201 terminates the job transmission application in a state where the Bluetooth function is held enabled, whereas when a button 614 is pressed on the operation screen 612 , the CPU 201 makes a setting for disabling the Bluetooth function and terminates the job transmission application, whereafter the present process is terminated.
  • the CPU 201 displays the operation screen 610 on the display section 212 , and determines which of a cancel button 615 and the device selection setting button 611 has been pressed on the operation screen 610 (step S 510 ).
  • step S 510 If it is determined in the step S 510 that the device selection setting button 611 has been pressed, the CPU 201 returns to the step S 506 .
  • the CPU 201 determines that the job transmission process using the job transmission application is not performed, and terminates the present process.
  • step S 510 If it is determined in the step S 510 that cancel button 615 has been pressed on the operation screen 610 , the CPU 201 executes the step S 509 , and terminates the present process.
  • FIG. 7 is a flowchart of the list generation process performed by the mobile terminal 101 in the step S 507 of the job transmission process in FIG. 5 .
  • the CPU 201 shifts the operation state of the Bluetooth controller 210 from the standby state to the scanning state, as described with reference FIG. 4 (step S 701 ). Then, the CPU 201 determines whether or not an advertising packet has been received via the Bluetooth communication section 105 (step S 702 ). Note that an advertising packet is transmitted e.g. from each of a plurality of apparatuses capable of performing BLE communication by broadcast transmission. In the present embodiment, the step S 702 and steps S 703 and S 706 , referred to hereinafter, are executed with respect to the advertising packet transmitted from each of the plurality of apparatuses by broadcast transmission.
  • the CPU 201 determines whether or not the transmission source of the received advertising packet (hereinafter referred to as the “packet transmission source”) is an application-compatible apparatus (step S 703 ). In the step S 703 , the CPU 201 determines whether or not the transmission source of the received advertising packet is an application-compatible apparatus, based on the address information, UUID information, and data identifiable by the job transmission application, which are included in the advertising packet, for identification of the transmission source of the advertising packet.
  • the CPU 201 causes the Bluetooth controller 210 to transmit a scan request (SCAN_REQ) to the packet transmission source, for requesting transmission of detailed information of the packet transmission source (step S 706 ). Then, the CPU 201 acquires a scan response (SCAN_RESP) transmitted from the packet transmission source via the Bluetooth controller 210 (step S 707 ).
  • the scan response (SCAN_RESP) includes a model name that identifies the packet transmission source, and information on various processing operations which can be performed by the packet transmission source, such as information on printable sheet sizes and types.
  • the CPU 201 generates the job transmission destination candidate list based on the acquired scan response (SCAN_RESP) (step S 708 ). More specifically, in the present embodiment, out of the plurality of application-compatible apparatuses, only the model name corresponding to the packet transmission source which has transmitted the scan response (SCAN_RESP) is recorded in the job transmission destination candidate list. In the step S 708 , for example, if the CPU 201 does not receive an advertising packet from a packet transmission source corresponding to a model name recorded in the job transmission destination candidate list via the Bluetooth controller 210 for a specified time period, the model name corresponding to this packet transmission source is deleted from the job transmission destination candidate list. Then, the CPU 201 determines whether or not the update of the job transmission destination candidate list is instructed by the user (step S 709 ).
  • step S 709 If it is determined in the step S 709 that the update of the job transmission destination candidate list is instructed, the CPU 201 returns to the step S 702 , whereas if the update of the job transmission destination candidate list is not instructed, the CPU 201 proceeds to the step S 508 in FIG. 5 .
  • step S 702 If it is determined in the step S 702 that an advertising packet has not been received, or if it is determined in the step S 703 that the transmission source of the received advertising packet is not an application-compatible apparatus, the CPU 201 determines whether or not termination of the job transmission application is instructed by the user (step S 704 ).
  • step S 704 If it is determined in the step S 704 that termination of the job transmission application is not instructed, the CPU 201 returns to the step S 702 , whereas if termination of the job transmission application is instructed, the CPU 201 terminates the job transmission application (step S 705 ), followed by terminating the present process.
  • FIG. 8 is a flowchart of the communication switching process performed by the mobile terminal 101 in the step S 508 of the job transmission process in FIG. 5 .
  • the CPU 201 determines whether or not a setting button 616 for performing the setting of print processing has been pressed by the user on the top screen 601 (step S 801 ), and if the setting button 616 has been pressed (YES to the step S 801 ), the CPU 201 sets print setting information for executing print processing based on user's operation of the UI section 106 (step S 802 ). Then, the CPU 201 determines whether or not the setting of the print setting information is completed (step S 803 ).
  • step S 804 the CPU 201 performs a communication setting process, described in detail hereinafter with reference to FIGS. 9A and 9B , to thereby make communication settings for transmitting a print job to the job transmission destination apparatus determined using BLE communication. More specifically, in the step S 804 , in order to transmit the print job, which has been generated based on the print setting information set in the step S 802 (hereinafter referred to as the “set print job”), to the job transmission destination apparatus determined using BLE communication, communication settings for Wi-Fi communication are made. Then, the CPU 201 cancels the communication settings for BLE communication to stop BLE communication (step S 805 ).
  • the CPU 201 transmits the set print job to the MFP 102 using Wi-Fi communication via the wireless LAN communication section 104 (step S 806 ). Then, when a notification indicating receipt of the set print job is acquired from the MFP 102 (YES to a step S 807 ), the CPU 201 cancels the communication settings for Wi-Fi communication, stops Wi-Fi communication (step S 808 ), and proceeds to the step S 509 in FIG. 5 .
  • the CPU 201 determines whether or not termination of the job transmission application is instructed by the user (step S 809 ).
  • step S 809 If it is determined in the step S 809 that termination of the job transmission application is not instructed by the user, the CPU 201 returns to the step S 802 .
  • the CPU 201 terminates the present process.
  • FIGS. 9A and 9B are a flowchart of the communication setting process performed by the mobile terminal 101 in the step S 804 of the communication switching process in FIG. 8 .
  • the data of the set print job is assumed to be large-volume data including various print setting information used for print processing, and hence short-distance wireless communication, such as NFC, which is low in communication speed, is not suitable for transmission of the set print job.
  • short-distance wireless communication such as NFC
  • Wi-Fi communication it is necessary to make communication settings for performing wireless communication suitable for transmission of large-volume data, such as Wi-Fi communication.
  • the communication setting information is transmitted from the MFP 102 to the mobile terminal 101 using NFC, and the communication settings for Wi-Fi communication are made based on the transmitted communication setting information.
  • NFC is not in widespread use, and there are many devices which are not equipped with the NFC function. Therefore, for example, if one of the mobile terminal 101 and the MFP 102 is not equipped with the NFC function, NFC cannot be performed between the mobile terminal 101 and the MFP 102 , and as a result, it is impossible to facilitate making communication settings for the mobile terminal 101 and the MFP 102 .
  • distances from the mobile terminal 101 to the job transmission destination candidate apparatuses are calculated using BLE communication in widespread use, and one of the job transmission destination candidate apparatuses is determined, based on the calculated distances, as the job transmission destination apparatus, whereby the communication setting information of Wi-Fi communication is transmitted from the determined job transmission destination apparatus to the mobile terminal 101 .
  • the CPU 201 determines whether or not an “approach-and-connect mode” is set for determining a job transmission destination apparatus based on distances to job transmission destination candidate apparatuses, which are calculated using BLE communication (step S 901 ).
  • step S 901 when the job transmission destination apparatus is set by user's operation of the UI section 106 (YES to a step S 902 ), the CPU 201 proceeds to a step S 908 .
  • the device selection button 603 on the top screen 601 is pressed by the user, for example, an operation screen 617 shown in FIG. 6F for setting the job transmission destination apparatus is displayed on the display section 212 .
  • the operation screen 617 displays the model names recorded in the job transmission destination candidate list generated in the step S 707 .
  • step S 902 when the user selects one of the plurality of model names displayed on the operation screen 617 , a job transmission destination candidate apparatus corresponding to the selected model name is determined as the job transmission destination apparatus.
  • step S 903 the CPU 201 sets a specified value for determining a job transmission destination apparatus, which is used in a step S 906 , referred to hereinafter (step S 903 ).
  • the specified value is set to a distance to a job transmission destination apparatus within which the user having the mobile terminal 101 can operate the job transmission destination apparatus, and in the present embodiment, the specified value is set to a value e.g. within a range of 30 cm to 1 m.
  • the specified value is stored in the ROM 203 in advance, the specified value may be set by user's operation of the UI section 106 .
  • the CPU 201 measures a radio field intensity of an advertising packet transmitted from each of the job transmission destination candidate apparatuses corresponding to the model names recorded in the job transmission destination candidate list generated in the step S 707 in FIG. 7 (step S 904 ). Then, the CPU 201 acquires a Tx power level included in each transmitted advertising packet, and calculates a distance between the mobile terminal 101 and each job transmission destination candidate apparatus based on the measured radio field intensity and the acquired Tx power level (step S 905 ).
  • the CPU 201 calculates, based the Tx power level included in the advertising packet transmitted from each job transmission destination candidate apparatus and the radio field intensity measured in the step S 904 based on a intensity of electric wave transmitted from the job transmission destination candidate apparatus and received by the mobile terminal 101 (hereinafter referred to as the “received radio field intensity”), a distance between the mobile terminal 101 and the job transmission destination candidate apparatus. Then, the CPU 201 determines whether or not there is an apparatus which is shorter in distance from the mobile terminal 101 than the specified value set in the step S 903 (hereinafter referred to as the “specified value-satisfying apparatus”) among the job transmission destination candidate apparatuses (step S 906 ).
  • the CPU 201 determines the specified value-satisfying apparatus as the job transmission destination apparatus (step S 907 ). Then, the CPU 201 transmits to the job transmission destination apparatus a connection request (CONNECT_REQ) for requesting BLE communication connection thereto (step S 908 ). Then, the CPU 201 determines whether or not BLE communication connection to the job transmission destination apparatus has been established (step S 909 ).
  • step S 909 BLE communication connection to the job transmission destination apparatus If it is determined in the step S 909 BLE communication connection to the job transmission destination apparatus has been established, the process proceeds to a step S 910 in FIG. 9B , wherein the CPU 201 transmits to the job transmission destination apparatus a notification for requesting the communication setting information of Wi-Fi communication. Then, the CPU 201 determines whether or not the communication setting information of Wi-Fi communication of the job transmission destination apparatus has been acquired therefrom (step S 911 ).
  • the CPU 201 makes communication settings for Wi-Fi communication with the job transmission destination apparatus based on the acquired communication setting information (step S 912 ). Then, the CPU 201 determines whether or not Wi-Fi communication connection to the job transmission destination apparatus has been established (step S 913 ).
  • the CPU 201 proceeds to the step S 805 in FIG. 8 .
  • the CPU 201 determines whether or not termination of the job transmission application is instructed by the user (step S 914 ), and if termination of the job transmission application is not instructed, the CPU 201 returns to the step S 904 .
  • the CPU 201 determines whether or not termination of the job transmission application is instructed by the user (step S 915 ), and if termination of the job transmission application is not instructed, the CPU 201 returns to the step S 908 .
  • the CPU 201 determines whether or not termination of the job transmission application is instructed by the user (step S 916 ), and if termination of the job transmission application is not instructed, the CPU 201 returns to the step S 911 .
  • the CPU 201 terminates the present process.
  • the distances from the mobile terminal 101 to the job transmission destination candidate apparatuses are calculated, one of the job transmission destination candidate apparatuses is determined as the job transmission destination apparatus based on the calculated distances, whereafter the communication setting information of Wi-Fi communication is transmitted from the job transmission destination apparatus to the mobile terminal 101 .
  • a specified value indicative of a distance within which a user can operate the job transmission destination apparatus is set in advance, and out of the job transmission destination candidate apparatuses, a specified value-satisfying apparatus e.g. the MFP 102 is determined as the job transmission destination apparatus.
  • the MFP 102 is an apparatus which exists at a location from which the user having the mobile terminal 101 can operate the job transmission destination apparatus, and hence a case where the MFP 102 is a specified value-satisfying apparatus is nothing other than a case where the user is about to operate the MFP 102 . Therefore, BLE communication connection is established between the mobile terminal 101 and the MFP 102 only when the user is about to operate the MFP 102 , and hence it is possible to prevent data communication from being performed more than necessary between the mobile terminal 101 and the MFP 102 .
  • Embodiment(s) of the present invention can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions (e.g., one or more programs) recorded on a storage medium (which may also be referred to more fully as a ‘non-transitory computer-readable storage medium’) to perform the functions of one or more of the above-described embodiment(s) and/or that includes one or more circuits (e.g., application specific integrated circuit (ASIC)) for performing the functions of one or more of the above-described embodiment(s), and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s) and/or controlling the one or more circuits to perform the functions of one or more of the above-described embodiment(s).
  • computer executable instructions e.g., one or more programs
  • a storage medium which may also be referred to more fully as a
  • the computer may comprise one or more processors (e.g., central processing unit (CPU), micro processing unit (MPU)) and may include a network of separate computers or separate processors to read out and execute the computer executable instructions.
  • the computer executable instructions may be provided to the computer, for example, from a network or the storage medium.
  • the storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)TM), a flash memory device, a memory card, and the like.

Abstract

An information processing apparatus which makes it possible to make communication settings with ease. A mobile terminal as the information processing apparatus includes a Bluetooth controller that causes a Bluetooth communication section to receive a packet, a CPU that generates a device list, based on the packet, a display section that displays the device list. The CPU selects a device from the device list based on a received radio field intensity of the packet or selects a device from the device list based on a selection operation by a user. The mobile terminal further includes a wireless LAN controller that cause a wireless LAN communication section to transmit data to the selected device.

Description

    BACKGROUND OF THE INVENTION Field of the Invention
  • The present invention relates to an information processing apparatus, a method of controlling the information processing apparatus, and a storage medium, and more particularly to an information processing apparatus that enables communication settings to be made with ease by wireless communication, a method of controlling the information processing apparatus, and a storage medium.
  • Description of the Related Art
  • When performing various data communication between a data communication apparatus, such as an MFP, and a mobile terminal, such as a smartphone or a tablet PC, wireless communication based on various communication standards is performed according to communication settings of the MFP and the mobile terminal. In data communication, in a case where communication of large-volume data is performed, communication, such as Wi-Fi communication using the standard of Wi-Fi, is performed. On the other hand, in a case where apparatuses are relatively close to each other, and communication of small-volume data is performed, short-distance wireless communication, such as NFC (Near Field Communication), is performed. As short-distance wireless communication, wireless communication using Bluetooth has come into widespread use, and more particularly, BLE (Bluetooth Low Energy) communication which makes it possible to perform power-saving data communication is widely used. Before data communication is performed, wireless communication suitable for its use is selected, and the communication settings are switched according to the selected wireless communication (see e.g. Japanese Patent Laid-Open Publication No. 2004-364145).
  • For example, before transmitting a print job for performing print processing from a mobile terminal to an MFP, communication settings are changed by using NFC. In NFC, only by moving the devices each having an NFC function closer to each other, it is possible to make communication settings for the devices with ease. For example, only by a user causing a mobile terminal to touch an NFC module provided in an MFP, settings of communication, such as Wi-Fi communication, between the MFP and the mobile terminal are made. This makes it possible, even in a case where the data of a print job is large-volume data, for the mobile terminal to transmit the print job to the MFP by performing Wi-Fi communication (see e.g. Japanese Patent Laid-Open Publication No. 2014-050015).
  • However, in the technique disclosed in Japanese Patent Laid-Open Publication No. 2014-050015, there is a case where the communication settings cannot be made for the MFP and the mobile terminal. For example, if one of the MFP and the mobile terminal is not equipped with the NFC function, NFC cannot be performed between the MFP and the mobile terminal, and as a result, it is impossible to make communication settings for the MFP and the mobile terminal with ease.
  • SUMMARY OF THE INVENTION
  • The present invention provides an information processing apparatus which makes it possible to make communication settings with ease, a method of controlling the information processing apparatus, and a storage medium.
  • In a first aspect of the present invention, there is provided an information processing apparatus comprising a reception unit configured to receive a packet, a generation unit configured to generate a device list, based on the packet received by the reception unit, a display unit configured to display the device list, a first selection unit configured to select a device from the device list, based on a received radio field intensity of the packet, a second selection unit configured to select a device from the device list, based on a selection operation by a user, and a transmission unit configured to transmit data to the device selected by the first selection unit or the second selection unit.
  • In a second aspect of the present invention, there is provided a method of controlling an information processing apparatus, comprising receiving a packet, generating a device list, based on the packet received by said receiving, displaying the device list, selecting a device from the device list, based on a received radio field intensity of the packet, selecting a device from the device list, based on a selection operation by a user, and transmitting data to the device selected by said first-mentioned selecting or said second-mentioned selecting.
  • In a third aspect of the present invention, there is provided a non-transitory computer-readable storage medium storing a computer-executable program for executing a method of controlling an information processing apparatus, wherein the method comprises receiving a packet, generating a device list, based on the packet received by said receiving, displaying the device list, selecting a device from the device list, based on a received radio field intensity of the packet, selecting a device from the device list, based on a selection operation by a user, and transmitting data to the device selected by said first-mentioned selecting or said second-mentioned selecting.
  • According to the present invention, it is possible to make communication settings with ease.
  • Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic block diagram of a data communication system including a mobile terminal as an information processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of the mobile terminal appearing in FIG. 1.
  • FIG. 3 is a schematic block diagram of an MFP appearing in FIG. 1.
  • FIG. 4 is a sequence diagram useful in explaining BLE communication performed in the data communication system.
  • FIG. 5 is a flowchart of a job transmission process performed by the mobile terminal.
  • FIGS. 6A to 6F are examples of various operation screens of a job transmission application, displayed on a display section appearing in FIG. 2, in which FIG. 6A shows a top screen of the job transmission application, FIG. 6B shows a notification for enabling a Bluetooth function, FIG. 6C shows a notification indicating unavailability of the job transmission application, FIG. 6D shows a notification indicating that a job transmission destination is not set, FIG. 6E shows a notification for terminating the job transmission application, and FIG. 6F shows a screen for setting a job transmission destination.
  • FIG. 7 is a flowchart of a list generation process performed by the mobile terminal.
  • FIG. 8 is a flowchart of a communication switching process performed by the mobile terminal.
  • FIG. 9A is a flowchart of a communication setting process performed by the mobile terminal.
  • FIG. 9B is a continuation of FIG. 9A.
  • DESCRIPTION OF THE EMBODIMENTS
  • The present invention will now be described in detail below with reference to the accompanying drawings showing embodiments thereof.
  • Although in the present embodiment, the description will be given of a case where the present invention is applied to a mobile terminal as an information processing apparatus, this is not limitative, but the present invention can be applied to any other communication apparatus, insofar as it is a communication apparatus capable of performing wireless communication.
  • FIG. 1 is a schematic block diagram of a data communication system 100 including the mobile terminal as the information processing apparatus according to the embodiment.
  • Referring to FIG. 1, the data communication system 100 includes the mobile terminal, denoted by reference numeral 101, and an MFP (Multi-Function Peripheral) 102 as the data communication apparatus. The mobile terminal 101 includes a controller 103, a wireless LAN communication section 104, a Bluetooth communication section 105, and a UI (User Interface) section 106. The controller 103 and each of the wireless LAN communication section 104, the Bluetooth communication section 105, and the UI section 106 are connected to each other. The MFP 102 includes a controller 107, a wireless LAN communication section 108, a Bluetooth communication section 109, a scanner section 110, a printer section 111, and a UI section 112. The controller 107 and each of the wireless LAN communication section 108, the Bluetooth communication section 109, the scanner section 110, the printer section 111, and the UI section 112 are connected to each other.
  • The mobile terminal 101 is one of a mobile phone, such as a smartphone, a tablet PC, a notebook PC, a PDA, and the like. The controller 103 controls each of the components connected to the controller 103. The wireless LAN communication section 104 includes an antenna for performing wireless LAN communication, such as Wi-Fi communication. For example, the mobile terminal 101 performs Wi-Fi communication with the MFP 102 including the wireless LAN communication section 108 via the wireless LAN communication section 104 to transmit a print job of which the data is large-volume data, to the MFP 102. The Bluetooth communication section 105 includes an antenna for performing wireless communication using Bluetooth. For example, the mobile terminal 101 performs BLE (Bluetooth Low Energy) communication with the MFP 102 including the Bluetooth communication section 109 via the Bluetooth communication section 105 to receive communication setting information from the MFP 102, for performing Wi-Fi communication connection to the MFP 102. The UI section 106 is a user interface unit used by a user for operating the mobile terminal 101. In the present embodiment, various settings of a job transmission application, referred to hereinafter, which is used when performing BLE communication, are configured by user's operation of the UI section 106.
  • The MFP 102 has various functions, such as a print function, a scan function, a copy function, and a FAX function. The controller 107 controls each of the components connected to the controller 107. The wireless LAN communication section 108 includes an antenna for performing wireless LAN communication, such as Wi-Fi communication. The Bluetooth communication section 109 includes an antenna for performing wireless communication using Bluetooth, such as BLE communication. The scanner section 110 performs scan processing based on a control signal sent from the controller 107. For example, the scanner section 110 reads image information of an original placed on an original platen glass, not shown, generates image data based on the read image information, and sends the generated image data to the controller 107. The printer section 111 performs print processing based on a control signal sent from the controller 107. For example, the printer section 111 performs printing on a recording sheet based on the image data sent from the controller 107. The UI section 112 is a user interface unit used by a user for operating the MFP 102.
  • FIG. 2 is a schematic block diagram of the mobile terminal 101 appearing in FIG. 1.
  • Referring to FIG. 2, the controller 103 includes a CPU 201, a RAM 202, a ROM 203, a storage device 204, a call section 205, a display controller 206, an operating section controller 207, a wireless LAN controller 208, a communication section 209, and a Bluetooth controller 210. These components are interconnected by a bus 211. The UI section 106 includes a display section 212, a touch panel 213, and keys 214.
  • The CPU 201 performs centralized control of the overall operation of the mobile terminal 101. The RAM 202 is used as a work area for the CPU 201, and further, stores various operation data and various programs used by the CPU 201. The ROM 203 stores various programs used by the CPU 201, image data, and various applications used when the mobile terminal 101 performs BLE communication with the MFP 102. The storage device 204 is a memory device including an SD card and an SSD, for storing large-volume programs and various data. The call section 205 performs voice communication by a telephone function. The display controller 206 performs data communication with the display section 212 of the UI section 106. The operating section controller 207 performs data communication with the touch panel 213 and the keys 214 of the UI section 106. The wireless LAN controller 208 performs data communication with various apparatuses, such as an apparatus having a Wi-Fi communication function, via the wireless LAN communication section 104. The communication section 209 performs data communication with various devices connected to a USB connector, not shown. The Bluetooth controller 210 performs data communication with various apparatuses each having a Bluetooth function. Further, the Bluetooth controller 210 makes a setting for enabling or disabling the Bluetooth function of the mobile terminal 101 based on setting information for controlling the Bluetooth function (hereinafter referred to as the “BT setting information”), which is set by user's operation of the UI section 106. The display section 212 displays various operation screens according to control signals sent from the display controller 206. In the present embodiment, before transmitting a job for executing various processing operations to the MFP 102, the display section 212 displays the operation screens of the job transmission application, referred to hereinafter, for transmitting the job. The touch panel 213 and the keys 214 transmit various setting information set by user's operation of the touch panel 213 and the keys 214 to the operating section controller 207.
  • FIG. 3 is a schematic block diagram of the MFP 102 appearing in FIG. 1.
  • Referring to FIG. 3, the MFP 102 includes an original detection section 315, in addition to the controller 107, the wireless LAN communication section 108, the Bluetooth communication section 109, the scanner section 110, the printer section 111, and the UI section 112, which are described with reference to FIG. 1. The controller 107 includes a CPU 301, a RAM 302, a ROM 303, a storage device 304, an image processor 305, an engine interface 306, a scanner interface 307, a wireless LAN controller 308, an operating section controller 309, a Bluetooth controller 310, a USB interface 311, a network interface 312, and a FAX interface 313. These components are interconnected by a bus 314.
  • The CPU 301 performs centralized control of the overall operation of the MFP 102. The RAM 302 is used as a work area for the CPU 301, and further, stores various operation data and various programs used by the CPU 301. The RAM 302 stores image data subjected to image processing performed by the image processor 305, and the ROM 303 stores various programs used by the CPU 301, image data, and setting data. The storage device 304 is a memory device including an HDD and an SSD, for storing large-volume programs and various data. The engine interface 306 performs data communication with the printer section 111. The scanner interface 307 performs data communication with the scanner section 110. The wireless LAN controller 308 performs data communication with various apparatuses, such as an apparatus having the Wi-Fi communication function, via the wireless LAN communication section 108. The operating section controller 309 performs data communication with the UI section 112. The Bluetooth controller 310 performs data communication with various apparatuses each having the Bluetooth function, via the Bluetooth communication section 109. The USB interface 311 performs data communication with various devices connected to a USB connector, not shown. The network interface 312 performs network communication with various apparatuses connected to a LAN 316. The FAX interface 313 performs facsimile communication with other MFPs each having a facsimile communication function and connected to a public line network 317. The original detection section 315 detects whether or not an original is placed on the original platen glass, and when the original detection section 315 detects an original placed on the original platen glass, it notifies the CPU 301 of the detection.
  • Next, BLE communication performed in the data communication system 100 will be described.
  • FIG. 4 is a sequence diagram useful in explaining BLE communication performed in the data communication system 100 shown in FIG. 1.
  • Referring to FIG. 4, first, the mobile terminal 101 and the MFP 102 are both in a standby state in which packet communication is not performed. Then, when transmission of an advertising packet is instructed by the CPU 301, the MFP 102 shifts to an advertising state, and transmits the advertising packet to an unspecified number of destinations (hereinafter referred to as the “broadcast transmission”) simultaneously (step S401). The advertising packet includes a model name (apparatus name) and address information that identifies the MFP 102, a Tx power level indicative of a radio field intensity of radio waves transmitted from the MFP 102, UUID (Universally Unique IDentifier) information of the MFP 102, and so forth. From then on, the MFP 102 continuously transmits an advertising packet by broadcast transmission at fixed intervals (step S402). In the present embodiment, as the type of the advertising packet transmitted by broadcast transmission, ADV_IND for connecting to an unspecified large number of apparatuses is used.
  • On the other hand, when the scan of the advertising packet is instructed by the CPU 201, the mobile terminal 101 shifts to a scanning state, and receives the advertising packet transmitted by broadcast transmission. The scanning state includes two scanning states: passive scan and active scan. When the mobile terminal 101 shifts from the standby state to the scanning state, the scanning state is passive scan. When the advertising packet transmitted by broadcast transmission is received during the passive scan, the mobile terminal 101 analyzes the received advertising packet, and identifies a transmission source of the advertising packet. The mobile terminal 101 transmits a scan request (SCAN_REQ) to the identified transmission source, i.e. the MFP 102, for requesting transmission of detailed information of the MFP 102 (step S403). At this time, the scan state of the mobile terminal 101 is shifted from passive scan to active scan.
  • Then, the MFP 102 transmits a scan response (SCAN_RESP) including the detailed information of the MFP 102 to the mobile terminal 101 in response to the scan request (SCAN_REQ) transmitted from the mobile terminal 101 (step S404). The mobile terminal 101 stores the detailed information of the MFP 102, included in the received scan response, e.g. in the RAM 202, determines the MFP 102 as a connection destination by performing a job transmission process described hereinafter with reference to FIG. 5, and shifts to an initiating state. Upon receipt of the advertising packet transmitted from the MFP 102, the mobile terminal 101 having shifted to the initiating state transmits to the MFP 102 a connection request (CONNET_REQ) for requesting BLE communication connection thereto (step S405). Upon receipt of the connection request (CONNET_REQ) transmitted from the mobile terminal 101, the MFP 102 performs BLE communication connection. By this connection, BLE communication between the mobile terminal 101 and the MFP 102 is established, and the mobile terminal 101 and the MFP 102 shift to a connected stat, followed by terminating the present process.
  • Next, the job transmission process for transmitting a job for executing various processing, such as print processing, from the mobile terminal 101 will be described. In the present embodiment, the description will be given, by way of example, of a case where Wi-Fi communication is used for data communication for transmitting a job.
  • FIG. 5 is a flowchart of the job transmission process performed by the mobile terminal 101.
  • The job transmission process in FIG. 5 is performed by the CPU 201 of the mobile terminal 101, which executes programs stored in the ROM 203 and the storage device 204.
  • Referring to FIG. 5, first, the CPU 201 determines whether or not the job transmission application for making settings of a job to be transmitted has been activated (step S501). If the job transmission application is activated, a top screen 601 shown in FIG. 6A is displayed on the display section 212 of the mobile terminal 101. The top screen 601 displays a setting button group 602 for setting various jobs to be transmitted by the job transmission application and a device selection button 603 for setting a job transmission destination.
  • If it is determined in the step S501 that the job transmission application has been activated, the CPU 201 determines whether or not the Bluetooth function of the mobile terminal 101 has been enabled (step S502). In the present embodiment, the enabling or disabling of the Bluetooth function is set based on the BT setting information set by user's operation of the UI section 106.
  • If it is determined in the step S502 that the Bluetooth function has been enabled, the CPU 201 proceeds to a step S506 without executing steps S503 and S504.
  • If it is determined in the step S502 that the Bluetooth function has been disabled, the CPU 201 displays an operation screen 604, shown in FIG. 6B, for prompting the user to make a setting for enabling the Bluetooth function (step S503). Then, the CPU 201 determines which of a setting button 605 for making a setting for enabling the Bluetooth function and a cancel button 606 for not making a setting for enabling the Bluetooth function has been pressed on the operation screen 604 (step S504).
  • If it is determined in the step S504 that the cancel button 606 has been pressed, the CPU 201 displays an operation screen 607 shown in FIG. 6C on the display section 212 so as to notify the user that the job transmission process cannot be performed. Then, the CPU 201 determines whether or not which of an OK button 608 and a return button 609 has been pressed on the operation screen 607 (step S505).
  • If it is determined in the step S505 that the OK button 608 has been pressed, the CPU 201 proceeds to a step S509.
  • If it is determined in the step S505 that the return button 609 has been pressed, the CPU 201 returns to the step S504.
  • If it is determined in the step S504 that the setting button 605 has been pressed, the CPU 201 makes a setting for enabling the Bluetooth function, and determines whether or not generation of a job transmission destination candidate list has been instructed (step S506). The job transmission destination candidate list records a model name (apparatus name) that identifies an apparatus capable of performing BLE communication as a candidate of a job transmission destination (hereinafter referred to as the “job transmission destination candidate apparatus”) out of a plurality of apparatuses compatible with the job transmission application (hereinafter referred to as the “application-compatible apparatus”), which are set in advance. In the present embodiment, for example, if the device selection button 603 for setting a job transmission destination is pressed on the top screen 601, or if a device selection setting button 611 for setting a job transmission destination is pressed on an operation screen 610, shown in FIG. 6D, which is displayed for notifying the user that the job transmission destination has not been set, the CPU 201 determines that generation of the job transmission destination candidate list has been instructed.
  • If it is determined in the step S506 that generation of the job transmission destination candidate list has been instructed, the CPU 201 performs a list generation process in FIG. 7, and thereby generates the job transmission destination candidate list (step S507). Then, by performing a communication switching process described hereinafter with reference to FIG. 8, the CPU 201 performs BLE communication connection to an apparatus which is determined, based on the job transmission destination candidate list, as a destination to which the job is to be transmitted (hereinafter referred to as the “job transmission destination apparatus”), and makes settings for Wi-Fi-communication with the job transmission destination apparatus based on the communication setting information for Wi-Fi communication connection, acquired by BLE communication (step S508). Then, when termination of the job transmission application is instructed by the user, the CPU 201 terminates the job transmission application (step S509). In the present embodiment, when termination of the job transmission application is instructed by the user, an operation screen 612, shown in FIG. 6E, for making a setting for the Bluetooth function before terminating the job transmission application is displayed on the display section 212. When a button 613 is pressed on the operation screen 612, the CPU 201 terminates the job transmission application in a state where the Bluetooth function is held enabled, whereas when a button 614 is pressed on the operation screen 612, the CPU 201 makes a setting for disabling the Bluetooth function and terminates the job transmission application, whereafter the present process is terminated. Note that in a case where the user instructs termination of the job transmission application either in the list generation process performed in the step S507, which is described in detail hereinafter with reference to FIG. 7, or in the communication switching process performed in the step S508, which is described in detail hereinafter with reference to FIG. 8, the present process is also terminated.
  • If it is determined in the step S506 that generation of the job transmission destination candidate list has not been instructed, the CPU 201 displays the operation screen 610 on the display section 212, and determines which of a cancel button 615 and the device selection setting button 611 has been pressed on the operation screen 610 (step S510).
  • If it is determined in the step S510 that the device selection setting button 611 has been pressed, the CPU 201 returns to the step S506.
  • If it is determined in the step S501 that the job transmission application has not been activated, the CPU 201 determines that the job transmission process using the job transmission application is not performed, and terminates the present process.
  • If it is determined in the step S510 that cancel button 615 has been pressed on the operation screen 610, the CPU 201 executes the step S509, and terminates the present process.
  • FIG. 7 is a flowchart of the list generation process performed by the mobile terminal 101 in the step S507 of the job transmission process in FIG. 5.
  • Referring to FIG. 7, first, the CPU 201 shifts the operation state of the Bluetooth controller 210 from the standby state to the scanning state, as described with reference FIG. 4 (step S701). Then, the CPU 201 determines whether or not an advertising packet has been received via the Bluetooth communication section 105 (step S702). Note that an advertising packet is transmitted e.g. from each of a plurality of apparatuses capable of performing BLE communication by broadcast transmission. In the present embodiment, the step S702 and steps S703 and S706, referred to hereinafter, are executed with respect to the advertising packet transmitted from each of the plurality of apparatuses by broadcast transmission.
  • If it is determined in the step S702 that an advertising packet has been received, the CPU 201 determines whether or not the transmission source of the received advertising packet (hereinafter referred to as the “packet transmission source”) is an application-compatible apparatus (step S703). In the step S703, the CPU 201 determines whether or not the transmission source of the received advertising packet is an application-compatible apparatus, based on the address information, UUID information, and data identifiable by the job transmission application, which are included in the advertising packet, for identification of the transmission source of the advertising packet.
  • If it is determined in the step S703 that the packet transmission source is an application-compatible apparatus, the CPU 201 causes the Bluetooth controller 210 to transmit a scan request (SCAN_REQ) to the packet transmission source, for requesting transmission of detailed information of the packet transmission source (step S706). Then, the CPU 201 acquires a scan response (SCAN_RESP) transmitted from the packet transmission source via the Bluetooth controller 210 (step S707). The scan response (SCAN_RESP) includes a model name that identifies the packet transmission source, and information on various processing operations which can be performed by the packet transmission source, such as information on printable sheet sizes and types.
  • Then, the CPU 201 generates the job transmission destination candidate list based on the acquired scan response (SCAN_RESP) (step S708). More specifically, in the present embodiment, out of the plurality of application-compatible apparatuses, only the model name corresponding to the packet transmission source which has transmitted the scan response (SCAN_RESP) is recorded in the job transmission destination candidate list. In the step S708, for example, if the CPU 201 does not receive an advertising packet from a packet transmission source corresponding to a model name recorded in the job transmission destination candidate list via the Bluetooth controller 210 for a specified time period, the model name corresponding to this packet transmission source is deleted from the job transmission destination candidate list. Then, the CPU 201 determines whether or not the update of the job transmission destination candidate list is instructed by the user (step S709).
  • If it is determined in the step S709 that the update of the job transmission destination candidate list is instructed, the CPU 201 returns to the step S702, whereas if the update of the job transmission destination candidate list is not instructed, the CPU 201 proceeds to the step S508 in FIG. 5.
  • If it is determined in the step S702 that an advertising packet has not been received, or if it is determined in the step S703 that the transmission source of the received advertising packet is not an application-compatible apparatus, the CPU 201 determines whether or not termination of the job transmission application is instructed by the user (step S704).
  • If it is determined in the step S704 that termination of the job transmission application is not instructed, the CPU 201 returns to the step S702, whereas if termination of the job transmission application is instructed, the CPU 201 terminates the job transmission application (step S705), followed by terminating the present process.
  • FIG. 8 is a flowchart of the communication switching process performed by the mobile terminal 101 in the step S508 of the job transmission process in FIG. 5.
  • Referring to FIG. 8, first, the CPU 201 determines whether or not a setting button 616 for performing the setting of print processing has been pressed by the user on the top screen 601 (step S801), and if the setting button 616 has been pressed (YES to the step S801), the CPU 201 sets print setting information for executing print processing based on user's operation of the UI section 106 (step S802). Then, the CPU 201 determines whether or not the setting of the print setting information is completed (step S803).
  • If it is determined in the step S803 that the setting of the print setting information is completed, the CPU 201 performs a communication setting process, described in detail hereinafter with reference to FIGS. 9A and 9B, to thereby make communication settings for transmitting a print job to the job transmission destination apparatus determined using BLE communication (step S804). More specifically, in the step S804, in order to transmit the print job, which has been generated based on the print setting information set in the step S802 (hereinafter referred to as the “set print job”), to the job transmission destination apparatus determined using BLE communication, communication settings for Wi-Fi communication are made. Then, the CPU 201 cancels the communication settings for BLE communication to stop BLE communication (step S805). Then, the CPU 201 transmits the set print job to the MFP 102 using Wi-Fi communication via the wireless LAN communication section 104 (step S806). Then, when a notification indicating receipt of the set print job is acquired from the MFP 102 (YES to a step S807), the CPU 201 cancels the communication settings for Wi-Fi communication, stops Wi-Fi communication (step S808), and proceeds to the step S509 in FIG. 5.
  • If it is determined in the step S803 that the setting of the print setting information is not completed, the CPU 201 determines whether or not termination of the job transmission application is instructed by the user (step S809).
  • If it is determined in the step S809 that termination of the job transmission application is not instructed by the user, the CPU 201 returns to the step S802.
  • If it is determined in the step S809 that termination of the job transmission application is instructed by the user, the CPU 201 terminates the present process.
  • FIGS. 9A and 9B are a flowchart of the communication setting process performed by the mobile terminal 101 in the step S804 of the communication switching process in FIG. 8.
  • In the present example, the data of the set print job is assumed to be large-volume data including various print setting information used for print processing, and hence short-distance wireless communication, such as NFC, which is low in communication speed, is not suitable for transmission of the set print job. For this reason, to transmit the set print job from the mobile terminal 101 to the MFP 102, it is necessary to make communication settings for performing wireless communication suitable for transmission of large-volume data, such as Wi-Fi communication. To facilitate making communication settings for Wi-Fi communication, it is envisaged, for example, that the communication setting information is transmitted from the MFP 102 to the mobile terminal 101 using NFC, and the communication settings for Wi-Fi communication are made based on the transmitted communication setting information. However, NFC is not in widespread use, and there are many devices which are not equipped with the NFC function. Therefore, for example, if one of the mobile terminal 101 and the MFP 102 is not equipped with the NFC function, NFC cannot be performed between the mobile terminal 101 and the MFP 102, and as a result, it is impossible to facilitate making communication settings for the mobile terminal 101 and the MFP 102.
  • To solve this problem, in the present embodiment, distances from the mobile terminal 101 to the job transmission destination candidate apparatuses are calculated using BLE communication in widespread use, and one of the job transmission destination candidate apparatuses is determined, based on the calculated distances, as the job transmission destination apparatus, whereby the communication setting information of Wi-Fi communication is transmitted from the determined job transmission destination apparatus to the mobile terminal 101.
  • Referring to FIGS. 9A and 9B, first, the CPU 201 determines whether or not an “approach-and-connect mode” is set for determining a job transmission destination apparatus based on distances to job transmission destination candidate apparatuses, which are calculated using BLE communication (step S901).
  • In a case where it is determined in the step S901 that the “approach-and-connect mode” is not set, when the job transmission destination apparatus is set by user's operation of the UI section 106 (YES to a step S902), the CPU 201 proceeds to a step S908. In the present embodiment, when the device selection button 603 on the top screen 601 is pressed by the user, for example, an operation screen 617 shown in FIG. 6F for setting the job transmission destination apparatus is displayed on the display section 212. The operation screen 617 displays the model names recorded in the job transmission destination candidate list generated in the step S707. In the step S902, when the user selects one of the plurality of model names displayed on the operation screen 617, a job transmission destination candidate apparatus corresponding to the selected model name is determined as the job transmission destination apparatus.
  • If it is determined in the step S901 that the “approach-and-connect mode” is set, the CPU 201 sets a specified value for determining a job transmission destination apparatus, which is used in a step S906, referred to hereinafter (step S903). The specified value is set to a distance to a job transmission destination apparatus within which the user having the mobile terminal 101 can operate the job transmission destination apparatus, and in the present embodiment, the specified value is set to a value e.g. within a range of 30 cm to 1 m. Although in the step S903, the specified value is stored in the ROM 203 in advance, the specified value may be set by user's operation of the UI section 106. Then, the CPU 201 measures a radio field intensity of an advertising packet transmitted from each of the job transmission destination candidate apparatuses corresponding to the model names recorded in the job transmission destination candidate list generated in the step S707 in FIG. 7 (step S904). Then, the CPU 201 acquires a Tx power level included in each transmitted advertising packet, and calculates a distance between the mobile terminal 101 and each job transmission destination candidate apparatus based on the measured radio field intensity and the acquired Tx power level (step S905). More specifically, in the step S905, the CPU 201 calculates, based the Tx power level included in the advertising packet transmitted from each job transmission destination candidate apparatus and the radio field intensity measured in the step S904 based on a intensity of electric wave transmitted from the job transmission destination candidate apparatus and received by the mobile terminal 101 (hereinafter referred to as the “received radio field intensity”), a distance between the mobile terminal 101 and the job transmission destination candidate apparatus. Then, the CPU 201 determines whether or not there is an apparatus which is shorter in distance from the mobile terminal 101 than the specified value set in the step S903 (hereinafter referred to as the “specified value-satisfying apparatus”) among the job transmission destination candidate apparatuses (step S906).
  • If it is determined in the step S906 that there is a specified value-satisfying apparatus, the CPU 201 determines the specified value-satisfying apparatus as the job transmission destination apparatus (step S907). Then, the CPU 201 transmits to the job transmission destination apparatus a connection request (CONNECT_REQ) for requesting BLE communication connection thereto (step S908). Then, the CPU 201 determines whether or not BLE communication connection to the job transmission destination apparatus has been established (step S909).
  • If it is determined in the step S909 BLE communication connection to the job transmission destination apparatus has been established, the process proceeds to a step S910 in FIG. 9B, wherein the CPU 201 transmits to the job transmission destination apparatus a notification for requesting the communication setting information of Wi-Fi communication. Then, the CPU 201 determines whether or not the communication setting information of Wi-Fi communication of the job transmission destination apparatus has been acquired therefrom (step S911).
  • If it is determined in the step S911 that the communication setting information of Wi-Fi communication of the job transmission destination apparatus has been acquired from the job transmission destination apparatus, the CPU 201 makes communication settings for Wi-Fi communication with the job transmission destination apparatus based on the acquired communication setting information (step S912). Then, the CPU 201 determines whether or not Wi-Fi communication connection to the job transmission destination apparatus has been established (step S913).
  • If it is determined in the step S913 that Wi-Fi communication connection to the job transmission destination apparatus has been established, the CPU 201 proceeds to the step S805 in FIG. 8.
  • If it is determined in the step S906 that there is no specified value-satisfying apparatus, the CPU 201 determines whether or not termination of the job transmission application is instructed by the user (step S914), and if termination of the job transmission application is not instructed, the CPU 201 returns to the step S904.
  • If it is determined in the step S909 that BLE communication connection to the job transmission destination apparatus has not been established, the CPU 201 determines whether or not termination of the job transmission application is instructed by the user (step S915), and if termination of the job transmission application is not instructed, the CPU 201 returns to the step S908.
  • If it is determined in the step S911 that the communication setting information of Wi-Fi communication of the job transmission destination apparatus has not been acquired from the job transmission destination apparatus, the CPU 201 determines whether or not termination of the job transmission application is instructed by the user (step S916), and if termination of the job transmission application is not instructed, the CPU 201 returns to the step S911.
  • If it is determined in the step S914, S915, or S916 that termination of the job transmission application is instructed by the user, the CPU 201 terminates the present process.
  • According to the above-described communication setting process in FIGS. 9A and 9B, the distances from the mobile terminal 101 to the job transmission destination candidate apparatuses are calculated, one of the job transmission destination candidate apparatuses is determined as the job transmission destination apparatus based on the calculated distances, whereafter the communication setting information of Wi-Fi communication is transmitted from the job transmission destination apparatus to the mobile terminal 101. As a consequence, even when neither the mobile terminal 101 nor the job transmission destination apparatus is equipped with the NFC function, communication settings for Wi-Fi communication between the mobile terminal 101 and the job transmission destination apparatus are made based on the communication setting information of Wi-Fi communication transmitted from the job transmission destination apparatus without a user himself/herself making communication settings for data communication, and hence it is possible to make communication settings for the mobile terminal 101 and the job transmission destination apparatus with ease.
  • Further, according to the above-described communication setting process in FIGS. 9A and 9B, a specified value indicative of a distance within which a user can operate the job transmission destination apparatus is set in advance, and out of the job transmission destination candidate apparatuses, a specified value-satisfying apparatus e.g. the MFP 102 is determined as the job transmission destination apparatus. Here, the MFP 102 is an apparatus which exists at a location from which the user having the mobile terminal 101 can operate the job transmission destination apparatus, and hence a case where the MFP 102 is a specified value-satisfying apparatus is nothing other than a case where the user is about to operate the MFP 102. Therefore, BLE communication connection is established between the mobile terminal 101 and the MFP 102 only when the user is about to operate the MFP 102, and hence it is possible to prevent data communication from being performed more than necessary between the mobile terminal 101 and the MFP 102.
  • Further, according to the above-described communication setting process in FIGS. 9A and 9B, in the case where the “approach-and-connect mode” is not set, out of the job transmission destination candidate apparatuses, an apparatus selected by a user is determined as the job transmission destination apparatus. This causes the communication setting information of Wi-Fi communication to be transmitted from the job transmission destination apparatus selected by the user to the mobile terminal 101 by BLE communication, and hence it is possible to cause the user's intension to be reflected. Therefore, it is possible to make communication settings for the mobile terminal 101 and the job transmission destination apparatus with ease without reducing user friendliness.
  • Although in the communication switching process in FIG. 8 and the communication setting process in FIGS. 9A and 9B, the description has been given of the case where the present invention is applied to execution of print processing, this is not limitative, but the present invention can be applied to processing executed based on a job transmitted from the mobile terminal 101, such as execution of scan processing. Also in a case where the present invention is applied to execution of scan processing, it is possible to obtain the same advantageous effects as provided by the above-described embodiment.
  • OTHER EMBODIMENTS
  • Embodiment(s) of the present invention can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions (e.g., one or more programs) recorded on a storage medium (which may also be referred to more fully as a ‘non-transitory computer-readable storage medium’) to perform the functions of one or more of the above-described embodiment(s) and/or that includes one or more circuits (e.g., application specific integrated circuit (ASIC)) for performing the functions of one or more of the above-described embodiment(s), and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s) and/or controlling the one or more circuits to perform the functions of one or more of the above-described embodiment(s). The computer may comprise one or more processors (e.g., central processing unit (CPU), micro processing unit (MPU)) and may include a network of separate computers or separate processors to read out and execute the computer executable instructions. The computer executable instructions may be provided to the computer, for example, from a network or the storage medium. The storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)™), a flash memory device, a memory card, and the like.
  • While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
  • This application claims the benefit of Japanese Patent Application No. 2015-029501 filed Feb. 18, 2015, which is hereby incorporated by reference herein in its entirety.

Claims (20)

What is claimed is:
1. A non-transitory computer-readable storage medium that stores a program to cause a computer to perform a method for controlling a communication apparatus, the method comprising:
displaying, on a display device, a screen including a plurality of selection objects corresponding to a plurality of functions to perform communication with an image forming apparatus set as a communication destination and including an object indicating that the image forming apparatus as the communication destination has not been set; and
notifying, after displaying the screen, of a message indicating that the image forming apparatus as the communication destination has not been set at least on condition that the image forming apparatus as the communication destination has not been set.
2. The non-transitory computer-readable storage medium according to claim 1, wherein the object indicating that the image forming apparatus as the communication destination has not been set includes information suggesting a selection of a device.
3. The non-transitory computer-readable storage medium according to claim 1, wherein the message indicating that the image forming apparatus as the communication destination has not been set includes information suggesting a selection of a device.
4. The non-transitory computer-readable storage medium according to claim 2, wherein the object indicating that the image forming apparatus as the communication destination has not been set includes character information indicating a device selection.
5. The non-transitory computer-readable storage medium according to claim 3, wherein the message indicating that the image forming apparatus as the communication destination has not been set includes character information indicating a device selection.
6. The non-transitory computer-readable storage medium according to claim 1, wherein the message indicating that the image forming apparatus as the communication destination has not been set is displayed on the display device before a setting screen, through which a setting for a function to perform communication with the image forming apparatus as the communication destination is set, is displayed.
7. The non-transitory computer-readable storage medium according to claim 6, wherein the setting screen is a setting screen for a print function.
8. The non-transitory computer-readable storage medium according to claim 6, wherein the setting screen is a setting screen for a scan function.
9. The non-transitory computer-readable storage medium according to claim 1, wherein the object indicating that the image forming apparatus as the communication destination has not been set is an object for displaying a selection screen through which the image forming apparatus as the communication destination is selected.
10. The non-transitory computer-readable storage medium according to claim 9, wherein the selection screen is a screen through which one image forming apparatus is selected from a list of a plurality of image forming apparatuses.
11. The non-transitory computer-readable storage medium according to claim 9, wherein the selection screen is a screen through which a candidate of an image forming apparatus to be set as a communication destination is searched for.
12. The non-transitory computer-readable storage medium according to claim 10, wherein the list includes identification information for the plurality of image forming apparatuses.
13. The non-transitory computer-readable storage medium according to claim 10, wherein the list consists of information based on a received radio wave.
14. The non-transitory computer-readable storage medium according to claim 10, wherein the list consists of information based on a received Bluetooth Low Energy (BLE) advertising packet.
15. The non-transitory computer-readable storage medium according to claim 1, wherein at least one of the plurality of functions is a function to perform communication with the image forming apparatus via wireless LAN communication.
16. The non-transitory computer-readable storage medium according to claim 1, wherein at least one of the plurality of functions is a print function.
17. The non-transitory computer-readable storage medium according to claim 1, wherein at least one of the plurality of functions is a scan function.
18. The non-transitory computer-readable storage medium according to claim 15, wherein the wireless LAN communication is communication conforming to Wi-Fi standard.
19. The non-transitory computer-readable storage medium according to claim 1, wherein the program is an application installed on the communication apparatus.
20. A communication apparatus comprising:
a display device;
a communication interface; and
one or more controllers configured to function as:
a unit configured to display, on a display device, a screen including a plurality of selection objects corresponding to a plurality of functions to perform communication with an image forming apparatus set as a communication destination and including an object indicating that the image forming apparatus as the communication destination has not been set; and
a unit configured to notify, after displaying the screen, of a message indicating that the image forming apparatus as the communication destination has not been set at least on condition that the image forming apparatus as the communication destination has not been set.
US17/363,428 2015-02-18 2021-06-30 Information processing apparatus enabling communication settings to be made with ease, method of controlling information processing apparatus, and storage medium Pending US20210329134A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/363,428 US20210329134A1 (en) 2015-02-18 2021-06-30 Information processing apparatus enabling communication settings to be made with ease, method of controlling information processing apparatus, and storage medium

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015-029501 2015-02-18
JP2015029501A JP6590486B2 (en) 2015-02-18 2015-02-18 Program, method, communication terminal
US15/044,385 US20160241726A1 (en) 2015-02-18 2016-02-16 Information processing apparatus enabling communication settings to be made with ease, method of controlling information processing apparatus, and storage medium
US17/029,223 US11503168B2 (en) 2015-02-18 2020-09-23 Information processing apparatus enabling communication settings to be made with ease, method of controlling information processing apparatus, and storage medium
US17/363,428 US20210329134A1 (en) 2015-02-18 2021-06-30 Information processing apparatus enabling communication settings to be made with ease, method of controlling information processing apparatus, and storage medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US17/029,223 Continuation US11503168B2 (en) 2015-02-18 2020-09-23 Information processing apparatus enabling communication settings to be made with ease, method of controlling information processing apparatus, and storage medium

Publications (1)

Publication Number Publication Date
US20210329134A1 true US20210329134A1 (en) 2021-10-21

Family

ID=56621627

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/044,385 Abandoned US20160241726A1 (en) 2015-02-18 2016-02-16 Information processing apparatus enabling communication settings to be made with ease, method of controlling information processing apparatus, and storage medium
US17/029,223 Active US11503168B2 (en) 2015-02-18 2020-09-23 Information processing apparatus enabling communication settings to be made with ease, method of controlling information processing apparatus, and storage medium
US17/363,428 Pending US20210329134A1 (en) 2015-02-18 2021-06-30 Information processing apparatus enabling communication settings to be made with ease, method of controlling information processing apparatus, and storage medium

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/044,385 Abandoned US20160241726A1 (en) 2015-02-18 2016-02-16 Information processing apparatus enabling communication settings to be made with ease, method of controlling information processing apparatus, and storage medium
US17/029,223 Active US11503168B2 (en) 2015-02-18 2020-09-23 Information processing apparatus enabling communication settings to be made with ease, method of controlling information processing apparatus, and storage medium

Country Status (2)

Country Link
US (3) US20160241726A1 (en)
JP (1) JP6590486B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9930240B2 (en) * 2014-12-22 2018-03-27 Lg Electronics Inc. Method and apparatus for controlling a camera by using Bluetooth communication in a wireless communication system
JP6887748B2 (en) * 2015-12-11 2021-06-16 キヤノン株式会社 Data transmission device, data transmission method and program
JP6532414B2 (en) * 2016-02-09 2019-06-19 キヤノン株式会社 Communication apparatus, control method and program
JP6708059B2 (en) * 2016-08-26 2020-06-10 セイコーエプソン株式会社 Printing system, printing device, information processing terminal, and program
EP4274108A3 (en) * 2016-09-09 2023-12-20 Huawei Technologies Co., Ltd. File sending method and terminal
JP6853650B2 (en) * 2016-10-25 2021-03-31 キヤノン株式会社 Information processing equipment, control methods, and programs
JP6293247B1 (en) 2016-11-29 2018-03-14 キヤノン株式会社 Printing apparatus, printing apparatus control method, and program
JP6253751B1 (en) 2016-11-29 2017-12-27 キヤノン株式会社 Printing apparatus and printing apparatus control method
JP6300888B1 (en) 2016-11-29 2018-03-28 キヤノン株式会社 Printing apparatus, system, and printing apparatus control method
JP6297123B1 (en) 2016-11-29 2018-03-20 キヤノン株式会社 Printing apparatus, printing apparatus control method, and program
US10219219B2 (en) 2017-01-20 2019-02-26 Microsoft Technology Licensing, Llc Method for connecting a network receiver with one or more devices while minimizing power usage
US11132153B2 (en) 2017-04-26 2021-09-28 Sato Holdings Kabushiki Kaisha Communication method and packing box
JP6991740B2 (en) 2017-05-19 2022-01-13 キヤノン株式会社 Communication terminals, control methods and programs for communication terminals
JP6939256B2 (en) * 2017-08-28 2021-09-22 セイコーエプソン株式会社 Information processing device, information processing program, and control method of information processing device
JP6932586B2 (en) * 2017-09-14 2021-09-08 キヤノン株式会社 Information processing equipment, its control method, and programs
JP7042623B2 (en) * 2018-01-05 2022-03-28 キヤノン株式会社 Information processing equipment, information processing system and storage medium
JP7129172B2 (en) * 2018-02-08 2022-09-01 キヤノン株式会社 Communication terminal, its control method, and program
JP7135578B2 (en) * 2018-08-20 2022-09-13 京セラドキュメントソリューションズ株式会社 Communication system, client device and host device
JP7256641B2 (en) 2018-12-28 2023-04-12 キヤノン株式会社 COMMUNICATION DEVICE, CONTROL METHOD THEREOF, AND PROGRAM
US20220053292A1 (en) * 2020-08-17 2022-02-17 Patti Engineering, Inc. Low Cost, High Performance Asset Tracking Systems and Methods
CN116483446A (en) * 2022-01-13 2023-07-25 珠海奔图电子有限公司 Driver installation guide control method and device and terminal equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030011805A1 (en) * 1996-06-11 2003-01-16 Yousef R. Yacoub Directing print jobs in a network printing system
US20070086052A1 (en) * 2005-10-18 2007-04-19 Canon Kabushiki Kaisha Network compliant output device, information processing apparatus, control method therefor, computer program, computer-readable storage medium, and network system
US20110058203A1 (en) * 2009-09-04 2011-03-10 Samsung Electronics Co., Ltd. Host apparatus connected to image forming apparatus and print control method thereof
US20140148221A1 (en) * 2012-11-29 2014-05-29 Brother Kogyo Kabushiki Kaisha Communication system selection
US20140154986A1 (en) * 2012-12-03 2014-06-05 Samsung Electronics Co., Ltd. Information providing method and mobile terminal therefor
US20140253965A1 (en) * 2013-03-07 2014-09-11 Brother Kogyo Kabushiki Kaisha Communication Device, and Method and Computer Readable Medium for the Same

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07287679A (en) * 1994-04-19 1995-10-31 Canon Inc Network managing device and controlling method for the same
US7027169B1 (en) * 1999-03-31 2006-04-11 Minolta Co., Ltd. System for efficiently distributing print jobs
JP2002244829A (en) * 2001-02-14 2002-08-30 Ricoh Co Ltd Method of designating output device and radio system
JP4092692B2 (en) 2003-06-06 2008-05-28 ソニー株式会社 COMMUNICATION SYSTEM, COMMUNICATION DEVICE, COMMUNICATION METHOD, AND PROGRAM
KR100565062B1 (en) * 2003-12-13 2006-03-30 삼성전자주식회사 System for selecting printer via a wireless network and method thereof
JP2005210328A (en) * 2004-01-21 2005-08-04 Fuji Xerox Co Ltd Information processing system, data supply unit, and control method and program of data supply unit
US7668508B2 (en) * 2004-11-12 2010-02-23 Sony Corporation System and method for managing wireless connections in computer
JP2007049271A (en) * 2005-08-08 2007-02-22 Ricoh Co Ltd Image transfer system
US7747223B2 (en) * 2007-03-29 2010-06-29 Research In Motion Limited Method, system and mobile device for prioritizing a discovered device list
US9015487B2 (en) 2009-03-31 2015-04-21 Qualcomm Incorporated Apparatus and method for virtual pairing using an existing wireless connection key
JP2011128800A (en) * 2009-12-16 2011-06-30 Konica Minolta Business Technologies Inc Printer and printing system
US20140092429A1 (en) * 2011-05-31 2014-04-03 Venugopal K. Srinivasmurthy Associate a Document with a Printer
US8813198B2 (en) 2011-07-05 2014-08-19 Apple Inc. Configuration of accessories for wireless network access
US8954003B2 (en) * 2011-10-18 2015-02-10 Blackberry Limited System and method of managing pairing information associated with peer-to-peer device pairings
CN102497221B (en) 2011-12-13 2014-12-31 华为终端有限公司 Method for data transmission between terminals, and terminal
JP5962146B2 (en) * 2012-03-30 2016-08-03 ブラザー工業株式会社 Communication device
JP6035872B2 (en) 2012-05-29 2016-11-30 セイコーエプソン株式会社 CONTROL DEVICE, CONTROL DEVICE CONTROL METHOD, AND PROGRAM
TW201401843A (en) * 2012-06-28 2014-01-01 Avision Inc Document scanning method and computer program
KR20140011232A (en) * 2012-07-18 2014-01-28 양승호 Measurement and control method for level of problem difficulty using solving time in problem-bank type online evaluation service
JP6031899B2 (en) 2012-09-03 2016-11-24 ブラザー工業株式会社 Image processing system, information processing apparatus, image processing apparatus, and program
EP2725774A2 (en) * 2012-10-29 2014-04-30 Samsung Electronics Co., Ltd Electronic apparatus, image forming apparatus and wireless connection method
JP5954142B2 (en) 2012-11-30 2016-07-20 ブラザー工業株式会社 Image processing system, image processing apparatus, and information processing apparatus
US10912131B2 (en) 2012-12-03 2021-02-02 Samsung Electronics Co., Ltd. Method and mobile terminal for controlling bluetooth low energy device
US9549323B2 (en) * 2012-12-03 2017-01-17 Samsung Electronics Co., Ltd. Method and mobile terminal for controlling screen lock
JP6224891B2 (en) * 2012-12-13 2017-11-01 キヤノン株式会社 Wireless communication system, wireless communication device, communication method, control method, and program
JP6505962B2 (en) 2012-12-28 2019-04-24 任天堂株式会社 INFORMATION PROCESSING SYSTEM, INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING PROGRAM, AND INFORMATION PROCESSING METHOD
GB201304219D0 (en) 2013-03-08 2013-04-24 Tomtom Int Bv Methods for communicating sensor data between devices
KR101470130B1 (en) * 2013-03-13 2014-12-05 엘지이노텍 주식회사 Antenna apparatus and feeding structure thereof
JP5814283B2 (en) 2013-03-15 2015-11-17 Necプラットフォームズ株式会社 Wireless LAN access point device and connection method
JP5503774B1 (en) * 2013-04-23 2014-05-28 株式会社Nttドコモ Wireless tag search method and apparatus
KR102077821B1 (en) 2013-06-03 2020-02-14 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. System and method for mobile printing using near field communication
JP6179299B2 (en) * 2013-09-13 2017-08-16 ブラザー工業株式会社 Communication device
JP6390141B2 (en) * 2014-04-07 2018-09-19 スター精密株式会社 Information processing apparatus control system using portable terminal, portable terminal, information processing apparatus control method, and control program
US9629195B2 (en) * 2014-06-20 2017-04-18 Htc Corporation Connection switching method applicable to remote controllable system and mobile device, remote controllable system using the same, and mobile device using the same
KR20160025283A (en) 2014-08-27 2016-03-08 삼성전자주식회사 Computing device and system for providing pull printing using mobile terminal, and pull printing method using mobile terminal
US9535634B2 (en) * 2014-09-05 2017-01-03 Ricoh Company, Ltd. Information processing apparatus, image processing apparatus, information processing system and information processing method
JP6327075B2 (en) * 2014-09-08 2018-05-23 ブラザー工業株式会社 Function execution equipment
JP2016082576A (en) * 2014-10-10 2016-05-16 株式会社リコー Communication equipment, communication method, system, and program
JP6413691B2 (en) * 2014-11-20 2018-10-31 株式会社リコー Data communication apparatus, data communication method, and data communication program
US10205776B2 (en) * 2014-12-23 2019-02-12 Xiaomi Inc. Method and device for wireless connection
JP6765827B2 (en) 2016-03-11 2020-10-07 キヤノン株式会社 Image processing system, image processing device, its control method and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030011805A1 (en) * 1996-06-11 2003-01-16 Yousef R. Yacoub Directing print jobs in a network printing system
US20070086052A1 (en) * 2005-10-18 2007-04-19 Canon Kabushiki Kaisha Network compliant output device, information processing apparatus, control method therefor, computer program, computer-readable storage medium, and network system
US20110058203A1 (en) * 2009-09-04 2011-03-10 Samsung Electronics Co., Ltd. Host apparatus connected to image forming apparatus and print control method thereof
US20140148221A1 (en) * 2012-11-29 2014-05-29 Brother Kogyo Kabushiki Kaisha Communication system selection
US20140154986A1 (en) * 2012-12-03 2014-06-05 Samsung Electronics Co., Ltd. Information providing method and mobile terminal therefor
US20140253965A1 (en) * 2013-03-07 2014-09-11 Brother Kogyo Kabushiki Kaisha Communication Device, and Method and Computer Readable Medium for the Same

Also Published As

Publication number Publication date
US20160241726A1 (en) 2016-08-18
US11503168B2 (en) 2022-11-15
JP2016152538A (en) 2016-08-22
US20210006669A1 (en) 2021-01-07
JP6590486B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
US11503168B2 (en) Information processing apparatus enabling communication settings to be made with ease, method of controlling information processing apparatus, and storage medium
US11573757B2 (en) Communication apparatus, control method, and program for connecting at least two types of wireless communication units according to an operative state of an access point
USRE47875E1 (en) Mobile terminal device, and method and computer readable medium for the same
US9575701B2 (en) Image forming apparatus using Wi-Fi handover technique, control method therefor, and storage medium
US20150138597A1 (en) Mobile terminal, image forming apparatus, control method thereof, and storage medium storing a program
US10489173B2 (en) Information processing apparatus, control method and storage medium storing a program
US9794426B2 (en) Mobile terminal, control method for mobile terminal, and storage medium for communicating with an image processing apparatus
US20150309761A1 (en) Information processing apparatus, control method, and recording medium
US10652427B2 (en) Non-transitory computer-readable recording medium storing computer-readable instructions for terminal device, and terminal device
US10306100B2 (en) Image forming apparatus, method of controlling the same, and storage medium
US20150293735A1 (en) Communication method, communication terminal, and storage medium
US11429332B2 (en) Communication apparatus, method of controlling same, and non-transitory computer-readable storage medium
CN108932423B (en) Mobile terminal for performing near field wireless communication, control method thereof, and storage medium
US20230229367A1 (en) Information processing apparatus having a plurality of lines, control method therefor, and storage medium
JP7336578B2 (en) Programs, communication terminals and communication systems
JP6123703B2 (en) Information processing program and information processing apparatus
US11609734B2 (en) Communication apparatus, method of controlling communication apparatus, and storage medium for wireless communication
US10440198B2 (en) Image processing apparatus, mobile terminal, and methods for controlling the same
JP6972419B1 (en) Programs and communication terminals
JP7447070B2 (en) Mobile devices and programs
JP6915178B2 (en) Programs and communication terminals
US11966654B2 (en) Communication apparatus capable of carrying out near field communication with a target apparatus, control method, and program
JP7151008B2 (en) Programs, communication terminals and communication systems
JP2020022172A (en) Program, control method of communication terminal, and communication terminal
JP2015126350A (en) Information processing program and information processor

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER