US20210324292A1 - Lubricating Oil Compositions - Google Patents

Lubricating Oil Compositions Download PDF

Info

Publication number
US20210324292A1
US20210324292A1 US17/036,010 US202017036010A US2021324292A1 US 20210324292 A1 US20210324292 A1 US 20210324292A1 US 202017036010 A US202017036010 A US 202017036010A US 2021324292 A1 US2021324292 A1 US 2021324292A1
Authority
US
United States
Prior art keywords
lubricating oil
oil composition
calcium
detergent
lubricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/036,010
Other versions
US20220089967A9 (en
Inventor
Joseph P. Hartley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lnfineum International Ltd
Original Assignee
Lnfineum International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lnfineum International Ltd filed Critical Lnfineum International Ltd
Priority to US17/036,010 priority Critical patent/US20220089967A9/en
Publication of US20210324292A1 publication Critical patent/US20210324292A1/en
Publication of US20220089967A9 publication Critical patent/US20220089967A9/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/04Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/22Compounds containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/26Compounds containing silicon or boron, e.g. silica, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/10Hydroxy compounds having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/48Carboxylic acids; Salts thereof having carboxyl groups bound to a carbon atom of a six-membered aromatic ring
    • C10M129/54Carboxylic acids; Salts thereof having carboxyl groups bound to a carbon atom of a six-membered aromatic ring containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/08Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium containing a sulfur-to-oxygen bond
    • C10M135/10Sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/12Thio-acids; Thiocyanates; Derivatives thereof
    • C10M135/14Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond
    • C10M135/18Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond thiocarbamic type, e.g. containing the groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/08Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/12Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M155/00Lubricating compositions characterised by the additive being a macromolecular compound containing atoms of elements not provided for in groups C10M143/00 - C10M153/00
    • C10M155/04Monomer containing boron
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/044Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/006Inorganic compounds or elements as ingredients in lubricant compositions used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/0656Sulfides; Selenides; Tellurides used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • C10M2201/0876Boron oxides, acids or salts used as thickening agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/003Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/144Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/16Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/06Organic compounds derived from inorganic acids or metal salts
    • C10M2227/066Organic compounds derived from inorganic acids or metal salts derived from Mo or W
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2290/00Mixtures of base materials or thickeners or additives
    • C10M2290/04Synthetic base oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/56Boundary lubrication or thin film lubrication
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/14Chemical after-treatment of the constituents of the lubricating composition by boron or a compound containing boron

Definitions

  • the present invention relates to automotive lubricating oil compositions for four or more wheeled vehicles which exhibit improved friction characteristics. More specifically, the present invention relates to automotive crankcase lubricating oil compositions for use in gasoline (spark-ignited) and diesel (compression-ignited) internal combustion engines, such compositions being referred to as crankcase lubricants; and to the use of additives in such lubricating oil compositions for reducing friction between moving parts in use of such engines and/or improving the fuel economy performance of an engine lubricated with the lubricating oil composition.
  • a crankcase lubricant is an oil used for general lubrication in an internal combustion engine where an oil sump is situated generally below the crankshaft of the engine and to which circulated oil returns.
  • crankcase lubricants that reduce the overall friction of the engine. Reducing friction losses in an engine contributes significantly to improving fuel economy performance and fuel economy retention properties. It has long been known to use friction modifiers to obtain improved friction performance.
  • Oil-soluble molybdenum containing additives may be used for their friction reducing properties.
  • Examples of patent applications which refer to oil-soluble molybdenum additives for lubricating oil compositions include U.S. Pat. Nos. 4,164,473; 4,176,073; 4,176,074; 4,192,757; 4,248,720; 4,201,683; 4,289,635 and 4,479,883. It is common in some markets, such as in Japan, to use high levels of molybdenum-containing additives, such as molybdenum dithiocarbamate, as a friction modifier to achieve low friction. In such applications, up to 1000 ppm of molybdenum atoms may be present in the lubricant.
  • U.S. Pat. No. 6,074,993 illustrates that a combination of dimeric and trimeric molybdenum compounds can improve fuel economy and wet clutch properties in a lubricant containing ZDDP and calcium and/or magnesium sulfonate detergents.
  • International patent application WO 96/19551 discloses an engine oil comprising a boron-containing alkenyl succinimide providing the oil with greater than 800 ppm atomic boron, a molybdenum dithiophosphate or dithiocarbamate providing the oil with 50-2000 ppm molybdenum atoms, calcium salicylate providing the oil with 50-4000 ppm calcium atoms, magnesium salicylate providing the oil with 50 to 4000 ppm magnesium and optionally a copolymer of ethylene at least one other alpha-olefin monomer.
  • the lubricating oils compositions of WO 96/19551 are stated to exhibit improved fuel economy and fuel economy retention properties.
  • a lubricating oil composition comprising a sulfoxymolybdenum dithiocarbamate providing 200-1000 ppm molybdenum atoms to the oil, zinc dialkyldithiocarbamate containing primary alkyl groups and providing 0.04-0.15 wt % phosphorus atoms to the oil, and a mixture of 50-100 wt % calcium alkyl salicylate and 0 to 50 wt % magnesium alkyl salicylate.
  • the lubricating oil is stated to have good antiwear properties and retention of friction-reducing properties.
  • U.S. Pat. No. 5,631,212 discloses a lubricating oil comprising an oil-soluble copper salt, and oil-soluble molybdenum salt, Group II metal salicylate and a borated polyalkenyl succinimide, and is stated to provide good performance for fuel economy, wear and antioxidancy.
  • European patent application number EP 0 562 172 discloses a lubricant comprising a borated alkenyl succinimide, an alkaline earth metal salt of a salicylic acid and 100-2000 ppm of molybdenum atoms from a molybdenum compound selected from molybdenum dithiophosphate and molybdenum dithiocarbamate, which is considered to be capable of reducing friction loss in an engine.
  • crankcase lubricants which exhibit desirable friction characteristics reducing friction losses at start-up of an engine and across the full operating temperature of the engine and thereby improving fuel economy.
  • crankcase lubricating oil composition comprising or made by admixing:
  • the detergent composition further comprises one or more additional detergent additives chosen from magnesium salicylate, magnesium phenate, calcium salicylate, calcium phenate and/or calcium sulfonate detergents.
  • a lubricating oil composition of the invention comprises a detergent composition consisting of a mixture of one of more magnesium sulfonate detergents and one or more calcium salicylate detergents.
  • the present invention provides a method of lubricating a spark-ignited or compression-ignited internal combustion engine comprising lubricating the engine with a lubricating oil composition as defined in accordance with the present invention.
  • the present invention further provides the use of a magnesium-containing detergent in a crankcase lubricating oil composition in an amount sufficient to provide from 200-4000 ppm magnesium to the lubricating oil composition, to reduce the boundary friction measurement compared to an equivalent lubricant that does not contain the magnesium-containing detergent in an amount sufficient to provide from 200-4000 ppm magnesium to the lubricating oil composition, measured according to ASTM D5185.
  • the lubricating oil composition further comprises an oil-soluble or oil-dispersible molybdenum compound in an amount sufficient to provide from 500-1500 ppm molybdenum atoms to the lubricating oil composition, measured according to ASTM D5185, and an oil-soluble or oil-dispersible boron-containing compound present in the lubricating oil composition in an amount sufficient to provide from 200-600 ppm boron atoms to the lubricating oil composition, measured according to ASTM D5185.
  • the lubricant of the present invention is suitably used in the lubrication of the crankcase of a spark-ignited or compression-ignited internal combustion engine.
  • the magnesium-containing detergent is one or more detergent chosen from the group consisting of oil-soluble neutral and overbased magnesium sulfonates, magnesium phenates, magnesium sulfurized phenates, magnesium thiophosphonates, magnesium salicylates, and magnesium naphthenates and other oil-soluble magnesium carboxylates.
  • the magnesium-containing detergent is a magnesium sulfonate.
  • the lubricating oil composition further comprises further detergent additives chosen from magnesium salicylate, magnesium phenate, calcium salicylate, calcium phenate and/or calcium sulfonate detergents.
  • a lubricating oil composition of the use of the invention comprises a detergent composition consisting of a mixture of one of more magnesium sulfonate detergents and one or more calcium salicylate detergents.
  • a magnesium-containing detergents in a lubricating oil composition comprising high quantities of oil-soluble or oil-dispersible molybdenum compound and oil-soluble or oil-dispersible boron-containing compound provides an unexpected improvement in the friction performance of the lubricating oil composition.
  • Such improvement is further improved if the magnesium detergent is magnesium sulfonate and the magnesium sulfonate is used with a calcium-containing detergent, preferably a calcium salicylate detergent. Accordingly, the reduction in friction typically translates into improved fuel economy.
  • the present invention still further provides the use, in the crankcase lubrication of a spark-ignited or compression-ignited internal combustion engine, of a lubricating oil composition in accordance with the present invention to reduce the coefficient of friction between contacting metal surfaces in the engine during operation of the engine compared to the use of a lubricant that does not contain the magnesium-containing detergent in an amount sufficient to provide from 200-4000 ppm magnesium to the lubricating oil composition (ASTM D5185).
  • the present invention provides a method of improving the fuel economy performance of a spark-ignited or compression-ignited internal combustion engine, which method comprises lubricating the engine with a lubricating oil composition of the present invention and operating the engine.
  • the oil of lubricating viscosity (sometimes referred to as “base stock” or “base oil”) is the primary liquid constituent of a lubricant, into which additives and possibly other oils are blended, for example to produce a final lubricant (or lubricant composition).
  • a base oil is useful for making concentrates as well as for making lubricating oil compositions therefrom, and may be selected from natural (vegetable, animal or mineral) and synthetic lubricating oils and mixtures thereof.
  • the base stock groups are defined in the American Petroleum Institute (API) publication “Engine Oil Licensing and Certification System”, Industry Services Department, Fourteenth Edition, December 1996, Addendum 1, December 1998.
  • the base stock will have a viscosity preferably of 3-12, more preferably 4-10, most preferably 4.5-8, mm 2 /s (cSt) at 100° C.
  • base stocks and base oils in this invention are the same as those found in the American Petroleum Institute (API) publication “Engine Oil Licensing and Certification System”, Industry Services Department, Fourteenth Edition, December 1996, Addendum 1, December 1998. Said publication categorizes base stocks as follows:
  • Natural oils include animal and vegetable oils (e.g. castor and lard oil), liquid petroleum oils and hydro-refined, solvent-treated mineral lubricating oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful base oils.
  • Synthetic lubricating oils include hydrocarbon oils such as polymerized and interpolymerized olefins (e.g. polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes)); alkylbenzenes (e.g. dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)benzenes); polyphenols (e.g. biphenyls, terphenyls, alkylated polyphenols); and alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives, analogues and homologues thereof.
  • hydrocarbon oils such as polymerized and interpolymerized olefins (e.g. polybut
  • Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g. phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g. butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylbexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol).
  • dicarboxylic acids e.g. phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dim
  • esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid.
  • Esters useful as synthetic oils also include those made from C 5 to C 12 monocarboxylic acids and polyols, and polyol ethers such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
  • Unrefined, refined and re-refined oils can be used in the compositions of the present invention.
  • Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
  • a shale oil obtained directly from retorting operations a petroleum oil obtained directly from distillation or ester oil obtained directly from an esterification process and used without further treatment would be unrefined oil.
  • Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques, such as distillation, solvent extraction, acid or base extraction, filtration and percolation are known to those skilled in the art.
  • Re-refined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such re-refined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques for approval of spent additive and oil breakdown products.
  • base oil examples include gas-to-liquid (“GTL”) base oils, i.e. the base oil may be an oil derived from Fischer-Tropsch synthesised hydrocarbons made from synthesis gas containing H 2 and CO using a Fischer-Tropsch catalyst. These hydrocarbons typically require further processing in order to be useful as a base oil. For example, they may, by methods known in the art, be hydroisomerized; hydrocracked and hydroisomerized; dewaxed; or hydroisomerized and dewaxed.
  • GTL gas-to-liquid
  • composition of the base oil will depend upon the particular application of the lubricating oil composition and the oil formulator will chose the base oil to achieve desired performance characteristics at reasonable cost.
  • the volatility of the oil of lubricating viscosity or oil blend is less than or equal to 20%, preferably less than or equal to 16%, preferably less than or equal to 12%, more preferably less than or equal to 10%.
  • the viscosity index (VI) of the oil of lubricating viscosity is at least 95, preferably at least 110, more preferably at least 120, even more preferably at least 125, most preferably from about 130 to 140.
  • the oil of lubricating viscosity is provided in a major amount, in combination with a minor amount of additive components (B) and (C), as defined herein and, if necessary, one or more co-additives, such as described hereinafter, constituting a lubricating oil composition.
  • This preparation may be accomplished by adding the additives directly to the oil or by adding them in the form of a concentrate thereof to disperse or dissolve the additive.
  • Additives may be added to the oil by any method known to those skilled in the art, either before, at the same time as, or after addition of other additives.
  • the oil of lubricating viscosity is present in an amount of greater than 65 mass %, more preferably greater than 70 mass %, even more preferably greater than 75 mass % Y, based on the total mass of the lubricating oil composition.
  • the oil of lubricating viscosity is present in an amount of less than 98 mass %, such as less than 95 mass %, or even less than 90 mass %, based on the total mass of the lubricating oil composition.
  • the lubricating oil composition of the present invention is a multigrade oil identified by the viscometric descriptor SAE 20W-X, SAE 15W-X, SAE 10W-X, SAE 5W-X or SAE 0W-X, where X represents any one of 8, 12, 16, 20, 30, 40 and 50; the characteristics of the different viscometric grades can be found in the SAE J300 classification.
  • the lubricating oil composition is preferably in the form of an SAE 10W-X, SAE 5W-X or SAE 0W-X, more preferably in the form of a SAE 5W-X or SAE 0W-X, wherein X represents any one of 8, 12, 16, 20, 30, 40 and 50.
  • X is 8, 12, 16 or 20.
  • any suitable oil-soluble or oil-dispersible molybdenum compound having friction modifying properties in lubricating oil compositions may be employed.
  • the oil-soluble or oil-dispersible molybdenum compound is an oil-soluble or oil-dispersible organo-molybdenum compound.
  • organo-molybdenum compounds there may be mentioned molybdenum dithiocarbamates, molybdenum dithiophosphates, molybdenum dithiophosphinates, molybdenum xanthates, molybdenum thioxanthates, molybdenum sulfides, and the like, and mixtures thereof.
  • molybdenum dithiocarbamates particularly preferred are molybdenum dithiocarbamates, molybdenum dialkyldithiophosphates, molybdenum alkyl xanthates and molybdenum alkylthioxanthates.
  • An especially preferred organo-molybdenum compound is a molybdenum dithiocarbamate.
  • the oil-soluble or oil-dispersible molybdenum compound consists of either a molybdenum dithiocarbamate or a molybdenum dithiophosphate or a mixture thereof, as the sole source of molybdenum atoms in the lubricating oil composition.
  • the oil-soluble or oil-dispersible molybdenum compound consists of a molybdenum dithiocarbamate, as the sole source of molybdenum atoms in the lubricating oil composition.
  • the molybdenum compound may be mono-, di-, tri- or tetra-nuclear. Di-nuclear and tri-nuclear molybdenum compounds are preferred.
  • the molybdenum compound may be an acidic molybdenum compound. These compounds will react with a basic nitrogen compound as measured by ASTM test D-664 or D-2896 titration procedure and are typically hexavalent. Included are molybdic acid, ammonium molybdate, sodium molybdate, potassium molybdate, and other alkaline metal molybdates and other molybdenum salts, e.g., hydrogen sodium molybdate, MoOCl 4 , MoO 2 Br 2 , Mo 2 O 3 Cl 6 , molybdenum trioxide or similar acidic molybdenum compounds.
  • compositions of the present invention can be provided with molybdenum by molybdenum/sulfur complexes of basic nitrogen compounds as described, for example, in U.S. Pat. Nos. 4,263,152; 4,285,822; 4,283,295; 4,272,387; 4,265,773; 4,261,843; 4,259,195 and 4,259,194; and WO 94/06897.
  • Suitable dinuclear or dimeric molybdenum dialkyldithiocarbamate are represented by the following formula:
  • R 1 through R 4 independently denote a straight chain, branched chain or aromatic hydrocarbyl group having 1 to 24 carbon atoms; and X 1 through X 4 independently denote an oxygen atom or a sulfur atom.
  • the four hydrocarbyl groups, R 1 through R 4 may be identical or different from one another.
  • molybdenum compounds useful in the compositions of this invention are organo-molybdenum compounds of the formulae Mo(ROCS 2 ) 4 and Mo(RSCS 2 ) 4 , wherein R is an organo group selected from the group consisting of alkyl, aryl, aralkyl and alkoxyalkyl, generally of from 1 to 30 carbon atoms, and preferably 2 to 12 carbon atoms and most preferably alkyl of 2 to 12 carbon atoms.
  • R is an organo group selected from the group consisting of alkyl, aryl, aralkyl and alkoxyalkyl, generally of from 1 to 30 carbon atoms, and preferably 2 to 12 carbon atoms and most preferably alkyl of 2 to 12 carbon atoms.
  • dialkyldithiocarbamates of molybdenum are especially preferred.
  • Suitable tri-nuclear organo-molybdenum compounds include those of the formula Mo 3 S k L n Q z and mixtures thereof wherein L are independently selected ligands having organo groups with a sufficient number of carbon atoms to render the compound soluble or dispersible in the oil, n is from 1 to 4, k varies from 4 through 7, Q is selected from the group of neutral electron donating compounds such as water, amines, alcohols, phosphines, and ethers, and z ranges from 0 to 5 and includes non-stoichiometric values. At least 21 total carbon atoms should be present among all the ligands' organo groups, such as at least 25, at least 30, or at least 35 carbon atoms.
  • the ligands are independently selected from the group of:
  • organo groups are hydrocarbyl groups such as alkyl (e.g., in which the carbon atom attached to the remainder of the ligand is primary or secondary), aryl, substituted aryl and ether groups. More preferably, each ligand has the same hydrocarbyl group.
  • the organo groups of the ligands have a sufficient number of carbon atoms to render the compound soluble or dispersible in the oil.
  • the number of carbon atoms in each group will generally range between about 1 to about 100, preferably from about 1 to about 30, and more preferably between about 4 to about 20.
  • Preferred ligands include dialkyldithiophosphate, alkylxanthate, and dialkyldithiocarbamate, and of these dialkyldithiocarbamate is more preferred.
  • Organic ligands containing two or more of the above functionalities are also capable of serving as ligands and binding to one or more of the cores. Those skilled in the art will realize that formation of the compounds of the present invention requires selection of ligands having the appropriate charge to balance the core's charge.
  • ligands may be bound or interconnected by means of one or more ligands and the ligands may be multidentate. This includes the case of a multidentate ligand having multiple connections to a single core. It is believed that oxygen and/or selenium may be substituted for sulfur in the core(s).
  • Oil-soluble or oil-dispersible tri-nuclear molybdenum compounds can be prepared by reacting in the appropriate liquid(s)/solvent(s) a molybdenum source such as (NH 4 ) 2 Mo 3 S 13 .n(H 2 O), where n varies between 0 and 2 and includes non-stoichiometric values, with a suitable ligand source such as a tetralkylthiuram disulfide.
  • a molybdenum source such as (NH 4 ) 2 Mo 3 S 13 .n(H 2 O)
  • a molybdenum source such as of (Na) 2 Mo 3 S 13 .n(H 2 O)
  • a ligand source such as tetralkylthiuram disulfide, dilkyldithiocarbamate, or dialkyldithiophosphate
  • a sulfur abstracting agent such as cyanide ions, sulfite ions, or substituted phosphines.
  • a tri-nuclear molybdenum-sulfur halide salt such as [M′] 2 [Mo 3 S 7 A 6 ], where M′ is a counter ion, and A is a halogen such as Cl, Br, or I, may be reacted with a ligand source such as a dialkyldithiocarbamate or dialkyldithiophosphate in the appropriate liquid(s)/solvent(s) to form an oil-soluble or dispersible trinuclear molybdenum compound.
  • the appropriate liquid/solvent may be, for example, aqueous or organic.
  • a compound's oil solubility or dispersibility may be influenced by the number of carbon atoms in the ligand's organo groups. Preferably, at least 21 total carbon atoms should be present among all the ligands' organo groups. Preferably, the ligand source chosen has a sufficient number of carbon atoms in its organo groups to render the compound soluble or dispersible in the lubricating composition.
  • the lubricating oil composition of the present invention contains the molybdenum compound in an amount providing the composition with from 600 to 1500 ppm, preferably from 600-1200 ppm or even from 700 to 1000 ppm of molybdenum (ASTM D5185).
  • Metal detergents function both as detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life.
  • Detergents generally comprise a polar head with a long hydrophobic tail, with the polar head comprising a metal salt of an acidic organic compound.
  • the salts may contain a substantially stoichiometric amount of the metal in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as can be measured by ASTM D2896) of from 0 to 80 mg KOH/g.
  • TBN total base number
  • a large amount of a metal base may be incorporated by reacting excess metal compound (e.g., an oxide or hydroxide) with an acidic gas (e.g., carbon dioxide).
  • the resulting overbased detergent comprises neutralized detergent as the outer layer of a metal base (e.g. carbonate) micelle.
  • a metal base e.g. carbonate
  • Such overbased detergents may have a TBN of 150 mg KOH/g or greater, and typically will have a TBN of from 250 to 450 mg KOH/g or more.
  • the lubricating oil composition comprises a detergent composition comprising at least one magnesium sulfonate detergent.
  • the detergent composition of the present invention may comprise one or more additional detergent additive.
  • additional detergents include, oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium.
  • the additional detergent additive may comprise hybrid detergent comprising any combination of sodium, potassium, lithium, calcium, or magnesium salts of sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates.
  • the one or more additional detergent additive of the present invention comprises calcium and/or magnesium metal salts. More preferably, the one of more additional detergents additives are selected from magnesium salicylate, calcium salicylate, calcium sulfonate, magnesium phenate, calcium phenate, hybrid detergents comprising two of more of these additional detergent additives and/or combinations thereof.
  • the one or more additional detergent additive is a calcium salicylate and/or a calcium sulfonate, most preferably a calcium salicylate.
  • the detergent composition consists of a combination of one or more magnesium sulfonate detergents and one or more calcium salicylate detergents.
  • any calcium detergent is suitably present in amount sufficient to provide at least 500 ppm, preferably at least 750 more preferably at least 900 ppm atomic calcium to the lubricating oil composition (ASTM D5185). If present, any calcium detergent is suitably present in amount sufficient to provide no more than 4000 ppm, preferably no more than 4000 more preferably no more than 2000 ppm atomic calcium to the lubricating oil composition (ASTM D5185). If present, any calcium detergent is suitably present in amount sufficient to provide at from 500-4000 ppm, preferably from 750-3000 ppm more preferably from 900-2000 ppm atomic calcium to the lubricating oil composition (ASTM D5185).
  • the magnesium detergent of all aspects of the present invention may be a neutral salt or an overbased salt.
  • the magnesium detergent of the present invention is an overbased magnesium sulfonate having TBN of from 80 to 500 mg KOH/g (ASTM D2896).
  • the magnesium detergent of the present invention provides the lubricating oil composition thereof with from 200-4000 ppm of magnesium atoms, suitably from 200-2000 ppm, from 300 to 1500 or from 450-1200 ppm of magnesium atoms (ASTM D5185).
  • the total atomic amount of metal from detergent in the lubrication oil composition according to all aspects of the invention is no more than 5000 ppm, preferably no mom than 4000 pm and more preferably no more than 2000 ppm (ASTM D5185).
  • the total amount of atomic metal from detergent in the lubrication oil composition according to all aspects of the invention is suitably at least 500 ppm, preferably at least 800 ppm and more preferably at least 1000 ppm (ASTM D5185).
  • the total amount of atomic metal from detergent in the lubrication oil composition according to all aspects of the invention is suitably from 500 to 5000 ppm, preferably from 500 to 3000 ppm and more preferably from 500 to 2000 ppm (ASTM D5185).
  • Sulfonate detergents may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples included those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene.
  • the alkylation may be carried out in the presence of a catalyst with alkylating agents having from about 3 to more than 70 carbon atoms.
  • the alkaryl sulfonates usually contain from about 9 to about 80 or more carbon atoms, preferably from about 16 to about 60 carbon atoms per alkyl substituted aromatic moiety.
  • the oil soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, hydroxides, alkoxides, carbonates, carboxylate, sulfides, hydrosulfides, nitrates, borates and ethers of the metal.
  • the amount of metal compound is chosen having regard to the desired TBN of the final product but typically ranges from about 100 to 220 mass % (preferably at least 125 mass %) of that stoichiometrically required.
  • Metal salts of phenols and sulfurized phenols are prepared by reaction with an appropriate metal compound such as an oxide or hydroxide and neutral or overbased products may be obtained by methods well known in the art.
  • Sulfurized phenols may be prepared by reacting a phenol with sulfur or a sulfur containing compound such as hydrogen sulfide, sulfur monohalide or sulfur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulfur containing bridges.
  • Carboxylate detergents e.g., salicylates
  • an aromatic carboxylic acid can contain an appropriate metal compound such as an oxide or hydroxide and neutral or overbased products may be obtained by methods well known in the art.
  • the aromatic moiety of the aromatic carboxylic acid can contain heteroatoms, such as nitrogen and oxygen. Preferably, the moiety contains only carbon atoms; more preferably the moiety contains six or more carbon atoms; for example benzene is a preferred moiety.
  • the aromatic carboxylic acid may contain one or more aromatic moieties, such as one or more benzene rings, either fused or connected via alkylene bridges.
  • Preferred substituents in oil-soluble salicylic acids are alkyl substituents.
  • the alkyl groups advantageously contain S to 100, preferably 9 to 30, especially 14 to 20, carbon atoms. Where there is more than one alkyl group, the average number of carbon atoms in all of the alkyl groups is preferably at least 9 to ensure adequate oil solubility.
  • the ratio of atomic detergent metal to atomic molybdenum in the lubricating oil composition of all aspects of the present invention is less than 3, preferably less than 2.
  • the oil-soluble or oil-dispersible boron containing compound may be any conventional borated lubricant additive.
  • the oil-soluble boron containing compound is a borated dispersant, a borate ester or a borated detergent.
  • the boron containing compound comprises a borated dispersant, especially a borated ashless (i.e. metal free) dispersant.
  • a preferred ashless borated dispersant is a borated polyisobutylene succinimide dispersant.
  • Dispersants are usually “ashless”, being non-metallic organic materials that form substantially no ash on combustion, in contrast to metal-containing, and hence ash-forming materials. They comprise a long hydrocarbon chain (e.g. hydrocarbon polymer backbone) with a polar head, the polarity being derived from inclusion of e.g. an O, P, or N atom. Typically, such dispersants have amine, amine-alcohol or amide polar moieties attached to the hydrocarbon chain, often via a bridging group.
  • the hydrocarbon chain is an oleophilic group that confers oil-solubility, having, for example 40 to 500 carbon atoms.
  • ashless dispersants may comprise an oil-soluble polymeric backbone.
  • a suitable ashless dispersant may be, for example, selected from oil soluble salts, esters, amino-esters, amides, imides and oxazolines of long chain hydrocarbon-substituted mono- and polycarboxylic acids or anhydrides thereof; thiocarboxylate derivatives of long chain hydrocarbons; long chain aliphatic hydrocarbons having polyamine moieties attached directly thereto; and Mannich condensation products formed by condensing a long chain substituted phenol with formaldehyde and polyalkylene polyamine.
  • all the dispersant or dispersants used (including all nitrogen-containing dispersant and any nitrogen-free dispersant) be derived from hydrocarbon polymers having an average number average molecular weight (M.) of from about 600 to 3000, more preferably 700 to 2700, even more preferably 700 to 2500.
  • M. average number average molecular weight
  • a highly preferred ashless dispersant comprises a dispersant that is derived from a polyalkenyl-substituted mono- or di-carboxylic acid, anhydride or ester, most preferably a dispersant that is derived from a polyisobutenyl-substituted mono- or di-carboxylic acid, anhydride or ester.
  • Suitable hydrocarbons or polymers employed in the formation of the dispersants include homopolymers, interpolymers or lower molecular weight hydrocarbons.
  • One family of such polymers comprise polymers of ethylene and/or at least one C 3 to C 28 alpha-olefin having the formula H 2 C ⁇ CHR 1 wherein R 1 is straight or branched chain alkyl radical comprising 1 to 26 carbon atoms and wherein the polymer contains carbon-to-carbon unsaturation, preferably a high degree of terminal ethenylidene unsaturation.
  • such polymers comprise interpolymers of ethylene and at least one alpha-olefin of the above formula, wherein R 1 is alkyl of from 1 to 18 carbon atoms, and more preferably is alkyl of from 1 to 8 carbon atoms, and more preferably still of from 1 to 2 carbon atoms.
  • useful alpha-olefin monomers and comonomers include, for example, propylene, but-1-ene, hex-1-ene, oct-1-ene, 4-methylpent-1-ene, dec-1-ene, dodec-1-ene, tridec-1-ene, tetradec-1-ene, pentadec-1-ene, hexadec-1-ene, heptadec-1-ene, octadec-1-ene, nonadec-1-ene, and mixtures thereof (e.g., mixtures of propylene and but-1-ene, and the like).
  • Exemplary of such polymers are propylene homopolymers, but-1-ene homopolymers, ethylene-propylene copolymers, ethylene-but-1-ene copolymers, propylene-butene copolymers and the like, wherein the polymer contains at least some terminal and/or internal unsaturation.
  • Preferred polymers are unsaturated copolymers of ethylene and propylene and ethylene and but-1-ene.
  • the interpolymers may contain a minor amount, e.g. 0.5 to 5 mole % of a C 4 to C 18 non-conjugated diolefin comonomer.
  • the polymers comprise only alpha-olefin homopolymers, interpolymers of alpha-olefin comonomers and interpolymers of ethylene and alpha-olefin comonomers.
  • the molar ethylene content of the polymers employed is preferably in the range of 0 to 80%, and more preferably 0 to 60%.
  • the ethylene content of such copolymers is most preferably between 15 and 50%, although higher or lower ethylene contents may be present.
  • polymers prepared by cationic polymerization of isobutene, styrene, and the like are polymers prepared by cationic polymerization of isobutene, styrene, and the like.
  • Common polymers from this class include polyisobutenes obtained by polymerization of a C 4 refinery stream having a butene content of about 35 to about 75% by wt., and an isobutene content of about 30 to about 60% by wt., in the presence of a Lewis acid catalyst, such as aluminum trichloride or boron trifluoride.
  • a preferred source of monomer for making poly-n-butenes is petroleum feed streams such as Raffinate II. These feedstocks are disclosed in the art such as in U.S. Pat. No. 4,952,739.
  • Polyisobutylene is a most preferred backbone of the present invention because it is readily available by cationic polymerization from butene streams (e.g., using AlCl 3 or BF 3 catalysts). Such polyisobutylenes generally contain residual unsaturation in amounts of about one ethylenic double bond per polymer chain, positioned along the chain.
  • the polyalkenyl moiety of the dispersant comprises a highly reactive polyisobutylene (HR-PIB), having a terminal vinylidene content of at least 65%, e.g., 70%, more preferably at least 80%, most preferably, at least 85%.
  • HR-PB is known and HR-PIB is commercially available under the tradename GlissopalTM (from BASF).
  • the hydrocarbon or polymer backbone can be functionalized, e.g., with carboxylic acid producing moieties (preferably acid or anhydride moieties) selectively at sites of carbon-to-carbon unsaturation on the polymer or hydrocarbon chains, or randomly along chains using any of the three processes mentioned above or combinations thereof, in any sequence.
  • carboxylic acid producing moieties preferably acid or anhydride moieties
  • a most preferred dispersant is one comprising at least one polyalkenyl succinimide, especially a polyisobutenyl succinimide, which is the reaction product of a polyalkenyl substituted succinic anhydride (e.g., PIBSA) and a polyamine (PAM).
  • a most preferred borated dispersant comprises a borated polyalkenyl substituted succinic anhydride (e.g., PIBSA) and a polyamine (PAM).
  • such dispersants have a coupling ratio of from about 0.65 to about 1.25, preferably from about 0.8 to about 1.1, most preferably from about 0.9 to about 1.
  • “coupling ratio” may be defined as a ratio of the number of succinyl groups in the PIBSA to the number of primary amine groups in the polyamine reactant.
  • Mannich base condensation products Another class of high molecular weight ashless dispersants comprises Mannich base condensation products. Generally, these products are prepared by condensing about one mole of a long chain alkyl-substituted mono- or polyhydroxy benzene with about 1 to 2.5 moles of carbonyl compound(s) (e.g., formaldehyde and paraformaldehyde) and about 0.5 to 2 moles of polyalkylene polyamine, as disclosed, for example, in U.S. Pat. No. 3,442,808.
  • carbonyl compound(s) e.g., formaldehyde and paraformaldehyde
  • Such Mannich base condensation products may include a polymer product of a metallocene catalyzed polymerization as a substituent on the benzene group, or may be reacted with a compound containing such a polymer substituted on a succinic anhydride in a manner similar to that described in U.S. Pat. No. 3,442,808.
  • Examples of functionalized and/or derivatized olefin polymers synthesized using metallocene catalyst systems are described in the publications identified supra.
  • the dispersant(s) of the present invention are preferably non-polymeric (e.g., are mono- or bis-succinimides). It is further preferred that the dispersant or dispersants contribute, in total, from about 0.10 to about 0.20 wt. %, preferably from about 0.115 to about 0.18 wt. %, most preferably from about 0.12 to about 0.16 wt. % of nitrogen to the lubricating oil composition.
  • Dispersants can be borated by conventional means, as generally taught in U.S. Pat. Nos. 3,087,936, 3,254,025 and 5,430,105. Boration of the dispersant is readily accomplished by treating an acyl nitrogen-containing dispersant with a boron compound such as boron oxide, boron halide boron acids, and esters of boron acids, in an amount sufficient to provide from about 0.1 to about 20 atomic proportions of boron for each mole of acylated nitrogen composition.
  • a boron compound such as boron oxide, boron halide boron acids, and esters of boron acids
  • the boron which appears in the product as dehydrated boric acid polymers (primarily (HBO 2 ) 3 ), is believed to attach to the dispersant imides and diimides as amine salts, e.g., the metaborate salt of the diimide.
  • Boration can be carried out by adding a sufficient quantity of a boron compound, preferably boric acid, usually as a slurry, to the acyl nitrogen compound and heating with stirring at from about 135° C. to about 190° C., e.g., 140° C. to 170° C., for from about 1 to about 5 hours, followed by nitrogen stripping.
  • the boron treatment can be conducted by adding boric acid to a hot reaction mixture of the dicarboxylic acid material and amine, while removing water. Other post reaction processes known in the art can also be applied.
  • Non-dispersant boron containing compounds include boron oxide, boron oxide hydrate, boron trioxide, boron trifluoride, boron tribromide, boron trichloride, boron acid such as boronic acid, boric acid, tetraboric acid and metaboric acid, boron hydrides, boron amides and various esters of boron acids.
  • Suitable “non-dispersant boron sources” may comprise any oil-soluble, boron-containing compound, but preferably comprise one or more boron-containing additives known to impart enhanced properties to lubricating oil compositions.
  • Such boron-containing additives include, for example, borated dispersant VI improver, alkali metal, mixed alkali metal or alkaline earth metal borate; borated overbased metal detergent; borated epoxide; borate ester; and borate amide.
  • Alkali metal and alkaline earth metal borates are generally hydrated particulate metal borates, which are known in the art.
  • Alkali metal borates include mixed alkali and alkaline earth metal borates. These metal borates are available commercially.
  • Representative patents describing suitable alkali metal and alkaline earth metal borates and their methods of manufacture include U.S. Pat. Nos. 3,997,454; 3,819,521; 3,853,772; 3,907,601; 3,997,454; and 4,089,790.
  • the borated amines may be prepared by reacting one or more of the above boron compounds with one or more of fatty amines, e.g., an amine having from four to eighteen carbon atoms. They may be prepared by reacting the amine with the boron compound at a temperature of from 50 to 300, preferably from 100 to 250° C. and at a ratio from 3:1 to 1:3 equivalents of amine to equivalents of boron compound.
  • Borated fatty epoxides are generally the reaction product of one or more of the above boron compounds with at least one epoxide.
  • the epoxide is generally an aliphatic epoxide having from 8 to 30, preferably from 10 to 24, more preferably from 12 to 20, carbon atoms.
  • Examples of useful aliphatic epoxides include heptyl epoxide and octyl epoxide. Mixtures of epoxides may also be used, for instance commercial mixtures of epoxides having from 14 to 16 carbon atoms and from 14 to 18 carbon atoms.
  • the borated fatty epoxides are generally known and are described in U.S. Pat. No. 4,584,115.
  • Borate esters may be prepared by reacting one or more of the above boron compounds with one or more alcohol of suitable oleophilicity. Typically, the alcohol contains from 6 to 30, or from 8 to 24, carbon atoms. Methods of making such borate esters are known in the art.
  • the borate esters can be borated phospholipids. Such compounds, and processes for making such compounds, are described in EP-A-0 684 298. Borated overbased metal detergents are known in the art where the borate substitutes the carbonate in the core either in part or in full.
  • a borated ashless dispersant as defined herein represents the sole boron containing compound in the lubricating oil composition.
  • the boron containing compound introduces into the lubricating oil composition greater than 200, preferably greater than 250 ppm of boron, based on the total mass of the lubricating oil composition (ASTM D5185).
  • the boron containing compound introduces into the lubricating oil composition less than 600, preferably less than 500, even more preferably less than 400 ppm of boron, based on the total mass of the lubricating oil composition (ASTM D5185).
  • Lubricating oil compositions according to each aspect of the invention may additional comprise one or more co-additives, which are different from additive components (B), (C) and (D). Suitable co-additives and their common treat rates arm discussed below. All the values listed are stated as mass percent active ingredient in a fully formulated lubricant.
  • the final lubricating oil composition typically made by blending the or each additive into the base oil, may contain from 5 to 25, preferably 5 to 18, typically 7 to 15, mass % of the co-additives, the remainder being oil of lubricating viscosity.
  • additives can provide a multiplicity of effects, for example, a single additive may act as a dispersant and as an oxidation inhibitor.
  • Anti-wear agents reduce friction and excessive wear and are usually based on compounds containing sulfur or phosphorous or both, for example that are capable of depositing polysulfide films on the surfaces involved.
  • dihydrocarbyl dithiophosphate metal salts wherein the metal may be an alkali or alkaline earth metal, or aluminium, lead, tin, molybdenum, manganese, nickel, copper, or preferably, zinc.
  • Dihydrocarbyl dithiophosphate metal salts may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohols or a phenol with P 2 S 5 and then neutralizing the formed DDPA with a metal compound.
  • DDPA dihydrocarbyl dithiophosphoric acid
  • a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols.
  • multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in character.
  • any basic or neutral metal compound could be used but the oxides, hydroxides and carbonates are most generally employed. Commercial additives frequently contain an excess of metal due to the use of an excess of the basic metal compound in the neutralization reaction.
  • ZDDP zinc dihydrocarbyl dithiophosphates
  • R and R′ may be the same or different hydrocarbyl radicals containing from 1 to 18, preferably 2 to 12, carbon atoms and including radicals such as alkyl, alkenyl, aryl, arylalkyl, alkaryl and cycloaliphatic radicals.
  • Particularly preferred as R and R′ groups are alkyl groups of 2 to 8 carbon atoms.
  • the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl.
  • the total number of carbon atoms (i.e. R and R′) in the dithiophosphoric acid will generally be about 5 or greater.
  • the zinc dihydrocarbyl dithiophosphate can therefore comprise zinc dialkyl dithiophosphates.
  • the ZDDP is added to the lubricating oil compositions in amounts sufficient to provide no greater than 1200 ppm, preferably no greater than 1000 ppm, more preferably no greater than 900 ppm, most preferably no greater than 850 ppm by mass of phosphorous to the lubricating oil, based upon the total mass of the lubricating oil composition, and as measured in accordance with ASTM D5185.
  • the ZDDP is suitably added to the lubricating oil compositions in amounts sufficient to provide at least 200 ppm, preferably at least 350 ppm, more preferably at least 500 ppm by mass of phosphorous to the lubricating oil, based upon the total mass of the lubricating oil composition, and as measured in accordance with ASTM D5185.
  • the ratio of phosphorus to molybdenum in the lubricating oil composition according to all aspects of the present invention is suitably less than 1.5, preferably less than 1.2 and more preferably less than 1.0.
  • ashless anti-wear agents examples include 1,2,3-triazoles, benzotriazoles, sulfurised fatty acid esters, and dithiocarbamate derivatives.
  • Ashless dispersants comprise an oil-soluble polymeric hydrocarbon backbone having functional groups that are capable of associating with particles to be dispersed and may be used in addition to any boron-containing compound (D) optionally present in the lubricating oil of any aspect of the invention.
  • the dispersants comprise amine, alcohol, amide, or ester polar moieties attached to the polymer backbone often via a bridging group.
  • the ashless dispersants may be, for example, selected from oil-soluble salts, esters, amino-esters, amides, imides, and oxazolines of long chain hydrocarbon substituted mono and dicarboxylic acids or their anhydrides; thiocarboxylate derivatives of long chain hydrocarbons; long chain aliphatic hydrocarbons having a polyamine attached directly thereto; and Mannich condensation products formed by condensing a long chain substituted phenol with formaldehyde and a polyalkylene polyamine.
  • Ashless Friction modifiers such as nitrogen-free organic friction modifiers are useful in the lubricating oil compositions of the present invention and are known generally and include esters formed by reacting carboxylic acids and anhydrides with alkanols.
  • Other useful friction modifiers generally include a polar terminal group (e.g. carboxyl or hydroxyl) covalently bonded to an oleophilic hydrocarbon chain.
  • Esters of carboxylic acids and anhydrides with alkanols are described in U.S. Pat. No. 4,702,850. Examples of other conventional organic friction modifiers are described by M. Belzer in the “Journal of Tribology” (1992), Vol. 114, pp. 675-682 and M. Belzer and S. Jahanmir in “Lubrication Science” (1988), Vol. 1, pp. 3-26.
  • Preferred organic ashless nitrogen-free friction modifiers are esters or ester-based; a particularly preferred organic ashless nitrogen-free friction modifier is glycerol monooleate (GMO).
  • GMO glycerol monooleate
  • Ashless aminic or amine-based friction modifiers may also be used and include oil-soluble alkoxylated mono- and di-amines, which improve boundary layer lubrication.
  • One common class of such metal free, nitrogen-containing friction modifier comprises ethoxylated alkyl amines. They may be in the form of an adduct or reaction product with a boron compound such as a boric oxide, boron halide, metaborate, boric acid or a mono-, di- or tri-alkyl borate.
  • Another metal free, nitrogen-containing friction modifier is an ester formed as the reaction product of (i) a tertiary amine of the formula R 1 R 2 R 3 N wherein R 1 , R 2 and R 3 represent aliphatic hydrocarbyl, preferably alkyl, groups having 1 to 6 carbon atoms, at least one of R 1 , R 2 and R 3 having a hydroxyl group, with (ii) a saturated or unsaturated fatty acid having 10 to 30 carbon atoms.
  • R 1 , R 2 and R 3 is an alkyl group.
  • the tertiary amine will have at least one hydroxyalkyl group having 2 to 4 carbon atoms.
  • the ester may be a mono-, di- or tri-ester or a mixture thereof, depending on how many hydroxyl groups are available for esterification with the acyl group of the fatty acid.
  • a preferred embodiment comprises a mixture of esters formed as the reaction product of (i) a tertiary hydroxy amine of the formula R 1 R 2 R 3 N wherein R 1 , R 2 and R 3 may be a C 2 -C 4 hydroxy alkyl group with (ii) a saturated or unsaturated fatty acid having 10 to 30 carbon atoms, with a mixture of esters so formed comprising at least 30-60 mass %, preferably 45-55 mass % diester, such as 50 mass % diester, 10-40 mass %, preferably 20-30 mass % monoester, e.g.
  • the ester is a mono-, di- or tri-carboxylic acid ester of triethanolamine and mixtures thereof.
  • the total amount of additional organic ashless friction modifier in a lubricant according to the present invention does not exceed 5 mass %, based on the total mass of the lubricating oil composition and preferably does not exceed 2 mass % and more preferably does not exceed 0.5 mass %.
  • the lubricating oil composition contains no additional organic ashless friction modifier.
  • Viscosity modifiers function to impart high and low temperature operability to a lubricating oil.
  • the VM used may have that sole function, or may be multifunctional.
  • Multifunctional viscosity modifiers that also function as dispersants are also known.
  • Suitable viscosity modifiers are polyisobutylene, copolymers of ethylene and propylene and higher alpha-olefins, polymethacrylates, polyalkylmethacrylates, methacrylate copolymers, copolymers of an unsaturated dicarboxylic acid and a vinyl compound, inter polymers of styrene and acrylic esters, and partially hydrogenated copolymers of styrene/isoprene, styrene/butadiene, and isoprene/butadiene, as well as the partially hydrogenated homopolymers of butadiene and isoprene and isoprene/divinylbenzene.
  • Anti-oxidants sometimes referred to as oxidation inhibitors, increase the resistance of the composition to oxidation and may work by combining with and modifying peroxides to render them harmless, by decomposing peroxides, or by rendering oxidation catalysts inert. Oxidative deterioration can be evidenced by sludge in the lubricant, varnish-like deposits on the metal surfaces, and by viscosity growth.
  • suitable antioxidants are selected from copper-containing antioxidants, sulfur-containing antioxidants, aromatic amine-containing antioxidants, hindered phenolic antioxidants, dithiophosphates derivatives, and metal thiocarbamates.
  • Preferred anti-oxidants are aromatic amine-containing antioxidants, hindered phenolic antioxidants and mixtures thereof.
  • an antioxidant is present in a lubricating oil composition of the present invention.
  • Rust inhibitors selected from the group consisting of nonionic polyoxyalkylene polyols and esters thereof, polyoxyalkylene phenols, and anionic alkyl sulfonic acids may be used.
  • Copper and lead bearing corrosion inhibitors may be used in some embodiments of the invention, and when these compounds are included in the lubricating composition, they are preferably present in an amount not exceeding 0.2 wt. % active ingredient. However, in a preferred embodiment of the present invention, no copper-containing additives are present in the lubricating oil composition.
  • suitable such compounds are the thiadiazole polysulfides containing from 5 to 50 carbon atoms, their derivatives and polymers thereof. Derivatives of 1, 3, 4 thiadiazoles such as those described in U.S. Pat. Nos. 2,719,125; 2,719,126; and 3,087,932; are typical. Other similar materials are described in U.S. Pat. Nos.
  • additives are the thio and polythio sulfenamides of thiadiazoles such as those described in UK Patent Specification No. 1,560,830. Benzotriazoles derivatives also fall within this class of additives.
  • a small amount of a demulsifying component may be used.
  • a preferred demulsifying component is described in EP 330522. It is obtained by reacting an alkylene oxide with an adduct obtained by reacting a bis-epoxide with a polyhydric alcohol.
  • the demulsifier should be used at a level not exceeding 0.1 mass % active ingredient. A treat rate of 0.001 to 0.05 mass % active ingredient is convenient.
  • Pour point depressants otherwise known as lube oil flow improvers, lower the minimum temperature at which the fluid will flow or can be poured.
  • Such additives are well known. Typical of those additives which improve the low temperature fluidity of the fluid are C 8 to C 18 dialkyl fumarate/vinyl acetate copolymers, polyalkylmethacrylates and the like.
  • Foam control can be provided by many compounds including an antifoamant of the polysiloxane type, for example, silicone oil or polydimethyl siloxane.
  • each of the components can be added directly to the base stock or base oil blend by dispersing or dissolving it in the base stock or base oil blend at the desired level of concentration. Such blending may occur at ambient or elevated temperatures.
  • all the additives except for the viscosity modifier and the pour point depressant are blended into a concentrate or additive package described herein as the additive package that is subsequently blended into base stock to make the finished lubricant.
  • the concentrate will typically be formulated to contain the additive(s) in proper amounts to provide the desired concentration in the final formulation when the concentrate is combined with a predetermined amount of a base lubricant.
  • the concentrate is preferably made in accordance with the method described in U.S. Pat. No. 4,938,880. That patent describes making a pre-mix of ashless dispersant and metal detergents that is pre-blended at a temperature of at least about 100° C. Thereafter, the pre-mix is cooled to at least 85° C. and the additional components are added.
  • the final crankcase lubricating oil formulation may employ from 2 to 20, preferably 4 to 18, and most preferably 5 to 17, mass % of the concentrate or additive package with the remainder being base stock.
  • the lubricating oil composition of the present invention may have a sulphated ash content of less than or equal to 1.2, preferably less than or equal to 1.1, more preferably less than or equal to 1.0, mass % (ASTM D874) based on the total mass of the composition.
  • the lubricating oil composition of the present invention suitably has a sulphated ash content of at least 0.2, preferably at least 0.4, such as at least 0.5 mass % (ASTM D874) based on the total mass of the composition.
  • the sulphated ash content of the lubricating oil composition is in the range of 0.04-1.2 mass %, preferably in the range of 0.05 to 1.0 mass % (ASTM D874).
  • the amount of phosphorus in the lubricating oil composition of the present invention contains will depend upon the particular application of the oil.
  • the lubricating oil composition contains phosphorus in an amount of less than or equal to 0.12 mass %, preferably up to 0.1 mass %, more preferably less than or equal to 0.09 mass %, even more preferably less than or equal to 0.08 mass % of phosphorus (ASTM D5185) based on the total mass of the composition.
  • the lubricating oil composition contains phosphorus in an amount of greater than or equal to 0.01, preferably greater than or equal to 0.02, more preferably greater than or equal to 0.03, even more preferably greater than or equal to 0.05 mass % of phosphorus (ASTM D5185) based on the total mass of the composition.
  • the amount of sulfur in the lubricating oil composition will depend upon the particular application of the lubricating oil composition.
  • the lubricating oil composition may contain sulphur in an amount of up to 0.4, such as, up to 0.35 mass % sulphur (ASTM D2622) based on the total mass of the composition.
  • sulphur in an amount of up to 0.4, such as, up to 0.35 mass % sulphur (ASTM D2622) based on the total mass of the composition.
  • ASTM D2622 mass % sulphur
  • a lubricating oil composition according to the present invention contains at least 0.02, such as at least 0.03 or 0.04 mass % nitrogen, based on the total mass of the composition and as measured according to ASTM method D5291.
  • the lubricating oil composition will contain no more than 0.20, such as no more than 0.15 or no more than 0.12 mass % nitrogen based upon the total mass of the composition and as measured according to ASTM D5291.
  • the lubricating oil composition of all aspects and embodiments of the present invention may have a total base number (TBN), as measured in accordance with ASTM D2896, of 4 to 15, preferably 5 to 12 mg KOH/g.
  • TBN total base number
  • the rig was set up with a 6 mm ball on a 10 mm disc.
  • the test protocol employed was as follows:
  • Test Duration 1 min hold and 5 min run at each temperature stage
  • Test Load N 4 Frequency (Hz) 40 Stroke Length 1,000 (microns) Temperature (° C.) 40, 60, 80, 100, 120, 140
  • the test has 6 temperature stages and you can record the average friction at each temperature stage and the overall average friction across all stages.
  • Oil C-1, Oil C-3 and Oil I-3 show that inclusion of high levels of molybdenum in a lubricating oil comprising either magnesium or calcium detergents improves the average HFRR friction performance of the oil, as expected.
  • a comparison of Oil C-3 and Oil I-3 also shows that this is further improved when the calcium detergent is replaced by a magnesium detergent. This further improvement resulting from the replacement of the calcium detergent with a magnesium detergent is unexpected.
  • Oil I-1 shows that changing the magnesium salicylate detergent to a magnesium sulfonate detergent in otherwise comparable oils significantly improves the low temperature friction performance, whilst maintaining the improved performance exhibited by use of the magnesium detergent compared to the calcium detergent referred to above. This improvement in low temperature friction performance is unexpected.
  • Oil I-4 shows that the best improvement of average HFRR friction can be obtained when a combination of calcium and magnesium detergent is used, and again the presence of magnesium sulfonate detergent in the calcium/magnesium detergent mixture further improves the low temperature friction performance.
  • the calcium salicylate was a Infineum C9329 an overbased detergent having a TBN of 225 and mass % Ca available from Infineum UK Ltd.
  • the magnesium salicylate was Infineum C9012 an overbased detergent having a TBN of 342 and 7.4 mass % Mg available from Infineum UK Ltd.
  • the magnesium sulfonate was Infineum C9340 and overbased detergent having a TBN of 400 and mass % Mg available from Infineum UK Ltd.
  • the borated dispersant was Infineum C9202 a borated ashless polyisobutenyl succinimide dispersant containing 2.3 mass % B available from Infineum UK Ltd. 6
  • the additional additives are provided by a detergent inhibitor package comprising non-borated dispersant, zinc dialkyldithiophosphate, and antioxidant. The amount of each of these additives was the same in each oil tested. indicates data missing or illegible when filed

Abstract

A crankcase lubricating oil composition for the crankcase of a spark-ignited or compression-ignited internal combustion engine, comprising a magnesium-containing detergent, in an amount sufficient to provide from 200-4000 ppm magnesium to the lubricating oil composition, in combination with an oil-soluble or oil-dispersible molybdenum compound in an amount sufficient to provide from 600-1500 ppm molybdenum atoms to the lubricating oil composition, and with an oil-soluble or oil-dispersible boron-containing compound in an amount sufficient to provide from 200-600 ppm boron atoms to the lubricating oil composition to improve the friction and fuel economy performance.

Description

    FIELD OF THE INVENTION
  • The present invention relates to automotive lubricating oil compositions for four or more wheeled vehicles which exhibit improved friction characteristics. More specifically, the present invention relates to automotive crankcase lubricating oil compositions for use in gasoline (spark-ignited) and diesel (compression-ignited) internal combustion engines, such compositions being referred to as crankcase lubricants; and to the use of additives in such lubricating oil compositions for reducing friction between moving parts in use of such engines and/or improving the fuel economy performance of an engine lubricated with the lubricating oil composition.
  • BACKGROUND OF THE INVENTION
  • A crankcase lubricant is an oil used for general lubrication in an internal combustion engine where an oil sump is situated generally below the crankshaft of the engine and to which circulated oil returns. To reduce the energy and fuel consumption requirements of the engine, there is a need for crankcase lubricants that reduce the overall friction of the engine. Reducing friction losses in an engine contributes significantly to improving fuel economy performance and fuel economy retention properties. It has long been known to use friction modifiers to obtain improved friction performance.
  • Oil-soluble molybdenum containing additives may be used for their friction reducing properties. Examples of patent applications which refer to oil-soluble molybdenum additives for lubricating oil compositions include U.S. Pat. Nos. 4,164,473; 4,176,073; 4,176,074; 4,192,757; 4,248,720; 4,201,683; 4,289,635 and 4,479,883. It is common in some markets, such as in Japan, to use high levels of molybdenum-containing additives, such as molybdenum dithiocarbamate, as a friction modifier to achieve low friction. In such applications, up to 1000 ppm of molybdenum atoms may be present in the lubricant.
  • U.S. Pat. No. 6,074,993 illustrates that a combination of dimeric and trimeric molybdenum compounds can improve fuel economy and wet clutch properties in a lubricant containing ZDDP and calcium and/or magnesium sulfonate detergents.
  • International patent application no WO99/47629 relates to lubricant containing calcium detergents and tri-nuclear molybdenum additives for improved friction reducing properties. Data shows that a combination of trinuclear molybdenum compounds and calcium sulfonate exhibits improved retention of friction reducing properties.
  • It is well known to add boron to lubricating oil compositions to improve wear performance. However, in some oil compositions, high levels of boron can cause an increase in boundary friction.
  • International patent application WO 96/19551 discloses an engine oil comprising a boron-containing alkenyl succinimide providing the oil with greater than 800 ppm atomic boron, a molybdenum dithiophosphate or dithiocarbamate providing the oil with 50-2000 ppm molybdenum atoms, calcium salicylate providing the oil with 50-4000 ppm calcium atoms, magnesium salicylate providing the oil with 50 to 4000 ppm magnesium and optionally a copolymer of ethylene at least one other alpha-olefin monomer. The lubricating oils compositions of WO 96/19551 are stated to exhibit improved fuel economy and fuel economy retention properties.
  • In addition, International patent application WO 96/37582 discloses a lubricating oil composition comprising a sulfoxymolybdenum dithiocarbamate providing 200-1000 ppm molybdenum atoms to the oil, zinc dialkyldithiocarbamate containing primary alkyl groups and providing 0.04-0.15 wt % phosphorus atoms to the oil, and a mixture of 50-100 wt % calcium alkyl salicylate and 0 to 50 wt % magnesium alkyl salicylate. The lubricating oil is stated to have good antiwear properties and retention of friction-reducing properties.
  • U.S. Pat. No. 5,631,212 discloses a lubricating oil comprising an oil-soluble copper salt, and oil-soluble molybdenum salt, Group II metal salicylate and a borated polyalkenyl succinimide, and is stated to provide good performance for fuel economy, wear and antioxidancy.
  • Furthermore, European patent application number EP 0 562 172 discloses a lubricant comprising a borated alkenyl succinimide, an alkaline earth metal salt of a salicylic acid and 100-2000 ppm of molybdenum atoms from a molybdenum compound selected from molybdenum dithiophosphate and molybdenum dithiocarbamate, which is considered to be capable of reducing friction loss in an engine.
  • As fuel economy legislation becomes ever stricter, and engine designs change fuel economy tests are becoming more closely aligned with engine operations. It is increasingly important to reduce friction and thus improve fuel economy across the full range of operating temperatures of the engines, including at low temperatures (e.g. ambient temperature (40° C. to below 0° C.) present at engine start up. Accordingly, there is a need for crankcase lubricants which exhibit desirable friction characteristics reducing friction losses at start-up of an engine and across the full operating temperature of the engine and thereby improving fuel economy.
  • SUMMARY OF THE INVENTION
  • The present invention provides a crankcase lubricating oil composition comprising or made by admixing:
      • (A) an oil of lubricating viscosity, in a major amount;
      • (B) an oil-soluble or oil-dispersible molybdenum-containing additive, providing from 600-1500 ppm of molybdenum atoms to the lubricating oil composition, measured according to ASTM D5185,
      • (C) a detergent composition comprising one or more magnesium sulfonate detergents in an amount providing from 200 to 4000 ppm magnesium atoms to the lubricating oil composition, measured according to ASTM D5185, and
      • (D) an oil-soluble or oil-dispersible boron-containing compound present in the lubricating oil composition in an amount sufficient to provide from 200-600 ppm boron atoms to the lubricating oil composition, measured according to ASTM D5185.
  • In an embodiment of the present invention, the detergent composition further comprises one or more additional detergent additives chosen from magnesium salicylate, magnesium phenate, calcium salicylate, calcium phenate and/or calcium sulfonate detergents. Preferably, a lubricating oil composition of the invention comprises a detergent composition consisting of a mixture of one of more magnesium sulfonate detergents and one or more calcium salicylate detergents.
  • Unexpectedly, it has been found that the use of a magnesium sulfonate detergent in a lubricating oil composition comprising high quantities of oil-soluble or oil-dispersible molybdenum compound provides an unexpected improvement in the friction performance of the lubricating oil composition, especially at low temperature. Accordingly, the reduction in friction typically translates into improved fuel economy.
  • The present invention provides a method of lubricating a spark-ignited or compression-ignited internal combustion engine comprising lubricating the engine with a lubricating oil composition as defined in accordance with the present invention.
  • The present invention further provides the use of a magnesium-containing detergent in a crankcase lubricating oil composition in an amount sufficient to provide from 200-4000 ppm magnesium to the lubricating oil composition, to reduce the boundary friction measurement compared to an equivalent lubricant that does not contain the magnesium-containing detergent in an amount sufficient to provide from 200-4000 ppm magnesium to the lubricating oil composition, measured according to ASTM D5185.
  • In an embodiment of the use of the present invention the lubricating oil composition further comprises an oil-soluble or oil-dispersible molybdenum compound in an amount sufficient to provide from 500-1500 ppm molybdenum atoms to the lubricating oil composition, measured according to ASTM D5185, and an oil-soluble or oil-dispersible boron-containing compound present in the lubricating oil composition in an amount sufficient to provide from 200-600 ppm boron atoms to the lubricating oil composition, measured according to ASTM D5185.
  • The lubricant of the present invention is suitably used in the lubrication of the crankcase of a spark-ignited or compression-ignited internal combustion engine.
  • In an embodiment of the use of the present invention, the magnesium-containing detergent is one or more detergent chosen from the group consisting of oil-soluble neutral and overbased magnesium sulfonates, magnesium phenates, magnesium sulfurized phenates, magnesium thiophosphonates, magnesium salicylates, and magnesium naphthenates and other oil-soluble magnesium carboxylates. Preferably, the magnesium-containing detergent is a magnesium sulfonate.
  • In accordance with another embodiment of the use of the present invention, the lubricating oil composition further comprises further detergent additives chosen from magnesium salicylate, magnesium phenate, calcium salicylate, calcium phenate and/or calcium sulfonate detergents. Preferably, a lubricating oil composition of the use of the invention comprises a detergent composition consisting of a mixture of one of more magnesium sulfonate detergents and one or more calcium salicylate detergents.
  • Unexpectedly, it has been found that the use of a magnesium-containing detergents in a lubricating oil composition comprising high quantities of oil-soluble or oil-dispersible molybdenum compound and oil-soluble or oil-dispersible boron-containing compound provides an unexpected improvement in the friction performance of the lubricating oil composition. Such improvement is further improved if the magnesium detergent is magnesium sulfonate and the magnesium sulfonate is used with a calcium-containing detergent, preferably a calcium salicylate detergent. Accordingly, the reduction in friction typically translates into improved fuel economy.
  • The present invention still further provides the use, in the crankcase lubrication of a spark-ignited or compression-ignited internal combustion engine, of a lubricating oil composition in accordance with the present invention to reduce the coefficient of friction between contacting metal surfaces in the engine during operation of the engine compared to the use of a lubricant that does not contain the magnesium-containing detergent in an amount sufficient to provide from 200-4000 ppm magnesium to the lubricating oil composition (ASTM D5185).
  • The present invention provides a method of improving the fuel economy performance of a spark-ignited or compression-ignited internal combustion engine, which method comprises lubricating the engine with a lubricating oil composition of the present invention and operating the engine.
  • In this specification, the following words and expressions, if and when used, have the meanings given below:
      • “active ingredients” or “(a.i.)” refers to additive material that is not diluent or solvent;
      • “comprising” or any cognate word specifies the presence of stated features, steps, or integers or components, but does not preclude the presence or addition of one or more other features, steps, integers, components or groups thereof. The expressions “consists of” or “consists essentially o” or cognates may be embraced within “comprises” or cognates, wherein “consists essentially of” permits inclusion of substances not materially affecting the characteristics of the composition to which it applies;
      • “hydrocarbyl” means a chemical group of a compound that contains hydrogen and carbon atoms and that is bonded to the remainder of the compound directly via a carbon atom. The group may contain one or more atoms other than carbon and hydrogen provided they do not affect the essentially hydrocarbyl nature of the group. Those skilled in the art will be aware of suitable groups (e.g., halo, especially chloro and fluoro, amino, alkoxyl, mercapto, alkylmercapto, nitro, nitroso, sulfoxy, etc.). Preferably, the group consists essentially of hydrogen and carbon atoms, unless specified otherwise. Preferably, the hydrocarbyl group comprises an aliphatic hydrocarbyl group. The term “hydrocarbyl” includes “alkyl”, “alkenyl”, “allyl” and “aryl” as defined herein;
      • “alkyl” means a C1 to C30 alkyl group which is bonded to the remainder of the compound directly via a single carbon atom. Unless otherwise specified, alkyl groups may, when there are a sufficient number of carbon atoms, be linear (i.e. unbranched) or branched, be cyclic, acyclic or part cyclic/acyclic. Preferably, the alkyl group comprises a linear or branched acyclic alkyl group. Representative examples of alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, iso-pentyl, neo-pentyl, hexyl, heptyl, octyl, dimethyl hexyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl and triacontyl;
      • “aryl” means a C6 to C18, preferably C6 to C10, aromatic group, optionally substituted by one or more alkyl groups, halo, hydroxyl, alkoxy and amino groups, which is bonded to the remainder of the compound directly via a single carbon atom. Preferred aryl groups include phenyl and naphthyl groups and substituted derivatives thereof, especially phenyl and alkyl substituted derivatives thereof;
      • “alkenyl” means a C2 to C30, preferably a C2 to C12, group which includes at least one carbon to carbon double bond and is bonded to the remainder of the compound directly via a single carbon atom, and is otherwise defined as “alkyl”;
      • “alkylene” means a C2 to C20, preferably a C2 to C10, more preferably a C2 to C6 bivalent saturated acyclic aliphatic radical which may be linear or branched. Representative examples of alkylene include ethylene, propylene, butylene, isobutylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, 1-methyl ethylene, 1-ethyl ethylene, 1-ethyl-2-methyl ethylene, 1,1-dimethyl ethylene and 1-ethyl propylene;
      • “polyol” means an alcohol which includes two or more hydroxyl functional groups (i.e. a polyhydric alcohol) but excludes a “polyalkylene glycol” (component B(ii)) which is used to form the oil-soluble or oil-dispersible polymeric friction modifier. More specifically, the term “polyol” embraces a diol, triol, tetrol, and/or related dimers or chain extended polymers of such compounds. Even more specifically, the term “polyol” embraces glycerol, neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, dipentaerythritol, tripentaerythritol and sorbitol;
      • “polycarboxylic acid” means an organic acid, preferably a hydrocarbyl acid, which includes 2 or more carboxylic acid functional groups. The term “polycarboxylic acid” embraces di-, tri- and tetra-carboxylic acids;
      • “halo” or “halogen” includes fluoro, chloro, bromo and iodo;
      • “oil-soluble” or “oil-dispersible”, or cognate terms, used herein do not necessarily indicate that the compounds or additives are soluble, dissolvable, miscible, or are capable of being suspended in the oil in all proportions. These do mean, however, that they are, for example, soluble or stably dispersible in oil to an extent sufficient to exert their intended effect in the environment in which the oil is employed. Moreover, the additional incorporation of other additives may also permit incorporation of higher levels of a particular additive, if desired;
      • “ashless” in relation to an additive means the additive does not include a metal;
      • “ash-containing” in relation to an additive means the additive includes a metal;
      • “major amount” means in excess of 50 mass % of a composition expressed in respect of the stated component and in respect of the total mass of the composition, reckoned as active ingredient of the component;
      • “minor amount” means less than 50 mass % of a composition, expressed in respect of the stated additive and in respect of the total mass of the composition, reckoned as active ingredient of the additive;
      • “effective minor amount” in respect of an additive means an amount of such an additive in a lubricating oil composition so that the additive provides the desired technical effect;
      • “ppm” means parts per million by mass, based on the total mass of the lubricating oil composition;
      • “metal content” of the lubricating oil composition or of an additive component, for example detergent metal, molybdenum or boron content or total metal content of the lubricating oil composition (i.e. the sum of all individual metal contents), is measured by ASTM D5185;
      • “TBN” in relation to an additive component or of a lubricating oil composition of the present invention, means total base number (mg KOH/g) as measured by ASTM D2896;
      • “KV100” means kinematic viscosity at 100° C. as measured by ASTM D445;
      • “phosphorus content” is measured by ASTM D5185;
      • “sulfur content” is measured by ASTM D2622; and,
      • “sulfated ash content” is measured by ASTM D874.
  • All percentages reported are mass % on an active ingredient basis, i.e. without regard to carrier or diluent oil, unless otherwise stated.
  • Also, it will be understood that various components used, essential as well as optimal and customary, may react under conditions of formulation, storage or use and that the invention also provides the product obtainable or obtained as a result of any such reaction.
  • Further, it is understood that any upper and lower quantity, range and ratio limits set forth herein may be independently combined.
  • Also, it will be understood that the preferred features of each aspect of the present invention are regarded as preferred features of every other aspect of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The features of the invention relating, where appropriate, to each and all aspects of the invention, will now be described in more detail as follows:
  • Oil of Lubricating Viscosity (A)
  • The oil of lubricating viscosity (sometimes referred to as “base stock” or “base oil”) is the primary liquid constituent of a lubricant, into which additives and possibly other oils are blended, for example to produce a final lubricant (or lubricant composition). A base oil is useful for making concentrates as well as for making lubricating oil compositions therefrom, and may be selected from natural (vegetable, animal or mineral) and synthetic lubricating oils and mixtures thereof.
  • The base stock groups are defined in the American Petroleum Institute (API) publication “Engine Oil Licensing and Certification System”, Industry Services Department, Fourteenth Edition, December 1996, Addendum 1, December 1998. Typically, the base stock will have a viscosity preferably of 3-12, more preferably 4-10, most preferably 4.5-8, mm2/s (cSt) at 100° C.
  • Definitions for the base stocks and base oils in this invention are the same as those found in the American Petroleum Institute (API) publication “Engine Oil Licensing and Certification System”, Industry Services Department, Fourteenth Edition, December 1996, Addendum 1, December 1998. Said publication categorizes base stocks as follows:
      • a) Group I base stocks contain less than 90 percent saturates and/or greater than 0.03 percent sulphur and have a viscosity index greater than or equal to 80 and less than 120 using the test methods specified in Table E-1.
      • b) Group II base stocks contain greater than or equal to 90 percent saturates and less than or equal to 0.03 percent sulphur and have a viscosity index greater than or equal to 80 and less than 120 using the test methods specified in Table E-1.
      • c) Group III base stocks contain greater than or equal to 90 percent saturates and less than or equal to 0.03 percent sulphur and have a viscosity index greater than or equal to 120 using the test methods specified in Table E-1.
      • d) Group IV base stocks are polyalphaolefins (PAO).
      • e) Group V base stocks include all other base stocks not included in Group I, II, III, or IV.
  • TABLE E-1
    Analytical Methods for Base Stock
    Property Test Method
    Saturates ASTM D 2007
    Viscosity Index ASTM D 2270
    Sulphur ASTM D 2622
    ASTM D 4294
    ASTM D 4927
    ASTM D 3120
  • Other oils of lubricating viscosity which may be included in the lubricating oil composition are detailed as follows:
  • Natural oils include animal and vegetable oils (e.g. castor and lard oil), liquid petroleum oils and hydro-refined, solvent-treated mineral lubricating oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful base oils.
  • Synthetic lubricating oils include hydrocarbon oils such as polymerized and interpolymerized olefins (e.g. polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes)); alkylbenzenes (e.g. dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)benzenes); polyphenols (e.g. biphenyls, terphenyls, alkylated polyphenols); and alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives, analogues and homologues thereof.
  • Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g. phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g. butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylbexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol). Specific examples of these esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid.
  • Esters useful as synthetic oils also include those made from C5 to C12 monocarboxylic acids and polyols, and polyol ethers such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
  • Unrefined, refined and re-refined oils can be used in the compositions of the present invention. Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment. For example, a shale oil obtained directly from retorting operations, a petroleum oil obtained directly from distillation or ester oil obtained directly from an esterification process and used without further treatment would be unrefined oil. Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques, such as distillation, solvent extraction, acid or base extraction, filtration and percolation are known to those skilled in the art. Re-refined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such re-refined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques for approval of spent additive and oil breakdown products.
  • Other examples of base oil are gas-to-liquid (“GTL”) base oils, i.e. the base oil may be an oil derived from Fischer-Tropsch synthesised hydrocarbons made from synthesis gas containing H2 and CO using a Fischer-Tropsch catalyst. These hydrocarbons typically require further processing in order to be useful as a base oil. For example, they may, by methods known in the art, be hydroisomerized; hydrocracked and hydroisomerized; dewaxed; or hydroisomerized and dewaxed.
  • The composition of the base oil will depend upon the particular application of the lubricating oil composition and the oil formulator will chose the base oil to achieve desired performance characteristics at reasonable cost.
  • Preferably, the volatility of the oil of lubricating viscosity or oil blend, as measured by the NOACK test (ASTM D5800), is less than or equal to 20%, preferably less than or equal to 16%, preferably less than or equal to 12%, more preferably less than or equal to 10%. Preferably, the viscosity index (VI) of the oil of lubricating viscosity is at least 95, preferably at least 110, more preferably at least 120, even more preferably at least 125, most preferably from about 130 to 140.
  • The oil of lubricating viscosity is provided in a major amount, in combination with a minor amount of additive components (B) and (C), as defined herein and, if necessary, one or more co-additives, such as described hereinafter, constituting a lubricating oil composition. This preparation may be accomplished by adding the additives directly to the oil or by adding them in the form of a concentrate thereof to disperse or dissolve the additive. Additives may be added to the oil by any method known to those skilled in the art, either before, at the same time as, or after addition of other additives.
  • Preferably, the oil of lubricating viscosity is present in an amount of greater than 65 mass %, more preferably greater than 70 mass %, even more preferably greater than 75 mass % Y, based on the total mass of the lubricating oil composition. Preferably, the oil of lubricating viscosity is present in an amount of less than 98 mass %, such as less than 95 mass %, or even less than 90 mass %, based on the total mass of the lubricating oil composition.
  • Preferably, the lubricating oil composition of the present invention is a multigrade oil identified by the viscometric descriptor SAE 20W-X, SAE 15W-X, SAE 10W-X, SAE 5W-X or SAE 0W-X, where X represents any one of 8, 12, 16, 20, 30, 40 and 50; the characteristics of the different viscometric grades can be found in the SAE J300 classification. The lubricating oil composition is preferably in the form of an SAE 10W-X, SAE 5W-X or SAE 0W-X, more preferably in the form of a SAE 5W-X or SAE 0W-X, wherein X represents any one of 8, 12, 16, 20, 30, 40 and 50. Preferably X is 8, 12, 16 or 20.
  • Oil-Soluble Molybdenum Compound (B)
  • For the lubricating oil compositions of the present invention, any suitable oil-soluble or oil-dispersible molybdenum compound having friction modifying properties in lubricating oil compositions may be employed. Preferably, the oil-soluble or oil-dispersible molybdenum compound is an oil-soluble or oil-dispersible organo-molybdenum compound. As examples of such organo-molybdenum compounds, there may be mentioned molybdenum dithiocarbamates, molybdenum dithiophosphates, molybdenum dithiophosphinates, molybdenum xanthates, molybdenum thioxanthates, molybdenum sulfides, and the like, and mixtures thereof. Particularly preferred are molybdenum dithiocarbamates, molybdenum dialkyldithiophosphates, molybdenum alkyl xanthates and molybdenum alkylthioxanthates. An especially preferred organo-molybdenum compound is a molybdenum dithiocarbamate. In an embodiment of the present invention the oil-soluble or oil-dispersible molybdenum compound consists of either a molybdenum dithiocarbamate or a molybdenum dithiophosphate or a mixture thereof, as the sole source of molybdenum atoms in the lubricating oil composition. In an alternative embodiment of the present invention the oil-soluble or oil-dispersible molybdenum compound consists of a molybdenum dithiocarbamate, as the sole source of molybdenum atoms in the lubricating oil composition.
  • The molybdenum compound may be mono-, di-, tri- or tetra-nuclear. Di-nuclear and tri-nuclear molybdenum compounds are preferred.
  • Additionally, the molybdenum compound may be an acidic molybdenum compound. These compounds will react with a basic nitrogen compound as measured by ASTM test D-664 or D-2896 titration procedure and are typically hexavalent. Included are molybdic acid, ammonium molybdate, sodium molybdate, potassium molybdate, and other alkaline metal molybdates and other molybdenum salts, e.g., hydrogen sodium molybdate, MoOCl4, MoO2Br2, Mo2O3Cl6, molybdenum trioxide or similar acidic molybdenum compounds. Alternatively, the compositions of the present invention can be provided with molybdenum by molybdenum/sulfur complexes of basic nitrogen compounds as described, for example, in U.S. Pat. Nos. 4,263,152; 4,285,822; 4,283,295; 4,272,387; 4,265,773; 4,261,843; 4,259,195 and 4,259,194; and WO 94/06897.
  • Suitable dinuclear or dimeric molybdenum dialkyldithiocarbamate are represented by the following formula:
  • Figure US20210324292A1-20211021-C00001
  • R1 through R4 independently denote a straight chain, branched chain or aromatic hydrocarbyl group having 1 to 24 carbon atoms; and X1 through X4 independently denote an oxygen atom or a sulfur atom. The four hydrocarbyl groups, R1 through R4, may be identical or different from one another.
  • Other molybdenum compounds useful in the compositions of this invention are organo-molybdenum compounds of the formulae Mo(ROCS2)4 and Mo(RSCS2)4, wherein R is an organo group selected from the group consisting of alkyl, aryl, aralkyl and alkoxyalkyl, generally of from 1 to 30 carbon atoms, and preferably 2 to 12 carbon atoms and most preferably alkyl of 2 to 12 carbon atoms. Especially preferred are the dialkyldithiocarbamates of molybdenum.
  • Suitable tri-nuclear organo-molybdenum compounds include those of the formula Mo3SkLnQz and mixtures thereof wherein L are independently selected ligands having organo groups with a sufficient number of carbon atoms to render the compound soluble or dispersible in the oil, n is from 1 to 4, k varies from 4 through 7, Q is selected from the group of neutral electron donating compounds such as water, amines, alcohols, phosphines, and ethers, and z ranges from 0 to 5 and includes non-stoichiometric values. At least 21 total carbon atoms should be present among all the ligands' organo groups, such as at least 25, at least 30, or at least 35 carbon atoms.
  • The ligands are independently selected from the group of:
  • Figure US20210324292A1-20211021-C00002
  • and mixtures thereof, wherein X, X1, X2, and Y are independently selected from the group of oxygen and sulfur, and wherein R1, R2, and R are independently selected from hydrogen and organo groups that may be the same or different. Preferably, the organo groups are hydrocarbyl groups such as alkyl (e.g., in which the carbon atom attached to the remainder of the ligand is primary or secondary), aryl, substituted aryl and ether groups. More preferably, each ligand has the same hydrocarbyl group.
  • Importantly, the organo groups of the ligands have a sufficient number of carbon atoms to render the compound soluble or dispersible in the oil. For example, the number of carbon atoms in each group will generally range between about 1 to about 100, preferably from about 1 to about 30, and more preferably between about 4 to about 20. Preferred ligands include dialkyldithiophosphate, alkylxanthate, and dialkyldithiocarbamate, and of these dialkyldithiocarbamate is more preferred. Organic ligands containing two or more of the above functionalities are also capable of serving as ligands and binding to one or more of the cores. Those skilled in the art will realize that formation of the compounds of the present invention requires selection of ligands having the appropriate charge to balance the core's charge.
  • Compounds having the formula Mo2SkLnQz have cationic cores surrounded by anionic ligands and are represented by structures such as
  • Figure US20210324292A1-20211021-C00003
  • and have net charges of +4. Consequently, in order to solubilize these cores the total charge among all the ligands must be −4. Four mono-anionic ligands are preferred. Without wishing to be bound by any theory, it is believed that two or more tri-nuclear cores may be bound or interconnected by means of one or more ligands and the ligands may be multidentate. This includes the case of a multidentate ligand having multiple connections to a single core. It is believed that oxygen and/or selenium may be substituted for sulfur in the core(s).
  • Oil-soluble or oil-dispersible tri-nuclear molybdenum compounds can be prepared by reacting in the appropriate liquid(s)/solvent(s) a molybdenum source such as (NH4)2Mo3S13.n(H2O), where n varies between 0 and 2 and includes non-stoichiometric values, with a suitable ligand source such as a tetralkylthiuram disulfide. Other oil-soluble or dispersible tri-nuclear molybdenum compounds can be formed during a reaction in the appropriate solvent(s) of a molybdenum source such as of (Na)2Mo3S13.n(H2O), a ligand source such as tetralkylthiuram disulfide, dilkyldithiocarbamate, or dialkyldithiophosphate, and a sulfur abstracting agent such as cyanide ions, sulfite ions, or substituted phosphines. Alternatively, a tri-nuclear molybdenum-sulfur halide salt such as [M′]2[Mo3S7A6], where M′ is a counter ion, and A is a halogen such as Cl, Br, or I, may be reacted with a ligand source such as a dialkyldithiocarbamate or dialkyldithiophosphate in the appropriate liquid(s)/solvent(s) to form an oil-soluble or dispersible trinuclear molybdenum compound. The appropriate liquid/solvent may be, for example, aqueous or organic.
  • A compound's oil solubility or dispersibility may be influenced by the number of carbon atoms in the ligand's organo groups. Preferably, at least 21 total carbon atoms should be present among all the ligands' organo groups. Preferably, the ligand source chosen has a sufficient number of carbon atoms in its organo groups to render the compound soluble or dispersible in the lubricating composition.
  • The lubricating oil composition of the present invention contains the molybdenum compound in an amount providing the composition with from 600 to 1500 ppm, preferably from 600-1200 ppm or even from 700 to 1000 ppm of molybdenum (ASTM D5185).
  • Detergent Composition (C)
  • Metal detergents function both as detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life. Detergents generally comprise a polar head with a long hydrophobic tail, with the polar head comprising a metal salt of an acidic organic compound. The salts may contain a substantially stoichiometric amount of the metal in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as can be measured by ASTM D2896) of from 0 to 80 mg KOH/g. A large amount of a metal base may be incorporated by reacting excess metal compound (e.g., an oxide or hydroxide) with an acidic gas (e.g., carbon dioxide). The resulting overbased detergent comprises neutralized detergent as the outer layer of a metal base (e.g. carbonate) micelle. Such overbased detergents may have a TBN of 150 mg KOH/g or greater, and typically will have a TBN of from 250 to 450 mg KOH/g or more.
  • According to the present invention, the lubricating oil composition comprises a detergent composition comprising at least one magnesium sulfonate detergent.
  • The detergent composition of the present invention may comprise one or more additional detergent additive. Suitable additional detergents include, oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium. Furthermore, the additional detergent additive may comprise hybrid detergent comprising any combination of sodium, potassium, lithium, calcium, or magnesium salts of sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates.
  • Preferably, the one or more additional detergent additive of the present invention comprises calcium and/or magnesium metal salts. More preferably, the one of more additional detergents additives are selected from magnesium salicylate, calcium salicylate, calcium sulfonate, magnesium phenate, calcium phenate, hybrid detergents comprising two of more of these additional detergent additives and/or combinations thereof.
  • In a preferred embodiment, the one or more additional detergent additive is a calcium salicylate and/or a calcium sulfonate, most preferably a calcium salicylate. Most preferably, the detergent composition consists of a combination of one or more magnesium sulfonate detergents and one or more calcium salicylate detergents.
  • If present, any calcium detergent is suitably present in amount sufficient to provide at least 500 ppm, preferably at least 750 more preferably at least 900 ppm atomic calcium to the lubricating oil composition (ASTM D5185). If present, any calcium detergent is suitably present in amount sufficient to provide no more than 4000 ppm, preferably no more than 4000 more preferably no more than 2000 ppm atomic calcium to the lubricating oil composition (ASTM D5185). If present, any calcium detergent is suitably present in amount sufficient to provide at from 500-4000 ppm, preferably from 750-3000 ppm more preferably from 900-2000 ppm atomic calcium to the lubricating oil composition (ASTM D5185).
  • The magnesium detergent of all aspects of the present invention may be a neutral salt or an overbased salt. Suitably the magnesium detergent of the present invention is an overbased magnesium sulfonate having TBN of from 80 to 500 mg KOH/g (ASTM D2896).
  • The magnesium detergent of the present invention provides the lubricating oil composition thereof with from 200-4000 ppm of magnesium atoms, suitably from 200-2000 ppm, from 300 to 1500 or from 450-1200 ppm of magnesium atoms (ASTM D5185).
  • Suitably the total atomic amount of metal from detergent in the lubrication oil composition according to all aspects of the invention is no more than 5000 ppm, preferably no mom than 4000 pm and more preferably no more than 2000 ppm (ASTM D5185). The total amount of atomic metal from detergent in the lubrication oil composition according to all aspects of the invention is suitably at least 500 ppm, preferably at least 800 ppm and more preferably at least 1000 ppm (ASTM D5185). The total amount of atomic metal from detergent in the lubrication oil composition according to all aspects of the invention is suitably from 500 to 5000 ppm, preferably from 500 to 3000 ppm and more preferably from 500 to 2000 ppm (ASTM D5185).
  • Sulfonate detergents may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples included those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene. The alkylation may be carried out in the presence of a catalyst with alkylating agents having from about 3 to more than 70 carbon atoms. The alkaryl sulfonates usually contain from about 9 to about 80 or more carbon atoms, preferably from about 16 to about 60 carbon atoms per alkyl substituted aromatic moiety. The oil soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, hydroxides, alkoxides, carbonates, carboxylate, sulfides, hydrosulfides, nitrates, borates and ethers of the metal. The amount of metal compound is chosen having regard to the desired TBN of the final product but typically ranges from about 100 to 220 mass % (preferably at least 125 mass %) of that stoichiometrically required.
  • Metal salts of phenols and sulfurized phenols are prepared by reaction with an appropriate metal compound such as an oxide or hydroxide and neutral or overbased products may be obtained by methods well known in the art. Sulfurized phenols may be prepared by reacting a phenol with sulfur or a sulfur containing compound such as hydrogen sulfide, sulfur monohalide or sulfur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulfur containing bridges.
  • Carboxylate detergents, e.g., salicylates, can be prepared by reacting an aromatic carboxylic acid with an appropriate metal compound such as an oxide or hydroxide and neutral or overbased products may be obtained by methods well known in the art. The aromatic moiety of the aromatic carboxylic acid can contain heteroatoms, such as nitrogen and oxygen. Preferably, the moiety contains only carbon atoms; more preferably the moiety contains six or more carbon atoms; for example benzene is a preferred moiety. The aromatic carboxylic acid may contain one or more aromatic moieties, such as one or more benzene rings, either fused or connected via alkylene bridges.
  • Preferred substituents in oil-soluble salicylic acids are alkyl substituents. In alkyl—substituted salicylic acids, the alkyl groups advantageously contain S to 100, preferably 9 to 30, especially 14 to 20, carbon atoms. Where there is more than one alkyl group, the average number of carbon atoms in all of the alkyl groups is preferably at least 9 to ensure adequate oil solubility.
  • Suitably the ratio of atomic detergent metal to atomic molybdenum in the lubricating oil composition of all aspects of the present invention is less than 3, preferably less than 2.
  • Oil-Soluble Boron-Containing Compound (D)
  • The oil-soluble or oil-dispersible boron containing compound may be any conventional borated lubricant additive. Preferably, the oil-soluble boron containing compound is a borated dispersant, a borate ester or a borated detergent.
  • Conveniently, the boron containing compound comprises a borated dispersant, especially a borated ashless (i.e. metal free) dispersant. A preferred ashless borated dispersant is a borated polyisobutylene succinimide dispersant.
  • Dispersants are usually “ashless”, being non-metallic organic materials that form substantially no ash on combustion, in contrast to metal-containing, and hence ash-forming materials. They comprise a long hydrocarbon chain (e.g. hydrocarbon polymer backbone) with a polar head, the polarity being derived from inclusion of e.g. an O, P, or N atom. Typically, such dispersants have amine, amine-alcohol or amide polar moieties attached to the hydrocarbon chain, often via a bridging group. The hydrocarbon chain is an oleophilic group that confers oil-solubility, having, for example 40 to 500 carbon atoms. Thus, ashless dispersants may comprise an oil-soluble polymeric backbone. A suitable ashless dispersant may be, for example, selected from oil soluble salts, esters, amino-esters, amides, imides and oxazolines of long chain hydrocarbon-substituted mono- and polycarboxylic acids or anhydrides thereof; thiocarboxylate derivatives of long chain hydrocarbons; long chain aliphatic hydrocarbons having polyamine moieties attached directly thereto; and Mannich condensation products formed by condensing a long chain substituted phenol with formaldehyde and polyalkylene polyamine.
  • It is preferred that all the dispersant or dispersants used (including all nitrogen-containing dispersant and any nitrogen-free dispersant) be derived from hydrocarbon polymers having an average number average molecular weight (M.) of from about 600 to 3000, more preferably 700 to 2700, even more preferably 700 to 2500.
  • A highly preferred ashless dispersant comprises a dispersant that is derived from a polyalkenyl-substituted mono- or di-carboxylic acid, anhydride or ester, most preferably a dispersant that is derived from a polyisobutenyl-substituted mono- or di-carboxylic acid, anhydride or ester.
  • Suitable hydrocarbons or polymers employed in the formation of the dispersants include homopolymers, interpolymers or lower molecular weight hydrocarbons. One family of such polymers comprise polymers of ethylene and/or at least one C3 to C28 alpha-olefin having the formula H2C═CHR1 wherein R1 is straight or branched chain alkyl radical comprising 1 to 26 carbon atoms and wherein the polymer contains carbon-to-carbon unsaturation, preferably a high degree of terminal ethenylidene unsaturation. Preferably, such polymers comprise interpolymers of ethylene and at least one alpha-olefin of the above formula, wherein R1 is alkyl of from 1 to 18 carbon atoms, and more preferably is alkyl of from 1 to 8 carbon atoms, and more preferably still of from 1 to 2 carbon atoms. Therefore, useful alpha-olefin monomers and comonomers include, for example, propylene, but-1-ene, hex-1-ene, oct-1-ene, 4-methylpent-1-ene, dec-1-ene, dodec-1-ene, tridec-1-ene, tetradec-1-ene, pentadec-1-ene, hexadec-1-ene, heptadec-1-ene, octadec-1-ene, nonadec-1-ene, and mixtures thereof (e.g., mixtures of propylene and but-1-ene, and the like). Exemplary of such polymers are propylene homopolymers, but-1-ene homopolymers, ethylene-propylene copolymers, ethylene-but-1-ene copolymers, propylene-butene copolymers and the like, wherein the polymer contains at least some terminal and/or internal unsaturation. Preferred polymers are unsaturated copolymers of ethylene and propylene and ethylene and but-1-ene. The interpolymers may contain a minor amount, e.g. 0.5 to 5 mole % of a C4 to C18 non-conjugated diolefin comonomer. However, it is preferred that the polymers comprise only alpha-olefin homopolymers, interpolymers of alpha-olefin comonomers and interpolymers of ethylene and alpha-olefin comonomers. The molar ethylene content of the polymers employed is preferably in the range of 0 to 80%, and more preferably 0 to 60%. When propylene and/or but-1-ene are employed as comonomer(s) with ethylene, the ethylene content of such copolymers is most preferably between 15 and 50%, although higher or lower ethylene contents may be present.
  • Another useful class of polymers is polymers prepared by cationic polymerization of isobutene, styrene, and the like. Common polymers from this class include polyisobutenes obtained by polymerization of a C4 refinery stream having a butene content of about 35 to about 75% by wt., and an isobutene content of about 30 to about 60% by wt., in the presence of a Lewis acid catalyst, such as aluminum trichloride or boron trifluoride. A preferred source of monomer for making poly-n-butenes is petroleum feed streams such as Raffinate II. These feedstocks are disclosed in the art such as in U.S. Pat. No. 4,952,739. Polyisobutylene (PIB) is a most preferred backbone of the present invention because it is readily available by cationic polymerization from butene streams (e.g., using AlCl3 or BF3 catalysts). Such polyisobutylenes generally contain residual unsaturation in amounts of about one ethylenic double bond per polymer chain, positioned along the chain. In certain embodiments, the polyalkenyl moiety of the dispersant comprises a highly reactive polyisobutylene (HR-PIB), having a terminal vinylidene content of at least 65%, e.g., 70%, more preferably at least 80%, most preferably, at least 85%. The preparation of such polymers is described, for example, in U.S. Pat. No. 4,152,499. HR-PB is known and HR-PIB is commercially available under the tradename Glissopal™ (from BASF).
  • The hydrocarbon or polymer backbone can be functionalized, e.g., with carboxylic acid producing moieties (preferably acid or anhydride moieties) selectively at sites of carbon-to-carbon unsaturation on the polymer or hydrocarbon chains, or randomly along chains using any of the three processes mentioned above or combinations thereof, in any sequence.
  • A most preferred dispersant is one comprising at least one polyalkenyl succinimide, especially a polyisobutenyl succinimide, which is the reaction product of a polyalkenyl substituted succinic anhydride (e.g., PIBSA) and a polyamine (PAM). In other words, a most preferred borated dispersant comprises a borated polyalkenyl substituted succinic anhydride (e.g., PIBSA) and a polyamine (PAM). Preferably, such dispersants have a coupling ratio of from about 0.65 to about 1.25, preferably from about 0.8 to about 1.1, most preferably from about 0.9 to about 1. In the context of this disclosure, “coupling ratio” may be defined as a ratio of the number of succinyl groups in the PIBSA to the number of primary amine groups in the polyamine reactant.
  • Another class of high molecular weight ashless dispersants comprises Mannich base condensation products. Generally, these products are prepared by condensing about one mole of a long chain alkyl-substituted mono- or polyhydroxy benzene with about 1 to 2.5 moles of carbonyl compound(s) (e.g., formaldehyde and paraformaldehyde) and about 0.5 to 2 moles of polyalkylene polyamine, as disclosed, for example, in U.S. Pat. No. 3,442,808. Such Mannich base condensation products may include a polymer product of a metallocene catalyzed polymerization as a substituent on the benzene group, or may be reacted with a compound containing such a polymer substituted on a succinic anhydride in a manner similar to that described in U.S. Pat. No. 3,442,808. Examples of functionalized and/or derivatized olefin polymers synthesized using metallocene catalyst systems are described in the publications identified supra.
  • The dispersant(s) of the present invention are preferably non-polymeric (e.g., are mono- or bis-succinimides). It is further preferred that the dispersant or dispersants contribute, in total, from about 0.10 to about 0.20 wt. %, preferably from about 0.115 to about 0.18 wt. %, most preferably from about 0.12 to about 0.16 wt. % of nitrogen to the lubricating oil composition.
  • Dispersants can be borated by conventional means, as generally taught in U.S. Pat. Nos. 3,087,936, 3,254,025 and 5,430,105. Boration of the dispersant is readily accomplished by treating an acyl nitrogen-containing dispersant with a boron compound such as boron oxide, boron halide boron acids, and esters of boron acids, in an amount sufficient to provide from about 0.1 to about 20 atomic proportions of boron for each mole of acylated nitrogen composition.
  • The boron, which appears in the product as dehydrated boric acid polymers (primarily (HBO2)3), is believed to attach to the dispersant imides and diimides as amine salts, e.g., the metaborate salt of the diimide. Boration can be carried out by adding a sufficient quantity of a boron compound, preferably boric acid, usually as a slurry, to the acyl nitrogen compound and heating with stirring at from about 135° C. to about 190° C., e.g., 140° C. to 170° C., for from about 1 to about 5 hours, followed by nitrogen stripping. Alternatively, the boron treatment can be conducted by adding boric acid to a hot reaction mixture of the dicarboxylic acid material and amine, while removing water. Other post reaction processes known in the art can also be applied.
  • Non-dispersant boron containing compounds include boron oxide, boron oxide hydrate, boron trioxide, boron trifluoride, boron tribromide, boron trichloride, boron acid such as boronic acid, boric acid, tetraboric acid and metaboric acid, boron hydrides, boron amides and various esters of boron acids. Suitable “non-dispersant boron sources” may comprise any oil-soluble, boron-containing compound, but preferably comprise one or more boron-containing additives known to impart enhanced properties to lubricating oil compositions. Such boron-containing additives include, for example, borated dispersant VI improver, alkali metal, mixed alkali metal or alkaline earth metal borate; borated overbased metal detergent; borated epoxide; borate ester; and borate amide.
  • Alkali metal and alkaline earth metal borates are generally hydrated particulate metal borates, which are known in the art. Alkali metal borates include mixed alkali and alkaline earth metal borates. These metal borates are available commercially. Representative patents describing suitable alkali metal and alkaline earth metal borates and their methods of manufacture include U.S. Pat. Nos. 3,997,454; 3,819,521; 3,853,772; 3,907,601; 3,997,454; and 4,089,790.
  • The borated amines may be prepared by reacting one or more of the above boron compounds with one or more of fatty amines, e.g., an amine having from four to eighteen carbon atoms. They may be prepared by reacting the amine with the boron compound at a temperature of from 50 to 300, preferably from 100 to 250° C. and at a ratio from 3:1 to 1:3 equivalents of amine to equivalents of boron compound.
  • Borated fatty epoxides are generally the reaction product of one or more of the above boron compounds with at least one epoxide. The epoxide is generally an aliphatic epoxide having from 8 to 30, preferably from 10 to 24, more preferably from 12 to 20, carbon atoms. Examples of useful aliphatic epoxides include heptyl epoxide and octyl epoxide. Mixtures of epoxides may also be used, for instance commercial mixtures of epoxides having from 14 to 16 carbon atoms and from 14 to 18 carbon atoms. The borated fatty epoxides are generally known and are described in U.S. Pat. No. 4,584,115.
  • Borate esters may be prepared by reacting one or more of the above boron compounds with one or more alcohol of suitable oleophilicity. Typically, the alcohol contains from 6 to 30, or from 8 to 24, carbon atoms. Methods of making such borate esters are known in the art.
  • The borate esters can be borated phospholipids. Such compounds, and processes for making such compounds, are described in EP-A-0 684 298. Borated overbased metal detergents are known in the art where the borate substitutes the carbonate in the core either in part or in full.
  • In an embodiment of the present invention a borated ashless dispersant as defined herein represents the sole boron containing compound in the lubricating oil composition.
  • The boron containing compound introduces into the lubricating oil composition greater than 200, preferably greater than 250 ppm of boron, based on the total mass of the lubricating oil composition (ASTM D5185). The boron containing compound introduces into the lubricating oil composition less than 600, preferably less than 500, even more preferably less than 400 ppm of boron, based on the total mass of the lubricating oil composition (ASTM D5185).
  • Co-Additives
  • Lubricating oil compositions according to each aspect of the invention may additional comprise one or more co-additives, which are different from additive components (B), (C) and (D). Suitable co-additives and their common treat rates arm discussed below. All the values listed are stated as mass percent active ingredient in a fully formulated lubricant.
  • Mass % Mass %
    Additive (Broad) (Preferred)
    Ashless Dispersant 0.1-20  1-8
    Metal Detergents 0.1-15  0.2-9  
    Friction modifier 0-5   0-1.5
    Corrosion Inhibitor 0-5   0-1.5
    Metal Dihydrocarbyl Dithiophosphate  0-10 0-4
    Anti-Oxidants 0-5 0.01-3  
    Pour Point Depressant 0.01-5   0.01-1.5 
    Anti-Foaming Agent 0-5 0.001-0.15 
    Supplement Anti-Wear Agents 0-5 0-2
    Viscosity Modifier (1)  0-10 0.01-4  
    Mineral or Synthetic Base Oil Balance Balance
    (1) Viscosity modifiers are used only in multi-graded oils.
  • The final lubricating oil composition, typically made by blending the or each additive into the base oil, may contain from 5 to 25, preferably 5 to 18, typically 7 to 15, mass % of the co-additives, the remainder being oil of lubricating viscosity.
  • The above mentioned co-additives are discussed in further detail as follows; as is known in the art, some additives can provide a multiplicity of effects, for example, a single additive may act as a dispersant and as an oxidation inhibitor.
  • Anti-wear agents reduce friction and excessive wear and are usually based on compounds containing sulfur or phosphorous or both, for example that are capable of depositing polysulfide films on the surfaces involved. Noteworthy are dihydrocarbyl dithiophosphate metal salts wherein the metal may be an alkali or alkaline earth metal, or aluminium, lead, tin, molybdenum, manganese, nickel, copper, or preferably, zinc.
  • Dihydrocarbyl dithiophosphate metal salts may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohols or a phenol with P2S5 and then neutralizing the formed DDPA with a metal compound. For example, a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols. Alternatively, multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in character. To make the metal salt, any basic or neutral metal compound could be used but the oxides, hydroxides and carbonates are most generally employed. Commercial additives frequently contain an excess of metal due to the use of an excess of the basic metal compound in the neutralization reaction.
  • The preferred zinc dihydrocarbyl dithiophosphates (ZDDP) are oil-soluble salts of dihydrocarbyl dithiophosphoric acids and may be represented by the following formula:
  • Figure US20210324292A1-20211021-C00004
  • wherein R and R′ may be the same or different hydrocarbyl radicals containing from 1 to 18, preferably 2 to 12, carbon atoms and including radicals such as alkyl, alkenyl, aryl, arylalkyl, alkaryl and cycloaliphatic radicals. Particularly preferred as R and R′ groups are alkyl groups of 2 to 8 carbon atoms. Thus, the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl. In order to obtain oil solubility, the total number of carbon atoms (i.e. R and R′) in the dithiophosphoric acid will generally be about 5 or greater. The zinc dihydrocarbyl dithiophosphate can therefore comprise zinc dialkyl dithiophosphates.
  • The ZDDP is added to the lubricating oil compositions in amounts sufficient to provide no greater than 1200 ppm, preferably no greater than 1000 ppm, more preferably no greater than 900 ppm, most preferably no greater than 850 ppm by mass of phosphorous to the lubricating oil, based upon the total mass of the lubricating oil composition, and as measured in accordance with ASTM D5185. The ZDDP is suitably added to the lubricating oil compositions in amounts sufficient to provide at least 200 ppm, preferably at least 350 ppm, more preferably at least 500 ppm by mass of phosphorous to the lubricating oil, based upon the total mass of the lubricating oil composition, and as measured in accordance with ASTM D5185.
  • The ratio of phosphorus to molybdenum in the lubricating oil composition according to all aspects of the present invention is suitably less than 1.5, preferably less than 1.2 and more preferably less than 1.0.
  • Examples of ashless anti-wear agents include 1,2,3-triazoles, benzotriazoles, sulfurised fatty acid esters, and dithiocarbamate derivatives.
  • Ashless dispersants comprise an oil-soluble polymeric hydrocarbon backbone having functional groups that are capable of associating with particles to be dispersed and may be used in addition to any boron-containing compound (D) optionally present in the lubricating oil of any aspect of the invention. Typically, the dispersants comprise amine, alcohol, amide, or ester polar moieties attached to the polymer backbone often via a bridging group. The ashless dispersants may be, for example, selected from oil-soluble salts, esters, amino-esters, amides, imides, and oxazolines of long chain hydrocarbon substituted mono and dicarboxylic acids or their anhydrides; thiocarboxylate derivatives of long chain hydrocarbons; long chain aliphatic hydrocarbons having a polyamine attached directly thereto; and Mannich condensation products formed by condensing a long chain substituted phenol with formaldehyde and a polyalkylene polyamine.
  • Ashless Friction modifiers, such as nitrogen-free organic friction modifiers are useful in the lubricating oil compositions of the present invention and are known generally and include esters formed by reacting carboxylic acids and anhydrides with alkanols. Other useful friction modifiers generally include a polar terminal group (e.g. carboxyl or hydroxyl) covalently bonded to an oleophilic hydrocarbon chain. Esters of carboxylic acids and anhydrides with alkanols are described in U.S. Pat. No. 4,702,850. Examples of other conventional organic friction modifiers are described by M. Belzer in the “Journal of Tribology” (1992), Vol. 114, pp. 675-682 and M. Belzer and S. Jahanmir in “Lubrication Science” (1988), Vol. 1, pp. 3-26.
  • Preferred organic ashless nitrogen-free friction modifiers are esters or ester-based; a particularly preferred organic ashless nitrogen-free friction modifier is glycerol monooleate (GMO).
  • Ashless aminic or amine-based friction modifiers may also be used and include oil-soluble alkoxylated mono- and di-amines, which improve boundary layer lubrication. One common class of such metal free, nitrogen-containing friction modifier comprises ethoxylated alkyl amines. They may be in the form of an adduct or reaction product with a boron compound such as a boric oxide, boron halide, metaborate, boric acid or a mono-, di- or tri-alkyl borate. Another metal free, nitrogen-containing friction modifier is an ester formed as the reaction product of (i) a tertiary amine of the formula R1R2R3N wherein R1, R2 and R3 represent aliphatic hydrocarbyl, preferably alkyl, groups having 1 to 6 carbon atoms, at least one of R1, R2 and R3 having a hydroxyl group, with (ii) a saturated or unsaturated fatty acid having 10 to 30 carbon atoms. Preferably, at least one of R1, R2 and R3 is an alkyl group. Preferably, the tertiary amine will have at least one hydroxyalkyl group having 2 to 4 carbon atoms. The ester may be a mono-, di- or tri-ester or a mixture thereof, depending on how many hydroxyl groups are available for esterification with the acyl group of the fatty acid. A preferred embodiment comprises a mixture of esters formed as the reaction product of (i) a tertiary hydroxy amine of the formula R1R2R3N wherein R1, R2 and R3 may be a C2-C4 hydroxy alkyl group with (ii) a saturated or unsaturated fatty acid having 10 to 30 carbon atoms, with a mixture of esters so formed comprising at least 30-60 mass %, preferably 45-55 mass % diester, such as 50 mass % diester, 10-40 mass %, preferably 20-30 mass % monoester, e.g. 25 mass % monoester, and 10-40 mass %, preferably 20-30 mass % triester, such as 25 mass % triester. Suitably, the ester is a mono-, di- or tri-carboxylic acid ester of triethanolamine and mixtures thereof.
  • Typically, the total amount of additional organic ashless friction modifier in a lubricant according to the present invention does not exceed 5 mass %, based on the total mass of the lubricating oil composition and preferably does not exceed 2 mass % and more preferably does not exceed 0.5 mass %. In an embodiment of the present invention, the lubricating oil composition contains no additional organic ashless friction modifier.
  • Viscosity modifiers (VM) function to impart high and low temperature operability to a lubricating oil. The VM used may have that sole function, or may be multifunctional. Multifunctional viscosity modifiers that also function as dispersants are also known. Suitable viscosity modifiers are polyisobutylene, copolymers of ethylene and propylene and higher alpha-olefins, polymethacrylates, polyalkylmethacrylates, methacrylate copolymers, copolymers of an unsaturated dicarboxylic acid and a vinyl compound, inter polymers of styrene and acrylic esters, and partially hydrogenated copolymers of styrene/isoprene, styrene/butadiene, and isoprene/butadiene, as well as the partially hydrogenated homopolymers of butadiene and isoprene and isoprene/divinylbenzene.
  • Anti-oxidants, sometimes referred to as oxidation inhibitors, increase the resistance of the composition to oxidation and may work by combining with and modifying peroxides to render them harmless, by decomposing peroxides, or by rendering oxidation catalysts inert. Oxidative deterioration can be evidenced by sludge in the lubricant, varnish-like deposits on the metal surfaces, and by viscosity growth.
  • Examples of suitable antioxidants are selected from copper-containing antioxidants, sulfur-containing antioxidants, aromatic amine-containing antioxidants, hindered phenolic antioxidants, dithiophosphates derivatives, and metal thiocarbamates. Preferred anti-oxidants are aromatic amine-containing antioxidants, hindered phenolic antioxidants and mixtures thereof. In a preferred embodiment, an antioxidant is present in a lubricating oil composition of the present invention.
  • Rust inhibitors selected from the group consisting of nonionic polyoxyalkylene polyols and esters thereof, polyoxyalkylene phenols, and anionic alkyl sulfonic acids may be used.
  • Copper and lead bearing corrosion inhibitors may be used in some embodiments of the invention, and when these compounds are included in the lubricating composition, they are preferably present in an amount not exceeding 0.2 wt. % active ingredient. However, in a preferred embodiment of the present invention, no copper-containing additives are present in the lubricating oil composition. When present, suitable such compounds are the thiadiazole polysulfides containing from 5 to 50 carbon atoms, their derivatives and polymers thereof. Derivatives of 1, 3, 4 thiadiazoles such as those described in U.S. Pat. Nos. 2,719,125; 2,719,126; and 3,087,932; are typical. Other similar materials are described in U.S. Pat. Nos. 3,821,236; 3,904,537; 4,097,387; 4,107,059; 4,136,043; 4,188,299; and 4,193,882. Other additives are the thio and polythio sulfenamides of thiadiazoles such as those described in UK Patent Specification No. 1,560,830. Benzotriazoles derivatives also fall within this class of additives.
  • A small amount of a demulsifying component may be used. A preferred demulsifying component is described in EP 330522. It is obtained by reacting an alkylene oxide with an adduct obtained by reacting a bis-epoxide with a polyhydric alcohol. The demulsifier should be used at a level not exceeding 0.1 mass % active ingredient. A treat rate of 0.001 to 0.05 mass % active ingredient is convenient.
  • Pour point depressants, otherwise known as lube oil flow improvers, lower the minimum temperature at which the fluid will flow or can be poured. Such additives are well known. Typical of those additives which improve the low temperature fluidity of the fluid are C8 to C18 dialkyl fumarate/vinyl acetate copolymers, polyalkylmethacrylates and the like.
  • Foam control can be provided by many compounds including an antifoamant of the polysiloxane type, for example, silicone oil or polydimethyl siloxane.
  • The individual additives may be incorporated into a base stock in any convenient way. Thus, each of the components can be added directly to the base stock or base oil blend by dispersing or dissolving it in the base stock or base oil blend at the desired level of concentration. Such blending may occur at ambient or elevated temperatures.
  • Preferably, all the additives except for the viscosity modifier and the pour point depressant are blended into a concentrate or additive package described herein as the additive package that is subsequently blended into base stock to make the finished lubricant. The concentrate will typically be formulated to contain the additive(s) in proper amounts to provide the desired concentration in the final formulation when the concentrate is combined with a predetermined amount of a base lubricant.
  • The concentrate is preferably made in accordance with the method described in U.S. Pat. No. 4,938,880. That patent describes making a pre-mix of ashless dispersant and metal detergents that is pre-blended at a temperature of at least about 100° C. Thereafter, the pre-mix is cooled to at least 85° C. and the additional components are added.
  • The final crankcase lubricating oil formulation may employ from 2 to 20, preferably 4 to 18, and most preferably 5 to 17, mass % of the concentrate or additive package with the remainder being base stock.
  • The lubricating oil composition of the present invention may have a sulphated ash content of less than or equal to 1.2, preferably less than or equal to 1.1, more preferably less than or equal to 1.0, mass % (ASTM D874) based on the total mass of the composition. The lubricating oil composition of the present invention suitably has a sulphated ash content of at least 0.2, preferably at least 0.4, such as at least 0.5 mass % (ASTM D874) based on the total mass of the composition. Suitably the sulphated ash content of the lubricating oil composition is in the range of 0.04-1.2 mass %, preferably in the range of 0.05 to 1.0 mass % (ASTM D874).
  • The amount of phosphorus in the lubricating oil composition of the present invention contains will depend upon the particular application of the oil. Suitably, the lubricating oil composition contains phosphorus in an amount of less than or equal to 0.12 mass %, preferably up to 0.1 mass %, more preferably less than or equal to 0.09 mass %, even more preferably less than or equal to 0.08 mass % of phosphorus (ASTM D5185) based on the total mass of the composition. Suitably, the lubricating oil composition contains phosphorus in an amount of greater than or equal to 0.01, preferably greater than or equal to 0.02, more preferably greater than or equal to 0.03, even more preferably greater than or equal to 0.05 mass % of phosphorus (ASTM D5185) based on the total mass of the composition.
  • The amount of sulfur in the lubricating oil composition will depend upon the particular application of the lubricating oil composition. The lubricating oil composition may contain sulphur in an amount of up to 0.4, such as, up to 0.35 mass % sulphur (ASTM D2622) based on the total mass of the composition. Generally the lubricating oil composition will contain at least 0.1, or even at least 0.2 mass % sulphur (ASTM D2622) based on the total mass of the composition.
  • The amount of nitrogen in a lubricating oil composition according to the present invention will depend upon the particular application of the oil. Typically, a lubricating oil composition according to the present invention contains at least 0.02, such as at least 0.03 or 0.04 mass % nitrogen, based on the total mass of the composition and as measured according to ASTM method D5291. Suitably, the lubricating oil composition will contain no more than 0.20, such as no more than 0.15 or no more than 0.12 mass % nitrogen based upon the total mass of the composition and as measured according to ASTM D5291.
  • Suitably, the lubricating oil composition of all aspects and embodiments of the present invention may have a total base number (TBN), as measured in accordance with ASTM D2896, of 4 to 15, preferably 5 to 12 mg KOH/g.
  • EXAMPLES
  • The invention will now be described in the following examples which are not intended to limit the scope of the claims hereof.
  • A series of oils were testing in the High Frequency Reciprocating Rig (HFRR-supplied by PCS Instruments) to evaluate the boundary regime friction characteristics of the oils.
  • The rig was set up with a 6 mm ball on a 10 mm disc. The test protocol employed was as follows:
  • Test Duration (mins) 1 min hold and 5 min run at each temperature stage
    Test Load (N)    4
    Frequency (Hz)   40
    Stroke Length 1,000
    (microns)
    Temperature (° C.) 40, 60, 80, 100, 120, 140
  • The test has 6 temperature stages and you can record the average friction at each temperature stage and the overall average friction across all stages.
  • Four comparative oils (indicated by the C-prefix) and five oils according to the invention (indicated by the I-prefix) were tested. The composition of each oil is set out in Table I below, together with the average HFRR friction across the all stages of the test and the low temperature HFRR friction, which is the average of the 40° C. and 60° C. stages of the test.
  • A comparison of Oil C-1, Oil C-3 and Oil I-3 shows that inclusion of high levels of molybdenum in a lubricating oil comprising either magnesium or calcium detergents improves the average HFRR friction performance of the oil, as expected. A comparison of Oil C-3 and Oil I-3 also shows that this is further improved when the calcium detergent is replaced by a magnesium detergent. This further improvement resulting from the replacement of the calcium detergent with a magnesium detergent is unexpected.
  • A comparison of Oil C-3 and Oil C-4 and a comparison of Oil I-1 and Oil I-3 shows that in the presence of high treat rate of molybdenum, addition of significant treat rates of boron also improves the HFRR friction performance, which is unexpected.
  • A comparison of Oil I-1 and Oil I-2 shows that changing the magnesium salicylate detergent to a magnesium sulfonate detergent in otherwise comparable oils significantly improves the low temperature friction performance, whilst maintaining the improved performance exhibited by use of the magnesium detergent compared to the calcium detergent referred to above. This improvement in low temperature friction performance is unexpected.
  • Finally, a comparison of Oil I-4 and Oil I-5 shows that the best improvement of average HFRR friction can be obtained when a combination of calcium and magnesium detergent is used, and again the presence of magnesium sulfonate detergent in the calcium/magnesium detergent mixture further improves the low temperature friction performance.
  • TABLE 1
    Oil C-1 Oil C-2 Oil C-3 Oil C-4 Oil I-1 Oil I-2 Oil I-3 Oil I-4 Oil I-5
    Component Mass % Mass % Mass % Mass % Mass % Mass % Mass % Mass % Mass %
    Molybdenum Compound1 0 0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
    Calcium Salicylate2 0 0 1.75 1.75 0 0 0 0.84 0.88
    Magnesium Salicylate3 0.73 0.73 0 0 0.73 0 0.73 0.39 0
    Magnesium Sulfonate4 0 0 0 0 0 0.65 0 0 0.33
    Borated dispersant5 0 0.55 0 0.55 0.55 0.55 0 0.55 0.55
    Additional Additives6 3.39 3.39 3.39 3.39 3.39 3.39 3.39 3.39 3.39
    Mo, ppm (ASTM D5185) 0 0 980 980 980 980 980 980 980
    B, ppm (ASTM D5185) 0 299 0 299 299 299 0 299 299
    Mg, mass % (ASTM D5185) 0.10 0.10 0 0 0.10 0.10 0.10 0.05 0.05
    Ca, mass % (ASTM D5185) 0. 0 0.2 0.2 0 0 0 0.11 0.10
    P, mass % (ASTM D5185) 0.075 0.075 0.075 0.075 0.75 0.075 0.075 0.075 0.075
    SASH, mass % (ASTM D874) 0.06 0.6 0.8 0.9 0.6 0.6 0.6 0.7 0.7
    Average HFRR friction 0.156 0.158 0.100 0.082 0.081 0.080 0.086 0.070 0.077
    Low temperature HFFR 0.136 0.141 0.122 0.111 0.085 0.078 0.098 0.086 0.074
    friction
    1The molybdenum compound was Infineum C9401, a dimeric molydbenum dithiocarbamate available from Infineum UK Ltd.
    2The calcium salicylate was a Infineum C9329 an overbased detergent having a TBN of 225 and  
    Figure US20210324292A1-20211021-P00899
     mass % Ca available from Infineum UK Ltd.
    3The magnesium salicylate was Infineum C9012 an overbased detergent having a TBN of 342 and 7.4 mass % Mg available from Infineum UK Ltd.
    4The magnesium sulfonate was Infineum C9340 and overbased detergent having a TBN of 400 and  
    Figure US20210324292A1-20211021-P00899
     mass % Mg available from Infineum UK Ltd.
    5The borated dispersant was Infineum C9202 a borated ashless polyisobutenyl succinimide dispersant containing 2.3 mass % B available from Infineum UK Ltd.
    6The additional additives are provided by a detergent inhibitor package comprising non-borated dispersant, zinc dialkyldithiophosphate, and antioxidant. The amount of each of these additives was the same in each oil tested.
    Figure US20210324292A1-20211021-P00899
    indicates data missing or illegible when filed

Claims (21)

1. A crankcase lubricating oil composition comprising or made by admixing:
(A) an oil of lubricating viscosity, in a major amount;
(B) an oil-soluble or oil-dispersible molybdenum-containing additive, providing from 600-1500 ppm of molybdenum atoms to the lubricating oil composition;
(C) a detergent composition comprising one or more magnesium sulfonate detergents in an amount providing from 200 to 4000 ppm magnesium atoms to the lubricating oil composition, measured according to ASTM D5185; and
(D) an oil-soluble or oil-dispersible boron-containing compound present in the lubricating oil composition in an amount sufficient to provide from 200-600 ppm boron atoms to the lubricating oil composition, measured according to ASTM D5185.
2. A lubricating oil composition according to claim 1, wherein the detergent composition comprises one or more additional detergent additive selected from magnesium salicylate, calcium salicylate, calcium sulfonate, magnesium phenate, calcium phenate, and hybrid detergents comprising two or more of these additional detergent additives selected from magnesium salicylate, calcium salicylate, calcium sulfonate, magnesium phenate, and calcium phenate.
3. A lubricating oil composition according to claim 2, wherein the detergent composition further comprises a calcium salicylate detergent, a calcium sulfonate detergent, or a calcium salicylate detergent and a calcium sulfonate detergent.
4. A lubricating oil composition according to claim 3, wherein the detergent composition consists of one or more magnesium sulfonate detergents and one or more calcium salicylate detergents.
5. A lubricating oil composition according to claim 3, wherein the calcium-containing detergent is present in an amount sufficient to provide from 500-4000 ppm atomic calcium to the lubricating oil composition, measured according to ASTM D5185.
6. A lubricating oil composition according to claim 5, wherein the calcium-containing detergent is present in an amount sufficient to provide from 750-3000 ppm atomic calcium to the lubricating oil composition, measured according to ASTM D5185.
7. A lubricating oil composition according to claim 6, wherein the calcium-containing detergent is present in an amount sufficient to provide from 900-2000 ppm atomic calcium to the lubricating oil composition, measured according to ASTM D5185.
8. A lubricating oil composition according to claim 4, wherein the calcium-containing detergent is present in an amount sufficient to provide from 500-4000 ppm atomic calcium to the lubricating oil composition, measured according to ASTM D5185.
9. A lubricating oil composition according to claim 8, wherein the calcium-containing detergent is present in an amount sufficient to provide from 750-3000 ppm atomic calcium to the lubricating oil composition, measured according to ASTM D5185.
10. A lubricating oil composition according to claim 9, wherein the calcium-containing detergent is present in an amount sufficient to provide from 900-2000 ppm atomic calcium to the lubricating oil composition, measured according to ASTM D5185.
11. A method of lubricating a spark-ignited or compression-ignited internal combustion engine comprising lubricating the engine with a lubricating oil composition as defined in accordance with claim 1.
12. A lubricating oil composition according to claim 1, wherein the molybdenum-containing additive, provides from 700-1000 ppm of molybdenum atoms to the lubricating oil composition.
13. A lubricating oil composition according to claim 1, wherein the detergent composition comprises one or more overbased magnesium sulfonate detergents having a total base number of 150 to 500 mgKOH/g.
14. A lubricating oil composition according to claim 1, wherein the detergent composition comprises one or more overbased magnesium sulfonate detergents and is present in an amount providing from 450 to 1200 ppm magnesium atoms to the lubricating oil composition, measured according to ASTM D5185.
15. A lubricating oil composition according to claim 1, wherein the boron-containing compound is present in the lubricating oil composition in an amount sufficient to provide from 200-400 ppm boron atoms to the lubricating oil composition, measured according to ASTM D5185.
16. A lubricating oil composition according to claim 9, wherein the:
(B) molybdenum-containing additive provides from 700-1000 ppm of molybdenum atoms to the lubricating oil composition;
(C) detergent composition comprises one or more overbased magnesium sulfonate detergents having a total base number of 150 mgKOH/g or more and is present in an amount providing from 450 to 1200 ppm magnesium atoms to the lubricating oil composition, measured according to ASTM D5185; and
(D) boron-containing compound is present in the lubricating oil composition in an amount sufficient to provide from 200-400 ppm boron atoms to the lubricating oil composition, measured according to ASTM D5185.
17. A lubricating oil composition according to claim 16, wherein the detergent composition comprises one or more overbased magnesium sulfonate detergents having a total base number of 150 to 500 mgKOH/g.
18. A method of lubricating a spark-ignited or compression-ignited internal combustion engine comprising lubricating the engine with a lubricating oil composition as defined in accordance with claim 4.
19. A method of lubricating a spark-ignited or compression-ignited internal combustion engine comprising lubricating the engine with a lubricating oil composition as defined in accordance with claim 10.
20. A method of lubricating a spark-ignited or compression-ignited internal combustion engine comprising lubricating the engine with a lubricating oil composition as defined in accordance with claim 16.
21. A method of lubricating a spark-ignited or compression-ignited internal combustion engine comprising lubricating the engine with a lubricating oil composition as defined in accordance with claim 17.
US17/036,010 2016-06-30 2020-09-29 Lubricating Oil Compositions Abandoned US20220089967A9 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/036,010 US20220089967A9 (en) 2016-06-30 2020-09-29 Lubricating Oil Compositions

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP16177243 2016-06-30
EP16177243.9 2016-06-30
US15/637,036 US10829712B2 (en) 2016-06-30 2017-06-29 Lubricating oil compositions
US17/036,010 US20220089967A9 (en) 2016-06-30 2020-09-29 Lubricating Oil Compositions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/637,036 Continuation US10829712B2 (en) 2016-06-30 2017-06-29 Lubricating oil compositions

Publications (2)

Publication Number Publication Date
US20210324292A1 true US20210324292A1 (en) 2021-10-21
US20220089967A9 US20220089967A9 (en) 2022-03-24

Family

ID=56292517

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/637,036 Active US10829712B2 (en) 2016-06-30 2017-06-29 Lubricating oil compositions
US17/036,010 Abandoned US20220089967A9 (en) 2016-06-30 2020-09-29 Lubricating Oil Compositions

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/637,036 Active US10829712B2 (en) 2016-06-30 2017-06-29 Lubricating oil compositions

Country Status (7)

Country Link
US (2) US10829712B2 (en)
EP (1) EP3263676B1 (en)
JP (2) JP2018003018A (en)
KR (1) KR102375204B1 (en)
CN (1) CN107557118A (en)
CA (1) CA2971329A1 (en)
SG (1) SG10201705339TA (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3339403B1 (en) * 2016-12-22 2019-02-06 Infineum International Limited Magnesium sulfonate synthesis
US11193084B2 (en) * 2018-11-16 2021-12-07 Chevron Japan Ltd. Low viscosity lubricating oil compositions
EP4237520A1 (en) * 2020-10-28 2023-09-06 Chevron U.S.A. Inc. Lubricating oil composition with renewable base oil, having low sulfur and sulfated ash content and containing molybdenum and boron compounds
US11788027B2 (en) * 2022-02-18 2023-10-17 Afton Chemical Corporation Engine oil formulation with improved sequence VIII performance
EP4353804A1 (en) 2022-10-11 2024-04-17 Infineum International Limited Functionalized c4 to c5 olefin polymers and lubricant compositions containing such
CN117866686A (en) 2022-10-11 2024-04-12 英菲诺姆国际有限公司 Lubricant composition containing metal alkanoate

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2719125A (en) 1952-12-30 1955-09-27 Standard Oil Co Oleaginous compositions non-corrosive to silver
US2719126A (en) 1952-12-30 1955-09-27 Standard Oil Co Corrosion inhibitors and compositions containing same
US3087932A (en) 1959-07-09 1963-04-30 Standard Oil Co Process for preparing 2, 5-bis(hydrocarbondithio)-1, 3, 4-thiadiazole
US3087936A (en) 1961-08-18 1963-04-30 Lubrizol Corp Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound
US3442808A (en) 1966-11-01 1969-05-06 Standard Oil Co Lubricating oil additives
US3907601A (en) 1970-02-17 1975-09-23 Union Carbide Corp Vinyl battery separators
US3853772A (en) 1971-06-01 1974-12-10 Chevron Res Lubricant containing alkali metal borate dispersed with a mixture of dispersants
US3819521A (en) 1971-06-07 1974-06-25 Chevron Res Lubricant containing dispersed borate and a polyol
US3821236A (en) 1972-05-03 1974-06-28 Lubrizol Corp Certain 2-halo-1,2,4-thiadiazole disulfides
US3904537A (en) 1972-05-03 1975-09-09 Lubrizol Corp Novel disulfides derived from 1,2,4-thiadiazole
US4193882A (en) 1973-07-06 1980-03-18 Mobil Oil Corporation Corrosion inhibited lubricant composition
US4136043A (en) 1973-07-19 1979-01-23 The Lubrizol Corporation Homogeneous compositions prepared from dimercaptothiadiazoles
US3997454A (en) 1974-07-11 1976-12-14 Chevron Research Company Lubricant containing potassium borate
GB1560830A (en) 1975-08-08 1980-02-13 Exxon Research Engineering Co Sulphenamides
US4089790A (en) 1975-11-28 1978-05-16 Chevron Research Company Synergistic combinations of hydrated potassium borate, antiwear agents, and organic sulfide antioxidants
US4097387A (en) 1976-09-03 1978-06-27 Standard Oil Company (Indiana) Olefin-dimercapto-thiadiazole compositions and process
DE2702604C2 (en) 1977-01-22 1984-08-30 Basf Ag, 6700 Ludwigshafen Polyisobutenes
US4107059A (en) 1977-06-27 1978-08-15 Pennwalt Corporation Polymer of 1,2,4-thiadiazole and lubricants containing it as an additive
US4164473A (en) 1977-10-20 1979-08-14 Exxon Research & Engineering Co. Organo molybdenum friction reducing antiwear additives
US4192757A (en) 1978-04-21 1980-03-11 Exxon Research & Engineering Company Alkyl phenol solutions of organo molybdenum complexes as friction reducing antiwear additives
US4201683A (en) 1978-04-21 1980-05-06 Exxon Research & Engineering Co. Alkanol solutions of organo molybdenum complexes as friction reducing antiwear additives
US4188299A (en) 1978-05-17 1980-02-12 Standard Oil Company (Indiana) Oil soluble dithiophosphoric acid derivatives of mercaptothiadiazoles
US4176074A (en) 1978-09-18 1979-11-27 Exxon Research & Engineering Co. Molybdenum complexes of ashless oxazoline dispersants as friction reducing antiwear additives for lubricating oils
US4176073A (en) 1978-09-18 1979-11-27 Exxon Research & Engineering Co. Molybdenum complexes of lactone oxazoline dispersants as friction reducing antiwear additives for lubricating oils
US4248720A (en) 1979-05-03 1981-02-03 Exxon Research & Engineering Co. Organo molybdenum friction-reducing antiwear additives
US4283295A (en) 1979-06-28 1981-08-11 Chevron Research Company Process for preparing a sulfurized molybdenum-containing composition and lubricating oil containing said composition
US4261843A (en) 1979-06-28 1981-04-14 Chevron Research Company Reaction product of acidic molybdenum compound with basic nitrogen compound and lubricants containing same
US4263152A (en) 1979-06-28 1981-04-21 Chevron Research Company Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same
US4259194A (en) 1979-06-28 1981-03-31 Chevron Research Company Reaction product of ammonium tetrathiomolybdate with basic nitrogen compounds and lubricants containing same
US4272387A (en) 1979-06-28 1981-06-09 Chevron Research Company Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same
US4265773A (en) 1979-06-28 1981-05-05 Chevron Research Company Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same
US4259195A (en) * 1979-06-28 1981-03-31 Chevron Research Company Reaction product of acidic molybdenum compound with basic nitrogen compound and lubricants containing same
US4285822A (en) 1979-06-28 1981-08-25 Chevron Research Company Process for preparing a sulfurized molybdenum-containing composition and lubricating oil containing the composition
US4289635A (en) 1980-02-01 1981-09-15 The Lubrizol Corporation Process for preparing molybdenum-containing compositions useful for improved fuel economy of internal combustion engines
US4702850A (en) 1980-10-06 1987-10-27 Exxon Research & Engineering Co. Power transmitting fluids containing esters of hydrocarbyl succinic acid or anhydride with thio-bis-alkanols
US4479883A (en) 1982-01-06 1984-10-30 Exxon Research & Engineering Co. Lubricant composition with improved friction reducing properties containing a mixture of dithiocarbamates
US4584115A (en) 1982-02-11 1986-04-22 The Lubrizol Corporation Method of preparing boron-containing compositions useful as lubricant additives
US4938880A (en) 1987-05-26 1990-07-03 Exxon Chemical Patents Inc. Process for preparing stable oleaginous compositions
IL89210A (en) 1988-02-26 1992-06-21 Exxon Chemical Patents Inc Lubricating oil compositions containing demulsifiers
US4952739A (en) 1988-10-26 1990-08-28 Exxon Chemical Patents Inc. Organo-Al-chloride catalyzed poly-n-butenes process
JP2911668B2 (en) 1991-12-12 1999-06-23 出光興産株式会社 Engine oil composition
AU670118B2 (en) 1992-09-11 1996-07-04 Chevron Chemical Company Fuel composition for two-cycle engines
US5430105A (en) 1992-12-17 1995-07-04 Exxon Chemical Patents Inc. Low sediment process for forming borated dispersant
JPH07316577A (en) 1994-05-20 1995-12-05 Tonen Corp Lubricant oil composition
EP0684298A3 (en) 1994-05-23 1996-04-03 Lubrizol Corp Compositions for extending seal life, and lubricants and functional fluids containing the same.
CA2163813C (en) 1994-12-20 2007-04-17 Elisavet P. Vrahopoulou Lubricating oil composition comprising metal salts
WO1996019551A1 (en) 1994-12-20 1996-06-27 Exxon Research And Engineering Company Engine oil with improved fuel economy properties
US6143701A (en) * 1998-03-13 2000-11-07 Exxon Chemical Patents Inc. Lubricating oil having improved fuel economy retention properties
US6074993A (en) * 1999-10-25 2000-06-13 Infineuma Usa L.P. Lubricating oil composition containing two molybdenum additives
JP5513703B2 (en) * 2005-05-27 2014-06-04 出光興産株式会社 Lubricating oil composition
US8513169B2 (en) * 2006-07-18 2013-08-20 Infineum International Limited Lubricating oil compositions
US9499762B2 (en) * 2012-12-21 2016-11-22 Afton Chemical Corporation Additive compositions with a friction modifier and a detergent
US20150240181A1 (en) * 2014-02-26 2015-08-27 Infineum International Limited Lubricating oil composition
CN104651025A (en) * 2014-06-12 2015-05-27 徐饶春 Lubricating oil composition
JP6197123B2 (en) * 2015-03-31 2017-09-13 出光興産株式会社 Lubricating oil composition for gasoline engine and method for producing the same
CN105132098B (en) * 2015-08-09 2019-03-26 浙江渼淋新能源科技有限公司 Lube oil additive composition for internal combustion engines and its preparation method and application
DE112016005592B9 (en) * 2015-12-07 2022-09-15 Jxtg Nippon Oil & Energy Corporation LUBRICATION OIL COMPOSITION FOR INTERNAL COMBUSTION ENGINE AND METHOD FOR SUPPRESSING LSPI OF AN INTERNAL COMBUSTION ENGINE
JP6334503B2 (en) * 2015-12-07 2018-05-30 出光興産株式会社 Lubricating oil composition and method for producing the same
JP6716360B2 (en) * 2016-06-24 2020-07-01 Jxtgエネルギー株式会社 Lubricating oil composition for internal combustion engine

Also Published As

Publication number Publication date
CA2971329A1 (en) 2017-12-30
SG10201705339TA (en) 2018-01-30
US10829712B2 (en) 2020-11-10
US20180002628A1 (en) 2018-01-04
US20220089967A9 (en) 2022-03-24
CN107557118A (en) 2018-01-09
KR20180003458A (en) 2018-01-09
EP3263676A2 (en) 2018-01-03
JP2018003018A (en) 2018-01-11
EP3263676A3 (en) 2018-01-24
JP7377913B2 (en) 2023-11-10
KR102375204B1 (en) 2022-03-16
JP2022107630A (en) 2022-07-22
EP3263676B1 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
US10829712B2 (en) Lubricating oil compositions
US10358617B2 (en) Lubricating oil compositions
US9347019B2 (en) Lubricating oil composition
US10358618B2 (en) Lubricating oil compositions
EP2952564B1 (en) Lubricating oil compositions
EP2952563B1 (en) Lubricating oil compositions
EP3546549B1 (en) Lubricating oil composition
EP3434755A1 (en) Motorcycle lubricant
EP2977436B1 (en) Lubricating oil compositions
US11352584B2 (en) Lubricating oil compositions containing pre-ceramic polymers

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION