US20210310668A1 - Supplemental heating device and method - Google Patents

Supplemental heating device and method Download PDF

Info

Publication number
US20210310668A1
US20210310668A1 US17/051,471 US201917051471A US2021310668A1 US 20210310668 A1 US20210310668 A1 US 20210310668A1 US 201917051471 A US201917051471 A US 201917051471A US 2021310668 A1 US2021310668 A1 US 2021310668A1
Authority
US
United States
Prior art keywords
temperature
damper
supplemental
enclosure
heating system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/051,471
Inventor
Eric Bruton
Matthew Reese
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEATCO Inc
Original Assignee
HEATCO Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEATCO Inc filed Critical HEATCO Inc
Priority to US17/051,471 priority Critical patent/US20210310668A1/en
Publication of US20210310668A1 publication Critical patent/US20210310668A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/06Air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/12Hot-air central heating systems; Exhaust gas central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1084Arrangement or mounting of control or safety devices for air heating systems
    • F24D19/1087Arrangement or mounting of control or safety devices for air heating systems system using a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/136Defrosting or de-icing; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/204Temperature of the air before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/208Temperature of the air after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/33Control of dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/45Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based remotely accessible
    • F24H15/464Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based remotely accessible using local wireless communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/02Casings; Cover lids; Ornamental panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/32Heat sources or energy sources involving multiple heat sources in combination or as alternative heat sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2240/00Characterizing positions, e.g. of sensors, inlets, outlets
    • F24D2240/10Placed within or inside of
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/02Increasing the heating capacity of a reversible cycle during cold outdoor conditions

Definitions

  • This disclosure relates to a heater device, system and method for providing supplemental heat for a heating system. More specifically, a supplemental heating device for an air source variable refrigerant flow system operating in cold weather climates is described herein.
  • VRF Air source Variable Refrigerant Flow
  • Components of the VRF system are the outdoor (condensing) unit, the indoor unit, refrigerant, and where applicable the heat recovery unit.
  • Many VRF systems provide heating and cooling directly from air source heat pumps to fan coils in building zones.
  • the variable speed of VRF systems allow the amount of refrigerant sent to each zone to be modulated independently in tune with changing space loads.
  • VRF systems typically provide energy savings in comparison to other heating systems. Some VRF systems may provide savings of $0.20/ft 2 to $0.40/ft 2 of building area.
  • heat pumps are either not considered for the application or are located indoors (mechanical rooms) to keep components of the heat pump from freezing and to ensure the heat pump operates at acceptable efficiencies. Being limited to indoor installations may increase transport losses, installment costs, and material costs due to the addition of linear feet of refrigerant lines/hoses.
  • the supplemental heating device may comprise an assembled unit that allows existing VRF systems to be utilized in cold climates.
  • the present disclosure includes a system, method, and devices related to a supplemental heating system. These systems are described in greater detail below, and any combination of elements and/or methods are contemplated as aspects and embodiments of the overall invention.
  • a supplemental heating system for a primary heating device comprising an upper enclosure housing a controller and a supplemental heating element, at least one temperature sensor communicatively coupled to the controller, a lower enclosure, an inlet damper disposed on the lower enclosure, an outlet damper disposed on the upper enclosure, and an intermediate damper disposed between the upper enclosure and the lower enclosure, wherein the controller operatively generates instructions to open or close at least one of the inlet damper, the outlet damper, and the intermediate damper to direct airflow based on at least one of input from the at least one temperature sensor or a state of the supplemental heating element.
  • the at least one temperature sensor comprises an external temperature sensor disposed external to the upper enclosure and the lower enclosure to operatively measure an outdoor temperature.
  • the at least one temperature sensor may further comprise a discharge temperature sensor disposed internal to at least one of the upper enclosure or the lower enclosure, and downstream of the supplemental heating element.
  • the controller may operatively modulate a heating input of the supplemental heating element based on measurements received from the discharge temperature sensor.
  • the controller may operatively generate instructions to close the inlet damper and the outlet damper in response to the at least one temperature sensor.
  • the at least one temperature sensor may comprise a discharge temperature sensor disposed internal to at least one of the upper enclosure or the lower enclosure, and downstream of the supplemental heating element.
  • the controller may generate instructions to close the inlet damper, close the outlet damper, and open the intermediate damper in response to the external temperature sensor determining that the outdoor temperature meets or is below a threshold temperature.
  • the controller may generate instructions to close the inlet damper, close the outlet damper, and open the intermediate damper in response to the external temperature sensor determining that the outdoor temperature exceeds a threshold temperature.
  • Also described herein is a method of controlling a supplemental heating system for a primary heating system, the method comprising monitoring an outdoor temperature via a sensor, determining whether the outdoor temperature reaches a lower limit, in response to determining the outdoor temperature reaches a lower limit, closing an inlet damper and an outlet damper, and circulating tempered air heated by the supplemental heating system, determining whether the outdoor temperature passes above the lower limit, and in response to determining the outdoor temperature passes above the lower limit, opening the inlet damper and the outlet damper, and terminating heating by the supplemental heating system.
  • the method may further comprise sensing, via a second temperature sensor, a temperature of the circulating tempered air heated by the supplemental heating system, and modulating a supplemental heat source based at least in part on the sensed temperature of air supplied to the primary heat source.
  • the method may further comprise modulating the supplemental heat source based at least in part on the sensed temperature of air supplied to the primary heat source and a temperature setting.
  • the temperature setting may be based on an operating capacity of the primary heating system.
  • the method may further comprise wirelessly communicating the outdoor temperature from the sensor to a controller.
  • the method may further comprise wirelessly communicating the temperature of the circulating tempered air from the second sensor to a controller.
  • the method may further comprise, in response to determining the outdoor temperature reaches a lower limit, opening an intermediary damper.
  • the method may further comprise, in response to determining the outdoor temperature passes above the lower limit, closing an intermediary damper.
  • a supplemental heating system for a primary heating device comprising an enclosure that operatively encloses a primary heating device, a supplemental heat source, one or more dampers disposed on or within the enclosure, and a controller and one or more temperature sensors, wherein the controller is communicatively coupled to the one or more temperature sensors to operatively control the supplemental heat source and the one or more dampers based on measurements received from the one or more temperature sensors.
  • the controller may receive input to adjust temperature limits associated with the one or more temperature sensors.
  • the controller may receive input to adjust settings associated with the supplemental heat source and stores the settings in a memory.
  • the one or more temperature sensors may comprise an external temperature sensor disposed external to the enclosure and beneath a cover that operatively shields the external temperature from ambient light.
  • FIG. 1 is a side view of a heating system with a supplemental heating device in an idle state in accordance with the present disclosure
  • FIG. 2 is a side, cross-sectional view of the heating system of FIG. 1 in accordance with the present disclosure
  • FIG. 3 is a back view of the heating system of FIG. 1 in accordance with the present disclosure
  • FIG. 4 is a back, partial cross-sectional view of the heating system of FIG. 1 in accordance with the present disclosure
  • FIG. 5 is a top view of the heating system of FIG. 1 in accordance with the present disclosure.
  • FIG. 6 is a front view of the heating system of FIG. 1 in accordance with the present disclosure.
  • FIG. 7 is an exploded, perspective view of a heating system that includes a supplemental heating device in accordance with the present disclosure
  • FIG. 8 is a detailed view of the heating system of FIG. 7 taken along section C in accordance with the present disclosure
  • FIG. 9 is a detailed view of the heating system of FIG. 7 taken along section B in accordance with the present disclosure.
  • FIG. 10 is a side, cross-sectional view of a heating system that includes a supplemental heating device in an idle state in accordance with the present disclosure
  • FIG. 11 is a side, cross-sectional view of the heating system of FIG. 10 with the supplemental heating device in an active state in accordance with the present disclosure
  • FIG. 12 is a back, perspective view of the heating system of FIG. 10 in accordance with the present disclosure.
  • FIG. 13 is a front, perspective view of the heating system of FIG. 10 in accordance with the present disclosure.
  • FIG. 14 is a method of controlling a supplemental heating device in accordance with the present disclosure.
  • the words “example” and “exemplary” mean an instance, or illustration. The words “example” or “exemplary” do not indicate a key or preferred aspect or embodiment.
  • the word “or” is intended to be inclusive rather than exclusive, unless context suggests otherwise.
  • the phrase “A employs B or C,” includes any inclusive permutation (e.g., A employs B; A employs C; or A employs both B and C).
  • the articles “a” and “an” are generally intended to mean “one or more” unless context suggests otherwise.
  • Logic refers to any information and/or data that may be applied to direct the operation of a processor.
  • Logic may be formed from instruction signals stored in a memory (e.g., a non-transitory memory).
  • Software is one example of logic.
  • logic may include hardware, alone or in combination with software.
  • logic may include digital and/or analog hardware circuits, such as hardware circuits comprising logical gates (e.g., AND, OR, XOR, NAND, NOR, and other logical operations).
  • logic may be programmed and/or include aspects of various devices and is not limited to a single device.
  • the terms “user,” “customer,” “consumer,” and the like are employed interchangeably throughout the subject specification, unless context suggests otherwise or warrants a particular distinction among the terms. It is noted that such terms may refer to human entities or automated components supported through artificial intelligence (e.g., a capacity to make inference). As such, embodiments may describe a user action that may not require human action.
  • a user interface may include devices that receive input from a user and transmit the input to electronic circuitry, such as a microprocessor, or outputs information to a user.
  • Such user interfaces may include buttons, switches, knobs, touch screens (e.g., capacitive touch screens), microphones, image capturing devices, motion sensors, pressure sensors, a display screen, a speaker, a light (e.g., LED, bulb, etc.), or the like.
  • controllers for the supplemental heating devices may include multiple user interfaces of various types.
  • a heating system may comprise a heat pump that does not communicate with a supplemental heating device.
  • the supplemental heating device may be attached to or otherwise utilized with heat pumps of various makes and models without requiring modification to the heat pumps.
  • Networks or communication networks may include wired or wireless data connections to a network (e.g., Ethernet, Wi-Fi, cellular network, local area connections, etc.).
  • a network e.g., Ethernet, Wi-Fi, cellular network, local area connections, etc.
  • Embodiments, for example, may utilize various radio access networks (RAN), e.g., Wi-Fi, Wi-Fi direct, global system for mobile communications, universal mobile telecommunications systems, worldwide interoperability for microwave access, enhanced general packet radio service, third generation partnership project long term evolution (3G LTE), fourth generation long term evolution (4G LTE), third generation partnership project 2, BLUETOOTH®, ultra-mobile broadband, high speed packet access, xth generation long term evolution, or another IEEE 802.XX technology.
  • RAN radio access networks
  • Wireless communication may also include, in whole or in part, communications transmitted over more traditional local area networks or cellular data networks, so as to incorporate aspects of cloud-based computing systems, information available via world wide web and other internet connectivity, and the like.
  • any indication of “wireless,” “Wi-Fi,” or other similar terminology should be read expansively (at least within the context it is used) throughout this disclosure.
  • embodiments may use one or more different communications protocols or devices (whether wired or wireless) to communicate between the various components of the system.
  • an external heating unit is located on a roof of a building or at another location.
  • the external heating unit may be a VRF device that is connected to various indoor units in a building.
  • the VRF device is located externally to the building and exposed to the external climate.
  • These VRF devices can lose efficiency in cold weather.
  • buildings in cold climates often use other types of heating devices instead of or in conjunction with VRF devices.
  • These other types of heating devices are typically less efficient and add increases in costs, space requirements, materials, and the like.
  • Embodiments described herein may provide a supplemental heating device that is attached to the outdoor unit.
  • the supplemental heating device may selectively apply heat at low ambient air temperature conditions.
  • the supplemental heating device may be operatively attached to a VRF device.
  • the supplemental heating device may comprise a housing, heating element, controller, and one or more dampers.
  • the controller may generate instructions to position the dampers according to whether the supplemental heating device is in an “on” or “idle” state. In an on state, the controller operatively positions the dampers so that air is heated by the heating element prior to the air entering an intake of the VRF device. In the off state, the controller operatively positions the dampers so that the VRF device receives the air from an external environment without the supplemental heating device heating the ambient air. Accordingly, the described embodiments may minimize or reduce the effect of low ambient temperature and may provide for appropriate heat pump operation and performance at those low ambient air temperature conditions.
  • supplemental heating devices may be separately constructed with respect to the VRF device. As such, the supplemental heating devices may be attached to existing VRF devices without modification to the VRF device. Moreover, the supplemental heating devices may comprise dedicated controllers that are independent of a VRF device's controller. As such, the supplemental heating device may be modified, controlled, or installed separate from the VRF device. Moreover, the supplemental heating devices may be modified to be attachable to VRF devices of various makes and models.
  • FIGS. 1-6 there is a heating system 100 comprising a supplemental heating device 102 and a primary heating device 104 .
  • the supplemental heating device 102 may be operatively attached to the primary heating device 104 to reduce effects of cold temperatures as described herein. It is noted that the supplemental heating device 102 may comprise a complete and stand-alone supplemental heat system.
  • the supplemental heating device 102 may primarily comprise an enclosure 110 (which may include upper enclosure 106 and lower enclosure 108 ) and a heat exchanger element 140 .
  • the enclosure 110 may house the heat exchanger element 140 and other operative components.
  • the enclosure 110 may comprise a metal, plastic, or other material and may be a generally weatherproof enclosure (which may include rain gutter 150 ).
  • the lower enclosure may include outside air intake louver 128 , a drain pan 116 that may drain condensation or other liquids, and a coil access door 126 that may allow access to one or more components of the heating system 100 .
  • the enclosure 110 may comprise one or more dampers that may be opened or closed to manipulate airflow.
  • the enclosure 110 may comprise three dampers, such as an inlet damper 114 , outlet damper 132 , and intermediate damper 136 .
  • a controller 160 may be disposed within the enclosure 110 and may operatively control one or more motors or actuators (not shown) to open or close the inlet damper 114 , outlet damper 132 , or intermediate damper 136 . While embodiments may simply refer to the controller 160 opening/closing a damper, it is noted that the controller 160 generally controls a motor or actuator, which in turn opens or closes the dampers.
  • the inlet damper 114 selectively prevents or allows the outdoor air to enter the enclosure 110 .
  • the inlet damper 114 allows the outdoor air to enter the enclosure 110 and traverse through the primary heating device 104 .
  • the inlet damper 114 does not allow cold outdoor air to enter the enclosure 110 .
  • the outlet damper 132 may be positioned proximal an outlet hood 112 . Positioning of the outlet damper 132 selectively prevents or allows tempered air to escape the primary heating device 104 in the enclosure 110 . For instance, when in the open position the outlet damper 132 allows air to pass from the inlet damper 114 through the enclosure 110 and through the outlet damper 132 to the outside environment. In a closed position, the outlet damper 132 may generally prevent airflow from exiting the enclosure 110 . In a closed position, the outlet damper 132 may force tempered air to recirculate back to the heat exchanger element 140 inside the enclosure 110 .
  • the intermediate damper 136 may be located on or at a divider wall separating the lower enclosure 108 and inlet damper 114 from the upper enclosure 106 and the outlet damper 132 .
  • the inlet damper 114 may be closed to prevent air from passing from the inlet damper 114 to the heat exchanger element 140 , inside supplemental heat device 102 .
  • the inlet damper 114 allows air to circulate between the lower housing 108 , to the primary heating unit 104 (e.g., entering the primary inlet 105 and exiting the primary exhaust 125 ), to the upper enclosure 106 and through the heat exchanger element 140 .
  • Heat exchanger element 140 is located in the upper enclosure 106 and may be separated from the exhaust 125 via an insulated wall 120 (e.g., a foil face insulated wall).
  • the heat exchanger element 140 generally includes heat controller 142 , tubes or coils 144 , exhaust 116 , and intake 148 . It is further noted that the heat exchanger element 140 may comprise a gas heating device that includes a gas intake 152 .
  • the controller 142 may be separated from the rest of the upper enclosure 106 by wall 147 .
  • the coils 144 are located on the discharge side of the exhaust 125 of the primary heating device 104 downstream of the outlet air damper 132 and upstream of the intermediate air damper 136 (as shown by the solid airflow line in FIG. 2 ).
  • the outdoor air temperature sensing probe 192 (as shown in FIG. 2 ) is located outside the enclosure, and is unaffected by the operation of the heat exchange unit 140 .
  • the outdoor air temperature sensing probe 192 may be disposed on an external surface of the enclosure 110 , under the hood 112 , or the like.
  • Outdoor air temperature sensing probe 192 may be communicatively coupled to the controller 160 . It is noted that the outdoor air temperature sensing probe 192 may be coupled to the controller 160 via a wirelessly or wired connection.
  • the discharge air or temperature sensor 194 is located upstream of primary heating device 104 and downstream of the intermediate damper 136 and inlet air damper 114 . It is noted that the discharge air sensor 194 communicatively coupled to the controller 160 (e.g., wirelessly or wire coupled to the controller 160 ). According to embodiments, the discharge air sensor 194 senses the temperature of the circulating air just before it traverses through the primary heating device 104 . Based on the temperature range, the controller 160 will modulate the heating input to the heat exchanger element 140 to supply the necessary Btu loadings to the circulating air (shown as solid line in FIG. 2 ) based on the primary heating device 104 operating capacity. This keeps the circulating air supplied to the primary heating device 104 at appropriate temperature values.
  • the controller 160 will modulate the heating input to the heat exchanger element 140 to supply the necessary Btu loadings to the circulating air (shown as solid line in FIG. 2 ) based on the primary heating device 104 operating capacity. This keeps the circulating air supplied to the primary heating
  • the primary heating device 104 to produce the needed heat load to the indoor system during extreme cold outdoor temperatures.
  • the amount of fuel or electricity needed to operate the supplemental heating device 102 and enclosure 110 may be reduced or minimized while increasing the operating efficiency of the primary heating device 104 . This reduces operational costs of the entire system 100 during cold weather conditions, reduces risks of freezing components, and increases operating efficiency of primary heating device 104 during cold weather conditions.
  • heating system 700 comprising a supplemental heating device 702 and a primary heating device 704 .
  • the supplemental heating device 702 may be operatively attached to the primary heating device 704 as a single piece or multiple pieces.
  • the supplemental heating device 702 may include an upper enclosure 706 that is selectively attachable to a lower enclosure 708 .
  • heating system 700 may comprise similar aspects as described with reference to various other drawings.
  • like named components may comprise similar aspects.
  • system 700 may comprise similar aspects as system 100 .
  • the lower enclosure 708 may comprise one or more side panels 720 .
  • the side panels 720 may be operatively attached together.
  • the side panels 720 may be operatively attached to a bottom panel (not shown).
  • the side panels 720 and bottom panel may be shipped to a desired location as separate pieces. This may reduce shipping size and may allow for easier transportation in comparison to shipping the lower enclosure 708 as a fully constructed unit. Accordingly, the side panels 720 and bottom panel may be assembled around the primary heating device 704 after (or concurrently with) the primary heating device 704 is installed.
  • Lower enclosure 708 may be designed to attach to any make or model of the primary heading device 704 .
  • the upper enclosure 706 may be attached to the lower enclosure 708 via a flange 770 of the upper enclosure 706 and an edge 772 of the lower enclosure 708 .
  • the flange 770 may comprise a protrusion that has a generally smaller perimeter as the outer surface 726 of the upper enclosure 706 .
  • the flange 770 may be disposed within an inner perimeter of the edge 772 such that the outer surface 726 of the upper enclosure 706 is flush with the side panels 720 when assembled.
  • one or more fasteners, adhesives, welds, or the like may be utilized to secure the upper enclosure 706 to the lower enclosure 708 .
  • the system 700 may include a support rail 774 that may be attached to the primary heating device 704 or at least one of the side panels 720 .
  • the support rail 774 may interface with at least a portion of the flange 770 .
  • FIGS. 10-13 illustrates a heating system 1000 in accordance with various disclosed aspects. It is noted that the heating system 1000 may comprise similar aspects as other described heating systems. For instance, the heating system 1000 may comprise an upper enclosure 1006 and a lower enclosure 1008 that may be similar to upper enclosures 106 , 706 and lower enclosures 108 , 708 .
  • FIG. 10 illustrates the system 1000 in an open state, where a supplemental heating device is not recirculating tempered air.
  • the heat exchange element 1040 is not supplying heat to heat tubes or coils 1044 .
  • the inlet damper(s) 1014 is in an open position to allow ambient air to enter the lower enclosure 1008 from the environment.
  • the intermediary damper 1036 is in a closed position to generally prevent the airflow from passing therethrough. As such, the air is forced into the primary heating device 1004 . Exhaust from the primary heating device 1004 exits into the upper enclosure 1006 and cannot reenter the lower enclosure 1008 as the intermediary damper 1036 is in the closed position. Thus, the air is forced out of the open outlet damper 1032 .
  • FIG. 11 illustrates the system 1000 in a closed state where the supplemental heating device is recirculating tempered air.
  • the inlet damper 1014 and the outlet damper 1032 are both in closed states. This seals the upper enclosure 1006 and lower enclosure 1008 off from the external environment and generally prevents air from escaping the upper enclosure 1006 and lower enclosure 1008 .
  • the air is directed from the lower enclosure 1008 , through the primary heating device 1004 , to the upper enclosure 1006 , past or through the heat tubes or coils 1044 , and through the intermediary damper 1036 .
  • the air may be recirculated and heated to a desired temperature to increase or generally improve the operating efficiency of the primary heating device 1004 . This may result in a more efficient overall climate control system, reduced expenses, and improved heating capabilities.
  • FIG. 14 is a flow chart of an exemplary method 1400 of controlling a supplemental heating device as described herein.
  • the method 1400 may be utilized to improve efficiency of the heating system. It is noted that the method 1400 may find particular utility in cold weather climates where traditional VRF systems are less efficient.
  • the method 1400 may provide for operation of a primary heating device or heat pump when outdoor air conditions are satisfactory for optimal performance.
  • the method 1400 opens an inlet air damper, opens an outlet air damper, and closes an intermediate air damper.
  • a system may already be in an idle state at 1402 and the method 1400 may maintain the positions of the dampers.
  • a controller may operatively control one or more motors that position the dampers. This allows outdoor air to enter the enclosure, traverse through the heat pump coil, and be discharged back to the outdoors through the outlet air damper. No recirculation of the air is allowed by the dampers in this condition. This operating method allows the heat pump to operate as if it was a standalone appliance.
  • the method may utilize one or more sensors to determine a position of one or more dampers.
  • the method 1400 may utilize proximity sensors, reed switches, transducers, solenoid sensors, or the like to determine whether a damper is open or closed. Determining the position may allow the method 1400 to determine whether a system is appropriately functioning and/or may allow a system to diagnose one or more issues when the system is not properly functioning.
  • the method 1400 monitors an outdoor temperature and determines whether the outdoor temperature reaches a lower limit.
  • the lower limit may be predetermined for efficient heat pump performance or may be dynamically determined based on a history associate with the heat pump performance. If the lower limit is not reached, the method 1400 may continue to monitor the outdoor temperature. If the lower limit is reach, the method 1400 may continue at reference number 1406 .
  • the method 1400 closes the inlet damper, closes the outlet damper and opens the intermediate damper.
  • This operating method enables the ambient air inside the enclosure to recirculate continuously as described herein. Air is discharged from the heat pump circulating fan, bypasses the closed outlet air damper, traverses the supplemental heating element, progresses through the intermediate air damper, bypasses the closed inlet air damper, and then traverses through the heat pump coil. Operation is maintained continuously.
  • the method 1400 monitors an outdoor temperature and determines whether the outdoor temperature is above the lower limit. If it is not above the limit, the method continues at 1406 . If above the lower limit, the method may continue at 1402 . For example, until the outdoor air temperature outside the enclosure increases above the low limit of the outdoor air sensing probe for adequate heat pump performance.
  • the method 1400 monitors circulating air temperature to determine whether the circulating air temperature is at the desired supply temperature setting. It is noted that the systems described herein may utilize one or more sensors positioned to operatively sense the circulating air temperature. Moreover, the method 1400 may open or close dampers, turn on/off a heat source, or the like.
  • the method 1400 may modulate the supplemental heating element, such as through logic built into the controller of the supplemental heating element.
  • a satisfactory temperature range may be selected for ambient air conditions inside the enclosure for optimal heat pump performance.
  • the discharge air sensing probe senses the temperature of the circulating air just before it traverses through the heat pump coil.
  • the heating element control will modulate the heating input to the heat element to supply the necessary Btu loadings to the circulating air based on the heat pump operating capacity. This keeps the circulating air supplied to the heat pump coil at satisfactory temperature values. This allows the heat pump to produce the needed heat load to the indoor system during extreme cold outdoor temperatures.
  • the amount of fuel or electricity needed to operate the supplemental heating device and enclosure is minimized while increasing the operating efficiency of the heat pump. This reduces operational costs of the entire system during cold weather conditions.
  • the heat exchanger element modulating control and the air damper control are adjustable in nature. Each control can be adjusted independently to achieve optimal performance of the entire system.
  • the acting outdoor ambient temperature value enabling the air damper control can be altered by adjusting the outdoor air sensing probe temperature value.
  • the modulating control for the heating element can be adjusted to give a wide temperature range of circulating air to the heat pump coil. This is done by adjusting the temperature range, sensitivity of the discharge air sensing probe, and/or delay time before enabling or disabling stages of heat. Based on location of the heat pump in different cold weather climates, each installation can be adjusted to different settings to achieve the optimum performance for that specific system.
  • Air damper end switches and an airflow proving device guarantee airflow across the heating element during heat loading operation. Without the proof of closures of these safeties the air dampers will stay in the idle condition to allow normal operation of the heat pump.
  • High temperature limit switches are installed and integrated into the heat element control. This ensures that at no time will the integrity of the heat pump, heating element, enclosure, and enclosure components be susceptible to overheating.
  • This method is intended to be completely external to the heat pump logic and control.
  • This supplemental heating device and enclosure is kept separate to allow for the adjustability and adaptability of the supplemental system in any and all climates and applications.
  • the method outlined controls the ambient air in the housing around the heat pump coil by an enclosure.
  • standalone heat pumps may be utilized in extreme cold outdoor climates, while providing the benefits of energy savings and increased appliance efficiency over the entire year on average.
  • control of the dampers, heating limits, and heating elements may utilize processing techniques, such as artificial intelligence, statistical models, or other processes and/or algorithms. These high level-processing techniques can make suggestions, provide feedback, or provide other aspects.
  • Such classification can employ a probabilistic and/or statistical based analysis (e.g., factoring into the analysis sensed information and heating attributes) to infer suggestions and/or desired actions.
  • a controller may utilize other directed and undirected model classification approaches including, e.g., naive Bayes, Bayesian networks, decision trees, neural networks, fuzzy logic models, and probabilistic classification models providing different patterns of independence. Classification may also include statistical regression that is utilized to develop models of priority. Further still, classification may also include data derived from another system, such as automotive systems.
  • some embodiments may employ classifiers that are explicitly trained (e.g., via a generic training data) as well as implicitly trained (e.g., via observing user behavior, user interaction with components, user preferences, historical information, receiving extrinsic information).
  • support vector machines may be configured via learning or training phase within a classifier constructor and feature selection module.
  • the classifier(s) may be used to automatically learn and perform a number of functions, including but not limited to determining, according to historical data, suggestions for gain and/or sensitivity settings. This learning may be on an individual basis, i.e., based solely on a single heating system, or may apply across a set of or the entirety of heating systems.
  • Information from the users may be aggregated and the classifier(s) may be used to automatically learn and perform a number of functions based on this aggregated information.
  • the information may be dynamically distributed, such as through an automatic update, a notification, or any other method or means, to the entire heating system base, a subset thereof or to an individual heating system.
  • a component may include a computer-process running on a processor, a processor, a device, a process, a computer thread, or the like.
  • a component may include both an application running on a processor and a processor.
  • such terms may be localized to one computer and/or may be distributed across multiple computers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A supplemental heating system includes an enclosure that encloses a primary heating device. The enclosure includes an inlet damper, an outlet damper, and an intermediate damper. In an idle state, the inlet damper and outlet damper are open while the intermediate damper is closed. In an active state, the inlet damper and outlet damper are closed while the intermediate damper is open, so that air is circulated within the enclosure.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims priority to U.S. Provisional Patent Application No. 62/665,787 entitled “SUPPLEMENTAL HEATING DEVICE AND METHOD,” filed on May 2, 2018, which is incorporated herein by reference in its entirety.
  • TECHNICAL FIELD
  • This disclosure relates to a heater device, system and method for providing supplemental heat for a heating system. More specifically, a supplemental heating device for an air source variable refrigerant flow system operating in cold weather climates is described herein.
  • BACKGROUND
  • Air source Variable Refrigerant Flow (VRF) systems are gaining market share in moderate climates. Components of the VRF system are the outdoor (condensing) unit, the indoor unit, refrigerant, and where applicable the heat recovery unit. Many VRF systems provide heating and cooling directly from air source heat pumps to fan coils in building zones. The variable speed of VRF systems allow the amount of refrigerant sent to each zone to be modulated independently in tune with changing space loads. VRF systems typically provide energy savings in comparison to other heating systems. Some VRF systems may provide savings of $0.20/ft2 to $0.40/ft2 of building area.
  • Currently, systems with air source heat pumps are not widely used in cold climates because they lose capacity due to low ambient air conditions. For outdoor temperatures between 0° F. and 35° F., the units operate at approximately 30% below their rated heating efficiency. At temperatures less than −10° F., the ratio rapidly decreases resulting in significant heating efficiency degradation. For this and other reasons, additional heating appliances or systems must be added directly to the heated space (i.e., furnaces, boilers, engines with ductwork and/or vents discharging heat into the heated space). These technologies typically have lower efficiencies, higher transport losses, require additional space, and can contribute to higher overall system costs.
  • In present cold climate installations, heat pumps are either not considered for the application or are located indoors (mechanical rooms) to keep components of the heat pump from freezing and to ensure the heat pump operates at acceptable efficiencies. Being limited to indoor installations may increase transport losses, installment costs, and material costs due to the addition of linear feet of refrigerant lines/hoses.
  • Therefore, there is a need in the art for a more efficient and cost-effective heating system and supplemental heating device. The supplemental heating device may comprise an assembled unit that allows existing VRF systems to be utilized in cold climates.
  • SUMMARY
  • The present disclosure includes a system, method, and devices related to a supplemental heating system. These systems are described in greater detail below, and any combination of elements and/or methods are contemplated as aspects and embodiments of the overall invention.
  • Disclosed herein is a supplemental heating system for a primary heating device, the supplemental heating device comprising an upper enclosure housing a controller and a supplemental heating element, at least one temperature sensor communicatively coupled to the controller, a lower enclosure, an inlet damper disposed on the lower enclosure, an outlet damper disposed on the upper enclosure, and an intermediate damper disposed between the upper enclosure and the lower enclosure, wherein the controller operatively generates instructions to open or close at least one of the inlet damper, the outlet damper, and the intermediate damper to direct airflow based on at least one of input from the at least one temperature sensor or a state of the supplemental heating element. In an embodiment, the at least one temperature sensor comprises an external temperature sensor disposed external to the upper enclosure and the lower enclosure to operatively measure an outdoor temperature. The at least one temperature sensor may further comprise a discharge temperature sensor disposed internal to at least one of the upper enclosure or the lower enclosure, and downstream of the supplemental heating element. The controller may operatively modulate a heating input of the supplemental heating element based on measurements received from the discharge temperature sensor. In another aspect, the controller may operatively generate instructions to close the inlet damper and the outlet damper in response to the at least one temperature sensor. The at least one temperature sensor may comprise a discharge temperature sensor disposed internal to at least one of the upper enclosure or the lower enclosure, and downstream of the supplemental heating element. The controller may generate instructions to close the inlet damper, close the outlet damper, and open the intermediate damper in response to the external temperature sensor determining that the outdoor temperature meets or is below a threshold temperature. The controller may generate instructions to close the inlet damper, close the outlet damper, and open the intermediate damper in response to the external temperature sensor determining that the outdoor temperature exceeds a threshold temperature.
  • Also described herein is a method of controlling a supplemental heating system for a primary heating system, the method comprising monitoring an outdoor temperature via a sensor, determining whether the outdoor temperature reaches a lower limit, in response to determining the outdoor temperature reaches a lower limit, closing an inlet damper and an outlet damper, and circulating tempered air heated by the supplemental heating system, determining whether the outdoor temperature passes above the lower limit, and in response to determining the outdoor temperature passes above the lower limit, opening the inlet damper and the outlet damper, and terminating heating by the supplemental heating system. The method may further comprise sensing, via a second temperature sensor, a temperature of the circulating tempered air heated by the supplemental heating system, and modulating a supplemental heat source based at least in part on the sensed temperature of air supplied to the primary heat source. In at least one embodiment, the method may further comprise modulating the supplemental heat source based at least in part on the sensed temperature of air supplied to the primary heat source and a temperature setting. The temperature setting may be based on an operating capacity of the primary heating system. The method may further comprise wirelessly communicating the outdoor temperature from the sensor to a controller. The method may further comprise wirelessly communicating the temperature of the circulating tempered air from the second sensor to a controller. The method may further comprise, in response to determining the outdoor temperature reaches a lower limit, opening an intermediary damper. The method may further comprise, in response to determining the outdoor temperature passes above the lower limit, closing an intermediary damper.
  • Disclosed herein is a supplemental heating system for a primary heating device, the supplemental heating device comprising an enclosure that operatively encloses a primary heating device, a supplemental heat source, one or more dampers disposed on or within the enclosure, and a controller and one or more temperature sensors, wherein the controller is communicatively coupled to the one or more temperature sensors to operatively control the supplemental heat source and the one or more dampers based on measurements received from the one or more temperature sensors. The controller may receive input to adjust temperature limits associated with the one or more temperature sensors. In another aspect, the controller may receive input to adjust settings associated with the supplemental heat source and stores the settings in a memory. The one or more temperature sensors may comprise an external temperature sensor disposed external to the enclosure and beneath a cover that operatively shields the external temperature from ambient light.
  • The foregoing embodiments are merely exemplary of some of the aspects of the system. Additional features and elements may be contemplated and described herein. Also, features from one of the foregoing embodiments may be combined with features from any of the other foregoing embodiments.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side view of a heating system with a supplemental heating device in an idle state in accordance with the present disclosure;
  • FIG. 2 is a side, cross-sectional view of the heating system of FIG. 1 in accordance with the present disclosure;
  • FIG. 3 is a back view of the heating system of FIG. 1 in accordance with the present disclosure;
  • FIG. 4 is a back, partial cross-sectional view of the heating system of FIG. 1 in accordance with the present disclosure;
  • FIG. 5 is a top view of the heating system of FIG. 1 in accordance with the present disclosure;
  • FIG. 6 is a front view of the heating system of FIG. 1 in accordance with the present disclosure;
  • FIG. 7 is an exploded, perspective view of a heating system that includes a supplemental heating device in accordance with the present disclosure;
  • FIG. 8 is a detailed view of the heating system of FIG. 7 taken along section C in accordance with the present disclosure;
  • FIG. 9 is a detailed view of the heating system of FIG. 7 taken along section B in accordance with the present disclosure;
  • FIG. 10 is a side, cross-sectional view of a heating system that includes a supplemental heating device in an idle state in accordance with the present disclosure;
  • FIG. 11 is a side, cross-sectional view of the heating system of FIG. 10 with the supplemental heating device in an active state in accordance with the present disclosure;
  • FIG. 12 is a back, perspective view of the heating system of FIG. 10 in accordance with the present disclosure;
  • FIG. 13 is a front, perspective view of the heating system of FIG. 10 in accordance with the present disclosure; and
  • FIG. 14 is a method of controlling a supplemental heating device in accordance with the present disclosure.
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. It is to be understood that other embodiments may be utilized and structural and functional changes may be made without departing from the respective scope of the invention. Moreover, features of the various embodiments may be combined or altered without departing from the scope of the invention. As such, the following description is presented by way of illustration only and should not limit in any way the various alternatives and modifications that may be made to the illustrated embodiments and still be within the spirit and scope of the invention.
  • As used herein, the words “example” and “exemplary” mean an instance, or illustration. The words “example” or “exemplary” do not indicate a key or preferred aspect or embodiment. The word “or” is intended to be inclusive rather than exclusive, unless context suggests otherwise. As an example, the phrase “A employs B or C,” includes any inclusive permutation (e.g., A employs B; A employs C; or A employs both B and C). As another matter, the articles “a” and “an” are generally intended to mean “one or more” unless context suggests otherwise.
  • “Logic” refers to any information and/or data that may be applied to direct the operation of a processor. Logic may be formed from instruction signals stored in a memory (e.g., a non-transitory memory). Software is one example of logic. In another aspect, logic may include hardware, alone or in combination with software. For instance, logic may include digital and/or analog hardware circuits, such as hardware circuits comprising logical gates (e.g., AND, OR, XOR, NAND, NOR, and other logical operations). Furthermore, logic may be programmed and/or include aspects of various devices and is not limited to a single device. Furthermore, the terms “user,” “customer,” “consumer,” and the like are employed interchangeably throughout the subject specification, unless context suggests otherwise or warrants a particular distinction among the terms. It is noted that such terms may refer to human entities or automated components supported through artificial intelligence (e.g., a capacity to make inference). As such, embodiments may describe a user action that may not require human action.
  • Disclosed embodiments may include user interfaces. As used herein, a user interface may include devices that receive input from a user and transmit the input to electronic circuitry, such as a microprocessor, or outputs information to a user. Such user interfaces may include buttons, switches, knobs, touch screens (e.g., capacitive touch screens), microphones, image capturing devices, motion sensors, pressure sensors, a display screen, a speaker, a light (e.g., LED, bulb, etc.), or the like. For brevity, examples may be described with reference to a user interface in general rather than any particular type of user interface. It is noted, however, that controllers for the supplemental heating devices may include multiple user interfaces of various types. Moreover, described embodiments may be utilized with various types of heat pumps. In at least one example, a heating system may comprise a heat pump that does not communicate with a supplemental heating device. As such, the supplemental heating device may be attached to or otherwise utilized with heat pumps of various makes and models without requiring modification to the heat pumps.
  • Networks or communication networks may include wired or wireless data connections to a network (e.g., Ethernet, Wi-Fi, cellular network, local area connections, etc.). Embodiments, for example, may utilize various radio access networks (RAN), e.g., Wi-Fi, Wi-Fi direct, global system for mobile communications, universal mobile telecommunications systems, worldwide interoperability for microwave access, enhanced general packet radio service, third generation partnership project long term evolution (3G LTE), fourth generation long term evolution (4G LTE), third generation partnership project 2, BLUETOOTH®, ultra-mobile broadband, high speed packet access, xth generation long term evolution, or another IEEE 802.XX technology. BLUETOOTH (in any of its various iterations), various wireless technologies for exchanging data over short distances (e.g., ZigBee, RuBee, DASH7, etc.), and other protocols and personal area networks may be utilized. Wireless communication may also include, in whole or in part, communications transmitted over more traditional local area networks or cellular data networks, so as to incorporate aspects of cloud-based computing systems, information available via world wide web and other internet connectivity, and the like. As such, any indication of “wireless,” “Wi-Fi,” or other similar terminology should be read expansively (at least within the context it is used) throughout this disclosure. Moreover, embodiments may use one or more different communications protocols or devices (whether wired or wireless) to communicate between the various components of the system.
  • In some traditional climate control systems, an external heating unit is located on a roof of a building or at another location. The external heating unit may be a VRF device that is connected to various indoor units in a building. The VRF device is located externally to the building and exposed to the external climate. These VRF devices can lose efficiency in cold weather. As such, buildings in cold climates often use other types of heating devices instead of or in conjunction with VRF devices. These other types of heating devices are typically less efficient and add increases in costs, space requirements, materials, and the like.
  • Embodiments described herein may provide a supplemental heating device that is attached to the outdoor unit. The supplemental heating device may selectively apply heat at low ambient air temperature conditions. For instance, the supplemental heating device may be operatively attached to a VRF device. The supplemental heating device may comprise a housing, heating element, controller, and one or more dampers. The controller may generate instructions to position the dampers according to whether the supplemental heating device is in an “on” or “idle” state. In an on state, the controller operatively positions the dampers so that air is heated by the heating element prior to the air entering an intake of the VRF device. In the off state, the controller operatively positions the dampers so that the VRF device receives the air from an external environment without the supplemental heating device heating the ambient air. Accordingly, the described embodiments may minimize or reduce the effect of low ambient temperature and may provide for appropriate heat pump operation and performance at those low ambient air temperature conditions.
  • It is noted that described supplemental heating devices may be separately constructed with respect to the VRF device. As such, the supplemental heating devices may be attached to existing VRF devices without modification to the VRF device. Moreover, the supplemental heating devices may comprise dedicated controllers that are independent of a VRF device's controller. As such, the supplemental heating device may be modified, controlled, or installed separate from the VRF device. Moreover, the supplemental heating devices may be modified to be attachable to VRF devices of various makes and models.
  • Turning now to FIGS. 1-6, there is a heating system 100 comprising a supplemental heating device 102 and a primary heating device 104. The supplemental heating device 102 may be operatively attached to the primary heating device 104 to reduce effects of cold temperatures as described herein. It is noted that the supplemental heating device 102 may comprise a complete and stand-alone supplemental heat system.
  • The supplemental heating device 102 may primarily comprise an enclosure 110 (which may include upper enclosure 106 and lower enclosure 108) and a heat exchanger element 140. The enclosure 110 may house the heat exchanger element 140 and other operative components. In an aspect, the enclosure 110 may comprise a metal, plastic, or other material and may be a generally weatherproof enclosure (which may include rain gutter 150). The lower enclosure may include outside air intake louver 128, a drain pan 116 that may drain condensation or other liquids, and a coil access door 126 that may allow access to one or more components of the heating system 100.
  • The enclosure 110 may comprise one or more dampers that may be opened or closed to manipulate airflow. In an example, the enclosure 110 may comprise three dampers, such as an inlet damper 114, outlet damper 132, and intermediate damper 136. A controller 160 may be disposed within the enclosure 110 and may operatively control one or more motors or actuators (not shown) to open or close the inlet damper 114, outlet damper 132, or intermediate damper 136. While embodiments may simply refer to the controller 160 opening/closing a damper, it is noted that the controller 160 generally controls a motor or actuator, which in turn opens or closes the dampers.
  • The inlet damper 114 selectively prevents or allows the outdoor air to enter the enclosure 110. When in an open position, the inlet damper 114 allows the outdoor air to enter the enclosure 110 and traverse through the primary heating device 104. In the closed position, the inlet damper 114 does not allow cold outdoor air to enter the enclosure 110.
  • The outlet damper 132 may be positioned proximal an outlet hood 112. Positioning of the outlet damper 132 selectively prevents or allows tempered air to escape the primary heating device 104 in the enclosure 110. For instance, when in the open position the outlet damper 132 allows air to pass from the inlet damper 114 through the enclosure 110 and through the outlet damper 132 to the outside environment. In a closed position, the outlet damper 132 may generally prevent airflow from exiting the enclosure 110. In a closed position, the outlet damper 132 may force tempered air to recirculate back to the heat exchanger element 140 inside the enclosure 110.
  • The intermediate damper 136 may be located on or at a divider wall separating the lower enclosure 108 and inlet damper 114 from the upper enclosure 106 and the outlet damper 132. The inlet damper 114 may be closed to prevent air from passing from the inlet damper 114 to the heat exchanger element 140, inside supplemental heat device 102. In the open position, the inlet damper 114 allows air to circulate between the lower housing 108, to the primary heating unit 104 (e.g., entering the primary inlet 105 and exiting the primary exhaust 125), to the upper enclosure 106 and through the heat exchanger element 140.
  • Heat exchanger element 140 is located in the upper enclosure 106 and may be separated from the exhaust 125 via an insulated wall 120 (e.g., a foil face insulated wall). The heat exchanger element 140 generally includes heat controller 142, tubes or coils 144, exhaust 116, and intake 148. It is further noted that the heat exchanger element 140 may comprise a gas heating device that includes a gas intake 152. In an aspect, the controller 142 may be separated from the rest of the upper enclosure 106 by wall 147. When the supplemental heating device 102 is circulating tempered air, the coils 144 are located on the discharge side of the exhaust 125 of the primary heating device 104 downstream of the outlet air damper 132 and upstream of the intermediate air damper 136 (as shown by the solid airflow line in FIG. 2).
  • The outdoor air temperature sensing probe 192 (as shown in FIG. 2) is located outside the enclosure, and is unaffected by the operation of the heat exchange unit 140. In an aspect, the outdoor air temperature sensing probe 192 may be disposed on an external surface of the enclosure 110, under the hood 112, or the like. Outdoor air temperature sensing probe 192 may be communicatively coupled to the controller 160. It is noted that the outdoor air temperature sensing probe 192 may be coupled to the controller 160 via a wirelessly or wired connection.
  • The discharge air or temperature sensor 194 is located upstream of primary heating device 104 and downstream of the intermediate damper 136 and inlet air damper 114. It is noted that the discharge air sensor 194 communicatively coupled to the controller 160 (e.g., wirelessly or wire coupled to the controller 160). According to embodiments, the discharge air sensor 194 senses the temperature of the circulating air just before it traverses through the primary heating device 104. Based on the temperature range, the controller 160 will modulate the heating input to the heat exchanger element 140 to supply the necessary Btu loadings to the circulating air (shown as solid line in FIG. 2) based on the primary heating device 104 operating capacity. This keeps the circulating air supplied to the primary heating device 104 at appropriate temperature values. This allows the primary heating device 104 to produce the needed heat load to the indoor system during extreme cold outdoor temperatures. By modulating the heat input to the heat exchanger element 140, the amount of fuel or electricity needed to operate the supplemental heating device 102 and enclosure 110 may be reduced or minimized while increasing the operating efficiency of the primary heating device 104. This reduces operational costs of the entire system 100 during cold weather conditions, reduces risks of freezing components, and increases operating efficiency of primary heating device 104 during cold weather conditions.
  • Turning to FIGS. 7-9, there is a heating system 700 comprising a supplemental heating device 702 and a primary heating device 704. The supplemental heating device 702 may be operatively attached to the primary heating device 704 as a single piece or multiple pieces. For instance, the supplemental heating device 702 may include an upper enclosure 706 that is selectively attachable to a lower enclosure 708. It is noted that heating system 700 may comprise similar aspects as described with reference to various other drawings. Moreover, like named components may comprise similar aspects. For instance, system 700 may comprise similar aspects as system 100.
  • In an aspect, the lower enclosure 708 may comprise one or more side panels 720. The side panels 720 may be operatively attached together. In another aspect, the side panels 720 may be operatively attached to a bottom panel (not shown). As an example, the side panels 720 and bottom panel may be shipped to a desired location as separate pieces. This may reduce shipping size and may allow for easier transportation in comparison to shipping the lower enclosure 708 as a fully constructed unit. Accordingly, the side panels 720 and bottom panel may be assembled around the primary heating device 704 after (or concurrently with) the primary heating device 704 is installed. Lower enclosure 708 may be designed to attach to any make or model of the primary heading device 704.
  • As shown in more detail in FIGS. 8 and 9, respectively, taken from sections C and B of FIG. 7, the upper enclosure 706 may be attached to the lower enclosure 708 via a flange 770 of the upper enclosure 706 and an edge 772 of the lower enclosure 708. For instance, the flange 770 may comprise a protrusion that has a generally smaller perimeter as the outer surface 726 of the upper enclosure 706. As such, the flange 770 may be disposed within an inner perimeter of the edge 772 such that the outer surface 726 of the upper enclosure 706 is flush with the side panels 720 when assembled. It is noted that one or more fasteners, adhesives, welds, or the like may be utilized to secure the upper enclosure 706 to the lower enclosure 708.
  • In at least one embodiment, the system 700 may include a support rail 774 that may be attached to the primary heating device 704 or at least one of the side panels 720. The support rail 774 may interface with at least a portion of the flange 770.
  • FIGS. 10-13, illustrates a heating system 1000 in accordance with various disclosed aspects. It is noted that the heating system 1000 may comprise similar aspects as other described heating systems. For instance, the heating system 1000 may comprise an upper enclosure 1006 and a lower enclosure 1008 that may be similar to upper enclosures 106, 706 and lower enclosures 108, 708.
  • FIG. 10 illustrates the system 1000 in an open state, where a supplemental heating device is not recirculating tempered air. For instance, the heat exchange element 1040 is not supplying heat to heat tubes or coils 1044. The inlet damper(s) 1014 is in an open position to allow ambient air to enter the lower enclosure 1008 from the environment. The intermediary damper 1036 is in a closed position to generally prevent the airflow from passing therethrough. As such, the air is forced into the primary heating device 1004. Exhaust from the primary heating device 1004 exits into the upper enclosure 1006 and cannot reenter the lower enclosure 1008 as the intermediary damper 1036 is in the closed position. Thus, the air is forced out of the open outlet damper 1032.
  • FIG. 11 illustrates the system 1000 in a closed state where the supplemental heating device is recirculating tempered air. The inlet damper 1014 and the outlet damper 1032 are both in closed states. This seals the upper enclosure 1006 and lower enclosure 1008 off from the external environment and generally prevents air from escaping the upper enclosure 1006 and lower enclosure 1008. As such, the air is directed from the lower enclosure 1008, through the primary heating device 1004, to the upper enclosure 1006, past or through the heat tubes or coils 1044, and through the intermediary damper 1036. Accordingly, the air may be recirculated and heated to a desired temperature to increase or generally improve the operating efficiency of the primary heating device 1004. This may result in a more efficient overall climate control system, reduced expenses, and improved heating capabilities.
  • In view of the subject matter described herein, methods that may be related to various embodiments may be better appreciated with reference to the flowchart of FIG. 14. While the methods are shown and described as a series of blocks, it is noted that associated methods or processes are not limited by the order of the blocks unless context suggests otherwise or warrants a particular order. It is further noted that some blocks and corresponding actions may occur in different orders or concurrently with other blocks. Moreover, different blocks or actions may be utilized to implement the methods described hereinafter. Various actions may be completed by one or more of users, mechanical machines, automated assembly machines (e.g., including one or more processors or computing devices), or the like.
  • FIG. 14 is a flow chart of an exemplary method 1400 of controlling a supplemental heating device as described herein. The method 1400 may be utilized to improve efficiency of the heating system. It is noted that the method 1400 may find particular utility in cold weather climates where traditional VRF systems are less efficient.
  • The method 1400 may provide for operation of a primary heating device or heat pump when outdoor air conditions are satisfactory for optimal performance. At 1402, in an idle or open state, the method 1400 opens an inlet air damper, opens an outlet air damper, and closes an intermediate air damper. In some instances, a system may already be in an idle state at 1402 and the method 1400 may maintain the positions of the dampers.
  • It is noted that a controller may operatively control one or more motors that position the dampers. This allows outdoor air to enter the enclosure, traverse through the heat pump coil, and be discharged back to the outdoors through the outlet air damper. No recirculation of the air is allowed by the dampers in this condition. This operating method allows the heat pump to operate as if it was a standalone appliance.
  • Moreover, at 1402 the method may utilize one or more sensors to determine a position of one or more dampers. For instance, the method 1400 may utilize proximity sensors, reed switches, transducers, solenoid sensors, or the like to determine whether a damper is open or closed. Determining the position may allow the method 1400 to determine whether a system is appropriately functioning and/or may allow a system to diagnose one or more issues when the system is not properly functioning.
  • At 1404, the method 1400 monitors an outdoor temperature and determines whether the outdoor temperature reaches a lower limit. The lower limit may be predetermined for efficient heat pump performance or may be dynamically determined based on a history associate with the heat pump performance. If the lower limit is not reached, the method 1400 may continue to monitor the outdoor temperature. If the lower limit is reach, the method 1400 may continue at reference number 1406.
  • At 1406, the method 1400 closes the inlet damper, closes the outlet damper and opens the intermediate damper. This operating method enables the ambient air inside the enclosure to recirculate continuously as described herein. Air is discharged from the heat pump circulating fan, bypasses the closed outlet air damper, traverses the supplemental heating element, progresses through the intermediate air damper, bypasses the closed inlet air damper, and then traverses through the heat pump coil. Operation is maintained continuously.
  • At 1408, the method 1400 monitors an outdoor temperature and determines whether the outdoor temperature is above the lower limit. If it is not above the limit, the method continues at 1406. If above the lower limit, the method may continue at 1402. For example, until the outdoor air temperature outside the enclosure increases above the low limit of the outdoor air sensing probe for adequate heat pump performance.
  • At 1410, the method 1400 monitors circulating air temperature to determine whether the circulating air temperature is at the desired supply temperature setting. It is noted that the systems described herein may utilize one or more sensors positioned to operatively sense the circulating air temperature. Moreover, the method 1400 may open or close dampers, turn on/off a heat source, or the like.
  • It is further noted that the method 1400 may modulate the supplemental heating element, such as through logic built into the controller of the supplemental heating element. A satisfactory temperature range may be selected for ambient air conditions inside the enclosure for optimal heat pump performance. Once the circulating air within the enclosure is established, the discharge air sensing probe senses the temperature of the circulating air just before it traverses through the heat pump coil. Based on the temperature range, the heating element control will modulate the heating input to the heat element to supply the necessary Btu loadings to the circulating air based on the heat pump operating capacity. This keeps the circulating air supplied to the heat pump coil at satisfactory temperature values. This allows the heat pump to produce the needed heat load to the indoor system during extreme cold outdoor temperatures. By modulating the heat input to the heating element, the amount of fuel or electricity needed to operate the supplemental heating device and enclosure is minimized while increasing the operating efficiency of the heat pump. This reduces operational costs of the entire system during cold weather conditions.
  • With this method, the heat exchanger element modulating control and the air damper control are adjustable in nature. Each control can be adjusted independently to achieve optimal performance of the entire system. The acting outdoor ambient temperature value enabling the air damper control can be altered by adjusting the outdoor air sensing probe temperature value. The modulating control for the heating element can be adjusted to give a wide temperature range of circulating air to the heat pump coil. This is done by adjusting the temperature range, sensitivity of the discharge air sensing probe, and/or delay time before enabling or disabling stages of heat. Based on location of the heat pump in different cold weather climates, each installation can be adjusted to different settings to achieve the optimum performance for that specific system.
  • Safeties are integrated into the controls to ensure proper operation of the entire system. Air damper end switches and an airflow proving device guarantee airflow across the heating element during heat loading operation. Without the proof of closures of these safeties the air dampers will stay in the idle condition to allow normal operation of the heat pump. High temperature limit switches are installed and integrated into the heat element control. This ensures that at no time will the integrity of the heat pump, heating element, enclosure, and enclosure components be susceptible to overheating.
  • This method is intended to be completely external to the heat pump logic and control. This supplemental heating device and enclosure is kept separate to allow for the adjustability and adaptability of the supplemental system in any and all climates and applications.
  • The method outlined controls the ambient air in the housing around the heat pump coil by an enclosure. By utilizing this method, standalone heat pumps may be utilized in extreme cold outdoor climates, while providing the benefits of energy savings and increased appliance efficiency over the entire year on average.
  • In some embodiments, control of the dampers, heating limits, and heating elements may utilize processing techniques, such as artificial intelligence, statistical models, or other processes and/or algorithms. These high level-processing techniques can make suggestions, provide feedback, or provide other aspects. In embodiments, a master control may utilize classifiers that map an attribute vector to a confidence that the attribute belongs to a class. For instance, a master control may input attribute vector, x=(x1, x2, x3, x4, xn) mapped to f(x)=confidence (class). Such classification can employ a probabilistic and/or statistical based analysis (e.g., factoring into the analysis sensed information and heating attributes) to infer suggestions and/or desired actions. In various embodiments, a controller may utilize other directed and undirected model classification approaches including, e.g., naive Bayes, Bayesian networks, decision trees, neural networks, fuzzy logic models, and probabilistic classification models providing different patterns of independence. Classification may also include statistical regression that is utilized to develop models of priority. Further still, classification may also include data derived from another system, such as automotive systems.
  • In accordance with various aspects, some embodiments may employ classifiers that are explicitly trained (e.g., via a generic training data) as well as implicitly trained (e.g., via observing user behavior, user interaction with components, user preferences, historical information, receiving extrinsic information). For example, support vector machines may be configured via learning or training phase within a classifier constructor and feature selection module. Thus, the classifier(s) may be used to automatically learn and perform a number of functions, including but not limited to determining, according to historical data, suggestions for gain and/or sensitivity settings. This learning may be on an individual basis, i.e., based solely on a single heating system, or may apply across a set of or the entirety of heating systems. Information from the users may be aggregated and the classifier(s) may be used to automatically learn and perform a number of functions based on this aggregated information. The information may be dynamically distributed, such as through an automatic update, a notification, or any other method or means, to the entire heating system base, a subset thereof or to an individual heating system.
  • As used herein, the terms “component,” “module,” “system,” “interface,” “platform,” “service,” “framework,” “connector,” “controller,” or the like are generally intended to refer to a computer-related entity. Such terms may refer to at least one of hardware, software, or software in execution. For example, a component may include a computer-process running on a processor, a processor, a device, a process, a computer thread, or the like. In another aspect, such terms may include both an application running on a processor and a processor. Moreover, such terms may be localized to one computer and/or may be distributed across multiple computers.
  • While methods may be shown and described as a series of blocks, it is noted that associated methods or processes are not limited by the order of the blocks. It is further noted that some blocks and corresponding actions may occur in different orders or concurrently with other blocks. Moreover, different blocks or actions may be utilized to implement the methods described hereinafter. Various actions may be completed by one or more users, mechanical machines, automated assembly machines (e.g., including one or more processors or computing devices), or the like.

Claims (20)

What is claimed is:
1. A supplemental heating system for a primary heating device, the supplemental heating device comprising:
an upper enclosure housing a controller and a supplemental heating element;
at least one temperature sensor communicatively coupled to the controller;
a lower enclosure;
an inlet damper disposed on the lower enclosure;
an outlet damper disposed on the upper enclosure; and
an intermediate damper disposed between the upper enclosure and the lower enclosure,
wherein the controller operatively generates instructions to open or close at least one of the inlet damper, the outlet damper, and the intermediate damper to direct airflow based on at least one of input from the at least one temperature sensor or a state of the supplemental heating element.
2. The supplemental heating system of claim 1, wherein the at least one temperature sensor comprises an external temperature sensor disposed external to the upper enclosure and the lower enclosure to operatively measure an outdoor temperature.
3. The supplemental heating system of claim 2, wherein the at least one temperature sensor further comprises a discharge temperature sensor disposed internal to at least one of the upper enclosure or the lower enclosure, and downstream of the supplemental heating element.
4. The supplemental heating system of claim 3, wherein the controller operatively modulates a heating input of the supplemental heating element based on measurements received from the discharge temperature sensor.
5. The supplemental heating system of claim 2, wherein the controller operatively generates instructions to close the inlet damper and the outlet damper in response to the at least one temperature sensor.
6. The supplemental heating system of claim 1, wherein the at least one temperature sensor comprises a discharge temperature sensor disposed internal to at least one of the upper enclosure or the lower enclosure, and downstream of the supplemental heating element.
7. The supplemental heating system of claim 2, wherein the controller generates instructions to close the inlet damper, close the outlet damper, and open the intermediate damper in response to the external temperature sensor determining that the outdoor temperature meets or is below a threshold temperature.
8. The supplemental heating system of claim 7, wherein the controller generates instructions to close the inlet damper, close the outlet damper, and open the intermediate damper in response to the external temperature sensor determining that the outdoor temperature exceeds a threshold temperature.
9. A method of controlling a supplemental heating system for a primary heating system, the method comprising:
monitoring an outdoor temperature via a sensor;
determining whether the outdoor temperature reaches a lower limit;
in response to determining the outdoor temperature reaches a lower limit, closing an inlet damper and an outlet damper, and circulating tempered air heated by the supplemental heating system;
determining whether the outdoor temperature passes above the lower limit; and
in response to determining the outdoor temperature passes above the lower limit, opening the inlet damper and the outlet damper, and terminating heating by the supplemental heating system.
10. The method of claim 9, further comprising:
sensing, via a second temperature sensor, a temperature of the circulating tempered air heated by the supplemental heating system; and
modulating a supplemental heat source based at least in part on the sensed temperature of air supplied to the primary heat source.
11. The method of claim 10, further comprising modulating the supplemental heat source based at least in part on the sensed temperature of air supplied to the primary heat source and a temperature setting.
12. The method of claim 10, wherein the temperature setting is based on an operating capacity of the primary heating system.
13. The method of claim 10, further comprising wirelessly communicating the outdoor temperature from the sensor to a controller.
14. The method of claim 9, further comprising wirelessly communicating the temperature of the circulating tempered air from the second sensor to a controller.
15. The method of claim 9, further comprising opening an intermediary damper in response to determining the outdoor temperature reaches a lower limit.
16. The method of claim 9, further comprising closing an intermediary damper in response to determining the outdoor temperature passes above the lower limit.
17. A supplemental heating system for a primary heating device, the supplemental heating device comprising:
an enclosure that operatively encloses a primary heating device;
a supplemental heat source;
one or more dampers disposed on or within the enclosure; and
a controller and one or more temperature sensors, wherein the controller is communicatively coupled to the one or more temperature sensors to operatively control the supplemental heat source and the one or more dampers based on measurements received from the one or more temperature sensors.
18. The supplemental heating system of claim 17, wherein the controller receives input to adjust temperature limits associated with the one or more temperature sensors.
19. The supplemental heating system of claim 17, wherein the controller receives input to adjust settings associated with the supplemental heat source and stores the settings in a memory.
20. The supplemental heating system of claim 17, wherein the one or more temperature sensors comprises an external temperature sensor disposed external to the enclosure and beneath a cover that operatively shields the external temperature from ambient light.
US17/051,471 2018-05-02 2019-05-02 Supplemental heating device and method Abandoned US20210310668A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/051,471 US20210310668A1 (en) 2018-05-02 2019-05-02 Supplemental heating device and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862665787P 2018-05-02 2018-05-02
US17/051,471 US20210310668A1 (en) 2018-05-02 2019-05-02 Supplemental heating device and method
PCT/US2019/030348 WO2019213365A1 (en) 2018-05-02 2019-05-02 Supplemental heating device and method

Publications (1)

Publication Number Publication Date
US20210310668A1 true US20210310668A1 (en) 2021-10-07

Family

ID=68386801

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/051,471 Abandoned US20210310668A1 (en) 2018-05-02 2019-05-02 Supplemental heating device and method

Country Status (3)

Country Link
US (1) US20210310668A1 (en)
CA (1) CA3099028A1 (en)
WO (1) WO2019213365A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11885546B1 (en) * 2022-06-20 2024-01-30 Trane International Inc. Control process for climate control system based on outdoor humidity conditions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920827A (en) * 1997-06-27 1999-07-06 Baer; John S. Wireless weather station
US20050262923A1 (en) * 2004-05-27 2005-12-01 Lawrence Kates Method and apparatus for detecting conditions favorable for growth of fungus
US20130239601A1 (en) * 2012-03-19 2013-09-19 Luther D. Albertson Heat pump with downstream sensor for multilevel control of a supplemental heating element
US9970665B2 (en) * 2015-09-09 2018-05-15 Mitsubishi Electric Us, Inc. Hybrid heat pump system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11885546B1 (en) * 2022-06-20 2024-01-30 Trane International Inc. Control process for climate control system based on outdoor humidity conditions

Also Published As

Publication number Publication date
WO2019213365A1 (en) 2019-11-07
CA3099028A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
US10935264B2 (en) Economizer having damper modulation
US11692730B2 (en) HVAC zoning devices, systems, and methods
Okochi et al. A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems
US10001789B2 (en) Multifuncional environmental control unit
US10488071B2 (en) Packaged terminal air conditioner unit with vent door position detection
EP3805653B1 (en) Air-conditioning system
US20180100663A1 (en) Thermostat algorithms and architecture for efficient operation at low temperatures
US10655867B2 (en) System and method for operating a packaged terminal air conditioner unit
US11346568B2 (en) HVAC balancing and optimization systems
CN110307597A (en) Air conditioner indoor unit with partitioned control function, control method and air conditioning unit
CN112880030A (en) Fresh air control method and device and air conditioner
EP3686501B1 (en) Heat exchanging type ventilation system
US20210310668A1 (en) Supplemental heating device and method
KR920005536B1 (en) Air conditioner
CN117537406A (en) Fresh air conditioner and control method thereof
US11859845B1 (en) Networked HVAC system having local and networked control
CN112902305A (en) Air conditioner, control method and control system
CN207365344U (en) A kind of air channel structure of the energy saving refrigeration of cabinet
WO2022208802A1 (en) Air conditioning system
US11802703B2 (en) Automatic staging of multiple HVAC systems during a peak demand response
JPS62217043A (en) Method of controlling flow quantity
AU2005100818A4 (en) Air Control System for an Air-Conditioning Installation
CN117146344A (en) Terminal unit for conditioning indoor air
CN115406079A (en) Air conditioner, control method thereof, and computer-readable storage medium

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION