US20210308446A1 - Treating Autoimmune Diseases Using an Alternating Electric Field to Reduce the Proliferation of T-Cells - Google Patents

Treating Autoimmune Diseases Using an Alternating Electric Field to Reduce the Proliferation of T-Cells Download PDF

Info

Publication number
US20210308446A1
US20210308446A1 US17/333,509 US202117333509A US2021308446A1 US 20210308446 A1 US20210308446 A1 US 20210308446A1 US 202117333509 A US202117333509 A US 202117333509A US 2021308446 A1 US2021308446 A1 US 2021308446A1
Authority
US
United States
Prior art keywords
electrodes
electric field
alternating electric
tissue
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/333,509
Inventor
Yaniv ALON
Tali VOLOSHIN-SELA
Moshe Giladi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novocure GmbH
Original Assignee
Novocure GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novocure GmbH filed Critical Novocure GmbH
Priority to US17/333,509 priority Critical patent/US20210308446A1/en
Priority to US17/358,258 priority patent/US20210379362A1/en
Publication of US20210308446A1 publication Critical patent/US20210308446A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0456Specially adapted for transcutaneous electrical nerve stimulation [TENS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0476Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36146Control systems specified by the stimulation parameters
    • A61N1/3615Intensity
    • A61N1/3616Voltage density or current density
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36034Control systems specified by the stimulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals

Definitions

  • T cells dependent autoimmune diseases include: diabetes mellitus type I (where the immune system attacks beta cells in the pancreas); rheumatoid arthritis (where the immune system attacks the synovial membranes of joints); multiple sclerosis (where the immune system attacks the central nervous system); polymyositis (where the immune system attacks certain muscles); lupus nephritis (where the immune system attacks the glomeruli in the kidney); and Rasmussen's encephalitis (where the immune system attacks portions of the brain).
  • tumor treating fields are delivered using a wearable and portable device called Optune® made by NovocureTM.
  • One aspect of the invention is directed to a first method of preventing or minimizing damage from an autoimmune disease in a target region of a subject's body.
  • the first method comprises positioning a plurality of electrodes in or on the subject's body positioned with respect to the target region so that application of an AC voltage between the plurality of electrodes will impose an alternating electric field through tissue that is being attacked by the autoimmune disease in the target region; and applying an AC voltage between the plurality of electrodes for an interval of time, such that an alternating electric field is imposed through the tissue for the interval of time.
  • the alternating electric field has a frequency and a field strength such that when the alternating electric field is imposed in the tissue for the interval of time, the alternating electric field inhibits proliferation of T cells in the tissue to an extent that reduces damage that is caused by the autoimmune disease.
  • the plurality of electrodes is also positioned with respect to the subject's body so that the alternating electric field is imposed in at least one draining lymph node associated with the tissue that is being attacked.
  • the autoimmune disease is type 1 diabetes
  • the plurality of electrodes is positioned with respect to the subject's body so that the alternating electric field is imposed in a pancreas.
  • the plurality of electrodes is also positioned with respect to the subject's body so that the alternating electric field is imposed in at least one pancreatic draining lymph node.
  • the autoimmune disease is multiple sclerosis
  • the plurality of electrodes is positioned with respect to the subject's body so that the alternating electric field is imposed in at least one lesion in the subject's central nervous system.
  • the autoimmune disease is polymyositis
  • the plurality of electrodes is positioned with respect to the subject's body so that the alternating electric field is imposed in at least one muscle of the subject.
  • the plurality of electrodes is also positioned with respect to the subject's body so that the alternating electric field is imposed in at least one draining lymph node associated with the at least one muscle.
  • the autoimmune disease is rheumatoid arthritis
  • the plurality of electrodes is positioned with respect to the subject's body so that the alternating electric field is imposed in at least one joint of the subject.
  • the plurality of electrodes is also positioned with respect to the subject's body so that the alternating electric field is imposed in at least one draining lymph node associated with the at least one joint.
  • the autoimmune disease is Rasmussen encephalitis
  • the plurality of electrodes is positioned with respect to the subject's body so that the alternating electric field is imposed in an affected hemisphere of the subject's brain.
  • the autoimmune disease is lupus nephritis
  • the plurality of electrodes is positioned with respect to the subject's body so that the alternating electric field is imposed in at least one kidney of the subject.
  • the plurality of electrodes is also positioned with respect to the subject's body so that the alternating electric field is imposed in at least one draining lymph node associated with the at least one kidney.
  • the positioning comprises positioning a first set of electrodes in or on the subject's body and positioning a second set of electrodes in or on the subject's body.
  • the first set of electrodes is positioned with respect to the target region so that application of an AC voltage between the electrodes of the first set will impose an alternating electric field with a first orientation through the tissue that is being attacked by the autoimmune disease in the target region.
  • the second set of electrodes is positioned with respect to the target region so that application of an AC voltage between the electrodes of the second set will impose an alternating electric field with a second orientation through the tissue.
  • the first orientation and the second orientation are different.
  • the applying comprises repeating, in an alternating sequence, (a) applying a first AC voltage between the electrodes of the first set, such that an alternating electric field with the first orientation is imposed through the tissue and (b) applying a second AC voltage between the electrodes of the second set, such that an alternating electric field with the second orientation is imposed through the tissue.
  • the alternating electric field with the first orientation has a frequency and a field strength such that when the alternating electric field with the first orientation is imposed in the tissue, the alternating electric field with the first orientation inhibits proliferation of T cells in the tissue.
  • the alternating electric field with the second orientation has a frequency and a field strength such that when the alternating electric field with the second orientation is imposed in the tissue, the alternating electric field with the second orientation inhibits proliferation of T cells in the tissue.
  • the inhibited proliferation of T cells in the tissue reduces damage that is caused by the autoimmune disease.
  • the first and second sets of electrodes may also be positioned with respect to the subject's body so that the alternating electric fields with the first and second orientations are also imposed in at least one draining lymph node associated with the tissue that is being attacked.
  • the first orientation is offset from the second orientation by at least 60°.
  • Another aspect of the invention is directed to a second method of preventing or minimizing damage from an autoimmune disease in tissue that is being attacked by the autoimmune disease.
  • the second method comprises positioning a plurality of electrodes in or on a subject's body positioned with respect to at least one draining lymph node associated with the tissue that is being attacked so that application of an AC voltage between the plurality of electrodes will impose an alternating electric field through the at least one draining lymph node; and applying an AC voltage between the plurality of electrodes for an interval of time, such that an alternating electric field is imposed through the at least one draining lymph node for the interval of time.
  • the alternating electric field has a frequency and a field strength such that when the alternating electric field is imposed in the at least one draining lymph node for the interval of time, the alternating electric field inhibits proliferation of T cells in the at least one draining lymph node to an extent that reduces damage that is caused by the autoimmune disease.
  • the positioning comprises positioning a first set of electrodes in or on the subject's body and positioning a second set of electrodes in or on the subject's body.
  • the first set of electrodes is positioned with respect to the at least one draining lymph node associated with the tissue that is being attacked so that application of an AC voltage between the electrodes of the first set will impose an alternating electric field with a first orientation through the at least one draining lymph node
  • the second set of electrodes is positioned with respect to the at least one draining lymph node so that application of an AC voltage between the electrodes of the second set will impose an alternating electric field with a second orientation through the at least one draining lymph node.
  • the first orientation and the second orientation are different.
  • the applying comprises repeating, in an alternating sequence, (a) applying a first AC voltage between the electrodes of the first set, such that an alternating electric field with the first orientation is imposed through the at least one draining lymph node and (b) applying a second AC voltage between the electrodes of the second set, such that an alternating electric field with the second orientation is imposed through the at least one draining lymph node.
  • the alternating electric field with the first orientation has a frequency and a field strength such that when the alternating electric field with the first orientation is imposed in the at least one draining lymph node, the alternating electric field with the first orientation inhibits proliferation of T cells in the at least one draining lymph node.
  • the alternating electric field with the second orientation has a frequency and a field strength such that when the alternating electric field with the second orientation is imposed in the at least one draining lymph node, the alternating electric field with the second orientation inhibits proliferation of T cells in the at least one draining lymph node.
  • the inhibited proliferation of T cells in the at least one draining lymph node reduces damage that is caused by the autoimmune disease.
  • the first orientation is offset from the second orientation by at least 60°.
  • each of the plurality of electrodes is capacitively coupled to the subject's body.
  • the positioning and the applying are implemented after it has been determined that an acute phase of the autoimmune disease is starting.
  • any of the instances of the first or second methods described above further comprise treating the autoimmune disease with a therapeutically effective drug regimen.
  • the alternating electric field has a frequency of about 200 kHz.
  • the alternating electric field has a frequency between 50 and 500 kHz.
  • the alternating electric field has a field strength between 1 and 5 V/cm RMS.
  • the tissue is tumor-free.
  • FIG. 1 is a schematic representation of a system for applying alternating electric fields to tissue in a person's brain that is used to minimize damage to brain tissue caused by an autoimmune disease.
  • a system that is similar to the Optune® system for treating tumors with TTFields is used to treat an autoimmune disease instead of treating a tumor.
  • use of the Optune® system for treating glioblastoma is well-understood by persons skilled in the relevant arts, it will be described here briefly for completeness.
  • Four arrays of capacitively coupled electrodes are positioned on the subject' shaved head (e.g., one on the front, one on the back, one on the right side, and one on the left side).
  • An AC voltage generator applies an AC voltage at 200 kHz between the front/back pair of electrode arrays for one second, then applies an AC voltage at the same frequency between the right/left pair of electrode arrays for one second, and repeats this two-step sequence for the duration of the treatment.
  • This induces TTFields in the first and second orientations through the subject's brain in an alternating sequence.
  • the electrode arrays are positioned so that the first orientation and the second direction are offset by a significant amount (e.g., at least 60°, or at least 80°).
  • T cells in the body's immune system can play a very important role in combatting tumors.
  • this application explains how autoimmune diseases can be treated by using an alternating electric field (“AEF”) to inhibit the proliferation of T cells, which are key participants in the immune system's attack on a person's body. Because AEFs can inhibit the proliferation of T cells, AEFs can prevent or reduce the damage that T cells inflict on a person's body in the context of an autoimmune disease, which can slow the progression of the disease.
  • AEF alternating electric field
  • autoimmune diseases have distinct stages during which the immune system attacks tissue in a subject's body.
  • the application of the AEFs may be timed to coincide with the intervals of time during which the immune system is actively attacking the relevant tissue.
  • the electrodes are positioned to maximize the electric field in the tissue that is being attacked by the immune system. The concepts described herein are applicable to a wide variety of autoimmune diseases, including but not limited to the diseases identified individually below.
  • stage 1 diabetes the immune system damages the beta cells of the pancreas in stage 1 (where the subjects are still normal glycemic) and stage 2 (dysglycemia from loss of functional beta cell mass), so the AEFs should be applied to the relevant anatomy during those stages of the disease to slow the disease's progression. But once type 1 diabetes has progressed to stage 3, the subject's beta cells have already been damaged beyond repair, so there is no point in continuing treatment.
  • the best positioning for the electrodes is to place one pair of electrodes on the subject's body in front of and behind the pancreas and/or the pancreatic draining lymph nodes, and the second pair of electrodes on the sides of the subject's body at a height that corresponds to the pancreas and/or the pancreatic draining lymph nodes.
  • the immune system attacks myelinated axons in the central nervous system.
  • the AEFs should be applied to the relevant anatomy of subjects who have been diagnosed with secondary progressive MS, primary progressive MS, relapsing-remitting MS, or progressive relapsing MS to slow the disease's progression.
  • lesions in the CNS may be detected using MRI, and the AEFs may be imposed only in those regions where the lesions were detected.
  • the AEFs could be applied continuously to the subject's scalp as a prophylactic measure to prevent formation of brain lesions.
  • the immune system attacks a person's muscles, especially the muscles of the hips, thighs, upper arms, shoulder, neck, and the top part of the back.
  • the AEFs should be applied to the regions noted above and/or to associated draining lymph nodes to slow the disease's progression.
  • the electrodes may be positioned along strip-shaped regions that run in a proximal-to-distal direction along the body parts noted above, e.g., with one pair of electrodes positioned in front of and in back of the relevant body part, and a second pair of electrodes positioned on the right and left sides of the relevant body part.
  • RA rheumatoid arthritis
  • the immune system attacks a person's joints (e.g. knees, hips, shoulders, elbows, wrists, ankles, etc.).
  • the AEFs should be applied in subjects who have been diagnosed with polycyclic or progressive RA to the regions noted above and/or to associated draining lymph nodes to slow the disease's progression.
  • the electrodes should be positioned in the vicinity of the joints during active disease and as a prophylactic measure during remission period in polycyclic RA. Note that the electrode positioning configurations disclosed in US 2018/0001075, which is incorporated herein by reference in its entirety, may be used to apply the AEFs to certain joints (e.g. knees, elbows, and wrists).
  • the immune system attacks a single hemisphere of a person's brain.
  • This disease typically progresses through three stages: the prodromal stage, the acute stage, and the residual stage.
  • the AEFs should be applied to the affected hemisphere of the brain of subjects who had been diagnosed with the acute stage of RE to slow the progression of the disease. Once the disease has progressed to the residual stage, treatment may be discontinued.
  • the electrodes should be positioned on the subject's scalp in order to maximize the field in the affected hemisphere. Many of the approaches for determining the optimal placement of the electrodes in the context of glioblastoma may be used in the context of RE.
  • the immune system attacks a person's kidneys.
  • the best positioning for the electrodes for this disease is to place one pair of electrodes on the subject's body in front of and behind the kidneys and/or associated draining lymph nodes, and the second pair of electrodes on the sides of the subject's body at a height that corresponds to the kidneys and/or the associated draining lymph nodes.
  • the afflicted portions of the subject's body with AEFs for significant durations of time (e.g., at least 75% of the time, which comes to at least 18 hours a day).
  • autoimmune diseases including some of the diseases identified above, affect portions of the body (e.g., pancreas, kidneys, etc.) that have associated draining lymph nodes.
  • treatment of these autoimmune disease using AEFs may be accomplished by either (a) applying the AEF's to the relevant body part alone (e.g., pancreas, kidneys, etc.) (b) applying the AEF's to the associated draining lymph node or nodes alone; or (c) applying the AEFs to both the relevant body part and the associated draining lymph node or nodes.
  • lymph node or nodes are associated with the relevant body part may be based upon the literature (i.e., in situations where the association between a body part and a specific lymph node is known in medical literature) or personalized to each individual subject using imaging (e.g., CT, MRI, ultrasound, etc.).
  • imaging e.g., CT, MRI, ultrasound, etc.
  • FIG. 1 depicts an example system 20 for applying AEFs to tissue in a person's brain that is used to minimize damage to brain tissue caused by an autoimmune disease (e.g., Rasmussen encephalitis).
  • the system 20 includes an AC voltage generator 30 , a first set of electrodes 44 positioned on the right and left side of the head, and a second set of electrodes 42 positioned on the front and back of the head.
  • FIG. 1 depicts the front view of the scalp 40 , the electrodes 42 that are positioned on the back of the head are not visible in this view.
  • each of the electrodes 42 , 44 includes nine circular elements that are wired in parallel. But in alternative embodiments, a different number of elements and/or elements with different shapes may be used, depending on the anatomical location where the electrodes will be positioned for any given autoimmune disease.
  • the first set of electrodes 44 is applied to the subject's body (i.e., on the right and left sides of the head in the illustrated embodiment).
  • the first set of electrodes 44 is positioned with respect to the target region so that application of an AC voltage between the electrodes 44 will impose an alternating electric field with a first orientation (i.e., right to left in the illustrated embodiment) through tissue that is being attacked by the autoimmune disease in the target region (i.e., the brain in the illustrated embodiment).
  • the second set of electrodes 42 is also applied to the subject's body (i.e., on the front and back of the head in the illustrated embodiment).
  • the second set of electrodes is positioned with respect to the target region so that application of an AC voltage between the electrodes 42 will impose an alternating electric field with a second orientation through the tissue (i.e., front to back in the illustrated embodiment).
  • the first orientation and the second orientation are different (and are roughly perpendicular in the illustrated embodiment).
  • the AC voltage generator 30 repeats the following steps in an alternating sequence: (a) applying a first AC voltage between the electrodes of the first set 44 , such that an alternating electric field with the first orientation is imposed through the tissue and (b) applying a second AC voltage between the electrodes of the second set 42 , such that an alternating electric field with the second orientation is imposed through the tissue.
  • the alternating electric field with the first orientation has a frequency and a field strength such that when the alternating electric field with the first orientation is imposed in the tissue, the alternating electric field with the first orientation inhibits proliferation of T cells in the tissue.
  • the alternating electric field with the second orientation has a frequency and a field strength such that when the alternating electric field with the second orientation is imposed in the tissue, the alternating electric field with the second orientation inhibits proliferation of T cells in the tissue.
  • the inhibition of the proliferation of T cells in the tissue reduces damage that is caused by the autoimmune disease.
  • all the electrodes are positioned on the subject's body (as depicted in FIG. 1 ); in other embodiments, all the electrodes may be implanted in the subject's body (e.g., just beneath the subject's skin, or in the vicinity of the organ being treated); and in other embodiments, some of the electrodes are positioned on the subject's skin and the rest of the electrodes are implanted in the subject's body.
  • the same frequency that is used in the Optune® system to treat glioblastoma may also be used to treat an autoimmune disease by inhibiting the proliferation of T cells, as described above.
  • a different frequency may be used.
  • the frequency of the AEFs that are used to treat autoimmune diseases may be between 100 and 300 kHz, between 50 and 500 kHz, or between 25 kHz and 1 MHz.
  • the optimal frequency may be determined experimentally for each individual autoimmune disease. Preferably, care is taken to ensure that the AEFs at the selected frequency do not adversely heat portions of the subject's body.
  • the field strength of the AEFs may be between 0.2 and 1 V/cm RMS, between 1 and 5 V/cm RMS, or between 5 and 25 V/cm RMS.
  • the optimal field strength may be determined experimentally for each individual autoimmune disease.
  • care is preferably taken to ensure that the AEFs at the field strength that is being used do not adversely heat portions of the subject's body.
  • the orientation of the AEFs may be switched at one second intervals between two different orientations by applying AC voltages between two different sets of electrodes, as done in the Optune® system. But in alternative embodiments, the orientation of the AEFs can be switched at a faster rate (e.g., at intervals between 1 and 1000 ms) or at a slower rate (e.g., at intervals between 1 and 100 seconds). In other alternative embodiments, the electrodes need not be arranged in pairs. See, for example, the electrode positioning described in U.S. Pat. No. 7,565,205, which is incorporated herein by reference. In other alternative embodiments, the orientation of the field need not be switched at all, in which case only a single pair of electrodes is required.
  • the electrodes are capacitively coupled to the subject's body (e.g., by using electrodes that include a conductive plate and also have a dielectric layer disposed between the conductive plate and the subject's body). But in alternative embodiments, the dielectric layer may be omitted, in which case the conductive plates would make direct contact with the subject's body.
  • thermal sensors may be included at the electrodes, and the AC voltage generator 30 can be configured to decrease the amplitude of the AC voltages that are applied to the electrodes if the sensed temperature at the electrodes gets too high.
  • one or more additional pairs of electrodes may be added and included in the sequence.
  • the field is only imposed in the target region with a single orientation, in which case the alternating sequence described above may be replaced with a continuous AC signal that is applied to a single set of electrodes (e.g., positioned on opposite sides of the target region).
  • FIG. 1 depicts an embodiment in which the AEFs are applied to the brain, the AEFs may be applied to different portions of a subject's body as described above in alternative embodiments.
  • the AEFs may be used to treat an autoimmune disease in tissue (e.g., the brain of a first person with RE) that is tumor free.
  • the AEFs may be used to treat an autoimmune disease in tissue that contains a tumor (e.g., the brain of a different person with both RE and a glioblastoma).
  • AEF-based autoimmune therapy may optionally be combined with conventional drugs that are used to treat the respective disease.

Abstract

Damage from autoimmune diseases can be prevented or minimized by positioning a plurality of electrodes in or on a subject's body, and applying an AC voltage between the plurality of electrodes so as to impose an alternating electric field through the tissue that is being attacked by the autoimmune disease and/or draining lymph nodes associated with that tissue. The frequency and field strength of the alternating electric field are selected such that the alternating electric field inhibits proliferation of T cells in the tissue to an extent that reduces damage that is caused by the autoimmune disease.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 16/560,134, filed Sep. 4, 2019, which claims the benefit of U.S. Provisional Application 62/728,174 filed Sep. 7, 2018, each of which is incorporated herein by reference in its entirety.
  • BACKGROUND
  • In autoimmune diseases, a person's own immune system mistakenly attacks specific portions of the person's body. Examples of T cells dependent autoimmune diseases include: diabetes mellitus type I (where the immune system attacks beta cells in the pancreas); rheumatoid arthritis (where the immune system attacks the synovial membranes of joints); multiple sclerosis (where the immune system attacks the central nervous system); polymyositis (where the immune system attacks certain muscles); lupus nephritis (where the immune system attacks the glomeruli in the kidney); and Rasmussen's encephalitis (where the immune system attacks portions of the brain).
  • In a separate field, it has been established that tumors (e.g., glioblastoma) can be treated by applying a 200 kHz alternating electric field to the tumor. This is described in U.S. Pat. Nos. 7,016,725 and 7,565,205, each of which is incorporated herein by reference in its entirety. And in the context of treating tumors, these alternating electric fields are referred to as “tumor treating fields” or “TTFields.” TTFields are delivered using a wearable and portable device called Optune® made by Novocure™.
  • SUMMARY OF THE INVENTION
  • One aspect of the invention is directed to a first method of preventing or minimizing damage from an autoimmune disease in a target region of a subject's body. The first method comprises positioning a plurality of electrodes in or on the subject's body positioned with respect to the target region so that application of an AC voltage between the plurality of electrodes will impose an alternating electric field through tissue that is being attacked by the autoimmune disease in the target region; and applying an AC voltage between the plurality of electrodes for an interval of time, such that an alternating electric field is imposed through the tissue for the interval of time. The alternating electric field has a frequency and a field strength such that when the alternating electric field is imposed in the tissue for the interval of time, the alternating electric field inhibits proliferation of T cells in the tissue to an extent that reduces damage that is caused by the autoimmune disease.
  • In some instances of the first method, the plurality of electrodes is also positioned with respect to the subject's body so that the alternating electric field is imposed in at least one draining lymph node associated with the tissue that is being attacked.
  • In some instances of the first method, the autoimmune disease is type 1 diabetes, and the plurality of electrodes is positioned with respect to the subject's body so that the alternating electric field is imposed in a pancreas. In some of these instances, the plurality of electrodes is also positioned with respect to the subject's body so that the alternating electric field is imposed in at least one pancreatic draining lymph node.
  • In some instances of the first method, the autoimmune disease is multiple sclerosis, and the plurality of electrodes is positioned with respect to the subject's body so that the alternating electric field is imposed in at least one lesion in the subject's central nervous system.
  • In some instances of the first method, the autoimmune disease is polymyositis, and the plurality of electrodes is positioned with respect to the subject's body so that the alternating electric field is imposed in at least one muscle of the subject. In some of these instances, the plurality of electrodes is also positioned with respect to the subject's body so that the alternating electric field is imposed in at least one draining lymph node associated with the at least one muscle.
  • In some instances of the first method, the autoimmune disease is rheumatoid arthritis, and the plurality of electrodes is positioned with respect to the subject's body so that the alternating electric field is imposed in at least one joint of the subject. In some of these instances, the plurality of electrodes is also positioned with respect to the subject's body so that the alternating electric field is imposed in at least one draining lymph node associated with the at least one joint.
  • In some instances of the first method, the autoimmune disease is Rasmussen encephalitis, and the plurality of electrodes is positioned with respect to the subject's body so that the alternating electric field is imposed in an affected hemisphere of the subject's brain.
  • In some instances of the first method, the autoimmune disease is lupus nephritis, and the plurality of electrodes is positioned with respect to the subject's body so that the alternating electric field is imposed in at least one kidney of the subject. In some of these instances, the plurality of electrodes is also positioned with respect to the subject's body so that the alternating electric field is imposed in at least one draining lymph node associated with the at least one kidney.
  • In some instances of the first method, the positioning comprises positioning a first set of electrodes in or on the subject's body and positioning a second set of electrodes in or on the subject's body. The first set of electrodes is positioned with respect to the target region so that application of an AC voltage between the electrodes of the first set will impose an alternating electric field with a first orientation through the tissue that is being attacked by the autoimmune disease in the target region. The second set of electrodes is positioned with respect to the target region so that application of an AC voltage between the electrodes of the second set will impose an alternating electric field with a second orientation through the tissue. The first orientation and the second orientation are different. The applying comprises repeating, in an alternating sequence, (a) applying a first AC voltage between the electrodes of the first set, such that an alternating electric field with the first orientation is imposed through the tissue and (b) applying a second AC voltage between the electrodes of the second set, such that an alternating electric field with the second orientation is imposed through the tissue. The alternating electric field with the first orientation has a frequency and a field strength such that when the alternating electric field with the first orientation is imposed in the tissue, the alternating electric field with the first orientation inhibits proliferation of T cells in the tissue. The alternating electric field with the second orientation has a frequency and a field strength such that when the alternating electric field with the second orientation is imposed in the tissue, the alternating electric field with the second orientation inhibits proliferation of T cells in the tissue. The inhibited proliferation of T cells in the tissue reduces damage that is caused by the autoimmune disease.
  • Optionally, in the instances of the first method described in the previous paragraph, the first and second sets of electrodes may also be positioned with respect to the subject's body so that the alternating electric fields with the first and second orientations are also imposed in at least one draining lymph node associated with the tissue that is being attacked. Optionally, in the instances of the first method described in the previous paragraph, the first orientation is offset from the second orientation by at least 60°.
  • Another aspect of the invention is directed to a second method of preventing or minimizing damage from an autoimmune disease in tissue that is being attacked by the autoimmune disease. The second method comprises positioning a plurality of electrodes in or on a subject's body positioned with respect to at least one draining lymph node associated with the tissue that is being attacked so that application of an AC voltage between the plurality of electrodes will impose an alternating electric field through the at least one draining lymph node; and applying an AC voltage between the plurality of electrodes for an interval of time, such that an alternating electric field is imposed through the at least one draining lymph node for the interval of time. The alternating electric field has a frequency and a field strength such that when the alternating electric field is imposed in the at least one draining lymph node for the interval of time, the alternating electric field inhibits proliferation of T cells in the at least one draining lymph node to an extent that reduces damage that is caused by the autoimmune disease.
  • In some instances of the second method, the positioning comprises positioning a first set of electrodes in or on the subject's body and positioning a second set of electrodes in or on the subject's body. The first set of electrodes is positioned with respect to the at least one draining lymph node associated with the tissue that is being attacked so that application of an AC voltage between the electrodes of the first set will impose an alternating electric field with a first orientation through the at least one draining lymph node, and the second set of electrodes is positioned with respect to the at least one draining lymph node so that application of an AC voltage between the electrodes of the second set will impose an alternating electric field with a second orientation through the at least one draining lymph node. The first orientation and the second orientation are different. The applying comprises repeating, in an alternating sequence, (a) applying a first AC voltage between the electrodes of the first set, such that an alternating electric field with the first orientation is imposed through the at least one draining lymph node and (b) applying a second AC voltage between the electrodes of the second set, such that an alternating electric field with the second orientation is imposed through the at least one draining lymph node. The alternating electric field with the first orientation has a frequency and a field strength such that when the alternating electric field with the first orientation is imposed in the at least one draining lymph node, the alternating electric field with the first orientation inhibits proliferation of T cells in the at least one draining lymph node. The alternating electric field with the second orientation has a frequency and a field strength such that when the alternating electric field with the second orientation is imposed in the at least one draining lymph node, the alternating electric field with the second orientation inhibits proliferation of T cells in the at least one draining lymph node. The inhibited proliferation of T cells in the at least one draining lymph node reduces damage that is caused by the autoimmune disease.
  • Optionally, in the instances of the second method described in the previous paragraph, the first orientation is offset from the second orientation by at least 60°.
  • Optionally, in any of the instances of the first or second methods described above, each of the plurality of electrodes is capacitively coupled to the subject's body. Optionally, in any of the instances of the first or second methods described above, the positioning and the applying are implemented after it has been determined that an acute phase of the autoimmune disease is starting.
  • Optionally, any of the instances of the first or second methods described above further comprise treating the autoimmune disease with a therapeutically effective drug regimen.
  • Optionally, in any of the instances of the first or second methods described above, the alternating electric field has a frequency of about 200 kHz. Optionally, in any of the instances of the first or second methods described above, the alternating electric field has a frequency between 50 and 500 kHz. Optionally, in any of the instances of the first or second methods described above, the alternating electric field has a field strength between 1 and 5 V/cm RMS. Optionally, in any of the instances of the first or second methods described above, the tissue is tumor-free.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic representation of a system for applying alternating electric fields to tissue in a person's brain that is used to minimize damage to brain tissue caused by an autoimmune disease.
  • Various embodiments are described in detail below with reference to the accompanying drawings, wherein like reference numerals represent like elements.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the embodiments described below, a system that is similar to the Optune® system for treating tumors with TTFields is used to treat an autoimmune disease instead of treating a tumor. Although use of the Optune® system for treating glioblastoma is well-understood by persons skilled in the relevant arts, it will be described here briefly for completeness. Four arrays of capacitively coupled electrodes (also called “transducer arrays”) are positioned on the subject' shaved head (e.g., one on the front, one on the back, one on the right side, and one on the left side). An AC voltage generator applies an AC voltage at 200 kHz between the front/back pair of electrode arrays for one second, then applies an AC voltage at the same frequency between the right/left pair of electrode arrays for one second, and repeats this two-step sequence for the duration of the treatment. This induces TTFields in the first and second orientations through the subject's brain in an alternating sequence. The electrode arrays are positioned so that the first orientation and the second direction are offset by a significant amount (e.g., at least 60°, or at least 80°).
  • T cells in the body's immune system can play a very important role in combatting tumors. In view of this, studies were done to ascertain whether TTFields might interfere with the operation of T cells. One such study concluded that “As the presence of polyfunctional T cells is associated with effective anti-tumoral responses, a single-cell level polyfunctionality analysis of activated T cells was performed. The analysis demonstrated that under TTFields conditions non proliferating cells retained all other combinations of immune functions. TTFields were found to have a minor effect on the viability of un-activated T cells. In activated cells, there was a moderate effect on cells that did not attempt to proliferate, but TTFields substantially reduced the viability rate of cells that had proliferated. These findings were true for both helper and cytotoxic T cells.” Evaluating the In-Vitro Effects of Tumor Treating Fields on T Cell Responses, G. Diamant et al., Proceedings of the AACR, Volume 58, Abstract #617, April 2017.
  • In the context of treating tumors, because fewer T cells will be available to attack the tumor cells, reducing the proliferation of T cells is a drawback. But in the context of treating an autoimmune disease, this very same drawback is advantageously transformed into a benefit. More specifically, this application explains how autoimmune diseases can be treated by using an alternating electric field (“AEF”) to inhibit the proliferation of T cells, which are key participants in the immune system's attack on a person's body. Because AEFs can inhibit the proliferation of T cells, AEFs can prevent or reduce the damage that T cells inflict on a person's body in the context of an autoimmune disease, which can slow the progression of the disease.
  • Furthermore, many autoimmune diseases have distinct stages during which the immune system attacks tissue in a subject's body. For these autoimmune diseases, the application of the AEFs may be timed to coincide with the intervals of time during which the immune system is actively attacking the relevant tissue. In many preferred embodiments, the electrodes are positioned to maximize the electric field in the tissue that is being attacked by the immune system. The concepts described herein are applicable to a wide variety of autoimmune diseases, including but not limited to the diseases identified individually below.
  • In type 1 diabetes, the immune system damages the beta cells of the pancreas in stage 1 (where the subjects are still normal glycemic) and stage 2 (dysglycemia from loss of functional beta cell mass), so the AEFs should be applied to the relevant anatomy during those stages of the disease to slow the disease's progression. But once type 1 diabetes has progressed to stage 3, the subject's beta cells have already been damaged beyond repair, so there is no point in continuing treatment. Because the immune system is attacking the pancreas, the best positioning for the electrodes is to place one pair of electrodes on the subject's body in front of and behind the pancreas and/or the pancreatic draining lymph nodes, and the second pair of electrodes on the sides of the subject's body at a height that corresponds to the pancreas and/or the pancreatic draining lymph nodes.
  • In multiple sclerosis (MS), the immune system attacks myelinated axons in the central nervous system. With this disease, the AEFs should be applied to the relevant anatomy of subjects who have been diagnosed with secondary progressive MS, primary progressive MS, relapsing-remitting MS, or progressive relapsing MS to slow the disease's progression. As for positioning of the electrodes, because it may be impractical to apply AEFs to the entire central nervous system, lesions in the CNS may be detected using MRI, and the AEFs may be imposed only in those regions where the lesions were detected. Alternatively, the AEFs could be applied continuously to the subject's scalp as a prophylactic measure to prevent formation of brain lesions.
  • In polymyositis (PM), the immune system attacks a person's muscles, especially the muscles of the hips, thighs, upper arms, shoulder, neck, and the top part of the back. With this disease, the AEFs should be applied to the regions noted above and/or to associated draining lymph nodes to slow the disease's progression. For this disease, the electrodes may be positioned along strip-shaped regions that run in a proximal-to-distal direction along the body parts noted above, e.g., with one pair of electrodes positioned in front of and in back of the relevant body part, and a second pair of electrodes positioned on the right and left sides of the relevant body part.
  • In rheumatoid arthritis (RA), the immune system attacks a person's joints (e.g. knees, hips, shoulders, elbows, wrists, ankles, etc.). With this disease, the AEFs should be applied in subjects who have been diagnosed with polycyclic or progressive RA to the regions noted above and/or to associated draining lymph nodes to slow the disease's progression. The electrodes should be positioned in the vicinity of the joints during active disease and as a prophylactic measure during remission period in polycyclic RA. Note that the electrode positioning configurations disclosed in US 2018/0001075, which is incorporated herein by reference in its entirety, may be used to apply the AEFs to certain joints (e.g. knees, elbows, and wrists).
  • In Rasmussen encephalitis (RE), the immune system attacks a single hemisphere of a person's brain. This disease typically progresses through three stages: the prodromal stage, the acute stage, and the residual stage. With this disease, the AEFs should be applied to the affected hemisphere of the brain of subjects who had been diagnosed with the acute stage of RE to slow the progression of the disease. Once the disease has progressed to the residual stage, treatment may be discontinued. The electrodes should be positioned on the subject's scalp in order to maximize the field in the affected hemisphere. Many of the approaches for determining the optimal placement of the electrodes in the context of glioblastoma may be used in the context of RE.
  • In lupus nephritis the immune system attacks a person's kidneys. The best positioning for the electrodes for this disease is to place one pair of electrodes on the subject's body in front of and behind the kidneys and/or associated draining lymph nodes, and the second pair of electrodes on the sides of the subject's body at a height that corresponds to the kidneys and/or the associated draining lymph nodes.
  • For any of the diseases described above, it is preferable to treat the afflicted portions of the subject's body with AEFs for significant durations of time (e.g., at least 75% of the time, which comes to at least 18 hours a day).
  • Many autoimmune diseases, including some of the diseases identified above, affect portions of the body (e.g., pancreas, kidneys, etc.) that have associated draining lymph nodes. As most T cell proliferation takes place in the draining lymph nodes, treatment of these autoimmune disease using AEFs may be accomplished by either (a) applying the AEF's to the relevant body part alone (e.g., pancreas, kidneys, etc.) (b) applying the AEF's to the associated draining lymph node or nodes alone; or (c) applying the AEFs to both the relevant body part and the associated draining lymph node or nodes. The decision as to which lymph node or nodes are associated with the relevant body part may be based upon the literature (i.e., in situations where the association between a body part and a specific lymph node is known in medical literature) or personalized to each individual subject using imaging (e.g., CT, MRI, ultrasound, etc.).
  • FIG. 1 depicts an example system 20 for applying AEFs to tissue in a person's brain that is used to minimize damage to brain tissue caused by an autoimmune disease (e.g., Rasmussen encephalitis). The system 20 includes an AC voltage generator 30, a first set of electrodes 44 positioned on the right and left side of the head, and a second set of electrodes 42 positioned on the front and back of the head. (Because FIG. 1 depicts the front view of the scalp 40, the electrodes 42 that are positioned on the back of the head are not visible in this view.) In the illustrated embodiment, each of the electrodes 42, 44 includes nine circular elements that are wired in parallel. But in alternative embodiments, a different number of elements and/or elements with different shapes may be used, depending on the anatomical location where the electrodes will be positioned for any given autoimmune disease.
  • To use this system, the first set of electrodes 44 is applied to the subject's body (i.e., on the right and left sides of the head in the illustrated embodiment). The first set of electrodes 44 is positioned with respect to the target region so that application of an AC voltage between the electrodes 44 will impose an alternating electric field with a first orientation (i.e., right to left in the illustrated embodiment) through tissue that is being attacked by the autoimmune disease in the target region (i.e., the brain in the illustrated embodiment). The second set of electrodes 42 is also applied to the subject's body (i.e., on the front and back of the head in the illustrated embodiment). The second set of electrodes is positioned with respect to the target region so that application of an AC voltage between the electrodes 42 will impose an alternating electric field with a second orientation through the tissue (i.e., front to back in the illustrated embodiment). The first orientation and the second orientation are different (and are roughly perpendicular in the illustrated embodiment).
  • After the first and second set of electrodes 42, 44 have been applied to the subject's body, the AC voltage generator 30 repeats the following steps in an alternating sequence: (a) applying a first AC voltage between the electrodes of the first set 44, such that an alternating electric field with the first orientation is imposed through the tissue and (b) applying a second AC voltage between the electrodes of the second set 42, such that an alternating electric field with the second orientation is imposed through the tissue. The alternating electric field with the first orientation has a frequency and a field strength such that when the alternating electric field with the first orientation is imposed in the tissue, the alternating electric field with the first orientation inhibits proliferation of T cells in the tissue. And the alternating electric field with the second orientation has a frequency and a field strength such that when the alternating electric field with the second orientation is imposed in the tissue, the alternating electric field with the second orientation inhibits proliferation of T cells in the tissue. The inhibition of the proliferation of T cells in the tissue reduces damage that is caused by the autoimmune disease.
  • In some embodiments, all the electrodes are positioned on the subject's body (as depicted in FIG. 1); in other embodiments, all the electrodes may be implanted in the subject's body (e.g., just beneath the subject's skin, or in the vicinity of the organ being treated); and in other embodiments, some of the electrodes are positioned on the subject's skin and the rest of the electrodes are implanted in the subject's body.
  • The same frequency that is used in the Optune® system to treat glioblastoma (i.e., 200 kHz) may also be used to treat an autoimmune disease by inhibiting the proliferation of T cells, as described above. But in alternative embodiments, a different frequency may be used. For example, the frequency of the AEFs that are used to treat autoimmune diseases may be between 100 and 300 kHz, between 50 and 500 kHz, or between 25 kHz and 1 MHz. The optimal frequency may be determined experimentally for each individual autoimmune disease. Preferably, care is taken to ensure that the AEFs at the selected frequency do not adversely heat portions of the subject's body.
  • The field strength of the AEFs may be between 0.2 and 1 V/cm RMS, between 1 and 5 V/cm RMS, or between 5 and 25 V/cm RMS. The optimal field strength may be determined experimentally for each individual autoimmune disease. Here again, care is preferably taken to ensure that the AEFs at the field strength that is being used do not adversely heat portions of the subject's body.
  • The orientation of the AEFs may be switched at one second intervals between two different orientations by applying AC voltages between two different sets of electrodes, as done in the Optune® system. But in alternative embodiments, the orientation of the AEFs can be switched at a faster rate (e.g., at intervals between 1 and 1000 ms) or at a slower rate (e.g., at intervals between 1 and 100 seconds). In other alternative embodiments, the electrodes need not be arranged in pairs. See, for example, the electrode positioning described in U.S. Pat. No. 7,565,205, which is incorporated herein by reference. In other alternative embodiments, the orientation of the field need not be switched at all, in which case only a single pair of electrodes is required.
  • In some embodiments, the electrodes are capacitively coupled to the subject's body (e.g., by using electrodes that include a conductive plate and also have a dielectric layer disposed between the conductive plate and the subject's body). But in alternative embodiments, the dielectric layer may be omitted, in which case the conductive plates would make direct contact with the subject's body.
  • Optionally, thermal sensors (not shown) may be included at the electrodes, and the AC voltage generator 30 can be configured to decrease the amplitude of the AC voltages that are applied to the electrodes if the sensed temperature at the electrodes gets too high.
  • In some embodiments, one or more additional pairs of electrodes may be added and included in the sequence. In other embodiments, the field is only imposed in the target region with a single orientation, in which case the alternating sequence described above may be replaced with a continuous AC signal that is applied to a single set of electrodes (e.g., positioned on opposite sides of the target region).
  • Note that while FIG. 1 depicts an embodiment in which the AEFs are applied to the brain, the AEFs may be applied to different portions of a subject's body as described above in alternative embodiments.
  • The AEFs may be used to treat an autoimmune disease in tissue (e.g., the brain of a first person with RE) that is tumor free. Alternatively, the AEFs may be used to treat an autoimmune disease in tissue that contains a tumor (e.g., the brain of a different person with both RE and a glioblastoma).
  • Finally, AEF-based autoimmune therapy may optionally be combined with conventional drugs that are used to treat the respective disease.
  • While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.

Claims (2)

1. A method of preventing or minimizing damage from an autoimmune disease in a target region of a subject's body, the method comprising:
positioning a plurality of electrodes in or on the subject's body, positioned with respect to the target region so that application of an AC voltage between the plurality of electrodes will impose an alternating electric field through tissue that is being attacked by the autoimmune disease in the target region; and
applying an AC voltage between the plurality of electrodes for an interval of time, such that an alternating electric field is imposed through the tissue for the interval of time,
wherein the alternating electric field has a frequency and a field strength such that when the alternating electric field is imposed in the tissue for the interval of time, the alternating electric field inhibits proliferation of T cells in the tissue to an extent that reduces damage that is caused by the autoimmune disease.
2.-21. (canceled)
US17/333,509 2018-09-07 2021-05-28 Treating Autoimmune Diseases Using an Alternating Electric Field to Reduce the Proliferation of T-Cells Abandoned US20210308446A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/333,509 US20210308446A1 (en) 2018-09-07 2021-05-28 Treating Autoimmune Diseases Using an Alternating Electric Field to Reduce the Proliferation of T-Cells
US17/358,258 US20210379362A1 (en) 2018-09-07 2021-06-25 Treating Autoinflammatory and Mitochondrial Diseases Using an Alternating Electric Field

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862728174P 2018-09-07 2018-09-07
US16/560,134 US11020585B2 (en) 2018-09-07 2019-09-04 Treating autoimmune diseases using an alternating electric field to reduce the proliferation of t-cells
US17/333,509 US20210308446A1 (en) 2018-09-07 2021-05-28 Treating Autoimmune Diseases Using an Alternating Electric Field to Reduce the Proliferation of T-Cells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/560,134 Continuation US11020585B2 (en) 2018-09-07 2019-09-04 Treating autoimmune diseases using an alternating electric field to reduce the proliferation of t-cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/358,258 Continuation-In-Part US20210379362A1 (en) 2018-09-07 2021-06-25 Treating Autoinflammatory and Mitochondrial Diseases Using an Alternating Electric Field

Publications (1)

Publication Number Publication Date
US20210308446A1 true US20210308446A1 (en) 2021-10-07

Family

ID=68165646

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/560,134 Active 2039-12-04 US11020585B2 (en) 2018-09-07 2019-09-04 Treating autoimmune diseases using an alternating electric field to reduce the proliferation of t-cells
US17/333,509 Abandoned US20210308446A1 (en) 2018-09-07 2021-05-28 Treating Autoimmune Diseases Using an Alternating Electric Field to Reduce the Proliferation of T-Cells

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/560,134 Active 2039-12-04 US11020585B2 (en) 2018-09-07 2019-09-04 Treating autoimmune diseases using an alternating electric field to reduce the proliferation of t-cells

Country Status (5)

Country Link
US (2) US11020585B2 (en)
EP (1) EP3846894A1 (en)
JP (1) JP2022501098A (en)
CN (1) CN112770806A (en)
WO (1) WO2020049482A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11577076B2 (en) 2019-04-17 2023-02-14 Novocure Gmbh Uploading data from an isolated system without compromising isolation
US11865355B2 (en) 2018-10-15 2024-01-09 Novocure Gmbh Generating tumor treating fields (TTFields) with high uniformity throughout the brain
US11872391B2 (en) 2018-11-29 2024-01-16 Novocure Gmbh Enhanced-flexibility transducer arrays for delivering TTFields (tumor treating fields)
US11915424B2 (en) 2019-01-08 2024-02-27 Novocure Gmbh Evaluating quality of segmentation of an image into different types of tissue for planning treatment using tumor treating fields (TTFields)
US11964146B2 (en) 2016-06-30 2024-04-23 Novocure Gmbh Arrays for longitudinal delivery of TTFields to a body

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10779875B2 (en) 2013-05-06 2020-09-22 Novocure Gmbh Optimizing treatment using TTfields by changing the frequency during the course of long term tumor treatment
US10188851B2 (en) 2015-10-28 2019-01-29 Novocure Limited TTField treatment with optimization of electrode positions on the head based on MRI-based conductivity measurements
US10821283B2 (en) 2016-04-04 2020-11-03 Novocure Gmbh Reducing motility of cancer cells using tumor treating fields (TTFields)
CN110178029B (en) 2017-01-19 2021-11-16 诺沃库勒有限责任公司 System for observing cell cultures under a microscope while applying TTfields
WO2020012364A1 (en) 2018-07-10 2020-01-16 Novocure Gmbh Inhibiting viral infection using alternating electric fields
WO2020049482A1 (en) 2018-09-07 2020-03-12 Yaniv Alon Treating autoimmune diseases using an alternating electric field to reduce the proliferation of t-cells
CN112955208A (en) 2018-10-25 2021-06-11 吉夫·波姆桑 Delivering an alternating electric field to a subject's spinal anatomy (e.g., TTFIELDS)
EP4019080A1 (en) 2018-11-19 2022-06-29 Novocure GmbH Arrays for delivering tumor treating fields (ttfields) with selectively addressable sub-elements
EP3974022B1 (en) 2019-02-26 2024-04-17 Novocure GmbH Determining a frequency for ttfields treatment based on a physical parameter of targeted cancer cells
CN113453638A (en) 2019-02-27 2021-09-28 诺沃库勒有限责任公司 Delivering tumor therapy fields (TTfields) using an implantable transducer array
EP3988099B1 (en) 2019-03-29 2023-06-07 Novocure GmbH Methods for restoring sensitivity to ttfields in ttfields-resistant cancer cells with ptger3 inhibitors
WO2021019403A1 (en) 2019-07-31 2021-02-04 Yoram Wasserman Applying tumor treating fields (ttfields) via electrodes embedded into skull implants
CN114364433A (en) 2019-08-30 2022-04-15 诺沃库勒有限责任公司 Cervical delivery of tumor therapy fields (TTfields)
EP4054701A1 (en) 2019-12-31 2022-09-14 Novocure GmbH Arrays for delivering tumor treating fields (ttfields) with individually accessible electrode elements and temperature sensors
CN114901347A (en) 2019-12-31 2022-08-12 诺沃库勒有限责任公司 High voltage, high efficiency sine wave generator to prevent spikes during amplitude adjustment and channel switching
WO2021255523A1 (en) * 2020-06-19 2021-12-23 Novocure Gmbh Ttf generated proliferation of cytotoxic t cells to create a specific pro-inflammatory response
US11818943B2 (en) 2020-06-25 2023-11-14 Novocure Gmbh Fabricating organic light emitting diodes (OLEDs) using tubulin
CA3178883A1 (en) 2020-06-30 2022-01-06 Novocure Gmbh Flexible transducer arrays with a polymer insulating layer for applying tumor treating fields (ttfields)
US11877838B2 (en) * 2021-08-14 2024-01-23 Nano Hesgarsazan Salamat Arya Preventing cytokine storm in COVID-19 patients by suppressing clonal expansion in activated lymphocytes using alternating electric fields

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050075701A1 (en) * 2003-10-01 2005-04-07 Medtronic, Inc. Device and method for attenuating an immune response
US20090247934A1 (en) * 2008-03-31 2009-10-01 Tracey Kevin J Methods and systems for reducing inflammation by neuromodulation of t-cell activity
US7917227B2 (en) * 2005-10-03 2011-03-29 Standen Ltd. Optimizing characteristics of an electric field to increase the field's effect on proliferating cells
US20160038753A1 (en) * 2014-08-11 2016-02-11 Minnesota Medical Physics Llc Methods and apparatus for treatment of chronic kidney disease
US20180001075A1 (en) * 2016-06-30 2018-01-04 Novocure Limited Arrays for Longitudinal Delivery of TTFields to a Body

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1416466A (en) 2000-02-17 2003-05-07 约朗姆·帕尔蒂 Method and appts. for destroying dividing cells
US7565206B2 (en) * 2000-02-17 2009-07-21 Standen Ltd. Treating a tumor or the like with electric fields at different orientations
US8447395B2 (en) 2000-02-17 2013-05-21 Novocure Ltd Treating bacteria with electric fields
US8175698B2 (en) 2000-02-17 2012-05-08 Novocure Ltd. Treating bacteria with electric fields
US7016725B2 (en) 2001-11-06 2006-03-21 Standen Ltd. Method and apparatus for destroying dividing cells
US7146210B2 (en) 2000-02-17 2006-12-05 Standen Ltd. Apparatus and method for optimizing tumor treatment efficiency by electric fields
US7089054B2 (en) 2002-10-02 2006-08-08 Standen Ltd. Apparatus and method for treating a tumor or the like
US7136699B2 (en) 2002-10-02 2006-11-14 Standen, Ltd. Apparatus for destroying dividing cells
US6868289B2 (en) 2002-10-02 2005-03-15 Standen Ltd. Apparatus for treating a tumor or the like and articles incorporating the apparatus for treatment of the tumor
US7599746B2 (en) 2000-02-17 2009-10-06 Standen Ltd Apparatus and method for preventing the spread of cancerous metastases and for elimination of metastases
CA2563817C (en) * 2004-04-23 2018-07-10 Yoram Palti Treating a tumor or the like with electric fields at different frequencies
EP2364748B1 (en) 2004-12-07 2018-01-24 Novocure Limited Electrodes for applying an electric field in-vivo over an extended period of time
CN1824341A (en) 2004-12-17 2006-08-30 株式会社白寿生科学研究所 Methods and apparatus of treating disorders with electric fields
US8019414B2 (en) 2006-04-05 2011-09-13 Novocure Ltd. Treating cancer using electromagnetic fields in combination with other treatment regimens
US8465533B2 (en) 2007-03-06 2013-06-18 Novocure Limited Treating cancer using electromagnetic fields in combination with photodynamic therapy
CA2696352C (en) 2007-08-14 2017-03-21 Novocure Limited Treating parasites with electric fields
US8715203B2 (en) 2007-09-17 2014-05-06 Novocure Limited Composite electrode
US9655669B2 (en) 2013-05-06 2017-05-23 Novocure Limited Optimizing treatment using TTFields by changing the frequency during the course of long term tumor treatment
US10779875B2 (en) 2013-05-06 2020-09-22 Novocure Gmbh Optimizing treatment using TTfields by changing the frequency during the course of long term tumor treatment
PT3166636T (en) * 2014-07-08 2021-06-29 Sanford Burnham Med Res Inst Psgl-1 modulators and uses thereof
US9910453B2 (en) 2015-09-25 2018-03-06 Novocure Limited High voltage, high efficiency sine wave generator with pre-set frequency and adjustable amplitude
US10188851B2 (en) 2015-10-28 2019-01-29 Novocure Limited TTField treatment with optimization of electrode positions on the head based on MRI-based conductivity measurements
US10821283B2 (en) 2016-04-04 2020-11-03 Novocure Gmbh Reducing motility of cancer cells using tumor treating fields (TTFields)
CA2972699A1 (en) 2016-07-10 2018-01-10 Novocure Limited Synchronizing tumor cells to the g2/m phase using ttfields combined with taxane or other anti-microtubule agents
CN109562258B (en) 2016-08-18 2023-07-18 诺沃库勒有限责任公司 Temperature measurement in an array for delivering tumor treatment electric fields
US20180154142A1 (en) * 2016-12-05 2018-06-07 Old Dominion University Research Foundation Methods and devices for treatment of tumors with nano-pulse stimulation
BR112019012033A2 (en) 2016-12-13 2020-03-03 Novocure Gmbh TREATMENT OF PATIENTS WITH TTFIELDS WITH ELECTRODE POSITIONS OPTIMIZED WITH THE USE OF DEFORMABLE GABBARITES
CN110178029B (en) 2017-01-19 2021-11-16 诺沃库勒有限责任公司 System for observing cell cultures under a microscope while applying TTfields
CN112566665A (en) 2018-04-09 2021-03-26 莫舍·吉拉迪 Treatment of tumors with TTfields and Aurora kinase inhibitors
PL3775956T3 (en) 2018-04-10 2022-10-10 Novocure Gmbh Low frequency (< 1 mhz) ac conductivity estimates derived from two mri images having different repetition times
KR102592927B1 (en) 2018-07-03 2023-10-20 에드윈 창 Use of alternating electric fields to improve cell membrane permeability
US11179322B2 (en) 2018-07-10 2021-11-23 Novocure Gmbh Methods and compositions for treating tumors with TTFields and sorafenib
WO2020012364A1 (en) 2018-07-10 2020-01-16 Novocure Gmbh Inhibiting viral infection using alternating electric fields
SG11202012567PA (en) 2018-07-18 2021-01-28 Novocure Gmbh Using power loss density and related measures to quantify the dose of tumor treating fields (ttfields)
PL3773291T3 (en) 2018-08-23 2022-01-31 Novocure Gmbh Using alternating electric fields to increase permeability of the blood brain barrier
US11160977B2 (en) 2018-09-04 2021-11-02 Novocure Gmbh Delivering tumor treating fields (TTFields) to the infratentorial brain
WO2020049482A1 (en) 2018-09-07 2020-03-12 Yaniv Alon Treating autoimmune diseases using an alternating electric field to reduce the proliferation of t-cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050075701A1 (en) * 2003-10-01 2005-04-07 Medtronic, Inc. Device and method for attenuating an immune response
US7917227B2 (en) * 2005-10-03 2011-03-29 Standen Ltd. Optimizing characteristics of an electric field to increase the field's effect on proliferating cells
US20090247934A1 (en) * 2008-03-31 2009-10-01 Tracey Kevin J Methods and systems for reducing inflammation by neuromodulation of t-cell activity
US20160038753A1 (en) * 2014-08-11 2016-02-11 Minnesota Medical Physics Llc Methods and apparatus for treatment of chronic kidney disease
US20180001075A1 (en) * 2016-06-30 2018-01-04 Novocure Limited Arrays for Longitudinal Delivery of TTFields to a Body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11964146B2 (en) 2016-06-30 2024-04-23 Novocure Gmbh Arrays for longitudinal delivery of TTFields to a body
US11865355B2 (en) 2018-10-15 2024-01-09 Novocure Gmbh Generating tumor treating fields (TTFields) with high uniformity throughout the brain
US11872391B2 (en) 2018-11-29 2024-01-16 Novocure Gmbh Enhanced-flexibility transducer arrays for delivering TTFields (tumor treating fields)
US11915424B2 (en) 2019-01-08 2024-02-27 Novocure Gmbh Evaluating quality of segmentation of an image into different types of tissue for planning treatment using tumor treating fields (TTFields)
US11577076B2 (en) 2019-04-17 2023-02-14 Novocure Gmbh Uploading data from an isolated system without compromising isolation

Also Published As

Publication number Publication date
US20200078582A1 (en) 2020-03-12
EP3846894A1 (en) 2021-07-14
US11020585B2 (en) 2021-06-01
WO2020049482A1 (en) 2020-03-12
CN112770806A (en) 2021-05-07
JP2022501098A (en) 2022-01-06

Similar Documents

Publication Publication Date Title
US11020585B2 (en) Treating autoimmune diseases using an alternating electric field to reduce the proliferation of t-cells
Kutch et al. Altered resting state neuromotor connectivity in men with chronic prostatitis/chronic pelvic pain syndrome: A MAPP: Research Network Neuroimaging Study
Belhaj-Saïf et al. Plasticity in the distribution of the red nucleus output to forearm muscles after unilateral lesions of the pyramidal tract
Stinear et al. Disinhibition in the human motor cortex is enhanced by synchronous upper limb movements
Yeğin et al. The effect of therapeutic ultrasound on pain and physical function in patients with knee osteoarthritis
Rodríguez-Fernández et al. Effects of burst-type transcutaneous electrical nerve stimulation on cervical range of motion and latent myofascial trigger point pain sensitivity
He et al. Improvement in acupoint selection for acupuncture of nerves surrounding the injury site: electro-acupuncture with Governor vessel with local meridian acupoints
US20210379362A1 (en) Treating Autoinflammatory and Mitochondrial Diseases Using an Alternating Electric Field
Finnerup et al. Sensory perception in complete spinal cord injury
Wytra̦żek et al. Changes in muscle activity determine progression of clinical symptoms in patients with chronic spine-related muscle pain. A complex clinical and neurophysiological approach
Sukhani et al. Infragluteal-parabiceps sciatic nerve block: an evaluation of a novel approach using a single-injection technique
Lin et al. Low and high frequency electroacupuncture at Hoku elicits a distinct mechanism to activate sympathetic nervous system in anesthetized rats
Chen et al. Effects of coupling inhibitory and facilitatory repetitive transcranial magnetic stimulation on motor recovery in patients following acute cerebral infarction
Paolucci et al. Integration of focal vibration and intra-articular oxygen–ozone therapy in rehabilitation of painful knee osteoarthritis
Huang et al. Rapid improvement in neck disability, mobility, and sleep quality with chronic neck pain treated by Fu’s subcutaneous needling: a randomized control study
Ito et al. Use of electrical or magnetic stimulation for generating hip flexion torque
Gorgey et al. Effects of dose de‐escalation following testosterone treatment and evoked resistance exercise on body composition, metabolic profile, and neuromuscular parameters in persons with spinal cord injury
Okada et al. Influence of the intensity of galvanic vestibular stimulation and cutaneous stimulation on the soleus H-reflex in healthy individuals
Eftekharsadat et al. Extracorporeal shockwave therapy and physiotherapy in patients with moderate knee osteoarthritis.
TW202216235A (en) Treating autoinflammatory and mitochondrial diseases using an alternating electric field
Powell et al. Dose-response relationship of transcutaneous spinal direct current stimulation in healthy humans: A proof of concept study
de Paula et al. Comparative study between ischemic compression and dry needling in myofascial pain syndrome: possibilities in health
Tanaka et al. Preventive effects of kilohertz frequency electrical stimulation on sepsis-induced muscle atrophy
Assim et al. Effect of ultrasound cavitation versus radiofrequency on abdominal fat thickness in postnatal women.
Greene et al. Multifocal Noninvasive Magnetic Stimulation of the Primary Motor Cortex in Type 1 Myotonic Dystrophy–A Proof of Concept Pilot Study

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION