US20210293104A1 - Annular Pressure Reduction System for Horizontal Directional Drilling - Google Patents

Annular Pressure Reduction System for Horizontal Directional Drilling Download PDF

Info

Publication number
US20210293104A1
US20210293104A1 US17/341,040 US202117341040A US2021293104A1 US 20210293104 A1 US20210293104 A1 US 20210293104A1 US 202117341040 A US202117341040 A US 202117341040A US 2021293104 A1 US2021293104 A1 US 2021293104A1
Authority
US
United States
Prior art keywords
arcuate path
drill pipe
underground arcuate
casing
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/341,040
Inventor
Ronald G. Halderman
Pablo Esteban Guerra
Karl D. Quackenbush
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanta Associates LP
Original Assignee
Quanta Associates LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanta Associates LP filed Critical Quanta Associates LP
Priority to US17/341,040 priority Critical patent/US20210293104A1/en
Publication of US20210293104A1 publication Critical patent/US20210293104A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/08Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/01Arrangements for handling drilling fluids or cuttings outside the borehole, e.g. mud boxes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/046Directional drilling horizontal drilling

Definitions

  • Horizontal Directional Drilling (referred to as “HDD” below) is a sophisticated technique used to install utilities, such as natural gas pipe lines, electric and many other infrastructural needs under ground level. This technique is steadily becoming more popular in the underground construction industry, in most cases the HDD method has proven over time to be the most cost effective solution in allowing normal every day operations to continue in the construction area surroundings.
  • Drilling mud is a primary ingredient needed in performing HDD crossings, compiled of manufactured clays mined from the earth. Mud properties are responsible for many stages of a successful HDD project. These responsibilities range from steering the down hole tooling, to cooling the tooling, even powering down hole equipment.
  • a vital characteristic of mud used during the drilling process is its ability to carry spoils to surface making clearance for the drilling equipment advancing forward with pipe and tooling underground to varying depths and distances.
  • Mud operation in a HDD project can be considered a closed circuit configuration. Mud is pumped down hole through the drill string where it exits through various orifices in the down hole drill tooling. It then returns to surface carrying soils and/or cuttings. Once on surface the cuttings saturated mud is pumped to a recycling system where the cuttings are separated from the drilling mud and the clean mud is sent back to the mud pump for reuse.
  • Horizontal drilling productivity and efficiency is directly related to maintaining constant and continuous drilling fluid or mud “returns” along the bored path back to the entry point at the surface.
  • a frac-out can be costly due to work stoppage for cleanup, can cause safety concerns, and can severely affect environmentally sensitive areas.
  • rotating control device is inclusive of rotating blowout preventers or RBOPs, rotating control heads, and other devices to enclose or close an underground arcuate path, to seal to drill pipe (the drill pipe to be optionally turned and axially moved), and to control annular pressure within the space encircling the drill pipe.
  • FIG. 1 depicts a top view of an exemplary embodiment of a mud recovery system using a rotating blowout preventer and Venturi device.
  • FIG. 2 depicts a top view of an exemplary embodiment of a mud recovery system using a rotating blowout preventer and Venturi device.
  • FIG. 3 depicts a schematic elevation view of an exemplary embodiment horizontal directional drilling path or underground arcuate path.
  • FIG. 1 an exemplary embodiment of a mud recovery system or apparatus 10 using a rotating control device 1 , such as a blowout preventer (“RBOP”) 2 , and venturi device 3 is depicted.
  • An aspirator/ejector 4 may be connected to the venturi device 3 .
  • a horizontal drilling rig or drill rig 16 loads and advances drill pipe 44 by turning and pushing into ground or rock formation or earth 50 at a planned degree of angle through a casing 42 at entry or entrance A.
  • the casing 42 adjoins the ground, rock formation or earth 50 .
  • An RBOP 2 is used to close, seal or cap the casing, while still allowing rotation of the drill pipe.
  • a mud pump or drill pump 22 sends drill mud at a calculated pressure and flow through the mud line 6 towards the drill rig 16 . Mud then travels through the interior of the drill pipe 44 exiting the down hole tooling such as a drill bit 48 (not shown in FIG. 1 ).
  • the surrounding formation 50 is broken down suspending itself in the drilling mud.
  • the flow continues to travel to the area between the exterior of the drill pipe 44 and the interior of the bore 56 (shown in FIG. 3 ) upward to surface carrying the soils and/or cuttings within the drill mud.
  • the Venturi device 3 is connected to the rotating control device 1 , and a venturi mud line pump 24 pumps through the venturi mud line or venturi flow line 14 .
  • the trash pump or dirty mud line pump 26 pumps dirty mud from the pit 18 through the dirty mud line 8 to the mud cleaning unit 30 .
  • the mud cleaning unit 30 may be a continuous cleaning system which may utilize a plurality of screens or filters and may include a plurality of centrifuges which clean or separate soils and/or cuttings from the mud.
  • the cleaned mud leaves the mud cleaning unit 30 through the clean mud line 12 to the pumping unit 20 .
  • the mud pump 22 pumps the muds through the mud line 6 downhole.
  • the pumping unit 20 may include the mud pump 22 and the venturi mud line pump 24 , or the mud pump 22 and the venturi mud line pump 24 may be separate units.
  • the mud recovery system or apparatus 10 comprises and/or contains, but is not limited to, an apparatus for working an underground arcuate path or horizontal directional drilling path 40 (shown in FIG. 3 ) around at least a portion of an obstacle 51 , such as, by way of example only, a body of water, highway, railroad track, etc. (shown in FIG. 3 ) comprising a casing 42 extending into at least a lead portion 41 of the underground arcuate path 40 (shown in FIG.
  • the figure shows the venturi mud line pump 24 connected to the venturi mudline or venturi flow line 14 .
  • the trash pump or dirty mud line pump 26 pumps mud from the pit or entry pit 18 through the dirty mud line 8 .
  • the trash pump or dirty mud line pump 26 , the venturi mud line pump 24 , and the mud pump or drill pump 22 (shown in FIG. 1 ) can be commercially available from a suitable supplier and may be separate or combined.
  • a diffuser ( 28 ), such as a steel diffuser, may be connected to the venturi device 3 .
  • the Venturi device 3 may be connected to a lateral port 5 for said rotating control device 1 at a position external to the drill pipe.
  • FIGS. 1 and/or 2 as a reference, but not limited to the exemplary embodiments depicted in FIGS. 1 and/or 2 , the following describes a method for working an underground arcuate path 40 around an obstacle 51 (shown in FIG. 3 ), comprising the steps of: lowering an annular pressure within a space encircling a drill pipe; wherein said step of lowering the annular pressure within the space encircling the drill pipe is performed by sucking a volume of drilling fluid out of the space encircling the drill pipe.
  • FIGS. 1 and/or 2 depict an apparatus for working an underground arcuate path 40 (shown in FIG. 3 ) around at least a portion of an obstacle 51 (shown in FIG. 3 ) comprising a casing 42 extending into at least a lead portion 41 of the underground arcuate path 40 (shown in FIG. 3 ), a rotating control device 1 , such as an RBOP 2 , connected to the casing 42 , and a Venturi device 3 connected to said rotating control device 1 .
  • a rotating control device 1 such as an RBOP 2
  • FIG. 3 a schematic elevation view of an exemplary embodiment horizontal directional drilling path or underground arcuate path 40 is shown.
  • the schematic shows a casing 42 with the drill pipe 44 connected to downhole tooling or drill bit 48 located a height h from the surface of the ground or rock formation 50 as the drill bit 48 creates a bore 56 .
  • the system and/or apparatus and/or method for working an underground arcuate path around at least a portion of an obstacle as disclosed allows for a lower P 1 and P 2 , which eliminates or mitigates chances of a frac-outs by reducing the annular pressure such that the pressure the soil or ground or rock formation or earth 50 can withstand is not exceeded.

Abstract

Working an underground arcuate path around at least a portion of an obstacle with a casing extending into the underground arcuate path, connecting a rotating control device to the casing; and a Venturi device connected to the rotating control device.

Description

    TECHNICAL FIELD
  • Horizontal Directional Drilling (referred to as “HDD” below) is a sophisticated technique used to install utilities, such as natural gas pipe lines, electric and many other infrastructural needs under ground level. This technique is steadily becoming more popular in the underground construction industry, in most cases the HDD method has proven over time to be the most cost effective solution in allowing normal every day operations to continue in the construction area surroundings.
  • BACKGROUND
  • Drilling mud is a primary ingredient needed in performing HDD crossings, compiled of manufactured clays mined from the earth. Mud properties are responsible for many stages of a successful HDD project. These responsibilities range from steering the down hole tooling, to cooling the tooling, even powering down hole equipment. A vital characteristic of mud used during the drilling process is its ability to carry spoils to surface making clearance for the drilling equipment advancing forward with pipe and tooling underground to varying depths and distances.
  • Mud operation in a HDD project can be considered a closed circuit configuration. Mud is pumped down hole through the drill string where it exits through various orifices in the down hole drill tooling. It then returns to surface carrying soils and/or cuttings. Once on surface the cuttings saturated mud is pumped to a recycling system where the cuttings are separated from the drilling mud and the clean mud is sent back to the mud pump for reuse.
  • Horizontal drilling productivity and efficiency is directly related to maintaining constant and continuous drilling fluid or mud “returns” along the bored path back to the entry point at the surface. An event commonly referred to as a “frac-out”, also known as an inadvertent return, occurs when excessive drilling pressure results in drilling mud escaping from the borehole and propagating toward the surface (e.g. the ground fractures and fluid escapes or propagates toward the surface). A frac-out can be costly due to work stoppage for cleanup, can cause safety concerns, and can severely affect environmentally sensitive areas.
  • A need therefore exists for apparatuses and methods for eliminating or substantially reducing these all too frequent frac-outs or inadvertent returns.
  • SUMMARY
  • Working an underground arcuate path around at least a portion of an obstacle with a casing extending into the underground arcuate path, connecting a rotating control device to the casing; and a Venturi device connected to the rotating control device.
  • As used herein the phrase “rotating control device” is inclusive of rotating blowout preventers or RBOPs, rotating control heads, and other devices to enclose or close an underground arcuate path, to seal to drill pipe (the drill pipe to be optionally turned and axially moved), and to control annular pressure within the space encircling the drill pipe.
  • BRIEF DESCRIPTION OF THE FIGURES OF THE DRAWINGS
  • The exemplary embodiments may be better understood, and numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawings. These drawings are used to illustrate only exemplary embodiments, and are not to be considered limiting of its scope, for the disclosure may admit to other equally effective exemplary embodiments. The figures are not necessarily to scale and certain features and certain views of the figures may be shown exaggerated in scale or in schematic in the interest of clarity and conciseness.
  • FIG. 1 depicts a top view of an exemplary embodiment of a mud recovery system using a rotating blowout preventer and Venturi device.
  • FIG. 2 depicts a top view of an exemplary embodiment of a mud recovery system using a rotating blowout preventer and Venturi device.
  • FIG. 3 depicts a schematic elevation view of an exemplary embodiment horizontal directional drilling path or underground arcuate path.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENT(S)
  • The description that follows includes exemplary apparatus, methods, techniques, and instruction sequences that embody techniques of the inventive subject matter. However, it is understood that the described embodiments may be practiced without these specific details.
  • With reference to FIG. 1, an exemplary embodiment of a mud recovery system or apparatus 10 using a rotating control device 1, such as a blowout preventer (“RBOP”) 2, and venturi device 3 is depicted. An aspirator/ejector 4 may be connected to the venturi device 3. A horizontal drilling rig or drill rig 16 loads and advances drill pipe 44 by turning and pushing into ground or rock formation or earth 50 at a planned degree of angle through a casing 42 at entry or entrance A. The casing 42 adjoins the ground, rock formation or earth 50. An RBOP 2 is used to close, seal or cap the casing, while still allowing rotation of the drill pipe. A mud pump or drill pump 22 sends drill mud at a calculated pressure and flow through the mud line 6 towards the drill rig 16. Mud then travels through the interior of the drill pipe 44 exiting the down hole tooling such as a drill bit 48 (not shown in FIG. 1).
  • When mud has exited the down hole tooling (not shown in FIG. 1) at high velocity and drill pipe 44 continues to advance, the surrounding formation 50 is broken down suspending itself in the drilling mud. The flow continues to travel to the area between the exterior of the drill pipe 44 and the interior of the bore 56 (shown in FIG. 3) upward to surface carrying the soils and/or cuttings within the drill mud. The Venturi device 3 is connected to the rotating control device 1, and a venturi mud line pump 24 pumps through the venturi mud line or venturi flow line 14.
  • Frac-outs or inadvertent returns occur when the annular pressure limits is/are exceeded (relative to the surroundings). When the annular pressure is exceeded, the muds or fluids will follow a less resistant, unintended path often to surface or along a natural path to some other unintended location. In order to reduce the annular pressure, and thus eliminate or mitigate the chances of a frac-out, the mud recovery system 10 uses an RBOP 2 and a Venturi device 3 to take advantage of Bernoulli's principle in pulling, lifting, or sucking or pumping out the muds traveling upward to the surface through the area between the exterior of the drill pipe 44 and the interior of the bore hole 56 (shown in FIG. 3) at entry A (also shown in FIG. 3).
  • The trash pump or dirty mud line pump 26 pumps dirty mud from the pit 18 through the dirty mud line 8 to the mud cleaning unit 30. The mud cleaning unit 30 may be a continuous cleaning system which may utilize a plurality of screens or filters and may include a plurality of centrifuges which clean or separate soils and/or cuttings from the mud. The cleaned mud leaves the mud cleaning unit 30 through the clean mud line 12 to the pumping unit 20. The mud pump 22 pumps the muds through the mud line 6 downhole. The pumping unit 20 may include the mud pump 22 and the venturi mud line pump 24, or the mud pump 22 and the venturi mud line pump 24 may be separate units.
  • Referring to FIG. 2, a top view of an exemplary embodiment of a mud recovery system or apparatus 10 using a RBOP 2 and Venturi device 3 is shown. The mud recovery system or apparatus 10 comprises and/or contains, but is not limited to, an apparatus for working an underground arcuate path or horizontal directional drilling path 40 (shown in FIG. 3) around at least a portion of an obstacle 51, such as, by way of example only, a body of water, highway, railroad track, etc. (shown in FIG. 3) comprising a casing 42 extending into at least a lead portion 41 of the underground arcuate path 40 (shown in FIG. 3), a rotating control device 1, such as an RBOP 2, connected to the casing 42, and a venturi device 3 connected to said rotating control device 1. The figure shows the venturi mud line pump 24 connected to the venturi mudline or venturi flow line 14. The trash pump or dirty mud line pump 26 pumps mud from the pit or entry pit 18 through the dirty mud line 8. The trash pump or dirty mud line pump 26, the venturi mud line pump 24, and the mud pump or drill pump 22 (shown in FIG. 1) can be commercially available from a suitable supplier and may be separate or combined. A diffuser (28), such as a steel diffuser, may be connected to the venturi device 3. The Venturi device 3 may be connected to a lateral port 5 for said rotating control device 1 at a position external to the drill pipe.
  • Using FIGS. 1 and/or 2 as a reference, but not limited to the exemplary embodiments depicted in FIGS. 1 and/or 2, the following describes a method for working an underground arcuate path 40 around an obstacle 51 (shown in FIG. 3), comprising the steps of: lowering an annular pressure within a space encircling a drill pipe; wherein said step of lowering the annular pressure within the space encircling the drill pipe is performed by sucking a volume of drilling fluid out of the space encircling the drill pipe.
  • Using FIGS. 1 and/or 2 as a reference, but not limited to the exemplary embodiments depicted in FIGS. 1 and/or 2, the figures depict an apparatus for working an underground arcuate path 40 (shown in FIG. 3) around at least a portion of an obstacle 51 (shown in FIG. 3) comprising a casing 42 extending into at least a lead portion 41 of the underground arcuate path 40 (shown in FIG. 3), a rotating control device 1, such as an RBOP 2, connected to the casing 42, and a Venturi device 3 connected to said rotating control device 1.
  • Referring to FIG. 3, a schematic elevation view of an exemplary embodiment horizontal directional drilling path or underground arcuate path 40 is shown. There is an entrance or entry A of the arcuate path 40 and a planned exit point B along the ground or rock formation 50, and which the arcuate path 40 may be worked around at least a portion of an obstacle 51. The schematic shows a casing 42 with the drill pipe 44 connected to downhole tooling or drill bit 48 located a height h from the surface of the ground or rock formation 50 as the drill bit 48 creates a bore 56. The pressure, P1, at point 52, also known as the space encircling 52 the drill pipe 44, of the bore, is lower as compared to the pressure, P2, at point 54, also known as the space encircling 54 the drill pipe 44, when the drill bit 48 has progressed to a deeper height further down the path 40. The system and/or apparatus and/or method for working an underground arcuate path around at least a portion of an obstacle as disclosed allows for a lower P1 and P2, which eliminates or mitigates chances of a frac-outs by reducing the annular pressure such that the pressure the soil or ground or rock formation or earth 50 can withstand is not exceeded.
  • While the embodiments are described with reference to various implementations and exploitations, it will be understood that these embodiments are illustrative and that the scope of the inventive subject matter is not limited to them. Many variations, modifications, additions and improvements are possible.
  • Plural instances may be provided for components, operations or structures described herein as a single instance. In general, structures and functionality presented as separate components in the exemplary configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements may fall within the scope of the inventive subject matter.

Claims (7)

1. A method for working an underground arcuate path around an obstacle, comprising the steps of:
lowering an annular pressure within a space encircling a drill pipe; wherein said step of lowering the annular pressure within the space encircling the drill pipe is performed by sucking a volume of drilling fluid out of the space encircling the drill pipe.
2. The method for working the underground arcuate path around the obstacle according to claim 1, further comprising the steps of:
extending a casing into at least a lead portion of the underground arcuate path wherein the underground arcuate path is surrounded by a volume of earth and adjoining the casing into the earth of the underground arcuate path;
placing a Venturi device proximate an opening to the underground arcuate path;
working the underground arcuate path;
pumping the volume of drilling fluid into the underground arcuate path for transferring the volume of drilling fluid from the underground arcuate path to a surface;
wherein said steps of lowering the annular pressure within the space encircling the drill pipe by sucking the volume of drilling fluid out of the space encircling the drill pipe comprises pumping a volume of fluid through said Venturi device; and
recovering the volume of drilling fluid at the surface.
3. The method for working the underground arcuate path around the obstacle according to claim 2, further comprising the step(s) of:
closing the casing;
together with closing the casing, sealing to the drill pipe whilst optionally turning and axially moving the drill pipe; and
together with closing the casing, controlling the annular pressure within the space encircling the drill pipe.
4. The method for working the underground arcuate path around the obstacle according to claim 3, further comprising the step(s) of:
wherein said steps of lowering the annular pressure within the space encircling the drill pipe by sucking the volume of drilling fluid out of the space encircling the drill pipe, closing the casing, sealing to the drill pipe whilst optionally turning and axially moving the drill pipe, and controlling the annular pressure within the space encircling the drill pipe, comprises connecting a rotating control device to the casing and to said Venturi device.
5. The method for working the underground arcuate path around the obstacle according to claim 4, further comprising the step(s) of forming an entry pit at the surface proximate the casing and said rotating control device.
6. The method for working the underground arcuate path around the obstacle according to claim 5, wherein the rotating control device is a rotating blowout preventer.
7. The method for working the underground arcuate path around the obstacle according to claim 6, further comprising the step of cleaning the volume of drilling fluid after the step of recovering the volume of drilling fluid at the surface.
US17/341,040 2017-11-22 2021-06-07 Annular Pressure Reduction System for Horizontal Directional Drilling Abandoned US20210293104A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/341,040 US20210293104A1 (en) 2017-11-22 2021-06-07 Annular Pressure Reduction System for Horizontal Directional Drilling

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762589853P 2017-11-22 2017-11-22
US16/198,451 US11035185B2 (en) 2017-11-22 2018-11-21 Annular pressure reduction system for horizontal directional drilling
US17/341,040 US20210293104A1 (en) 2017-11-22 2021-06-07 Annular Pressure Reduction System for Horizontal Directional Drilling

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/198,451 Division US11035185B2 (en) 2017-11-22 2018-11-21 Annular pressure reduction system for horizontal directional drilling

Publications (1)

Publication Number Publication Date
US20210293104A1 true US20210293104A1 (en) 2021-09-23

Family

ID=66533855

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/198,451 Active 2039-04-06 US11035185B2 (en) 2017-11-22 2018-11-21 Annular pressure reduction system for horizontal directional drilling
US17/341,040 Abandoned US20210293104A1 (en) 2017-11-22 2021-06-07 Annular Pressure Reduction System for Horizontal Directional Drilling

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/198,451 Active 2039-04-06 US11035185B2 (en) 2017-11-22 2018-11-21 Annular pressure reduction system for horizontal directional drilling

Country Status (4)

Country Link
US (2) US11035185B2 (en)
AU (1) AU2018373161A1 (en)
CA (1) CA3083175A1 (en)
WO (1) WO2019104212A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566473B2 (en) 2018-05-29 2023-01-31 Quanta Associates, L.P. Horizontal directional reaming
CN113202479B (en) * 2021-06-07 2023-03-10 中国铁建重工集团股份有限公司 Shaft heading machine and mud circulation system thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7395877B2 (en) * 1999-02-25 2008-07-08 Weatherford/Lamb, Inc. Apparatus and method to reduce fluid pressure in a wellbore
US20110036638A1 (en) * 2007-10-23 2011-02-17 Weatherford/Lamb, Inc. Interlocking Low Profile Rotating Control Device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003440A (en) * 1974-09-17 1977-01-18 Tidril Corporation Apparatus and process for drilling underground arcuate paths utilizing directional drill and following liner
US4117895A (en) * 1977-03-30 1978-10-03 Smith International, Inc. Apparatus and method for enlarging underground arcuate bore holes
US4221503A (en) 1977-12-15 1980-09-09 Cherrington Martin D Drilling method and apparatus for large diameter pipe
FR2655684B1 (en) 1989-12-11 1995-09-22 Elf Aquitaine PROCESS FOR CLEANING A SUBTERRANEAN WELL AND DEVICE FOR CARRYING OUT SUCH A PROCESS.
US5176211A (en) * 1991-09-16 1993-01-05 Baker Energy Resources Corporation Apparatus and method for recirculating mud when drilling under an obstacle
US5269384A (en) * 1991-11-08 1993-12-14 Cherrington Corporation Method and apparatus for cleaning a bore hole
US5375669A (en) * 1993-02-12 1994-12-27 Cherrington Corporation Method and apparatus for cleaning a borehole
CA2499760C (en) * 2002-08-21 2010-02-02 Presssol Ltd. Reverse circulation directional and horizontal drilling using concentric coil tubing
US7836973B2 (en) * 2005-10-20 2010-11-23 Weatherford/Lamb, Inc. Annulus pressure control drilling systems and methods
US8794352B2 (en) 2010-07-28 2014-08-05 Quanta Associates, L.P. Drilling fluid recovery when drilling under an obstacle or water body
US9482078B2 (en) 2012-06-25 2016-11-01 Zeitecs B.V. Diffuser for cable suspended dewatering pumping system
EP2912258A2 (en) 2012-09-12 2015-09-02 Weatherford Technology Holdings, LLC Tachometer for a rotating control device
US10047562B1 (en) * 2017-10-10 2018-08-14 Martin Cherrington Horizontal directional drilling tool with return flow and method of using same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7395877B2 (en) * 1999-02-25 2008-07-08 Weatherford/Lamb, Inc. Apparatus and method to reduce fluid pressure in a wellbore
US20110036638A1 (en) * 2007-10-23 2011-02-17 Weatherford/Lamb, Inc. Interlocking Low Profile Rotating Control Device

Also Published As

Publication number Publication date
US11035185B2 (en) 2021-06-15
CA3083175A1 (en) 2019-05-31
US20190153783A1 (en) 2019-05-23
AU2018373161A1 (en) 2020-06-04
WO2019104212A1 (en) 2019-05-31

Similar Documents

Publication Publication Date Title
US8931578B2 (en) Robotic tunneling system
CA2967933C (en) Subsea slanted wellhead system and bop system with dual injector head units
US20210293104A1 (en) Annular Pressure Reduction System for Horizontal Directional Drilling
US10697272B2 (en) Well cleanout system
BRPI0611197A2 (en) Apparatus and method for directing an open-ended conductive tube into the ground and well bottom assembly
US20190368307A1 (en) Cementing casing in a large diameter mud drilled well
EA034536B1 (en) Method of intensification of production from oil, gas and condensate wells by means of hydromonitor radial overbalance formation penetration
CN104563936A (en) Coiled tubing drilling polishing horizontal section cement plug downhole tool combination and technology
EP2964873B1 (en) Wireline assisted coiled tubing portion and method for operation of such a coiled tubing portion
US8925652B2 (en) Lateral well drilling apparatus and method
KR20160022534A (en) Drillpipe rotating device for seabed drilling systme
US10337249B2 (en) Drilling wells with air
KR20160022535A (en) Seabed drilling systme
US20220282576A1 (en) Apparatus and method for removing soil from a conduit
Alimdjanovna Drilling of gas and oil pipelines and its modern methods

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION