US20210292218A1 - Tempered glass and glass to be tempered - Google Patents
Tempered glass and glass to be tempered Download PDFInfo
- Publication number
- US20210292218A1 US20210292218A1 US17/260,337 US201917260337A US2021292218A1 US 20210292218 A1 US20210292218 A1 US 20210292218A1 US 201917260337 A US201917260337 A US 201917260337A US 2021292218 A1 US2021292218 A1 US 2021292218A1
- Authority
- US
- United States
- Prior art keywords
- less
- glass
- tempered glass
- tempered
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005341 toughened glass Substances 0.000 title claims abstract description 92
- 239000011521 glass Substances 0.000 title claims abstract description 91
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910011255 B2O3 Inorganic materials 0.000 claims abstract description 30
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052593 corundum Inorganic materials 0.000 claims abstract description 29
- 229910001845 yogo sapphire Inorganic materials 0.000 claims abstract description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 229910052681 coesite Inorganic materials 0.000 claims abstract description 13
- 229910052906 cristobalite Inorganic materials 0.000 claims abstract description 13
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 13
- 229910052682 stishovite Inorganic materials 0.000 claims abstract description 13
- 229910052905 tridymite Inorganic materials 0.000 claims abstract description 13
- 238000005452 bending Methods 0.000 claims description 49
- 238000005342 ion exchange Methods 0.000 claims description 40
- 238000000137 annealing Methods 0.000 claims description 14
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 12
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 238000000034 method Methods 0.000 description 23
- 238000012545 processing Methods 0.000 description 23
- 238000004031 devitrification Methods 0.000 description 18
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 16
- 230000001965 increasing effect Effects 0.000 description 14
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 13
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 13
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 12
- 239000006060 molten glass Substances 0.000 description 9
- 238000007500 overflow downdraw method Methods 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 6
- 239000006059 cover glass Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000005357 flat glass Substances 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- GOLCXWYRSKYTSP-UHFFFAOYSA-N Arsenious Acid Chemical compound O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- NOTVAPJNGZMVSD-UHFFFAOYSA-N potassium monoxide Inorganic materials [K]O[K] NOTVAPJNGZMVSD-UHFFFAOYSA-N 0.000 description 3
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 229910000314 transition metal oxide Inorganic materials 0.000 description 3
- 238000007088 Archimedes method Methods 0.000 description 2
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000006025 fining agent Substances 0.000 description 2
- 239000006066 glass batch Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000006063 cullet Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000003280 down draw process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium oxide Inorganic materials [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Inorganic materials O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B23/00—Re-forming shaped glass
- C03B23/02—Re-forming glass sheets
- C03B23/023—Re-forming glass sheets by bending
- C03B23/03—Re-forming glass sheets by bending by press-bending between shaping moulds
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
- C03C21/002—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B23/00—Re-forming shaped glass
- C03B23/02—Re-forming glass sheets
- C03B23/023—Re-forming glass sheets by bending
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
Definitions
- the present invention relates to a tempered glass and a glass to be tempered, and more particularly, to a tempered glass and a glass to be tempered which are suitable for, for example, a cover glass for a mobile phone, exterior parts for a mobile PC and the like, and window glasses for an automobile, a train, a ship, and the like.
- tempered glass A glass subjected to tempering treatment, such as ion exchange treatment
- cover glasses for such mobile phones.
- the tempered glass is high in mechanical strength as compared to an untempered glass, and hence is suitable for this application (see Patent Literature 1 and Non Patent Literature 1).
- tempered glasses each having a bent portion are necessary in some of the applications (e.g., exterior parts for a mobile PC and the like).
- the tempered glass having a bent portion may be produced by, for example, forming molten glass to obtain a glass to be tempered in a flat sheet shape, and then subjecting the glass to be tempered to thermal bending processing to form a bent portion, followed by ion exchange treatment (see Patent Literatures 2 and 3).
- a tempered glass having a curved portion is used as a window glass for an automobile (see Non Patent Literatures 2 and 3).
- the tempered glass having a curved portion may be produced by, for example, forming molten glass to obtain a glass to be tempered in a flat sheet shape, and then subjecting the glass to be tempered to thermal bending processing to form a curved portion, followed by ion exchange treatment.
- a compressive stress layer is formed in the surface of the tempered glass.
- the mechanical strength of the tempered glass can be increased by increasing the compressive stress value and depth of layer of the compressive stress layer.
- the present invention has been made in view of the above-mentioned circumstances, and a technical object of the present invention is to provide a tempered glass and a glass to be tempered which can achieve all of ion exchange performance, bending processability, and devitrification resistance.
- a tempered glass comprising as a glass composition, in terms of mass %, 59% to 75% of SiO 2 , 12% to 16.5% of Al 2 O 3 , 4% to 13% of B 2 O 3 , 7% to 13% of Na 2 O, and 0.1% to less than 3% of MgO.
- the contents of Al 2 O 3 , B 2 O 3 , Na 2 O, and MgO are restricted to 12 mass % or more, 13 mass % or less, 7 mass % or more, and less than 3 mass %, respectively. With this, ion exchange performance can be improved.
- the contents of SiO 2 , Al 2 O 3 , B 2 O 3 , Na 2 O, and MgO are restricted to 75 mass % or less, 16.5 mass % or less, 4 mass % or more, 7 mass % or more, and 0.1 mass % or more, respectively. With this, bending processability can be improved.
- the contents of Al 2 O 3 , B 2 O 3 , Na 2 O, and MgO are restricted to 16.5 mass % or less, 4 mass % or more, 13 mass % or more, and less than 3 mass %, respectively. With this, devitrification resistance can be improved.
- the tempered glass according to the one embodiment of the present invention further comprise 0.01 mass % to 0.1 mass % of ZrO 2 , 0.001 mass % to 0.01 mass % of K 2 O, and 0.01 mass % to 0.1 mass % of CaO.
- the tempered glass according to the one embodiment of the present invention have a bending processed portion.
- the tempered glass according to the one embodiment of the present invention have a compressive stress value CS of a compressive stress layer of 450 MPa or more and a depth of layer DOL of the compressive stress layer of 15 ⁇ m or more.
- the “compressive stress value” and the “depth of layer” refer to values calculated by observing the number of interference fringes and intervals between the fringes by using a surface stress meter (for example, FSM-6000 manufactured by Orihara Industrial Co., Ltd.).
- the tempered glass according to the one embodiment of the present invention have a softening point of 950° C. or less.
- the “softening point” refers to a value measured based on a method of ASTM C338.
- the tempered glass according to the one embodiment of the present invention have an annealing point of 650° C. or less.
- the “annealing point” refers to a value measured based on a method of ASTM C336.
- the tempered glass according to the one embodiment of the present invention have a temperature at a viscosity at high temperature of 10 4.0 dPa ⁇ s of 1,400° C. or less.
- the “temperature at a viscosity at high temperature of 10 4.0 dPa ⁇ s” refers to a value measured by a platinum sphere pull up method.
- the tempered glass according to the one embodiment of the present invention have a value represented by (temperature at a viscosity at high temperature of 10 4.0 dPa ⁇ s) ⁇ (softening point) of 360° C. or more.
- the tempered glass according to the one embodiment of the present invention have a liquidus temperature of 1,150° C. or less.
- the “liquidus temperature” refers to a value obtained as follows: glass is pulverized; then glass powder that passes through a standard 30-mesh sieve (sieve opening: 500 ⁇ m) and remains on a 50-mesh sieve (sieve opening: 300 ⁇ m) is placed in a platinum boat and kept for 24 hours in a gradient heating furnace; and a temperature at which a crystal is deposited is measured.
- the tempered glass according to the one embodiment of the present invention have a liquidus viscosity of 10 4.6 dPa ⁇ s or more.
- the “liquidus viscosity” refers to a value obtained by measuring the viscosity of glass at the liquidus temperature by a platinum sphere pull up method.
- the tempered glass according to the one embodiment of the present invention have a thermal expansion coefficient of from 50 ⁇ 10 ⁇ 7 /° C. to 75 ⁇ 10 ⁇ 7 /° C.
- the “thermal expansion coefficient” refers to a value measured by using a dilatometer and shows an average value in the temperature range of from 30° C. to 380° C.
- a glass to be tempered which is to be subjected to ion exchange treatment, the glass to be tempered comprising as a glass composition, in terms of mass %, 63% to 75% of SiO 2 , 12% to 16.5% of Al 2 O 3 , 4% to 13% of B 2 O 3 , 7% to 13% of Na 2 O, and 0.1% to less than 3% of MgO.
- a tempered glass of the present invention comprises as a glass composition, in terms of mass %, 59% to 75% of SiO 2 , 12% to 16.5% of Al 2 O 3 , 4% to 13% of B 2 O 3 , 7% to 13% of Na 2 O, and 0.1% to less than 3% of MgO.
- mass % 59% to 75% of SiO 2 , 12% to 16.5% of Al 2 O 3 , 4% to 13% of B 2 O 3 , 7% to 13% of Na 2 O, and 0.1% to less than 3% of MgO.
- SiO 2 is a component which forms a glass network.
- the content of SiO 2 is from 59% to 75%, preferably from 61% to 73%, from 63% to 72%, from 65% to less than 70%, or from 66% to 69%, particularly preferably from 67% to 68%.
- the content of SiO 2 is too small, it becomes difficult to cause vitrification.
- a thermal expansion coefficient is excessively increased, with the result that thermal shock resistance is liable to be reduced. Meanwhile, when the content of SiO 2 is too large, meltability, formability, and bending processability are liable to be reduced.
- Al 2 O 3 is a component which improves ion exchange performance, and is also a component which increases a strain point and a Young's modulus.
- the content of Al 2 O 3 is from 12% to 16.5%.
- a suitable upper limit of the content range of Al 2 O 3 is 16% or less or 15.5% or less, particularly 15% or less.
- a suitable lower limit of the content range of Al 2 O 3 is 12.5% or more, 13% or more, or 14% or more, particularly 15% or more.
- the content of Al 2 O 3 is too small, there is a risk in that the ion exchange performance cannot be exhibited sufficiently. Meanwhile, when the content of Al 2 O 3 is too large, the meltability, the formability, and the bending processability are liable to be reduced. Further, a devitrified crystal is liable to be precipitated in the glass, and in particular, it becomes difficult to form a glass sheet by an overflow down-draw method or the like.
- B 2 O 3 is a component which reduces the softening point, and is also a component which reduces a liquidus temperature, a viscosity at high temperature, and a density.
- the content of B 2 O 3 is from 4% to 13%.
- a suitable upper limit of the content range of B 2 O 3 is 11% or less, 9.5% or less, 8.5% or less, 8% or less, or 7.5% or less, particularly 7% or less.
- a suitable lower limit of the content range of B 2 O 3 is 4% or more, 4.5% or more, 5% or more, 5.5% or more, or 6% or more, particularly 6.5% or more.
- Na 2 O is a component which improves the ion exchange performance, and is also a component which improves the meltability, the formability, and the bending processability.
- the content of Na 2 O is from 7% to 13%, preferably from 7.5% to 12.5%, from 8% to 12%, or from 8.5% to 11.5%, particularly preferably from 9% to 11%.
- the content of Na 2 O is too small, it becomes difficult to obtain the above-mentioned effects.
- the content of Na 2 O is too large, the strain point and the devitrification resistance are liable to be reduced. Further, the thermal expansion coefficient is excessively increased, with the result that the thermal shock resistance is reduced, and it becomes difficult to match the thermal expansion coefficient with those of peripheral materials.
- the content of Al 2 O 3 +B 2 O 3 +Na 2 O is preferably 26% or more, 27% or more, or 28% or more, particularly preferably from 29% to 37%. With this, all of the ion exchange performance, the bending processability, and the devitrification resistance are easily achieved.
- Al 2 O 3 +B 2 O 3 +Na 2 O refers to the total content of Al 2 O 3 , B 2 O 3 , and Na 2 O.
- the mass ratio Al 2 O 3 /Na 2 O is preferably from 0.9 to 1.8, from 0.95 to 1.7, or from 1.0 to 1.6, particularly preferably from 1.05 to 1.5.
- the mass ratio (Al 2 O 3 +B 2 O 3 )/(B 2 O 3 +Na 2 O) is preferably from 0.9 to 1.7, from 0.95 to 1.6, or from 1.0 to 1.5, particularly preferably from 1.05 to 1.4. With this, both the ion exchange performance and the bending processability are easily achieved.
- the “Al 2 O 3 /Na 2 O” refers to a value obtained by dividing the content of Al 2 O 3 by the content of Na 2 O.
- the “(Al 2 O 3 +B 2 O 3 )/(B 2 O 3 +Na 2 O)” refers to a value obtained by dividing the total content of Al 2 O 3 and B 2 O 3 by the total content of B 2 O 3 and Na 2 O.
- the content of Na 2 O—B 2 O 3 is preferably 9% or less, 7% or less, 5% or less, or 4% or less, particularly preferably 2% or less.
- the “Na 2 O—B 2 O 3 ” refers to a value obtained by subtracting the content of B 2 O 3 from the content of Na 2 O.
- MgO is a component which improves the meltability, the formability, the bending processability, and the Young's modulus.
- the content of MgO is from 0.1% to less than 3%, preferably from 0.5% to 2.6%, from 1% to 2.4%, or from 1.5% to 2.2%, particularly preferably from 1.7% to less than 2%.
- the content of Na 2 O+MgO is preferably 17% or less, 15% or less, or 13% or less, particularly preferably 12% or less.
- the “Na 2 O+MgO” refers to the total content of Na 2 O and MgO.
- Li 2 O is a component which improves the ion exchange performance, and is also a component which improves the meltability, the formability, and the bending processability.
- the content of Li 2 O is too large, the liquidus viscosity is reduced, and the glass is liable to be devitrified at the time of forming and bending processing.
- a viscosity at low temperature, particularly the strain point is excessively reduced, with the result that stress relaxation easily occurs at the time of ion exchange, and the compressive stress value is reduced contrarily in some cases.
- the content of Li 2 O is preferably from 0% to 10%, from 0% to 8%, from 0% to 6%, from 0% to 4%, from 0% to 3%, from 0% to 2%, from 0% to 1%, or from 0% to 0.5%, particularly preferably from 0% to 0.1%.
- the glass is desirably substantially free of Li 2 O (less than 0.010).
- K 2 O is a component which improves the ion exchange performance, and is also a component which has a high increasing effect on a depth of layer among alkali metal oxides.
- K 2 O is a component which improves the meltability, the formability, and the bending processability.
- the content of K 2 O is too large, the strain point and the devitrification resistance are liable to be reduced.
- a suitable upper limit of the content range of K 2 O is 3% or less, 2% or less, 1% or less, 0.1% or less, 0.01% or less, 0.009% or less, or 0.008% or less, particularly 0.007% or less, and a suitable lower limit thereof is 0% or more, 0.001% or more, 0.003% or more, or 0.004% or more, particularly 0.005% or more.
- Li 2 O, Na 2 O, and K 2 O are each a component which improves the ion exchange performance, the meltability, the formability, and the bending processability.
- a suitable lower limit of the content range of Li 2 O+Na 2 O+K 2 O is 7% or more, 8% or more, or 8.5% or more, particularly 9% or more, and a suitable upper limit thereof is 13% or less or 12% or less, particularly 11% or less.
- the “Li 2 O+Na 2 O+K 2 O” refers to the total content of Li 2 O, Na 2 O, and K 2 O.
- CaO is a component which improves the meltability, the formability, the bending processability, and the Young's modulus.
- the content of CaO is preferably from 0% to 0.5%, from 0.01% to 0.1%, from 0.02% to 0.09%, from 0.03% to 0.08%, or from 0.04% to 0.07%, particularly preferably from 0.05% to 0.06%.
- SrO and BaO are each a component which improves the meltability, the formability, and the bending processability.
- the content of SrO and BaO is too large, the ion exchange performance and the devitrification resistance are liable to be reduced.
- the density and the thermal expansion coefficient are excessively increased. Therefore, the total content of SrO and BaO (content of SrO+BaO) is preferably 3% or less, 2% or less, 1% or less, 0.8% or less, or 0.5% or less, particularly preferably 0.1% or less.
- the contents of SrO and BaO are each preferably 2% or less, 1% or less, 0.8% or less, or 0.5% or less, particularly preferably 0.1% or less.
- the content of MgO+CaO+SrO+BaO is preferably from 0.1% to less than 3%, from 0.5% to 2.6%, from 1% to 2.4%, or from 1.5% to 2.2%, particularly preferably from 1.7% to less than 2%.
- the “MgO+CaO+SrO+BaO” refers to the total content of MgO, CaO, SrO, and BaO.
- the value of the mass ratio (MgO+CaO+SrO+BaO)/(Li 2 O+Na 2 O+K 2 O) is preferably 0.4 or less or 0.35 or less, particularly preferably 0.3 or less.
- the “(MgO+CaO+SrO+BaO)/(Li 2 O+Na 2 O+K 2 O)” refers to a value obtained by dividing the total content of MgO, CaO, SrO, and BaO by the total content of Li 2 O, Na 2 O, and K 2 O.
- ZnO is a component which improves the ion exchange performance.
- ZnO is a component which increases the compressive stress value.
- ZnO is a component which reduces the viscosity at high temperature without reducing a viscosity at low temperature.
- the content of ZnO is preferably from 0% to 3% or from 0% to 2%, particularly preferably from 0% to 1%.
- ZrO 2 is a component which improves the ion exchange performance, the strain point, and the liquidus viscosity.
- the content of ZrO 2 is preferably from 0% to 0.5%, from 0.01% to 0.1%, from 0.02% to 0.09%, from 0.03% to 0.08%, or from 0.04% to 0.07%, particularly preferably from 0.05% to 0.08%.
- TiO 2 is a component which improves the ion exchange performance, and is also a component which reduces the viscosity at high temperature.
- the content of TiO 2 is preferably from 0% to 1% or from 0% to 0.5%, particularly preferably from 0% to 0.1%.
- P 2 O 3 is a component which improves the ion exchange performance.
- P 2 O 3 is a component which increases the depth of layer.
- the content of P 2 O 3 is preferably 8% or less, 5% or less, 4% or less, 2% or less, 1% or less, 0.5% or less, or 0.2% or less, particularly preferably 0.1% or less.
- one kind or two or more kinds selected from the group consisting of As 2 O 3 , Sb 2 O 3 , CeO 2 , SnO 2 , F, Cl, and SO 3 may be introduced in an amount of from 0% to 2%. It is preferred to use As 2 O 3 , Sb 2 O 3 , and F in an amount as small as possible from the environmental viewpoints, and each content thereof is preferably less than 0.1%.
- the fining agent is preferably one kind or two or more kinds selected from the group consisting of SnO 2 , SO 3 , and Cl, particularly preferably SnO 2 .
- the content of SnO 2 is preferably from 0% to 1% or from 0.01% to 0.5%, particularly preferably from 0.1% to 0.6%.
- the content of SO 3 is preferably from 0% to 0.1%, from 0.0001% to 0.1%, from 0.0003% to 0.08%, or from 0.0005% to 0.05%, particularly preferably from 0.001% to 0.03%.
- SO 3 reboils at the time of melting, with the result that bubble quality is liable to be reduced.
- the content of Cl is preferably from 0% to 0.5%, from 0% to 0.1%, from 0% to 0.09%, or from 0% to 0.05%, particularly preferably from 0.001% to 0.03%.
- metal wiring is liable to be eroded at the time of forming a metal wiring pattern or the like on the tempered glass.
- Transition metal oxides such as CoO 3 and NiO, are components which cause intense coloration of glass to reduce a transmittance. Therefore, the content of the transition metal oxides is preferably 0.5% or less or 0.1% or less, particularly preferably 0.05% or less in terms of a total content. It is desired to control the amount of impurities in raw materials and/or cullet of the glass so that the content of the transition metal oxides falls within such ranges.
- Rare earth oxides such as Nd 2 O 3 and La 2 O 3 , are components which increase the Young's modulus.
- the cost of the raw material itself is high, and when the rare earth oxides are contained in a large amount, the devitrification resistance is liable to be reduced. Therefore, the content of the rare earth oxides is preferably 3% or less, 2% or less, 1% or less, or 0.5% or less, particularly preferably 0.1% or less in terms of a total content.
- PbO and Bi 2 O 3 are preferred in an amount as small as possible from the environmental viewpoints, and the contents thereof are each preferably less than 0.1%.
- Components other than the above-mentioned components may be introduced, and the total content thereof is preferably 3% or less, particularly preferably 1% or less.
- the compressive stress value of the compressive stress layer is preferably 450 MPa or more or 550 MPa or more, particularly preferably 700 MPa or more.
- the compressive stress value becomes higher, the mechanical strength of the tempered glass becomes higher.
- the compressive stress value is preferably 1,300 MPa or less.
- the depth of layer is preferably 15 ⁇ m or more or 20 ⁇ m or more, particularly preferably 25 ⁇ m or more. As the depth of layer becomes larger, the tempered glass is less liable to be broken even when the tempered glass has a deep flaw. Meanwhile, when the depth of layer is too large, there is a risk in that the internal tensile stress is excessively increased. Therefore, the depth of layer is preferably 100 ⁇ m or less or 80 ⁇ m or less, particularly preferably less than 50 ⁇ m.
- the internal tensile stress is preferably 150 MPa or less, 100 MPa or less, or 80 MPa or less, particularly preferably 60 MPa or less.
- the internal tensile stress becomes smaller, the probability that the tempered glass is broken owing to an internal defect becomes lower.
- the internal tensile stress is preferably 15 MPa or more or 20 MPa or more, particularly preferably 25 MPa or more.
- the internal tensile stress refers to a value calculated by the following mathematical formula.
- the tempered glass of the present invention have the following characteristics.
- the density is preferably 2.45 g/cm 3 or less, 2.42 g/cm 3 or less, 2.40 g/cm 3 or less, or 2.38 g/cm 3 or less, particularly preferably 2.36 g/cm 3 or less.
- the “density” refers to a value measured by a well-known Archimedes method.
- the strain point is preferably 530° C. or more, 550° C. or more, or 560° C. or more, particularly preferably 580° C. or more. As the strain point becomes higher, the compressive stress layer is less liable to disappear through heat treatment. In addition, when the strain point is high, stress relaxation is less liable to occur at the time of ion exchange, and hence a high compressive stress value is easily ensured.
- the annealing point is preferably 650° C. or less, 630° C. or less, or 610° C. or less, particularly preferably 595° C. or less.
- the thermal bending processing can be performed at lower temperature.
- an annealing time period and a cooling time period after the thermal bending processing can be shortened more.
- the softening point is preferably 950° C. or less, 900° C. or less, or 880° C. or less, particularly preferably 860° C. or less.
- the thermal bending processing can be performed at lower temperature.
- the annealing time period and cooling time period after the thermal bending processing can be shortened.
- burden on a mold becomes smaller when press molding is performed. Deterioration of a mold is often caused by a reaction between a metal material to be used for a mold and oxygen in the air, that is, an oxidation reaction. Such oxidation reaction allows the formation of a reaction product on the surface of the mold.
- press molding does not provide a predetermined shape in some cases.
- ions in the glass are reduced to produce bubbles in some cases.
- the degree of the oxidation reaction varies depending on the press molding temperature or the softening point. As the press molding temperature and the softening point become lower, the oxidation reaction can be suppressed more.
- the temperature at a viscosity at high temperature of 10 4.0 dPa ⁇ s is preferably 1,400° C. or less or 1,350° C. or less, particularly preferably 1,330° C. or less. As the temperature at a viscosity at high temperature of 10 4.0 dPa ⁇ s becomes lower, a forming temperature is reduced more, and hence the manufacturing cost of the tempered glass can be reduced more.
- a value represented by (temperature at a viscosity at hightemperature of 10 4.0 dPa ⁇ s) ⁇ (softeningpoint) is preferably 360° C. or more, 400° C. or more, 420° C. or more, or 430° C. or more, particularly preferably 440° C. or more.
- the thermal bending processing is performed in a temperature region between the temperature at a viscosity at high temperature of 10 4.0 dPa ⁇ s and the softening point.
- the temperature at a viscosity at high temperature of 10 2.5 dPa ⁇ s corresponds to a melting temperature, and is preferably 1,750° C. or less, 1,720° C. or less, 1,700° C. or less, 1,680° C. or less, or 1,660° C. or less, particularly preferably 1,640° C. or less.
- burden on a manufacturing facility, such as a melting furnace becomes smaller at the time of melting, and bubble quality can be improved more. That is, as the temperature at 10 2.5 dPa ⁇ s becomes lower, the glass can be manufactured more inexpensively.
- the “temperature at a viscosity at high temperature of 10 2.5 dPa ⁇ s” refers to a value measured by a platinum sphere pull up method.
- the thermal expansion coefficient is preferably from 50 ⁇ 10 ⁇ 7 /° C. to 75 ⁇ 10 ⁇ 7 /° C., particularly preferably from 55 ⁇ 10 ⁇ 7 /° C. to 70 ⁇ 10 ⁇ 7 /° C.
- a peripheral member such as a metal or an organic adhesive
- the liquidus temperature is preferably 1,150° C. or less or 1,120° C. or less, particularly preferably 1,100° C. or less.
- the liquidus viscosity is preferably 10 4.6 dPa ⁇ s or more or 10 5.2 dPa ⁇ s or more, particularly preferably 10 3.3 dPa ⁇ s or more.
- the liquidus viscosity is low, a devitrified crystal is liable to be precipitated at the time of forming.
- the thickness of the tempered glass (sheet thickness when the tempered glass has a sheet shape) is preferably 0.2 mm or more, 0.3 mm or more, or 0.5 mm or more, particularly preferably 0.7 mm or more. With this, the mechanical strength of the tempered glass can be maintained. Meanwhile, when the thickness of the tempered glass is large, the bending processability is liable to be reduced. Further, it becomes difficult to achieve weight saving of the tempered glass. Therefore, the thickness of the tempered glass is preferably 2.0 mm or less, 1.5 mm or less, or 1.0 mm or less, particularly preferably 0.85 mm or less.
- the tempered glass of the present invention have an unpolished surface. It is particularly preferred that the entire effective surface except end edge areas be unpolished.
- the average surface roughness (Ra) of the unpolished surface is preferably 10 ⁇ or less or 5 ⁇ or less, particularly preferably 2 ⁇ or less. With this, an appropriate gloss can be imparted to the tempered glass. As a result, the tempered glass is easily applied to an exterior part. In addition, when the surface is unpolished, the tempered glass is less liable to be broken by a point impact. An unpolished glass sheet having satisfactory surface accuracy can be obtained when the molten glass is formed by an overflow down-draw method.
- the “average surface roughness (Ra)” refers to a value measured by a method in conformity with SEMI D7-97 “FPD Glass Substrate Surface Roughness Measurement Method.” In order to prevent a situation in which the glass is broken from an end surface (cut surface), an end edge region or the end surface is preferably subjected to chamfering processing.
- the tempered glass of the present invention preferably has a bending processed portion, such as a bent portion or a curved portion. With this, the design property of an exterior part or the like can be improved.
- the bent portion is formed preferably in at least one end edge area of the tempered glass having a rectangular shape, more preferably in opposing end edge areas.
- the tempered glass of the present invention preferably has a flat sheet portion and the bent portion.
- the flat sheet portion is allowed to correspond to an operating area of a touch panel, and the surface of the bent portion (excluding the end surface) is allowed to correspond to an external side surface.
- the end surface is less liable to be exposed to the outside, and a situation in which the tempered glass is broken from the end surface by a physical impact is easily prevented.
- the curved portion is preferably formed in the overall width direction or in the overall length direction of the tempered glass.
- the curved portion is more preferably formed in the overall width direction and in the overall length direction of the tempered glass. With this, a stress is less liable to be concentrated in a specific portion, and when the tempered glass is applied to a window glass of an automobile or the like, the tempered glass is less liable to be broken by a physical impact.
- the curved portion is formed in the overall width direction and in the overall length direction, it is preferred to set the degree of curve in the width direction and the degree of curve in the length direction to differ from each other. With this, the design property of the window glass of an automobile or the like can be improved.
- a glass to be tempered of the present invention is a glass to be tempered, which is to be subjected to ion exchange treatment, the glass to be tempered comprising as a glass composition, in terms of mass %, 59% to 75% of SiO 2 , 12% to 16.5% of Al 2 O 3 , 4% to 13% of B 2 O 3 , 7% to 13% of Na 2 O, and 0.1% to less than 3% of MgO.
- the glass to be tempered of the present invention has technical features (suitable glass composition range, suitable characteristics, and the like) similar to those of the tempered glass of the present invention. Therefore, a detailed description of the glass to be tempered of the present invention is omitted for convenience.
- the glass to be tempered of the present invention may be produced by placing a glass batch which is prepared to have a predetermined glass composition in a continuous melting furnace, melting the glass batch at from 1,500° C. to 1,650° C., fining the resultant, feeding the resultant to a forming apparatus, forming the molten glass, and annealing the glass.
- forming methods may be adopted as a forming method.
- forming methods such as down-draw methods (e.g., an overflow down-draw method, a slot down method, and a re-draw method), a float method, and a roll out method.
- the molten glass may be directly formed into a predetermined shape by press molding.
- the glass to be tempered of the present invention is preferably formed by an overflow down-draw method. With this, a glass which is unpolished and has improved surface quality can be produced. This is because in the case of adopting the overflow down-draw method, a surface to be the surface of the glass sheet does not come into contact with a trough-shaped refractory, and is formed in the form of a free surface.
- the overflow down-draw method is a method in which a molten glass is allowed to overflow from both sides of a heat-resistant trough-shaped structure, and the overflown molten glasses are down-drawn downwardly while combining them at the lower end of the trough-shaped structure, to thereby produce a glass to be tempered having a flat sheet shape.
- the tempered glass can be obtained by subjecting the glass to be tempered to ion exchange treatment.
- the ion exchange treatment may be performed by, for example, immersing the glass to be tempered in a KNO 3 molten salt at from 400° C. to 550° C. for from 1 hour to 8 hours.
- the conditions of the ion exchange treatment may be optimally selected in consideration of the viscosity characteristics, applications, thickness, internal tensile stress, or the like of the glass.
- the thermal bending processing is preferably performed on a glass to be tempered before the ion exchange treatment, and also the grinding and/or polishing of the end surface is preferably performed on the glass to be tempered before the ion exchange treatment. Further, it is also preferred to perform the grinding and/or polishing of the end surface after the thermal bending processing in order to remove the dimensional error or the like after the thermal bending processing.
- the thermal bending processing is preferably performed on a glass to be tempered having a flat sheet shape.
- a preferred thermal bending processing method there is given a method involving subjecting the glass to be tempered having a flat sheet shape to press molding with a mold. With this, the dimensional accuracy of the glass to be tempered can be increased after the thermal bending processing.
- thermo bending processing method there is given a method involving sandwiching the glass to be tempered having a flat sheet shape in a sheet thickness direction with a certain mold to support the glass to be tempered, to thereby allow elastic deformation of the glass to be tempered into a curved state, and then, while keeping this state, subjecting the glass to be tempered, which has been elastically deformed, to heat treatment, to thereby obtain a glass to be tempered having a curved portion (particularly a glass to be tempered having a curved portion in which the entire glass is curved in an arc in a sheet width direction).
- a temperature of the thermal bending processing is preferably (annealing point ⁇ 10°) C. or more, (annealing point ⁇ 5) ° C. or more, or (annealing point+5) ° C. or more, particularly preferably (annealing point+20) ° C. or more. With this, the thermal bending processing can be performed in a short time period. Meanwhile, the temperature of the thermal bending processing is preferably (softening point ⁇ 5) ° C. or less, (softening point ⁇ 15) ° C. or less, or (softening point ⁇ 20°) C. or less, particularly preferably (softening point ⁇ 30) ° C. or less. With this, surface smoothness is less liable to be impaired through the thermal bending processing, and dimensional accuracy after the thermal bending processing can be improved as well.
- Each sample was prepared as described below. First, glass raw materials were blended so as to achieve the glass composition shown in the table, and the resultant was melted at 1,600° C. for 8 hours by using a platinum pot. Next, the molten glass was poured onto a carbon sheet and formed into a flat sheet shape. Various properties of the resultant glass sheet were evaluated.
- the density is a value measured by a well-known Archimedes method.
- the strain point and the annealing point are values measured based on a method of ASTM C336.
- the softening point is a value measured based on a method of ASTM C338.
- the temperatures at viscosities at high temperature of 10 4.0 dPa ⁇ s, 10 3.0 dPa ⁇ s, and 10 2.5 dPa ⁇ s are values measured by a platinum sphere pull up method.
- the thermal expansion coefficient is a value measured with a dilatometer and is an average value in the temperature range of from 30° C. to 380° C.
- the Young's modulus is a value measured by a flexural resonance method.
- the specific Young's modulus is a value obtained by dividing the Young's modulus by the density.
- the liquidus temperature is a value obtained as follows: the glass is pulverized; then glass powder that passes through a standard 30-mesh sieve (sieve opening: 500 ⁇ m) and remains on a 50-mesh sieve (sieve opening: 300 ⁇ m) is placed in a platinum boat and kept for 24 hours in a gradient heating furnace; and a temperature at which a crystal is deposited is measured.
- the liquidus viscosity is a value obtained by measuring the viscosity of glass at a liquidus temperature by a platinum ball pull up method.
- the samples were each immersed in a KNO 3 bath kept at 430° C. for 4 hours to be subjected to ion exchange treatment, to thereby obtain tempered glasses.
- the compressive stress value and depth of layer of the compressive stress layer were measured by observing the number of interference fringes and the intervals of the interference fringes using a surface stress meter (FSM-6000 manufactured by Orihara Industrial Co., Ltd.).
- a refractive index was set to 1.52 and an optical elastic constant was set to 30 [(nm/cm)/MPa] for each sample.
- a molten glass was flown, formed into a flat sheet shape, and then the resultant was optically polished before the ion exchange treatment, for convenience of description of the present invention.
- the tempered glass is manufactured on an industrial scale, the following procedure is preferred: the glass is formed into a flat sheet shape by an overflow down-draw method or the like, and cut processed into a rectangular shape; and then the glass in a state in which its surface is unpolished is subjected to ion exchange treatment, to thereby produce the tempered glass.
- Sample Nos. 1 to 10 in each of which the glass composition was restricted to the predetermined range, had a compressive stress value of 438 MPa or more, a softening point of 969° C. or less, and a liquidus viscosity of 10 4.9 dPa ⁇ s or more. Therefore, Sample Nos. 1 to 10 each have satisfactory ion exchange performance, satisfactory bending processability, and satisfactory devitrification resistance.
- a glass sheet having a thickness of 0.7 mm was produced by an overflow down-draw method, and press molded using a mold made of mullite at a temperature lower than the softening point by 30° C. Further, the glass sheet having been removed from the mold was immersed in a KNO 3 bath kept at 430° C. for 4 hours to be subjected to ion exchange treatment. Thus, tempered glasses each having a bending processed portion were produced.
- the tempered glass of the present invention is suitable for, for example, a cover glass for a mobile phone, exterior parts for a mobile PC and the like, and window glasses for an automobile, a train, a ship, and the like
- the tempered glass of the present invention is also suitable for a substrate for a magnetic disk, a substrate for a flat panel display, a substrate and a cover glass for a solar cell, a cover glass for a solid state image sensor, tableware, and an ampoule tube for medical purposes in addition to the above-mentioned applications.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Glass Compositions (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
- The present invention relates to a tempered glass and a glass to be tempered, and more particularly, to a tempered glass and a glass to be tempered which are suitable for, for example, a cover glass for a mobile phone, exterior parts for a mobile PC and the like, and window glasses for an automobile, a train, a ship, and the like.
- Mobile phones having touch panels mounted thereon have been widespread. A glass subjected to tempering treatment, such as ion exchange treatment (so-called tempered glass), is used for cover glasses for such mobile phones. The tempered glass is high in mechanical strength as compared to an untempered glass, and hence is suitable for this application (see Patent Literature 1 and Non Patent Literature 1).
- In recent years, touch panels are being mounted for applications other than mobile phones as well, and hence, tempered glasses each having a bent portion are necessary in some of the applications (e.g., exterior parts for a mobile PC and the like). The tempered glass having a bent portion may be produced by, for example, forming molten glass to obtain a glass to be tempered in a flat sheet shape, and then subjecting the glass to be tempered to thermal bending processing to form a bent portion, followed by ion exchange treatment (see Patent Literatures 2 and 3).
- In addition, a tempered glass having a curved portion is used as a window glass for an automobile (see Non Patent Literatures 2 and 3). The tempered glass having a curved portion may be produced by, for example, forming molten glass to obtain a glass to be tempered in a flat sheet shape, and then subjecting the glass to be tempered to thermal bending processing to form a curved portion, followed by ion exchange treatment.
-
- Patent Literature 1: JP 2006-83045 A
- Patent Literature 2: U.S. Pat. No. 7,168,047 B1
- Patent Literature 3: JP 2001-247342 A
- Non Patent Literature 1: Tetsuro Izumitani et al., “New glass and physical properties thereof,” First edition, Management System Laboratory. Co., Ltd., Aug. 20, 1984, p. 451-498
- Non Patent Literature 2: Thomas Cleary et al., Lighter, tougher, and optically advantaged: How an innovative combination of materials can enable better car windows today, American Ceramic Society Bulletin, Vol. 96, No. 4, P 20-27
- Non Patent Literature 3: “Automotive Glass”, [online], [retrieved on Jul. 15, 2018], Internet <URL: http://www.agc.com/products/automotive/index.html>
- Incidentally, a compressive stress layer is formed in the surface of the tempered glass. In general, the mechanical strength of the tempered glass can be increased by increasing the compressive stress value and depth of layer of the compressive stress layer.
- In order to increase the compressive stress value and depth of layer of the compressive stress layer, it is effective to increase the content of Al2O3 in a glass composition, to thereby improve ion exchange performance. However, when the content of Al2O3 in the glass composition is increased, a softening point is increased, and bending processability is liable to be reduced. As a result, it becomes difficult to form a bending processed portion, such as a bent portion or a curved portion, in the glass to be tempered. Further, when the content of Al2O3 in the glass composition is increased, devitrification resistance is reduced, and it becomes difficult to form a glass to be tempered in a flat sheet shape.
- The present invention has been made in view of the above-mentioned circumstances, and a technical object of the present invention is to provide a tempered glass and a glass to be tempered which can achieve all of ion exchange performance, bending processability, and devitrification resistance.
- The inventor of the present invention has made extensive investigations. As a result, the inventor has found that both the ion exchange performance and the bending processability can be achieved by restricting the glass composition within a predetermined range. The finding is proposed as the present invention. That is, according to one embodiment of the present invention, there is provided a tempered glass, comprising as a glass composition, in terms of mass %, 59% to 75% of SiO2, 12% to 16.5% of Al2O3, 4% to 13% of B2O3, 7% to 13% of Na2O, and 0.1% to less than 3% of MgO.
- In the tempered glass according to the one embodiment of the present invention, the contents of Al2O3, B2O3, Na2O, and MgO are restricted to 12 mass % or more, 13 mass % or less, 7 mass % or more, and less than 3 mass %, respectively. With this, ion exchange performance can be improved.
- In addition, in the tempered glass according to the one embodiment of the present invention, the contents of SiO2, Al2O3, B2O3, Na2O, and MgO are restricted to 75 mass % or less, 16.5 mass % or less, 4 mass % or more, 7 mass % or more, and 0.1 mass % or more, respectively. With this, bending processability can be improved.
- Further, in the tempered glass according to the one embodiment of the present invention, the contents of Al2O3, B2O3, Na2O, and MgO are restricted to 16.5 mass % or less, 4 mass % or more, 13 mass % or more, and less than 3 mass %, respectively. With this, devitrification resistance can be improved.
- In addition, it is preferred that the tempered glass according to the one embodiment of the present invention further comprise 0.01 mass % to 0.1 mass % of ZrO2, 0.001 mass % to 0.01 mass % of K2O, and 0.01 mass % to 0.1 mass % of CaO.
- In addition, it is preferred that the tempered glass according to the one embodiment of the present invention have a bending processed portion.
- In addition, it is preferred that the tempered glass according to the one embodiment of the present invention have a compressive stress value CS of a compressive stress layer of 450 MPa or more and a depth of layer DOL of the compressive stress layer of 15 μm or more. Herein, the “compressive stress value” and the “depth of layer” refer to values calculated by observing the number of interference fringes and intervals between the fringes by using a surface stress meter (for example, FSM-6000 manufactured by Orihara Industrial Co., Ltd.).
- In addition, it is preferred that the tempered glass according to the one embodiment of the present invention have a softening point of 950° C. or less. Herein, the “softening point” refers to a value measured based on a method of ASTM C338.
- In addition, it is preferred that the tempered glass according to the one embodiment of the present invention have an annealing point of 650° C. or less. Herein, the “annealing point” refers to a value measured based on a method of ASTM C336.
- In addition, it is preferred that the tempered glass according to the one embodiment of the present invention have a strain point of 530° C. or more. Herein, the “strain point” refers to a value measured based on a method of ASTM C336.
- In addition, it is preferred that the tempered glass according to the one embodiment of the present invention have a temperature at a viscosity at high temperature of 104.0 dPa·s of 1,400° C. or less. Herein, the “temperature at a viscosity at high temperature of 104.0 dPa·s” refers to a value measured by a platinum sphere pull up method.
- In addition, it is preferred that the tempered glass according to the one embodiment of the present invention have a value represented by (temperature at a viscosity at high temperature of 104.0 dPa·s)−(softening point) of 360° C. or more.
- In addition, it is preferred that the tempered glass according to the one embodiment of the present invention have a liquidus temperature of 1,150° C. or less. Herein, the “liquidus temperature” refers to a value obtained as follows: glass is pulverized; then glass powder that passes through a standard 30-mesh sieve (sieve opening: 500 μm) and remains on a 50-mesh sieve (sieve opening: 300 μm) is placed in a platinum boat and kept for 24 hours in a gradient heating furnace; and a temperature at which a crystal is deposited is measured.
- In addition, it is preferred that the tempered glass according to the one embodiment of the present invention have a liquidus viscosity of 104.6 dPa·s or more. Herein, the “liquidus viscosity” refers to a value obtained by measuring the viscosity of glass at the liquidus temperature by a platinum sphere pull up method.
- In addition, it is preferred that the tempered glass according to the one embodiment of the present invention have a thermal expansion coefficient of from 50×10−7/° C. to 75×10−7/° C. Herein, the “thermal expansion coefficient” refers to a value measured by using a dilatometer and shows an average value in the temperature range of from 30° C. to 380° C.
- According to one embodiment of the present invention, there is provided a glass to be tempered, which is to be subjected to ion exchange treatment, the glass to be tempered comprising as a glass composition, in terms of mass %, 63% to 75% of SiO2, 12% to 16.5% of Al2O3, 4% to 13% of B2O3, 7% to 13% of Na2O, and 0.1% to less than 3% of MgO.
- A tempered glass of the present invention comprises as a glass composition, in terms of mass %, 59% to 75% of SiO2, 12% to 16.5% of Al2O3, 4% to 13% of B2O3, 7% to 13% of Na2O, and 0.1% to less than 3% of MgO. The reasons why the contents of the components are restricted within the above-mentioned ranges are described below. In the descriptions of the ranges of the contents of the components, the expression “%” represents “mass %” unless otherwise stated.
- SiO2 is a component which forms a glass network. The content of SiO2 is from 59% to 75%, preferably from 61% to 73%, from 63% to 72%, from 65% to less than 70%, or from 66% to 69%, particularly preferably from 67% to 68%. When the content of SiO2 is too small, it becomes difficult to cause vitrification. In addition, a thermal expansion coefficient is excessively increased, with the result that thermal shock resistance is liable to be reduced. Meanwhile, when the content of SiO2 is too large, meltability, formability, and bending processability are liable to be reduced.
- Al2O3 is a component which improves ion exchange performance, and is also a component which increases a strain point and a Young's modulus. The content of Al2O3 is from 12% to 16.5%. A suitable upper limit of the content range of Al2O3 is 16% or less or 15.5% or less, particularly 15% or less. A suitable lower limit of the content range of Al2O3 is 12.5% or more, 13% or more, or 14% or more, particularly 15% or more. When the content of Al2O3 is too small, there is a risk in that the ion exchange performance cannot be exhibited sufficiently. Meanwhile, when the content of Al2O3 is too large, the meltability, the formability, and the bending processability are liable to be reduced. Further, a devitrified crystal is liable to be precipitated in the glass, and in particular, it becomes difficult to form a glass sheet by an overflow down-draw method or the like.
- B2O3 is a component which reduces the softening point, and is also a component which reduces a liquidus temperature, a viscosity at high temperature, and a density. The content of B2O3 is from 4% to 13%. A suitable upper limit of the content range of B2O3 is 11% or less, 9.5% or less, 8.5% or less, 8% or less, or 7.5% or less, particularly 7% or less. A suitable lower limit of the content range of B2O3 is 4% or more, 4.5% or more, 5% or more, 5.5% or more, or 6% or more, particularly 6.5% or more. When the content of B2O3 is too small, it becomes difficult to obtain the above-mentioned effects. Meanwhile, when the content of B2O3 is too large, the ion exchange performance, water resistance, and the like are liable to be reduced.
- Na2O is a component which improves the ion exchange performance, and is also a component which improves the meltability, the formability, and the bending processability. The content of Na2O is from 7% to 13%, preferably from 7.5% to 12.5%, from 8% to 12%, or from 8.5% to 11.5%, particularly preferably from 9% to 11%. When the content of Na2O is too small, it becomes difficult to obtain the above-mentioned effects. Meanwhile, when the content of Na2O is too large, the strain point and the devitrification resistance are liable to be reduced. Further, the thermal expansion coefficient is excessively increased, with the result that the thermal shock resistance is reduced, and it becomes difficult to match the thermal expansion coefficient with those of peripheral materials.
- The content of Al2O3+B2O3+Na2O is preferably 26% or more, 27% or more, or 28% or more, particularly preferably from 29% to 37%. With this, all of the ion exchange performance, the bending processability, and the devitrification resistance are easily achieved. Herein, the “Al2O3+B2O3+Na2O” refers to the total content of Al2O3, B2O3, and Na2O.
- The mass ratio Al2O3/Na2O is preferably from 0.9 to 1.8, from 0.95 to 1.7, or from 1.0 to 1.6, particularly preferably from 1.05 to 1.5. The mass ratio (Al2O3+B2O3)/(B2O3+Na2O) is preferably from 0.9 to 1.7, from 0.95 to 1.6, or from 1.0 to 1.5, particularly preferably from 1.05 to 1.4. With this, both the ion exchange performance and the bending processability are easily achieved. The “Al2O3/Na2O” refers to a value obtained by dividing the content of Al2O3 by the content of Na2O. The “(Al2O3+B2O3)/(B2O3+Na2O)” refers to a value obtained by dividing the total content of Al2O3 and B2O3 by the total content of B2O3 and Na2O.
- The content of Na2O—B2O3 is preferably 9% or less, 7% or less, 5% or less, or 4% or less, particularly preferably 2% or less. When the content of Na2O—B2O3 is too large, the devitrification resistance is liable to be reduced. The “Na2O—B2O3” refers to a value obtained by subtracting the content of B2O3 from the content of Na2O.
- MgO is a component which improves the meltability, the formability, the bending processability, and the Young's modulus. However, when the content of MgO is too large, the glass is liable to be devitrified at the time of forming and bending processing. In addition, the ion exchange performance is liable to be reduced. Therefore, the content of MgO is from 0.1% to less than 3%, preferably from 0.5% to 2.6%, from 1% to 2.4%, or from 1.5% to 2.2%, particularly preferably from 1.7% to less than 2%.
- The content of Na2O+MgO is preferably 17% or less, 15% or less, or 13% or less, particularly preferably 12% or less. When the content of Na2O+MgO is too large, the devitrification resistance is liable to be reduced. The “Na2O+MgO” refers to the total content of Na2O and MgO.
- In addition to the above-mentioned components, for example, the following components may be introduced.
- Li2O is a component which improves the ion exchange performance, and is also a component which improves the meltability, the formability, and the bending processability. However, when the content of Li2O is too large, the liquidus viscosity is reduced, and the glass is liable to be devitrified at the time of forming and bending processing. Besides, a viscosity at low temperature, particularly the strain point is excessively reduced, with the result that stress relaxation easily occurs at the time of ion exchange, and the compressive stress value is reduced contrarily in some cases. Therefore, the content of Li2O is preferably from 0% to 10%, from 0% to 8%, from 0% to 6%, from 0% to 4%, from 0% to 3%, from 0% to 2%, from 0% to 1%, or from 0% to 0.5%, particularly preferably from 0% to 0.1%. The glass is desirably substantially free of Li2O (less than 0.010).
- K2O is a component which improves the ion exchange performance, and is also a component which has a high increasing effect on a depth of layer among alkali metal oxides. In addition, K2O is a component which improves the meltability, the formability, and the bending processability. However, when the content of K2O is too large, the strain point and the devitrification resistance are liable to be reduced. Therefore, a suitable upper limit of the content range of K2O is 3% or less, 2% or less, 1% or less, 0.1% or less, 0.01% or less, 0.009% or less, or 0.008% or less, particularly 0.007% or less, and a suitable lower limit thereof is 0% or more, 0.001% or more, 0.003% or more, or 0.004% or more, particularly 0.005% or more.
- Li2O, Na2O, and K2O are each a component which improves the ion exchange performance, the meltability, the formability, and the bending processability. However, when the content of Li2O+Na2O+K2O is too large, the strain point and the devitrification resistance are liable to be reduced. Therefore, a suitable lower limit of the content range of Li2O+Na2O+K2O is 7% or more, 8% or more, or 8.5% or more, particularly 9% or more, and a suitable upper limit thereof is 13% or less or 12% or less, particularly 11% or less. The “Li2O+Na2O+K2O” refers to the total content of Li2O, Na2O, and K2O.
- CaO is a component which improves the meltability, the formability, the bending processability, and the Young's modulus. However, when the content of CaO is too large, the density and the thermal expansion coefficient are excessively increased, the glass is liable to be devitrified, and the ion exchange performance is liable to be reduced. Therefore, the content of CaO is preferably from 0% to 0.5%, from 0.01% to 0.1%, from 0.02% to 0.09%, from 0.03% to 0.08%, or from 0.04% to 0.07%, particularly preferably from 0.05% to 0.06%.
- SrO and BaO are each a component which improves the meltability, the formability, and the bending processability. When the content of SrO and BaO is too large, the ion exchange performance and the devitrification resistance are liable to be reduced. In addition, the density and the thermal expansion coefficient are excessively increased. Therefore, the total content of SrO and BaO (content of SrO+BaO) is preferably 3% or less, 2% or less, 1% or less, 0.8% or less, or 0.5% or less, particularly preferably 0.1% or less. The contents of SrO and BaO are each preferably 2% or less, 1% or less, 0.8% or less, or 0.5% or less, particularly preferably 0.1% or less.
- When the content of MgO+CaO+SrO+BaO is too small, the meltability, the formability, the bending processability, and the Young's modulus are liable to be reduced. Meanwhile, when the content of MgO+CaO+SrO+BaO is too large, the ion exchange performance and the devitrification resistance are liable to be reduced. In addition, the density and the thermal expansion coefficient are excessively increased. Therefore, the content of MgO+CaO+SrO+BaO is preferably from 0.1% to less than 3%, from 0.5% to 2.6%, from 1% to 2.4%, or from 1.5% to 2.2%, particularly preferably from 1.7% to less than 2%. The “MgO+CaO+SrO+BaO” refers to the total content of MgO, CaO, SrO, and BaO.
- When a value of the mass ratio (MgO+CaO+SrO+BaO)/(Li2O+Na2O+K2O) is too large, the devitrification resistance tends to be reduced. Therefore, the value of the mass ratio (MgO+CaO+SrO+BaO)/(Li2O+Na2O+K2O) is preferably 0.4 or less or 0.35 or less, particularly preferably 0.3 or less. The “(MgO+CaO+SrO+BaO)/(Li2O+Na2O+K2O)” refers to a value obtained by dividing the total content of MgO, CaO, SrO, and BaO by the total content of Li2O, Na2O, and K2O.
- ZnO is a component which improves the ion exchange performance. In particular, ZnO is a component which increases the compressive stress value. In addition, ZnO is a component which reduces the viscosity at high temperature without reducing a viscosity at low temperature. However, when the content of ZnO is too large, the glass manifests phase separation, the devitrification resistance is reduced, and the density is liable to be increased. The content of ZnO is preferably from 0% to 3% or from 0% to 2%, particularly preferably from 0% to 1%.
- ZrO2 is a component which improves the ion exchange performance, the strain point, and the liquidus viscosity. However, when the content of ZrO2 is too large, the devitrification resistance may be excessively reduced. Therefore, the content of ZrO2 is preferably from 0% to 0.5%, from 0.01% to 0.1%, from 0.02% to 0.09%, from 0.03% to 0.08%, or from 0.04% to 0.07%, particularly preferably from 0.05% to 0.08%.
- TiO2 is a component which improves the ion exchange performance, and is also a component which reduces the viscosity at high temperature. However, when the content of TiO2 is too large, the glass is colored and the devitrification resistance is liable to be reduced. Therefore, the content of TiO2 is preferably from 0% to 1% or from 0% to 0.5%, particularly preferably from 0% to 0.1%.
- P2O3 is a component which improves the ion exchange performance. In particular, P2O3 is a component which increases the depth of layer. However, when the content of P2O3 is too large, the glass manifests phase separation and the water resistance is liable to be reduced. Therefore, the content of P2O3 is preferably 8% or less, 5% or less, 4% or less, 2% or less, 1% or less, 0.5% or less, or 0.2% or less, particularly preferably 0.1% or less.
- As a fining agent, one kind or two or more kinds selected from the group consisting of As2O3, Sb2O3, CeO2, SnO2, F, Cl, and SO3 may be introduced in an amount of from 0% to 2%. It is preferred to use As2O3, Sb2O3, and F in an amount as small as possible from the environmental viewpoints, and each content thereof is preferably less than 0.1%. The fining agent is preferably one kind or two or more kinds selected from the group consisting of SnO2, SO3, and Cl, particularly preferably SnO2. The content of SnO2 is preferably from 0% to 1% or from 0.01% to 0.5%, particularly preferably from 0.1% to 0.6%. When the content of SnO2 is too large, the devitrification resistance is liable to be reduced. The content of SO3 is preferably from 0% to 0.1%, from 0.0001% to 0.1%, from 0.0003% to 0.08%, or from 0.0005% to 0.05%, particularly preferably from 0.001% to 0.03%. When the content of SO3 is too large, SO3 reboils at the time of melting, with the result that bubble quality is liable to be reduced. The content of Cl is preferably from 0% to 0.5%, from 0% to 0.1%, from 0% to 0.09%, or from 0% to 0.05%, particularly preferably from 0.001% to 0.03%. When the content of Cl is too large, metal wiring is liable to be eroded at the time of forming a metal wiring pattern or the like on the tempered glass.
- Transition metal oxides, such as CoO3 and NiO, are components which cause intense coloration of glass to reduce a transmittance. Therefore, the content of the transition metal oxides is preferably 0.5% or less or 0.1% or less, particularly preferably 0.05% or less in terms of a total content. It is desired to control the amount of impurities in raw materials and/or cullet of the glass so that the content of the transition metal oxides falls within such ranges.
- Rare earth oxides, such as Nd2O3 and La2O3, are components which increase the Young's modulus. However, the cost of the raw material itself is high, and when the rare earth oxides are contained in a large amount, the devitrification resistance is liable to be reduced. Therefore, the content of the rare earth oxides is preferably 3% or less, 2% or less, 1% or less, or 0.5% or less, particularly preferably 0.1% or less in terms of a total content.
- It is preferred to use PbO and Bi2O3 in an amount as small as possible from the environmental viewpoints, and the contents thereof are each preferably less than 0.1%.
- Components other than the above-mentioned components may be introduced, and the total content thereof is preferably 3% or less, particularly preferably 1% or less.
- In the tempered glass of the present invention, the compressive stress value of the compressive stress layer is preferably 450 MPa or more or 550 MPa or more, particularly preferably 700 MPa or more. As the compressive stress value becomes higher, the mechanical strength of the tempered glass becomes higher. Meanwhile, when an excessively large compressive stress is formed in the surface, micro cracks are generated on the surface, and the mechanical strength of the tempered glass may be reduced contrarily. Further, the formation of an excessively large compressive stress in the surface may cause an excessively high internal tensile stress. Therefore, the compressive stress value is preferably 1,300 MPa or less.
- The depth of layer is preferably 15 μm or more or 20 μm or more, particularly preferably 25 μm or more. As the depth of layer becomes larger, the tempered glass is less liable to be broken even when the tempered glass has a deep flaw. Meanwhile, when the depth of layer is too large, there is a risk in that the internal tensile stress is excessively increased. Therefore, the depth of layer is preferably 100 μm or less or 80 μm or less, particularly preferably less than 50 μm.
- The internal tensile stress is preferably 150 MPa or less, 100 MPa or less, or 80 MPa or less, particularly preferably 60 MPa or less. As the internal tensile stress becomes smaller, the probability that the tempered glass is broken owing to an internal defect becomes lower. However, when the internal tensile stress is extremely small, the compressive stress value and the depth of layer are liable to be reduced excessively. Therefore, the internal tensile stress is preferably 15 MPa or more or 20 MPa or more, particularly preferably 25 MPa or more. The internal tensile stress refers to a value calculated by the following mathematical formula.
-
Internal tensile stress=(compressive stress value×depth of layer)/(thickness of glass-depth of layer×2) - Internal tensile stress (MPa)
- Compressive stress value (MPa)
- Depth of layer (μm)
- Thickness of glass (μm)
- It is preferred that the tempered glass of the present invention have the following characteristics.
- The density is preferably 2.45 g/cm3 or less, 2.42 g/cm3 or less, 2.40 g/cm3 or less, or 2.38 g/cm3 or less, particularly preferably 2.36 g/cm3 or less. As the density becomes lower, the weight of the glass can be made lighter. The “density” refers to a value measured by a well-known Archimedes method.
- The strain point is preferably 530° C. or more, 550° C. or more, or 560° C. or more, particularly preferably 580° C. or more. As the strain point becomes higher, the compressive stress layer is less liable to disappear through heat treatment. In addition, when the strain point is high, stress relaxation is less liable to occur at the time of ion exchange, and hence a high compressive stress value is easily ensured.
- The annealing point is preferably 650° C. or less, 630° C. or less, or 610° C. or less, particularly preferably 595° C. or less. As the annealing point becomes lower, the thermal bending processing can be performed at lower temperature. As a result, an annealing time period and a cooling time period after the thermal bending processing can be shortened more.
- The softening point is preferably 950° C. or less, 900° C. or less, or 880° C. or less, particularly preferably 860° C. or less. As the softening point becomes lower, the thermal bending processing can be performed at lower temperature. As a result, the annealing time period and cooling time period after the thermal bending processing can be shortened. In addition, as the softening point becomes lower, burden on a mold becomes smaller when press molding is performed. Deterioration of a mold is often caused by a reaction between a metal material to be used for a mold and oxygen in the air, that is, an oxidation reaction. Such oxidation reaction allows the formation of a reaction product on the surface of the mold. As a result, press molding does not provide a predetermined shape in some cases. In addition, when the oxidation reaction occurs, ions in the glass are reduced to produce bubbles in some cases. The degree of the oxidation reaction varies depending on the press molding temperature or the softening point. As the press molding temperature and the softening point become lower, the oxidation reaction can be suppressed more.
- The temperature at a viscosity at high temperature of 104.0 dPa·s is preferably 1,400° C. or less or 1,350° C. or less, particularly preferably 1,330° C. or less. As the temperature at a viscosity at high temperature of 104.0 dPa·s becomes lower, a forming temperature is reduced more, and hence the manufacturing cost of the tempered glass can be reduced more.
- A value represented by (temperature at a viscosity at hightemperature of 104.0 dPa·s)−(softeningpoint) ispreferably 360° C. or more, 400° C. or more, 420° C. or more, or 430° C. or more, particularly preferably 440° C. or more. The thermal bending processing is performed in a temperature region between the temperature at a viscosity at high temperature of 104.0 dPa·s and the softening point. Therefore, when the value represented by (temperature at a viscosity at high temperature of 104.0 dPa·s)−(softening point) is too small, in the case where the thermal bending processing is performed at high temperature, a temperature range suitable for the thermal bending processing is narrowed, and hence the range of selection of manufacturing conditions of the thermal bending processing is narrowed.
- The temperature at a viscosity at high temperature of 102.5 dPa·s corresponds to a melting temperature, and is preferably 1,750° C. or less, 1,720° C. or less, 1,700° C. or less, 1,680° C. or less, or 1,660° C. or less, particularly preferably 1,640° C. or less. As the temperature at 102.5 dPa·s becomes lower, burden on a manufacturing facility, such as a melting furnace, becomes smaller at the time of melting, and bubble quality can be improved more. That is, as the temperature at 102.5 dPa·s becomes lower, the glass can be manufactured more inexpensively. The “temperature at a viscosity at high temperature of 102.5 dPa·s” refers to a value measured by a platinum sphere pull up method.
- The thermal expansion coefficient is preferably from 50×10−7/° C. to 75×10−7/° C., particularly preferably from 55×10−7/° C. to 70×10−7/° C. When the thermal expansion coefficient falls within the above-mentioned ranges, it becomes easy to match the thermal expansion coefficient with that of a peripheral member, such as a metal or an organic adhesive, thereby making it possible to prevent the separation of the peripheral member.
- The liquidus temperature is preferably 1,150° C. or less or 1,120° C. or less, particularly preferably 1,100° C. or less. When the liquidus temperature is high, a devitrified crystal is liable to be precipitated at the time of forming. The liquidus viscosity is preferably 104.6 dPa·s or more or 105.2 dPa·s or more, particularly preferably 103.3 dPa·s or more. When the liquidus viscosity is low, a devitrified crystal is liable to be precipitated at the time of forming.
- The thickness of the tempered glass (sheet thickness when the tempered glass has a sheet shape) is preferably 0.2 mm or more, 0.3 mm or more, or 0.5 mm or more, particularly preferably 0.7 mm or more. With this, the mechanical strength of the tempered glass can be maintained. Meanwhile, when the thickness of the tempered glass is large, the bending processability is liable to be reduced. Further, it becomes difficult to achieve weight saving of the tempered glass. Therefore, the thickness of the tempered glass is preferably 2.0 mm or less, 1.5 mm or less, or 1.0 mm or less, particularly preferably 0.85 mm or less.
- It is preferred that the tempered glass of the present invention have an unpolished surface. It is particularly preferred that the entire effective surface except end edge areas be unpolished. In addition, the average surface roughness (Ra) of the unpolished surface is preferably 10 Å or less or 5 Å or less, particularly preferably 2 Å or less. With this, an appropriate gloss can be imparted to the tempered glass. As a result, the tempered glass is easily applied to an exterior part. In addition, when the surface is unpolished, the tempered glass is less liable to be broken by a point impact. An unpolished glass sheet having satisfactory surface accuracy can be obtained when the molten glass is formed by an overflow down-draw method. Herein, the “average surface roughness (Ra)” refers to a value measured by a method in conformity with SEMI D7-97 “FPD Glass Substrate Surface Roughness Measurement Method.” In order to prevent a situation in which the glass is broken from an end surface (cut surface), an end edge region or the end surface is preferably subjected to chamfering processing.
- The tempered glass of the present invention preferably has a bending processed portion, such as a bent portion or a curved portion. With this, the design property of an exterior part or the like can be improved.
- The bent portion is formed preferably in at least one end edge area of the tempered glass having a rectangular shape, more preferably in opposing end edge areas. With this, when the tempered glass is applied to an exterior part or the like, its end surface is less liable to be exposed to an outside, and hence the design property of the exterior part or the like can be improved. Besides, a situation in which the tempered glass is broken from the end surface by a physical impact is easily prevented.
- The tempered glass of the present invention preferably has a flat sheet portion and the bent portion. With this, when the tempered glass is applied to as an exterior part or the like, the flat sheet portion is allowed to correspond to an operating area of a touch panel, and the surface of the bent portion (excluding the end surface) is allowed to correspond to an external side surface. In addition, in the case of allowing the surface of the bent portion (excluding the end surface) to correspond to the external side surface, the end surface is less liable to be exposed to the outside, and a situation in which the tempered glass is broken from the end surface by a physical impact is easily prevented.
- The curved portion is preferably formed in the overall width direction or in the overall length direction of the tempered glass. The curved portion is more preferably formed in the overall width direction and in the overall length direction of the tempered glass. With this, a stress is less liable to be concentrated in a specific portion, and when the tempered glass is applied to a window glass of an automobile or the like, the tempered glass is less liable to be broken by a physical impact. When the curved portion is formed in the overall width direction and in the overall length direction, it is preferred to set the degree of curve in the width direction and the degree of curve in the length direction to differ from each other. With this, the design property of the window glass of an automobile or the like can be improved.
- A glass to be tempered of the present invention is a glass to be tempered, which is to be subjected to ion exchange treatment, the glass to be tempered comprising as a glass composition, in terms of mass %, 59% to 75% of SiO2, 12% to 16.5% of Al2O3, 4% to 13% of B2O3, 7% to 13% of Na2O, and 0.1% to less than 3% of MgO. With this, both the ion exchange performance and the bending processability can be achieved. In addition, the glass to be tempered of the present invention has technical features (suitable glass composition range, suitable characteristics, and the like) similar to those of the tempered glass of the present invention. Therefore, a detailed description of the glass to be tempered of the present invention is omitted for convenience.
- The glass to be tempered of the present invention may be produced by placing a glass batch which is prepared to have a predetermined glass composition in a continuous melting furnace, melting the glass batch at from 1,500° C. to 1,650° C., fining the resultant, feeding the resultant to a forming apparatus, forming the molten glass, and annealing the glass.
- Various forming methods may be adopted as a forming method. For example, there may be adopted forming methods, such as down-draw methods (e.g., an overflow down-draw method, a slot down method, and a re-draw method), a float method, and a roll out method. In addition, the molten glass may be directly formed into a predetermined shape by press molding.
- The glass to be tempered of the present invention is preferably formed by an overflow down-draw method. With this, a glass which is unpolished and has improved surface quality can be produced. This is because in the case of adopting the overflow down-draw method, a surface to be the surface of the glass sheet does not come into contact with a trough-shaped refractory, and is formed in the form of a free surface. Herein, the overflow down-draw method is a method in which a molten glass is allowed to overflow from both sides of a heat-resistant trough-shaped structure, and the overflown molten glasses are down-drawn downwardly while combining them at the lower end of the trough-shaped structure, to thereby produce a glass to be tempered having a flat sheet shape.
- The tempered glass can be obtained by subjecting the glass to be tempered to ion exchange treatment. The ion exchange treatment may be performed by, for example, immersing the glass to be tempered in a KNO3 molten salt at from 400° C. to 550° C. for from 1 hour to 8 hours. The conditions of the ion exchange treatment may be optimally selected in consideration of the viscosity characteristics, applications, thickness, internal tensile stress, or the like of the glass.
- The thermal bending processing is preferably performed on a glass to be tempered before the ion exchange treatment, and also the grinding and/or polishing of the end surface is preferably performed on the glass to be tempered before the ion exchange treatment. Further, it is also preferred to perform the grinding and/or polishing of the end surface after the thermal bending processing in order to remove the dimensional error or the like after the thermal bending processing.
- The thermal bending processing is preferably performed on a glass to be tempered having a flat sheet shape. In addition, as a preferred thermal bending processing method, there is given a method involving subjecting the glass to be tempered having a flat sheet shape to press molding with a mold. With this, the dimensional accuracy of the glass to be tempered can be increased after the thermal bending processing.
- In addition, as another preferred thermal bending processing method, there is given a method involving sandwiching the glass to be tempered having a flat sheet shape in a sheet thickness direction with a certain mold to support the glass to be tempered, to thereby allow elastic deformation of the glass to be tempered into a curved state, and then, while keeping this state, subjecting the glass to be tempered, which has been elastically deformed, to heat treatment, to thereby obtain a glass to be tempered having a curved portion (particularly a glass to be tempered having a curved portion in which the entire glass is curved in an arc in a sheet width direction). By such method, a flaw to be caused on the surface of the glass to be tempered owing to displacement or the like in association with the operation of allowing the elastic deformation can be suitably avoided. As a result, a defect or a flaw can be prevented on the surface of the curved portion as much as possible.
- A temperature of the thermal bending processing is preferably (annealing point−10°) C. or more, (annealing point−5) ° C. or more, or (annealing point+5) ° C. or more, particularly preferably (annealing point+20) ° C. or more. With this, the thermal bending processing can be performed in a short time period. Meanwhile, the temperature of the thermal bending processing is preferably (softening point−5) ° C. or less, (softening point−15) ° C. or less, or (softening point−20°) C. or less, particularly preferably (softening point−30) ° C. or less. With this, surface smoothness is less liable to be impaired through the thermal bending processing, and dimensional accuracy after the thermal bending processing can be improved as well.
- Now, the present invention is described in detail based on Examples. The following Examples are merely illustrative. The present invention is by no means limited to the following Examples.
- Examples of the present invention (Nos. 1 to 10) are shown in Table 1.
-
TABLE 1 Glass composition [mass %] No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 SiO2 68.34 67.89 70.29 66.06 65.01 63.75 63.81 72.61 64.27 59.72 Al2O3 12.76 15.82 12.82 12.75 15.81 15.73 12.74 12.83 12.68 15.64 B2O3 8.71 4.32 4.38 8.70 4.32 8.59 8.70 4.38 12.99 12.81 Na2O 7.75 9.62 10.13 10.07 12.59 9.56 12.38 7.80 7.71 9.51 K2O 0.010 0.003 0.000 0.001 0.004 0.000 0.008 0.000 0.001 0.003 MgO 1.81 1.88 1.90 1.89 1.86 1.80 1.89 1.90 1.88 1.85 CaO 0.06 0.00 0.00 0.05 0.01 0.09 0.00 0.01 0.00 0.00 ZrO2 0.09 0.00 0.01 0.01 0.03 0.01 0.00 0.00 0.05 0.00 SnO2 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.46 Density [g/cm3] 2.32 2.36 2.37 2.36 2.40 2.35 2.40 2.33 2.30 2.33 Strain point [° C.] 556 589 563 539 561 556 535 593 531 535 Annealing point [° C.] 612 647 614 584 609 608 575 655 581 584 Softening point [° C.] Not 944 878 820 856 877 770 969 841 834 measured 104.0 dPa · s [° C.] 1,361 1,392 1,335 1,250 1,273 1,326 1,153 1,445 1,307 1,280 103.0 dPa · s [° C.] 1,588 1,608 1,567 1,483 1,494 1,531 1,373 1,674 1,531 1,494 102.5 dPa · s [° C.] 1,734 1,746 1,715 1,619 1,637 1,659 1,520 1,818 1,664 1,613 104.0 dPa · s-softening Not 448 458 431 418 449 383 476 466 447 point [° C.] measured Thermal expansion coefficient 53 62 63 62 73 62 72 53 54 60 [×10−7/° C.] (30° C.-380° C.) Young's modulus [GPa] 64 Not 69 67 69 65 69 67 62 63 measured Specific Young's modulus 27.7 Not 29.0 28.4 28.8 27.7 28.9 28.8 26.9 26.9 [GPa/(g/cm3)] measured Liquidus temperature [° C.] Not 1,131 1,034 1,022 1,001 1,114 1,013 Not 1,106 1,122 measured measured Liquidus viscosity [dPa · s] Not 5.7 6.0 5.5 5.9 5.3 4.9 Not 5.2 4.9 measured measured Compressive stress value 489 677 634 587 760 616 687 523 438 557 [MPa] Depth of layer [μm] 24 30 25 20 26 23 23 29 18 19 - Each sample was prepared as described below. First, glass raw materials were blended so as to achieve the glass composition shown in the table, and the resultant was melted at 1,600° C. for 8 hours by using a platinum pot. Next, the molten glass was poured onto a carbon sheet and formed into a flat sheet shape. Various properties of the resultant glass sheet were evaluated.
- The density is a value measured by a well-known Archimedes method.
- The strain point and the annealing point are values measured based on a method of ASTM C336. The softening point is a value measured based on a method of ASTM C338.
- The temperatures at viscosities at high temperature of 104.0 dPa·s, 103.0 dPa·s, and 102.5 dPa·s are values measured by a platinum sphere pull up method.
- The thermal expansion coefficient is a value measured with a dilatometer and is an average value in the temperature range of from 30° C. to 380° C.
- The Young's modulus is a value measured by a flexural resonance method. In addition, the specific Young's modulus is a value obtained by dividing the Young's modulus by the density.
- The liquidus temperature is a value obtained as follows: the glass is pulverized; then glass powder that passes through a standard 30-mesh sieve (sieve opening: 500 μm) and remains on a 50-mesh sieve (sieve opening: 300 μm) is placed in a platinum boat and kept for 24 hours in a gradient heating furnace; and a temperature at which a crystal is deposited is measured. The liquidus viscosity is a value obtained by measuring the viscosity of glass at a liquidus temperature by a platinum ball pull up method.
- The samples were each immersed in a KNO3 bath kept at 430° C. for 4 hours to be subjected to ion exchange treatment, to thereby obtain tempered glasses. In each of the tempered glasses, the compressive stress value and depth of layer of the compressive stress layer were measured by observing the number of interference fringes and the intervals of the interference fringes using a surface stress meter (FSM-6000 manufactured by Orihara Industrial Co., Ltd.). At the time of measurement, a refractive index was set to 1.52 and an optical elastic constant was set to 30 [(nm/cm)/MPa] for each sample.
- In preparing each sample in the table, a molten glass was flown, formed into a flat sheet shape, and then the resultant was optically polished before the ion exchange treatment, for convenience of description of the present invention. When the tempered glass is manufactured on an industrial scale, the following procedure is preferred: the glass is formed into a flat sheet shape by an overflow down-draw method or the like, and cut processed into a rectangular shape; and then the glass in a state in which its surface is unpolished is subjected to ion exchange treatment, to thereby produce the tempered glass.
- As apparent from Table 1, Sample Nos. 1 to 10, in each of which the glass composition was restricted to the predetermined range, had a compressive stress value of 438 MPa or more, a softening point of 969° C. or less, and a liquidus viscosity of 104.9 dPa·s or more. Therefore, Sample Nos. 1 to 10 each have satisfactory ion exchange performance, satisfactory bending processability, and satisfactory devitrification resistance.
- With regard to Sample Nos. 1 to 10, a glass sheet having a thickness of 0.7 mm was produced by an overflow down-draw method, and press molded using a mold made of mullite at a temperature lower than the softening point by 30° C. Further, the glass sheet having been removed from the mold was immersed in a KNO3 bath kept at 430° C. for 4 hours to be subjected to ion exchange treatment. Thus, tempered glasses each having a bending processed portion were produced.
- While the tempered glass of the present invention is suitable for, for example, a cover glass for a mobile phone, exterior parts for a mobile PC and the like, and window glasses for an automobile, a train, a ship, and the like, the tempered glass of the present invention is also suitable for a substrate for a magnetic disk, a substrate for a flat panel display, a substrate and a cover glass for a solar cell, a cover glass for a solid state image sensor, tableware, and an ampoule tube for medical purposes in addition to the above-mentioned applications.
Claims (14)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018140879A JP7335541B2 (en) | 2018-07-27 | 2018-07-27 | tempered glass and tempered glass |
JP2018-140879 | 2018-07-27 | ||
PCT/JP2019/024291 WO2020021918A1 (en) | 2018-07-27 | 2019-06-19 | Tempered glass and glass for tempering |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210292218A1 true US20210292218A1 (en) | 2021-09-23 |
Family
ID=69182228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/260,337 Pending US20210292218A1 (en) | 2018-07-27 | 2019-06-19 | Tempered glass and glass to be tempered |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210292218A1 (en) |
JP (1) | JP7335541B2 (en) |
KR (1) | KR20210038536A (en) |
CN (1) | CN112469678A (en) |
WO (1) | WO2020021918A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100087307A1 (en) * | 2007-06-07 | 2010-04-08 | Nippon Electric Glass Co., Ltd. | Strengthened glass substrate and process for producing the same |
US20110201490A1 (en) * | 2009-08-21 | 2011-08-18 | Barefoot Kristen L | Crack and scratch resistant glass and enclosures made therefrom |
US20150079400A1 (en) * | 2013-09-13 | 2015-03-19 | Corning Incorporated | Ion exchangeable glasses with high crack initiation threshold |
US20150140299A1 (en) * | 2013-11-20 | 2015-05-21 | Corning Incorporated | Scratch-resistant boroaluminosilicate glass |
US20150314571A1 (en) * | 2014-05-02 | 2015-11-05 | Corning Incorporated | Strengthened glass and compositions therefor |
US20150329418A1 (en) * | 2013-03-25 | 2015-11-19 | Nippon Electric Glass Co., Ltd. | Reinforced glass substrate and method for producing same |
US20160137550A1 (en) * | 2013-07-08 | 2016-05-19 | Nippon Electric Glass Co., Ltd. | Tempered glass and glass for tempering |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4475443B2 (en) | 2000-03-02 | 2010-06-09 | ハイテックエンジニアリング株式会社 | Method for producing bent glass |
US7168047B1 (en) | 2002-05-28 | 2007-01-23 | Apple Computer, Inc. | Mouse having a button-less panning and scrolling switch |
JP2005104773A (en) | 2003-09-30 | 2005-04-21 | Toyo Glass Co Ltd | Glass material for information recording glass substrate, information recording glass substrate, information recording disk, and hard disk drive |
JP2006083045A (en) | 2004-09-17 | 2006-03-30 | Hitachi Ltd | Glass member |
JP5867953B2 (en) * | 2008-06-27 | 2016-02-24 | 日本電気硝子株式会社 | Tempered glass and tempered glass |
US20150004390A1 (en) * | 2012-06-08 | 2015-01-01 | Nippon Electric Glass Co., Ltd. | Tempered glass, tempered glass plate, and glass for tempering |
CN104955779B (en) * | 2013-06-06 | 2017-03-08 | 旭硝子株式会社 | Chemical enhanced use glass and the manufacture method of chemically reinforced glass and chemically reinforced glass |
JP2017081761A (en) | 2014-03-13 | 2017-05-18 | 旭硝子株式会社 | Glass for chemically strengthening and chemically strengthened glass |
US9902644B2 (en) | 2014-06-19 | 2018-02-27 | Corning Incorporated | Aluminosilicate glasses |
CN108779025B (en) | 2016-04-01 | 2021-08-10 | 日本电气硝子株式会社 | Chemically strengthened glass |
-
2018
- 2018-07-27 JP JP2018140879A patent/JP7335541B2/en active Active
-
2019
- 2019-06-19 WO PCT/JP2019/024291 patent/WO2020021918A1/en active Application Filing
- 2019-06-19 US US17/260,337 patent/US20210292218A1/en active Pending
- 2019-06-19 CN CN201980049497.7A patent/CN112469678A/en active Pending
- 2019-06-19 KR KR1020217000617A patent/KR20210038536A/en not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100087307A1 (en) * | 2007-06-07 | 2010-04-08 | Nippon Electric Glass Co., Ltd. | Strengthened glass substrate and process for producing the same |
US20110201490A1 (en) * | 2009-08-21 | 2011-08-18 | Barefoot Kristen L | Crack and scratch resistant glass and enclosures made therefrom |
US20150329418A1 (en) * | 2013-03-25 | 2015-11-19 | Nippon Electric Glass Co., Ltd. | Reinforced glass substrate and method for producing same |
US20160137550A1 (en) * | 2013-07-08 | 2016-05-19 | Nippon Electric Glass Co., Ltd. | Tempered glass and glass for tempering |
US20150079400A1 (en) * | 2013-09-13 | 2015-03-19 | Corning Incorporated | Ion exchangeable glasses with high crack initiation threshold |
US20150140299A1 (en) * | 2013-11-20 | 2015-05-21 | Corning Incorporated | Scratch-resistant boroaluminosilicate glass |
US20150314571A1 (en) * | 2014-05-02 | 2015-11-05 | Corning Incorporated | Strengthened glass and compositions therefor |
Also Published As
Publication number | Publication date |
---|---|
CN112469678A (en) | 2021-03-09 |
JP7335541B2 (en) | 2023-08-30 |
JP2020015654A (en) | 2020-01-30 |
WO2020021918A1 (en) | 2020-01-30 |
KR20210038536A (en) | 2021-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10173923B2 (en) | Tempered glass, tempered glass plate, and glass for tempering | |
US11274057B2 (en) | Ion exchangeable high damage resistance glasses | |
KR102157060B1 (en) | Tempered glass and glass for tempering | |
US9809486B2 (en) | Tempered glass and glass | |
US11964908B2 (en) | Tempered glass sheet and method for manufacturing same | |
US8652979B2 (en) | Tempered glass substrate | |
JP6300177B2 (en) | Method for producing tempered glass | |
US20210214269A1 (en) | Tempered glass and glass for tempering | |
JP2012087040A (en) | Tempered glass and method for manufacturing the same | |
US20150044473A1 (en) | Strengthened glass substrate manufacturing method and strengthened glass substrate | |
US20230083077A1 (en) | Strengthened glass plate and glass plate for strengthening | |
JP7335557B2 (en) | tempered glass and tempered glass | |
US20230049035A1 (en) | Cover glass | |
JP2013040095A (en) | Tempered glass, glass for tempering, and method for manufacturing tempered glass | |
JP7335541B2 (en) | tempered glass and tempered glass | |
WO2022172813A1 (en) | Strengthened glass sheet and manufacturing method therefor | |
WO2023286668A1 (en) | Glass plate for tempering, and tempered glass plate | |
US20230399258A1 (en) | Toughened glass plate, method for manufacturing toughened glass plate, and glass plate to be toughened | |
WO2024143156A1 (en) | Glass, glass plate for reinforcement, and reinforced glass plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NIPPON ELECTRIC GLASS CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUZUKI, RYOTA;REEL/FRAME:054921/0847 Effective date: 20200804 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |