US20210275240A1 - Device for driving fixation elements into bone and method of use thereof - Google Patents

Device for driving fixation elements into bone and method of use thereof Download PDF

Info

Publication number
US20210275240A1
US20210275240A1 US17/328,844 US202117328844A US2021275240A1 US 20210275240 A1 US20210275240 A1 US 20210275240A1 US 202117328844 A US202117328844 A US 202117328844A US 2021275240 A1 US2021275240 A1 US 2021275240A1
Authority
US
United States
Prior art keywords
bone
fastener
fixation element
barrel
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/328,844
Inventor
Ather Mirza
Romi Mirza
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A M Surgical Inc
Original Assignee
A M Surgical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A M Surgical Inc filed Critical A M Surgical Inc
Priority to US17/328,844 priority Critical patent/US20210275240A1/en
Publication of US20210275240A1 publication Critical patent/US20210275240A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/92Impactors or extractors, e.g. for removing intramedullary devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/72Intramedullary pins, nails or other devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/846Nails or pins, i.e. anchors without movable parts, holding by friction only, with or without structured surface
    • A61B17/848Kirschner wires, i.e. thin, long nails
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/92Impactors or extractors, e.g. for removing intramedullary devices
    • A61B17/921Impactors or extractors, e.g. for removing intramedullary devices for intramedullary devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00544Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated pneumatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00544Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated pneumatically
    • A61B2017/00548Gas cartridges therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0409Instruments for applying suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B2017/564Methods for bone or joint treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/92Impactors or extractors, e.g. for removing intramedullary devices
    • A61B2017/922Devices for impaction, impact element
    • A61B2017/924Impact element driving means

Definitions

  • This application generally relates to medical devices.
  • the application relates to a device for implanting fixtures into bone.
  • fixation elements such as Kirschner wires (k-wires) or intramedullary nails (IM nails).
  • k-wires Kirschner wires
  • IM nails intramedullary nails
  • the present application provides a device for effectively and rapidly driving fasteners and fixation elements into bone tissue using pneumatic pressure.
  • an implanting device for driving a fastener or fixation element into bone, comprising: a chamber for holding at least one fastener or fixation element, a barrel having a proximal end and a distal end, wherein said proximal end is connected to said chamber for propelling said fastener or fixation element from said chamber, a propulsion source functionally connected to said chamber, and a triggering mechanism for releasing propellant from said propulsion source into said chamber and charging said chamber in order to propel said fastener or fixation element from said chamber through said barrel and driving said fastener or fixation element into bone contacted with said distal end.
  • a pneumatic implanting device for driving a fastener or fixation element into bone, comprising: a chamber for holding at least one fastener or fixation element, a barrel having a proximal end and a distal end, wherein said proximal end is connected to said chamber for propelling said fastener or fixation element from said chamber, a gas source functionally connected to said chamber, and a triggering mechanism for releasing propellant gas from said gas source into said chamber and charging said chamber in order to propel said fastener or fixation element from said chamber through said barrel and driving said fastener or fixation element into bone contacted with said distal end.
  • Another aspect of the present application relates to a method for the fixation of a fractured long bone with an intramedullary nail, comprising: providing an access point to the medullary canal of said long bone, reducing the bone fragments at the fracture, contacting the distal end of the barrel of an implanting device for driving a fastener or fixation element into bone with said access point, aligning the barrel of said device with said medullary canal at said access point, and actuating the trigger mechanism of said implanting device to deliver an IM nail into said medullary canal, thereby fixing said bone fragments in said reduced state
  • said implanting device for driving a fastener or fixation element into bone comprises: a chamber for holding at least one fastener or fixation element, a barrel having a proximal end and a distal end, wherein said proximal end is connected to said chamber for propelling said fastener or fixation element from said chamber, a propellant source functionally connected to said chamber, and a triggering mechanism for releasing propel
  • Still another aspect of the present application relates to a method for the fixation a fractured bone using at least one k-wire, comprising: reducing at least one bone fragment with at least one adjacent fragment or the main body of the bone, contacting the distal end of the barrel of an implanting device for driving a fastener or fixation element into bone with said at least one bone fragment, said at least one adjacent fragment or said main body of the bone, aligning the implanting device with said at least one bone fragment and said at least one adjacent fragment or said main body of the bone, and actuating the trigger mechanism of said implanting device to deliver a k-wire affixing said at least one bone fragment to said at least one adjacent fragment or the main body of the bone, thereby fixing said at least one bone fragment in said reduced state
  • said implanting device for driving a fastener or fixation element into bone comprises: a chamber for holding at least one fastener or fixation element, a barrel having a proximal end and a distal end, wherein said proximal end is
  • kits comprising an implanting device for driving a fastener or fixation element into bone and a fastener or fixation element
  • said implanting device for driving a fastener or fixation element into bone comprises: a chamber for holding at least one fastener or fixation element, a barrel having a proximal end and a distal end, wherein said proximal end is connected to said chamber for propelling said fastener or fixation element from said chamber, a propellant source functionally connected to said chamber, and a triggering mechanism for releasing propellant from said propellant source into said chamber and charging said chamber in order to propel said fastener or fixation element from said chamber through said barrel and driving said fastener or fixation element into bone contacted with said distal end.
  • FIG. 1 shows an embodiment of the device of the present application.
  • One aspect of the present application relates to an implanting device for inserting fasteners and fixation elements into a bone.
  • the present device propels a projectile in order to introduce a fixation implant into a bone, either in a percutaneous or in an open (exposed bone) manner.
  • reduction refers to a medical procedure to restore a fracture to the correct alignment by moving the fragments into contact with one another in the correct position for bone healing.
  • a “fastener,” as used herein, refers to an element that partially embeds into bone or hard tissue to fasten or anchor ligament, tendon or suture material to the bone.
  • fasteners include, but are not limited to suture anchors, pins, screws and staples.
  • Fasteners of the present application can be composed of metal, plastic, bioabsorbable material, ceramic, other suitable material or combinations thereof.
  • fixation element refers to an element that completely partially embeds into bone, bone fragments or hard tissue to fasten in order to immobilize reduced bone fragments in a position where the fragments can grow together.
  • fixation elements include, but are not limited to k-wires and IM nails.
  • Fixation elements of the present application can be composed of any suitable bicompatible material including, but not limited to, metal alloys, plastic, bioabsorbable material, ceramic, or combinations thereof.
  • the device of the present application can be used to drive fasteners or fixation elements into and immobilize fragments of any fractured bone in a mammalian body.
  • said mammal is a human.
  • the bone is a long bone, having a shaft and two extremities.
  • Long bones are found in the limbs and include the clavicle, humerus, radius, ulna, femur, tibia, fibula, metacarpal and metatarsal bones, including the phalanges.
  • proximal end of a long bone refers to the extremity of the bone closest to the center of the body when the limb is extended.
  • distal end of a long bone refers to the extremity of the bone farthest from the center of the body when the limb is extended.
  • the device of the present application may be used to immobilize the fragments of a fracture at the proximal end of a long bone, the distal end of a long bone, or the shaft of a long bone, or a combination thereof.
  • proximal end of a device is the end that is towards the practitioner holding or operating the device.
  • distal end of a device, or a part of a device is the end that is towards the subject into whom a fastener is to be delivered.
  • the “distal” end of a fastener is the end of the fastener that is oriented towards the subject into whom the fastener is to be delivered, i.e., the end of the fastener that makes the initial contact with the bodily tissue of the subject.
  • the “proximal” end of a fastener is the end of the fastener that is opposite the “distal” end of the fastener.
  • the device of the present application can be used to immobilize the fragments of a fractured short bone, including the patella, sesamoid, carpal and tarsal bones.
  • the device of the present application can be used to immobilize the fragments of a fractured flat bone, including the skull, cranium, occipital, parietal, frontal, nasal, lachrymal, vomer, scapula, os innominatum, sternum, and rib bones.
  • the device of the present application can be used to immobilize the fragments of a fractured irregular bone, including the vertebrae, sacrum, coccyx, temporal, sphenoid, ethmoid, malar, superior maxillary, inferior maxillary, palate, inferior turbinated, and hyoid bones.
  • a fractured irregular bone including the vertebrae, sacrum, coccyx, temporal, sphenoid, ethmoid, malar, superior maxillary, inferior maxillary, palate, inferior turbinated, and hyoid bones.
  • the device comprises a chamber for holding at least one fastener or fixation element, a barrel having a proximal end and a distal end, wherein said barrel is for the delivery of the fastener or fixation element into bone, and a triggering mechanism for releasing a propulsion source.
  • said fastener or fixation element is selected from the group consisting of a Kirschner wire (k-wire), an intramedullary nail (IM nail) or a suture anchor.
  • said proximal end of the barrel is connected to said chamber for propelling said fastener or fixation element from said chamber, a propulsion source functionally connected to said chamber, and a triggering mechanism for releasing propellant from said propulsion source into said chamber and charging said chamber in order to propel said fastener or fixation element from said chamber through said barrel and driving said fastener or fixation element into bone contacted with said distal end.
  • the device further comprises a replaceable cartridge for containing said at least one fastener or fixation element in said chamber.
  • said cartridge is disposable.
  • said cartridge contains more than one fastener or fixation element.
  • said propellant is a gas and said propulsion source is a gas source.
  • said gas source is a tube that connects to an external gas supply.
  • said gas source is a replaceable canister of compressed gas.
  • said compressed gas is medical grade air.
  • said propulsion source is an explosive material and said propellant is the explosion of said explosive material.
  • the device comprises a piston for propelling a fastener or fixation element from the chamber, through the barrel from the proximal to the distal end and into the bone.
  • the piston has a proximal and a distal end and the distal end comprises a concave depression, cup, slot or other female-type feature into which the proximal end of the fastener or fixation element inserts or locates in order to secure and/or center the fastener or fixation element against the piston.
  • the pressure of the propellant builds up proximal to the piston in order to propel said piston in a distal direction when the triggering mechanism is actuated.
  • the piston comprises a retainer mechanism that prevents the piston from exiting the distal end of the barrel.
  • the piston is shaped such that the distal-most portion thereof protrudes from the barrel upon delivery of the fastener or fixation element into bone.
  • the device lacks a piston, wherein the fastener or fixation element fits into the barrel in such a manner that the propellant is contained in contact with and proximal to the fastener or fixation element.
  • said propellant drives said fastener or fixation element in a proximal to distal direction down the barrel into bone.
  • the device comprises a compressed or loaded spring located proximal to said chamber as a propulsion source and the release of the spring from compression or loading is the propellant for driving said at least one fastener or fixation element through said barrel into bone.
  • the device comprising a compressed or loaded spring further comprises a piston for propelling a fastener or fixation element from the chamber, through the barrel from the proximal to the distal end and into the bone.
  • the piston has a proximal and a distal end and the distal end comprises a concave depression, cup, slot or other female-type feature into which the proximal end of the fastener or fixation element inserts or locates in order to secure and/or center the fastener or fixation element against the piston.
  • the tension of the compressed or loaded spring builds up proximal to the piston in order to propel said piston in a distal direction when the triggering mechanism is actuated.
  • the piston comprises a retainer mechanism that prevents the piston from exiting the distal end of the barrel.
  • the piston is shaped such that the distal-most portion thereof protrudes from the barrel upon delivery of the fastener or fixation element into bone.
  • the device comprising a compressed or loaded spring lacks a piston, wherein the fastener or fixation element fits into the barrel in such a manner that the compressed or loaded spring is in contact with and proximal to the fastener or fixation element. Upon actuation of the triggering mechanism releasing the spring, said compressed or loaded spring drives said fastener or fixation element in a proximal to distal direction down the barrel into bone.
  • the device comprises a stretched elastic element and the contraction of said elastic element is the propellant for driving said at least one fastener or fixation element through said barrel into bone.
  • the device comprising a stretched elastic element further comprises a piston for propelling a fastener or fixation element from the chamber, through the barrel from the proximal to the distal end and into the bone.
  • the piston has a proximal and a distal end and the distal end comprises a concave depression, cup, slot or other female-type feature into which the proximal end of the fastener or fixation element inserts or locates in order to secure and/or center the fastener or fixation element against the piston.
  • the tension of the stretched elastic element builds up proximal to the piston in order to propel said piston in a distal direction when the triggering mechanism is actuated.
  • the piston comprises a retainer mechanism that prevents the piston from exiting the distal end of the barrel.
  • the piston is shaped such that the distal-most portion thereof protrudes from the barrel upon delivery of the fastener or fixation element into bone.
  • the device comprising stretched elastic element lacks a piston, wherein the fastener or fixation element fits into the barrel in such a manner that the stretched elastic element is in contact with and proximal to the fastener or fixation element. Upon actuation of the triggering mechanism, said stretched elastic element drives said fastener or fixation element in a proximal to distal direction down the barrel into bone.
  • the device comprises a friction mechanism for driving a fastener or fixation device in a proximal to distal direction down the barrel and into bone.
  • said friction mechanism comprises at least one wheel that contacts the side of said fastener or fixation device, wherein rotation of said at least one wheel drives said fastener or fixation device in a proximal to distal direction down the barrel and into bone.
  • the device comprises two wheels that are opposite one another, gripping said fastener or fixation device between them.
  • the at least one wheel is made from a flexible material including, but not limited to, silicon, rubber, latex, plastic or a combination thereof, including embodiments wherein one material is layered upon another material.
  • the at least one wheel is made of a rigid material, such as, but not limited to metal alloys, plastic or ceramic. In some embodiments, the at least one wheel is made from a rigid material coated with a flexible material. In other embodiments, the at least one wheel is made of a rigid material and is toothed, wherein the teeth grip notches in the sides of a fastener or fixation device.
  • the device comprises a cam and lever system for propelling at least one fastener or fixation element from the device into bone.
  • said triggering mechanism comprises a means for regulating the propulsion source. For example, in some embodiments thereof, regulating the pressure of the gas charging said chamber. In other embodiments thereof, the triggering mechanism regulates the amount of compression of the spring. In still other embodiments thereof, the triggering mechanism regulates the amount of contraction of the elastic element.
  • said trigger mechanism comprises a safety.
  • said safety prevents charging said chamber with gas when the distal end of said barrel is not in contact with bone.
  • said safety mechanism prevents actuation of the trigger mechanism when the distal end of said barrel is not in contact with bone.
  • the barrel is interchangeable.
  • barrels specific for a particular type of fastener or fixation element can be inserted into or removed from the device.
  • a barrel specific for the delivery of a K-wire may be initially installed in the device, such that a K-wire can be driven into bone.
  • suture anchors may be needed for the attachment of tendon. Accordingly, the practitioner can remove the K-wire specific barrel from the device and replace it with a barrel specific for a suture anchor of the desired size.
  • the interchangeable barrels for the device are disposable.
  • the device comprises an openable breach proximal to the barrel. Said openable breach allows the direct loading of at least one fastener or fixation element into the chamber or barrel. In some embodiments, the interchangeable barrel is installed into or removed from the device through the openable breach.
  • an implanting device of the present application is sterilizable. In other embodiments, an implanting device of the present application is disposable.
  • Another aspect of the present application relates to a method for the fixation of a fractured bone using the implanting device of the application.
  • the method comprises fixation of bone fragments of a long bone using an IM nail.
  • the method comprises the steps of: providing an access point to the medullary canal of said long bone, reducing the bone fragments at the fracture, aligning the implanting device with said medullary canal at said access point, and actuating the trigger mechanism of said implanting device to deliver an IM nail into said medullary canal, thereby fixing said bone fragments in said reduced state.
  • said access point is percutaneous. In other embodiments, said access point is open.
  • said access point is a hole in the bone.
  • said hole is created with a drill.
  • said hole is created with an awl.
  • said long bone is selected from the group consisting of metatarsal bones and metacarpal bones, wherein said metatarsal bones and metacarpal bones include the phalanges.
  • the method comprises fixation of bone fragments of a bone using at least one k-wire.
  • the method comprises the steps of reducing at least one bone fragment with at least one adjacent fragment or the main body of the bone, aligning the implanting device with said at least one bone fragment and said at least one adjacent fragment or the main body of the bone, and actuating the trigger mechanism of said implanting device to deliver a k-wire affixing said at least one bone fragment to said at least one adjacent fragment or the main body of the bone, thereby fixing said at least one bone fragment in said reduced state.
  • said bone is the humerus.
  • said at least one bone fragment is from the proximal end of the humerus.
  • said bone is the femur.
  • said at least one bone fragment is from the head of the femur.
  • said bone is a carpal bone or a tarsal bone.
  • the method comprises fixing two or more bones together to facilitate healing of ligaments.
  • the two or more bones are carpal bones or tarsal bones.
  • the proximal end of the K-wire is left protruding from the bone.
  • a cross-pin fixation device is attached to the protruding proximal ends of the K-wires for further reduction or stabilization of the fracture.
  • kits comprising an implantation device of the present application and a fastener or fixation element.
  • the fastener or fixation element is selected from the group consisting of a k-wire, an IM nail, bone screw and a suture anchor.
  • the kit further comprises a biocompatible filler or adhesive material.
  • the kit further comprises a replaceable cartridge for containing said at least one fastener or fixation element in said chamber.
  • said cartridge is disposable.
  • said cartridge contains more than one fastener or fixation element.
  • said implantation device is pneumatic.
  • said kit further comprises a propellant cartridge.
  • the propellant is compressed air.
  • FIG. 1 is a schematic view of one embodiment of the implanting device 100 .
  • the implanting device 100 is sterilizable. In other embodiments, the implanting device 100 is disposable.
  • the implanting device 100 comprises a barrel 110 for propelling the fastener or fixation element into the bone, which is placed in contact with, or in proximity to, the distal end 115 of the barrel 110 .
  • the device further comprises a chamber 120 which holds the fastener or fixation element.
  • the fastener or fixation element is held within a replaceable cartridge 180 that is inserted into the chamber 120 .
  • the cartridge holds a single fastener or fixation element.
  • the cartridge holds multiple fasteners or fixation elements 185 .
  • the cartridge is disposable.
  • the device is adapted to be used with a single type of fastener or fixation device. In other embodiments, the device is usable with multiple types fasteners or fixation devices. In further embodiments, the fasteners or fixation devices include, but are not limited to k-wires, IM nails, screws and suture anchors.
  • the fasteners or fixation elements or the cartridge that holds fasteners or fixation elements, is inserted into the implanting device 100 through an access panel 130 at the proximal end 135 of the implanting device 100 .
  • the fitting 140 comprises a tube.
  • the fitting 140 comprises a coupling for attaching to a gas source that provides a medically acceptable propellant gas.
  • the fitting 140 comprises both a tube and a coupling.
  • the gas source is an external source. In other embodiments, the gas source is a replaceable gas cartridge 150 . In some embodiments, the replaceable gas cartridge 150 is insertable into the handle 160 of the implanting device 100 . In some embodiments, the replaceable gas cartridge 150 is insertable through a port in the end 165 of the handle 160 . In other embodiments, the replaceable gas cartridge 150 is insertable into a socket in the side or back of the handle 160 .
  • the medically acceptable propellant gas is medical grade compressed air. In still other embodiments, the medically acceptable propellant gas comprises nitrogen, oxygen or carbon dioxide. In some embodiments the replaceable gas cartridge 150 is reusable. In other embodiments, the replaceable gas cartridge 150 is disposable.
  • the chamber 120 is charged with propellant gas from the fitting 140 by actuation of a trigger mechanism 170 .
  • Actuation of the trigger mechanism 170 allows the propellant gas to propel a fastener or fixation element down the barrel 110 and into the bone that is in contact with, or in proximity to, the distal end 115 of the barrel 110 .
  • the trigger mechanism 170 further comprises a control element for adjusting the pressure of the propellant gas that is released into the chamber 120 .
  • the implanting device 100 comprises a safety mechanism 190 such that the distal end of the barrel 115 must be in contact with tissue in order for the implanting device 100 to operate.
  • the trigger mechanism 170 cannot be actuated.
  • the trigger mechanism 170 can be actuated, but the chamber 120 is not charged with propellant gas from the fitting 140 .
  • the power for propelling a fastener or fixation element down the barrel of the implanting device 100 is provided by a mechanical device such as a spring, an electrical device such as a battery powered piston, or through a controlled explosion like in a firearm.
  • a male subject presents with a fracture near the distal end of the second metacarpal bone on the left hand.
  • the hand is x-rayed and the nature of the fracture indicates implantation of a bioabsorbable IM nail as the desired therapeutic approach.
  • the metacarpophalangeal joint is flexed 90 degrees exposing the metacarpal head, allowing direct access by the fixation device.
  • the fracture is reduced and held in place and the trigger mechanism of the fixation device is actuated, firing the IM nail through the metacarpal head into the medullary canal of the phalanx, immobilizing the reduced fragments of the metacarpal in the correct position to allow union of the fragments at the fracture.
  • the excess wire protruding is pulled out 4 mm proximally and trimmed and then tapped in all the way underneath the subcohondral bone.
  • a male subject presents with a fractured left patella.
  • the knee is x-rayed and it is found that the patella is broken transversely into upper and lower fragments. The decision is made to reduce the fracture and immobilize the fragments with k-wires using a tension band procedure.
  • the implanting device loaded with a cartridge comprising 2 mm diameter k-wires is contacted with the top of the patella and to one side of the tenaculum pincer.
  • the implanting device is aimed to fire through both fragments of the patella such that the distal end of a first k-wire will protrude through the bottom of the patella.
  • the trigger mechanism is actuated, forcing the first k-wire through the patella.
  • the implanting device is moved to the top edge of the patella on the other side of the tenaculum pincer and a second k-wire is driven through the patella, parallel to the first.
  • a thin k-wire is passed behind the proximal ends of the 2 mmk-wires protruding from the top of the patella.
  • the two ends of the thin k-wire are crossed over one another in front of the patella and one end is passed behind the distal ends of the 2 mm k-wires protruding from the bottom of the patella.
  • the two ends of the thin wire are brought together in front of the patella and twisted together until completely taut.
  • the distal ends of the 2 mm k-wires are trimmed and bent over the thin k-wire to secure it.
  • the proximal ends of the 2 mm k-wires are also trimmed and soft tissue caps are placed over them. The incision over the patella is sutured closed.

Abstract

A implanting device for driving a fastener or fixation element into bone is described. Also described are methods for using a implanting device for driving a fastener or fixation element into bone and a kit comprising a pneumatic implanting device for driving a fastener or fixation element into bone.

Description

  • This application is a continuation application of U.S. patent application Ser. No. 15/837,910, filed Dec. 11, 2017, which is a continuation application of U.S. patent application Ser. No. 14/644,838, filed Mar. 11, 2015, now U.S. Pat. No. 9,867,647, which claims the priority of U.S. Provisional Application Ser. No. 62/051,094, filed Sep. 16, 2014. The entirety of the aforementioned application is incorporated herein by reference.
  • FIELD
  • This application generally relates to medical devices. In particular, the application relates to a device for implanting fixtures into bone.
  • BACKGROUND
  • Complex and simple fractures of bones have been found to heal more quickly and efficiently when the fragments are held together with fixation elements such as Kirschner wires (k-wires) or intramedullary nails (IM nails). However, at times it can be difficult to insert fixation elements into the bone quickly enough or with sufficient force in order to make effective contact between the bone fragments in a reduced fracture.
  • The present application provides a device for effectively and rapidly driving fasteners and fixation elements into bone tissue using pneumatic pressure.
  • SUMMARY
  • One aspect of the present application relates to an implanting device for driving a fastener or fixation element into bone, comprising: a chamber for holding at least one fastener or fixation element, a barrel having a proximal end and a distal end, wherein said proximal end is connected to said chamber for propelling said fastener or fixation element from said chamber, a propulsion source functionally connected to said chamber, and a triggering mechanism for releasing propellant from said propulsion source into said chamber and charging said chamber in order to propel said fastener or fixation element from said chamber through said barrel and driving said fastener or fixation element into bone contacted with said distal end.
  • Another aspect of the present application relates to a pneumatic implanting device for driving a fastener or fixation element into bone, comprising: a chamber for holding at least one fastener or fixation element, a barrel having a proximal end and a distal end, wherein said proximal end is connected to said chamber for propelling said fastener or fixation element from said chamber, a gas source functionally connected to said chamber, and a triggering mechanism for releasing propellant gas from said gas source into said chamber and charging said chamber in order to propel said fastener or fixation element from said chamber through said barrel and driving said fastener or fixation element into bone contacted with said distal end.
  • Another aspect of the present application relates to a method for the fixation of a fractured long bone with an intramedullary nail, comprising: providing an access point to the medullary canal of said long bone, reducing the bone fragments at the fracture, contacting the distal end of the barrel of an implanting device for driving a fastener or fixation element into bone with said access point, aligning the barrel of said device with said medullary canal at said access point, and actuating the trigger mechanism of said implanting device to deliver an IM nail into said medullary canal, thereby fixing said bone fragments in said reduced state, wherein said implanting device for driving a fastener or fixation element into bone comprises: a chamber for holding at least one fastener or fixation element, a barrel having a proximal end and a distal end, wherein said proximal end is connected to said chamber for propelling said fastener or fixation element from said chamber, a propellant source functionally connected to said chamber, and a triggering mechanism for releasing propellant from said propellant source into said chamber and charging said chamber in order to propel said fastener or fixation element from said chamber through said barrel and driving said fastener or fixation element into bone contacted with said distal end.
  • Still another aspect of the present application relates to a method for the fixation a fractured bone using at least one k-wire, comprising: reducing at least one bone fragment with at least one adjacent fragment or the main body of the bone, contacting the distal end of the barrel of an implanting device for driving a fastener or fixation element into bone with said at least one bone fragment, said at least one adjacent fragment or said main body of the bone, aligning the implanting device with said at least one bone fragment and said at least one adjacent fragment or said main body of the bone, and actuating the trigger mechanism of said implanting device to deliver a k-wire affixing said at least one bone fragment to said at least one adjacent fragment or the main body of the bone, thereby fixing said at least one bone fragment in said reduced state, wherein said implanting device for driving a fastener or fixation element into bone comprises: a chamber for holding at least one fastener or fixation element, a barrel having a proximal end and a distal end, wherein said proximal end is connected to said chamber for propelling said fastener or fixation element from said chamber, a propulsion source functionally connected to said chamber, and a triggering mechanism for releasing propellant from said propulsion source into said chamber and charging said chamber in order to propel said fastener or fixation element from said chamber through said barrel and driving said fastener or fixation element into bone contacted with said distal end.
  • Yet another aspect of the present application relates to a kit comprising an implanting device for driving a fastener or fixation element into bone and a fastener or fixation element, wherein said implanting device for driving a fastener or fixation element into bone comprises: a chamber for holding at least one fastener or fixation element, a barrel having a proximal end and a distal end, wherein said proximal end is connected to said chamber for propelling said fastener or fixation element from said chamber, a propellant source functionally connected to said chamber, and a triggering mechanism for releasing propellant from said propellant source into said chamber and charging said chamber in order to propel said fastener or fixation element from said chamber through said barrel and driving said fastener or fixation element into bone contacted with said distal end.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings illustrate one or more embodiments of the present application and, together with the written description, serve to explain the principles of exemplary embodiments of the present application.
  • FIG. 1 shows an embodiment of the device of the present application.
  • DETAILED DESCRIPTION
  • The following detailed description is presented to enable any person skilled in the art to make and use the device. For purposes of explanation, specific nomenclature is set forth to provide a thorough understanding of the present device and methods. However, it will be apparent to one skilled in the art that these specific details are not required to practice the making or use of the device. Descriptions of specific applications are provided only as representative examples. The present device and methods are not intended to be limited to the embodiments shown, but is to be accorded the widest possible scope consistent with the principles and features disclosed herein.
  • One aspect of the present application relates to an implanting device for inserting fasteners and fixation elements into a bone. The present device propels a projectile in order to introduce a fixation implant into a bone, either in a percutaneous or in an open (exposed bone) manner.
  • As used herein, “reduction,” “reduced” and “reducing” refer to a medical procedure to restore a fracture to the correct alignment by moving the fragments into contact with one another in the correct position for bone healing.
  • A “fastener,” as used herein, refers to an element that partially embeds into bone or hard tissue to fasten or anchor ligament, tendon or suture material to the bone. Examples of fasteners include, but are not limited to suture anchors, pins, screws and staples. Fasteners of the present application can be composed of metal, plastic, bioabsorbable material, ceramic, other suitable material or combinations thereof.
  • A “fixation element,” as used herein, refers to an element that completely partially embeds into bone, bone fragments or hard tissue to fasten in order to immobilize reduced bone fragments in a position where the fragments can grow together. Examples of fixation elements include, but are not limited to k-wires and IM nails. Fixation elements of the present application can be composed of any suitable bicompatible material including, but not limited to, metal alloys, plastic, bioabsorbable material, ceramic, or combinations thereof.
  • The device of the present application can be used to drive fasteners or fixation elements into and immobilize fragments of any fractured bone in a mammalian body. In a particular embodiment, said mammal is a human.
  • In particular embodiments, the bone is a long bone, having a shaft and two extremities. Long bones are found in the limbs and include the clavicle, humerus, radius, ulna, femur, tibia, fibula, metacarpal and metatarsal bones, including the phalanges.
  • As used herein, the “proximal” end of a long bone refers to the extremity of the bone closest to the center of the body when the limb is extended. As used herein, the “distal” end of a long bone refers to the extremity of the bone farthest from the center of the body when the limb is extended. The device of the present application may be used to immobilize the fragments of a fracture at the proximal end of a long bone, the distal end of a long bone, or the shaft of a long bone, or a combination thereof.
  • As used herein, the “proximal” end of a device, or a part of a device, is the end that is towards the practitioner holding or operating the device. As used herein, the “distal” end of a device, or a part of a device, is the end that is towards the subject into whom a fastener is to be delivered.
  • As used herein, the “distal” end of a fastener is the end of the fastener that is oriented towards the subject into whom the fastener is to be delivered, i.e., the end of the fastener that makes the initial contact with the bodily tissue of the subject. As used herein, the “proximal” end of a fastener is the end of the fastener that is opposite the “distal” end of the fastener.
  • In other particular embodiments, the device of the present application can be used to immobilize the fragments of a fractured short bone, including the patella, sesamoid, carpal and tarsal bones.
  • In further particular embodiments, the device of the present application can be used to immobilize the fragments of a fractured flat bone, including the skull, cranium, occipital, parietal, frontal, nasal, lachrymal, vomer, scapula, os innominatum, sternum, and rib bones.
  • In additional particular embodiments, the device of the present application can be used to immobilize the fragments of a fractured irregular bone, including the vertebrae, sacrum, coccyx, temporal, sphenoid, ethmoid, malar, superior maxillary, inferior maxillary, palate, inferior turbinated, and hyoid bones.
  • One aspect of the present application relates to a pneumatic implanting device for driving a fastener or fixation element into bone. The device comprises a chamber for holding at least one fastener or fixation element, a barrel having a proximal end and a distal end, wherein said barrel is for the delivery of the fastener or fixation element into bone, and a triggering mechanism for releasing a propulsion source.
  • In some embodiments, said fastener or fixation element is selected from the group consisting of a Kirschner wire (k-wire), an intramedullary nail (IM nail) or a suture anchor.
  • In one embodiment of the device, said proximal end of the barrel is connected to said chamber for propelling said fastener or fixation element from said chamber, a propulsion source functionally connected to said chamber, and a triggering mechanism for releasing propellant from said propulsion source into said chamber and charging said chamber in order to propel said fastener or fixation element from said chamber through said barrel and driving said fastener or fixation element into bone contacted with said distal end.
  • In another embodiment, the device further comprises a replaceable cartridge for containing said at least one fastener or fixation element in said chamber. In a further embodiment, said cartridge is disposable. In another further embodiment, said cartridge contains more than one fastener or fixation element.
  • In another embodiment, said propellant is a gas and said propulsion source is a gas source. In some further embodiments, said gas source is a tube that connects to an external gas supply. In yet another further embodiment, said gas source is a replaceable canister of compressed gas. In a related embodiment, said compressed gas is medical grade air.
  • In still another embodiment, said propulsion source is an explosive material and said propellant is the explosion of said explosive material.
  • In particular embodiments, the device comprises a piston for propelling a fastener or fixation element from the chamber, through the barrel from the proximal to the distal end and into the bone. In some embodiments, the piston has a proximal and a distal end and the distal end comprises a concave depression, cup, slot or other female-type feature into which the proximal end of the fastener or fixation element inserts or locates in order to secure and/or center the fastener or fixation element against the piston. In some embodiments, the pressure of the propellant builds up proximal to the piston in order to propel said piston in a distal direction when the triggering mechanism is actuated.
  • In further embodiments, the piston comprises a retainer mechanism that prevents the piston from exiting the distal end of the barrel. In other embodiments, the piston is shaped such that the distal-most portion thereof protrudes from the barrel upon delivery of the fastener or fixation element into bone.
  • In other particular embodiments, the device lacks a piston, wherein the fastener or fixation element fits into the barrel in such a manner that the propellant is contained in contact with and proximal to the fastener or fixation element. Upon actuation of the triggering mechanism, said propellant drives said fastener or fixation element in a proximal to distal direction down the barrel into bone.
  • In another embodiment of the device, the device comprises a compressed or loaded spring located proximal to said chamber as a propulsion source and the release of the spring from compression or loading is the propellant for driving said at least one fastener or fixation element through said barrel into bone. In particular embodiments, the device comprising a compressed or loaded spring further comprises a piston for propelling a fastener or fixation element from the chamber, through the barrel from the proximal to the distal end and into the bone. In some embodiments, the piston has a proximal and a distal end and the distal end comprises a concave depression, cup, slot or other female-type feature into which the proximal end of the fastener or fixation element inserts or locates in order to secure and/or center the fastener or fixation element against the piston. In some embodiments, the tension of the compressed or loaded spring builds up proximal to the piston in order to propel said piston in a distal direction when the triggering mechanism is actuated. In further embodiments, the piston comprises a retainer mechanism that prevents the piston from exiting the distal end of the barrel. In other embodiments, the piston is shaped such that the distal-most portion thereof protrudes from the barrel upon delivery of the fastener or fixation element into bone. In other particular embodiments, the device comprising a compressed or loaded spring lacks a piston, wherein the fastener or fixation element fits into the barrel in such a manner that the compressed or loaded spring is in contact with and proximal to the fastener or fixation element. Upon actuation of the triggering mechanism releasing the spring, said compressed or loaded spring drives said fastener or fixation element in a proximal to distal direction down the barrel into bone.
  • In another embodiment of the device, the device comprises a stretched elastic element and the contraction of said elastic element is the propellant for driving said at least one fastener or fixation element through said barrel into bone. In particular embodiments, the device comprising a stretched elastic element further comprises a piston for propelling a fastener or fixation element from the chamber, through the barrel from the proximal to the distal end and into the bone. In some embodiments, the piston has a proximal and a distal end and the distal end comprises a concave depression, cup, slot or other female-type feature into which the proximal end of the fastener or fixation element inserts or locates in order to secure and/or center the fastener or fixation element against the piston. In some embodiments, the tension of the stretched elastic element builds up proximal to the piston in order to propel said piston in a distal direction when the triggering mechanism is actuated. In further embodiments, the piston comprises a retainer mechanism that prevents the piston from exiting the distal end of the barrel. In other embodiments, the piston is shaped such that the distal-most portion thereof protrudes from the barrel upon delivery of the fastener or fixation element into bone. In other particular embodiments, the device comprising stretched elastic element lacks a piston, wherein the fastener or fixation element fits into the barrel in such a manner that the stretched elastic element is in contact with and proximal to the fastener or fixation element. Upon actuation of the triggering mechanism, said stretched elastic element drives said fastener or fixation element in a proximal to distal direction down the barrel into bone.
  • In still another embodiment of the device, the device comprises a friction mechanism for driving a fastener or fixation device in a proximal to distal direction down the barrel and into bone. In some embodiments, said friction mechanism comprises at least one wheel that contacts the side of said fastener or fixation device, wherein rotation of said at least one wheel drives said fastener or fixation device in a proximal to distal direction down the barrel and into bone. In some embodiments, the device comprises two wheels that are opposite one another, gripping said fastener or fixation device between them. In some embodiments, the at least one wheel is made from a flexible material including, but not limited to, silicon, rubber, latex, plastic or a combination thereof, including embodiments wherein one material is layered upon another material. In some embodiments, the at least one wheel is made of a rigid material, such as, but not limited to metal alloys, plastic or ceramic. In some embodiments, the at least one wheel is made from a rigid material coated with a flexible material. In other embodiments, the at least one wheel is made of a rigid material and is toothed, wherein the teeth grip notches in the sides of a fastener or fixation device.
  • In yet another embodiment of the device, the device comprises a cam and lever system for propelling at least one fastener or fixation element from the device into bone.
  • In some embodiments, said triggering mechanism comprises a means for regulating the propulsion source. For example, in some embodiments thereof, regulating the pressure of the gas charging said chamber. In other embodiments thereof, the triggering mechanism regulates the amount of compression of the spring. In still other embodiments thereof, the triggering mechanism regulates the amount of contraction of the elastic element.
  • In yet another embodiment, said trigger mechanism comprises a safety. In some further embodiments, said safety prevents charging said chamber with gas when the distal end of said barrel is not in contact with bone. In some further embodiments, said safety mechanism prevents actuation of the trigger mechanism when the distal end of said barrel is not in contact with bone.
  • In some embodiments, the barrel is interchangeable. For example, in some procedures, several different diameters, sizes or types of fasteners or fixation elements may be needed. In order to facilitate delivery of said different fasteners or fixation elements, barrels specific for a particular type of fastener or fixation element can be inserted into or removed from the device. For example, a barrel specific for the delivery of a K-wire may be initially installed in the device, such that a K-wire can be driven into bone. Subsequently, suture anchors may be needed for the attachment of tendon. Accordingly, the practitioner can remove the K-wire specific barrel from the device and replace it with a barrel specific for a suture anchor of the desired size. In some embodiments, the interchangeable barrels for the device are disposable.
  • In some embodiments, the device comprises an openable breach proximal to the barrel. Said openable breach allows the direct loading of at least one fastener or fixation element into the chamber or barrel. In some embodiments, the interchangeable barrel is installed into or removed from the device through the openable breach.
  • In some embodiments, an implanting device of the present application is sterilizable. In other embodiments, an implanting device of the present application is disposable.
  • Another aspect of the present application relates to a method for the fixation of a fractured bone using the implanting device of the application.
  • In one embodiment, the method comprises fixation of bone fragments of a long bone using an IM nail. The method comprises the steps of: providing an access point to the medullary canal of said long bone, reducing the bone fragments at the fracture, aligning the implanting device with said medullary canal at said access point, and actuating the trigger mechanism of said implanting device to deliver an IM nail into said medullary canal, thereby fixing said bone fragments in said reduced state. In some embodiments, said access point is percutaneous. In other embodiments, said access point is open.
  • In a further embodiment, said access point is a hole in the bone. In a still further embodiment, said hole is created with a drill. In another still further embodiment, said hole is created with an awl.
  • In another further embodiment, said long bone is selected from the group consisting of metatarsal bones and metacarpal bones, wherein said metatarsal bones and metacarpal bones include the phalanges.
  • In another embodiment, the method comprises fixation of bone fragments of a bone using at least one k-wire. The method comprises the steps of reducing at least one bone fragment with at least one adjacent fragment or the main body of the bone, aligning the implanting device with said at least one bone fragment and said at least one adjacent fragment or the main body of the bone, and actuating the trigger mechanism of said implanting device to deliver a k-wire affixing said at least one bone fragment to said at least one adjacent fragment or the main body of the bone, thereby fixing said at least one bone fragment in said reduced state.
  • In a further embodiment, said bone is the humerus. In a still further embodiment, said at least one bone fragment is from the proximal end of the humerus.
  • In another further embodiment, said bone is the femur. In a still further embodiment, said at least one bone fragment is from the head of the femur.
  • In yet another further embodiment, said bone is a carpal bone or a tarsal bone.
  • In some further embodiments, the method comprises fixing two or more bones together to facilitate healing of ligaments. In some embodiments, the two or more bones are carpal bones or tarsal bones.
  • In some embodiments, the proximal end of the K-wire is left protruding from the bone. In a further embodiment, a cross-pin fixation device is attached to the protruding proximal ends of the K-wires for further reduction or stabilization of the fracture.
  • Another aspect of the present application relates to a kit comprising an implantation device of the present application and a fastener or fixation element.
  • In one embodiment, the fastener or fixation element is selected from the group consisting of a k-wire, an IM nail, bone screw and a suture anchor. In some embodiments, the kit further comprises a biocompatible filler or adhesive material.
  • In another embodiment, the kit further comprises a replaceable cartridge for containing said at least one fastener or fixation element in said chamber. In a further embodiment, said cartridge is disposable. In another further embodiment, said cartridge contains more than one fastener or fixation element.
  • In another embodiment, said implantation device is pneumatic. In a further embodiment, said kit further comprises a propellant cartridge. In some embodiments, the propellant is compressed air.
  • FIG. 1 is a schematic view of one embodiment of the implanting device 100. In some embodiments, the implanting device 100 is sterilizable. In other embodiments, the implanting device 100 is disposable.
  • The implanting device 100 comprises a barrel 110 for propelling the fastener or fixation element into the bone, which is placed in contact with, or in proximity to, the distal end 115 of the barrel 110. The device further comprises a chamber 120 which holds the fastener or fixation element.
  • In some embodiments, the fastener or fixation element is held within a replaceable cartridge 180 that is inserted into the chamber 120. In some embodiments, the cartridge holds a single fastener or fixation element. In other embodiments, the cartridge holds multiple fasteners or fixation elements 185. In particular embodiments, the cartridge is disposable.
  • In some embodiments, the device is adapted to be used with a single type of fastener or fixation device. In other embodiments, the device is usable with multiple types fasteners or fixation devices. In further embodiments, the fasteners or fixation devices include, but are not limited to k-wires, IM nails, screws and suture anchors.
  • In particular embodiments, the fasteners or fixation elements, or the cartridge that holds fasteners or fixation elements, is inserted into the implanting device 100 through an access panel 130 at the proximal end 135 of the implanting device 100.
  • Pressure for propelling a fastener or fixation element down the barrel 110 of the implanting device 100 is provided through a fitting 140 that is affixed to the chamber 120. In some embodiments, the fitting 140 comprises a tube. In other embodiments, the fitting 140 comprises a coupling for attaching to a gas source that provides a medically acceptable propellant gas. In still other embodiments, the fitting 140 comprises both a tube and a coupling.
  • In some embodiments, the gas source is an external source. In other embodiments, the gas source is a replaceable gas cartridge 150. In some embodiments, the replaceable gas cartridge 150 is insertable into the handle 160 of the implanting device 100. In some embodiments, the replaceable gas cartridge 150 is insertable through a port in the end 165 of the handle 160. In other embodiments, the replaceable gas cartridge 150 is insertable into a socket in the side or back of the handle 160.
  • In some embodiments, the medically acceptable propellant gas is medical grade compressed air. In still other embodiments, the medically acceptable propellant gas comprises nitrogen, oxygen or carbon dioxide. In some embodiments the replaceable gas cartridge 150 is reusable. In other embodiments, the replaceable gas cartridge 150 is disposable.
  • The chamber 120 is charged with propellant gas from the fitting 140 by actuation of a trigger mechanism 170. Actuation of the trigger mechanism 170 allows the propellant gas to propel a fastener or fixation element down the barrel 110 and into the bone that is in contact with, or in proximity to, the distal end 115 of the barrel 110.
  • In some embodiments, the trigger mechanism 170 further comprises a control element for adjusting the pressure of the propellant gas that is released into the chamber 120.
  • Also, in some embodiments, the implanting device 100 comprises a safety mechanism 190 such that the distal end of the barrel 115 must be in contact with tissue in order for the implanting device 100 to operate. In some embodiments, unless the distal end of the barrel 115 is in contact with tissue, the trigger mechanism 170 cannot be actuated. In other embodiments, unless the distal end of the barrel 115 is in contact with tissue, the trigger mechanism 170 can be actuated, but the chamber 120 is not charged with propellant gas from the fitting 140.
  • In some other embodiments, the power for propelling a fastener or fixation element down the barrel of the implanting device 100 is provided by a mechanical device such as a spring, an electrical device such as a battery powered piston, or through a controlled explosion like in a firearm.
  • The present application is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application, as well as the Figures and Tables, are incorporated herein by reference.
  • EXAMPLE 1 Reduction and Fixation of Fractured Metacarpal Bone
  • A male subject presents with a fracture near the distal end of the second metacarpal bone on the left hand. The hand is x-rayed and the nature of the fracture indicates implantation of a bioabsorbable IM nail as the desired therapeutic approach.
  • The metacarpophalangeal joint is flexed 90 degrees exposing the metacarpal head, allowing direct access by the fixation device. The fracture is reduced and held in place and the trigger mechanism of the fixation device is actuated, firing the IM nail through the metacarpal head into the medullary canal of the phalanx, immobilizing the reduced fragments of the metacarpal in the correct position to allow union of the fragments at the fracture. The excess wire protruding is pulled out 4 mm proximally and trimmed and then tapped in all the way underneath the subcohondral bone.
  • EXAMPLE 2 Reduction and Fixation of Fractured Patella
  • A male subject presents with a fractured left patella. The knee is x-rayed and it is found that the patella is broken transversely into upper and lower fragments. The decision is made to reduce the fracture and immobilize the fragments with k-wires using a tension band procedure.
  • Briefly, a longitudinal incision is made over the patella and the patella is exposed. The fracture is reduced and held in place with a tenaculum having the pincers contacting the top and bottom of the patella along the centerline.
  • The implanting device, loaded with a cartridge comprising 2 mm diameter k-wires is contacted with the top of the patella and to one side of the tenaculum pincer. The implanting device is aimed to fire through both fragments of the patella such that the distal end of a first k-wire will protrude through the bottom of the patella. The trigger mechanism is actuated, forcing the first k-wire through the patella. The implanting device is moved to the top edge of the patella on the other side of the tenaculum pincer and a second k-wire is driven through the patella, parallel to the first.
  • A thin k-wire is passed behind the proximal ends of the 2 mmk-wires protruding from the top of the patella. The two ends of the thin k-wire are crossed over one another in front of the patella and one end is passed behind the distal ends of the 2 mm k-wires protruding from the bottom of the patella. The two ends of the thin wire are brought together in front of the patella and twisted together until completely taut. The distal ends of the 2 mm k-wires are trimmed and bent over the thin k-wire to secure it. The proximal ends of the 2 mm k-wires are also trimmed and soft tissue caps are placed over them. The incision over the patella is sutured closed.
  • The above description is for the purpose of teaching the person of ordinary skill in the art how to practice the present application, and it is not intended to detail all those obvious modifications and variations of it which will become apparent to the skilled worker upon reading the description. It is intended, however, that all such obvious modifications and variations be included within the scope of the present application, which is defined by the following claims. The claims are intended to cover the components and steps in any sequence which is effective to meet the objectives there intended, unless the context specifically indicates the contrary.

Claims (21)

1-28. (canceled)
29. An implanting device for driving a fastener or fixation element into bone, comprising:
a chamber for holding a fastener or fixation element,
a barrel having a proximal end and a distal end, wherein the proximal end is connected to the chamber for propelling the fastener or fixation element from the chamber,
a propulsion source functionally connected to the chamber, wherein the propulsion source comprises a compressed or loaded spring, and
a triggering mechanism for releasing the spring from compression or loading, wherein the released spring propels the fastener or fixation element from the chamber through the barrel and driving the fastener or fixation element into bone contacted with the distal end.
30. The implanting device of claim 29, wherein the fastener or fixation element is selected from the group consisting of a Kirschner wire, an intramedullary nail or a suture anchor.
31. The implanting device of claim 29, further comprising a replaceable cartridge containing one or more fasteners or fixation elements.
32. The implanting device of claim 29, wherein the trigger mechanism comprises a safety that prevents releasing the spring when the distal end of the barrel is not in contact with bone.
33. The implanting device of claim 32, wherein the safety prevents actuation of the trigger mechanism when the distal end of the barrel is not in contact with bone.
34. A method for the fixation of a fractured long bone with an intramedullary nail, comprising:
providing an access point to the medullary canal of the long bone,
reducing the bone fragments at the fracture,
contacting the distal end of the barrel of the implanting device of claim 29 with the access point,
aligning the barrel of the implanting device with the medullary canal at the access point, and
actuating the trigger mechanism of the implanting device to deliver an intramedullary nail into the medullary canal, thereby fixing the bone fragments in the reduced state.
35. The method of claim 34, wherein the access point is a hole in the bone.
36. The method of claim 35, wherein the hole is created with a drill.
37. The method of claim 35, wherein the hole is created with an awl.
38. The method of claim 34, wherein the long bone is selected from the group consisting of metatarsal bones and metacarpal bones.
39. The method of claim 38, wherein the metatarsal bones and metacarpal bones include the phalanges.
40. A method for the fixation a fractured bone using at least one Kirschner wire, comprising:
reducing at least one bone fragment with at least one adjacent fragment or the main body of the bone;
contacting the distal end of the barrel of the implanting device of claim 29 with the at least one bone fragment, the at least one adjacent fragment or the main body of the bone;
aligning the implanting device with the at least one bone fragment and the at least one adjacent fragment or the main body of the bone; and
actuating the trigger mechanism of the implanting device to deliver a Kirschner wire affixing the at least one bone fragment to the at least one adjacent fragment or the main body of the bone, thereby fixing the at least one bone fragment in the reduced state.
41. The method of claim 40, wherein the bone is the humerus.
42. The method of claim 41, wherein the at least one bone fragment is from the proximal end of the humerus.
43. The method of claim 40, wherein the bone is the femur.
44. The method of claim 43, wherein the at least one bone fragment is from the head of the femur.
45. The method of claim 40, wherein the bone is a carpal bone or a tarsal bone.
46. A kit comprising the implantation device of claim 29 and a fastener or fixation element.
47. The kit of claim 46, wherein the fastener or fixation element is selected from the group consisting of a Kirschner wire, an intramedullary nail and a suture anchor.
48. The kit of claim 46, further comprising a replaceable cartridge containing one or more fasteners or fixation elements.
US17/328,844 2014-09-16 2021-05-24 Device for driving fixation elements into bone and method of use thereof Abandoned US20210275240A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/328,844 US20210275240A1 (en) 2014-09-16 2021-05-24 Device for driving fixation elements into bone and method of use thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462051094P 2014-09-16 2014-09-16
US14/644,838 US9867647B2 (en) 2014-09-16 2015-03-11 Device for driving fixation elements into bone and method of use thereof
US15/837,910 US10420598B2 (en) 2014-09-16 2017-12-11 Device for driving fixation elements into bone and method of use thereof
US16/518,540 US20190357957A1 (en) 2014-09-16 2019-07-22 Device for driving fixation elements into bone and method of use thereof
US17/328,844 US20210275240A1 (en) 2014-09-16 2021-05-24 Device for driving fixation elements into bone and method of use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/518,540 Continuation US20190357957A1 (en) 2014-09-16 2019-07-22 Device for driving fixation elements into bone and method of use thereof

Publications (1)

Publication Number Publication Date
US20210275240A1 true US20210275240A1 (en) 2021-09-09

Family

ID=55453631

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/644,838 Active 2035-04-21 US9867647B2 (en) 2014-09-16 2015-03-11 Device for driving fixation elements into bone and method of use thereof
US15/837,910 Active US10420598B2 (en) 2014-09-16 2017-12-11 Device for driving fixation elements into bone and method of use thereof
US16/518,540 Abandoned US20190357957A1 (en) 2014-09-16 2019-07-22 Device for driving fixation elements into bone and method of use thereof
US17/328,844 Abandoned US20210275240A1 (en) 2014-09-16 2021-05-24 Device for driving fixation elements into bone and method of use thereof

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US14/644,838 Active 2035-04-21 US9867647B2 (en) 2014-09-16 2015-03-11 Device for driving fixation elements into bone and method of use thereof
US15/837,910 Active US10420598B2 (en) 2014-09-16 2017-12-11 Device for driving fixation elements into bone and method of use thereof
US16/518,540 Abandoned US20190357957A1 (en) 2014-09-16 2019-07-22 Device for driving fixation elements into bone and method of use thereof

Country Status (3)

Country Link
US (4) US9867647B2 (en)
CN (1) CN107106211B (en)
WO (1) WO2016043807A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014011841A1 (en) * 2012-07-11 2014-01-16 Zimmer, Inc. Bone fixation tool
AU2015240573B2 (en) 2014-04-03 2019-03-21 Zimmer, Inc. Orthopedic tool for bone fixation
CN107106211B (en) * 2014-09-16 2020-02-04 A.M.外科有限公司 Device for driving a fixation element into bone and method of use thereof
CN105852959B (en) * 2016-05-03 2018-06-05 烟台海研制药有限公司 Orthopaedics takes nail equipment
CH712999A2 (en) * 2016-10-03 2018-04-13 Ibag Switzerland Medtech Gmbh Pneumatic impact tool for bone processing in hip surgery.
CN108186107B (en) * 2018-01-13 2019-08-23 新沂经济开发区建设发展有限公司 A kind of orthopedic kirschner pin propeller

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3219022A (en) * 1962-10-31 1965-11-23 Harrison P Hagemeyer Pneumatic gun for surgical use
US3602218A (en) * 1969-04-16 1971-08-31 Zimmer Mfg Co Sterile disposable finger pin
US4050528A (en) * 1975-09-05 1977-09-27 Concept, Inc. Wire inserter
US4450835A (en) * 1981-02-20 1984-05-29 Howmedica, Inc. Method and system for inserting a surgical wire
US5487499A (en) * 1993-10-08 1996-01-30 United States Surgical Corporation Surgical apparatus for applying surgical fasteners including a counter
US6578565B2 (en) * 2000-07-06 2003-06-17 Industrias El Gemo, Sa Air or gas-powered guns
US20050165403A1 (en) * 2004-01-26 2005-07-28 Miller Larry J. Impact-driven intraosseous needle
US20060241655A1 (en) * 2003-03-26 2006-10-26 Viola Frank J Energy stored in spring with controlled release
US7131503B2 (en) * 2004-02-10 2006-11-07 Makita Corporation Impact driver having a percussion application mechanism which operation mode can be selectively switched between percussion and non-percussion modes
US7481347B2 (en) * 2002-10-04 2009-01-27 Tyco Healthcare Group Lp Pneumatic powered surgical stapling device
US20090275946A1 (en) * 2008-05-05 2009-11-05 Duncan Scott F M Intramedullary Fixation Device for Small Bone Fractures
US20100305624A1 (en) * 2009-05-26 2010-12-02 Zimmer, Inc. Bone fixation tool
US20120041484A1 (en) * 2010-03-23 2012-02-16 Core Essence Orthopaedics, Inc. Medical device and procedure for attaching tissue to bone
US8485412B2 (en) * 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US20130204264A1 (en) * 2012-02-07 2013-08-08 OrthoWin S.A. Pneumatic Surgical Instrument and Corresponding Methods for Implanting Orthopedic Implants in Bone
US20160303729A1 (en) * 2015-04-14 2016-10-20 Robert Bosch Gmbh Tool attachment for a handheld power tool

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE169205T1 (en) 1993-03-30 1998-08-15 Integral Medizintechnik PNEUMATIC IMPACT TOOL
US6019761A (en) * 1998-12-23 2000-02-01 Gustilo; Ramon B. Intramedullary nail and method of use
US20070219565A1 (en) 2006-03-17 2007-09-20 Vahid Saadat Kinetic anchoring deployment system
US7448525B2 (en) * 2006-08-02 2008-11-11 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with manually operated retraction apparatus
WO2009109198A1 (en) * 2008-03-04 2009-09-11 Helmut Fricke Apparatus for joining or cutting
WO2014011841A1 (en) * 2012-07-11 2014-01-16 Zimmer, Inc. Bone fixation tool
CN107106211B (en) * 2014-09-16 2020-02-04 A.M.外科有限公司 Device for driving a fixation element into bone and method of use thereof

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3219022A (en) * 1962-10-31 1965-11-23 Harrison P Hagemeyer Pneumatic gun for surgical use
US3602218A (en) * 1969-04-16 1971-08-31 Zimmer Mfg Co Sterile disposable finger pin
US4050528A (en) * 1975-09-05 1977-09-27 Concept, Inc. Wire inserter
US4450835A (en) * 1981-02-20 1984-05-29 Howmedica, Inc. Method and system for inserting a surgical wire
US5487499A (en) * 1993-10-08 1996-01-30 United States Surgical Corporation Surgical apparatus for applying surgical fasteners including a counter
US6578565B2 (en) * 2000-07-06 2003-06-17 Industrias El Gemo, Sa Air or gas-powered guns
US7481347B2 (en) * 2002-10-04 2009-01-27 Tyco Healthcare Group Lp Pneumatic powered surgical stapling device
US20060241655A1 (en) * 2003-03-26 2006-10-26 Viola Frank J Energy stored in spring with controlled release
US20050165403A1 (en) * 2004-01-26 2005-07-28 Miller Larry J. Impact-driven intraosseous needle
US7131503B2 (en) * 2004-02-10 2006-11-07 Makita Corporation Impact driver having a percussion application mechanism which operation mode can be selectively switched between percussion and non-percussion modes
US8485412B2 (en) * 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US20090275946A1 (en) * 2008-05-05 2009-11-05 Duncan Scott F M Intramedullary Fixation Device for Small Bone Fractures
US20100305624A1 (en) * 2009-05-26 2010-12-02 Zimmer, Inc. Bone fixation tool
US20120041484A1 (en) * 2010-03-23 2012-02-16 Core Essence Orthopaedics, Inc. Medical device and procedure for attaching tissue to bone
US20130204264A1 (en) * 2012-02-07 2013-08-08 OrthoWin S.A. Pneumatic Surgical Instrument and Corresponding Methods for Implanting Orthopedic Implants in Bone
US20160303729A1 (en) * 2015-04-14 2016-10-20 Robert Bosch Gmbh Tool attachment for a handheld power tool

Also Published As

Publication number Publication date
US20160074088A1 (en) 2016-03-17
US20180360519A1 (en) 2018-12-20
US9867647B2 (en) 2018-01-16
WO2016043807A1 (en) 2016-03-24
US20190357957A1 (en) 2019-11-28
CN107106211A (en) 2017-08-29
CN107106211B (en) 2020-02-04
US10420598B2 (en) 2019-09-24

Similar Documents

Publication Publication Date Title
US20210275240A1 (en) Device for driving fixation elements into bone and method of use thereof
US10016198B2 (en) Staples for generating and applying compression within a body
US20170311948A1 (en) Staples for generating and applying compression within a body
US3763855A (en) Device for fixation of bone fractures
Agee Unstable Fracture Dislocations of the Proximal Interphalangeal Joint Treatment with the Force Couple Splint.
US4414967A (en) Internal fixation of bone, tendon, and ligaments
US8002812B2 (en) Bone fixation implant system and method
US10499900B2 (en) Implant devices and systems for stabilized fixation of bone and soft tissue
US20180325563A1 (en) Odontoid bullet
NZ551914A (en) Implant assembly device
US20210085376A1 (en) Surgical nail having a fixation bracket
Wilkerson et al. Surgical techniques of olecranon fractures
US11317903B2 (en) Implant devices and systems for stabilized fixation of bone and soft tissue
US9888951B1 (en) Device for repairing a bone fracture
CN204049805U (en) Gun-type reduction forceps
JP2017536175A (en) Fracture plate fixation
JP2014161726A (en) Implantable orthopedic device for treatment of bone deformities
Popovitch et al. Radius and Ulna
Caporn Traumatic temporomandibular joint luxation in a cat and treatment by condylar tethering
RU155647U1 (en) DEVICE FOR COMBINED OSTEOSYNTHESIS OF FRACTURES OF THE PROXIMAL DEPARTMENT OF THE ELECTRAL BONE
Ramchandra STUDY OF COMPLICATIONS IN SURGICAL MANAGEMENT OF HAND FRACTURES
Tajima et al. A SIMPLE REDUCTION TECHNIQUE IN INTRAMEDULLARY NAILING (MICRONAIL) OF DISTAL RADIUS FRACTURE—INTRAFOCAL ELASTIC-SPRING PINNING METHOD
UA31179U (en) Method for replantation of condylar process of mandible
Wilson et al. Ulnar nerve palsy following closed radiocarpal fracture-dislocation
MARTIN THE OPEN TREATMENT OF FRACTURES.

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION