US20210270032A1 - Strut connector - Google Patents

Strut connector Download PDF

Info

Publication number
US20210270032A1
US20210270032A1 US17/252,683 US201917252683A US2021270032A1 US 20210270032 A1 US20210270032 A1 US 20210270032A1 US 201917252683 A US201917252683 A US 201917252683A US 2021270032 A1 US2021270032 A1 US 2021270032A1
Authority
US
United States
Prior art keywords
connector
strut
connecting means
struts
periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/252,683
Inventor
Javier Janez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matilda's Planet Strata Comfort Ltd
Original Assignee
Matilda's Planet Strata Comfort Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matilda's Planet Strata Comfort Ltd filed Critical Matilda's Planet Strata Comfort Ltd
Publication of US20210270032A1 publication Critical patent/US20210270032A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/388Separate connecting elements
    • E04B1/40
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B1/3211Structures with a vertical rotation axis or the like, e.g. semi-spherical structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/08Vaulted roofs
    • E04B7/10Shell structures, e.g. of hyperbolic-parabolic shape; Grid-like formations acting as shell structures; Folded structures
    • E04B7/105Grid-like structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B2001/3235Arched structures; Vaulted structures; Folded structures having a grid frame
    • E04B2001/3241Frame connection details
    • E04B2001/3247Nodes

Definitions

  • the present invention relates to a strut connector, and in particular, to a strut connector for connecting struts, such as but not limited to struts of a structure, for example, but not limited to roof struts, such as, for example, roof rafters of a structure.
  • Node connectors for single layer structures can be divided into two fundamental groups—splice connectors and end-face connectors.
  • Bolted splice connectors characterised by a contact surface between the node and the connected structural member that runs along splice plates in the longitudinal axis of the member; and fixings realized as a bolted splice with shear-stressed bolts or by welding are typical.
  • node connectors only allow for fixings of struts or the like at pre-defined fixing points, and offer little scope for angular deviation, customization, correction or the like.
  • strut in this specification is intended to mean any member be it a long member, a short member, a structural component or a decorative component, which is to be joined to such a strut.
  • a strut connector for connecting at least two struts, the strut connector defining a periphery and comprising at least one first connecting means adjacent the periphery thereof configured to connect one or more of the struts for securing the struts to the strut connector at any point about the periphery.
  • the present invention provides a struct connector that is used for building geodesic structures Spherical and non-spherical structures like elliptical domes, tubular structures, square dome base, lattice, and curved roofs, or any curved surface.
  • Different materials like timber, composite material, fiberglass, carbon fibre or metal can be used for the strut connector, strut and components thereof. It can be appreciated that different materials may be used for different elements of the connector to suit the required functionality.
  • the at least one first connecting means may be configured to adjustably connect the one or more of the struts to the strut connector. This allows the struts to be adjusted to an alternative location about the periphery, easing installation and adjustment.
  • the strut connector may define a connecting plane
  • the at least one first connecting means may be configured for connecting the one or more of the struts to the strut connector extending in one of the connecting plane and at an offset angle greater than zero offset from the connecting plane. Accordingly, the offset angle to the connecting plane at which the at least one first connecting means is configured to connect the one or more of the struts to the strut connector may be adjustable.
  • the offset angle to the connecting plane at which the at least one first connecting means is configured to connect the one or more of the struts to the strut connector lies may be in the range of 0° to 45°.
  • the offset angle to the connecting plane at which the at least one first connecting means is configured to connect the one or more of the struts to the strut connector lies may be in the range of 0° to 30°.
  • the offset angle to the connecting plane at which the at least one first connecting means is configured to connect the one or more of the struts to the strut connector lies may be in the range of 0° to 20°.
  • the at least one first connecting means may be configured for connecting the one or more of the struts to the strut connector with the struts spaced apart around the periphery of the strut connector.
  • the at least one first connecting means may be configured for connecting the one or more of the struts with the spacing of the struts around the periphery of the strut connector in an adjustable manner.
  • the first connecting means may comprise a connecting hoop extending around the periphery of the strut connector, and preferably, the hoop is of circular or partly circular transverse cross-section.
  • the hoop may be configured to dovetail
  • the hoop forming the first connecting means extending around the strut connector may be of a circular shape. It can be appreciated that the circular shape may be substantially circular, oval or the like.
  • the first connecting means may comprise a plurality of first connecting elements configured for securing corresponding ones or more of the struts to the strut connector with the struts spaced apart around the periphery thereof.
  • each first connecting element may be of circular transverse cross-section, and preferably, the spacing between adjacent ones of the first connecting elements can be adjustable.
  • a guide means may also be provided for guiding each first connecting element along the periphery of the strut connector.
  • the guide means may comprise a guide track, and advantageously, a guide member extending from each first connecting element may be slideably engageable in the guide track.
  • a first securing means may be provided for securing each first connecting element to the strut connector.
  • each strut terminates with a second connecting means for connecting the strut to the at least one first connecting means.
  • each second connecting means may then be complementary to the at least one first connecting means.
  • each second connecting means may define a bore for engaging the at least one first connecting means, and advantageously, the bore defined by each second connecting means may be of circular transverse cross-section, and optionally or preferably may be of circular transverse cross-section substantially similar to the circular transverse cross-section of the first connecting means.
  • an entry slot may be provided in each second connecting means communicating with the bore extending through the corresponding second connecting means.
  • the entry slot in each second connecting means may be configured for accommodating a part of the strut connector.
  • each second connecting means may be of width in a circumferential direction relative to the corresponding bore extending through the second connecting means for permitting pivoting of the second connecting means about the first connecting means, and optionally or preferably, for permitting pivoting of the second connecting means about the corresponding first connecting means for pivoting the corresponding strut through the offset angle relative to the connecting plane defined by the strut connector.
  • the struts can be locked anywhere around the 360 degrees of a periphery of a circular plate of the strut connector. Additionally the struts may be inclined from 0-45 degrees negative or positive and the or a cylindrical component can rotate inside the or a primary connecting member of the second connecting means at an end of the strut. This can allow connected struts to rotate from 0 to 45 degrees.
  • the first connecting means may comprise a cylindrical component.
  • the cylindrical component may be a solid piece with a central T shape radius. This feature may allow the cylinder to be secure and avoid sliding out of the primary connecting member.
  • the cylinder may have two pins and two conical pieces to attach it to a central plate of the strut connector to avoid movement.
  • the two conical pieces may be attached to the cylinder by 2 hex-bolts to lock the cylinder at any point around the 360 degrees of the connector.
  • the pins opposite to the conical pieces may slide inside a grout in the circular or central plate. This feature can give the cylinder stability.
  • a second securing means can be provided for securing the second connecting means to the corresponding first connecting means.
  • each second securing means may comprise a second securing element.
  • a third securing means may be provided for securing each second connecting means to the corresponding strut.
  • the periphery defined by the strut connector may comprise a substantially circular shaped periphery.
  • the periphery defined by the strut connector may be of polygonal shape.
  • one first connecting means may be located on each side edge of the polygonal periphery of the strut connector.
  • the strut connector can comprises a disc member.
  • the strut connector may be made of one of timber material, carbon fibre material, metal material, and a plastics material.
  • Example metal materials include steel and aluminium.
  • Example plastics material include nylon, structural plastics, which can include post consumer recycled plastics products, fibre reinforced plastic or even metal reinforced plastics.
  • the at least one first connecting means may be made of one of timber material, metal material and plastics material. Variants are as described above.
  • a strut connector and at least one strut connected to the strut connector of any embodiment or example of the first aspect are provided.
  • the at least one strut may terminate at its respective opposite ends in respective second connecting means, and advantageously, each strut may be connected at its respective opposite ends to respective strut connectors.
  • the invention in a third aspect provides a structure comprising a plurality of struts joined by at least one strut connector, and advantageously, the structure comprises a plurality of strut connectors joining respective pluralities of struts.
  • FIG. 1 is a perspective view of a structure according to the invention
  • FIG. 2 is a perspective view of a detail of the structure of FIG. 1 ,
  • FIG. 3 is a cross-sectional side elevational view of the detail of FIG. 2 of the structure of FIG. 1 ,
  • FIG. 4 is a perspective view of a portion of a structure according to another embodiment of the invention.
  • FIG. 5 is a cross-sectional view of the portion of FIG. 4 .
  • FIG. 6 is a top plan view of a part of the portion of FIG. 5 .
  • FIG. 7 is a perspective view of a detail of the portion of FIG. 4 .
  • FIG. 8 is an end elevational view of a structure according to another embodiment of the invention.
  • FIG. 9 is a top plan view of a detail of the structure of FIG. 8 .
  • FIG. 10 is a cross-sectional side elevational view of a portion of the detail of FIG. 9 .
  • FIG. 11 is a cross-sectional view of the detail of FIG. 9 .
  • FIG. 12 is a cross-sectional plan view of a part of the detail of FIG. 9 .
  • FIG. 13 is a cross-sectional side elevational view of the detail of FIG. 12 .
  • FIG. 14 is a front elevational view of the detail of FIG. 13 .
  • FIG. 15 is a perspective view of a part of the structure of FIG. 8 .
  • FIG. 16 is a perspective view of a detail of the structure of FIG. 8 .
  • FIG. 17 is a perspective view of another detail of the structure of FIG. 8 .
  • FIG. 18 is another perspective view of the detail of the structure of FIG. 8 .
  • FIG. 19 is a perspective view of a part of a structure according to another embodiment of the invention.
  • FIG. 20 is a perspective view of a decorative element also according to the invention.
  • each strut connector 5 comprises a disc 7 of timber material which defines a circular periphery 8 .
  • a first connecting means, which in this embodiment of the invention comprises a single first connecting element 10 is formed by a peripheral circular hoop 11 of circular transverse cross-section extending around the circular peripheral 8 of the disc 7 .
  • the circular hoop 11 has been omitted from the strut connectors 5 in FIG. 1 , but is illustrated in FIGS. 2 and 3 .
  • the circular hoop 11 is integrally formed by machining with the disc 7 .
  • the first connecting element 10 formed by the hoop 11 may be formed separately of the disc 7 and secured thereto by a first securing means, for example, by fixings, for example, nails or screws, or by bonding.
  • the circular hoop 11 forming the first connecting element 10 is configured for connecting a plurality of the struts 4 , in this embodiment of the invention five struts 4 to the strut connector 5 .
  • Each strut 4 is of timber material and terminates at its respective opposite ends in second connecting means provided by second connecting elements 12 also of timber material.
  • Each second connecting element 12 comprises a pair of clamping members 14 each of timber material which are secured together by a second securing means, namely, a threaded bolt 15 , a nut 16 and a washer 17 through counter-sunk bores 18 in the respective clamping members 14 .
  • the clamping members 14 define a bore 19 of circular transverse cross-section which is of diameter just less than the diameter of the circular hoop 11 .
  • An entry slot 20 is defined by the clamping members 14 which communicates with the bore 19 to accommodate the disc 7 of the strut connector 5 .
  • the circumferential width A of the entry slot 20 is greater than the thickness t of the disc 7 for facilitating pivoting of the second connecting elements 12 on the hoop 11 , as will be described in more detail below.
  • a rebate 22 extends from each clamping member 14 and is engageable in a corresponding recess (not shown) in the strut 4 adjacent the corresponding end thereof for securing the clamping members 14 in the strut 4 .
  • a third securing means in this embodiment of the invention a pair of screws 24 through the strut 4 adjacent the corresponding end thereof, and through the rebates 22 secure the clamping members 14 to the corresponding end of the strut 4 .
  • an alignment means in this embodiment of the invention an alignment means comprising an alignment member 25 is formed on one of the clamping members 14 of each second connecting element 12 and is engageable with a corresponding alignment means, namely, an alignment recess 26 formed on the other one of the clamping members 14 of each second connecting element 12 for aligning the clamping members 14 .
  • each second connecting element 12 is slideable along the circular hoop 11 for adjusting the spacing between adjacent second connecting elements 12 around the circular hoop 11 , and for correctly positioning the corresponding strut 4 on the corresponding strut connector 5 .
  • each disc 7 defines a connecting plane 28 of the corresponding strut connector 5
  • each second connecting element 12 is configured to be pivotal on the circular hoop 11 in the direction of the arrows B and C about the circular hoop 11 for setting an offset angle a at which the corresponding strut 4 is to be offset from the connecting plane 28 in order to define the curvature of the domed roof structure 2 .
  • the offset angle a through which each strut 4 can be adjusted relative to the connecting plane 28 lies in the range of 0° to 45°.
  • End stops 29 which define the ends of the entry slot 20 define the angle a through which the corresponding strut 4 is pivotal relative to the connecting plane 28 .
  • each second connecting element 12 is of diameter just less than the diameter of the hoop 11 , so that when each second connecting element 12 is correctly circumferentially positioned on the circular hoop 11 , and is correctly angled relative to the disc 7 , so that the corresponding strut 4 extends at the desired offset angle a from the connecting plane 28 of the disc 7 , by tightening of the clamping members 14 together by the threaded bolt 15 , the nut 16 and the washer 17 , the first connecting element 10 is tightly clamped on and secured to the circular hoop 11 , and in turn to the strut connector 5 .
  • the struts 4 are connected to corresponding ones of the strut connectors 5 by the respective second connecting elements 12 which are clamped and secured onto the circular hoops 11 of the respective strut connectors 5 .
  • the second connecting elements 12 Prior to clamping of the second connecting elements 12 onto the circular hoops 11 of the strut connectors 5 , the second connecting elements 12 are correctly positioned circumferentially around the circular hoop 11 , and are angled so that the corresponding struts 4 extend from the strut connector 5 at the desired offset angle a relative to the connecting plane 28 of the strut connector 5 .
  • the interstices between the struts 4 will be closed by glass. It is further envisaged that the struts 4 would be configured as sash bars or would be configured to support sash bars, which would support panes of glass located in the interstices between the struts 4 .
  • FIGS. 4 to 7 there is illustrated a strut connector 40 according to another embodiment of the invention for joining a plurality of struts 41 of a domed roof structure (not shown) but substantially similar to the domed roof structure 2 described with reference to
  • the strut connector 40 comprises a disc 43 also of wood defining a polygonal periphery 45 which defines a plurality of side edges 47 which together define the polygonal periphery 45 .
  • the number of side edges 47 defining the polygonal periphery 45 may be any desired number, and in general, will correspond to the number of struts 41 to be connected by the strut connector 40 .
  • the disc 43 in this embodiment of the invention also defines a connecting plane 48 of the strut connector 40 .
  • the strut connector 40 comprises a plurality of first connecting means, in this embodiment of the invention a plurality of first connecting elements 50 , one first connecting element 50 being located on each side edge 47 of the polygonal periphery 45 of the strut connector 40 .
  • Each first connecting element 50 comprises a cylindrical member 52 of wood material (or the like, as noted above) of stepped transverse cross-section having a central cylindrical portion 53 and a pair of outer cylindrical portions 54 .
  • a longitudinally extending slot 56 extends longitudinally into and along the cylindrical member 52 for engaging a portion of the disc 43 adjacent the corresponding side edge 47 of the strut connector 40 .
  • a first securing means in this embodiment of the invention a pair of first threaded bolts 58 , first nuts 59 and first washers 60 secure each first connecting element 50 to the corresponding side edge 47 of the disc 43 .
  • each strut 43 terminates at its respective opposite ends in second connecting means, namely, second connecting elements 62 , which are similar to the second connecting elements 12 of the domed roof structure 2 described with reference to FIGS. 1 to 3 , and similar components of the second connecting elements 62 to those of the second connecting elements 12 are identified by the same reference numerals.
  • the clamping members 14 of the second connecting elements 62 are configured to engage the central cylindrical portion 53 of the corresponding first connecting element 50
  • the outer cylindrical portions 54 act as locating elements for centrally locating the clamping members 14 of the second connecting elements 62 centrally on the central cylindrical portion 53 of the corresponding first connecting element 50 .
  • the circumferential positioning of the second connecting elements 62 around the polygonal periphery 45 of the strut connector 40 is not adjustable.
  • the offset angle a of each strut 41 relative to the connecting plane 48 defined by the strut connector 40 is adjustable in a similar manner as described with reference to the domed roof structure 2 of FIGS. 1 to 3 .
  • a second securing means in this embodiment of the invention a pair of second threaded bolts 63 , second nuts 64 and second washers 65 through the counter-sunk bores 18 of the clamping members 14 secure the clamping members 14 of each second connecting element 62 to the central cylindrical portion 53 of the corresponding first connecting element 50 with the corresponding strut 41 at the desired offset angle a to the connecting plane 48 defined by the strut connector 40 .
  • a third securing means comprising a pair of screws 67 through each strut 41 and the rebates of the corresponding clamping elements 14 secure the clamping members 14 of the corresponding second connecting elements 62 to the corresponding end of the strut 41 .
  • the strut connector 40 according to this embodiment of the invention and its use in constructing a domed roof structure similar to the domed roof structure 2 of the structure 1 is similar to that already described with reference to the domed roof structure 2 described with reference to FIGS. 1 to 3 .
  • FIGS. 8 to 18 there is illustrated a strut connector according to another embodiment of the invention indicated generally by the reference numeral 70 for connecting a plurality of struts 71 of a domed roof structure 69 .
  • the strut connector 70 comprises a disc 73 of wood material which defines a circular periphery 74 .
  • the disc 73 defines a connecting plane 72 of the strut connector 70 which is substantially similar to the connecting plane 28 defined by the strut connectors 5 described with reference to FIGS. 1 to 3 .
  • a plurality of first connecting means, namely, a plurality of first connecting elements 75 are located spaced apart circumferentially around the circular periphery 74 of the disc 73 .
  • Each first connecting element 75 comprises a cylindrical member 76 of stepped cross-section having a central cylindrical portion 77 and a pair of outer cylindrical portions 78 of diameter less than the diameter of the cylindrical central portion 77 .
  • An elongated longitudinally extending slot 79 extends into each cylindrical member 76 for accommodating and engaging the disc 73 adjacent the circular periphery 74 thereof.
  • the cylindrical members 76 of the first connecting elements 75 are slideably mounted on the disc 73 and are slideable circumferentially around the periphery 74 thereof.
  • a guide means in this embodiment of the invention a pair of guide tracks, namely, an upper guide track 80 and a lower guide track 81 are formed in and extend around the disc 73 adjacent the periphery 74 on the upper and lower faces 83 and 84 thereof.
  • Guide members in this embodiment of the invention a pair of upper guide members 85 extend downwardly from the cylindrical member 76 into the slot 79 for engaging the upper guide track 80 in the disc 73 , and a pair of lower guide members 86 extend upwardly from the cylindrical member 76 into the slot 79 for engaging the lower guide track 81 .
  • the upper guide track 80 is of dovetailed cross-section, and the upper guide members 85 are similarly of dovetailed shape for slideably engaging the upper guide track 80 .
  • the lower guide track 81 is of channel shape, and the lower guide members 86 are formed by cylindrical guide members. In order to maximise the strength of the disc 73 adjacent the guide tracks 80 and 81 , the lower guide track 81 is spaced apart from the upper guide tract 80 with the lower guide tract 81 located closer to the periphery 74 of the disc 73 than the upper guide track 80 . This can be most clearly seen in FIG. 9 .
  • Each strut 71 terminates at its respective opposite ends in a corresponding connecting means, namely, a second connecting element 88 , which comprises a primary connecting member 89 and a secondary connecting member 90 .
  • the primary connecting member 89 and the second connecting member 90 define respective bores 91 and 92 which are of substantially similar diameter, and are of diameter similar to the diameter of the outer cylindrical portions 78 of the cylindrical members 76 of the first connecting elements 75 so that the primary and second connecting members 89 and 90 are rotatable on the outer cylindrical portions 78 of the first connecting elements 75 for setting the offset angle a at which the corresponding strut is to extend from the connecting plane 72 of the strut connector 40 .
  • the primary member 89 terminates in a dovetailed connector 94 which is engageable with a corresponding dovetailed recess 95 formed adjacent the corresponding end of the strut 71 which is formed in an end element 96 of the strut 71 .
  • the end elements 96 of the struts 71 are secured to the struts 71 adjacent the respective opposite ends thereof by fishplates 97 which are secured to the struts 71 and the end elements 96 by third securing means, namely, third threaded bolts 98 and third nuts 99 .
  • each second connecting element 89 essentially form a pair of clamping elements which clamp onto the central cylindrical portion 77 of the cylindrical member 76 of the corresponding first connecting element 75 .
  • Annular undercuts 101 are formed into each central cylindrical portion 77 adjacent the outer cylindrical portion 78 for engaging corresponding annular flanges 103 on the primary and secondary connecting members 89 and 90 .
  • a second connecting means in this embodiment of the invention four second threaded bolts 105 and second threaded nuts 106 secure the primary and secondary connecting members 89 and 90 together with the central cylindrical portion 77 of the cylindrical member 76 of the corresponding first connecting element 75 clamped therebetween.
  • Upper and lower entry tracks 109 and 110 respectively, of transverse cross-section similar to the transverse cross-section of the upper and lower guide tracks 80 and 81 , respectively, extend inwardly from the circular periphery 74 of the disc 73 of the strut connector 70 for accommodating entry of the first connecting elements 75 onto the disc 73 .
  • the upper and lower entry tracks 109 and 110 communicate with the upper guide track 80 and the lower guide track 81 , respectively, for accommodating the first connecting elements 75 onto the disc 73 so that the first connecting elements 75 are adjustable around the periphery thereof in the upper and lower guide tracks 80 and 81 .
  • each disc 73 of the corresponding strut connector 70 is provided with a threaded central bore 112 therethrough for engaging a threaded shaft 114 for connecting a pair of strut connectors 70 together spaced apart by the threaded shaft 114 .
  • This permits the construction of the domed roof structure 69 as a double-skinned domed roof structure 115 , a portion of which is illustrated in FIG. 8 .
  • each skin 116 of the domed roof structure 115 will comprise a plurality of upper and lower struts 71 joined by upper and lower strut connectors 70 a and 70 b with the skins 116 of the domed roof structure 115 being joined and held together by the threaded shafts 114 connecting adjacent pairs of the strut connectors 70 together.
  • the domed roof structure may be a glass domed roof structure with the interstices between the respective struts 71 being closed by glass.
  • FIG. 19 there is illustrated a portion of a structure according to another embodiment of the invention indicated generally by the reference numeral 120 comprising a strut connector, also according to another embodiment of the invention and indicated generally by the reference numeral 121 for joining struts, two of which struts 122 are illustrated in FIG. 19 .
  • the strut connector 121 comprises a disc 124 of timber material.
  • Three connecting elements 125 are secured to the disc 124 for engaging corresponding bores 127 extending transversely through the struts 122 .
  • each connecting element 122 is equi-spaced apart around the disc 124 , and each connecting element 122 comprises a pair of connector members 128 which are bonded to the disc 124 on respective opposite sides thereof for pivotally engaging the bore 127 in a corresponding one of the struts 122 .
  • Each connector member 128 is of transverse cross-section just less than semi-circular transverse cross-section, so that when the two connector members 128 of a pair thereof are bonded to the disc 124 , allowing for the thickness of the disc 124 , the pair of connector members 128 essentially define a substantially circular periphery 129 .
  • the diameter of the circular periphery 129 defined by each pair of connector members 128 when bonded to the disc 124 is substantially similar to the diameter of the bore 127 , so that the bore 127 is a tight but pivotal fit on the corresponding pair of connector members 128 of the corresponding connecting element 125 . Otherwise, the structure 120 and its use is similar to the structure 1 described with reference to FIGS. 1 to 3 hereof.
  • connector members 128 of the connecting elements 125 have been described as being bonded to the disc 124 , the connector members 128 could be secured to the disc 124 by any other suitable fixing or fastening means, for example, screws, nails or the like.
  • a decorative type element 130 which could also be used as a structural element in a structure, and which comprises a plurality of strut connectors 131 joining a plurality of struts 132 sequentially, to form a chainlike decorative element.
  • the strut connectors 131 are substantially similar to the strut connector 121 described with reference to FIG. 19 , and similar components are identified by the same reference numerals.
  • the only difference between the strut connectors 131 and the strut connector 121 is that each strut connector 131 is provided with only two connecting elements 125 spaced at 180° intervals around the disc 124 .
  • the struts 132 are substantially similar to the struts 122 described with reference to FIG.
  • the struts 132 and the struts 122 are significantly shorter than the struts 122 , and are also shaped in a decorative type manner.
  • the decorative element 130 is substantially similar to the structure 120 described with reference to FIG. 19 , and its use is also substantially similar. However, as mentioned above while the decorative element 130 has been described as being a decorative element, it could also form a structural element for use in a structure.
  • strut connectors described with reference to the drawings have been described and illustrated for connecting specific numbers of struts, it will be readily apparent to those skilled in the art that the strut connectors could be configured to connect any number of struts, from one upwards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

A strut connector is described. In particular, a strut connector for connecting at least two struts, the strut connector defining a periphery and comprising at least one first connecting means adjacent the periphery thereof configured to connect one or more of the struts for securing the struts to the strut connector at any point about the periphery. This provides increased flexibility to allow complex geodesic shapes to be constructed.

Description

  • The present invention relates to a strut connector, and in particular, to a strut connector for connecting struts, such as but not limited to struts of a structure, for example, but not limited to roof struts, such as, for example, roof rafters of a structure.
  • BACKGROUND
  • Traditional construction techniques, particularly for struts of a structure, have traditionally utilised joinery techniques to interconnect struts to form an interlocking support structure. Such support structures are common in structures and may be used to further support a larger structural element such as a roofing panel or tiling, glazing or other structural element.
  • However, these traditional construction techniques can often be time consuming to construct. Whilst modular interconnecting strut structures are known, they traditionally lack the ability to compensate for manufacturing tolerances between structural elements and struts that make their use in commercial construction techniques unreliable.
  • This is particularly the case for geodesic structures, elliptical domes and free form structures in general. Such structures are typically highly engineered and require customization for each connection between struts that are used to construct such structures. This involves a lot of work in design, manufacturing and installation, which adds to the cost. A further factor is that the array of materials that can be used are limited, mostly steel and aluminium. In turn, these materials then require precision machining and welding, which is again a challenge to generate in significantly large numbers. The stress concentration in structural nodes between such parts can also increase the risk of fatigue failure under repeated loads.
  • Among others, there are two main concepts for the realisation of free-form, single layer, and double layer structures. The latter concept has been well known for many years. The classical node connector for double layer structures is the ball node connector. This node connector was adopted in space frame systems like MERO. The complementary element to the ball node was developed by Mero Gmbh, Wuerzburg, Germany. However, it has been reported that structural nodes are one of the costliest parts in constructing 3D structures because of the large number of welds. The stress concentration in the sharp edges and the connections of conventionally manufactured structural nodes increase the risk of fatigue failure under repeated loads.
  • The growing importance of single layer structures in recent years is due to an architectural preference for transparent building envelopes. Node connectors for single layer structures can be divided into two fundamental groups—splice connectors and end-face connectors. Bolted splice connectors characterised by a contact surface between the node and the connected structural member that runs along splice plates in the longitudinal axis of the member; and fixings realized as a bolted splice with shear-stressed bolts or by welding are typical. However, such node connectors only allow for fixings of struts or the like at pre-defined fixing points, and offer little scope for angular deviation, customization, correction or the like.
  • Accordingly there exists and need for a strut connector that mitigates the above issues. It is noted that the term “strut” in this specification is intended to mean any member be it a long member, a short member, a structural component or a decorative component, which is to be joined to such a strut.
  • Summary
  • According to the invention there is provided a strut connector for connecting at least two struts, the strut connector defining a periphery and comprising at least one first connecting means adjacent the periphery thereof configured to connect one or more of the struts for securing the struts to the strut connector at any point about the periphery.
  • The present invention provides a struct connector that is used for building geodesic structures Spherical and non-spherical structures like elliptical domes, tubular structures, square dome base, lattice, and curved roofs, or any curved surface. Different materials like timber, composite material, fiberglass, carbon fibre or metal can be used for the strut connector, strut and components thereof. It can be appreciated that different materials may be used for different elements of the connector to suit the required functionality.
  • In an embodiment, preferably, the at least one first connecting means may be configured to adjustably connect the one or more of the struts to the strut connector. This allows the struts to be adjusted to an alternative location about the periphery, easing installation and adjustment.
  • In another embodiment of the invention the strut connector may define a connecting plane, and the at least one first connecting means may be configured for connecting the one or more of the struts to the strut connector extending in one of the connecting plane and at an offset angle greater than zero offset from the connecting plane. Accordingly, the offset angle to the connecting plane at which the at least one first connecting means is configured to connect the one or more of the struts to the strut connector may be adjustable.
  • Advantageously, the offset angle to the connecting plane at which the at least one first connecting means is configured to connect the one or more of the struts to the strut connector lies may be in the range of 0° to 45°.
  • Advantageously, the offset angle to the connecting plane at which the at least one first connecting means is configured to connect the one or more of the struts to the strut connector lies may be in the range of 0° to 30°.
  • Advantageously, the offset angle to the connecting plane at which the at least one first connecting means is configured to connect the one or more of the struts to the strut connector lies may be in the range of 0° to 20°.
  • In one embodiment of the invention the at least one first connecting means may be configured for connecting the one or more of the struts to the strut connector with the struts spaced apart around the periphery of the strut connector.
  • In another embodiment of the invention the at least one first connecting means may be configured for connecting the one or more of the struts with the spacing of the struts around the periphery of the strut connector in an adjustable manner.
  • In one embodiment of the invention the first connecting means may comprise a connecting hoop extending around the periphery of the strut connector, and preferably, the hoop is of circular or partly circular transverse cross-section. The hoop may be configured to dovetail
  • In another embodiment of the invention the hoop forming the first connecting means extending around the strut connector may be of a circular shape. It can be appreciated that the circular shape may be substantially circular, oval or the like.
  • In an alternative embodiment of the invention the first connecting means may comprise a plurality of first connecting elements configured for securing corresponding ones or more of the struts to the strut connector with the struts spaced apart around the periphery thereof.
  • Preferably, each first connecting element may be of circular transverse cross-section, and preferably, the spacing between adjacent ones of the first connecting elements can be adjustable. Preferably, a guide means may also be provided for guiding each first connecting element along the periphery of the strut connector.
  • Preferably, the guide means may comprise a guide track, and advantageously, a guide member extending from each first connecting element may be slideably engageable in the guide track.
  • In one embodiment of the invention a first securing means may be provided for securing each first connecting element to the strut connector.
  • In another embodiment of the invention each strut terminates with a second connecting means for connecting the strut to the at least one first connecting means. Advantageously, each second connecting means may then be complementary to the at least one first connecting means. In this embodiment, each second connecting means may define a bore for engaging the at least one first connecting means, and advantageously, the bore defined by each second connecting means may be of circular transverse cross-section, and optionally or preferably may be of circular transverse cross-section substantially similar to the circular transverse cross-section of the first connecting means.
  • In another embodiment of the invention an entry slot may be provided in each second connecting means communicating with the bore extending through the corresponding second connecting means. Advantageously, the entry slot in each second connecting means may be configured for accommodating a part of the strut connector.
  • In another embodiment of the invention the entry slot of each second connecting means may be of width in a circumferential direction relative to the corresponding bore extending through the second connecting means for permitting pivoting of the second connecting means about the first connecting means, and optionally or preferably, for permitting pivoting of the second connecting means about the corresponding first connecting means for pivoting the corresponding strut through the offset angle relative to the connecting plane defined by the strut connector.
  • As noted above, the struts can be locked anywhere around the 360 degrees of a periphery of a circular plate of the strut connector. Additionally the struts may be inclined from 0-45 degrees negative or positive and the or a cylindrical component can rotate inside the or a primary connecting member of the second connecting means at an end of the strut. This can allow connected struts to rotate from 0 to 45 degrees.
  • The first connecting means may comprise a cylindrical component. The cylindrical component may be a solid piece with a central T shape radius. This feature may allow the cylinder to be secure and avoid sliding out of the primary connecting member. The cylinder may have two pins and two conical pieces to attach it to a central plate of the strut connector to avoid movement. The two conical pieces may be attached to the cylinder by 2 hex-bolts to lock the cylinder at any point around the 360 degrees of the connector. The pins opposite to the conical pieces may slide inside a grout in the circular or central plate. This feature can give the cylinder stability.
  • Advantageously, a second securing means can be provided for securing the second connecting means to the corresponding first connecting means.
  • In one example of the invention each second securing means may comprise a second securing element.
  • Optionally, a third securing means may be provided for securing each second connecting means to the corresponding strut.
  • In one example of the invention the periphery defined by the strut connector may comprise a substantially circular shaped periphery. In an alternative example of the invention the periphery defined by the strut connector may be of polygonal shape. In such examples, one first connecting means may be located on each side edge of the polygonal periphery of the strut connector.
  • In another embodiment of the invention the strut connector can comprises a disc member.
  • In another embodiment of the invention the strut connector may be made of one of timber material, carbon fibre material, metal material, and a plastics material. Example metal materials include steel and aluminium. Example plastics material include nylon, structural plastics, which can include post consumer recycled plastics products, fibre reinforced plastic or even metal reinforced plastics.
  • In a further embodiment of the present invention the at least one first connecting means may be made of one of timber material, metal material and plastics material. Variants are as described above.
  • In a second aspect of the present invention there is provided a strut connector and at least one strut connected to the strut connector of any embodiment or example of the first aspect.
  • In another embodiment of the invention the at least one strut may terminate at its respective opposite ends in respective second connecting means, and advantageously, each strut may be connected at its respective opposite ends to respective strut connectors.
  • Further the invention in a third aspect provides a structure comprising a plurality of struts joined by at least one strut connector, and advantageously, the structure comprises a plurality of strut connectors joining respective pluralities of struts.
  • It can be appreciated that although described in relation to construction, the elements used provide customized structural nodes of complex shapes that may find application in assembling, furniture, mechanical elements, toys and robotics.
  • The invention will be more clearly understood from the following description of some embodiments thereof which are given by way of example only with reference to the accompanying drawings, in which:
  • FIG. 1 is a perspective view of a structure according to the invention,
  • FIG. 2 is a perspective view of a detail of the structure of FIG. 1,
  • FIG. 3 is a cross-sectional side elevational view of the detail of FIG. 2 of the structure of FIG. 1,
  • FIG. 4 is a perspective view of a portion of a structure according to another embodiment of the invention,
  • FIG. 5 is a cross-sectional view of the portion of FIG. 4,
  • FIG. 6 is a top plan view of a part of the portion of FIG. 5,
  • FIG. 7 is a perspective view of a detail of the portion of FIG. 4,
  • FIG. 8 is an end elevational view of a structure according to another embodiment of the invention,
  • FIG. 9 is a top plan view of a detail of the structure of FIG. 8,
  • FIG. 10 is a cross-sectional side elevational view of a portion of the detail of FIG. 9,
  • FIG. 11 is a cross-sectional view of the detail of FIG. 9,
  • FIG. 12 is a cross-sectional plan view of a part of the detail of FIG. 9,
  • FIG. 13 is a cross-sectional side elevational view of the detail of FIG. 12,
  • FIG. 14 is a front elevational view of the detail of FIG. 13,
  • FIG. 15 is a perspective view of a part of the structure of FIG. 8,
  • FIG. 16 is a perspective view of a detail of the structure of FIG. 8,
  • FIG. 17 is a perspective view of another detail of the structure of FIG. 8,
  • FIG. 18 is another perspective view of the detail of the structure of FIG. 8,
  • FIG. 19 is a perspective view of a part of a structure according to another embodiment of the invention, and
  • FIG. 20 is a perspective view of a decorative element also according to the invention.
  • Referring to the drawings and initially to FIGS. 1 to 3 thereof, there is illustrated a portion of a structure according to the invention indicated generally by the reference numeral 1, which in this embodiment of the invention comprises a domed roof structure 2 comprising a plurality of struts 4 joined by a plurality of strut connectors also according to the invention and indicated generally by the reference numeral 5 for forming the domed roof structure 2. In this embodiment of the invention each strut connector 5 comprises a disc 7 of timber material which defines a circular periphery 8. A first connecting means, which in this embodiment of the invention comprises a single first connecting element 10 is formed by a peripheral circular hoop 11 of circular transverse cross-section extending around the circular peripheral 8 of the disc 7. The circular hoop 11 has been omitted from the strut connectors 5 in FIG. 1, but is illustrated in FIGS. 2 and 3. In this embodiment of the invention the circular hoop 11 is integrally formed by machining with the disc 7. Although in other embodiments of the invention the first connecting element 10 formed by the hoop 11 may be formed separately of the disc 7 and secured thereto by a first securing means, for example, by fixings, for example, nails or screws, or by bonding. In this embodiment of the invention the circular hoop 11 forming the first connecting element 10 is configured for connecting a plurality of the struts 4, in this embodiment of the invention five struts 4 to the strut connector 5. Each strut 4 is of timber material and terminates at its respective opposite ends in second connecting means provided by second connecting elements 12 also of timber material.
  • Each second connecting element 12 comprises a pair of clamping members 14 each of timber material which are secured together by a second securing means, namely, a threaded bolt 15, a nut 16 and a washer 17 through counter-sunk bores 18 in the respective clamping members 14. The clamping members 14 define a bore 19 of circular transverse cross-section which is of diameter just less than the diameter of the circular hoop 11. An entry slot 20 is defined by the clamping members 14 which communicates with the bore 19 to accommodate the disc 7 of the strut connector 5. The circumferential width A of the entry slot 20 is greater than the thickness t of the disc 7 for facilitating pivoting of the second connecting elements 12 on the hoop 11, as will be described in more detail below. A rebate 22 extends from each clamping member 14 and is engageable in a corresponding recess (not shown) in the strut 4 adjacent the corresponding end thereof for securing the clamping members 14 in the strut 4. A third securing means in this embodiment of the invention a pair of screws 24 through the strut 4 adjacent the corresponding end thereof, and through the rebates 22 secure the clamping members 14 to the corresponding end of the strut 4.
  • An alignment means, in this embodiment of the invention an alignment means comprising an alignment member 25 is formed on one of the clamping members 14 of each second connecting element 12 and is engageable with a corresponding alignment means, namely, an alignment recess 26 formed on the other one of the clamping members 14 of each second connecting element 12 for aligning the clamping members 14.
  • In this embodiment of the invention each second connecting element 12 is slideable along the circular hoop 11 for adjusting the spacing between adjacent second connecting elements 12 around the circular hoop 11, and for correctly positioning the corresponding strut 4 on the corresponding strut connector 5.
  • Additionally, in this embodiment of the invention each disc 7 defines a connecting plane 28 of the corresponding strut connector 5, and each second connecting element 12 is configured to be pivotal on the circular hoop 11 in the direction of the arrows B and C about the circular hoop 11 for setting an offset angle a at which the corresponding strut 4 is to be offset from the connecting plane 28 in order to define the curvature of the domed roof structure 2. In this embodiment of the invention the offset angle a through which each strut 4 can be adjusted relative to the connecting plane 28 lies in the range of 0° to 45°. End stops 29 which define the ends of the entry slot 20 define the angle a through which the corresponding strut 4 is pivotal relative to the connecting plane 28.
  • As mentioned above the bore 19 defined by the clamping members 12 extending through each second connecting element 12 is of diameter just less than the diameter of the hoop 11, so that when each second connecting element 12 is correctly circumferentially positioned on the circular hoop 11, and is correctly angled relative to the disc 7, so that the corresponding strut 4 extends at the desired offset angle a from the connecting plane 28 of the disc 7, by tightening of the clamping members 14 together by the threaded bolt 15, the nut 16 and the washer 17, the first connecting element 10 is tightly clamped on and secured to the circular hoop 11, and in turn to the strut connector 5.
  • In use, to construct the domed roof structure 2 of the structure 1, the struts 4 are connected to corresponding ones of the strut connectors 5 by the respective second connecting elements 12 which are clamped and secured onto the circular hoops 11 of the respective strut connectors 5. Prior to clamping of the second connecting elements 12 onto the circular hoops 11 of the strut connectors 5, the second connecting elements 12 are correctly positioned circumferentially around the circular hoop 11, and are angled so that the corresponding struts 4 extend from the strut connector 5 at the desired offset angle a relative to the connecting plane 28 of the strut connector 5.
  • In this embodiment of the invention it is envisaged that the interstices between the struts 4 will be closed by glass. It is further envisaged that the struts 4 would be configured as sash bars or would be configured to support sash bars, which would support panes of glass located in the interstices between the struts 4.
  • Referring now to FIGS. 4 to 7 there is illustrated a strut connector 40 according to another embodiment of the invention for joining a plurality of struts 41 of a domed roof structure (not shown) but substantially similar to the domed roof structure 2 described with reference to
  • FIGS. 1 to 3. In this embodiment of the invention the strut connector 40 comprises a disc 43 also of wood defining a polygonal periphery 45 which defines a plurality of side edges 47 which together define the polygonal periphery 45. The number of side edges 47 defining the polygonal periphery 45 may be any desired number, and in general, will correspond to the number of struts 41 to be connected by the strut connector 40. The disc 43 in this embodiment of the invention also defines a connecting plane 48 of the strut connector 40.
  • The strut connector 40 comprises a plurality of first connecting means, in this embodiment of the invention a plurality of first connecting elements 50, one first connecting element 50 being located on each side edge 47 of the polygonal periphery 45 of the strut connector 40.
  • Each first connecting element 50 comprises a cylindrical member 52 of wood material (or the like, as noted above) of stepped transverse cross-section having a central cylindrical portion 53 and a pair of outer cylindrical portions 54. A longitudinally extending slot 56 extends longitudinally into and along the cylindrical member 52 for engaging a portion of the disc 43 adjacent the corresponding side edge 47 of the strut connector 40. A first securing means, in this embodiment of the invention a pair of first threaded bolts 58, first nuts 59 and first washers 60 secure each first connecting element 50 to the corresponding side edge 47 of the disc 43.
  • In this embodiment of the invention each strut 43 terminates at its respective opposite ends in second connecting means, namely, second connecting elements 62, which are similar to the second connecting elements 12 of the domed roof structure 2 described with reference to FIGS. 1 to 3, and similar components of the second connecting elements 62 to those of the second connecting elements 12 are identified by the same reference numerals. In this embodiment of the invention the clamping members 14 of the second connecting elements 62 are configured to engage the central cylindrical portion 53 of the corresponding first connecting element 50, and the outer cylindrical portions 54 act as locating elements for centrally locating the clamping members 14 of the second connecting elements 62 centrally on the central cylindrical portion 53 of the corresponding first connecting element 50.
  • In this embodiment of the invention the circumferential positioning of the second connecting elements 62 around the polygonal periphery 45 of the strut connector 40 is not adjustable. However, the offset angle a of each strut 41 relative to the connecting plane 48 defined by the strut connector 40 is adjustable in a similar manner as described with reference to the domed roof structure 2 of FIGS. 1 to 3. A second securing means, in this embodiment of the invention a pair of second threaded bolts 63, second nuts 64 and second washers 65 through the counter-sunk bores 18 of the clamping members 14 secure the clamping members 14 of each second connecting element 62 to the central cylindrical portion 53 of the corresponding first connecting element 50 with the corresponding strut 41 at the desired offset angle a to the connecting plane 48 defined by the strut connector 40.
  • A third securing means comprising a pair of screws 67 through each strut 41 and the rebates of the corresponding clamping elements 14 secure the clamping members 14 of the corresponding second connecting elements 62 to the corresponding end of the strut 41.
  • Otherwise, the strut connector 40 according to this embodiment of the invention and its use in constructing a domed roof structure similar to the domed roof structure 2 of the structure 1 is similar to that already described with reference to the domed roof structure 2 described with reference to FIGS. 1 to 3.
  • Referring now to FIGS. 8 to 18 there is illustrated a strut connector according to another embodiment of the invention indicated generally by the reference numeral 70 for connecting a plurality of struts 71 of a domed roof structure 69. The strut connector 70 comprises a disc 73 of wood material which defines a circular periphery 74. The disc 73 defines a connecting plane 72 of the strut connector 70 which is substantially similar to the connecting plane 28 defined by the strut connectors 5 described with reference to FIGS. 1 to 3. In this embodiment of the invention a plurality of first connecting means, namely, a plurality of first connecting elements 75 are located spaced apart circumferentially around the circular periphery 74 of the disc 73. Each first connecting element 75 comprises a cylindrical member 76 of stepped cross-section having a central cylindrical portion 77 and a pair of outer cylindrical portions 78 of diameter less than the diameter of the cylindrical central portion 77. An elongated longitudinally extending slot 79 extends into each cylindrical member 76 for accommodating and engaging the disc 73 adjacent the circular periphery 74 thereof. The cylindrical members 76 of the first connecting elements 75 are slideably mounted on the disc 73 and are slideable circumferentially around the periphery 74 thereof.
  • A guide means, in this embodiment of the invention a pair of guide tracks, namely, an upper guide track 80 and a lower guide track 81 are formed in and extend around the disc 73 adjacent the periphery 74 on the upper and lower faces 83 and 84 thereof. Guide members, in this embodiment of the invention a pair of upper guide members 85 extend downwardly from the cylindrical member 76 into the slot 79 for engaging the upper guide track 80 in the disc 73, and a pair of lower guide members 86 extend upwardly from the cylindrical member 76 into the slot 79 for engaging the lower guide track 81. In this embodiment of the invention the upper guide track 80 is of dovetailed cross-section, and the upper guide members 85 are similarly of dovetailed shape for slideably engaging the upper guide track 80. The lower guide track 81 is of channel shape, and the lower guide members 86 are formed by cylindrical guide members. In order to maximise the strength of the disc 73 adjacent the guide tracks 80 and 81, the lower guide track 81 is spaced apart from the upper guide tract 80 with the lower guide tract 81 located closer to the periphery 74 of the disc 73 than the upper guide track 80. This can be most clearly seen in FIG. 9.
  • Each strut 71 terminates at its respective opposite ends in a corresponding connecting means, namely, a second connecting element 88, which comprises a primary connecting member 89 and a secondary connecting member 90. The primary connecting member 89 and the second connecting member 90 define respective bores 91 and 92 which are of substantially similar diameter, and are of diameter similar to the diameter of the outer cylindrical portions 78 of the cylindrical members 76 of the first connecting elements 75 so that the primary and second connecting members 89 and 90 are rotatable on the outer cylindrical portions 78 of the first connecting elements 75 for setting the offset angle a at which the corresponding strut is to extend from the connecting plane 72 of the strut connector 40.
  • The primary member 89 terminates in a dovetailed connector 94 which is engageable with a corresponding dovetailed recess 95 formed adjacent the corresponding end of the strut 71 which is formed in an end element 96 of the strut 71. The end elements 96 of the struts 71 are secured to the struts 71 adjacent the respective opposite ends thereof by fishplates 97 which are secured to the struts 71 and the end elements 96 by third securing means, namely, third threaded bolts 98 and third nuts 99.
  • The primary and secondary connecting members 89 and 90 of each second connecting element 89 essentially form a pair of clamping elements which clamp onto the central cylindrical portion 77 of the cylindrical member 76 of the corresponding first connecting element 75. Annular undercuts 101 are formed into each central cylindrical portion 77 adjacent the outer cylindrical portion 78 for engaging corresponding annular flanges 103 on the primary and secondary connecting members 89 and 90. A second connecting means, in this embodiment of the invention four second threaded bolts 105 and second threaded nuts 106 secure the primary and secondary connecting members 89 and 90 together with the central cylindrical portion 77 of the cylindrical member 76 of the corresponding first connecting element 75 clamped therebetween.
  • Upper and lower entry tracks 109 and 110, respectively, of transverse cross-section similar to the transverse cross-section of the upper and lower guide tracks 80 and 81, respectively, extend inwardly from the circular periphery 74 of the disc 73 of the strut connector 70 for accommodating entry of the first connecting elements 75 onto the disc 73. The upper and lower entry tracks 109 and 110 communicate with the upper guide track 80 and the lower guide track 81, respectively, for accommodating the first connecting elements 75 onto the disc 73 so that the first connecting elements 75 are adjustable around the periphery thereof in the upper and lower guide tracks 80 and 81.
  • Additionally, in this embodiment of the invention each disc 73 of the corresponding strut connector 70 is provided with a threaded central bore 112 therethrough for engaging a threaded shaft 114 for connecting a pair of strut connectors 70 together spaced apart by the threaded shaft 114. This, permits the construction of the domed roof structure 69 as a double-skinned domed roof structure 115, a portion of which is illustrated in FIG. 8. It is envisaged that each skin 116 of the domed roof structure 115 will comprise a plurality of upper and lower struts 71 joined by upper and lower strut connectors 70a and 70b with the skins 116 of the domed roof structure 115 being joined and held together by the threaded shafts 114 connecting adjacent pairs of the strut connectors 70 together.
  • It is envisaged that in this embodiment of the invention the domed roof structure may be a glass domed roof structure with the interstices between the respective struts 71 being closed by glass.
  • Referring now to FIG. 19, there is illustrated a portion of a structure according to another embodiment of the invention indicated generally by the reference numeral 120 comprising a strut connector, also according to another embodiment of the invention and indicated generally by the reference numeral 121 for joining struts, two of which struts 122 are illustrated in FIG. 19. The strut connector 121 comprises a disc 124 of timber material. Three connecting elements 125 are secured to the disc 124 for engaging corresponding bores 127 extending transversely through the struts 122. In this embodiment of the invention the connecting elements 122 are equi-spaced apart around the disc 124, and each connecting element 122 comprises a pair of connector members 128 which are bonded to the disc 124 on respective opposite sides thereof for pivotally engaging the bore 127 in a corresponding one of the struts 122. Each connector member 128 is of transverse cross-section just less than semi-circular transverse cross-section, so that when the two connector members 128 of a pair thereof are bonded to the disc 124, allowing for the thickness of the disc 124, the pair of connector members 128 essentially define a substantially circular periphery 129. The diameter of the circular periphery 129 defined by each pair of connector members 128 when bonded to the disc 124 is substantially similar to the diameter of the bore 127, so that the bore 127 is a tight but pivotal fit on the corresponding pair of connector members 128 of the corresponding connecting element 125. Otherwise, the structure 120 and its use is similar to the structure 1 described with reference to FIGS. 1 to 3 hereof.
  • While the connector members 128 of the connecting elements 125 have been described as being bonded to the disc 124, the connector members 128 could be secured to the disc 124 by any other suitable fixing or fastening means, for example, screws, nails or the like.
  • Referring now to FIG. 20, there is illustrated a decorative type element 130, which could also be used as a structural element in a structure, and which comprises a plurality of strut connectors 131 joining a plurality of struts 132 sequentially, to form a chainlike decorative element. The strut connectors 131 are substantially similar to the strut connector 121 described with reference to FIG. 19, and similar components are identified by the same reference numerals. The only difference between the strut connectors 131 and the strut connector 121 is that each strut connector 131 is provided with only two connecting elements 125 spaced at 180° intervals around the disc 124. The struts 132 are substantially similar to the struts 122 described with reference to FIG. 19, and similar components are identified by the same reference numerals. The only difference between the struts 132 and the struts 122 is that the struts 122 are significantly shorter than the struts 122, and are also shaped in a decorative type manner.
  • Otherwise, the decorative element 130 is substantially similar to the structure 120 described with reference to FIG. 19, and its use is also substantially similar. However, as mentioned above while the decorative element 130 has been described as being a decorative element, it could also form a structural element for use in a structure.
  • While the strut connectors described with reference to the drawings have been described and illustrated for connecting specific numbers of struts, it will be readily apparent to those skilled in the art that the strut connectors could be configured to connect any number of struts, from one upwards.
  • The invention is not limited to the embodiments hereinbefore described which may be varied in construction and detail.

Claims (34)

1. A strut connector for connecting at least two struts, the strut connector defining a periphery and comprising:
at least one first connecting means adjacent the periphery thereof configured to connect one or more of the struts for securing the struts to the strut connector at any point about the periphery.
2. The connector of claim 1, wherein, the at least one first connecting means is configured to adjustably connect the one or more of the struts to the strut connector.
3. The connector of claim 1, wherein the strut connector defines a connecting plane, and the at least one first connecting means is configured for connecting the one or more of the struts to the strut connector extending in one of the connecting plane and at an offset angle greater than zero offset from the connecting plane.
4. The connector of claim 3, wherein the offset angle to the connecting plane at which the at least one first connecting means is configured to connect the one or more of the struts to the strut connector, is adjustable; and lies in the range of 0° to 45° C.
5. (canceled)
6. (canceled)
7. (canceled)
8. The connector of claim 1, wherein the at least one first connecting means is configured for connecting the one or more of the struts to the strut connector with the struts spaced apart around the periphery of the strut connector, and wherein the spacing of the struts around the periphery of the strut connector is adjustable.
9. (canceled)
10. The connector of claim 1, wherein the first connecting means comprises a connecting hoop extending around the periphery of the strut connector, and preferably, wherein the hoop is of circular or partly circular transverse cross-section.
11. (canceled)
12. The connector of claim 1, wherein the first connecting means comprises a plurality of first connecting elements configured for securing corresponding ones or more of the struts to the strut connector with the struts spaced apart around the periphery thereof.
13. The connector of claim 12 wherein each first connecting element is of circular transverse cross-section, and preferably, wherein the spacing between adjacent ones of the first connecting elements is adjustable.
14. The connector of claim 13, wherein a guide means is provided for guiding each first connecting element along the periphery of the strut connector, and wherein the guide means comprises a guide track, and advantageously, a guide member extending from each first connecting element is slideably engageable in the guide track.
15. (canceled)
16. The connector of claim 1, further comprising a first securing means for securing each first connecting element to the strut connector.
17. The connector of claim 1, wherein at least one of the struts terminates in a second connecting means for connecting the strut to the at least one first connecting means.
18. The connector of claim 17 wherein each second connecting means is complementary to the at least one first connecting means.
19. The connector of claim 17 wherein each second connecting means defines a bore for engaging the at least one first connecting means, and wherein the bore defined by each second connecting means is of circular transverse cross-section, and ideally, is of circular transverse cross-section substantially similar to the circular transverse cross-section of the first connecting means.
20. (canceled)
21. The connector of claim 17 wherein an entry slot is provided in each second connecting means communicating with the bore extending through the corresponding second connecting means.
22. The connector of claim 21 wherein the entry slot in each second connecting means is configured for accommodating a part of the strut connector, and/or wherein the entry slot of each second connecting means is of width in a circumferential direction relative to the corresponding bore extending through the second connecting means for permitting pivoting of the second connecting means about the first connecting means, and preferably, for permitting pivoting of the second connecting means about the corresponding first connecting means for pivoting the corresponding strut through an offset angle relative to the or a connecting plane defined by the strut connector.
23. (canceled)
24. The connector of claim 17 wherein the connector further comprises, at least one second securing means for securing each second connecting means to its corresponding first connecting means, and wherein each second securing means comprises a second securing element.
25. (canceled)
26. The connector of claim 17 wherein the connector further comprises, a third securing means for securing each second connecting means to the corresponding strut.
27. The connector of claim 1 wherein the periphery defined by the strut connector comprises a circular periphery, or wherein the periphery defined by the strut connector is of polygonal shape, and advantageously, one first connecting means is located on each side edge of the polygonal periphery of the strut connector.
28. (canceled)
29. The connector of claim 1 wherein the strut connector comprises a disc member.
30. (canceled)
31. (canceled)
32. A structure comprising a strut connector of claim 1, said structure further comprising at least one strut connected to the strut connector, and wherein the at least one strut terminates at its respective opposite ends in respective second connecting means, and wherein, each strut is connected at its respective opposite ends to respective strut connectors.
33. (canceled)
34. (canceled)
US17/252,683 2018-06-15 2019-06-17 Strut connector Abandoned US20210270032A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IES20180167 2018-06-15
IES2018/0167 2018-06-15
PCT/GB2019/051690 WO2019239163A1 (en) 2018-06-15 2019-06-17 Strut connector

Publications (1)

Publication Number Publication Date
US20210270032A1 true US20210270032A1 (en) 2021-09-02

Family

ID=67185510

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/252,683 Abandoned US20210270032A1 (en) 2018-06-15 2019-06-17 Strut connector

Country Status (3)

Country Link
US (1) US20210270032A1 (en)
EP (1) EP3807470A1 (en)
WO (1) WO2019239163A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4296585A (en) * 1978-05-30 1981-10-27 Dante Bini Permanent weather covers
GB9605057D0 (en) * 1996-03-09 1996-05-08 Ultraframe Plc Roof assemblies
US20100139192A1 (en) * 2008-12-05 2010-06-10 Hong Kong Polytechnic University Spatial Truss

Also Published As

Publication number Publication date
EP3807470A1 (en) 2021-04-21
WO2019239163A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
US8397463B2 (en) 3-dimensional universal tube connector system
CA2719864C (en) Four-way radial connector
AU2022228219A1 (en) An elongate structural element, a bracket and an elongate structural section
US9038347B2 (en) Truss and column structures incorporating natural round timbers and natural branched round timbers
US20080250747A1 (en) T-chord open web joist with adjustable ends
CA2497194A1 (en) Open web trimmable truss with self locking joint
US20230146389A1 (en) Engineered beam with adjustable angle connection
CN105189887A (en) Stair modules which cooperate to form a temporary stair case
US7891144B2 (en) Adjustable heavy girder tiedown
AU2016332619B2 (en) Fibre reinforced polymer structures
US20210270032A1 (en) Strut connector
EP3369869B1 (en) Column and beam unit for hut construction and hut structure using same
US10392800B1 (en) System and method for building structures using multilayered panel frames
CA2684087A1 (en) Timber roof truss
US6318043B1 (en) Shelter and shelter support members
US20070283659A1 (en) Modular truss system
KR20090125228A (en) A panel fabrication device for circular pipe
US11953053B1 (en) Beam with improved hole patterns
US20190161957A1 (en) Apparatus and Methods For Connecting Timber Flanges
KR20190120245A (en) Synthetic wood arrangements and methods for making the arrangements
CA2509410C (en) Wood arch frame system
US20080006001A1 (en) Wood arch frame system
KR100406144B1 (en) model of structure and method of erection for traditional wooden structure with glued laminated timber and steel connecter
AU2017287702A1 (en) Apparatus and methods for connecting timber flanges
AU2024208812A1 (en) Module for truss web and truss assembly

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION